WO2022083658A1 - 波束指示方法、终端、网络侧设备、装置和存储介质 - Google Patents

波束指示方法、终端、网络侧设备、装置和存储介质 Download PDF

Info

Publication number
WO2022083658A1
WO2022083658A1 PCT/CN2021/125092 CN2021125092W WO2022083658A1 WO 2022083658 A1 WO2022083658 A1 WO 2022083658A1 CN 2021125092 W CN2021125092 W CN 2021125092W WO 2022083658 A1 WO2022083658 A1 WO 2022083658A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci state
power control
uplink power
control parameter
tci
Prior art date
Application number
PCT/CN2021/125092
Other languages
English (en)
French (fr)
Inventor
李辉
陈润华
高秋彬
骆亚娟
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US18/250,301 priority Critical patent/US20230403570A1/en
Priority to EP21882073.6A priority patent/EP4236153A4/en
Publication of WO2022083658A1 publication Critical patent/WO2022083658A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06968Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using quasi-colocation [QCL] between signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a beam indication method, a terminal, a network-side device, an apparatus, and a storage medium.
  • the uplink channel and/or the downlink channel will be beamformed to transmit data to enhance coverage.
  • the direction of the shaped beam can be determined by beam scanning of uplink and/or downlink reference signals.
  • the present application provides a beam indication method, terminal, network side device, apparatus and storage medium.
  • a beam indication method including:
  • the beam indication message includes a first transmission configuration indication TCI state identifier
  • the information field of the first TCI state includes at most two sets of source reference signal information indicating the beam direction;
  • the beam direction corresponding to the uplink channel and/or the downlink channel is determined.
  • the information field further includes at least one quasi-co-located QCL field, and the uplink channel and / or the beam direction corresponding to the downlink channel, including:
  • each QCL field in the information field determine the target channel indicated by the first TCI state
  • the beam direction corresponding to the target channel is determined according to the source reference signal information indicating the beam direction.
  • the information field further includes M QCL fields and N identifiers used to indicate the types of channels to which the M QCL fields belong, wherein M , N is a positive integer, and N is less than or equal to M, and determining the beam direction corresponding to the uplink channel and/or the downlink channel according to the source reference signal information, including:
  • the beam direction corresponding to the target channel is determined according to the source reference signal information indicating the beam direction.
  • TCI state pool configuration message sent by the base station, wherein the TCI state pool configuration message includes an information field of each TCI state, and the information field of each TCI state includes at most two sets of source reference signal information indicating beam directions.
  • the source reference signal information used to indicate the beam direction in the information field of each TCI state of the TCI state pool configuration message is different, and/or, the The channel types corresponding to the information fields of each TCI state in the TCI state pool are different.
  • the information field of each TCI state in the TCI state pool configuration message further includes K groups of uplink power control parameters corresponding to each uplink TCI state, wherein , K is a positive integer.
  • the TCI state pool configuration message further includes at least one uplink power control parameter group corresponding to each TCI state.
  • the method further includes:
  • the method further includes:
  • the base station Receive an uplink power control parameter configuration message sent by the base station, where the uplink power control parameter configuration message includes at least one uplink power control parameter group corresponding to each TCI state in the TCI state pool.
  • the base station receiving an intermediate activation TCI state configuration message sent by the base station, wherein the intermediate activation TCI state configuration message includes S TCI state identifiers, where S is a positive integer;
  • S TCI states corresponding to the S TCI state identifiers are selected from the TCI state pool to generate an intermediate activated TCI state set.
  • the method further includes:
  • the base station receiving an uplink power control parameter activation message sent by the base station, wherein the uplink power control parameter activation message includes at least one uplink power control parameter group identifier;
  • the activated at least one uplink power control parameter group is associated with a TCI state in the intermediate activated TCI state set.
  • the method further includes:
  • each TCI state in the intermediate activated TCI state set is associated with an activated uplink power control parameter group.
  • the method further includes:
  • a beam indication method including:
  • the information field of the first TCI state includes at most two sets of source reference signal information indicating beam directions;
  • the determining the first TCI state includes:
  • the state of each QCL field in the information field of the first TCI state is determined.
  • the determining the first TCI state includes:
  • the method further includes:
  • TCI state pool configuration message includes an information field of each TCI state, and each TCI state includes at most two sets of source reference signal information indicating beam directions.
  • the source reference signal information used to indicate the beam direction in the information field of each TCI state of the TCI state pool configuration message is different, and/or, the The channel types corresponding to the information fields of each TCI state in the TCI state pool are different.
  • the information field of each TCI state in the TCI state pool configuration message further includes K groups of uplink power control parameters corresponding to each uplink TCI state, wherein , K is a positive integer.
  • the TCI state pool configuration message further includes at least one uplink power control parameter group corresponding to each TCI state.
  • the method further includes:
  • the terminal Send an uplink power control parameter configuration message to the terminal, wherein the uplink power control parameter configuration message includes at least one uplink power control parameter group.
  • the method further includes:
  • the terminal Send an uplink power control parameter configuration message to the terminal, wherein the uplink power control parameter configuration message includes at least one uplink power control parameter group corresponding to each TCI state in the TCI state pool.
  • the base station sends an intermediate activated TCI state configuration message to the base station, where the intermediate activated TCI state configuration message includes S TCI state identifiers, where S is a positive integer.
  • the method further includes:
  • the uplink power control parameter activation message includes at least one uplink power control parameter group identifier, wherein the at least one uplink power control parameter group is associated with the intermediate activation
  • the TCI states in the TCI state set are associated.
  • the method further includes:
  • the uplink power control parameter activation message is used to activate an uplink power control parameter group associated with a second TCI state, wherein the second TCI state is the One TCI state in the set of intermediate active TCI states.
  • a terminal is provided,
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory to perform the following operations:
  • the beam indication message includes a first transmission configuration indication TCI state identifier
  • the information field of the first TCI state includes at most two sets of source reference signal information indicating the beam direction;
  • the beam direction corresponding to the uplink channel and/or the downlink channel is determined.
  • the information field further includes at least one quasi-co-located QCL field, and the uplink channel and the channel are determined according to the source reference signal information indicating the beam direction. / or the beam direction corresponding to the downlink channel, including:
  • each QCL field in the information field determine the target channel indicated by the first TCI state
  • the beam direction corresponding to the target channel is determined according to the source reference signal information indicating the beam direction.
  • the information field further includes M QCL fields and N identifiers used to indicate the types of channels to which the M QCL fields belong, wherein M , N is a positive integer, and N is less than or equal to M, and determining the beam direction corresponding to the uplink channel and/or the downlink channel according to the source reference signal information, including:
  • the beam direction corresponding to the target channel is determined according to the source reference signal information indicating the beam direction.
  • the processor is further configured to read a computer program in the memory to perform the following operations:
  • TCI state pool configuration message sent by the base station, wherein the TCI state pool configuration message includes an information field of each TCI state, and the information field of each TCI state includes at most two sets of source reference signal information indicating beam directions.
  • the source reference signal information used to indicate the beam direction in the information field of each TCI state of the TCI state pool configuration message is different, and/or, the The channel types corresponding to the information fields of each TCI state in the TCI state pool are different.
  • the information field of each TCI state in the TCI state pool configuration message further includes K groups of uplink power control parameters corresponding to each uplink TCI state, wherein , K is a positive integer.
  • the TCI state pool configuration message includes at least one uplink power control parameter group corresponding to each TCI state.
  • the processor is further configured to read a computer program in the memory to perform the following operations:
  • the processor is further configured to read a computer program in the memory to perform the following operations:
  • the base station Receive an uplink power control parameter configuration message sent by the base station, where the uplink power control parameter configuration message includes at least one uplink power control parameter group corresponding to each TCI state in the TCI state pool.
  • the processor is further configured to read a computer program in the memory to perform the following operations:
  • the base station receiving an intermediate activation TCI state configuration message sent by the base station, wherein the intermediate activation TCI state configuration message includes S TCI state identifiers, where S is a positive integer;
  • S TCI states corresponding to the S TCI state identifiers are selected from the TCI state pool to generate an intermediate activated TCI state set.
  • the processor is further configured to read a computer program in the memory to perform the following operations:
  • the base station receiving an uplink power control parameter activation message sent by the base station, wherein the uplink power control parameter activation message includes at least one uplink power control parameter group identifier;
  • the activated at least one uplink power control parameter group is associated with a TCI state in the intermediate activated TCI state set.
  • the processor is further configured to read a computer program in the memory to perform the following operations:
  • each TCI state in the intermediate activated TCI state set is associated with an activated uplink power control parameter group.
  • the processor is further configured to read a computer program in the memory to perform the following operations:
  • a network side device including a memory, a transceiver and a processor;
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • the information field of the first TCI state includes at most two sets of source reference signal information indicating beam directions;
  • the determining the first TCI state includes:
  • the state of each QCL field in the information field of the first TCI state is determined.
  • the determining the first TCI state includes:
  • the processor is further configured to read a computer program in the memory and perform the following operations:
  • TCI state pool configuration message includes an information field of each TCI state, and each TCI state includes at most two sets of source reference signal information indicating beam directions.
  • the source reference signal information used to indicate the beam direction in the information field of each TCI state of the TCI state pool configuration message is different, and/or, the The channel types corresponding to the information fields of each TCI state in the TCI state pool are different.
  • the information field of each TCI state in the TCI state pool configuration message further includes K groups of uplink power control parameters corresponding to each uplink TCI state, wherein , K is a positive integer.
  • the TCI state pool configuration message includes at least one uplink power control parameter group corresponding to each TCI state.
  • the processor is further configured to read a computer program in the memory and perform the following operations:
  • the terminal Send an uplink power control parameter configuration message to the terminal, wherein the uplink power control parameter configuration message includes at least one uplink power control parameter group.
  • the processor is further configured to read a computer program in the memory and perform the following operations:
  • the terminal Send an uplink power control parameter configuration message to the terminal, wherein the uplink power control parameter configuration message includes at least one uplink power control parameter group corresponding to each TCI state in the TCI state pool.
  • the processor is further configured to read a computer program in the memory and perform the following operations:
  • the terminal send an intermediate activated TCI state configuration message to the terminal, where the intermediate activated TCI state configuration message includes S TCI state identifiers, where S is a positive integer.
  • the processor is further configured to read a computer program in the memory and perform the following operations:
  • the uplink power control parameter activation message includes at least one uplink power control parameter group identifier, wherein the at least one uplink power control parameter group is associated with the intermediate activation
  • the TCI states in the TCI state set are associated.
  • the processor is further configured to read a computer program in the memory and perform the following operations:
  • the uplink power control parameter activation message is used to activate an uplink power control parameter group associated with a second TCI state, wherein the second TCI state is the One TCI state in the set of intermediate active TCI states.
  • a beam pointing device comprising:
  • a receiving unit configured to receive a beam indication message sent by a base station, wherein the beam indication message includes a first transmission configuration indication TCI state identifier;
  • An obtaining unit configured to obtain the first TCI state corresponding to the first TCI state identifier from the TCI state pool, wherein the information field of the first TCI state includes at most two sets of source reference signal information indicating the beam direction ;
  • a determining unit configured to determine the beam direction corresponding to the uplink channel and/or the downlink channel according to the source reference signal information indicating the beam direction.
  • a beam pointing device comprising:
  • a determining unit configured to determine a first TCI state, wherein the information field of the first TCI state includes at most two sets of source reference signal information indicating beam directions;
  • a sending unit configured to send a beam indication message to the terminal, wherein the beam indication message includes the first TCI state identifier.
  • a processor-readable storage medium where a computer program is stored in the processor-readable storage medium, and the computer program is configured to cause the processor to execute the embodiments of the first aspect. Synchronization method for user equipment context information.
  • a processor-readable storage medium where a computer program is stored in the processor-readable storage medium, and the computer program is configured to cause the processor to execute the embodiments of the second aspect. Synchronization method for user equipment context information.
  • the beam indication method, terminal, network-side device, apparatus, and storage medium of the embodiments of the present application receive a beam indication message sent by a base station, wherein the beam indication message includes a first transmission configuration indication TCI state identifier; from the TCI state pool Obtain the first TCI state corresponding to the first TCI state identifier, wherein the information field of the first TCI state includes at most two sets of source reference signal information indicating the beam direction; determine the uplink channel according to the source reference signal information indicating the beam direction and/or the beam direction corresponding to the downlink channel.
  • the beam is simplified.
  • the complexity of the indication reduces the signaling indication overhead.
  • FIG. 1 is a schematic flowchart of a beam indication method provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of another beam indication method provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of another beam indication method provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of another beam indication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another beam indication method provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another beam indication method provided by an embodiment of the present application.
  • FIG. 7 provides a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a network side device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a beam pointing device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a beam indicating apparatus provided by an embodiment of the present application.
  • a downlink channel includes a downlink data channel and a downlink control channel
  • an uplink channel includes an uplink data channel and an uplink control channel. If each channel adopts the independent indication mode to indicate the beam mode, the beam indication signaling needs to be sent four times, the indication mode is complicated, and the signaling indication overhead is large.
  • an embodiment of the present application proposes a beam indication method.
  • the beam indication message includes a first transmission configuration indication TCI state identifier; Identifies the corresponding first TCI state, wherein the information field of the first TCI state includes at most two sets of source reference signal information indicating the beam direction; according to the source reference signal information indicating the beam direction, it is determined that the uplink channel and/or the downlink channel corresponds to beam direction. Therefore, by indicating the uplink channel common beam, the downlink channel common beam, or the same or different common beams of the uplink and downlink channels according to the source reference signal information indicating the beam direction in one TCI state in the TCI state pool, the beam is simplified. The complexity of the indication reduces the signaling indication overhead.
  • FIG. 1 is a schematic flowchart of a beam indication method provided by an embodiment of the present application.
  • the beam indication method of the embodiment of the present application can be executed by the terminal, so as to determine the beam direction corresponding to the uplink channel and/or the downlink channel according to the reference source signal information in the received beam indication message sent by the base station.
  • the beam indication method includes:
  • Step 101 Receive a TCI state pool configuration message sent by the base station.
  • the Transmission Configuration Indication (TCI for short) state pool configuration message is used to configure the TCI state pool for the terminal.
  • the TCI state pool configuration message may include information about the TCI state to be configured, such as an identifier of each TCI state, an information field of each TCI state, and the like.
  • the terminal obtains the TCI state pool according to the TCI state pool configuration message sent by the receiving base station, wherein the TCI state pool includes T TCI states, where T is a positive integer, and the information field of each TCI state may include at most two sets of indicator beams Source reference signal information for the direction.
  • the source reference signal information used to indicate the beam direction in the information field of each TCI state may be the same, that is, the corresponding beam directions may be the same.
  • the information field of each TCI state in the TCI state pool configuration message may include K groups of uplink power control parameters corresponding to each uplink TCI state, where K is a positive integer. That is, the information field of each TCI state configured by the base station for the terminal may include K groups of uplink power control parameter groups.
  • uplink power control parameter group is not configured in the information field of each TCI state, it can also be implemented in the following ways:
  • the above-mentioned TCI state pool configuration message includes at least one uplink power control parameter group corresponding to each TCI state.
  • the base station sends an uplink power control parameter configuration message to the terminal, where the uplink power control parameter configuration message includes at least one uplink power control parameter group.
  • the base station may further configure corresponding uplink power control parameters for each uplink TCI state. That is, the uplink power control parameter configuration message includes at least one uplink power control parameter group corresponding to each TCI state in the TCI state pool.
  • the base station can configure the uplink power control parameter group through Radio Resource Control (RRC) signaling, or through Downlink Control Information (DCI) signaling.
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • Step 102 Receive an intermediate activated TCI state configuration message sent by the base station, where the intermediate activated TCI state configuration message includes S TCI state identifiers.
  • the base station may also send an intermediate activated TCI state configuration message to the terminal at regular intervals, so that the terminal only uses the intermediate activated TCI state within a certain period of time.
  • the centralized TCI state carries out the transmission of data and signaling.
  • the intermediate activated TCI status configuration message may include S TCI status identifiers, the intermediate activated TCI status configuration message is used to configure the intermediate activated TCI status, and the S TCI status identifiers may be used by the base station in the current time period higher than the preset frequency.
  • the terminal may extract S TCI status identifiers from the intermediate activated TCI status configuration message.
  • S is a positive integer less than or equal to T.
  • the TCI state pool includes 100 TCI states
  • the intermediate activated TCI state configuration message includes 20 TCI state identifiers.
  • Step 103 Select S TCI states corresponding to the S TCI state identifiers from the TCI state pool, and generate an intermediate activated TCI state set.
  • the terminal After acquiring the S TCI state identifiers in the intermediate activated TCI state configuration message, the terminal selects S TCI states corresponding to the S TCI state identifiers from the TCI state pool, and generates an intermediate activated TCI state set according to the S TCI states. .
  • the set of intermediate activated TCI states includes S TCI states, and the S TCI states are in the active state.
  • Step 104 Receive an uplink power control parameter activation message sent by the base station.
  • the information field of each TCI state in the TCI state pool includes each uplink TCI state. That is to say, the terminal has configured the association relationship between each TCI state in the intermediate active state TCI state set and the uplink power control parameter group. Therefore, the base station sends an uplink power control parameter activation message to the terminal, and the terminal activates the uplink power control parameters corresponding to each TCI state in the intermediate activated TCI state set one by one through the received activation message.
  • Step 105 Receive a beam indication message sent by the base station, where the beam indication message includes a first transmission configuration indication TCI state identifier.
  • the base station may send a beam indication message to the terminal, and the terminal may receive the beam indication message sent by the base station.
  • the beam indication message is used to indicate the beam direction of the channel, and the beam indication message may include a TCI state identifier, which is referred to as the first TCI state identifier here for convenience of description.
  • the terminal may extract the first TCI state identifier from the beam indication message.
  • Step 106 Acquire a first TCI state corresponding to the first TCI state identifier from the TCI state pool, wherein the information field of the first TCI state includes at most two sets of source reference signal information indicating beam directions.
  • the terminal is preconfigured with a TCI state pool, wherein the TCI state pool includes at least one TCI state.
  • the terminal may acquire the first TCI state from the TCI state pool according to the first TCI state identifier.
  • the information field of the first TCI state may include an identifier of the first TCI state, at most two sets of source reference signal information indicating the beam direction, and the like.
  • the source reference signal information may be beam direction information of the source reference signal.
  • the information fields included in each TCI state in the TCI state pool may be the same or different.
  • Step 107 Determine the beam direction corresponding to the uplink channel and/or the downlink channel according to the source reference signal information indicating the beam direction.
  • the beam direction corresponding to the uplink channel and/or the downlink channel may be determined based on the beam direction of the source reference signal indicating the beam direction, or the beam direction of the source reference signal may be used as the corresponding beam direction of the uplink channel and/or the downlink channel beam direction.
  • the beam direction of the source reference signal may be used as the beam direction corresponding to the uplink data channel and the uplink control channel.
  • the beam direction of the source reference signal may be used as the beam direction corresponding to the downlink data channel and the downlink control channel.
  • the beam direction of the source reference signal may be used as the beam direction corresponding to the uplink data channel, the uplink control channel, the downlink data channel, and the downlink control channel.
  • the channel to be indicated by the first TCI state may be determined first.
  • the information field of the first TCI state may include at least one Quasi Co-Location (Quasi Co-Location, QCL for short) field, and the target channel indicated by the first TCI state may be determined according to the state of each QCL field.
  • the state of the QCL domain refers to whether the QCL domain exists in the information domain.
  • the base station and the terminal may preset the correspondence between each QCL field and the channel in the information field of the TCI state. After acquiring the first TCI state, the terminal may determine the QCL domain that exists in the information domain of the first TCI state, and then the channel corresponding to the existing QCL domain is the target channel.
  • the beam direction corresponding to the target channel may be determined according to the source reference signal information indicating the beam direction. Specifically, the beam direction corresponding to the target channel may be determined based on the beam direction of the source reference signal indicating the beam direction, or the beam direction of the source reference signal may be used as the beam direction corresponding to the target channel.
  • the target channel is the uplink data signal and the uplink control channel
  • the beam direction of the source reference signal can be used as the beam direction corresponding to the uplink data channel and the uplink control channel.
  • the target channel is the downlink data signal and the downlink control channel
  • the beam direction of the source reference signal can be used as the beam direction corresponding to the downlink data channel and the downlink control channel.
  • the target channel is an uplink data channel, an uplink control channel, a downlink data channel, and a downlink control channel
  • the beam direction of the source reference signal can be used as the beam corresponding to the uplink data channel, the uplink control channel, the downlink data channel, and the downlink control channel. direction.
  • the information field of the first TCI state may further include M QCL fields and N identifiers used to indicate the types of channels to which the M QCL fields belong, and M may be determined according to the N identifiers in the information field.
  • the channel type to which the QCL domain belongs, and the target channel indicated by the first TCI state is determined according to the channel type to which the M QCL domains belong.
  • the target channel indicated by the first TCI state is an uplink channel. If the channel type to which the M QCL domains belong is a downlink channel, then the target channel indicated by the first TCI state is a downlink channel. If the channel types to which the M QCL domains belong include an uplink channel and a downlink channel, the target channel indicated by the first TCI state is an uplink channel and a downlink channel.
  • each QCL domain in the information domain may have corresponding source reference signal information
  • the beam direction corresponding to the channel type to which each QCL domain belongs is determined according to the source reference signal information indicating the beam direction corresponding to each QCL domain.
  • the base station configures a TCI state pool for the terminal, which includes L TCI states.
  • the information fields contained in each TCI state may be the same or different.
  • Each TCI state contains up to 2 source reference signals indicating beam direction.
  • TCI state i includes the following fields of information:
  • TCI-state-ID represents the identifier of the TCI state
  • CC represents the carrier where the source reference signal (source RS) is located
  • BWP is Bandwidth Part in English, that is, a part of the broadband, which represents the source reference signal
  • the BWP where the carrier is located and TypeA/B/C/D indicates the type of the QCL domain.
  • QCL-1 is used to indicate the time-domain and frequency-domain QCL information except beam direction information of the downlink channel;
  • QCL-2 is used to indicate the uplink common beam and the uplink power control parameters corresponding to the common beam;
  • QCL-3 is used to indicate the downlink public beam.
  • the source reference signals of the uplink common beam and the downlink common beam may be the same, to indicate that the uplink and downlink channels use the same common beam; the source reference signals of the uplink common beam and the downlink common beam may also be different, to indicate that the uplink and downlink channels are respectively Use their respective common beams.
  • the uplink power control parameter refers to the uplink power control parameter, which may include the path loss reference signal Pathloss RS, (alpha, P0) used to calculate the transmission power of the uplink channel, and the loop index used by Close to calculate the transmission power of the uplink channel, etc.
  • Pathloss RS path loss reference signal
  • P0 path loss reference signal
  • the terminal uses the same beam direction as the uplink source reference signal to send the uplink channel data, uses the receive beam direction corresponding to the downlink source reference signal to receive the downlink channel data, and measures the data according to the source reference signal indicated in QCL-1.
  • the obtained time-frequency information is used to demodulate the downlink channel.
  • the TCI state j shown in Table 2 is only used to indicate that the uplink channel uses the same common beam and uses the uplink power control parameter for uplink channel transmission.
  • the TCI status shown in Table 3 is only used to indicate that the downlink channel uses the same common beam, and uses the time-frequency information determined by the source reference signal in QCL-1 to perform data demodulation.
  • the base station may send MAC-CE signaling to the terminal, and the terminal selects S states from all TCI states as intermediate activated TCI states according to the MAC-CE signaling, and generates an intermediate activated TCI state set.
  • the intermediate activated TCI state set includes S TCI states, the S TCI states include W uplink TCI states, and the information fields of the W uplink TCI states include uplink power control parameters.
  • a TCI state pool is configured for the terminal, and the information field of each TCI state in the TCI state pool includes at most two sets of source reference signal information indicating the beam direction, and then, when performing beam indication , the TCI state identifier to be used can be directly sent to the terminal, and then the terminal can determine the beam direction of the channel according to the TCI state identifier.
  • the complexity of beam indication is simplified, and the signaling indication overhead is reduced.
  • FIG. 2 is a schematic flowchart of another beam indication method provided by an embodiment of the present application.
  • the beam indication method includes:
  • Step 201 Receive a TCI state pool configuration message sent by the base station.
  • the TCI state pool configuration message is used to configure the TCI state pool for the terminal.
  • the TCI state pool configuration message may include information about the TCI state to be configured, such as an identifier of each TCI state, an information field of each TCI state, and the like.
  • the terminal obtains the TCI state pool according to the TCI state pool configuration message sent by the receiving base station, wherein the TCI state pool includes T TCI states, where T is a positive integer, and the information field of each TCI state may include at most two sets of indicator beams Source reference signal information for the direction.
  • the source reference signal information used to indicate the beam direction in the information field of each TCI state may be the same, that is, the corresponding beam directions may be the same.
  • Step 202 Receive an intermediate activated TCI state configuration message sent by the base station, where the intermediate activated TCI state configuration message includes S TCI state identifiers.
  • the base station may send an intermediate activation TCI state configuration message to the terminal.
  • the intermediate activated TCI status configuration message may include S TCI status identifiers, the intermediate activated TCI status configuration message is used to configure the intermediate activated TCI status, and the S TCI status identifiers may be used by the base station in the current time period higher than the preset frequency.
  • the terminal may extract S TCI status identifiers from the intermediate activated TCI status configuration message.
  • S is a positive integer less than or equal to T.
  • the TCI state pool includes 100 TCI states
  • the intermediate activated TCI state configuration message includes 20 TCI state identifiers.
  • Step 203 Select S TCI states corresponding to the S TCI state identifiers from the TCI state pool, and generate an intermediate activated TCI state set.
  • the terminal After acquiring the S TCI state identifiers in the intermediate activated TCI state configuration message, the terminal selects S TCI states corresponding to the S TCI state identifiers from the TCI state pool, and generates an intermediate activated TCI state set according to the S TCI states. .
  • the set of intermediate activated TCI states includes S TCI states, and the S TCI states are in the active state.
  • Step 204 Receive an uplink power control parameter configuration message sent by the base station, where the uplink power control parameter configuration message includes K groups of uplink power control parameters corresponding to each uplink TCI state, where K is a positive integer.
