WO2022083578A1 - Electrostatic spraying devices and methods - Google Patents

Electrostatic spraying devices and methods Download PDF

Info

Publication number
WO2022083578A1
WO2022083578A1 PCT/CN2021/124671 CN2021124671W WO2022083578A1 WO 2022083578 A1 WO2022083578 A1 WO 2022083578A1 CN 2021124671 W CN2021124671 W CN 2021124671W WO 2022083578 A1 WO2022083578 A1 WO 2022083578A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrostatic
target solution
sprayer device
nozzle
electrostatic sprayer
Prior art date
Application number
PCT/CN2021/124671
Other languages
French (fr)
Inventor
Simon Nai Pong CHEN
Original Assignee
Intelligent Cleaning Equipment Holdings Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intelligent Cleaning Equipment Holdings Co. Ltd. filed Critical Intelligent Cleaning Equipment Holdings Co. Ltd.
Publication of WO2022083578A1 publication Critical patent/WO2022083578A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/16Arrangements for supplying liquids or other fluent material
    • B05B5/1691Apparatus to be carried on or by a person or with a container fixed to the discharge device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/005Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means the high voltage supplied to an electrostatic spraying apparatus being adjustable during spraying operation, e.g. for modifying spray width, droplet size
    • B05B5/006Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means the high voltage supplied to an electrostatic spraying apparatus being adjustable during spraying operation, e.g. for modifying spray width, droplet size the adjustement of high voltage is responsive to a condition, e.g. a condition of material discharged, of ambient medium or of target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/053Arrangements for supplying power, e.g. charging power
    • B05B5/0531Power generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/053Arrangements for supplying power, e.g. charging power
    • B05B5/0538Arrangements for supplying power, e.g. charging power the operator being part of a charge return path between target and apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • B08B3/026Cleaning by making use of hand-held spray guns; Fluid preparations therefor
    • B08B3/028Spray guns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B6/00Cleaning by electrostatic means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/22Phase substances, e.g. smokes, aerosols or sprayed or atomised substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/30Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages
    • B05B1/32Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages in which a valve member forms part of the outlet opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/005Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00 mounted on vehicles or designed to apply a liquid on a very large surface, e.g. on the road, on the surface of large containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/03Discharge apparatus, e.g. electrostatic spray guns characterised by the use of gas, e.g. electrostatically assisted pneumatic spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/043Discharge apparatus, e.g. electrostatic spray guns using induction-charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/03Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
    • B05B9/04Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump
    • B05B9/0403Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump with pumps for liquids or other fluent material
    • B05B9/0416Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump with pumps for liquids or other fluent material with pumps comprising rotating pumping parts, e.g. gear pump, centrifugal pump, screw-type pump

Definitions

  • Electrostatic spraying of aerosol particles is a technology that can improve spraying efficiency and droplet deposition by adding electric charges to liquid droplets. Opposite electric charges attract each other while like electric charges repel each other. This means that, for example, positively charged liquid droplets are attracted to a neutral or negatively charged target surface. At the same time, as each droplet in the liquid spray carries a same charge, the droplets repel each other, creating a wider dispersion. Electrostatic spraying can provide an even coating of liquid (e.g., disinfectants) across surfaces of an object, including those that are hard to reach. In addition, electrostatic spraying can reduce the chemical consumption and the release of hazardous pollutants into the environment.
  • liquid e.g., disinfectants
  • the electrostatic spraying device can employ a relatively low electrical potential to add charges to target solution prior to atomizing the target solution into a spray of charged droplets.
  • the target solution can acquire more electric charges while the solution travels along the fluid passageway and spraying nozzle described herein, thereby increasing a charging efficiency.
  • the charging component in the electrostatic spraying apparatus does not need to physically contact the target solution to be sprayed.
  • the charging component in the electrostatic spraying apparatus does not emit ions. Therefore, electric shocks to users can be prevented and operational safety of the electrostatic spraying device can be improved.
  • various components in the electrostatic spraying device of the present disclosure can be detachable, interchangeable and replaceable to satisfy different needs (e.g., volume of liquid, run time, spraying pattern, etc. ) .
  • the electrostatic sprayer device can comprise a reservoir configured to hold a target solution; at least one nozzle operably coupled to the reservoir via at least one fluid passageway, the at least one nozzle being configured to atomize the target solution into a spray; a pump operably coupled to the reservoir or the at least one fluid passageway, the pump being configured to propel the target solution from the reservoir to the at least one nozzle via the at least one fluid passageway; an electrostatic system that is configured to electrostatically charge the target solution without requiring (1) physical contact with the target solution and/or (2) emission of ions; and a power source configured to power the pump and the electrostatic system.
  • the electrostatic system can be configured to electrostatically charge the target solution before the target solution reaches the at least one nozzle. In some instances, the electrostatic system can be configured to electrostatically charge the target solution before the target solution is atomized into a spray by the at least one nozzle.
  • the reservoir can be detachable with respect to a body of the electrostatic sprayer device.
  • the at least one nozzle can be detachably coupled to the at least one fluid passageway.
  • the least one nozzle can comprise one or more orifices through which the target solution is expelled.
  • the least one nozzle can be made of an electrically conductive material.
  • the electrostatic system can comprise an electrostatic generator module that is configured to generate an electrostatic voltage.
  • the target solution can be electrostatically charged at an electrostatic voltage from about 4 KV to about 8 KV.
  • the electrostatic generator module can be configured to generate a fixed electrostatic voltage.
  • the electrostatic generator module can be configured to generate a variable electrostatic voltage.
  • the electrostatic system can comprise an electrostatic charging module having at least one electrode in proximity to the at least one nozzle, the at least one electrode being not in direct contact with the at least one nozzle.
  • the electrode can be an elongated pin that extends in a direction perpendicular to a flow direction of the target solution.
  • a clearance between a tip of the elongated pin and the at least one nozzle can be about 1 millimeter (mm) to about 1.5 mm.
  • the electrostatic charging module can comprise a conductive ring positioned around a periphery of at least a portion of the fluid passageway.
  • the fluid passageway can be made of an electrically insulating material.
  • a portion of an inner surface of the fluid passageway can comprise a conductive component which physically contacts the target solution.
  • the conductive component can comprise a wire, a plate or a tube.
  • the conductive component can comprise steel.
  • the target solution can be positively charged by the electrostatic system such that droplets in the spray are positively charged. In some instances, the target solution can be negatively charged by the electrostatic system such that the droplets in the spray are negatively charged.
  • the power source can be detachable from a body of the electrostatic sprayer device. For instance, the DC battery can be replaceable or rechargeable.
  • the electrostatic sprayer device can be sized and shaped to be held in a user’s hand.
  • the electrostatic sprayer device can include a handle.
  • a weight of the electrostatic sprayer device can be from about 2.5 kilograms (kg) to about 3.5 kg.
  • the electrostatic sprayer device can comprise a trigger to actuate the electrostatic system.
  • the electrostatic sprayer device can further comprise an electrical grounding component operably coupled to the electrostatic system.
  • the electrostatic sprayer device can further comprise a device control system that is configured to regulate an operation of at least one of the electrostatic system and the pump.
  • the device control system can comprise one or more circuits.
  • the one or more circuits can be provided on a printed circuit board (PCB) .
  • the electrostatic sprayer device can further comprise an electromagnetic shielding component that is configured to prevent the device control system from an electromagnetic interference originated from the electrostatic charging system or an external environment.
  • the electromagnetic shielding component can comprise a metal cage enclosing the device control system
  • the method can comprise transporting a target solution from a reservoir to at least one nozzle via at least one fluid passageway; electrostatically charging the target solution as the target solution flows through the at least one fluid passageway towards the at least one nozzle, the target solution being electrostatically charged without requiring (1) physical contact with the target solution and/or (2) emission of ions; and atomizing the electrostatically charged target solution into a spray as the electrostatically charged target solution is being dispensed from the at least one nozzle.
  • the target solution can be electrostatically charged before the target solution reaches the at least one nozzle. In some instances, the target solution can be electrostatically charged before the target solution is atomized into a spray by the at least one nozzle.
  • the method can further comprise detaching and refilling the reservoir. In some instances, the method can further comprise detaching and replacing the at least one nozzle. In some instances, the method can further comprise switching off the electrostatically charging. In some instances, the method can further comprise adjusting a strength/degree in the electrostatically charging.
  • the target solution is electrostatically charged by at least one electrode in proximity to the at least one nozzle, wherein the at least one electrode is not in direct contact with the at least one nozzle.
  • the electrode can be an elongated pin that extends in a direction perpendicular to a flow direction of the target solution.
  • a clearance between a tip of the elongated pin and the at least one nozzle can be about 1 millimeter (mm) to about 1.5 mm.
  • the target solution can be electrostatically charged by a conductive ring positioned around a periphery of at least a portion of the fluid passageway.
  • the fluid passageway can be made of an electrically insulating material.
  • a portion of an inner surface of the fluid passageway can comprise a conductive component which physically contacts the target solution.
  • the conductive component can comprise a wire, a plate or a tube.