  • the uplink power control parameter refers to the uplink power control parameter, which may include the path loss reference signal Pathloss RS, (alpha, P0) used to calculate the transmission power of the uplink channel, and the loop index used by Close to calculate the transmission power of the uplink channel, etc.
  • Pathloss RS path loss reference signal
  • P0 path loss reference signal
  • the terminal after receiving the uplink power control parameter configuration message sent by the base station, the terminal associates each TCI state in the TCI state pool with at least one uplink power control parameter group according to a preset rule.
  • the uplink power control parameter configuration message includes three groups of uplink power control parameter groups, and the terminal can make each TCI state correspond to the three groups of uplink power control parameter groups.
  • the information field of each TCI state in the above-mentioned TCI state pool configuration message also includes K groups of uplink power control parameters corresponding to each uplink TCI state, where K is a positive integer.
  • the base station may further configure corresponding uplink power control parameters for each uplink TCI state. That is, the uplink power control parameter configuration message includes at least one uplink power control parameter group corresponding to each TCI state in the TCI state pool.
  • each TCI state may correspond to one uplink power control parameter group, and may also correspond to multiple uplink power control parameter groups, which is not limited in this embodiment.
  • Step 205 Receive an uplink power control parameter activation message sent by the base station, where the uplink power control parameter activation message is used to activate an uplink power control parameter group associated with each uplink TCI state in the intermediate activated TCI state set.
  • the terminal After acquiring the uplink power control parameter activation message sent by the base station, the terminal can activate an uplink power control parameter group associated with each uplink TCI state in the intermediate activated TCI state set.
  • Step 206 Receive a beam indication message sent by the base station, where the beam indication message includes a first TCI state identifier.
  • the base station may send a beam indication message to the terminal, and the terminal may receive the beam indication message sent by the base station.
  • the beam indication message is used to indicate the beam direction of the channel, and the beam indication message may include a TCI state identifier, which is referred to as the first TCI state identifier here for convenience of description.
  • the terminal may extract the first TCI state identifier from the beam indication message.
  • Step 207 Acquire the first TCI state corresponding to the first TCI state identifier from the TCI state pool.
  • the information field of the first TCI state includes at most two sets of source reference signal information indicating the beam direction.
  • Step 208 Determine the beam direction corresponding to the uplink channel and/or the downlink channel according to the source reference signal information indicating the beam direction.
  • the beam direction corresponding to the uplink channel and/or the downlink channel may be determined based on the beam direction of the source reference signal indicating the beam direction, or the beam direction of the source reference signal may be used as the corresponding beam direction of the uplink channel and/or the downlink channel beam direction.
  • the information field of the first TCI state may further include at least one QCL field, when the beam direction corresponding to the uplink channel and/or the downlink channel is determined according to the source reference signal information indicating the beam direction.
  • the following methods can be used: first, according to the state of the QCL domain, determine the target channel that needs to indicate the beam direction, and then determine the beam direction corresponding to the target channel according to the reference signal information.
  • the target channel indicated by the first TCI state is determined according to the state of each QCL field in the information domain; the beam direction corresponding to the target channel is determined according to the source reference signal information indicating the beam direction.
  • the channel to be indicated by the first TCI state may be determined first.
  • the information field of the first TCI state may include at least one QCL field, and the target channel indicated by the first TCI state may be determined according to the state of each QCL field.
  • the state of the QCL domain refers to whether the QCL domain exists in the information domain.
  • the base station and the terminal may preset the correspondence between each QCL field and the channel in the information field of the TCI state. After acquiring the first TCI state, the terminal may determine the QCL domain that exists in the information domain of the first TCI state, and then the channel corresponding to the existing QCL domain is the target channel.
  • the beam direction corresponding to the target channel may be determined according to the source reference signal information indicating the beam direction. Specifically, the beam direction corresponding to the target channel may be determined based on the beam direction of the source reference signal indicating the beam direction, or the beam direction of the source reference signal may be used as the beam direction corresponding to the target channel.
  • the target channel is the uplink data signal and the uplink control channel
  • the beam direction of the source reference signal can be used as the beam direction corresponding to the uplink data channel and the uplink control channel.
  • the target channel is the downlink data signal and the downlink control channel
  • the beam direction of the source reference signal can be used as the beam direction corresponding to the downlink data channel and the downlink control channel.
  • the target channel is an uplink data channel, an uplink control channel, a downlink data channel, and a downlink control channel
  • the beam direction of the source reference signal can be used as the beam corresponding to the uplink data channel, the uplink control channel, the downlink data channel, and the downlink control channel. direction.
  • the information field of the first TCI state may further include M QCL fields and N identifiers used to indicate the types of channels to which the M QCL fields belong, and M may be determined according to the N identifiers in the information field.
  • the channel type to which the QCL domain belongs, and the target channel indicated by the first TCI state is determined according to the channel type to which the M QCL domains belong.
  • the target channel indicated by the first TCI state is an uplink channel. If the channel type to which the M QCL domains belong is a downlink channel, then the target channel indicated by the first TCI state is a downlink channel. If the channel types to which the M QCL domains belong include an uplink channel and a downlink channel, the target channel indicated by the first TCI state is an uplink channel and a downlink channel.
  • each QCL domain in the information domain may have corresponding source reference signal information
  • the beam direction corresponding to the channel type to which each QCL domain belongs is determined according to the source reference signal information indicating the beam direction corresponding to each QCL domain.
  • the base station configures L TCI states indicating uplink transmission for the terminal through RRC signaling. And the uplink TCI state does not include uplink power control parameters.
  • TCI state m can be expressed in the form shown in Table 4:
  • the base station configures at least one group of uplink power control parameters for the terminal through RRC signaling, and each group of uplink power control parameters includes Pathloss RS/(alpha, P0)/Close loop index.
  • PathlossRS is a path loss reference signal, which is used to calculate the path loss of downlink transmission
  • the (alpha, P0) parameter is used to calculate the uplink transmit power
  • the close loopindex is also used to calculate the uplink transmit power.
  • the uplink power control parameter group j can be expressed in the form shown in Table 5:
  • the base station selects S states from all TCI states as the intermediate active TCI states through the MAC-CE.
  • the S intermediate activated TCI states include W uplink transmission TCI states.
  • the base station selects W groups of parameters from all the uplink power control parameters as the intermediate activated uplink power control parameters through the MAC-CE.
  • the system pre-defines the intermediate activated TCI state and the intermediate activated uplink power control parameters in one-to-one correspondence.
  • the base station configures a one-to-one correspondence between the intermediate activated TCI state and the intermediate activated uplink power control parameter, and sends the corresponding relationship to the terminal.
  • the uplink power control parameters corresponding to the TCI state can be obtained through a one-to-one correspondence.
  • the terminal can use the beam direction indicated by the TCI state and its associated uplink power control parameter to perform uplink transmission.
  • the number of sets of intermediate uplink power control parameters activated by the MAC-CE is different from the number of TCI states of uplink transmission activated by the MAC-CE.
  • the above S intermediate activated TCI states include S1 uplink transmission TCI states, and the base station selects S2 group parameters from all uplink power control parameters through MAC-CE as the intermediate activated uplink power control parameters. The better S2 ⁇ S1.
  • a TCI state pool is configured for the terminal, and the information field of each TCI state in the TCI state pool includes at most two sets of source reference signal information indicating the beam direction, and then, when performing beam indication , the TCI state identifier to be used can be directly sent to the terminal, and then the terminal can determine the beam direction of the channel according to the TCI state identifier.
  • the complexity of beam indication is simplified, and the signaling indication overhead is reduced.
  • the beam indication method includes:
  • Step 301 Receive a TCI state pool configuration message sent by the base station.
  • the TCI state pool configuration message is used to configure the TCI state pool for the terminal.
  • the TCI state pool configuration message may include information about the TCI state to be configured, such as an identifier of each TCI state, an information field of each TCI state, and the like.
  • the terminal obtains the TCI state pool according to the TCI state pool configuration message sent by the receiving base station, wherein the TCI state pool includes T TCI states, where T is a positive integer, and the information field of each TCI state may include at most two sets of indicator beams Source reference signal information for the direction.
  • the source reference signal information used to indicate the beam direction in the information field of each TCI state may be the same, that is, the corresponding beam directions may be the same.
  • Step 302 Receive an uplink power control parameter configuration message sent by the base station, where the uplink power control parameter configuration message includes at least one uplink power control parameter group corresponding to each TCI state in the TCI state pool.
  • the uplink power control parameter refers to the uplink power control parameter, which may include the path loss reference signal Pathloss RS, (alpha, P0) used to calculate the transmission power of the uplink channel, and the loop index used by Close to calculate the transmission power of the uplink channel, etc.
  • Pathloss RS path loss reference signal
  • P0 path loss reference signal
  • the terminal may associate each TCI state in the TCI state pool with at least one uplink power control parameter group.
  • the uplink power control parameter configuration message includes three groups of uplink power control parameter groups, and the terminal can make each TCI state correspond to the three groups of uplink power control parameter groups.
  • the information field of each TCI state in the above-mentioned TCI state pool configuration message also includes K groups of uplink power control parameters corresponding to each uplink TCI state, where K is a positive integer.
  • the TCI state pool configuration message includes at least one uplink power control parameter group corresponding to each TCI state.
  • the base station may also configure the uplink power control parameters for all uplink TCI states through one uplink power control parameter configuration process. That is, the above uplink power control parameter configuration message includes at least one uplink power control parameter group.
  • each TCI state may correspond to one uplink power control parameter group, and may also correspond to multiple uplink power control parameter groups, which is not limited in this embodiment.
  • Step 303 Receive an uplink power control parameter activation message sent by the base station, where the uplink power control parameter activation message is used to activate an uplink power control parameter group associated with each TCI state.
  • the base station can also send an intermediate activation TCI state configuration message to the terminal at regular intervals, so that the terminal can only Data and signaling are transmitted using the TCI states in the intermediate activated TCI state set. That is, in the embodiment of the present application, it may also include:
  • the base station receiving an intermediate activation TCI state configuration message sent by the base station, wherein the intermediate activation TCI state configuration message includes S TCI state identifiers, where S is a positive integer less than or equal to T;
  • S TCI states corresponding to the S TCI state identifiers are selected from the TCI state pool to generate an intermediate activated TCI state set.
  • the terminal may extract S TCI status identifiers from the intermediate activated TCI status configuration message.
  • S is a positive integer less than or equal to T.
  • the TCI state pool includes 100 TCI states
  • the intermediate activated TCI state configuration message includes 20 TCI state identifiers.
  • the terminal selects S TCI states corresponding to the S TCI state identifiers from the TCI state pool, and generates an intermediate activation according to the S TCI states. TCI state set.
  • the set of intermediate activated TCI states includes S TCI states, and the S TCI states are in the active state.
  • the base station configures an intermediate activated TCI state set for the terminal, then when the base station activates the uplink power control parameters for the terminal, the activated uplink power control parameters are associated with each uplink TCI state in the intermediate activated TCI state set. Uplink power control parameters.
  • Step 304 Receive a beam indication message sent by the base station, where the beam indication message includes a first TCI state identifier.
  • the base station may send a beam indication message to the terminal, and the terminal may receive the beam indication message sent by the base station.
  • the beam indication message is used to indicate the beam direction of the channel, and the beam indication message may include a TCI state identifier, which is referred to as the first TCI state identifier here for convenience of description.
  • the terminal may extract the first TCI state identifier from the beam indication message.
  • Step 305 Acquire the first TCI state corresponding to the first TCI state identifier from the TCI state pool.
  • the information field of the first TCI state includes at most two sets of source reference signal information indicating the beam direction.
  • Step 306 Determine the beam direction corresponding to the uplink channel and/or the downlink channel according to the source reference signal information indicating the beam direction.
  • the beam direction corresponding to the uplink channel and/or the downlink channel may be determined based on the beam direction of the source reference signal indicating the beam direction, or the beam direction of the source reference signal may be used as the corresponding beam direction of the uplink channel and/or the downlink channel beam direction.
  • the information field of the first TCI state may further include at least one QCL field, when the beam direction corresponding to the uplink channel and/or the downlink channel is determined according to the source reference signal information indicating the beam direction.
  • the following methods can be used: first, according to the state of the QCL domain, determine the target channel that needs to indicate the beam direction, and then determine the beam direction corresponding to the target channel according to the reference signal information.
  • the target channel indicated by the first TCI state may be determined according to the state of each QCL field in the information domain; the beam direction corresponding to the target channel may be determined according to the source reference signal information indicating the beam direction.
  • the channel to be indicated by the first TCI state may be determined first.
  • the information field of the first TCI state may include at least one QCL field, and the target channel indicated by the first TCI state may be determined according to the state of each QCL field.
  • the state of the QCL domain refers to whether the QCL domain exists in the information domain.
  • the base station and the terminal may preset the correspondence between each QCL field and the channel in the information field of the TCI state. After acquiring the first TCI state, the terminal may determine the QCL domain that exists in the information domain of the first TCI state, and then the channel corresponding to the existing QCL domain is the target channel.
  • the beam direction corresponding to the target channel may be determined according to the source reference signal information indicating the beam direction.
  • the beam direction corresponding to the target channel may be determined based on the beam direction of the source reference signal indicating the beam direction, or the beam direction of the source reference signal may be used as the beam direction corresponding to the target channel.
  • the target channel is the uplink data signal and the uplink control channel
  • the beam direction of the source reference signal can be used as the beam direction corresponding to the uplink data channel and the uplink control channel.
  • the target channel is the downlink data signal and the downlink control channel
  • the beam direction of the source reference signal can be used as the beam direction corresponding to the downlink data channel and the downlink control channel.
  • the target channel is an uplink data channel, an uplink control channel, a downlink data channel, and a downlink control channel
  • the beam direction of the source reference signal can be used as the beam corresponding to the uplink data channel, the uplink control channel, the downlink data channel, and the downlink control channel. direction.
  • the information field of the first TCI state may further include M QCL fields and N identifiers used to indicate the types of channels to which the M QCL fields belong, and M may be determined according to the N identifiers in the information field.
  • the channel type to which the QCL domain belongs, and the target channel indicated by the first TCI state is determined according to the channel type to which the M QCL domains belong.
  • the target channel indicated by the first TCI state is an uplink channel. If the channel type to which the M QCL domains belong is a downlink channel, then the target channel indicated by the first TCI state is a downlink channel. If the channel types to which the M QCL domains belong include an uplink channel and a downlink channel, the target channel indicated by the first TCI state is an uplink channel and a downlink channel.
  • each QCL domain in the information domain may have corresponding source reference signal information
  • the beam direction corresponding to the channel type to which each QCL domain belongs is determined according to the source reference signal information indicating the beam direction corresponding to each QCL domain.
  • the base station configures L TCI states indicating uplink transmission for the terminal through RRC signaling, and each uplink TCI state does not include uplink control power control parameters.
  • TCI state n is represented in the form shown in Table 6:
  • the base station configures 4 groups of uplink power control parameters for each TCI state of the L uplink transmission TCI states through RRC signaling.
  • the four groups of uplink power control parameters associated with TCI-state-6 are represented as ⁇ PC-0, PC-1, PC-2, PC-3 ⁇ , wherein each uplink power control parameter group is determined by Table 7.
  • the base station may activate the uplink power control parameter group associated with the TCI state of each uplink transmission through a MAC-CE instruction. For example, a piece of MAC-CE signaling is used to indicate activation of the second group of control parameters associated with all uplink TCI states. In this way, when the base station indicates an uplink TCI state to the terminal, it uses the second group of control parameters associated with this state to transmit the uplink channel.
  • the base station may also use a piece of MAC-CE signaling for each uplink TCI state to activate the corresponding control parameter group. For example, for uplink TCI state 1, use a piece of MAC-CE signaling to activate its associated first group of control parameters; for uplink TCI state 2, use another MAC-CE signaling to activate its associated third group of control parameters.
  • a TCI state pool is configured for the terminal, and the information field of each TCI state in the TCI state pool includes at most two sets of source reference signal information indicating the beam direction, and then, when performing beam indication , the TCI state identifier to be used can be directly sent to the terminal, and then the terminal can determine the beam direction of the channel according to the TCI state identifier.
  • the complexity of beam indication is simplified, and the signaling indication overhead is reduced.
  • FIG. 4 is a schematic flowchart of another beam indication method provided by an embodiment of the present application.
  • the beam indication method in this embodiment may be performed by a network side device such as a base station.
  • the beam indication method includes:
  • Step 401 Send a TCI state pool configuration message to the terminal.
  • the base station may send a TCI state pool configuration message to the terminal, so as to use the TCI state pool configuration message to configure the TCI state pool for the terminal.
  • the TCI state pool configuration message may include information about the TCI state to be configured, such as an identifier of each TCI state, an information field of each TCI state, and the like.
  • the base station can configure a TCI state pool including T TCI states for the terminal through the TCI state pool configuration message, where T is a positive integer, and the information field of each TCI state can include at most two sets of source reference signal information indicating the beam direction .
  • the information field of each TCI state in the TCI state pool configuration message may include K groups of uplink power control parameters corresponding to each uplink TCI state, where K is a positive integer. That is, the information field in which the base station configures each TCI state for the terminal may include an uplink power control parameter group.
  • the base station may control RRC signaling through radio resources, or may configure corresponding K groups of uplink power control parameters for each uplink TCI state through downlink control information DCI signaling.
  • Step 402 Send an intermediate activated TCI state configuration message to the terminal, wherein the intermediate activated TCI state configuration message includes S TCI state identifiers.
  • the base station may also send an intermediate activated TCI state configuration message to the terminal at regular intervals, so that the terminal only uses the intermediate activated TCI state within a certain period of time.
  • the centralized TCI state transmits data and signaling.
  • the intermediate activated TCI state configuration message may include S TCI state identifiers, the intermediate activated TCI state configuration message is used to configure the intermediate activated TCI state, and the S TCI state identifiers may be A TCI state identifier corresponding to a TCI state with a frequency higher than a preset threshold in the current time period of the base station.
  • the terminal may extract S TCI status identifiers from the intermediate activated TCI status configuration message.
  • S is a positive integer less than or equal to T.
  • the TCI state pool includes 100 TCI states
  • the intermediate activated TCI state configuration message includes 20 TCI state identifiers.
  • the terminal After acquiring the S TCI state identifiers in the intermediate activated TCI state configuration message, the terminal selects S TCI states corresponding to the S TCI state identifiers from the TCI state pool, and generates an intermediate activated TCI state set according to the S TCI states. .
  • the set of intermediate activated TCI states includes S TCI states, and the S TCI states are in the active state.
  • Step 403 Send an uplink power control parameter activation message to the terminal.
  • the information field of each TCI state in the TCI state pool includes each uplink TCI state. That is, the terminal has configured an association relationship between each TCI state in the intermediate active state TCI state set and the uplink power control parameter group. Therefore, the base station sends an uplink power control parameter activation message to the terminal, and the terminal activates the uplink power control parameter group corresponding to each TCI state in the intermediate active state TCI state set one by one through the received uplink power control parameter activation message.
  • Step 404 Send a beam indication message to the terminal.
  • the base station sends an uplink power control parameter activation message to the terminal, and after activating the uplink power control parameter group associated with each TCI state in the intermediate active state TCI state set, can send a beam indication message to the terminal.
  • the base station may determine the first TCI state from the TCI state pool as required, wherein the TCI state pool includes at least one TCI state, and the information fields of each TCI state may be the same or different.
  • one TCI state may also be randomly selected, or the first TCI state may be selected according to the number of times of use, for example, the one with the highest number of recent uses may be selected as the first TCI state.
  • the information field of the first TCI state may include an identifier of the first TCI state, at most two sets of source reference signal information indicating the beam direction, and the like.
  • the source reference signal information may be beam direction information of the source reference signal.
  • each information field of the first TCI state may further include at least one QCL field, and when the first TCI state is determined, each QCL field in the information field of the first TCI state may also be determined according to an indication need status.
  • the state of the QCL domain refers to whether the QCL domain exists in the information domain.
  • the channel corresponding to the existing QCL field is the target channel indicated by the first TCI state.
  • the terminal may use the beam direction of the source reference signal as the beam direction corresponding to the target channel.
  • Each information field of the first TCI state may further include M QCL fields and N identifiers for indicating the types of channels to which the M QCL fields belong, where M is a positive integer and N is less than or equal to M.
  • the number of QCL fields included in the information field of the first TCI state and the identifier corresponding to the type of the channel to which the QCL field belongs may be determined.
  • the information field of the TCI state includes three QCL fields and identifiers UL and DL corresponding to the types of the channels to which the two QCL fields belong.
  • the base station may send a beam indication message to the terminal, and the terminal may receive the beam indication message sent by the base station.
  • the beam indication message is used to indicate the beam direction of the channel, and the beam indication message includes the first TCI state identifier.
  • the terminal may extract the first TCI state identifier from the beam indication message.
  • the terminal is preconfigured with a TCI state pool, wherein the TCI state pool includes at least one TCI state.
  • the terminal may acquire the first TCI state from the TCI state pool according to the first TCI state identifier.
  • the terminal may determine the beam direction corresponding to the uplink channel and/or the downlink channel based on the beam direction of the source reference signal indicating the beam direction, or may use the beam direction of the source reference signal as the beam direction corresponding to the uplink channel and/or the downlink channel.
  • a TCI state pool is configured for the terminal, and the information field of each TCI state in the TCI state pool includes at most two sets of source reference signal information indicating the beam direction, and then, when performing beam indication , the TCI state identifier to be used can be directly sent to the terminal, and then the terminal can determine the beam direction of the channel according to the TCI state identifier.
  • the complexity of beam indication is simplified, and the signaling indication overhead is reduced.
  • FIG. 5 is a schematic flowchart of another beam indication method provided by an embodiment of the present application.
  • the beam indication method in this embodiment may be performed by a network side device such as a base station. As shown in Figure 5, the beam indication method includes:
  • Step 501 Send a TCI state pool configuration message to the terminal.
  • the TCI state pool configuration message is used to configure the TCI state pool for the terminal.
  • the TCI state pool configuration message may include information about the TCI state to be configured, such as an identifier of each TCI state, an information field of each TCI state, and the like.
  • the terminal obtains the TCI state pool according to the TCI state pool configuration message sent by the receiving base station, wherein the TCI state pool includes T TCI states, where T is a positive integer, and the information field of each TCI state may include at most two sets of indicator beams Source reference signal information for the direction.
  • the source reference signal information used to indicate the beam direction in the information field of each TCI state may be the same, that is, the corresponding beam directions may be the same.
  • Step 502 Send an intermediate activated TCI state configuration message to the terminal, wherein the intermediate activated TCI state configuration message includes S TCI state identifiers.
  • the base station may send an intermediate activation TCI state configuration message to the terminal.
  • the intermediate activated TCI status configuration message may include S TCI status identifiers, the intermediate activated TCI status configuration message is used to configure the intermediate activated TCI status, and the S TCI status identifiers may be used by the base station in the current time period higher than the preset frequency.
  • the terminal may extract S TCI status identifiers from the intermediate activated TCI status configuration message.
  • S is a positive integer less than or equal to T.
  • the TCI state pool includes 100 TCI states
  • the intermediate activated TCI state configuration message includes 20 TCI state identifiers.
  • the terminal selects S TCI states corresponding to the S TCI state identifiers from the TCI state pool, and generates an intermediate active TCI according to the S TCI states. state set.
  • the intermediate activated TCI state set includes S TCI states, and the S TCI states are in the active state.
  • Step 503 Send an uplink power control parameter configuration message to the terminal, wherein the uplink power control parameter configuration message includes K groups of uplink power control parameters corresponding to each uplink TCI state, where K is a positive integer.
  • the uplink power control parameter refers to the uplink power control parameter, which may include the path loss reference signal Pathloss RS, (alpha, P0) used to calculate the transmission power of the uplink channel, and the loop index used by Close to calculate the transmission power of the uplink channel, etc.
  • Pathloss RS path loss reference signal
  • P0 path loss reference signal
  • the terminal may configure the at least one uplink power control parameter group for each TCI state in the TCI state pool.
  • the uplink power control parameter configuration message includes three groups of uplink power control parameter groups, and the terminal can make each TCI state correspond to the three groups of uplink power control parameter groups.
  • the information field of each TCI state in the above-mentioned TCI state pool configuration message also includes K groups of uplink power control parameters corresponding to each uplink TCI state, where K is a positive integer.
  • the TCI state pool configuration message includes at least one uplink power control parameter group corresponding to each TCI state.
  • the base station may further configure corresponding uplink power control parameters for each uplink TCI state. That is, the uplink power control parameter configuration message includes at least one uplink power control parameter group corresponding to each TCI state in the TCI state pool.
  • each TCI state may correspond to one uplink power control parameter group, and may also correspond to multiple uplink power control parameter groups, which is not limited in this embodiment.
  • Step 504 Send an uplink power control parameter activation message to the terminal, where the uplink power control parameter activation message is used to activate an uplink power control parameter group associated with each uplink TCI state in the intermediate activated TCI state set.
  • Step 505 Send a beam indication message to the terminal, where the beam indication message includes the first TCI state identifier.
  • the base station may send a beam indication message to the terminal, and the terminal may receive the beam indication message sent by the base station.
  • the beam indication message is used to indicate the beam direction of the channel, and the beam indication message may include a TCI state identifier, which is referred to as the first TCI state identifier here for convenience of description.
  • the terminal may extract the first TCI state identifier from the beam indication message. Further, according to the source reference signal information indicating the beam direction, the beam direction corresponding to the uplink channel and/or the downlink channel is determined.
  • the beam direction corresponding to the uplink channel and/or the downlink channel may be determined based on the beam direction of the source reference signal indicating the beam direction, or the beam direction of the source reference signal may be used as the corresponding beam direction of the uplink channel and/or the downlink channel beam direction.
  • the information field of the first TCI state may further include at least one QCL field, when the beam direction corresponding to the uplink channel and/or the downlink channel is determined according to the source reference signal information indicating the beam direction.
  • the following methods can be used: first, according to the state of the QCL domain, determine the target channel that needs to indicate the beam direction, and then determine the beam direction corresponding to the target channel according to the reference signal information.
  • the target channel indicated by the first TCI state is determined according to the state of each QCL field in the information domain; the beam direction corresponding to the target channel is determined according to the source reference signal information indicating the beam direction.
  • the channel to be indicated by the first TCI state may be determined first.
  • the information field of the first TCI state may include at least one QCL field, and the target channel indicated by the first TCI state may be determined according to the state of each QCL field.
  • the state of the QCL domain refers to whether the QCL domain exists in the information domain.
  • the base station and the terminal may preset the correspondence between each QCL field and the channel in the information field of the TCI state. After acquiring the first TCI state, the terminal may determine the QCL domain that exists in the information domain of the first TCI state, and then the channel corresponding to the existing QCL domain is the target channel.