  • the least one nozzle can be made of an electrically conductive material.
  • the target solution can be electrostatically charged at an electrostatic voltage from about 4 KV to about 8 KV.
  • the target solution can be positively charged such that droplets in the spray are positively charged. In some instances, the target solution can be negatively charged such that the droplets in the spray are negatively charged.
  • FIG. 1 is a schematic block diagram of an electrostatic sprayer device in accordance with embodiments of the disclosure
  • FIG. 2 is a cross-sectional view of a handheld electrostatic sprayer device in accordance with embodiments of the disclosure
  • FIG. 3 is a cross-sectional view of an electrostatic sprayer device that can be adapted or configured to operate with a carrier in accordance with embodiments of the disclosure;
  • FIG. 4 is an enlarged cross-sectional view showing an electrostatic charging module in an electrostatic sprayer device in accordance with embodiments of the disclosure
  • FIG. 5 is a cross-sectional view of another electrostatic sprayer device that can be adapted or configured to operate with a carrier in accordance with embodiments of the disclosure;
  • FIG. 6 is an enlarged cross-sectional view showing an electrostatic charging module in another electrostatic sprayer device in accordance with embodiments of the disclosure
  • FIG. 7 shows a computer control system that is programmed or otherwise configured to implement various methods provided herein, such as methods of regulating an electrostatic spraying of a target solution.
  • Coupled generally means physically coupled or linked and does not exclude the presence of intermediate elements between the coupled items absent specific contrary language.
  • Corona charging is a process to emit electrons by field-enhanced emission.
  • a field-enhanced emission happens at the sharp tip of a metallic electrode at high electrical potential (e.g., more than 30 kilovolts) where ionization of the air is caused, so that ions are produced to electrically charge the aerosol particles.
  • Direct charging is a process to directly charge the liquid stored in an isolated reservoir, such that electric charges are stored in the liquid prior to spraying. In direct charging, the reservoir of the liquid is isolated to prevent an electric shock, especially when the liquid is water-based with low electrical resistivity.
  • Induction electrostatic charging is a process where electrical charges are induced onto the liquid droplets as the liquid jet disintegrates into aerosol droplets from a nozzle (e.g., grounded nozzle) .
  • a lower voltage is typically used in induction charging (e.g., one to a few kilovolts) .
  • induction charging an exterior electrode is provided to create a potential difference between the electrode and nozzle, which can result in a risk of electric shock to personnel.
  • FIG. 1 is a schematic showing an electrostatic sprayer device in accordance with embodiments of the disclosure.
  • the electrostatic sprayer device can be a standalone device, for example a handheld sprayer or a backpack sprayer operable by a personnel.
  • the electrostatic sprayer device can be operable with another apparatus.
  • the electrostatic sprayer device can be coupled to and operated with a carrier such as a scrubber.
  • a "standalone " device generally refers to a mechanism or system that performs its function without the need of another device.
  • a standalone device is able to function independently of other device, and is not integrated into another device.
  • a “handheld” device generally refers to a device that is designed, shaped, weighted and/or configured to be operated while being held in the hand of a user.
  • a handheld device can be held by one hand or both hands of the user.
  • a handheld device can be light weighted and/or portable for easy carrying of a user.
  • a handheld device can be east to set up, for example, by a single hand operation.
  • a handheld device can be provided with an accessory such as a strap to facilitate a carrying of the device, thereby the user can carry the device while operating the device with one or both hands.
  • a weight of the handheld electrostatic sprayer, including a fully loaded reservoir can be less than 30 kilogram (kg) , 25 kg, 20 kg, 15 kg, 10 kg, 5 kg, 4.5 kg, 4 kg, 3.5 kg, 3 kg, 2.5 kg, 2 kg, 1.5 kg or 1 kg.
  • a weight of the handheld electrostatic sprayer, not including a fully loaded reservoir can be less than 10 kg, 5 kg, 4.5 kg, 4 kg, 3.5 kg, 3 kg, 2.5 kg, 2 kg, 1.5 kg or 1 kg.
  • a "backpack" device generally refers to a device that is designed, shaped, weighted and/or configured to be operated while being carried on the back of a user.
  • a backpack device can have a hands-free design, enabling the user to operate another device or a part of the backpack device while carrying the backpack device. For instance, the user can hold a nozzle or an extension wand while carrying a body of a backpack sprayer on the back. In some instances, the backpack device can be carried on other portion of the user in addition to the back. For instance, a user can carry a backpack sprayer on the waist. The backpack device can be provided with an accessory such as shoulder straps to facilitate a carrying of the device.
  • a “carrier” generally refers to a device capable of moving, in either a controlled or an autonomous manner.
  • the electrostatic sprayer device can be coupled to and carried by the carrier. Components of the carrier can be operationally coupled to and used by the electrostatic sprayer device.
  • the electrostatic sprayer device can be powered by a power source of the carrier.
  • carrier can include cleaning machines (e.g., a scrubber) and vehicles. Cleaning machines are described, for example, in US patent publication US10, 016, 112B2 and US10, 016, 113B2. The content of the US patent publication is herein incorporated by reference.
  • the electrostatic sprayer device can comprise a fluid reservoir or tank 101 configured to hold a target solution therein.
  • the reservoir can be fluidly coupled to a liquid atomizer 102 via one or more fluid passageways 103.
  • the fluid passageway can include a tubing, which is provided in a tubular form, through which the target solution can be transported.
  • the target solution can be transferred from the reservoir to the liquid atomizer with the aid of a fluid transfer device such as a pump (not shown in FIG. 1) .
  • the liquid atomizer 102 can be configured to atomize the target solution into a spray which comprises a plurality of droplet (e.g., droplet having a size from 10 micrometers to 1000 micrometers) .
  • An electrostatic charging system 104 can be included with the electrostatic sprayer device to electrostatically charge the target solution.
  • the electrostatic charging system can be electrically coupled to at least one of the reservoir, the fluid passageway, or the liquid atomizer.
  • the electrostatic sprayer device can be powered by a power source 105.
  • FIG. 2 is a cross-sectional view showing configuration of a handheld electrostatic sprayer device in accordance with embodiments of the disclosure.
  • the handheld electrostatic sprayer device can be adapted to be carried and operated by an operator.
  • the electrostatic sprayer device can comprise a handle 211 that is sized and shaped to be held in the operator’s hand.
  • the electrostatic sprayer device can comprise a fluid reservoir 201 in fluidic communication with a liquid atomizer 202 through a fluid passageway 203, and a fluid transfer device 206 (e.g., a pump) which is operably coupled to the reservoir and the fluid passageway to draw the target solution from the fluid reservoir toward the liquid atomizer.
  • a fluid transfer device 206 e.g., a pump
  • the electrostatic sprayer device can comprise an electrostatic charging system which is configured to electrostatically charge the target solution.
  • the electrostatic sprayer device can comprise a power source which powers components of the sprayer device, including but not limited to the fluid transfer device and the electrostatic charging system.
  • the power source can be a battery 221 which is detachably coupled to the electrostatic sprayer device.
  • the battery can be coupled to the handle.
  • a lighting component 225 such as a LED or LED array can be provided at a housing of the electrostatic sprayer device. The lighting component can be positioned and oriented such that an object in front of the electrostatic sprayer device is illuminated.
  • the electrostatic sprayer device can comprise a device control system which regulates an operation of the sprayer. Components of the handheld electrostatic sprayer device can be compatible with sprayers shown in other embodiments, such as a sprayer operated with a scrubber.
  • the reservoir 201 can be configured to have at least one chamber in which target solution can be stored. In some instances, the reservoir can have more than one chamber in which the same target solution or different target solutions can be stored. For instance, a first chamber can store therein a first disinfectant, and a second chamber can store therein a second disinfectant. In some cases, the first disinfectant and the second disinfectant may be the same. In some cases, the first disinfectant and the second disinfectant may be the different.
  • a switch can be provided to the reservoir to switch among target solutions stored in different chambers. The switch can be a manual switch or an electronic switch. In some instances, the switch can include an open/close valve.
  • the reservoir can be detachable and/or replaceable with respect to a housing of the electrostatic sprayer device.
  • the reservoir can be detached from the housing of the electrostatic sprayer device for refilling of the target solution.
  • a plurality of reservoirs can be provided to the electrostatic sprayer device, and an operator can attach a reservoir having a preferred property (e.g., capacity, shape, fluid contained, weight, and material) to the sprayer device.
  • a locking mechanism 223 can be provided to lock and release the reservoir to and from a body of the electrostatic sprayer device.
  • a cap can be provided to the reservoir.
  • a refilling of the reservoir can be performed through the cap.
  • the cap can include a capping valve which provides a fluidic communication with the fluid passageway.
  • the electrostatic spraying device of the present disclosure can be used to spray a variety of solution (e.g., liquids, solutions, suspensions or emulsions, such as disinfectant) for disinfecting, deodorizing, sanitizing, or decontaminating, and providing fast coverage of different types of surfaces.
  • the target solution can comprise disinfectant.