  • the beam direction corresponding to the target channel may be determined according to the source reference signal information indicating the beam direction.
  • the beam direction corresponding to the target channel may be determined based on the beam direction of the source reference signal indicating the beam direction, or the beam direction of the source reference signal may be used as the beam direction corresponding to the target channel.
  • the target channel is the uplink data signal and the uplink control channel
  • the beam direction of the source reference signal can be used as the beam direction corresponding to the uplink data channel and the uplink control channel.
  • the target channel is the downlink data signal and the downlink control channel
  • the beam direction of the source reference signal can be used as the beam direction corresponding to the downlink data channel and the downlink control channel.
  • the target channel is an uplink data channel, an uplink control channel, a downlink data channel, and a downlink control channel
  • the beam direction of the source reference signal can be used as the beam corresponding to the uplink data channel, the uplink control channel, the downlink data channel, and the downlink control channel. direction.
  • the information field of the first TCI state may further include M QCL fields and N identifiers used to indicate the types of channels to which the M QCL fields belong, and M may be determined according to the N identifiers in the information field.
  • the channel type to which the QCL domain belongs, and the target channel indicated by the first TCI state is determined according to the channel type to which the M QCL domains belong.
  • the target channel indicated by the first TCI state is an uplink channel. If the channel type to which the M QCL domains belong is a downlink channel, then the target channel indicated by the first TCI state is a downlink channel. If the channel types to which the M QCL domains belong include an uplink channel and a downlink channel, the target channel indicated by the first TCI state is an uplink channel and a downlink channel.
  • each QCL domain in the information domain may have corresponding source reference signal information
  • the beam direction corresponding to the channel type to which each QCL domain belongs is determined according to the source reference signal information indicating the beam direction corresponding to each QCL domain.
  • a TCI state pool is configured for the terminal, and the information field of each TCI state in the TCI state pool includes at most two sets of source reference signal information indicating the beam direction, and then, when performing beam indication , the TCI state identifier to be used can be directly sent to the terminal, and then the terminal can determine the beam direction of the channel according to the TCI state identifier.
  • the complexity of beam indication is simplified, and the signaling indication overhead is reduced.
  • FIG. 6 is a schematic flowchart of another beam indication method provided by an embodiment of the present application.
  • the beam indication method in this embodiment may be performed by a network side device such as a base station. As shown in Figure 6, the beam indication method includes:
  • Step 601 Send a TCI state pool configuration message to the terminal.
  • the TCI state pool configuration message is used to configure the TCI state pool for the terminal.
  • the TCI state pool configuration message may include information about the TCI state to be configured, such as an identifier of each TCI state, an information field of each TCI state, and the like.
  • the terminal obtains the TCI state pool according to the TCI state pool configuration message sent by the receiving base station, wherein the TCI state pool includes T TCI states, where T is a positive integer, and the information field of each TCI state may include at most two sets of indicator beams Source reference signal information for the direction.
  • the source reference signal information used to indicate the beam direction in the information field of each TCI state may be the same, that is, the corresponding beam directions may be the same.
  • Step 602 Send an uplink power control parameter configuration message to the terminal, wherein the uplink power control parameter configuration message includes at least one uplink power control parameter group corresponding to each TCI state in the TCI state pool.
  • the uplink power control parameter refers to the uplink power control parameter, which may include the path loss reference signal Pathloss RS, (alpha, P0) used to calculate the transmission power of the uplink channel, loop index used by Close to calculate the transmission power of the uplink channel, and the like.
  • Pathloss RS path loss reference signal
  • alpha, P0 path loss reference signal
  • the terminal may configure the at least one uplink power control parameter group for each TCI state in the TCI state pool.
  • the uplink power control parameter configuration message includes three groups of uplink power control parameter groups, and the terminal can make each TCI state correspond to the three groups of uplink power control parameter groups.
  • the information field of each TCI state in the above-mentioned TCI state pool configuration message also includes K groups of uplink power control parameters corresponding to each uplink TCI state, where K is a positive integer.
  • the TCI state pool configuration message includes at least one uplink power control parameter group corresponding to each TCI state.
  • the base station may also configure the uplink power control parameters for all uplink TCI states through one uplink power control parameter configuration process. That is, the above uplink power control parameter configuration message includes at least one uplink power control parameter group.
  • each TCI state may correspond to one uplink power control parameter group, and may also correspond to multiple uplink power control parameter groups, which is not limited in this embodiment.
  • Step 603 Send an uplink power control parameter activation message to the terminal, where the uplink power control parameter activation message is used to activate an uplink power control parameter group associated with each TCI state.
  • the base station can also send an intermediate activation TCI state configuration message to the terminal at regular intervals, so that the terminal can only Data and signaling are transmitted using the TCI states in the intermediate activated TCI state set. That is, in the embodiment of the present application, it may also include:
  • the terminal sends an intermediate activated TCI state configuration message to the terminal, where the intermediate activated TCI state configuration message includes S TCI state identifiers, where S is a positive integer less than or equal to T.
  • the terminal may extract S TCI status identifiers from the intermediate activated TCI status configuration message.
  • S is a positive integer less than or equal to T.
  • the TCI state pool includes 100 TCI states
  • the intermediate activated TCI state configuration message includes 20 TCI state identifiers.
  • the terminal selects S TCI states corresponding to the S TCI state identifiers from the TCI state pool, and generates an intermediate activation according to the S TCI states. TCI state set.
  • the set of intermediate activated TCI states includes S TCI states, and the S TCI states are in the active state.
  • the base station configures an intermediate activated TCI state set for the terminal, then when the base station activates the uplink power control parameters for the terminal, the activated uplink power control parameters are associated with each uplink TCI state in the intermediate activated TCI state set. Uplink power control parameters.
  • Step 604 Send a beam indication message to the terminal, wherein the beam indication message includes the first TCI state identifier.
  • the base station may send a beam indication message to the terminal, and the terminal may receive the beam indication message sent by the base station.
  • the beam indication message is used to indicate the beam direction of the channel, and the beam indication message may include a TCI state identifier, which is referred to as the first TCI state identifier here for convenience of description.
  • the terminal may extract the first TCI state identifier from the beam indication message. Further, according to the source reference signal information indicating the beam direction, the beam direction corresponding to the uplink channel and/or the downlink channel is determined.
  • the beam direction corresponding to the uplink channel and/or the downlink channel may be determined based on the beam direction of the source reference signal indicating the beam direction, or the beam direction of the source reference signal may be used as the corresponding beam direction of the uplink channel and/or the downlink channel beam direction.
  • the information field of the first TCI state may further include at least one QCL field, when the beam direction corresponding to the uplink channel and/or the downlink channel is determined according to the source reference signal information indicating the beam direction.
  • the following methods can be used: first, according to the state of the QCL domain, determine the target channel that needs to indicate the beam direction, and then determine the beam direction corresponding to the target channel according to the reference signal information.
  • each QCL domain in the information domain determine the target channel indicated by the first TCI state
  • the beam direction corresponding to the target channel is determined.
  • the channel to be indicated by the first TCI state may be determined first.
  • the information field of the first TCI state may include at least one QCL field, and the target channel indicated by the first TCI state may be determined according to the state of each QCL field.
  • the state of the QCL domain refers to whether the QCL domain exists in the information domain.
  • the base station and the terminal may preset the correspondence between each QCL field and the channel in the information field of the TCI state. After acquiring the first TCI state, the terminal may determine the QCL domain that exists in the information domain of the first TCI state, and then the channel corresponding to the existing QCL domain is the target channel.
  • the beam direction corresponding to the target channel may be determined according to the source reference signal information indicating the beam direction.
  • the beam direction corresponding to the target channel may be determined based on the beam direction of the source reference signal indicating the beam direction, or the beam direction of the source reference signal may be used as the beam direction corresponding to the target channel.
  • the target channel is the uplink data signal and the uplink control channel
  • the beam direction of the source reference signal can be used as the beam direction corresponding to the uplink data channel and the uplink control channel.
  • the target channel is the downlink data signal and the downlink control channel
  • the beam direction of the source reference signal can be used as the beam direction corresponding to the downlink data channel and the downlink control channel.
  • the target channel is an uplink data channel, an uplink control channel, a downlink data channel, and a downlink control channel
  • the beam direction of the source reference signal can be used as the beam corresponding to the uplink data channel, the uplink control channel, the downlink data channel, and the downlink control channel. direction.
  • the information field of the first TCI state may further include M QCL fields and N identifiers used to indicate the types of channels to which the M QCL fields belong, and M may be determined according to the N identifiers in the information field.
  • the channel type to which the QCL domain belongs, and the target channel indicated by the first TCI state is determined according to the channel type to which the M QCL domains belong.
  • the target channel indicated by the first TCI state is an uplink channel. If the channel type to which the M QCL domains belong is a downlink channel, then the target channel indicated by the first TCI state is a downlink channel. If the channel types to which the M QCL domains belong include an uplink channel and a downlink channel, the target channel indicated by the first TCI state is an uplink channel and a downlink channel.
  • each QCL domain in the information domain may have corresponding source reference signal information
  • the beam direction corresponding to the channel type to which each QCL domain belongs is determined according to the source reference signal information indicating the beam direction corresponding to each QCL domain.
  • a TCI state pool is configured for the terminal, and the information field of each TCI state in the TCI state pool includes at most two sets of source reference signal information indicating the beam direction, and then, when performing beam indication , the TCI state identifier to be used can be directly sent to the terminal, and then the terminal can determine the beam direction of the channel according to the TCI state identifier.
  • the complexity of beam indication is simplified, and the signaling indication overhead is reduced.
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • the terminal includes: a transceiver 800 , a processor 810 , and a memory 820 .
  • the memory 820 is used to store computer programs; the transceiver 800 is used to send and receive data under the control of the processor 810; the processor 810 is used to read the computer program in the memory 820 and perform the following operations:
  • the beam indication message includes a first transmission configuration indication TCI state identifier
  • the information field of the first TCI state includes at most two sets of source reference signal information indicating the beam direction;
  • the beam direction corresponding to the uplink channel and/or the downlink channel is determined.
  • the transceiver 800 is used for receiving and transmitting data under the control of the processor 810 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 810 and various circuits of memory represented by memory 820 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 800 may be a number of elements, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like Transmission medium.
  • the user interface may also be an interface capable of externally connecting the required equipment, and the connected equipment includes but is not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 810 is responsible for managing the bus architecture and general processing, and the memory 820 may store data used by the processor 810 in performing operations.
  • the processor 810 may be a Central Processing Unit (CPU for short), an Application Specific Integrated Circuit (ASIC for short), a Field-Programmable Gate Array (FPGA for short) Or a complex programmable logic device (Complex Programmable Logic Device, CPLD for short), the processor 810 may also adopt a multi-core architecture.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • the processor 810 is configured to execute any one of the methods in FIG. 1 to FIG. 6 provided in the embodiments of the present application according to the obtained executable instructions by invoking the computer program stored in the memory.
  • the processor 810 and the memory 820 may also be arranged physically separately.
  • the information field further includes at least one quasi-co-located QCL field, and the uplink channel and/or downlink channel is determined according to the source reference signal information indicating the beam direction.
  • the beam direction corresponding to the channel including:
  • each QCL field in the information field determine the target channel indicated by the first TCI state
  • the beam direction corresponding to the target channel is determined according to the source reference signal information indicating the beam direction.
  • the information field further includes M QCL fields, and N identifiers used to indicate the types of channels to which the M QCL fields belong, where M and N are A positive integer, and N is less than or equal to M, the determining the beam direction corresponding to the uplink channel and/or the downlink channel according to the source reference signal information, including:
  • the beam direction corresponding to the target channel is determined according to the source reference signal information indicating the beam direction.
  • the processor 810 is further configured to read the computer program in the memory 820 to perform the following operations:
  • TCI state pool configuration message sent by the base station, wherein the TCI state pool configuration message includes an information field of each TCI state, and the information field of each TCI state includes at most two sets of source reference signal information indicating beam directions.
  • the source reference signal information used to indicate the beam direction in the information field of each TCI state of the TCI state pool configuration message is different, and/or, the TCI state pool
  • the information fields of each TCI state correspond to different channel types.
  • the information field of each TCI state in the TCI state pool configuration message further includes K groups of uplink power control parameters corresponding to each uplink TCI state, where K is positive integer.
  • the TCI state pool configuration message includes at least one uplink power control parameter group corresponding to each TCI state.
  • the processor 810 is further configured to read the computer program in the memory 820 to perform the following operations:
  • the processor 810 is further configured to read the computer program in the memory 820 to perform the following operations:
  • the base station Receive an uplink power control parameter configuration message sent by the base station, where the uplink power control parameter configuration message includes at least one uplink power control parameter group corresponding to each TCI state in the TCI state pool.
  • the processor 810 is further configured to read the computer program in the memory 820 to perform the following operations:
  • the base station receiving an intermediate activation TCI state configuration message sent by the base station, wherein the intermediate activation TCI state configuration message includes S TCI state identifiers, where S is a positive integer less than or equal to T;
  • S TCI states corresponding to the S TCI state identifiers are selected from the TCI state pool to generate an intermediate activated TCI state set.
  • the processor 810 is further configured to read the computer program in the memory 820 to perform the following operations:
  • the base station receiving an uplink power control parameter activation message sent by the base station, wherein the uplink power control parameter activation message includes at least one uplink power control parameter group identifier;
  • the activated at least one uplink power control parameter group is associated with a TCI state in the intermediate activated TCI state set.
  • the processor 810 is further configured to read the computer program in the memory 820 to perform the following operations:
  • each TCI state in the intermediate activated TCI state set is associated with an activated uplink power control parameter group.
  • the processor 810 is further configured to read the computer program in the memory 820 to perform the following operations:
  • the above-mentioned terminal provided in this embodiment of the present invention can implement all the method steps implemented by the above-mentioned method embodiments in FIG. 1 to FIG. 3 , and can achieve the same technical effect.
  • the same parts and beneficial effects as those in the method embodiment will be described in detail.
  • FIG. 8 is a schematic structural diagram of a network side device according to an embodiment of the present application.
  • the network side device includes: a transceiver 900 , a processor 910 , and a memory 920 .
  • the memory 920 is used to store computer programs; the transceiver 900 is used to send and receive data under the control of the processor 910; the processor 910 is used to read the computer program in the memory 920 and perform the following operations: determine the first TCI state, wherein the information field of the first TCI state includes at most two sets of source reference signal information indicating the beam direction; send a beam indication message to the terminal, wherein the beam indication message includes the first TCI state identifier .
  • the transceiver 900 is used for receiving and transmitting data under the control of the processor 910 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 910 and various circuits of memory represented by memory 920 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 900 may be multiple elements, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like.
  • the processor 910 is responsible for managing the bus architecture and general processing, and the memory 920 may store data used by the processor 910 in performing operations.
  • the processor 910 may be a CPU, an ASIC, an FPGA or a CPLD, and the processor 910 may also adopt a multi-core architecture.
  • the determining of the first TCI state includes:
  • the state of each QCL field in the information field of the first TCI state is determined.
  • the determining of the first TCI state includes:
  • the processor 910 is further configured to read the computer program in the memory 920 and perform the following operations:
  • TCI state pool configuration message includes an information field of each TCI state, and each TCI state includes at most two sets of source reference signal information indicating beam directions.
  • the source reference signal information used to indicate the beam direction in the information field of each TCI state of the TCI state pool configuration message is different, and/or, the TCI state pool
  • the information fields of each TCI state correspond to different channel types.
  • the information field of each TCI state in the TCI state pool configuration message further includes K groups of uplink power control parameters corresponding to each uplink TCI state, where K is positive integer.
  • the TCI state pool configuration message includes at least one uplink power control parameter group corresponding to each TCI state.
  • the processor 910 is further configured to read the computer program in the memory 920 and perform the following operations:
  • the terminal Send an uplink power control parameter configuration message to the terminal, wherein the uplink power control parameter configuration message includes at least one uplink power control parameter group.
  • the processor 910 is further configured to read the computer program in the memory 920 and perform the following operations:
  • the terminal Send an uplink power control parameter configuration message to the terminal, wherein the uplink power control parameter configuration message includes at least one uplink power control parameter group corresponding to each TCI state in the TCI state pool.
  • the processor 910 is further configured to read the computer program in the memory 920 and perform the following operations:
  • the terminal sends an intermediate activated TCI state configuration message to the terminal, where the intermediate activated TCI state configuration message includes S TCI state identifiers, where S is a positive integer less than or equal to T.
  • the processor 910 is further configured to read the computer program in the memory 920 and perform the following operations:
  • the uplink power control parameter activation message includes at least one uplink power control parameter group identifier, wherein the at least one uplink power control parameter group is associated with the intermediate activation
  • the TCI states in the TCI state set are associated.
  • the processor 910 is further configured to read the computer program in the memory 920 and perform the following operations:
  • the uplink power control parameter activation message is used to activate an uplink power control parameter group associated with a second TCI state, wherein the second TCI state is the One TCI state in the set of intermediate active TCI states.
  • FIG. 9 is a schematic structural diagram of a beam indicating apparatus provided by an embodiment of the present application.
  • the beam pointing device 1000 includes:
  • a receiving unit 1010 configured to receive a beam indication message sent by a base station, wherein the beam indication message includes a first transmission configuration indication TCI state identifier;
  • Obtaining unit 1020 configured to obtain the first TCI state corresponding to the first TCI state identifier from the TCI state pool, wherein the information field of the first TCI state includes at most two sets of source reference signals indicating the beam direction information;
  • the determining unit 1030 is configured to determine the beam direction corresponding to the uplink channel and/or the downlink channel according to the source reference signal information indicating the beam direction.
  • the information field further includes at least one quasi-co-located QCL field
  • the determining unit 1030 is specifically configured to:
  • each QCL field in the information field determine the target channel indicated by the first TCI state
  • the beam direction corresponding to the target channel is determined according to the source reference signal information indicating the beam direction.
  • the information field further includes M QCL fields and N identifiers used to indicate the types of channels to which the M QCL fields belong, where M and N are positive integers , and N is less than or equal to M, the determining unit 1030 is specifically used for:
  • each QCL field in the information field determine the target channel indicated by the first TCI state
  • the beam direction corresponding to the target channel is determined according to the source reference signal information indicating the beam direction.
  • the information field further includes M QCL fields and N identifiers used to indicate the types of channels to which the M QCL fields belong, where M and N are positive integers , and N is less than or equal to M, the determining unit 1030 is specifically used for:
  • the beam direction corresponding to the target channel is determined according to the source reference signal information indicating the beam direction.
  • the receiving unit 1010 is further configured to receive a TCI state pool configuration message sent by the base station, where the TCI state pool configuration message includes an information field of each TCI state, and each TCI state pool configuration message includes an information field of each TCI state.
  • the information field of each TCI state includes at most two sets of source reference signal information indicating the beam direction.
  • the source reference signal information used to indicate the beam direction in the information field of each TCI state of the TCI state pool configuration message is different, and/or, the TCI state pool
  • the information fields of each TCI state correspond to different channel types.
  • the information field of each TCI state in the TCI state pool configuration message further includes K groups of uplink power control parameters corresponding to each uplink TCI state, where K is positive integer.
  • the TCI state pool configuration message includes at least one uplink power control parameter group corresponding to each TCI state.
  • the receiving unit 1010 is further configured to receive an uplink power control parameter configuration message sent by the base station, where the uplink power control parameter configuration message includes at least one uplink power control parameter parameter group.
  • the receiving unit 1010 is further configured to receive an uplink power control parameter configuration message sent by the base station, where the uplink power control parameter configuration message includes the TCI state pool At least one uplink power control parameter group corresponding to each TCI state in .
  • the receiving unit 1010 is further configured to receive an intermediate activated TCI state configuration message sent by the base station, where the intermediate activated TCI state configuration message includes S TCI state identifiers , where S is a positive integer less than or equal to T;
  • the device may also include:
  • a generating unit configured to select S TCI states respectively corresponding to the S TCI state identifiers from the TCI state pool, and generate an intermediate activated TCI state set.
  • the receiving unit 1010 is further configured to receive an uplink power control parameter activation message sent by the base station, where the uplink power control parameter activation message includes at least one uplink function Control parameter group identification;
  • the device may also include:
  • an activation unit configured to activate at least one uplink power control parameter group corresponding to the at least one uplink power control parameter group identifier
  • the activated at least one uplink power control parameter group is associated with a TCI state in the intermediate activated TCI state set.
  • the apparatus may further include:
  • An associating unit configured to associate each TCI state in the intermediate activated TCI state set with an activated uplink power control parameter group according to a preset rule.
  • the receiving unit 1010 is further configured to receive an uplink power control parameter activation message sent by the base station, where the uplink power control parameter activation message is used to activate a second TCI state associated with An uplink power control parameter group of , wherein the second TCI state is a TCI state in the intermediate activated TCI state set.
  • the beam indication device of the embodiment of the present application receives a beam indication message sent by a base station, wherein the beam indication message includes a first transmission configuration indication TCI state identifier; obtains a first TCI state identifier corresponding to the first TCI state identifier from the TCI state pool TCI state, wherein the information field of the first TCI state includes at most two sets of source reference signal information indicating the beam direction; the beam direction corresponding to the uplink channel and/or the downlink channel is determined according to the source reference signal information indicating the beam direction.
  • the beam is simplified.
  • the complexity of the indication reduces the signaling indication overhead.
  • FIG. 10 is a schematic structural diagram of a beam indicating apparatus provided by an embodiment of the present application.
  • the beam pointing device 1100 includes:
  • a determining unit 1110 configured to determine a first TCI state, wherein the information field of the first TCI state includes at most two sets of source reference signal information indicating beam directions;
  • the sending unit 1120 is configured to send a beam indication message to the terminal, wherein the beam indication message includes the first TCI state identifier.
  • the determining unit 1110 is specifically configured to:
  • the state of each QCL field in the information field of the first TCI state is determined.
  • the determining unit 1120 is specifically configured to: determine the number of QCL fields and corresponding identifiers included in the information field of the first TCI state.
  • the sending unit 1120 is further configured to send a TCI state pool configuration message to the terminal, where the TCI state pool configuration message includes an information field of each TCI state, and Each TCI state includes at most two sets of source reference signal information indicating the beam direction.
  • the source reference signal information used to indicate the beam direction in the information field of each TCI state of the TCI state pool configuration message is different, and/or, the TCI state pool
  • the information fields of each TCI state correspond to different channel types.
  • the information field of each TCI state in the TCI state pool configuration message further includes K groups of uplink power control parameters corresponding to each uplink TCI state, where K is positive integer.
  • the TCI state pool configuration message includes at least one uplink power control parameter group corresponding to each TCI state.
  • the sending unit 1120 is further configured to send an uplink power control parameter configuration message to the terminal, where the uplink power control parameter configuration message includes at least one uplink power control parameter Group.
  • the sending unit 1120 is further configured to send an uplink power control parameter configuration message to the terminal, where the uplink power control parameter configuration message includes the TCI state pool At least one uplink power control parameter group corresponding to each TCI state of .
  • the sending unit 1120 is further configured to send an intermediate activated TCI state configuration message to the terminal, wherein the intermediate activated TCI state configuration message includes S TCI state identifiers, Among them, S is a positive integer less than or equal to T.
  • the sending unit 1120 is further configured to send an uplink power control parameter activation message to the terminal, where the uplink power control parameter activation message includes at least one uplink power control parameter A parameter group identifier, wherein the at least one uplink power control parameter group is associated with a TCI state in the intermediate activated TCI state set.
  • the sending unit 1120 is further configured to send an uplink power control parameter activation message to the terminal, where the uplink power control parameter activation message is used to activate the second TCI state.
  • the beam indication apparatus determines the first TCI state, wherein the information field of the first TCI state includes at most two sets of source reference signal information indicating the beam direction, and sends a beam indication message to the terminal, wherein the beam
  • the indication message includes the first TCI state identifier. Therefore, the base station sends a beam indication message to the terminal, and the first TCI state information field corresponding to the first TCI state identifier in the beam indication message contains the TCI state of the source reference signal information indicating the beam direction, so that the pass through according to a TCI
  • the status indicates the beam direction corresponding to the uplink channel and/or the downlink channel, which simplifies the beam indication complexity and reduces the indication signaling overhead.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a stand-alone product, may be stored in a processor-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions to cause a computer device (which may be a personal computer, a server, or a network side device, etc.) or a processor (processor) to execute all or part of the steps of the methods in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM for short), Random Access Memory (RAM for short), magnetic disk or CD, etc. that can store program codes medium.
  • the present application further provides a processor-readable storage medium.
  • the processor-readable storage medium stores a computer program, and the computer program is used to make the processor execute the beam indication method described in the embodiments of FIG. 1 to FIG. 3 of the present application.
  • the processor-readable storage medium may be any available medium or data storage device that can be accessed by the processor, including but not limited to magnetic storage (eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state disk (SSD)) and the like.
  • magnetic storage eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage such as CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state disk (SSD)
  • the present application further provides a processor-readable storage medium.
  • the processor-readable storage medium stores a computer program, and the computer program is used to make the processor execute the beam indication method described in the embodiments of FIG. 4 to FIG. 6 of the present application.
  • the processor-readable storage medium may be any available medium or data storage device that can be accessed by the processor, including but not limited to magnetic storage (eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state disk (SSD)) and the like.
  • magnetic storage eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage such as CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state disk (SSD)
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the processor-readable memory result in the manufacture of means comprising the instructions product, the instruction means implements the functions specified in the flow or flow of the flowchart and/or the block or blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process that Execution of the instructions provides steps for implementing the functions specified in the flowchart or blocks and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了波束指示方法、终端、网络侧设备、装置和存储介质,其中,方法包括:接收基站发送的波束指示消息,其中,波束指示消息中包括第一传输配置指示TCI状态标识;从TCI状态池中获取与第一TCI状态标识对应的第一TCI状态,其中,第一TCI状态的信息域中至多包括两组指示波束方向的源参考信号信息;根据指示波束方向的源参考信号信息,确定上行信道和/或下行信道对应的波束方向。由此,通过根据TCI状态池中一个TCI状态中的指示波束方向的源参考信号信息,指示上行信道公共波束、下行信道公共波束、或者上下行信道相同的或者不同的公共波束,从而简化了波束指示的复杂度,减少了信令指示开销。