  • Disinfectants are chemical agents designed to inactivate or destroy microorganisms. Examples of disinfectant can include, but not limited to, alcohols, aldehydes (such as formaldehyde and glutaraldehyde, ) , and oxidizing agents (such as chlorine and oxygen) .
  • the reservoir can comprise one or more materials having one or more different properties, for example electrical insulation, chemical corrosion resistance, a wide service temperature range, stress crack resistance, impact resistance, abrasion resistance, transparency, opacity, or light weight.
  • Examples of the material of the reservoir can include, but not limited to, Linear Polyethylene (e.g., linear medium density polyethylene (LMDPE) , linear high density polyethylene (LHDPE) ) , crosslinked Polyethylene (XLPE) , and Polypropylene (PP) .
  • LMDPE linear medium density polyethylene
  • LHDPE linear high density polyethylene
  • XLPE crosslinked Polyethylene
  • PP Polypropylene
  • the reservoir can also be a tank in which an inner surface is coated with any of the materials described above.
  • the reservoir can be made of Polypropylene which can maintain electrical isolation even if the target solution contained in the reservoir is electrically charged.
  • a capacity of the reservoir can be at least 0.1 Liter (L) , 0.5 L, 1.0 L, 1.5 L, 2.0 L, 2.5 L, 3.0 L, 3.5 L, 4.0 L, 4.5 L, 5.0 L, 5.5 L, 6.0 L, 6.5 L, 7.0 L, 7.5 L, 8.0 L, 8.5 L, 9.0 L, 9.5 L, 10 L, 15 L, or 20 L.
  • the capacity of the reservoir can provide a spray coverage of at least 500 square feet (sq ft) , 1000 sq ft, 1500 sq ft, 2000 sq ft, 2500 sq ft, 3000 sq ft, 3500 sq ft, 4000 sq ft, 4500 sq ft, 5000 sq ft, 6000 sq ft, ,000 sq ft, 8000 sq ft, 9000 sq ft, or 10000 sq ft.
  • sq ft square feet
  • the capacity of the reservoir can enable a run time of the electrostatic spraying device at least 3 minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes, 30 minutes, 35 minutes, 40 minutes, 45 minutes, 50 minutes, 55 minutes, 60 minutes, 70 minutes, 80, minutes, 90 minutes, 100 minutes, 110 minutes or 120 minutes per tank.
  • the liquid atomizer 202 can be configured to break the stream of target stream, which is transported from the reservoir though the fluid passageway 203, into a spray of fine droplets (e.g., droplet having a size from 10 micrometers to 1000 micrometers) .
  • the liquid atomizer can comprise one or more nozzles each having one or more orifices. In some instances, multiple nozzles can be mounted on a manifold, such that the target solution is sprayed simultaneously from the multiple nozzles.
  • a cap 222 can be provided to cover an outlet of the liquid atomizer and/or an outlet of the electrostatic spraying device. The cap can be electrically insulating.
  • atomization of target solution can be implemented with a hydraulic nozzle.
  • the hydraulic nozzle can comprise one or more orifices having a reduced cross-sectional dimension than an upstream channel.
  • a speed and pressure of the fluid stream passing through the nozzle can be increased due to the reduced cross section when the fluid stream travels to the orifice.
  • Atomization can be induced by the increased pressure which causes the liquid to breakup. After the liquid passes through the nozzle orifice, a spray can be developed.
  • atomization of target solution can be implemented with a pneumatic nozzle. Atomization can be induced by combining a stream of compressed air with the target solution either internally to the nozzle or outside of the nozzle.
  • a high degree of atomization can be achieved by pneumatic atomization.
  • Pneumatic nozzles can be used, for example, to atomize fluids that are more viscous than water.
  • atomization of target solution can be implemented with an ultrasonic atomization nozzle.
  • An ultrasonic nozzle operates by converting high frequency sound waves into mechanical energy that is transferred into the liquid, creating standing waves. As the liquid exits the atomizing surface of the nozzle, it is broken into a fine mist of droplets.
  • the spray nozzle can be made with an electrically conductive material.
  • the spray nozzle can be made with an insulating material.
  • the spray nozzle can be made with metal such as steel.
  • a property of the spray including at least a spray pattern (e.g., flat fan, full cone, hollow cone, fog or mist) , a flow rate, a droplet size, a distribution and a spray range, can be designed or predetermined by selection of nozzles.
  • the nozzle can be detachable and replaceable with respect to the fluid passageway. For instance, multiple nozzles having different properties can be provided to the electrostatic sprayer device, each producing a spray having different droplet size, spray pattern, spray range and/or flow rate.
  • the target solution can be transported from the reservoir to the nozzle with aid of the fluid transfer device 206.
  • the fluid transfer device can comprise a pump which is operably coupled to the reservoir or the at least one fluid passageway, e.g., in fluidic communication with the fluid passageway.
  • the pump can cause a pressure differential to draw the target solution from the reservoir toward the liquid atomizer and also expel the target solution out of the liquid atomizer.
  • a trigger 213 can be provided to control a switch on and switch off of the pump. For instance, the pump can be actuated when the operator holds the handle and presses the trigger down, thereby the target solution is transferred to the nozzle and sprayed out.
  • the pump can include, but not limited to, a centrifugal pump a piston pump, a micropump, and a peristaltic pump.
  • the fluid transfer device can comprise a pressurizing device configured to pressurize the target solution within the reservoir.
  • the pressurizing device can comprise a high-pressure air tank in communication with the reservoir. Compressed air can be provided into the reservoir to increase a pressure therein, forcing the target solution flowing toward the liquid atomizer.
  • a flow rate of the pump which is the volume of fluid moved in the unit of time, can be at least 1.0 ounce/min, 1.5 ounce/min, 2.0 ounce/min, 2.5 ounce/min, 3.0 ounce/min, 3.5 ounce/min, 4.0 ounce/min, 4.5 ounce/min, 5.0 ounce/min, 5.5 ounce/min, 6.0 ounce/min, 6.5 ounce/min, 7.0 ounce/min, 7.5 ounce/min, 8.0 ounce/min, 8.5 ounce/min, 9.0 ounce/min, 9.5 ounce/min, 10 ounce/min, 15 ounce/min, 20 ounce/min, 25 ounce/min, 30 ounce/min, 40 ounce/min, or 50 ounce/min.
  • the flow rate of the pump can be adjustable either by the operator.
  • the electrostatic charging system 204 can be configured to electrostatically charge the target solution.
  • the electrostatic charging system can comprise an electrostatic generator module that is configured to generate an electrostatic voltage.
  • the electrostatic charging system can comprise an electrostatic charging module that is electrically coupled to the electrostatic generator module and configured to add charges to the target solution.
  • An electrostatic charging to the target solution can be optional.
  • An electrostatic switch 224 can be provided to the sprayer to switch on or switch off the electrostatic system. A polarity of the charged spray can be switched between a positively charged and a negatively charged by changing a polarity of the generated electrostatic voltage. For instance, a switch can be provided to the sprayer to select the polarity of the charged spray.
  • the electrostatic generator module can produce static charges at high voltage and low current.
  • the electrostatic generator module can be, for example, a Van de Graaff generator that uses a friction between two different materials to generate electrostatic charges.
  • the electrostatic generator module can be, for example, an electrostatic wind converter (EWICON) which generates the electrical power by forcing the charges to move in the opposite direction of the electric field by the wind to increase the energy of the system.
  • EWICON electrostatic wind converter
  • the electrostatic generator module can produce a DC voltage at a magnitude of at least 1 kilovolt, 1.5 kilovolts, 2 kilovolts, 2.5 kilovolts, 3 kilovolts, 3.5 kilovolts, 4 kilovolts, 4.5 kilovolts, 5 kilovolts, 5.5 kilovolts, 6 kilovolts, 6.5 kilovolts, 7 kilovolts, 7.5 kilovolts, 8 kilovolts, 8.5 kilovolts, 9 kilovolts, 9.5 kilovolts, 10 kilovolts, 11 kilovolts, 12 kilovolts, 13 kilovolts, 14 kilovolts, 15 kilovolts, 20 kilovolts, 25 kilovolts, 30 kilovolts, 35 kilovolts, 40 kilovolt
  • the magnitude of the charging voltage produced by the electrostatic generator module can be adjustable/variable.
  • a rotary knob can be provided at the housing of the electrostatic sprayer device, enabling the operator to select or set the magnitude of the charging voltage.
  • the magnitude of the charging voltage can be adjusted on basis of at least a sensor detection indicating a property of the target solution stored in the reservoir.
  • the property of the target solution can include at least one of an electrical conductivity, a dielectric constant, a density, a dynamic viscosity, a surface tension, or a temperature of the target solution, which affect the chargeability of the spray liquid.
  • a sensor can be provided in the reservoir to detect at least one of an electrical conductivity and a dielectric constant of the target solution.
  • a high charging voltage can be applied to the target solution having a low electrical conductivity. Additionally, the magnitude of the charging voltage can be adjusted on basis of an operational parameter such as a flow rate of the pump (e.g., speed of spraying) . For instance, a high charging voltage can be applied to the target solution when the speed of spraying is high. Additionally, the magnitude of the charging voltage can be adjusted on basis of an environmental parameter such as a height of the target object. For instance, a high charging voltage can be applied to the target solution when the spray height is great, thereby the electrostatic charges can sustain long at the droplets.
  • an operational parameter such as a flow rate of the pump (e.g., speed of spraying)
  • a high charging voltage can be applied to the target solution when the speed of spraying is high.
  • the magnitude of the charging voltage can be adjusted on basis of an environmental parameter such as a height of the target object. For instance, a high charging voltage can be applied to the target solution when the spray height is great, thereby the electrostatic charges can sustain long at the
  • the electrostatic charging module can be configured to charge the target solution using the charging voltage produced by the electrostatic generator module.
  • the electrostatic charging module can comprise an element that either transmits electrical charges into the target solution or induces electrical charges onto the target solution.
  • the electrostatic charging can be performed without requiring physical contact with the target solution and/or emission of ions. Configuration of the electrostatic charging module will be described with reference to embodiments described hereinafter in the disclosure.
  • Components in the electrostatic spraying device can be powered by a power source (not shown in FIG. 2) .
  • the power source can comprise a battery.
  • Examples of the battery can include a DC (direct current) battery and a AC (alternate current) battery.
  • the battery can be a rechargeable battery. Different combinations of electrode materials and electrolytes can be used in the a rechargeable battery, including lead–acid, zinc-air, nickel–cadmium (NiCd) , nickel–metal hydride (NiMH) , lithium-ion (Li-ion) , Lithium Iron Phosphate (LiFePO4) , and lithium-ion polymer (Li-ion polymer) .
  • the power source can comprise one or more batteries.
  • the battery can be detachable and/or replaceable to enable an extended spraying.
  • the battery can be integrated with another component of the electrostatic spraying device, for example the handle.
  • the battery can be rechargeable, such as a lithium-ion battery.
  • a capacity of the battery can be at least 500 mAh, 1000 mAh, 1500 mAh, 2000 mAh, 2500 mAh, 3000 mAh, 3500 mAh, 4000 mAh, 4500 mAh, 5000 mAh, 5500 mAh, 6000 mAh, 6500 mAh, 7000 mAh, 7500 mAh, 8000 mAh, 8500 mAh, 9000 mAh, 9500 mAh, or 10000 mAh.
  • the capacity of the battery can enable a continuous spraying of at least 0.5 hr, 1.0 hr, 1.5 hr, 2.0 hr, 2.5 hr, 3.0 hr, 3.5 hr, 4.0 hr, 4.5 hr, 5.0 hr, 5.5 hr, 6.0 hr, 6.5 hr, 7.0 hr, 7.5 hr, 8.0 hr, 8.5 hr, 9.0 hr, 9.5 hr, 10 hr, 15 hr, or 20 hr.
  • the capacity of the battery can enable a run time of the electrostatic spraying device at least 3 minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes, 30 minutes, 35 minutes, 40 minutes, 45 minutes, 50 minutes, 55 minutes, 60 minutes, 70 minutes, 80, minutes, 90 minutes, 100 minutes, 110 minutes or 120 minutes.
  • An output voltage of the battery can be at least 12 V, 24 V, 36V, 48 V or higher. In some instances, the output voltage of the battery can be adjustable.
  • a charger can be provided to the electrostatic sprayer device. The charger can be a separate apparatus. For example, the battery can be detached from the electrostatic sprayer device and charged by coupling to the charger. The charger can be provided within the electrostatic sprayer device in a form of charger circuit, enabling to charge the battery when the battery is coupled to the electrostatic sprayer device.
  • a charge time of the battery can be less than 240 minutes, 210 minutes, 180 minutes, 150 minutes, 120 minutes, 90 minutes, 60 minutes, 30 minutes, or 10 minutes.
  • a ground wire can be provided to the electrostatic sprayer device, thereby connecting at least the electrostatic generator module to a ground.
  • the ground wire can be provided and positioned to enable an electrical contact with the operator during spraying operation.
  • the ground wire can be positioned at a handle 211 of the electrostatic sprayer device, such that the operator is in electrical contact with the ground wire when the operator grasps the handle during spraying operation.
  • the ground wire can comprise a metal strip 212 which is partially embedded in the handle.
  • the ground wire can be electrically connected to a wristband through a conductive cable, and the wristband can be worn by the operator during operation.
  • the wristband can comprise a spiral conductive cable having a distal end provided with a plug, and the plug can be adapted to insert into a hole on the housing of the electrostatic sprayer device to be connected with the ground wire.
  • the electrostatic sprayer device can be provided with a device control system 214 which regulates an operation of various components of the electrostatic sprayer device.
  • the device control system can comprise one or more circuits, such as PCB (Printed Circuit Board) positioned in the housing of the electrostatic sprayer device.
  • the device control system can be programed to regulate a flow rate and/or a flow range (e.g., a distance to which the droplets can reach) of the droplet spray.
  • the electrostatic sprayer device can be further provided with an interface through which the operator can monitor an operating status of the sprayer and/or input or select an operating parameter.
  • the interface can comprise an array of LEDs, a lighting pattern of which indicates an operating status of the sprayer (e.g., a fault) .
  • the interface can comprise an electronic display on which an operating status of the sprayer is displayed (e.g., whether the sprayer is properly grounded) .
  • the electronic display can be a touch screen which enables the operator to select and input an operating parameter (e.g., spray range) .
  • an operating parameter e.g., spray range
  • one or more buttons or knobs can be provided on the housing of the sprayer, enabling the operator to select a desired operating parameter (e.g., strength of charging) .
  • the electrostatic sprayer device can be provided with an electromagnetic shielding component (not shown in FIG. 2) to prevent electrical circuits of the electrostatic sprayer from an interference originated from the electrostatic charging system or an external environment.
  • electromagnetic shielding generally means the practice of reducing or eliminating an electrostatic field, an electromagnetic field and/or an electrical signal in a space by blocking the electrostatic field, electromagnetic field and/or electrical signal with barriers.
  • the electrostatic charging system e.g., the electrostatic generator module
  • the electrostatic generator module can generate at least one of an electrostatic field, an electromagnetic field and/or an electrical signal (e.g., radio frequency signal) which can interference with an operation of circuits of the electrostatic sprayer device or even damage the circuits.
  • the electromagnetic shielding component can be provided to the electrostatic charging system to prevent an emission/leakage of the electrostatic field, electromagnetic field and/or electrical signal to an outside environment.
  • at least one of the electrostatic generator module, the electrostatic charging module and the wire/cable therebetween can be enclosed by the electromagnetic shielding component to isolate them from their surrounding environment.
  • the electromagnetic shielding component can be provided to the device control system.
  • the PCB of the device control system can be enclosed by the electromagnetic shielding component to isolate it from external electrostatic field, electromagnetic field and/or electrical signal.
  • the electromagnetic shielding component can comprise a cage to receive therein the device control system, the electrostatic generator module or electrostatic charging module.
  • the cage can be made of a sheet, a mesh of a material or a combination thereof.
  • the electromagnetic shielding component can comprise a mesh surrounding the electrical wire/cable.
  • the electromagnetic shielding component can comprise a coating or layer of a material on the outside and/or inside of an enclosure of the device control system, the electrostatic generator module or electrostatic charging module.
  • a material of the electromagnetic shielding component can comprise an electrically conductive material such as copper, brass, nickel, silver, steel, and tin.
  • a variety of accessories can be provided to the electrostatic sprayer device, including but not limited to extension wands, tanks, nozzles, batteries, carry straps, to extend the functionality and application scenario.
  • a replaceable nozzle can be coupled to the sprayer to provide a full cone spray at a droplet size of 40 microns .
  • an extension wand can be coupled to the electrostatic sprayer device thereby providing extra reach of the spray.
  • a carry strap can allow the operator to free up both hands while keeping the sprayer within reach.
  • a system status indicator such as a LED light or an array of LED lights, can be provided at the electrostatic sprayer device to indicate an operating status of the electrostatic sprayer device.
  • an ON/OFF of the LED light can indicate an ON/OFF of the electrostatic sprayer device or an ON/OFF of the electrostatic charging system.
  • the system status indicator can be provided for example in proximity to the nozzle, such that an operator of the electrostatic sprayer device can observe the operating status.
  • an end cap can be provided to the nozzle.
  • the end cap can be made of electrically insulating material such as rubber, PVC, fiberglass, plastic, resin.
  • a tank switch can be additionally provided to the fluid reservoir to ensure a secure locking of the fluid reservoir to a body of the electrostatic sprayer device.
  • FIG. 3 is a cross-sectional view showing configuration of an electrostatic sprayer device adapted to operate with a carrier in accordance with embodiments of the disclosure.
  • the electrostatic sprayer device can operate together with a carrier.
  • the carrier can be a system that does not provide the ability of electrostatic charging and solution spraying.
  • An example of the carrier can be a scrubber which is configured to clean a surface.
  • the scrubber can be a walk-behind scrubber or a rider scrubber.