Description

波束指示方法、终端、网络侧设备、装置和存储介质
相关申请的交叉引用
本申请要求大唐移动通信设备有限公司于2020年10月23日提交的、发明名称为“波束指示方法、终端、网络侧设备、装置和存储介质”的、中国专利申请号“202011149721.0”的优先权。
技术领域
本申请涉及通信技术领域,尤其涉及一种波束指示方法、终端、网络侧设备、装置和存储介质。
背景技术
对于高频传输,由于传输范围受限,上行信道和/或下行信道会经过波束赋形后传输数据以增强覆盖。赋形波束的方向可以通过上和/或下行参考信号的波束扫描确定。
相关技术中,不同的信道使用不同的波束指示信令,且各个信道独立进行波束指示。然而,这种指示波束方向的方法,指示方式复杂,开销大。
发明内容
本申请提供一种波束指示方法、终端、网络侧设备、装置和存储介质。
根据第一方面,提供了一种波束指示方法,包括:
接收基站发送的波束指示消息,其中,所述波束指示消息中包括第一传输配置指示TCI状态标识;
从TCI状态池中获取与所述第一TCI状态标识对应的第一TCI状态,其中,所述第一TCI状态的信息域中至多包括两组指示波束方向的源参考信号信息;
根据所述指示波束方向的源参考信号信息,确定上行信道和/或下行信道对应的波束方向。
在本申请第一方面实施例一种可能的实现方式中,所述信息域中还包括至少一个准共占址QCL域,所述根据所述指示波束方向的源参考信号信息,确定上行信道和/或下行信道对应的波束方向,包括:
根据所述信息域中各个QCL域的状态,确定所述第一TCI状态指示的目标信道;
根据所述指示波束方向的源参考信号信息,确定所述目标信道对应的波束方向。
在本申请第一方面实施例一种可能的实现方式中,所述信息域中还包括M个QCL域、及用于指示所述M个QCL域所属信道的类型的N个标识,其中,M,N为正整数,且N小于或等于M,所述根据所述源参考信号信息,确定上行信道和/或下行信道对应的波束方向,包括:
根据所述信息域中的N个标识,确定所述第一TCI状态指示的目标信道;
根据所述指示波束方向的源参考信号信息,确定所述目标信道对应的波束方向。
在本申请第一方面实施例一种可能的实现方式中,还包括:
接收基站发送的TCI状态池配置消息,其中,所述TCI状态池配置消息包括每个TCI状态的信息域,且每个TCI状态的信息域中至多包括两组指示波束方向的源参考信号信息。
在本申请第一方面实施例一种可能的实现方式中,所述TCI状态池配置消息的每个TCI状态的信息域中用于指示波束方向的源参考信号信息不同、和/或,所述TCI状态池的每个TCI状态的信息域对应的信道类型不同。
在本申请第一方面实施例一种可能的实现方式中,所述TCI状态池配置消息的每个TCI状态的信息域中,还包括每个上行TCI状态对应的K组上行功控参数,其中,K为正整数。
在本申请第一方面实施例一种可能的实现方式中,所述TCI状态池配置消息中,还包括每个TCI状态对应的至少一个上行功控参数组。
在本申请第一方面实施例一种可能的实现方式中,该方法还包括:
接收所述基站发送的上行功控参数配置消息,其中,所述上行功控参数配置消息中包括至少一个上行功控参数组。
在本申请第一方面实施例一种可能的实现方式中,该方法还包括:
接收所述基站发送的上行功控参数配置消息,其中,所述上行功控参数配置消息中包括所述TCI状态池中的每个TCI状态对应的至少一个上行功控参数组。
在本申请第一方面实施例一种可能的实现方式中,还包括:
接收所述基站发送的中间激活TCI状态配置消息,其中,所述中间激活TCI状态配置消息中包括S个TCI状态标识,其中,S为正整数;
从所述TCI状态池中选择分别与所述S个TCI状态标识对应的S个TCI状态,生成中间激活TCI状态集。
在本申请第一方面实施例一种可能的实现方式中,该方法还包括:
接收所述基站发送的上行功控参数激活消息,其中,所述上行功控参数激活消息中,包含至少一个上行功控参数组标识;
激活所述至少一个上行功控参数组标识对应的至少一个上行功控参数组;
其中,激活后的所述至少一个上行功控参数组与所述中间激活TCI状态集中的TCI状态相关联。
在本申请第一方面实施例一种可能的实现方式中,该方法还包括:
根据预设的规则,将所述中间激活TCI状态集中的每个TCI状态与一个激活的上行功控参数组关联。
在本申请第一方面实施例一种可能的实现方式中,该方法还包括:
接收所述基站发送的上行功控参数激活消息,所述上行功控参数激活消息用于激活第二TCI状态所关联的一个上行功控参数组,其中,所述第二TCI状态为所述中间激活TCI状态集中的一个TCI状态。
根据第二方面,提供了一种波束指示方法,包括:
确定第一TCI状态,其中,所述第一TCI状态的信息域中包括至多两组指示波束方向的源参考信号信息;
向终端发送波束指示消息,其中,所述波束指示消息中包括所述第一TCI状态标识。
在本申请第二方面实施例一种可能的实现方式中,所述确定第一TCI状态,包括:
确定所述第一TCI状态的信息域中各个QCL域的状态。
在本申请第二方面实施例一种可能的实现方式中,所述确定第一TCI状态,包括:
确定所述第一TCI状态的信息域中包含的QCL域数量及对应的标识。
在本申请第二方面实施例一种可能的实现方式中,该方法还包括:
向所述终端发送TCI状态池配置消息,其中,所述TCI状态池配置消息包括每个TCI状态的信息域,且每个TCI状态中至多包括两组指示波束方向的源参考信号信息。
在本申请第二方面实施例一种可能的实现方式中,所述TCI状态池配置消息的每个TCI状态的信息域中用于指示波束方向的源参考信号信息不同、和/或,所述TCI状态池的每个TCI状态的信息域对应的信道类型不同。
在本申请第二方面实施例一种可能的实现方式中,所述TCI状态池配置消息的每个TCI状态的信息域中,还包括每个上行TCI状态对应的K组上行功控参数,其中,K为正整数。
在本申请第二方面实施例一种可能的实现方式中,所述TCI状态池配置消息中,还包括每个TCI状态对应的至少一个上行功控参数组。
在本申请第二方面实施例一种可能的实现方式中,该方法还包括:
向所述终端发送上行功控参数配置消息,其中,所述上行功控参数配置消息中包括至少一个上行功控参数组。
在本申请第二方面实施例一种可能的实现方式中,该方法还包括:
向所述终端发送上行功控参数配置消息,其中,所述上行功控参数配置消息中包括所述TCI状态池中的每个TCI状态对应的至少一个上行功控参数组。
在本申请第二方面实施例一种可能的实现方式中,还包括:
向所述基站发送中间激活TCI状态配置消息,其中,所述中间激活TCI状态配置消息中包括S个TCI状态标识,其中,S为正整数。
在本申请第二方面实施例一种可能的实现方式中,该方法还包括:
向所述终端发送上行功控参数激活消息,其中,所述上行功控参数激活消息中,包含至少一个上行功控参数组标识,其中,所述至少一个上行功控参数组与所述中间激活TCI状态集中的TCI状态相关联。
在本申请第二方面实施例一种可能的实现方式中,该方法还包括:
向所述终端发送上行功控参数激活消息,其中,所述上行功控参数激活消息用于激活第二TCI状态所关联的一个上行功控参数组,其中,所述第二TCI状态为所述中间激活TCI状态集中的一个TCI状态。
根据第三方面,提供了一种终端,
包括:存储器、收发机和处理器;
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序以执行以下操作:
接收基站发送的波束指示消息,其中,所述波束指示消息中包括第一传输配置指示TCI状态标识;
从TCI状态池中获取与所述第一TCI状态标识对应的第一TCI状态,其中,所述第一TCI状态的信息域中至多包括两组指示波束方向的源参考信号信息;
根据所述指示波束方向的源参考信号信息,确定上行信道和/或下行信道对应的波束方向。
在本申请第三方面实施例一种可能的实现方式中,所述信息域中还包括至少一个准共占址QCL域,所述根据所述指示波束方向的源参考信号信息,确定上行信道和/或下行信道对应的波束方向,包括:
根据所述信息域中各个QCL域的状态,确定所述第一TCI状态指示的目标信道;
根据所述指示波束方向的源参考信号信息,确定所述目标信道对应的波束方向。
在本申请第三方面实施例一种可能的实现方式中,所述信息域中还包括M个QCL域、及用于指示所述M个QCL域所属信道的类型的N个标识,其中,M,N为正整数,且N小于或等于M,所述根据所述源参考信号信息,确定上行信道和/或下行信道对应的波束方向,包括:
根据所述信息域中的N个标识,确定所述第一TCI状态指示的目标信道;
根据所述指示波束方向的源参考信号信息,确定所述目标信道对应的波束方向。
在本申请第三方面实施例一种可能的实现方式中,所述处理器还用于读取所述存储器中的计算机程序以执行以下操作:
接收基站发送的TCI状态池配置消息,其中,所述TCI状态池配置消息包括每个TCI状态的信息域,且每个TCI状态的信息域中至多包括两组指示波束方向的源参考信号信息。
在本申请第三方面实施例一种可能的实现方式中,所述TCI状态池配置消息的每个TCI状态的信息域中用于指示波束方向的源参考信号信息不同、和/或,所述TCI状态池的每个TCI状态的信息域对应的信道类型不同。
在本申请第三方面实施例一种可能的实现方式中,所述TCI状态池配置消息的每个TCI状态的信息域中,还包括每个上行TCI状态对应的K组上行功控参数,其中,K为正整数。
在本申请第三方面实施例一种可能的实现方式中,所述TCI状态池配置消息中,包括每个TCI状态对应的至少一个上行功控参数组。
在本申请第三方面实施例一种可能的实现方式中,所述处理器还用于读取所述存储器中的计算机程序以执行以下操 作:
接收所述基站发送的上行功控参数配置消息,其中,所述上行功控参数配置消息中包括至少一个上行功控参数组。
在本申请第三方面实施例一种可能的实现方式中,所述处理器还用于读取所述存储器中的计算机程序以执行以下操作:
接收所述基站发送的上行功控参数配置消息,其中,所述上行功控参数配置消息中包括所述TCI状态池中的每个TCI状态对应的至少一个上行功控参数组。
在本申请第三方面实施例一种可能的实现方式中,所述处理器还用于读取所述存储器中的计算机程序以执行以下操作:
接收所述基站发送的中间激活TCI状态配置消息,其中,所述中间激活TCI状态配置消息中包括S个TCI状态标识,其中,S为正整数;
从所述TCI状态池中选择分别与所述S个TCI状态标识对应的S个TCI状态,生成中间激活TCI状态集。
在本申请第三方面实施例一种可能的实现方式中,所述处理器还用于读取所述存储器中的计算机程序以执行以下操作:
接收所述基站发送的上行功控参数激活消息,其中,所述上行功控参数激活消息中,包含至少一个上行功控参数组标识;
激活所述至少一个上行功控参数组标识对应的至少一个上行功控参数组;
其中,激活后的所述至少一个上行功控参数组与所述中间激活TCI状态集中的TCI状态相关联。
在本申请第三方面实施例一种可能的实现方式中,所述处理器还用于读取所述存储器中的计算机程序以执行以下操作:
根据预设的规则,将所述中间激活TCI状态集中的每个TCI状态与一个激活的上行功控参数组关联。
在本申请第三方面实施例一种可能的实现方式中,所述处理器还用于读取所述存储器中的计算机程序以执行以下操作:
接收所述基站发送的上行功控参数激活消息,所述上行功控参数激活消息用于激活第二TCI状态所关联的一个上行功控参数组,其中,所述第二TCI状态为所述中间激活TCI状态集中的一个TCI状态。
根据第四方面,提供了一种网络侧设备,包括存储器、收发机和处理器;
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
确定第一TCI状态,其中,所述第一TCI状态的信息域中包括至多两组指示波束方向的源参考信号信息;
向终端发送波束指示消息,其中,所述波束指示消息中包括所述第一TCI状态标识。
在本申请第四方面实施例一种可能的实现方式中,所述确定第一TCI状态,包括:
确定所述第一TCI状态的信息域中各个QCL域的状态。
在本申请第四方面实施例一种可能的实现方式中,所述确定第一TCI状态,包括:
确定所述第一TCI状态的信息域中包含的QCL域数量及对应的标识。
在本申请第四方面实施例一种可能的实现方式中,所述处理器还用于读取所述存储器中的计算机程序并执行以下操作:
向所述终端发送TCI状态池配置消息,其中,所述TCI状态池配置消息包括每个TCI状态的信息域,且每个TCI状态中至多包括两组指示波束方向的源参考信号信息。
在本申请第四方面实施例一种可能的实现方式中,所述TCI状态池配置消息的每个TCI状态的信息域中用于指示波束方向的源参考信号信息不同、和/或,所述TCI状态池的每个TCI状态的信息域对应的信道类型不同。
在本申请第四方面实施例一种可能的实现方式中,所述TCI状态池配置消息的每个TCI状态的信息域中,还包括每个上行TCI状态对应的K组上行功控参数,其中,K为正整数。
在本申请第四方面实施例一种可能的实现方式中,所述TCI状态池配置消息中,包括每个TCI状态对应的至少一个上行功控参数组。
在本申请第四方面实施例一种可能的实现方式中,所述处理器还用于读取所述存储器中的计算机程序并执行以下操作:
向所述终端发送上行功控参数配置消息,其中,所述上行功控参数配置消息中包括至少一个上行功控参数组。
在本申请第四方面实施例一种可能的实现方式中,所述处理器还用于读取所述存储器中的计算机程序并执行以下操作:
向所述终端发送上行功控参数配置消息,其中,所述上行功控参数配置消息中包括所述TCI状态池中的每个TCI状态对应的至少一个上行功控参数组。
在本申请第四方面实施例一种可能的实现方式中,所述处理器还用于读取所述存储器中的计算机程序并执行以下操作:
向所述终端发送中间激活TCI状态配置消息,其中,所述中间激活TCI状态配置消息中包括S个TCI状态标识,其中,S为正整数。
在本申请第四方面实施例一种可能的实现方式中,所述处理器还用于读取所述存储器中的计算机程序并执行以下操作:
向所述终端发送上行功控参数激活消息,其中,所述上行功控参数激活消息中,包含至少一个上行功控参数组标识,其中,所述至少一个上行功控参数组与所述中间激活TCI状态集中的TCI状态相关联。
在本申请第四方面实施例一种可能的实现方式中,所述处理器还用于读取所述存储器中的计算机程序并执行以下操作:
向所述终端发送上行功控参数激活消息,其中,所述上行功控参数激活消息用于激活第二TCI状态所关联的一个上 行功控参数组,其中,所述第二TCI状态为所述中间激活TCI状态集中的一个TCI状态。
根据第五方面,提供了一种波束指示装置,包括:
接收单元,用于接收基站发送的波束指示消息,其中,所述波束指示消息中包括第一传输配置指示TCI状态标识;
获取单元,用于从TCI状态池中获取与所述第一TCI状态标识对应的第一TCI状态,其中,所述第一TCI状态的信息域中至多包括两组指示波束方向的源参考信号信息;
确定单元,用于根据所述指示波束方向的源参考信号信息,确定上行信道和/或下行信道对应的波束方向。
根据第六方面,提供了一种波束指示装置,包括:
确定单元,用于确定第一TCI状态,其中,所述第一TCI状态的信息域中包括至多两组指示波束方向的源参考信号信息;
发送单元,用于向终端发送波束指示消息,其中,所述波束指示消息中包括所述第一TCI状态标识。
根据第七方面,提供了一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行上述第一方面实施例所述的用户设备上下文信息的同步方法。
根据第八方面,提供了一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行上述第二方面实施例所述的用户设备上下文信息的同步方法。
本申请实施例的波束指示方法、终端、网络侧设备、装置和存储介质,通过接收基站发送的波束指示消息,其中,波束指示消息中包括第一传输配置指示TCI状态标识;从TCI状态池中获取与第一TCI状态标识对应的第一TCI状态,其中,第一TCI状态的信息域中至多包括两组指示波束方向的源参考信号信息;根据指示波束方向的源参考信号信息,确定上行信道和/或下行信道对应的波束方向。由此,通过根据TCI状态池中一个TCI状态中的指示波束方向的源参考信号信息,指示上行信道公共波束、下行信道公共波束、或者上下行信道相同的或者不同的公共波束,从而简化了波束指示的复杂度,减少了信令指示开销。
上述可选方式所具有的其他效果将在下文中结合具体实施例加以说明。
附图说明
附图用于更好地理解本方案,不构成对本申请的限定。其中:
图1为本申请实施例提供的一种波束指示方法的流程示意图;
图2为本申请实施例提供的另一种波束指示方法的流程示意图;
图3为本申请实施例提供的另一种波束指示方法的流程示意图;
图4为本申请实施例提供的另一种波束指示方法的流程示意图;
图5为本申请实施例提供的另一种波束指示方法的流程示意图;
图6为本申请实施例提供的另一种波束指示方法的流程示意图;
图7为本申请实施例提供一种终端的结构示意图;
图8为本申请实施例提供的一种网络侧设备的结构示意图;
图9为本申请实施例提供的一种波束指示装置的结构示意图;
图10为本申请实施例提供的一种波束指示装置的结构示意图。
具体实施方式
以下结合附图对本申请的示范性实施例做出说明,其中包括本申请实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本申请的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。
下面参考附图描述本申请实施例的波束指示方法、终端、网络侧设备、装置和存储介质。
相关技术中,不同的信道使用不同的波束指示信令,且各个信道独立进行波束指示。在新空口(New Radio,简称NR)系统中,下行信道包括下行数据信道和下行控制信道,上行信道包括上行数据信道和上行控制信道。如果每个信道都采用独立指示方式指示波束方式,需要发送四次波束指示信令,指示方式复杂,信令指示开销大。
基于此,本申请实施例提出一种波束指示方法,通过接收基站发送的波束指示消息,其中,波束指示消息中包括第一传输配置指示TCI状态标识;从TCI状态池中获取与第一TCI状态标识对应的第一TCI状态,其中,第一TCI状态的信息域中至多包括两组指示波束方向的源参考信号信息;根据指示波束方向的源参考信号信息,确定上行信道和/或下行信道对应的波束方向。由此,通过根据TCI状态池中一个TCI状态中的指示波束方向的源参考信号信息,指示上行信道公共波束、下行信道公共波束、或者上下行信道相同的或者不同的公共波束,从而简化了波束指示的复杂度,减少了信令指示开销。
图1为本申请实施例提供的一种波束指示方法的流程示意图。
本申请实施例的波束指示方法,可由终端执行,以实现根据接收的基站发送的波束指示消息中的参考源信号信息,确定上行信道和/或下行信道对应的波束方向。
如图1所示,该波束指示方法包括:
步骤101,接收基站发送的TCI状态池配置消息。
本实施例中,传输配置指示(Transmission Configuration Indication,简称TCI)状态池配置消息用于为终端配置TCI状态池。其中,TCI状态池配置消息中可包括要配置的TCI状态的信息,比如包括每个TCI状态的标识、每个TCI状态的信息域等。
终端根据接收基站发送的TCI状态池配置消息获取TCI状态池,其中,TCI状态池中包括T个TCI状态,其中T为正整数,且每个TCI状态的信息域中可包括至多两组指示波束方向的源参考信号信息。
另外,每个TCI状态的信息域中用于指示波束方向的源参考信号信息可以相同,即对应的波束方向可以相同。
本实施例中,TCI状态池配置消息的每个TCI状态的信息域中,可包括每个上行TCI状态对应的K组上行功控参数, 其中,K为正整数。也就是说,基站为终端配置的每个TCI状态的信息域中可包括K组上行功控参数组。
需要说明的是,当每个TCI状态的信息域中未配置上行功控参数组时,还可以通过以下方式实现:
比如上述的TCI状态池配置消息中,包括每个TCI状态对应的至少一个上行功控参数组。或者,基站向终端发送上行功控参数配置消息,其中,上行功控参数配置消息中包括至少一个上行功控参数组。或者,基站还可以为每个上行TCI状态分别配置对应的上行功控参数。即,上行功控参数配置消息中包括所述TCI状态池中的每个TCI状态对应的至少一个上行功控参数组。
在具体实现时,基站可通过无线资源控制(Radio Resource Control,简称RRC)信令,也可通过下行控制信息(Downlink Control Information,简称DCI)信令进行上行功控参数组的配置。
步骤102,接收基站发送的中间激活TCI状态配置消息,其中,中间激活TCI状态配置消息中包括S个TCI状态标识。
本实施例中,当TCI状态池中包含大量的TCI状态时,基站还可以每隔一定的时间,向终端发送中间激活TCI状态配置消息,以使终端在一定时间内,仅利用中间激活TCI状态集中的TCI状态进行数据和信令的传输。
其中,中间激活TCI状态配置消息中可包括S个TCI状态标识,中间激活TCI状态配置消息用于配置中间激活的TCI状态,S个TCI状态标识可以是基站当前时间段内使用频率高于预设阈值的TCI状态对应的TCI状态标识。
终端在接收到基站发送的中间激活TCI状态配置消息后,可从中间激活TCI状态配置消息中提取S个TCI状态标识。其中,S为小于或等于T的正整数。
比如,TCI状态池中包括100个TCI状态,中间激活TCI状态配置消息中包括20个TCI状态标识。
步骤103,从TCI状态池中选择分别与S个TCI状态标识对应的S个TCI状态,生成中间激活TCI状态集。
终端在获取中间激活TCI状态配置消息中的S个TCI状态标识后,从TCI状态池中选择分别与S个TCI状态标识对应的S个TCI状态,并根据S个TCI状态生成中间激活TCI状态集。
其中,中间激活TCI状态集中包括S个TCI状态,S个TCI状态处于激活状态。
步骤104,接收基站发送的上行功控参数激活消息。
本实施例中,TCI状态池中每个TCI状态的信息域中包括每个上行TCI状态。也就是说,终端已经配置了中间激活状态TCI状态集中每个TCI状态与上行功控参数组之间的关联关系。因此,基站向终端发送上行功控参数激活消息,终端通过接收的激活消息,一一激活中间激活TCI状态集中每个TCI状态对应的上行功控参数。
步骤105,接收基站发送的波束指示消息,其中,波束指示消息中包括第一传输配置指示TCI状态标识。
本实施例中,基站可向终端发送波束指示消息,终端可接收到基站发送的波束指示消息。其中,波束指示消息用于指示信道的波束方向,波束指示消息中可包括TCI状态标识,为了便于描述,这里称为第一TCI状态标识。
终端在接收波束指示消息后,可从波束指示消息中提取第一TCI状态标识。
步骤106,从TCI状态池中获取与第一TCI状态标识对应的第一TCI状态,其中,第一TCI状态的信息域中至多包括两组指示波束方向的源参考信号信息。
本实施例中,终端预先配置有TCI状态池,其中TCI状态池中包括至少一个TCI状态。终端在获取第一TCI状态标识后,可根据第一TCI状态标识从TCI状态池中获取第一TCI状态。其中,第一TCI状态的信息域中可包括第一TCI状态的标识、至多两组指示波束方向的源参考信号信息等。这里源参考信号信息可以是源参考信号的波束方向信息。
本实施例中,TCI状态池中每个TCI状态所包含的信息域可以相同也可以不同。
步骤107,根据指示波束方向的源参考信号信息,确定上行信道和/或下行信道对应的波束方向。
本实施例中,可以基于指示波束方向的源参考信号的波束方向,确定上行信道和/或下行信道对应的波束方向,或者可将源参考信号的波束方向,作为上行信道和/或下行信道对应的波束方向。
比如,可将源参考信号的波束方向,作为上行数据信道和上行控制信道对应的波束方向。或者,可将源参考信号的波束方向,作为下行数据信道和下行控制信道对应的波束方向。又或者,可将源参考信号的波束方向,作为上行数据信道、上行控制信道、下行数据信道和下行控制信道对应的波束方向。
由于信道有多个,在进行波束指示时,可先确定第一TCI状态要指示的信道。本实施例,第一TCI状态的信息域中可包括至少一个准共占址(Quasi Co-Location,简称QCL)域,可根据各个QCL域的状态,确定第一TCI状态指示的目标信道。其中,QCL域的状态是指信息域中是否有该QCL域。
具体地,基站和终端可预先设置TCI状态的信息域中各QCL域与信道之间的对应关系。终端可在获取第一TCI状态后,确定第一TCI状态的信息域中存在的QCL域,那么存在的QCL域对应的信道即为目标信道。
在确定第一TCI状态指示的目标信道后,可根据指示波束方向的源参考信号信息,确定目标信道对应的波束方向。具体地,可以基于指示波束方向的源参考信号的波束方向,确定目标信道对应的波束方向,或者可将源参考信号的波束方向,作为目标信道对应的波束方向。
比如,目标信道为上行数据信号和上行控制信道,可将源参考信号的波束方向,作为上行数据信道和上行控制信道对应的波束方向。或者,目标信道为下行数据信号和下行控制信道,可将源参考信号的波束方向,作为下行数据信道和下行控制信道对应的波束方向。又或者,目标信道为上行数据信道、上行控制信道、下行数据信道和下行控制信道,可将源参考信号的波束方向,作为上行数据信道、上行控制信道、下行数据信道和下行控制信道对应的波束方向。
本实施例中,第一TCI状态的信息域中还可包括M个QCL域、及用于指示M个QCL域所属信道的类型的N个标识,可根据信息域中N个标识,确定M个QCL域所属的信道类型,并根据M个QCL域所属的信道类型,确定第一TCI状态指示的目标信道。
比如,M个QCL域所属的信道类型为上行信道,那么第一TCI状态指示的目标信道为上行信道。若M个QCL域所属的信道类型为下行信道,那么第一TCI状态指示的目标信道为下行信道。若M个QCL域所属的信道类型有上行信道和下行信道,那么第一TCI状态指示的目标信道为上行信道和下行信道。
由于信息域中每个QCL域可具有对应的源参考信号信息,根据每个QCL域对应的指示波束方向的源参考信号信息,确定每个QCL域所属的信道类型对应的波束方向。
下面以具体的实施例为例,对实施例提供的波束指示方法进行进一步说明。
基站为终端配置一TCI状态池,其中包括L个TCI状态。其中每个TCI状态所包含的信息域可以相同也可以不同。每个TCI状态最多包含2个指示波束方向的源参考信号。例如,TCI状态i包括以下信息域:
表1 TCI状态i的配置
Figure PCTCN2021125092-appb-000001
表1所示的TCI状态的信息域中,TCI-state-ID表示TCI状态的标识,CC表示源参考信号(source RS)所在的载波,BWP英文为Bandwidth Part,即一部分宽带,表示源参考信号所在载波的所在BWP,TypeA/B/C/D表示QCL域的类型。QCL-1用于指示下行信道的除波束方向信息外的时域频域QCL信息;QCL-2用于指示上行公共波束,同时指示公共波束对应的上行功控参数;QCL-3用于指示下行公共波束。其中,上行公共波束和下行公共波束的源参考信号可以相同,用于指示上下行信道使用相同的公共波束;上行公共波束和下行公共波束的源参考信号也可以不同,用于指示上下行信道分别使用各自的公共波束。
其中,上行功控参数是指上行功率控制参数,可包括路损参考信号Pathloss RS、用于计算上行信道发送功率的(alpha,P0)、Close用于计算上行信道发送功率的loop index等。
终端根据此TCI状态i,使用与上行源参考信号相同的波束方向发送上行信道数据,使用与下行源参考信号对应的接收波束方向接收下行信道数据,且根据QCL-1中指示的源参考信号测得的时频信息进行下行信道的解调。
另一个TCI状态j包括以下信息域:
表2 TCI状态j的配置
TCI-state-ID
QCL-2(UL)
CC
BWP
Source RS
Type D
上行功控参数
表2所示的TCI状态j只用于指示上行信道使用相同的公共波束,且使用上行功控参数进行上行信道传输。
另一个TCI状态k包括以下信息域:
表3 TCI状态k的配置
Figure PCTCN2021125092-appb-000002
Figure PCTCN2021125092-appb-000003
表3所示的TCI状态只用于指示下行信道使用相同的公共波束,且使用QCL-1中的源参考信号所确定的时频信息进行数据解调。
基站可向终端发送MAC-CE信令,终端根据MAC-CE信令从全部的TCI状态中选择S个状态作为中间激活TCI状态,生成中间激活TCI状态集。其中,中间激活TCI状态集中包括S个TCI状态,S个TCI状态中包括W个上行TCI状态,W个上行TCI状态的信息域中包括上行功控参数。