  • Another example of the carrier can be a vehicle capable of moving on a surface (e.g., ground) , either in a semi-autonomous or an autonomous manner.
  • the carrier can comprise one or more components that are necessary to effect an operation of the electrostatic sprayer device.
  • the carrier can comprise at least one of a liquid reservoir, a power source, an electrostatic charging system or a pump. These components can accordingly omitted from a design of the electrostatic sprayer device.
  • the electrostatic sprayer device can be actuated by manipulating a system switch 317.
  • the electrostatic sprayer device provided in the embodiment can be releasably coupled to and detached from the carrier.
  • the electrostatic sprayer device can comprise an adapter 315 that is configured to couple the electrostatic sprayer device to the carrier.
  • the adapter can comprise at least one electrical interfaces which is adapted to provide electrical connectivity between the electrostatic sprayer device and the carrier. For instance, the electrostatic sprayer device, which has no battery onboard, can receive electrical power from a power source of the carrier.
  • the adapter can comprise a grounding interface which provides a grounding to the electrostatic sprayer device. The grounding interface can be electrically connected the ground wire of the electrostatic sprayer device with a ground wire of the carrier.
  • the adapter can comprise at least one mechanical interface which releasably locks the electrostatic sprayer device onto the carrier.
  • the mechanical interface can comprise, for example, a releasable snap lock which enables both a secured locking and an easy detaching.
  • the electrostatic sprayer device can additionally comprise a manipulation section such as a handle 311 to facilitate a manipulation of the sprayer.
  • the electrostatic sprayer device can be operably coupled to from the carrier.
  • the operable coupling can provide a fluidic connection between the electrostatic sprayer device and the carrier.
  • the electrostatic sprayer device can comprise at least one port 316 that is configured to operably couple the electrostatic sprayer device to the carrier.
  • the port can comprise at least one fluid passageway 303 for enabling transport of the target solution from a tank carried on the carrier to the nozzle in the electrostatic sprayer device.
  • the electrostatic sprayer device can comprise at least one liquid atomizer 302.
  • the liquid atomizer can be operably coupled to the at least one fluid passageway 303 and configured to atomize and dispense a target solution.
  • Examples of the liquid atomizer can comprise one or more spray nozzles.
  • the target solution can be transported from a tank carried on the carrier through the fluid passageway with the aid of a pump.
  • the target solution can be transported from a liquid reservoir carried on the electrostatic sprayer device through the fluid passageway with the aid of a pump.
  • the pump can be either carried on the carrier or on the electrostatic sprayer device (e.g., pump 306) .
  • the electrostatic sprayer device can comprise an electrostatic generator module 304 that is configured to electrostatically charge the target solution.
  • the electrostatic system can comprise an electrostatic generator module that is configured to generate a fixed or a variable electrostatic voltage.
  • the electrostatic system can comprise an electrostatic charging module that is coupled to the electrostatic generator module and configured to electrostatically charge the target solution without requiring physical contact with the target solution and/or emission of ions.
  • the electrostatic system can be grounded via the adapter, as discussed hereinabove in the disclosure. For instance, a ground wire can be electrically coupled to the electrostatic generator and then to a grounding element of the carrier via the grounding interface of the adaptor.
  • the electrostatic system can be selectively actuated by manipulating an electrostatic system switch 318.
  • FIG. 4 is an enlarged cross-sectional view showing an electrostatic charging in the exemplary electrostatic sprayer device of FIG. 3.
  • the electrostatic charging scheme described with reference to FIG. 3 and FIG. 4 can be adapted to various types of electrostatic sprayer device in the disclosure, such as a handheld sprayer (e.g., the one described with reference to FIG. 2) , a backpack sprayer and a sprayer carried on a carrier.
  • the electrostatic system can be configured to electrostatically charge the target solution before the target solution is atomized into a spray by the at least one nozzle 302.
  • the electrostatic system can comprise the electrostatic generator module 304 and an electrostatic charging module electrically coupled to the electrostatic generator module via a charging cable 322. It is apparent to those in the art that the electrostatic charging described with reference to FIG. 3 and FIG. 4 is compatible with the embodiment described with reference to FIG. 2.
  • the electrostatic generator module can be configured to generate a fixed or variable electrostatic voltage ranging from about 1 kilovolt to 100 kilovolts, as described hereinabove in the disclosure.
  • the electrostatic charging module can comprise at least one electrode 321 in proximity to the conductive nozzle 302.
  • the electrode can be electrically coupled to the electrostatic generator module via a charging cable.
  • the electrode can be provided as an elongated pin that extends in a direction substantially perpendicular to a flow direction of the target solution within the nozzle.
  • the elongated pin can be positioned not in direct contact with the nozzle.
  • a clearance between a tip of the elongated pin and the nozzle can be in a range about 0.5 millimeter (mm) to about 10 mm.
  • the clearance can be 10 mm, 9.5 mm, 9.0 mm, 8.5 mm, 8.0 mm, 7.5 mm, 7.0 mm, 6.5 mm, 6.0 mm, 5.5 mm, 5.0 mm, 4.5 mm, 4.0 mm, 3.5 mm, 3.0 mm, 2.5 mm, 2.0 mm, 1.5 mm, 1.0 mm, or 0.5 mm.
  • the clearance can be in an range between any value selected from above listed values. In an embodiment, the clearance can be in a range about 1.0 mm to about 1.5 mm.
  • an electric arc can be generated across the clearance, thereby forming an electrical path between the electrostatic generator module and the conductive nozzle.
  • Charges generated at the electrostatic generator module can therefore be transported to the nozzle through the charging cable and the elongated pin.
  • a positive electrostatic voltage is generated at the electrostatic generator module, therefore positive charges can be added to the target solution and the spray existing the nozzle can be positively charged.
  • a negative electrostatic voltage is generated at the electrostatic generator module, therefore negative charges can be added to the target solution and the spray existing the nozzle can be negatively charged.
  • the spray existing the nozzle carries an electrostatic voltage of 4.5 to 5 kilovolts.
  • the nozzle can be at least partially encapsulated in a first insulating seat 323.
  • the elongated pin can also be at least partially encapsulated in a second insulating seat 324.
  • the first and second insulating seat can be manufactured with an electrically insulating material such as rubber and Polypropylene (PP) .
  • the first insulating seat can extend outward more than the nozzle in a flowing direction of the target solution, such that the operator’s finger does not contact the nozzle to prevent an electric shock.
  • the first insulating seat can be detachably coupled to the second insulating seat.
  • the first insulating case can be provided with a recess or hole having a shape mating with the plug-like second insulating seat, thereby the second insulating seat can be coupled to the first insulating seat by a snap-fit.
  • the first insulating case can be provided with a threaded hole mating with the plug-like threaded second insulating seat, thereby the second insulating seat can be screwed onto the first insulating seat.
  • the clearance between the tip of the elongated pin and the nozzle can be maintained once the first and second insulating cases are coupled together. In some instances, the clearance between the tip of the elongated pin and the nozzle can be adjusted by providing a screw coupling between the first and second insulating seat.
  • the nozzle optionally together with the first insulating seat, can be detachably coupled to the fluid passageway, enabling a replacement of the nozzle. For instance, the operator can pull out the nozzle from the first insulating seat and then insert another nozzle into the first insulating seat. For instance, the operator can disconnect the first insulating seat from the second insulating seat and replace the first insulating seat together with the nozzle with new ones.
  • the disclosure also provides a method of electrostatically spraying a target solution.
  • the method can comprise transporting a target solution from a reservoir to at least one nozzle via at least one fluid passageway; electrostatically charging the target solution as the target solution flows through the at least one fluid passageway towards the at least one nozzle; and atomizing the electrostatically charged target solution into a spray as the electrostatically charged target solution is being dispensed from the at least one nozzle.
  • the target solution can be electrostatically charged without requiring (1) physical contact with the target solution and/or (2) emission of ions.
  • the method can further comprise detaching and refilling the reservoir.
  • the method can further comprise replacing the at least one nozzle.
  • the method can further comprise switching off the electrostatically charging.
  • the method can further comprise adjusting a strength/degree in the electrostatically charging.
  • FIG. 5 is a cross-sectional view showing configuration of another electrostatic sprayer device adapted to operate with a carrier in accordance with embodiments of the disclosure.
  • the electrostatic charging in the exemplary electrostatic sprayer device is shown in the enlarged cross-sectional view of FIG. 6.
  • the electrostatic charging scheme described with reference to FIG. 5 and FIG. 6 can be adapted to various types of electrostatic sprayer device in the disclosure, such as a handheld sprayer (e.g., the one described with reference to FIG. 2) , a backpack sprayer and a sprayer carried on a carrier.
  • Components of the electrostatic sprayer device of FIG. 5, including the at least one liquid atomizer 302, the electrostatic generator module 304, the pump 306, the adapter 315, the port 316 and the handle 311, can be substantially the same as those described with reference to FIG. 3 except for the fluid passageway 503.
  • the fluid passageway 503 in the exemplary electrostatic sprayer device can be made of an electrically insulating material such as rubber and Polypropylene (PP) .