本申请实施例的波束指示方法,通过为终端配置TCI状态池,且TCI状态池中每个TCI状态的信息域中至多包括两组指示波束方向的源参考信号信息,之后,在进行波束指示时,即可直接向终端发送待用的TCI状态标识,之后,终端即可根据该TCI状态标识,确定信道的波束方向。简化了波束指示的复杂度,减少了信令指示开销。
图2为本申请实施例提供的另一种波束指示方法的流程示意图。
如图2所示,该波束指示方法,包括:
步骤201,接收基站发送的TCI状态池配置消息。
本实施例中,TCI状态池配置消息用于为终端配置TCI状态池。其中,TCI状态池配置消息中可包括要配置的TCI状态的信息,比如包括每个TCI状态的标识、每个TCI状态的信息域等。
终端根据接收基站发送的TCI状态池配置消息获取TCI状态池,其中,TCI状态池中包括T个TCI状态,其中T为正整数,且每个TCI状态的信息域中可包括至多两组指示波束方向的源参考信号信息。
另外,每个TCI状态的信息域中用于指示波束方向的源参考信号信息可以相同,即对应的波束方向可以相同。
步骤202,接收基站发送的中间激活TCI状态配置消息,其中,中间激活TCI状态配置消息中包括S个TCI状态标识。
本实施例中,当TCI状态池中包含大量的TCI状态时,基站可向终端发送中间激活TCI状态配置消息。
其中,中间激活TCI状态配置消息中可包括S个TCI状态标识,中间激活TCI状态配置消息用于配置中间激活的TCI状态,S个TCI状态标识可以是基站当前时间段内使用频率高于预设阈值的TCI状态对应的TCI状态标识。
终端在接收到基站发送的中间激活TCI状态配置消息后,可从中间激活TCI状态配置消息中提取S个TCI状态标识。其中,S为小于或等于T的正整数。
比如,TCI状态池中包括100个TCI状态,中间激活TCI状态配置消息中包括20个TCI状态标识。
步骤203,从TCI状态池中选择分别与S个TCI状态标识对应的S个TCI状态,生成中间激活TCI状态集。
终端在获取中间激活TCI状态配置消息中的S个TCI状态标识后,从TCI状态池中选择分别与S个TCI状态标识对应的S个TCI状态,并根据S个TCI状态生成中间激活TCI状态集。
其中,中间激活TCI状态集中包括S个TCI状态,S个TCI状态处于激活状态。
步骤204,接收基站发送的上行功控参数配置消息,其中,上行功控参数配置消息中包括每个上行TCI状态对应的K组上行功控参数,其中,K为正整数。
其中,上行功控参数是指上行功率控制参数,可包括路损参考信号Pathloss RS、用于计算上行信道发送功率的(alpha,P0)、Close用于计算上行信道发送功率的loop index等。
具体的,终端在接收到基站发送的上行功控参数配置消息后,即按照预设的规则,将TCI状态池中每个TCI状态与至少一个上行功控参数组进行关联。
比如,上行功控参数配置消息中包括3组上行功控参数组,终端可使每个TCI状态均对应3组上行功控参数组。
需要说明的是,上行功控参数的配置方式,除了按上述方式实现外,还可以通过以下方式实现:
比如上述的TCI状态池配置消息的每个TCI状态的信息域中,还包括每个上行TCI状态对应的K组上行功控参数,其中,K为正整数。
或者,基站还可以为每个上行TCI状态分别配置对应的上行功控参数。即,上行功控参数配置消息中包括所述TCI状态池中的每个TCI状态对应的至少一个上行功控参数组。
即在实际实现时,每个TCI状态可以对应一个上行功控参数组,还可以对应多个上行功控参数组,本实施例对此不做限定。
步骤205,接收基站发送的上行功控参数激活消息,所述上行功控参数激活消息用于激活中间激活TCI状态集中每个上行TCI状态所关联的一个上行功控参数组。
终端在获取到基站发送的上行功控参数激活消息后,即可对中间激活TCI状态集中每个上行TCI状态所关联的一个上行功控参数组进行激活。
步骤206,接收基站发送的波束指示消息,其中,波束指示消息中包括第一TCI状态标识。
本实施例中,基站可向终端发送波束指示消息,终端可接收到基站发送的波束指示消息。其中,波束指示消息用于指示信道的波束方向,波束指示消息中可包括TCI状态标识,为了便于描述,这里称为第一TCI状态标识。
终端在接收波束指示消息后,可从波束指示消息中提取第一TCI状态标识。
步骤207,从TCI状态池中获取与第一TCI状态标识对应的第一TCI状态。
其中,第一TCI状态的信息域中至多包括两组指示波束方向的源参考信号信息。
步骤208,根据指示波束方向的源参考信号信息,确定上行信道和/或下行信道对应的波束方向。
本实施例中,可以基于指示波束方向的源参考信号的波束方向,确定上行信道和/或下行信道对应的波束方向,或者可将源参考信号的波束方向,作为上行信道和/或下行信道对应的波束方向。
在本申请的一个实施例中,第一TCI状态的信息域中还可包括至少一个QCL域,在上述根据指示波束方向的源参考信号信息,确定上行信道和/或下行信道对应的波束方向时,可采用以下方式,先根据QCL域的状态,确定需指示波 束方向的目标信道,进而根据参考信号信息,确定目标信道对应的波束方向。
本实施例中,根据信息域中各个QCL域的状态,确定第一TCI状态指示的目标信道;根据指示波束方向的源参考信号信息,确定目标信道对应的波束方向。
具体的,由于信道有多个,在进行波束指示时,可先确定第一TCI状态要指示的信道。本实施例,第一TCI状态的信息域中可包括至少一个QCL域,可根据各个QCL域的状态,确定第一TCI状态指示的目标信道。其中,QCL域的状态是指信息域中是否有该QCL域。
具体地,基站和终端可预先设置TCI状态的信息域中各QCL域与信道之间的对应关系。终端可在获取第一TCI状态后,确定第一TCI状态的信息域中存在的QCL域,那么存在的QCL域对应的信道即为目标信道。
在确定第一TCI状态指示的目标信道后,可根据指示波束方向的源参考信号信息,确定目标信道对应的波束方向。具体地,可以基于指示波束方向的源参考信号的波束方向,确定目标信道对应的波束方向,或者可将源参考信号的波束方向,作为目标信道对应的波束方向。
比如,目标信道为上行数据信号和上行控制信道,可将源参考信号的波束方向,作为上行数据信道和上行控制信道对应的波束方向。或者,目标信道为下行数据信号和下行控制信道,可将源参考信号的波束方向,作为下行数据信道和下行控制信道对应的波束方向。又或者,目标信道为上行数据信道、上行控制信道、下行数据信道和下行控制信道,可将源参考信号的波束方向,作为上行数据信道、上行控制信道、下行数据信道和下行控制信道对应的波束方向。
本实施例中,第一TCI状态的信息域中还可包括M个QCL域、及用于指示M个QCL域所属信道的类型的N个标识,可根据信息域中N个标识,确定M个QCL域所属的信道类型,并根据M个QCL域所属的信道类型,确定第一TCI状态指示的目标信道。
比如,M个QCL域所属的信道类型为上行信道,那么第一TCI状态指示的目标信道为上行信道。若M个QCL域所属的信道类型为下行信道,那么第一TCI状态指示的目标信道为下行信道。若M个QCL域所属的信道类型有上行信道和下行信道,那么第一TCI状态指示的目标信道为上行信道和下行信道。
由于信息域中每个QCL域可具有对应的源参考信号信息,根据每个QCL域对应的指示波束方向的源参考信号信息,确定每个QCL域所属的信道类型对应的波束方向。
下面以具体的实施例为例,对实施例提供的波束指示方法进行进一步说明。
基站通过RRC信令为终端配置了L个指示上行传输的TCI状态。且所述上行TCI状态中不包含上行功控参数。对于TCI状态m可以表示为如表4所示的形式:
表4 TCI状态m的配置
TCI-state-ID
CC
BWP
Source RS
同时基站通过RRC信令为终端配置至少一组上行功控参数,每组上行功控控参数包括Pathloss RS/(alpha,P0)/Close loop index。其中,PathlossRS为路损参考信号,用于计算下行传输的路径损耗;(alpha,P0)参数用于上行发送功率的计算,close loopindex也用于计算上行发送功率。比如上行功控参数组j可以表示为表5所示的形式:
表5上行功控参数组j的配置
PC-ID
Pathloss RS
(alpha,P0)
Close loop index
基站通过MAC-CE从全部的TCI状态中选择S个状态作为中间激活TCI状态。所述S个中间激活TCI状态中包含W个上行传输TCI状态。同时基站通过MAC-CE从全部的上行功控参数中选择W组参数作为中间激活上行功控参数。
由于系统预定义中间激活TCI状态与中间激活上行功控参数一一对应。或者,由基站配置中间激活TCI状态与中间激活上行功控参数一一对应,并将该对应关系发送给终端。这样,当基站指示一个上行TCI状态时,通过一一对应关系,可以得到此TCI状态所对应的上行功控参数。之后,终端即可使用所述TCI状态指示的波束方向和其关联的上行功控参数进行上行传输。
另一种方式可以是MAC-CE激活的中间上行功控参数的组数与MAC-CE激活的上行传输的TCI状态个数不相同。例如,上述S个中间激活TCI状态中包含S1个上行传输TCI状态,同时基站通过MAC-CE从全部的上行功控参数中选择S2组参数作为中间激活上行功控参数。较优的S2<S1。则多个上行TCI状态可以对应同一组上行功控参数。例如S1=2×S2,则系统预定义两个上行TCI状态对应同一组上行功控参数。
本申请实施例的波束指示方法,通过为终端配置TCI状态池,且TCI状态池中每个TCI状态的信息域中至多包括两组指示波束方向的源参考信号信息,之后,在进行波束指示时,即可直接向终端发送待用的TCI状态标识,之后,终端 即可根据该TCI状态标识,确定信道的波束方向。简化了波束指示的复杂度,减少了信令指示开销。
下面结合图3对本申请提供的另一个波束指示方法进行说明。如图3所述,该波束指示方法包括:
步骤301,接收基站发送的TCI状态池配置消息。
本实施例中,TCI状态池配置消息用于为终端配置TCI状态池。其中,TCI状态池配置消息中可包括要配置的TCI状态的信息,比如包括每个TCI状态的标识、每个TCI状态的信息域等。
终端根据接收基站发送的TCI状态池配置消息获取TCI状态池,其中,TCI状态池中包括T个TCI状态,其中T为正整数,且每个TCI状态的信息域中可包括至多两组指示波束方向的源参考信号信息。
另外,每个TCI状态的信息域中用于指示波束方向的源参考信号信息可以相同,即对应的波束方向可以相同。
步骤302,接收基站发送的上行功控参数配置消息,其中,上行功控参数配置消息中包括所述TCI状态池中的每个TCI状态对应的至少一个上行功控参数组。
其中,上行功控参数是指上行功率控制参数,可包括路损参考信号Pathloss RS、用于计算上行信道发送功率的(alpha,P0)、Close用于计算上行信道发送功率的loop index等。
具体的,终端在接收到基站发送的上行功控参数配置消息后,即可将TCI状态池中每个TCI状态与至少一个上行功控参数组进行关联。
比如,上行功控参数配置消息中包括3组上行功控参数组,终端可使每个TCI状态均对应3组上行功控参数组。
需要说明的是,上行功控参数的配置方式,除了按上述方式实现外,还可以通过以下方式实现:
比如上述的TCI状态池配置消息的每个TCI状态的信息域中,还包括每个上行TCI状态对应的K组上行功控参数,其中,K为正整数。或者,TCI状态池配置消息中,包括每个TCI状态对应的至少一个上行功控参数组。或者,基站还可以通过一次上行功控参数配置过程,为全部的上行TCI状态进行上行功控参数配置。即,上述上行功控参数配置消息中包括至少一个上行功控参数组。
实际实现时,每个TCI状态可以对应一个上行功控参数组,还可以对应多个上行功控参数组,本实施例对此不做限定。
步骤303,接收基站发送的上行功控参数激活消息,所述上行功控参数激活消息用于激活每个TCI状态所关联的一个上行功控参数组。
需要说明的是,在实际使用时,当TCI状态池中的TCI状态数量较多时,基站还可以每隔一定的时间,向终端发送中间激活TCI状态配置消息,以使终端在一定时间内,仅利用中间激活TCI状态集中的TCI状态进行数据和信令的传输。即本申请实施例中,还可以包括:
接收所述基站发送的中间激活TCI状态配置消息,其中,所述中间激活TCI状态配置消息中包括S个TCI状态标识,其中,S为小于或等于T的正整数;
从所述TCI状态池中选择分别与所述S个TCI状态标识对应的S个TCI状态,生成中间激活TCI状态集。
具体的,终端在接收到基站发送的中间激活TCI状态配置消息后,可从中间激活TCI状态配置消息中提取S个TCI状态标识。其中,S为小于或等于T的正整数。
比如,TCI状态池中包括100个TCI状态,中间激活TCI状态配置消息中包括20个TCI状态标识。
进一步的,终端在获取中间激活TCI状态配置消息中的S个TCI状态标识后,从TCI状态池中选择分别与S个TCI状态标识对应的S个TCI状态,并根据S个TCI状态生成中间激活TCI状态集。
其中,中间激活TCI状态集中包括S个TCI状态,S个TCI状态处于激活状态。
可以理解的是,若基站为终端配置了中间激活TCI状态集,那么基站在终端进行上行功控参数激活时,激活的上行功控参数,就是与中间激活TCI状态集中的每个上行TCI状态关联的上行功控参数。
步骤304,接收基站发送的波束指示消息,其中,波束指示消息中包括第一TCI状态标识。
本实施例中,基站可向终端发送波束指示消息,终端可接收到基站发送的波束指示消息。其中,波束指示消息用于指示信道的波束方向,波束指示消息中可包括TCI状态标识,为了便于描述,这里称为第一TCI状态标识。
终端在接收波束指示消息后,可从波束指示消息中提取第一TCI状态标识。
步骤305,从TCI状态池中获取与第一TCI状态标识对应的第一TCI状态。
其中,第一TCI状态的信息域中至多包括两组指示波束方向的源参考信号信息。
步骤306,根据指示波束方向的源参考信号信息,确定上行信道和/或下行信道对应的波束方向。
本实施例中,可以基于指示波束方向的源参考信号的波束方向,确定上行信道和/或下行信道对应的波束方向,或者可将源参考信号的波束方向,作为上行信道和/或下行信道对应的波束方向。
在本申请的一个实施例中,第一TCI状态的信息域中还可包括至少一个QCL域,在上述根据指示波束方向的源参考信号信息,确定上行信道和/或下行信道对应的波束方向时,可采用以下方式,先根据QCL域的状态,确定需指示波束方向的目标信道,进而根据参考信号信息,确定目标信道对应的波束方向。
本实施例中,可根据信息域中各个QCL域的状态,确定第一TCI状态指示的目标信道;根据指示波束方向的源参考信号信息,确定目标信道对应的波束方向。
具体的,由于信道有多个,在进行波束指示时,可先确定第一TCI状态要指示的信道。本实施例,第一TCI状态的信息域中可包括至少一个QCL域,可根据各个QCL域的状态,确定第一TCI状态指示的目标信道。其中,QCL域的状态是指信息域中是否有该QCL域。
具体地,基站和终端可预先设置TCI状态的信息域中各QCL域与信道之间的对应关系。终端可在获取第一TCI状态后,确定第一TCI状态的信息域中存在的QCL域,那么存在的QCL域对应的信道即为目标信道。
在确定第一TCI状态指示的目标信道后,可根据指示波束方向的源参考信号信息,确定目标信道对应的波束方向。
具体地,可以基于指示波束方向的源参考信号的波束方向,确定目标信道对应的波束方向,或者可将源参考信号的波束方向,作为目标信道对应的波束方向。
比如,目标信道为上行数据信号和上行控制信道,可将源参考信号的波束方向,作为上行数据信道和上行控制信道对应的波束方向。或者,目标信道为下行数据信号和下行控制信道,可将源参考信号的波束方向,作为下行数据信道和下行控制信道对应的波束方向。又或者,目标信道为上行数据信道、上行控制信道、下行数据信道和下行控制信道,可将源参考信号的波束方向,作为上行数据信道、上行控制信道、下行数据信道和下行控制信道对应的波束方向。
本实施例中,第一TCI状态的信息域中还可包括M个QCL域、及用于指示M个QCL域所属信道的类型的N个标识,可根据信息域中N个标识,确定M个QCL域所属的信道类型,并根据M个QCL域所属的信道类型,确定第一TCI状态指示的目标信道。
比如,M个QCL域所属的信道类型为上行信道,那么第一TCI状态指示的目标信道为上行信道。若M个QCL域所属的信道类型为下行信道,那么第一TCI状态指示的目标信道为下行信道。若M个QCL域所属的信道类型有上行信道和下行信道,那么第一TCI状态指示的目标信道为上行信道和下行信道。
由于信息域中每个QCL域可具有对应的源参考信号信息,根据每个QCL域对应的指示波束方向的源参考信号信息,确定每个QCL域所属的信道类型对应的波束方向。
下面以具体的实施例为例,对实施例提供的波束指示方法进行进一步说明。
基站通过RRC信令为终端配置了L个指示上行传输的TCI状态,且每个上行TCI状态中不包含上行控制功控参数。比如,TCI状态n的信息域表示为表6所示的形式:
表6 TCI状态n的信息域
TCI-state-ID
CC
BWP
Source RS
同时基站通过RRC信令为所述的L个上行传输的TCI状态中的每个TCI状态配置4组上行功控参数。比如,TCI-state-6关联的4组上行功控参数表示为{PC-0,PC-1,PC-2,PC-3},其中每个上行功控参数组由表7确定。
表7上行功控参数组的配置
PC-ID
Pathloss RS
(alpha,P0)
Close loop index
在进行波束指示之前,基站可以通过一条MAC-CE指令激活每个上行传输的TCI状态所关联的上行功控参数组。例如,使用一条MAC-CE信令指示全部的上行TCI状态所关联的第二组控制参数激活。这样基站指示给终端一个上行TCI状态时,其使用此状态关联的第二组控制参数传输上行信道。
或者,基站也可以针对每个上行TCI状态使用一条MAC-CE信令激活对应的控制参数组。例如对于上行TCI状态1,使用一条MAC-CE信令激活其关联的第一组控制参数;对于上行TCI状态2,使用另一条MAC-CE信令激活其关联的第三组控制参数。
本申请实施例的波束指示方法,通过为终端配置TCI状态池,且TCI状态池中每个TCI状态的信息域中至多包括两组指示波束方向的源参考信号信息,之后,在进行波束指示时,即可直接向终端发送待用的TCI状态标识,之后,终端即可根据该TCI状态标识,确定信道的波束方向。简化了波束指示的复杂度,减少了信令指示开销。
下面结合图4说明本申请实施例提供的另一种波束指示方法。图4为本申请实施例提供的另一种波束指示方法的流程示意图。
本实施例波束指示方法,可由网络侧设备如基站执行。
如图4所示,该波束指示方法包括:
步骤401,向终端发送TCI状态池配置消息。
本实施例中,基站可向终端发送TCI状态池配置消息,以利用TCI状态池配置消息为终端配置TCI状态池。其中,TCI状态池配置消息中可包括要配置的TCI状态的信息,比如包括每个TCI状态的标识、每个TCI状态的信息域等。
基站通过TCI状态池配置消息,可为终端配置包括T个TCI状态的TCI状态池,其中T为正整数,且每个TCI状态的信息域中可包括至多两组指示波束方向的源参考信号信息。
本实施例中,TCI状态池配置消息的每个TCI状态的信息域中,可包括每个上行TCI状态对应的K组上行功控参数,其中,K为正整数。也就是说,基站为终端配置每个TCI状态的信息域中可包括上行功控参数组。
在具体实现时,基站可通过无线资源控制RRC信令,也可通过下行控制信息DCI信令为每个上行TCI状态配置对应的K组上行功控参数。
步骤402,向终端发送中间激活TCI状态配置消息,其中,中间激活TCI状态配置消息中包括S个TCI状态标识。
本实施例中,当TCI状态池中包含大量的TCI状态时,基站还可以每隔一定的时间,向终端发送中间激活TCI状态 配置消息,以使终端在一定时间内,仅利用中间激活TCI状态集中的TCI状态进行数据和信令的传输其中,中间激活TCI状态配置消息中可包括S个TCI状态标识,中间激活TCI状态配置消息用于配置中间激活的TCI状态,S个TCI状态标识可以是基站当前时间段内使用频率高于预设阈值的TCI状态对应的TCI状态标识。
终端在接收到基站发送的中间激活TCI状态配置消息后,可从中间激活TCI状态配置消息中提取S个TCI状态标识。其中,S为小于或等于T的正整数。
比如,TCI状态池中包括100个TCI状态,中间激活TCI状态配置消息中包括20个TCI状态标识。
终端在获取中间激活TCI状态配置消息中的S个TCI状态标识后,从TCI状态池中选择分别与S个TCI状态标识对应的S个TCI状态,并根据S个TCI状态生成中间激活TCI状态集。
其中,中间激活TCI状态集中包括S个TCI状态,S个TCI状态处于激活状态。
步骤403,向终端发送上行功控参数激活消息。
本实施例中,TCI状态池中每个TCI状态的信息域中包括每个上行TCI状态。也就是说,终端已经配置了中间激活状态TCI状态集中每个TCI状态与上行功控参数组之间关联关系。因此,基站向终端发送上行功控参数激活消息,终端通过接收的上行功控参数激活消息,一一激活中间激活状态TCI状态集中每个TCI状态对应的上行功控参数组。
步骤404,向终端发送波束指示消息。
本实施例中,基站向终端发送上行功控参数激活消息,激活中间激活状态TCI状态集中每个TCI状态关联的上行功控参数组后,可向终端发送波束指示消息。
具体地,基站可根据需要从TCI状态池中确定出第一TCI状态,其中,TCI状态池中包括至少一个TCI状态,每个TCI状态的信息域可以相同也可以不同。
或者,也可随机选出一个TCI状态,或者根据使用次数等选择第一TCI状态,比如选择最近使用次数最高的一个作为第一TCI状态。
其中,第一TCI状态的信息域中可包括第一TCI状态的标识、至多两组指示波束方向的源参考信号信息等。这里源参考信号信息可以是源参考信号的波束方向信息。
在一种实现方式中,第一TCI状态的每个信息域中还可包括至少一个QCL域,在确定第一TCI状态时,还可根据指示需要确定第一TCI状态的信息域中各个QCL域的状态。其中,QCL域的状态是指信息域中是否有该QCL域。当第一TCI状态的信息域中存在的QCL域,那么存在的QCL域对应的信道即为第一TCI状态指示的目标信道。终端可将源参考信号的波束方向,作为目标信道对应的波束方向。
第一TCI状态的每个信息域中还可包括M个QCL域、及用于指示M个QCL域所属信道的类型的N个标识,其中,M为正整数、且N小于或等于M。
在确定第一TCI状态时,可确定第一TCI状态的信息域中包含的QCL域数量及QCL域所属信道的类型对应的标识。比如,如表1所示的TCI状态的信息域中包括3个QCL域和两个QCL域所属信道的类型对应的标识UL和DL。
基站在确定第一TCI状态后,可向终端发送波束指示消息,终端可接收到基站发送的波束指示消息。其中,波束指示消息用于指示信道的波束方向,波束指示消息中包括第一TCI状态标识。
终端在接收波束指示消息后,可从波束指示消息中提取第一TCI状态标识。终端预先配置有TCI状态池,其中TCI状态池中包括至少一个TCI状态。终端在获取第一TCI状态标识后,可根据第一TCI状态标识从TCI状态池中获取第一TCI状态。
终端可以基于指示波束方向的源参考信号的波束方向,确定上行信道和/或下行信道对应的波束方向,或者可将源参考信号的波束方向,作为上行信道和/或下行信道对应的波束方向。
本申请实施例的波束指示方法,通过为终端配置TCI状态池,且TCI状态池中每个TCI状态的信息域中至多包括两组指示波束方向的源参考信号信息,之后,在进行波束指示时,即可直接向终端发送待用的TCI状态标识,之后,终端即可根据该TCI状态标识,确定信道的波束方向。简化了波束指示的复杂度,减少了信令指示开销。
下面结合图5说明本申请实施例提供的另一种波束指示方法。图5为本申请实施例提供的另一种波束指示方法的流程示意图。
本实施例波束指示方法,可由网络侧设备如基站执行。如图5所示,该波束指示方法包括:
步骤501,向终端发送TCI状态池配置消息。
本实施例中,TCI状态池配置消息用于为终端配置TCI状态池。其中,TCI状态池配置消息中可包括要配置的TCI状态的信息,比如包括每个TCI状态的标识、每个TCI状态的信息域等。
终端根据接收基站发送的TCI状态池配置消息获取TCI状态池,其中,TCI状态池中包括T个TCI状态,其中T为正整数,且每个TCI状态的信息域中可包括至多两组指示波束方向的源参考信号信息。
另外,每个TCI状态的信息域中用于指示波束方向的源参考信号信息可以相同,即对应的波束方向可以相同。
步骤502,向终端发送中间激活TCI状态配置消息,其中,中间激活TCI状态配置消息中包括S个TCI状态标识。
本实施例中,当TCI状态池中包含大量的TCI状态时,基站可向终端发送中间激活TCI状态配置消息。
其中,中间激活TCI状态配置消息中可包括S个TCI状态标识,中间激活TCI状态配置消息用于配置中间激活的TCI状态,S个TCI状态标识可以是基站当前时间段内使用频率高于预设阈值的TCI状态对应的TCI状态标识。
终端在接收到基站发送的中间激活TCI状态配置消息后,可从中间激活TCI状态配置消息中提取S个TCI状态标识。其中,S为小于或等于T的正整数。
比如,TCI状态池中包括100个TCI状态,中间激活TCI状态配置消息中包括20个TCI状态标识。
从而,终端在获取中间激活TCI状态配置消息中的S个TCI状态标识后,从TCI状态池中选择分别与S个TCI状态标识对应的S个TCI状态,并根据S个TCI状态生成中间激活TCI状态集。
其中,中间激活TCI状态集中包括S个TCI状态,S个TCI状态处于激活状态。
步骤503,向终端发送上行功控参数配置消息,其中,上行功控参数配置消息中包括每个上行TCI状态对应的K组上行功控参数,其中,K为正整数。
其中,上行功控参数是指上行功率控制参数,可包括路损参考信号Pathloss RS、用于计算上行信道发送功率的(alpha,P0)、Close用于计算上行信道发送功率的loop index等。
具体的,终端在接收到基站发送的上行功控参数配置消息后,即可为TCI状态池中每个TCI状态配置该至少一个上行功控参数组。
比如,上行功控参数配置消息中包括3组上行功控参数组,终端可使每个TCI状态均对应3组上行功控参数组。
需要说明的是,上行功控参数的配置方式,除了按上述方式实现外,还可以通过以下方式实现:
比如上述的TCI状态池配置消息的每个TCI状态的信息域中,还包括每个上行TCI状态对应的K组上行功控参数,其中,K为正整数。或者,TCI状态池配置消息中,包括每个TCI状态对应的至少一个上行功控参数组。
或者,基站还可以为每个上行TCI状态分别配置对应的上行功控参数。即,上行功控参数配置消息中包括所述TCI状态池中的每个TCI状态对应的至少一个上行功控参数组。
即在实际实现时,每个TCI状态可以对应一个上行功控参数组,还可以对应多个上行功控参数组,本实施例对此不做限定。
步骤504,向终端发送上行功控参数激活消息,所述上行功控参数激活消息用于激活中间激活TCI状态集中每个上行TCI状态所关联的一个上行功控参数组。
步骤505,向终端发送波束指示消息,其中,波束指示消息中包括第一TCI状态标识。
本实施例中,基站可向终端发送波束指示消息,终端可接收到基站发送的波束指示消息。其中,波束指示消息用于指示信道的波束方向,波束指示消息中可包括TCI状态标识,为了便于描述,这里称为第一TCI状态标识。
终端在接收波束指示消息后,可从波束指示消息中提取第一TCI状态标识。进而根据指示波束方向的源参考信号信息,确定上行信道和/或下行信道对应的波束方向。
本实施例中,可以基于指示波束方向的源参考信号的波束方向,确定上行信道和/或下行信道对应的波束方向,或者可将源参考信号的波束方向,作为上行信道和/或下行信道对应的波束方向。
在本申请的一个实施例中,第一TCI状态的信息域中还可包括至少一个QCL域,在上述根据指示波束方向的源参考信号信息,确定上行信道和/或下行信道对应的波束方向时,可采用以下方式,先根据QCL域的状态,确定需指示波束方向的目标信道,进而根据参考信号信息,确定目标信道对应的波束方向。
本实施例中,根据信息域中各个QCL域的状态,确定第一TCI状态指示的目标信道;根据指示波束方向的源参考信号信息,确定目标信道对应的波束方向。
具体的,由于信道有多个,在进行波束指示时,可先确定第一TCI状态要指示的信道。本实施例,第一TCI状态的信息域中可包括至少一个QCL域,可根据各个QCL域的状态,确定第一TCI状态指示的目标信道。其中,QCL域的状态是指信息域中是否有该QCL域。
具体地,基站和终端可预先设置TCI状态的信息域中各QCL域与信道之间的对应关系。终端可在获取第一TCI状态后,确定第一TCI状态的信息域中存在的QCL域,那么存在的QCL域对应的信道即为目标信道。
在确定第一TCI状态指示的目标信道后,可根据指示波束方向的源参考信号信息,确定目标信道对应的波束方向。
具体地,可以基于指示波束方向的源参考信号的波束方向,确定目标信道对应的波束方向,或者可将源参考信号的波束方向,作为目标信道对应的波束方向。
比如,目标信道为上行数据信号和上行控制信道,可将源参考信号的波束方向,作为上行数据信道和上行控制信道对应的波束方向。或者,目标信道为下行数据信号和下行控制信道,可将源参考信号的波束方向,作为下行数据信道和下行控制信道对应的波束方向。又或者,目标信道为上行数据信道、上行控制信道、下行数据信道和下行控制信道,可将源参考信号的波束方向,作为上行数据信道、上行控制信道、下行数据信道和下行控制信道对应的波束方向。
本实施例中,第一TCI状态的信息域中还可包括M个QCL域、及用于指示M个QCL域所属信道的类型的N个标识,可根据信息域中N个标识,确定M个QCL域所属的信道类型,并根据M个QCL域所属的信道类型,确定第一TCI状态指示的目标信道。
比如,M个QCL域所属的信道类型为上行信道,那么第一TCI状态指示的目标信道为上行信道。若M个QCL域所属的信道类型为下行信道,那么第一TCI状态指示的目标信道为下行信道。若M个QCL域所属的信道类型有上行信道和下行信道,那么第一TCI状态指示的目标信道为上行信道和下行信道。
由于信息域中每个QCL域可具有对应的源参考信号信息,根据每个QCL域对应的指示波束方向的源参考信号信息,确定每个QCL域所属的信道类型对应的波束方向。本申请实施例的波束指示方法,通过为终端配置TCI状态池,且TCI状态池中每个TCI状态的信息域中至多包括两组指示波束方向的源参考信号信息,之后,在进行波束指示时,即可直接向终端发送待用的TCI状态标识,之后,终端即可根据该TCI状态标识,确定信道的波束方向。简化了波束指示的复杂度,减少了信令指示开销。
下面结合图6说明本申请的另一种波束指示方法。图6为本申请实施例提供的另一种波束指示方法的流程示意图。
本实施例波束指示方法,可由网络侧设备如基站执行。如图6所示,该波束指示方法包括:
步骤601,向终端发送TCI状态池配置消息。
本实施例中,TCI状态池配置消息用于为终端配置TCI状态池。其中,TCI状态池配置消息中可包括要配置的TCI状态的信息,比如包括每个TCI状态的标识、每个TCI状态的信息域等。
终端根据接收基站发送的TCI状态池配置消息获取TCI状态池,其中,TCI状态池中包括T个TCI状态,其中T为正整数,且每个TCI状态的信息域中可包括至多两组指示波束方向的源参考信号信息。
另外,每个TCI状态的信息域中用于指示波束方向的源参考信号信息可以相同,即对应的波束方向可以相同。
步骤602,向终端发送上行功控参数配置消息,其中,上行功控参数配置消息中包括所述TCI状态池中的每个TCI状态对应的至少一个上行功控参数组。
其中,上行功控参数是指上行功率控制参数,可包括路损参考信号Pathloss RS、用于计算上行信道发送功率的 (alpha,P0)、Close用于计算上行信道发送功率的loop index等。
具体的,终端在接收到基站发送的上行功控参数配置消息后,即可为TCI状态池中每个TCI状态配置该至少一个上行功控参数组。
比如,上行功控参数配置消息中包括3组上行功控参数组,终端可使每个TCI状态均对应3组上行功控参数组。
需要说明的是,上行功控参数的配置方式,除了按上述方式实现外,还可以通过以下方式实现:
比如上述的TCI状态池配置消息的每个TCI状态的信息域中,还包括每个上行TCI状态对应的K组上行功控参数,其中,K为正整数。或者,TCI状态池配置消息中,包括每个TCI状态对应的至少一个上行功控参数组。
或者,基站还可以通过一次上行功控参数配置过程,为全部的上行TCI状态进行上行功控参数配置。即,上述上行功控参数配置消息中包括至少一个上行功控参数组。
实际实现时,每个TCI状态可以对应一个上行功控参数组,还可以对应多个上行功控参数组,本实施例对此不做限定。
步骤603,向终端送上行功控参数激活消息,所述上行功控参数激活消息用于激活每个TCI状态所关联的一个上行功控参数组。
需要说明的是,在实际使用时,当TCI状态池中的TCI状态数量较多时,基站还可以每隔一定的时间,向终端发送中间激活TCI状态配置消息,以使终端在一定时间内,仅利用中间激活TCI状态集中的TCI状态进行数据和信令的传输。即本申请实施例中,还可以包括:
向所述终端发送中间激活TCI状态配置消息,其中,所述中间激活TCI状态配置消息中包括S个TCI状态标识,其中,S为小于或等于T的正整数。
具体的,终端在接收到基站发送的中间激活TCI状态配置消息后,可从中间激活TCI状态配置消息中提取S个TCI状态标识。其中,S为小于或等于T的正整数。
比如,TCI状态池中包括100个TCI状态,中间激活TCI状态配置消息中包括20个TCI状态标识。
进一步的,终端在获取中间激活TCI状态配置消息中的S个TCI状态标识后,从TCI状态池中选择分别与S个TCI状态标识对应的S个TCI状态,并根据S个TCI状态生成中间激活TCI状态集。
其中,中间激活TCI状态集中包括S个TCI状态,S个TCI状态处于激活状态。
可以理解的是,若基站为终端配置了中间激活TCI状态集,那么基站在终端进行上行功控参数激活时,激活的上行功控参数,就是与中间激活TCI状态集中的每个上行TCI状态关联的上行功控参数。
步骤604,向终端发送的波束指示消息,其中,波束指示消息中包括第一TCI状态标识。
本实施例中,基站可向终端发送波束指示消息,终端可接收到基站发送的波束指示消息。其中,波束指示消息用于指示信道的波束方向,波束指示消息中可包括TCI状态标识,为了便于描述,这里称为第一TCI状态标识。
终端在接收波束指示消息后,可从波束指示消息中提取第一TCI状态标识。进而根据指示波束方向的源参考信号信息,确定上行信道和/或下行信道对应的波束方向。
本实施例中,可以基于指示波束方向的源参考信号的波束方向,确定上行信道和/或下行信道对应的波束方向,或者可将源参考信号的波束方向,作为上行信道和/或下行信道对应的波束方向。
在本申请的一个实施例中,第一TCI状态的信息域中还可包括至少一个QCL域,在上述根据指示波束方向的源参考信号信息,确定上行信道和/或下行信道对应的波束方向时,可采用以下方式,先根据QCL域的状态,确定需指示波束方向的目标信道,进而根据参考信号信息,确定目标信道对应的波束方向。
根据信息域中各个QCL域的状态,确定第一TCI状态指示的目标信道;
根据指示波束方向的源参考信号信息,确定目标信道对应的波束方向。
具体的,由于信道有多个,在进行波束指示时,可先确定第一TCI状态要指示的信道。本实施例,第一TCI状态的信息域中可包括至少一个QCL域,可根据各个QCL域的状态,确定第一TCI状态指示的目标信道。其中,QCL域的状态是指信息域中是否有该QCL域。
具体地,基站和终端可预先设置TCI状态的信息域中各QCL域与信道之间的对应关系。终端可在获取第一TCI状态后,确定第一TCI状态的信息域中存在的QCL域,那么存在的QCL域对应的信道即为目标信道。
在确定第一TCI状态指示的目标信道后,可根据指示波束方向的源参考信号信息,确定目标信道对应的波束方向。
具体地,可以基于指示波束方向的源参考信号的波束方向,确定目标信道对应的波束方向,或者可将源参考信号的波束方向,作为目标信道对应的波束方向。
比如,目标信道为上行数据信号和上行控制信道,可将源参考信号的波束方向,作为上行数据信道和上行控制信道对应的波束方向。或者,目标信道为下行数据信号和下行控制信道,可将源参考信号的波束方向,作为下行数据信道和下行控制信道对应的波束方向。又或者,目标信道为上行数据信道、上行控制信道、下行数据信道和下行控制信道,可将源参考信号的波束方向,作为上行数据信道、上行控制信道、下行数据信道和下行控制信道对应的波束方向。
本实施例中,第一TCI状态的信息域中还可包括M个QCL域、及用于指示M个QCL域所属信道的类型的N个标识,可根据信息域中N个标识,确定M个QCL域所属的信道类型,并根据M个QCL域所属的信道类型,确定第一TCI状态指示的目标信道。
比如,M个QCL域所属的信道类型为上行信道,那么第一TCI状态指示的目标信道为上行信道。若M个QCL域所属的信道类型为下行信道,那么第一TCI状态指示的目标信道为下行信道。若M个QCL域所属的信道类型有上行信道和下行信道,那么第一TCI状态指示的目标信道为上行信道和下行信道。
由于信息域中每个QCL域可具有对应的源参考信号信息,根据每个QCL域对应的指示波束方向的源参考信号信息,确定每个QCL域所属的信道类型对应的波束方向。
本申请实施例的波束指示方法,通过为终端配置TCI状态池,且TCI状态池中每个TCI状态的信息域中至多包括两组指示波束方向的源参考信号信息,之后,在进行波束指示时,即可直接向终端发送待用的TCI状态标识,之后,终端即可根据该TCI状态标识,确定信道的波束方向。简化了波束指示的复杂度,减少了信令指示开销。
为了实现上述实施例,本申请实施例还提出一种终端。图7为本申请实施例提供一种终端的结构示意图。
如图7所示,终端包括:收发机800、处理器810、存储器820。
其中,存储器820,用于存储计算机程序;收发机800,用于在处理器810的控制下收发数据;处理器810,用于读取存储器820中的计算机程序并执行以下操作:
接收基站发送的波束指示消息,其中,所述波束指示消息中包括第一传输配置指示TCI状态标识;
从TCI状态池中获取与所述第一TCI状态标识对应的第一TCI状态,其中,所述第一TCI状态的信息域中至多包括两组指示波束方向的源参考信号信息;
根据所述指示波束方向的源参考信号信息,确定上行信道和/或下行信道对应的波束方向。
收发机800,用于在处理器810的控制下接收和发送数据。
其中,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器810代表的一个或多个处理器和存储器820代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机800可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器810负责管理总线架构和通常的处理,存储器820可以存储处理器810在执行操作时所使用的数据。
可选的,处理器810可以是中央处埋器(Central Processing Unit,简称CPU)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,简称CPLD),处理器810也可以采用多核架构。
处理器810通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本申请实施例提供的图1至图6任一方法。处理器810与存储器820也可以物理上分开布置。
在本申请实施例一种可能的实现方式中,所述信息域中还包括至少一个准共占址QCL域,所述根据所述指示波束方向的源参考信号信息,确定上行信道和/或下行信道对应的波束方向,包括:
根据所述信息域中各个QCL域的状态,确定所述第一TCI状态指示的目标信道;
根据所述指示波束方向的源参考信号信息,确定所述目标信道对应的波束方向。
在本申请实施例一种可能的实现方式中,所述信息域中还包括M个QCL域、及用于指示所述M个QCL域所属信道的类型的N个标识,其中,M,N为正整数,且N小于或等于M,所述根据所述源参考信号信息,确定上行信道和/或下行信道对应的波束方向,包括:
根据所述信息域中的N个标识,确定所述第一TCI状态指示的目标信道;
根据所述指示波束方向的源参考信号信息,确定所述目标信道对应的波束方向。
在本申请实施例一种可能的实现方式中,处理器810还用于读取存储器820中的计算机程序以执行以下操作:
接收基站发送的TCI状态池配置消息,其中,所述TCI状态池配置消息包括每个TCI状态的信息域,且每个TCI状态的信息域中至多包括两组指示波束方向的源参考信号信息。
在本申请实施例一种可能的实现方式中,所述TCI状态池配置消息的每个TCI状态的信息域中用于指示波束方向的源参考信号信息不同、和/或,所述TCI状态池的每个TCI状态的信息域对应的信道类型不同。
在本申请实施例一种可能的实现方式中,所述TCI状态池配置消息的每个TCI状态的信息域中,还包括每个上行TCI状态对应的K组上行功控参数,其中,K为正整数。
在本申请实施例一种可能的实现方式中,所述TCI状态池配置消息中,包括每个TCI状态对应的至少一个上行功控参数组。
在本申请实施例一种可能的实现方式中,处理器810还用于读取存储器820中的计算机程序以执行以下操作:
接收所述基站发送的上行功控参数配置消息,其中,所述上行功控参数配置消息中包括至少一个上行功控参数组。
在本申请实施例一种可能的实现方式中,处理器810还用于读取存储器820中的计算机程序以执行以下操作:
接收所述基站发送的上行功控参数配置消息,其中,所述上行功控参数配置消息中包括所述TCI状态池中的每个TCI状态对应的至少一个上行功控参数组。
在本申请实施例一种可能的实现方式中,处理器810还用于读取存储器820中的计算机程序以执行以下操作:
接收所述基站发送的中间激活TCI状态配置消息,其中,所述中间激活TCI状态配置消息中包括S个TCI状态标识,其中,S为小于或等于T的正整数;
从所述TCI状态池中选择分别与所述S个TCI状态标识对应的S个TCI状态,生成中间激活TCI状态集。
在本申请实施例一种可能的实现方式中,处理器810还用于读取存储器820中的计算机程序以执行以下操作:
接收所述基站发送的上行功控参数激活消息,其中,所述上行功控参数激活消息中,包含至少一个上行功控参数组标识;
激活所述至少一个上行功控参数组标识对应的至少一个上行功控参数组;
其中,激活后的所述至少一个上行功控参数组与所述中间激活TCI状态集中的TCI状态相关联。
在本申请实施例一种可能的实现方式中,处理器810还用于读取存储器820中的计算机程序以执行以下操作:
根据预设的规则,将所述中间激活TCI状态集中的每个TCI状态与一个激活的上行功控参数组关联。
在本申请实施例一种可能的实现方式中,处理器810还用于读取存储器820中的计算机程序以执行以下操作:
接收所述基站发送的上行功控参数激活消息,所述上行功控参数激活消息用于激活第二TCI状态所关联的一个上行功控参数组,其中,所述第二TCI状态为所述中间激活TCI状态集中的一个TCI状态。
在此需要说明的是,本发明实施例提供的上述终端,能够实现上述图1至图3方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
为了实现上述实施例,本申请实施例还提出一种网络侧设备。图8为本申请实施例提供的一种网络侧设备的结构示意图。
如图8所示,网络侧设备包括:收发机900、处理器910、存储器920。
其中,存储器920,用于存储计算机程序;收发机900,用于在处理器910的控制下收发数据;处理器910,用于读取存储器920中的计算机程序并执行以下操作:确定第一TCI状态,其中,所述第一TCI状态的信息域中包括至多两组指示波束方向的源参考信号信息;向终端发送波束指示消息,其中,所述波束指示消息中包括所述第一TCI状态标识。
收发机900,用于在处理器910的控制下接收和发送数据。
其中,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器910代表的一个或多个处理器和存储器920代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机900可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器910负责管理总线架构和通常的处理,存储器920可以存储处理器910在执行操作时所使用的数据。
处理器910可以是CPU、ASIC、FPGA或CPLD,处理器910也可以采用多核架构。
在本申请实施例一种可能的实现方式中,所述确定第一TCI状态,包括:
确定所述第一TCI状态的信息域中各个QCL域的状态。
在本申请实施例一种可能的实现方式中,所述确定第一TCI状态,包括:
确定所述第一TCI状态的信息域中包含的QCL域数量及对应的标识。
在本申请实施例一种可能的实现方式中,处理器910还用于读取存储器920中的计算机程序并执行以下操作:
向所述终端发送TCI状态池配置消息,其中,所述TCI状态池配置消息包括每个TCI状态的信息域,且每个TCI状态中至多包括两组指示波束方向的源参考信号信息。
在本申请实施例一种可能的实现方式中,所述TCI状态池配置消息的每个TCI状态的信息域中用于指示波束方向的源参考信号信息不同、和/或,所述TCI状态池的每个TCI状态的信息域对应的信道类型不同。
在本申请实施例一种可能的实现方式中,所述TCI状态池配置消息的每个TCI状态的信息域中,还包括每个上行TCI状态对应的K组上行功控参数,其中,K为正整数。
在本申请实施例一种可能的实现方式中,所述TCI状态池配置消息中,包括每个TCI状态对应的至少一个上行功控参数组。
在本申请实施例一种可能的实现方式中,处理器910还用于读取存储器920中的计算机程序并执行以下操作:
向所述终端发送上行功控参数配置消息,其中,所述上行功控参数配置消息中包括至少一个上行功控参数组。
在本申请实施例一种可能的实现方式中,处理器910还用于读取存储器920中的计算机程序并执行以下操作:
向所述终端发送上行功控参数配置消息,其中,所述上行功控参数配置消息中包括所述TCI状态池中的每个TCI状态对应的至少一个上行功控参数组。
在本申请实施例一种可能的实现方式中,处理器910还用于读取存储器920中的计算机程序并执行以下操作:
向所述终端发送中间激活TCI状态配置消息,其中,所述中间激活TCI状态配置消息中包括S个TCI状态标识,其中,S为小于或等于T的正整数。
在本申请实施例一种可能的实现方式中,处理器910还用于读取存储器920中的计算机程序并执行以下操作:
向所述终端发送上行功控参数激活消息,其中,所述上行功控参数激活消息中,包含至少一个上行功控参数组标识,其中,所述至少一个上行功控参数组与所述中间激活TCI状态集中的TCI状态相关联。
在本申请实施例一种可能的实现方式中,处理器910还用于读取存储器920中的计算机程序并执行以下操作:
向所述终端发送上行功控参数激活消息,其中,所述上行功控参数激活消息用于激活第二TCI状态所关联的一个上行功控参数组,其中,所述第二TCI状态为所述中间激活TCI状态集中的一个TCI状态。
在此需要说明的是,本申请实施例提供的上述网络侧设备,能够实现上述图4至图6方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
为了实现上述实施例,本申请实施例还提出一种波束指示装置。图9为本申请实施例提供的一种波束指示装置的结构示意图。
如图9所示,该波束指示装置1000包括:
接收单元1010,用于接收基站发送的波束指示消息,其中,所述波束指示消息中包括第一传输配置指示TCI状态标识;
获取单元1020,用于从TCI状态池中获取与所述第一TCI状态标识对应的第一TCI状态,其中,所述第一TCI状态的信息域中至多包括两组指示波束方向的源参考信号信息;
确定单元1030,用于根据所述指示波束方向的源参考信号信息,确定上行信道和/或下行信道对应的波束方向。
在本申请实施例一种可能的实现方式中,所述信息域中还包括至少一个准共占址QCL域,所述确定单元1030,具体用于:
根据所述信息域中各个QCL域的状态,确定所述第一TCI状态指示的目标信道;
根据所述指示波束方向的源参考信号信息,确定所述目标信道对应的波束方向。
在本申请实施例一种可能的实现方式中,信息域中还包括M个QCL域、及用于指示所述M个QCL域所属信道的类型的N个标识,其中,M,N为正整数,且N小于或等于M,所述确定单元1030,具体用于:
根据所述信息域中各个QCL域的状态,确定所述第一TCI状态指示的目标信道;
根据所述指示波束方向的源参考信号信息,确定所述目标信道对应的波束方向。
在本申请实施例一种可能的实现方式中,信息域中还包括M个QCL域、及用于指示所述M个QCL域所属信道的类型的N个标识,其中,M,N为正整数,且N小于或等于M,确定单元1030,具体用于:
根据所述信息域中的N个标识,确定所述第一TCI状态指示的目标信道;
根据所述指示波束方向的源参考信号信息,确定所述目标信道对应的波束方向。
在本申请实施例一种可能的实现方式中,接收单元1010,还用于接收基站发送的TCI状态池配置消息,其中,所述TCI状态池配置消息包括每个TCI状态的信息域,且每个TCI状态的信息域中至多包括两组指示波束方向的源参考信号信息。
在本申请实施例一种可能的实现方式中,所述TCI状态池配置消息的每个TCI状态的信息域中用于指示波束方向的源参考信号信息不同、和/或,所述TCI状态池的每个TCI状态的信息域对应的信道类型不同。
在本申请实施例一种可能的实现方式中,所述TCI状态池配置消息的每个TCI状态的信息域中,还包括每个上行TCI状态对应的K组上行功控参数,其中,K为正整数。
在本申请实施例一种可能的实现方式中,所述TCI状态池配置消息中,包括每个TCI状态对应的至少一个上行功控参数组。
在本申请实施例一种可能的实现方式中,接收单元1010,还用于接收所述基站发送的上行功控参数配置消息,其中,所述上行功控参数配置消息中包括至少一个上行功控参数组。
在本申请实施例一种可能的实现方式中,接收单元1010,还用于接收所述基站发送的上行功控参数配置消息,其中,所述上行功控参数配置消息中包括所述TCI状态池中的每个TCI状态对应的至少一个上行功控参数组。
在本申请实施例一种可能的实现方式中,接收单元1010,还用于接收所述基站发送的中间激活TCI状态配置消息,其中,所述中间激活TCI状态配置消息中包括S个TCI状态标识,其中,S为小于或等于T的正整数;
该装置还可包括:
生成单元,用于从所述TCI状态池中选择分别与所述S个TCI状态标识对应的S个TCI状态,生成中间激活TCI状态集。
在本申请实施例一种可能的实现方式中,接收单元1010,还用于接收所述基站发送的上行功控参数激活消息,其中,所述上行功控参数激活消息中,包含至少一个上行功控参数组标识;
该装置还可包括:
激活单元,用于激活所述至少一个上行功控参数组标识对应的至少一个上行功控参数组;
其中,激活后的所述至少一个上行功控参数组与所述中间激活TCI状态集中的TCI状态相关联。
在本申请实施例一种可能的实现方式中,该装置还可包括:
关联单元,用于根据预设的规则,将所述中间激活TCI状态集中的每个TCI状态与一个激活的上行功控参数组关联。
在本申请实施例一种可能的实现方式中,接收单元1010,还用于接收所述基站发送的上行功控参数激活消息,所述上行功控参数激活消息用于激活第二TCI状态所关联的一个上行功控参数组,其中,所述第二TCI状态为所述中间激活TCI状态集中的一个TCI状态。
需要说明的是,前述波束指示方法实施例的解释说明,也适用于该实施例的波束指示装置,故在此不再赘述。
本申请实施例的波束指示装置,通过接收基站发送的波束指示消息,其中,波束指示消息中包括第一传输配置指示TCI状态标识;从TCI状态池中获取与第一TCI状态标识对应的第一TCI状态,其中,第一TCI状态的信息域中至多包括两组指示波束方向的源参考信号信息;根据指示波束方向的源参考信号信息,确定上行信道和/或下行信道对应的波束方向。由此,通过根据TCI状态池中一个TCI状态中的指示波束方向的源参考信号信息,指示上行信道公共波束、下行信道公共波束、或者上下行信道相同的或者不同的公共波束,从而简化了波束指示的复杂度,减少了信令指示开销。
为了实现上述实施例,本申请实施例还提出一种波束指示装置。图10为本申请实施例提供的一种波束指示装置的结构示意图。
如图10所示,该波束指示装置1100包括:
确定单元1110,用于确定第一TCI状态,其中,所述第一TCI状态的信息域中包括至多两组指示波束方向的源参考信号信息;
发送单元1120,用于向终端发送波束指示消息,其中,所述波束指示消息中包括所述第一TCI状态标识。
在本申请实施例一种可能的实现方式中,确定单元1110,具体用于:
确定所述第一TCI状态的信息域中各个QCL域的状态。
在本申请实施例一种可能的实现方式中,确定单元1120,具体用于:确定所述第一TCI状态的信息域中包含的QCL域数量及对应的标识。
在本申请实施例一种可能的实现方式中,发送单元1120,还用于向所述终端发送TCI状态池配置消息,其中,所述TCI状态池配置消息包括每个TCI状态的信息域,且每个TCI状态中至多包括两组指示波束方向的源参考信号信息。
在本申请实施例一种可能的实现方式中,所述TCI状态池配置消息的每个TCI状态的信息域中用于指示波束方向的源参考信号信息不同、和/或,所述TCI状态池的每个TCI状态的信息域对应的信道类型不同。
在本申请实施例一种可能的实现方式中,所述TCI状态池配置消息的每个TCI状态的信息域中,还包括每个上行TCI状态对应的K组上行功控参数,其中,K为正整数。
在本申请实施例一种可能的实现方式中,所述TCI状态池配置消息中,包括每个TCI状态对应的至少一个上行功控参数组。
在本申请实施例一种可能的实现方式中,发送单元1120,还用于向所述终端发送上行功控参数配置消息,其中,所述上行功控参数配置消息中包括至少一个上行功控参数组。
在本申请实施例一种可能的实现方式中,发送单元1120,还用于向所述终端发送上行功控参数配置消息,其中,所述上行功控参数配置消息中包括所述TCI状态池中的每个TCI状态对应的至少一个上行功控参数组。
在本申请实施例一种可能的实现方式中,发送单元1120,还用于向所述终端发送中间激活TCI状态配置消息,其中,所述中间激活TCI状态配置消息中包括S个TCI状态标识,其中,S为小于或等于T的正整数。
在本申请实施例一种可能的实现方式中,发送单元1120,还用于向所述终端发送上行功控参数激活消息,其中,所 述上行功控参数激活消息中,包含至少一个上行功控参数组标识,其中,所述至少一个上行功控参数组与所述中间激活TCI状态集中的TCI状态相关联。
在本申请实施例一种可能的实现方式中,发送单元1120,还用于向所述终端发送上行功控参数激活消息,其中,所述上行功控参数激活消息用于激活第二TCI状态所关联的一个上行功控参数组,其中,所述第二TCI状态为所述中间激活TCI状态集中的一个TCI状态。
需要说明的是,前述基站侧波束指示方法实施例的解释说明,也适用于该实施例的波束指示装置,故在此不再赘述。
本申请实施例的波束指示装置,通过确定第一TCI状态,其中,第一TCI状态的信息域中包括至多两组指示波束方向的源参考信号信息,并向终端发送波束指示消息,其中,波束指示消息中包括第一TCI状态标识。由此,基站通过向终端发送波束指示消息,波束指示消息中第一TCI状态标识对应的第一TCI状态信息域中包含有指示波束方向的源参考信号信息的TCI状态,以使通过根据一个TCI状态指示上行信道和/或下行信道对应的波束方向,简化了波束指示复杂度,减少了指示信令的开销。
需要说明的是,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络侧设备等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
为了实现上述实施例,本申请还提出一种处理器可读存储介质。
其中,该处理器可读存储介质存储有计算机程序,该计算机程序用于使该处理器执行本申请图1至图3实施例所述的波束指示方法。
其中,所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
为了实现上述实施例,本申请还提出一种处理器可读存储介质。
其中,该处理器可读存储介质存储有计算机程序,该计算机程序用于使该处理器执行本申请图4至图6实施例所述的波束指示方法。
其中,所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (54)