  • At least a portion of an inner surface of the fluid passageway can comprise a conductive component 607 which physically contacts the target solution. Examples of the conductive component can comprise a metal wire, plate or tube.
  • the fluid passageway can be an electrically insulating tubing having metal coil disposed at the inner surface thereof.
  • the electrostatic system can be configured to electrostatically charge the target solution before the target solution reaches the at least one nozzle.
  • the electrostatic charging module can comprise a conductive ring 625 positioned around a periphery of at least a portion of the fluid passageway 303.
  • the electrostatic charging module can comprise a plurality of conductive rings.
  • the plurality of conductive rings can be positioned axially apart from each other.
  • the plurality of conductive rings can also be positioned at least partially overlapping with each other.
  • the conductive ring can be in contact with the periphery of the fluid passageway.
  • the conductive ring can be electrically coupled to the electrostatic generator module via the charging cable 322.
  • the conductive ring can be manufactured with a metal material.
  • Examples of the metal material can include, but not limited to, copper, steel, silver, aluminum, zinc, brass, nickel, or an alloy thereof.
  • An axial width of the conductive ring can be at least 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 10 mm, 11 mm, 12 mm, 13 mm, 14 mm, 15 mm, 16 mm, 17 mm, 18 mm, 19 mm, 20 mm, 21 mm, 22 mm, 23 mm, 24 mm, 25 mm, 26 mm, 27 mm, 28 mm, 29 mm, 30 mm, 35 mm, 40 mm, 45 mm, 50 mm, 55 mm, 60 mm, 65 mm, 70 mm, 85 mm, 90 mm, 95 mm or 100 mm.
  • the conductive ring can be a full ring.
  • the conductive ring can be a partial ring.
  • the conductive component 607 can be in the same potential as the electrostatic voltage generated from the electrostatic generator module. With the potential at the conductive component, a potential can be induced at the conductive component 607 within the fluid passageway.
  • the target solution can be electrostatically charged by the conductive component which physically contacts and transfers charges into the target solution.
  • the target solution can be positively charged or negatively charged depending on the polarity of the electrostatic voltage generated at the electrostatic generator module. In a testing experiment where the electrostatic voltage generated at the electrostatic generator module being 7 kilovolts and a flow rate of target solution being 0.028-0.1 L/min, the spray exiting the nozzle carries an electrostatic voltage of 3.0 to 3.5 kilovolts.
  • the nozzle can be at least partially encapsulated in an insulating seat 323, as discussed in the embodiment described with reference to FIG. 4 in the disclosure.
  • the insulating seat can prevent an electric shock.
  • the insulating seat can be detachably coupled to fluid passageway, thereby enabling a replacement of the nozzle. For instance, the operator can pull out the nozzle from the insulating seat and then insert another nozzle into the insulating seat. For instance, the operator can pull out the insulating seat, which encapsulates the nozzle, from the fluid passageway and replace the insulating seat together with the nozzle with new ones.
  • the disclosure also provides a system comprising the electrostatic sprayer device as described hereinabove with reference to FIG. 3 to FIG. 6 and the carrier.
  • the carrier can be provided with cleaning components such as scrub head and squeegee, thereby being capable of cleaning a surface (e.g., a floor) .
  • the system can therefore be capable of cleaning a surface and in the meantime, spraying the target solution (e.g., disinfectant) onto the surface or other objects.
  • the carrier can be driven by an operator or programed to move autonomously.
  • the carrier can be powered by power grid.
  • a battery pack can be provided onboard the carrier to cover an even wider cleaning area.
  • the disclosure also provides a method of electrostatically spraying a target solution.
  • the method can comprise transporting a target solution from a reservoir to at least one nozzle via at least one fluid passageway; electrostatically charging the target solution as the target solution flows through the at least one fluid passageway towards the at least one nozzle; and atomizing the electrostatically charged target solution into a spray as the electrostatically charged target solution is being dispensed from the at least one nozzle.
  • the target solution can be electrostatically charged without requiring (1) physical contact with the target solution and/or (2) emission of ions.
  • the method can further comprise detaching and refilling the reservoir.
  • the method can further comprise replacing the at least one nozzle.
  • the method can further comprise switching off the electrostatically charging.
  • the method can further comprise adjusting a strength/degree in the electrostatically charging.
  • the disclosure also provides a method of electrostatically spraying a target solution.
  • the method can comprise coupling an electrostatic sprayer device to a carrier via an adaptor; transporting the target solution from the carrier to at least one nozzle of the electrostatic sprayer device via a port, the port comprising at least one fluid passageway for enabling transport of the target solution from the carrier to the at least one nozzle; electrostatically charging the target solution as the target solution flows through the at least one fluid passageway towards the at least one nozzle; and atomizing the electrostatically charged target solution into a spray as the electrostatically charged target solution is being dispensed from the at least one nozzle.
  • the target solution can be electrostatically charged without requiring (1) physical contact with the target solution and/or (2) emission of ions.
  • the method can further comprise switching on or switching off the electrostatically charging.
  • the method can further comprise adjusting a strength/degree in the electrostatically charging.
  • FIG. 7 shows a computer system 701 that is programmed or otherwise configured to implement the device control system (e.g., the device control system 214) .
  • the computer system 701 can regulate various aspects of the present disclosure, for example, actuation of the electrostatic system, magnitude of electrostatic voltage generated at the electrostatic generator, polarity in charging the target solution, pattern of the spray, range/distance of spraying, and other functions and parameters as described elsewhere herein.
  • the computer system 701 can include a central processing unit (CPU, also “processor” and “computer processor” herein) 709, which can be a single core or multi core processor, or a plurality of processors for parallel processing.
  • the computer system 701 can also include memory 710 (e.g., random-access memory, read-only memory, flash memory) , electronic storage unit 715 (e.g., hard disk) , communication interface 720 (e.g., network adapter) for communicating with one or more other systems, and peripheral devices 725, such as cache, other memory, data storage and/or electronic display adapters.
  • the memory 710, storage unit 715, interface 720 and peripheral devices 725 can be in communication with the CPU 709 through a communication bus.
  • the computer system 701 can be operatively coupled to a computer network 730 with the aid of the communication interface 720.
  • the network 730 can be a telecommunication, the Internet, or an intranet and/or extranet that is in communication with the Internet.
  • the network 730 can include one or more computer servers, which can enable distributed computing, such as cloud computing.
  • cloud computing can be provided by cloud computing platforms such as, for example, Amazon Web Services (AWS) , Microsoft Azure, Google Cloud Platform, and IBM cloud.
  • the CPU 709 can execute a sequence of machine-readable instructions, which can be embodied in a program or software.
  • the instructions can be stored in a memory, such as the memory 710.
  • the instructions can be directed to the CPU 709, which can subsequently program or otherwise configure the CPU 709 to implement methods of the present disclosure. Examples of operations performed by the CPU 709 can include fetch, decode, execute, and writeback.
  • the CPU 709 can be part of a circuit, such as an integrated circuit.
  • One or more other components of the system 701 can be included in the circuit. In some cases, the circuit can be an application specific integrated circuit (ASIC) .
  • ASIC application specific integrated circuit
  • the storage unit 715 can store files, such as drivers, libraries and saved programs.
  • the storage unit 715 can store user data, e.g., user preferences and user programs.
  • the computer system 701 in some cases can include one or more additional data storage units that are external to the computer system 701, such as located on a remote server that is in communication with the computer system 701 through an intranet or the Internet.
  • the computer system 701 can communicate with one or more remote computer systems through the network 730.
  • the computer system 701 can communicate with a remote computer system.
  • remote computer systems include personal computers (e.g., portable PC) , slate or tablet PC’s (e.g., iPad, Galaxy Tab) , telephones, Smart phones (e.g., iPhone, Android-enabled device, ) , or personal digital assistants.
  • the user can access the computer system 701 via the network 730.
  • the operator can control the electrostatic sprayer device via a software (e.g., App) running on the mobile electronic device.
  • Methods as described herein can be implemented by way of machine executable code stored on an electronic storage location of the computer system 701, such as, for example, on the memory 710 or storage unit 715.
  • the machine executable or machine readable code can be provided in the form of software.
  • the code can be executed by the processor 709.
  • the code can be retrieved from the storage unit 715 and stored on the memory 710 for ready access by the processor 709.
  • the electronic storage unit 715 can be precluded, and machine-executable instructions are stored on memory 710.
  • the computer system 701 can include or be in communication with an electronic display 735 that comprises a user interface (UI) 740 for displaying various operation parameter (e.g., remaining run time, remaining solution, flow rate, spray pattern, particle size, etc. ) of the electrostatic sprayer device.
  • UI user interface
  • the operator can also input desired operation parameter through the user interface 740.
  • UI graphical user interface
  • GUI graphical user interface
  • Methods and systems of the present disclosure can be implemented by way of one or more algorithms.
  • An algorithm can be implemented by way of software upon execution by the central processing unit 709. The algorithm can, for example, generate instructions to operate one or more components of the electrostatic sprayer device.