  1. 一种波束指示方法,其特征在于,该方法包括:
    接收基站发送的波束指示消息,其中,所述波束指示消息中包括第一传输配置指示TCI状态标识;
    从TCI状态池中获取与所述第一TCI状态标识对应的第一TCI状态,其中,所述第一TCI状态的信息域中至多包括两组指示波束方向的源参考信号信息;
    根据所述指示波束方向的源参考信号信息,确定上行信道和/或下行信道对应的波束方向。
  2. 如权利要求1所述的方法,其特征在于,所述信息域中还包括至少一个准共占址QCL域,所述根据所述指示波束方向的源参考信号信息,确定上行信道和/或下行信道对应的波束方向,包括:
    根据所述信息域中各个QCL域的状态,确定所述第一TCI状态指示的目标信道;
    根据所述指示波束方向的源参考信号信息,确定所述目标信道对应的波束方向。
  3. 如权利要求1所述的方法,其特征在于,所述信息域中还包括M个QCL域、及用于指示所述M个QCL域所属信道的类型的N个标识,其中,M,N为正整数,且N小于或等于M,所述根据所述源参考信号信息,确定上行信道和/或下行信道对应的波束方向,包括:
    根据所述信息域中的N个标识,确定所述第一TCI状态指示的目标信道;
    根据所述指示波束方向的源参考信号信息,确定所述目标信道对应的波束方向。
  4. 如权利要求1所述的方法,其特征在于,还包括:
    接收基站发送的TCI状态池配置消息,其中,所述TCI状态池配置消息包括每个T个TCI状态的信息域,且每个TCI状态的信息域中至多包括两组指示波束方向的源参考信号信息。
  5. 如权利要求4所述的方法,其特征在于,所述TCI状态池配置消息的每个TCI状态的信息域中用于指示波束方向的源参考信号信息不同、和/或,所述TCI状态池的每个TCI状态的信息域对应的信道类型不同。
  6. 如权利要求4所述的方法,其特征在于,所述TCI状态池配置消息的每个TCI状态的信息域中,还包括每个上行TCI状态对应的K组上行功控参数,其中,K为正整数。
  7. 如权利要求4所述的方法,其特征在于,所述TCI状态池配置消息中,包括每个TCI状态对应的至少一个上行功控参数组。
  8. 如权利要求4所述的方法,其特征在于,还包括:
    接收所述基站发送的上行功控参数配置消息,其中,所述上行功控参数配置消息中包括至少一个上行功控参数组。
  9. 如权利要求4所述的方法,其特征在于,还包括:
    接收所述基站发送的上行功控参数配置消息,其中,所述上行功控参数配置消息中包括所述TCI状态池中的每个TCI状态对应的至少一个上行功控参数组。
  10. 如权利要求4-9任一所述的方法,其特征在于,还包括:
    接收所述基站发送的中间激活TCI状态配置消息,其中,所述中间激活TCI状态配置消息中包括S个TCI状态标识,其中,S为正整数;
    从所述TCI状态池中选择分别与所述S个TCI状态标识对应的S个TCI状态,生成中间激活TCI状态集。
  11. 如权利要求10所述的方法,其特征在于,还包括:
    接收所述基站发送的上行功控参数激活消息,其中,所述上行功控参数激活消息中,包含至少一个上行功控参数组标识;
    激活所述至少一个上行功控参数组标识对应的至少一个上行功控参数组;
    其中,激活后的所述至少一个上行功控参数组与所述中间激活TCI状态集中的TCI状态相关联。
  12. 如权利要求11所述的方法,其特征在于,还包括:
    根据预设的规则,将所述中间激活TCI状态集中的每个TCI状态与一个激活的上行功控参数组关联。
  13. 如权利要求10所述的方法,其特征在于,还包括:
    接收所述基站发送的上行功控参数激活消息,所述上行功控参数激活消息用于激活第二TCI状态所关联的一个上行功控参数组,其中,所述第二TCI状态为所述中间激活TCI状态集中的一个TCI状态。
  14. 一种波束指示方法,其特征在于,包括:
    确定第一TCI状态,其中,所述第一TCI状态的信息域中包括至多两组指示波束方向的源参考信号信息;
    向终端发送波束指示消息,其中,所述波束指示消息中包括所述第一TCI状态标识。
  15. 如权利要求14所述的方法,其特征在于,所述确定第一TCI状态,包括:
    确定所述第一TCI状态的信息域中各个QCL域的状态。
  16. 如权利要求14所述的方法,其特征在于,所述确定第一TCI状态,包括:
    确定所述第一TCI状态的信息域中包含的QCL域数量及对应的标识。
  17. 如权利要求14所述的方法,其特征在于,还包括:
    向所述终端发送TCI状态池配置消息,其中,所述TCI状态池配置消息包括每个T个TCI状态的信息域,且每个TCI状态中至多包括两组指示波束方向的源参考信号信息。
  18. 如权利要求17所述的方法,其特征在于,所述TCI状态池配置消息的每个TCI状态的信息域中用于指示波束方向的源参考信号信息不同、和/或,所述TCI状态池的每个TCI状态的信息域对应的信道类型不同。
  19. 如权利要求17所述的方法,其特征在于,所述TCI状态池配置消息的每个TCI状态的信息域中,还包括每个上行TCI状态对应的K组上行功控参数,其中,K为正整数。
  20. 如权利要求17所述的方法,其特征在于,所述TCI状态池配置消息中,包括每个TCI状态对应的至少一个上 行功控参数组。
  21. 如权利要求17所述的方法,其特征在于,还包括:
    向所述终端发送上行功控参数配置消息,其中,所述上行功控参数配置消息中包括至少一个上行功控参数组。
  22. 如权利要求17所述的方法,其特征在于,还包括:
    向所述终端发送上行功控参数配置消息,其中,所述上行功控参数配置消息中包括所述TCI状态池中的每个TCI状态对应的至少一个上行功控参数组。
  23. 如权利要求17-22任一所述的方法,其特征在于,还包括:
    向所述终端发送中间激活TCI状态配置消息,其中,所述中间激活TCI状态配置消息中包括S个TCI状态标识,其中,S为正整数。
  24. 如权利要求23所述的方法,其特征在于,还包括:
    向所述终端发送上行功控参数激活消息,其中,所述上行功控参数激活消息中,包含至少一个上行功控参数组标识,其中,所述至少一个上行功控参数组与所述中间激活TCI状态集中的TCI状态相关联。
  25. 如权利要求23所述的方法,其特征在于,还包括:
    向所述终端发送上行功控参数激活消息,其中,所述上行功控参数激活消息用于激活第二TCI状态所关联的一个上行功控参数组,其中,所述第二TCI状态为所述中间激活TCI状态集中的一个TCI状态。
  26. 一种终端,其特征在于,包括:存储器、收发机和处理器;
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序以执行以下操作:
    接收基站发送的波束指示消息,其中,所述波束指示消息中包括第一传输配置指示TCI状态标识;
    从TCI状态池中获取与所述第一TCI状态标识对应的第一TCI状态,其中,所述第一TCI状态的信息域中至多包括两组指示波束方向的源参考信号信息;
    根据所述指示波束方向的源参考信号信息,确定上行信道和/或下行信道对应的波束方向。
  27. 如权利要求26所述的终端,其特征在于,所述信息域中还包括至少一个准共占址QCL域,所述根据所述指示波束方向的源参考信号信息,确定上行信道和/或下行信道对应的波束方向,包括:
    根据所述信息域中各个QCL域的状态,确定所述第一TCI状态指示的目标信道;
    根据所述指示波束方向的源参考信号信息,确定所述目标信道对应的波束方向。
  28. 如权利要求26所述的终端,其特征在于,所述信息域中还包括M个QCL域、及用于指示所述M个QCL域所属信道的类型的N个标识,其中,M,N为正整数,且N小于或等于M,所述根据所述源参考信号信息,确定上行信道和/或下行信道对应的波束方向,包括:
    根据所述信息域中的N个标识,确定所述第一TCI状态指示的目标信道;
    根据所述指示波束方向的源参考信号信息,确定所述目标信道对应的波束方向。
  29. 如权利要求26所述的终端,其特征在于,所述处理器还用于读取所述存储器中的计算机程序以执行以下操作:
    接收基站发送的TCI状态池配置消息,其中,所述TCI状态池配置消息包括每个T个TCI状态的信息域,且每个TCI状态的信息域中至多包括两组指示波束方向的源参考信号信息。
  30. 如权利要求29所述的终端,其特征在于,所述TCI状态池配置消息的每个TCI状态的信息域中用于指示波束方向的源参考信号信息不同、和/或,所述TCI状态池的每个TCI状态的信息域对应的信道类型不同。
  31. 如权利要求29所述的终端,其特征在于,所述TCI状态池配置消息的每个TCI状态的信息域中,还包括每个上行TCI状态对应的K组上行功控参数,其中,K为正整数。
  32. 如权利要求29所述的终端,其特征在于,所述TCI状态池配置消息中,包括每个TCI状态对应的至少一个上行功控参数组。
  33. 如权利要求29所述的终端,其特征在于,所述处理器还用于读取所述存储器中的计算机程序以执行以下操作:
    接收所述基站发送的上行功控参数配置消息,其中,所述上行功控参数配置消息中包括至少一个上行功控参数组。
  34. 如权利要求29所述的终端,其特征在于,所述处理器还用于读取所述存储器中的计算机程序以执行以下操作:
    接收所述基站发送的上行功控参数配置消息,其中,所述上行功控参数配置消息中包括所述TCI状态池中的每个TCI状态对应的至少一个上行功控参数组。
  35. 如权利要求29-34任一所述的终端,其特征在于,所述处理器还用于读取所述存储器中的计算机程序以执行以下操作:
    接收所述基站发送的中间激活TCI状态配置消息,其中,所述中间激活TCI状态配置消息中包括S个TCI状态标识,其中,S为正整数;
    从所述TCI状态池中选择分别与所述S个TCI状态标识对应的S个TCI状态,生成中间激活TCI状态集。
  36. 如权利要求35所述的终端,其特征在于,所述处理器还用于读取所述存储器中的计算机程序以执行以下操作:
    接收所述基站发送的上行功控参数激活消息,其中,所述上行功控参数激活消息中,包含至少一个上行功控参数组标识;
    激活所述至少一个上行功控参数组标识对应的至少一个上行功控参数组;
    其中,激活后的所述至少一个上行功控参数组与所述中间激活TCI状态集中的TCI状态相关联。
  37. 如权利要求36所述的终端,其特征在于,所述处理器还用于读取所述存储器中的计算机程序以执行以下操作:
    根据预设的规则,将所述中间激活TCI状态集中的每个TCI状态与一个激活的上行功控参数组关联。
  38. 如权利要求35所述的终端,其特征在于,所述处理器还用于读取所述存储器中的计算机程序以执行以下操作:
    接收所述基站发送的上行功控参数激活消息,所述上行功控参数激活消息用于激活第二TCI状态所关联的一个上行功控参数组,其中,所述第二TCI状态为所述中间激活TCI状态集中的一个TCI状态。
  39. 一种网络侧设备,其特征在于,包括存储器、收发机和处理器;
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    确定第一TCI状态,其中,所述第一TCI状态的信息域中包括至多两组指示波束方向的源参考信号信息;
    向终端发送波束指示消息,其中,所述波束指示消息中包括所述第一TCI状态标识。
  40. 如权利要求39所述的网络侧设备,其特征在于,所述确定第一TCI状态,包括:
    确定所述第一TCI状态的信息域中各个QCL域的状态。
  41. 如权利要求39所述的网络侧设备,其特征在于,所述确定第一TCI状态,包括:
    确定所述第一TCI状态的信息域中包含的QCL域数量及对应的标识。
  42. 如权利要求39所述的网络侧设备,其特征在于,所述处理器还用于读取所述存储器中的计算机程序以执行以下操作:
    向所述终端发送TCI状态池配置消息,其中,所述TCI状态池配置消息包括T个TCI状态的信息域,且每个TCI状态中至多包括两组指示波束方向的源参考信号信息。
  43. 如权利要求42所述的网络侧设备,其特征在于,所述TCI状态池配置消息的每个TCI状态的信息域中用于指示波束方向的源参考信号信息不同、和/或,所述TCI状态池的每个TCI状态的信息域对应的信道类型不同。
  44. 如权利要求42所述的网络侧设备,其特征在于,所述TCI状态池配置消息的每个TCI状态的信息域中,还包括每个上行TCI状态对应的K组上行功控参数,其中,K为正整数。
  45. 如权利要求42所述的网络侧设备,其特征在于,所述TCI状态池配置消息中,包括每个TCI状态对应的至少一个上行功控参数组。
  46. 如权利要求42所述的网络侧设备,其特征在于,所述处理器还用于读取所述存储器中的计算机程序并执行以下操作:
    向所述终端发送上行功控参数配置消息,其中,所述上行功控参数配置消息中包括至少一个上行功控参数组。
  47. 如权利要求42所述的网络侧设备,其特征在于,所述处理器还用于读取所述存储器中的计算机程序并执行以下操作:
    向所述终端发送上行功控参数配置消息,其中,所述上行功控参数配置消息中包括所述TCI状态池中的每个TCI状态对应的至少一个上行功控参数组。
  48. 如权利要求42-47任一所述的网络侧设备,其特征在于,所述处理器还用于读取所述存储器中的计算机程序并执行以下操作:
    向所述终端发送中间激活TCI状态配置消息,其中,所述中间激活TCI状态配置消息中包括S个TCI状态标识,其中,S为正整数。
  49. 如权利要求48所述的网络侧设备,其特征在于,所述处理器还用于读取所述存储器中的计算机程序并执行以下操作:
    向所述终端发送上行功控参数激活消息,其中,所述上行功控参数激活消息中,包含至少一个上行功控参数组标识,其中,所述至少一个上行功控参数组与所述中间激活TCI状态集中的TCI状态相关联。
  50. 如权利要求48所述的网络侧设备,其特征在于,所述处理器还用于读取所述存储器中的计算机程序并执行以下操作:
    向所述终端发送上行功控参数激活消息,其中,所述上行功控参数激活消息用于激活第二TCI状态所关联的一个上行功控参数组,其中,所述第二TCI状态为所述中间激活TCI状态集中的一个TCI状态。
  51. 一种波束指示装置,其特征在于,包括:
    接收单元,用于接收基站发送的波束指示消息,其中,所述波束指示消息中包括第一传输配置指示TCI状态标识;
    获取单元,用于从TCI状态池中获取与所述第一TCI状态标识对应的第一TCI状态,其中,所述第一TCI状态的信息域中至多包括两组指示波束方向的源参考信号信息;
    确定单元,用于根据所述指示波束方向的源参考信号信息,确定上行信道和/或下行信道对应的波束方向。
  52. 一种波束指示装置,其特征在于,包括:
    确定单元,用于确定第一TCI状态,其中,所述第一TCI状态的信息域中包括至多两组指示波束方向的源参考信号信息;
    发送单元,用于向终端发送波束指示消息,其中,所述波束指示消息中包括所述第一TCI状态标识。
  53. 一种处理器可读存储介质,其特征在于,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至13任一项所述的方法。
  54. 一种处理器可读存储介质,其特征在于,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求14至25任一项所述的方法。
PCT/CN2021/125092 2020-10-23 2021-10-20 波束指示方法、终端、网络侧设备、装置和存储介质 WO2022083658A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/250,301 US20230403570A1 (en) 2020-10-23 2021-10-20 Beam indication method, terminal, network-side device, and storage medium
EP21882073.6A EP4236153A4 (en) 2020-10-23 2021-10-20 BEAM INDICATION METHOD AND APPARATUS, TERMINAL DEVICE, NETWORK-SIDE DEVICE AND STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011149721.0 2020-10-23
CN202011149721.0A CN114499785B (zh) 2020-10-23 2020-10-23 波束指示方法、终端、网络侧设备、装置和存储介质