Abstract

Electrostatic sprayer devices and methods are provided. The electrostatic sprayer device can comprise a reservoir (101) configured to hold a target solution, at least one nozzle configured to atomize the target solution into a spray, a pump configured to propel the target solution from the reservoir (101) to the at least one nozzle via the at least one fluid passageway (103), an electrostatic system (104) configured to electrostatically charge the target solution without requiring physical contact with the target solution and/or emission of ions, and power source (105) configured to power the pump and the electrostatic system (104). The electrostatic sprayer device provides improved charging efficiency, safe operation and low maintenance cost.

Description

ELECTROSTATIC SPRAYING DEVICES AND METHODS BACKGROUND
Electrostatic spraying of aerosol particles, e.g., liquid droplets or solid particles, is a technology that can improve spraying efficiency and droplet deposition by adding electric charges to liquid droplets. Opposite electric charges attract each other while like electric charges repel each other. This means that, for example, positively charged liquid droplets are attracted to a neutral or negatively charged target surface. At the same time, as each droplet in the liquid spray carries a same charge, the droplets repel each other, creating a wider dispersion. Electrostatic spraying can provide an even coating of liquid (e.g., disinfectants) across surfaces of an object, including those that are hard to reach. In addition, electrostatic spraying can reduce the chemical consumption and the release of hazardous pollutants into the environment.
SUMMARY
A need exists for electrostatic spraying device having improved charging efficiency, safe operation and low maintenance cost. The electrostatic spraying device provided in the present disclosure can employ a relatively low electrical potential to add charges to target solution prior to atomizing the target solution into a spray of charged droplets. As compared with traditional charging schemes, the target solution can acquire more electric charges while the solution travels along the fluid passageway and spraying nozzle described herein, thereby increasing a charging efficiency. The charging component in the electrostatic spraying apparatus does not need to physically contact the target solution to be sprayed. The charging component in the electrostatic spraying apparatus does not emit ions. Therefore, electric shocks to users can be prevented and operational safety of the electrostatic spraying device can be improved. In addition, various components in the electrostatic spraying device of the present disclosure, such as the reservoir, nozzle and/or battery, can be detachable, interchangeable and replaceable to satisfy different needs (e.g., volume of liquid, run time, spraying pattern, etc. ) .
Disclosed herein is an electrostatic sprayer device. The electrostatic sprayer device can comprise a reservoir configured to hold a target solution; at least one nozzle operably coupled to the reservoir via at least one fluid passageway, the at least one nozzle being configured to atomize the target solution into a spray; a pump operably coupled to the reservoir or the at least  one fluid passageway, the pump being configured to propel the target solution from the reservoir to the at least one nozzle via the at least one fluid passageway; an electrostatic system that is configured to electrostatically charge the target solution without requiring (1) physical contact with the target solution and/or (2) emission of ions; and a power source configured to power the pump and the electrostatic system.
In some instances, the electrostatic system can be configured to electrostatically charge the target solution before the target solution reaches the at least one nozzle. In some instances, the electrostatic system can be configured to electrostatically charge the target solution before the target solution is atomized into a spray by the at least one nozzle. The reservoir can be detachable with respect to a body of the electrostatic sprayer device. The at least one nozzle can be detachably coupled to the at least one fluid passageway. The least one nozzle can comprise one or more orifices through which the target solution is expelled. The least one nozzle can be made of an electrically conductive material.
In some instances, the electrostatic system can comprise an electrostatic generator module that is configured to generate an electrostatic voltage. The target solution can be electrostatically charged at an electrostatic voltage from about 4 KV to about 8 KV. In some instances, the electrostatic generator module can be configured to generate a fixed electrostatic voltage. In some instances, the electrostatic generator module can be configured to generate a variable electrostatic voltage.
In some instances, the electrostatic system can comprise an electrostatic charging module having at least one electrode in proximity to the at least one nozzle, the at least one electrode being not in direct contact with the at least one nozzle. The electrode can be an elongated pin that extends in a direction perpendicular to a flow direction of the target solution. A clearance between a tip of the elongated pin and the at least one nozzle can be about 1 millimeter (mm) to about 1.5 mm.
In some instances, the electrostatic charging module can comprise a conductive ring positioned around a periphery of at least a portion of the fluid passageway. The fluid passageway can be made of an electrically insulating material. A portion of an inner surface of the fluid passageway can comprise a conductive component which physically contacts the target  solution. In some instances, the conductive component can comprise a wire, a plate or a tube. The conductive component can comprise steel.
In some instances, the target solution can be positively charged by the electrostatic system such that droplets in the spray are positively charged. In some instances, the target solution can be negatively charged by the electrostatic system such that the droplets in the spray are negatively charged. The power source can be detachable from a body of the electrostatic sprayer device. For instance, the DC battery can be replaceable or rechargeable.
In some instances, the electrostatic sprayer device can be sized and shaped to be held in a user’s hand. For instance, the electrostatic sprayer device can include a handle. A weight of the electrostatic sprayer device can be from about 2.5 kilograms (kg) to about 3.5 kg. In some instances, the electrostatic sprayer device can comprise a trigger to actuate the electrostatic system.
In some instances, the electrostatic sprayer device can further comprise an electrical grounding component operably coupled to the electrostatic system. In some instances, the electrostatic sprayer device can further comprise a device control system that is configured to regulate an operation of at least one of the electrostatic system and the pump. The device control system can comprise one or more circuits. For instance, the one or more circuits can be provided on a printed circuit board (PCB) . The electrostatic sprayer device can further comprise an electromagnetic shielding component that is configured to prevent the device control system from an electromagnetic interference originated from the electrostatic charging system or an external environment. In some instances, the electromagnetic shielding component can comprise a metal cage enclosing the device control system
Also disclosed herein is a method of electrostatically spraying a target solution. The method can comprise transporting a target solution from a reservoir to at least one nozzle via at least one fluid passageway; electrostatically charging the target solution as the target solution flows through the at least one fluid passageway towards the at least one nozzle, the target solution being electrostatically charged without requiring (1) physical contact with the target solution and/or (2) emission of ions; and atomizing the electrostatically charged target solution into a spray as the electrostatically charged target solution is being dispensed from the at least one nozzle.
In some instances, the target solution can be electrostatically charged before the target solution reaches the at least one nozzle. In some instances, the target solution can be electrostatically charged before the target solution is atomized into a spray by the at least one nozzle.
In some instances, the method can further comprise detaching and refilling the reservoir. In some instances, the method can further comprise detaching and replacing the at least one nozzle. In some instances, the method can further comprise switching off the electrostatically charging. In some instances, the method can further comprise adjusting a strength/degree in the electrostatically charging.
In some instances, wherein the target solution is electrostatically charged by at least one electrode in proximity to the at least one nozzle, wherein the at least one electrode is not in direct contact with the at least one nozzle. The electrode can be an elongated pin that extends in a direction perpendicular to a flow direction of the target solution. A clearance between a tip of the elongated pin and the at least one nozzle can be about 1 millimeter (mm) to about 1.5 mm.
In some instances, the target solution can be electrostatically charged by a conductive ring positioned around a periphery of at least a portion of the fluid passageway. The fluid passageway can be made of an electrically insulating material. A portion of an inner surface of the fluid passageway can comprise a conductive component which physically contacts the target solution. The conductive component can comprise a wire, a plate or a tube.
In some instances, the least one nozzle can be made of an electrically conductive material. In some instances, the target solution can be electrostatically charged at an electrostatic voltage from about 4 KV to about 8 KV.
In some instances, the target solution can be positively charged such that droplets in the spray are positively charged. In some instances, the target solution can be negatively charged such that the droplets in the spray are negatively charged.
Additional aspects and advantages of the present disclosure will become readily apparent to those skilled in this art from the following detailed description, wherein only embodiments of the present disclosure are shown and described, simply by way of illustration of the best mode contemplated for carrying out the present disclosure. As will be realized, the present disclosure is capable of other and different embodiments, and its several details are capable of  modifications in various obvious respects, all without departing from the disclosure. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as restrictive.
INCORPORATION BY REFERENCE
All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
BRIEF DESCRIPTION OF THE DRAWINGS
The novel features of the present disclosure are set forth with particularity in the appended claims. A better understanding of the features and advantages will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
FIG. 1 is a schematic block diagram of an electrostatic sprayer device in accordance with embodiments of the disclosure;
FIG. 2 is a cross-sectional view of a handheld electrostatic sprayer device in accordance with embodiments of the disclosure;
FIG. 3 is a cross-sectional view of an electrostatic sprayer device that can be adapted or configured to operate with a carrier in accordance with embodiments of the disclosure;
FIG. 4 is an enlarged cross-sectional view showing an electrostatic charging module in an electrostatic sprayer device in accordance with embodiments of the disclosure;
FIG. 5 is a cross-sectional view of another electrostatic sprayer device that can be adapted or configured to operate with a carrier in accordance with embodiments of the disclosure;
FIG. 6 is an enlarged cross-sectional view showing an electrostatic charging module in another electrostatic sprayer device in accordance with embodiments of the disclosure;
FIG. 7 shows a computer control system that is programmed or otherwise configured to implement various methods provided herein, such as methods of regulating an electrostatic spraying of a target solution.