Publications (1)

Publication Number Publication Date
WO2022083658A1 true WO2022083658A1 (zh) 2022-04-28

Family

ID=81291583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125092 WO2022083658A1 (zh) 2020-10-23 2021-10-20 波束指示方法、终端、网络侧设备、装置和存储介质

Country Status (5)

Country Link
US (1) US20230403570A1 (zh)
EP (1) EP4236153A4 (zh)
CN (1) CN114499785B (zh)
TW (1) TW202218352A (zh)
WO (1) WO2022083658A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220217725A1 (en) * 2021-01-04 2022-07-07 Qualcomm Incorporated Beam indications for multiple uplink or downlink channels and reference signals

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117676875A (zh) * 2022-08-12 2024-03-08 华为技术有限公司 上行传输方法以及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110958038A (zh) * 2018-09-27 2020-04-03 索尼公司 电子设备、通信方法和存储介质
CN111147211A (zh) * 2018-11-02 2020-05-12 华为技术有限公司 一种信息传输方法、装置和设备
CN111586858A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 信号传输方法和通信装置
US20200314858A1 (en) * 2019-03-28 2020-10-01 Kai Xu Control Channel with Multiple Transmission Reception Points

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220158805A1 (en) * 2019-01-10 2022-05-19 Telefonaktiebolaget Lm Ericsson (Publ) Code-Division Multiplexing (CDM) Groups for Multi-Source Transmission
JP7288067B2 (ja) * 2019-02-15 2023-06-06 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 複数の送受信ポイントにわたってpdsch送信スケジューリングされたマルチpdcch用のharq ack
US12028880B2 (en) * 2021-01-04 2024-07-02 Qualcomm Incorporated Beam indications for multiple uplink or downlink channels and reference signals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110958038A (zh) * 2018-09-27 2020-04-03 索尼公司 电子设备、通信方法和存储介质
CN111147211A (zh) * 2018-11-02 2020-05-12 华为技术有限公司 一种信息传输方法、装置和设备
CN111586858A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 信号传输方法和通信装置
US20200314858A1 (en) * 2019-03-28 2020-10-01 Kai Xu Control Channel with Multiple Transmission Reception Points

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On beam indication, measurement, and reporting", 3GPP DRAFT; R1-1718433 ON BEAM INDICATION, MEASUREMENT, AND REPORTING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, Czech Republic; 20171009 - 20171013, 3 October 2017 (2017-10-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051353031 *
GAO, QIUBIN: "Analysis on Massive Beamforming in the 5G NR", INFORMATION AND COMMUNICATIONS TECHNOLOGY AND POLICY, vol. 11, 1 November 2018 (2018-11-01), XP055923691 *
See also references of EP4236153A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220217725A1 (en) * 2021-01-04 2022-07-07 Qualcomm Incorporated Beam indications for multiple uplink or downlink channels and reference signals
US12028880B2 (en) * 2021-01-04 2024-07-02 Qualcomm Incorporated Beam indications for multiple uplink or downlink channels and reference signals

Also Published As

Publication number Publication date
CN114499785A (zh) 2022-05-13
EP4236153A4 (en) 2024-05-01
EP4236153A1 (en) 2023-08-30
TW202218352A (zh) 2022-05-01
US20230403570A1 (en) 2023-12-14
CN114499785B (zh) 2024-08-13

Similar Documents

Publication Publication Date Title
US20220322105A1 (en) Methods and apparatuses for signal transmission, signal measurement reporting, and positioning
EP3829245A1 (en) Information determination method, apparatus and storage medium
WO2022083658A1 (zh) 波束指示方法、终端、网络侧设备、装置和存储介质
WO2018228542A1 (zh) 通信方法和装置
US20190222274A1 (en) Method and apparatus used for data transmission
WO2020001532A1 (zh) 定位参考信号配置方法、网络侧设备和终端设备
WO2022147720A1 (zh) 波束指示方法、装置及通信设备
CN109392180B (zh) 一种随机接入方法、网络侧设备和移动通信终端
WO2021160031A1 (zh) 信令接收、发送方法及设备
TWI787837B (zh) 下行定位參考信號收發方法、終端、基地台、設備及裝置
CN114071760B (zh) 数据通信方法、装置、电子设备及存储介质
TW201935972A (zh) 一種確定dci中資訊域取值的方法及裝置
WO2021082930A1 (zh) 一种终端类型的确定方法、网络设备及终端
BR112012002816B1 (pt) Método para configurar um sinal de referência para um equipamento de usuário servido por pelo menos duas células ao mesmo tempo, método e dispositivo para configurar um sinal de referência, e equipamento de usuário servido por pelo menos duas células ao mesmo tempo
US20230299918A1 (en) Method for monitoring control channels and determining transmission configuration indication, and terminal
WO2018028699A1 (zh) 一种物理广播信道发送和接收方法及装置
US11523382B2 (en) Resource determining method and apparatus, and resource indication method and apparatus
KR20220005542A (ko) 사이드링크 전송 방법 및 단말
US9924497B2 (en) Method for transmitting signal in device-to-device proximity service, base station, and user equipment
TWI715837B (zh) 一種消息解碼方法、發送端設備和接收端設備
WO2022237651A1 (zh) 一种小区间测量上报方法、设备、装置及存储介质
WO2022151953A1 (zh) 波束指示方法、装置及存储介质
WO2021013035A1 (zh) Pucch发送、信息配置方法和设备
CN115189832B (zh) 一种控制信道传输方法、装置、终端及网络侧设备
WO2023208152A1 (zh) 波束确定方法、装置及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021882073

Country of ref document: EP

Effective date: 20230523