DETAILED DESCRIPTION
While preferable embodiments have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a, ” “an, ” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
Unless otherwise indicated, all numbers expressing parameters of components, technical effects, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about” or “substantially. ” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties and effects sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should be construed in light of the number of significant digits and ordinary rounding approaches.
As used herein, the term "coupled" generally means physically coupled or linked and does not exclude the presence of intermediate elements between the coupled items absent specific contrary language.
There are several ways to charge liquids in electrostatic spraying. Corona charging is a process to emit electrons by field-enhanced emission. A field-enhanced emission happens at the sharp tip of a metallic electrode at high electrical potential (e.g., more than 30 kilovolts) where ionization of the air is caused, so that ions are produced to electrically charge the aerosol particles. Direct charging is a process to directly charge the liquid stored in an isolated reservoir, such that electric charges are stored in the liquid prior to spraying. In direct charging, the reservoir of the liquid is isolated to prevent an electric shock, especially when the liquid is  water-based with low electrical resistivity. Induction electrostatic charging is a process where electrical charges are induced onto the liquid droplets as the liquid jet disintegrates into aerosol droplets from a nozzle (e.g., grounded nozzle) . As compared to corona charging and direct charging, a lower voltage is typically used in induction charging (e.g., one to a few kilovolts) . In induction charging, an exterior electrode is provided to create a potential difference between the electrode and nozzle, which can result in a risk of electric shock to personnel.
FIG. 1 is a schematic showing an electrostatic sprayer device in accordance with embodiments of the disclosure. In some instances, the electrostatic sprayer device can be a standalone device, for example a handheld sprayer or a backpack sprayer operable by a personnel. In some instances, the electrostatic sprayer device can be operable with another apparatus. For instance, the electrostatic sprayer device can be coupled to and operated with a carrier such as a scrubber. A "standalone " device generally refers to a mechanism or system that performs its function without the need of another device. A standalone device is able to function independently of other device, and is not integrated into another device. A "handheld" device generally refers to a device that is designed, shaped, weighted and/or configured to be operated while being held in the hand of a user. A handheld device can be held by one hand or both hands of the user. A handheld device can be light weighted and/or portable for easy carrying of a user. A handheld device can be east to set up, for example, by a single hand operation. In some instances, a handheld device can be provided with an accessory such as a strap to facilitate a carrying of the device, thereby the user can carry the device while operating the device with one or both hands. A weight of the handheld electrostatic sprayer, including a fully loaded reservoir, can be less than 30 kilogram (kg) , 25 kg, 20 kg, 15 kg, 10 kg, 5 kg, 4.5 kg, 4 kg, 3.5 kg, 3 kg, 2.5 kg, 2 kg, 1.5 kg or 1 kg. A weight of the handheld electrostatic sprayer, not including a fully loaded reservoir, can be less than 10 kg, 5 kg, 4.5 kg, 4 kg, 3.5 kg, 3 kg, 2.5 kg, 2 kg, 1.5 kg or 1 kg. A "backpack" device generally refers to a device that is designed, shaped, weighted and/or configured to be operated while being carried on the back of a user. A backpack device can have a hands-free design, enabling the user to operate another device or a part of the backpack device while carrying the backpack device. For instance, the user can hold a nozzle or an extension wand while carrying a body of a backpack sprayer on the back. In some instances, the backpack device can be carried on other portion of the user in  addition to the back. For instance, a user can carry a backpack sprayer on the waist. The backpack device can be provided with an accessory such as shoulder straps to facilitate a carrying of the device. A “carrier” generally refers to a device capable of moving, in either a controlled or an autonomous manner. The electrostatic sprayer device can be coupled to and carried by the carrier. Components of the carrier can be operationally coupled to and used by the electrostatic sprayer device. For instance, the electrostatic sprayer device can be powered by a power source of the carrier. Examples of carrier can include cleaning machines (e.g., a scrubber) and vehicles. Cleaning machines are described, for example, in US patent publication US10, 016, 112B2 and US10, 016, 113B2. The content of the US patent publication is herein incorporated by reference.
Referring to FIG. 1, the electrostatic sprayer device can comprise a fluid reservoir or tank 101 configured to hold a target solution therein. The reservoir can be fluidly coupled to a liquid atomizer 102 via one or more fluid passageways 103. The fluid passageway can include a tubing, which is provided in a tubular form, through which the target solution can be transported. The target solution can be transferred from the reservoir to the liquid atomizer with the aid of a fluid transfer device such as a pump (not shown in FIG. 1) . The liquid atomizer 102 can be configured to atomize the target solution into a spray which comprises a plurality of droplet (e.g., droplet having a size from 10 micrometers to 1000 micrometers) . An electrostatic charging system 104 can be included with the electrostatic sprayer device to electrostatically charge the target solution. The electrostatic charging system can be electrically coupled to at least one of the reservoir, the fluid passageway, or the liquid atomizer. The electrostatic sprayer device can be powered by a power source 105.
FIG. 2 is a cross-sectional view showing configuration of a handheld electrostatic sprayer device in accordance with embodiments of the disclosure. The handheld electrostatic sprayer device can be adapted to be carried and operated by an operator. For instance, the electrostatic sprayer device can comprise a handle 211 that is sized and shaped to be held in the operator’s hand. The electrostatic sprayer device can comprise a fluid reservoir 201 in fluidic communication with a liquid atomizer 202 through a fluid passageway 203, and a fluid transfer device 206 (e.g., a pump) which is operably coupled to the reservoir and the fluid passageway to draw the target solution from the fluid reservoir toward the liquid atomizer. In some  embodiments, the electrostatic sprayer device can comprise an electrostatic charging system which is configured to electrostatically charge the target solution. The electrostatic sprayer device can comprise a power source which powers components of the sprayer device, including but not limited to the fluid transfer device and the electrostatic charging system. The power source can be a battery 221 which is detachably coupled to the electrostatic sprayer device. In an example, the battery can be coupled to the handle. In an example, a lighting component 225 such as a LED or LED array can be provided at a housing of the electrostatic sprayer device. The lighting component can be positioned and oriented such that an object in front of the electrostatic sprayer device is illuminated. Additionally, the electrostatic sprayer device can comprise a device control system which regulates an operation of the sprayer. Components of the handheld electrostatic sprayer device can be compatible with sprayers shown in other embodiments, such as a sprayer operated with a scrubber.
The reservoir 201 can be configured to have at least one chamber in which target solution can be stored. In some instances, the reservoir can have more than one chamber in which the same target solution or different target solutions can be stored. For instance, a first chamber can store therein a first disinfectant, and a second chamber can store therein a second disinfectant. In some cases, the first disinfectant and the second disinfectant may be the same. In some cases, the first disinfectant and the second disinfectant may be the different. A switch can be provided to the reservoir to switch among target solutions stored in different chambers. The switch can be a manual switch or an electronic switch. In some instances, the switch can include an open/close valve. The reservoir can be detachable and/or replaceable with respect to a housing of the electrostatic sprayer device. For instance, the reservoir can be detached from the housing of the electrostatic sprayer device for refilling of the target solution. For instance, a plurality of reservoirs can be provided to the electrostatic sprayer device, and an operator can attach a reservoir having a preferred property (e.g., capacity, shape, fluid contained, weight, and material) to the sprayer device. A locking mechanism 223 can be provided to lock and release the reservoir to and from a body of the electrostatic sprayer device. A cap can be provided to the reservoir. In some instances, a refilling of the reservoir can be performed through the cap. In some instances, the cap can include a capping valve which provides a fluidic communication with the fluid passageway.
The electrostatic spraying device of the present disclosure can be used to spray a variety of solution (e.g., liquids, solutions, suspensions or emulsions, such as disinfectant) for disinfecting, deodorizing, sanitizing, or decontaminating, and providing fast coverage of different types of surfaces. In some instances, the target solution can comprise disinfectant. Disinfectants are chemical agents designed to inactivate or destroy microorganisms. Examples of disinfectant can include, but not limited to, alcohols, aldehydes (such as formaldehyde and glutaraldehyde, ) , and oxidizing agents (such as chlorine and oxygen) . The reservoir can comprise one or more materials having one or more different properties, for example electrical insulation, chemical corrosion resistance, a wide service temperature range, stress crack resistance, impact resistance, abrasion resistance, transparency, opacity, or light weight. Examples of the material of the reservoir can include, but not limited to, Linear Polyethylene (e.g., linear medium density polyethylene (LMDPE) , linear high density polyethylene (LHDPE) ) , crosslinked Polyethylene (XLPE) , and Polypropylene (PP) . The reservoir can also be a tank in which an inner surface is coated with any of the materials described above. In an embodiment, the reservoir can be made of Polypropylene which can maintain electrical isolation even if the target solution contained in the reservoir is electrically charged.
A capacity of the reservoir can be at least 0.1 Liter (L) , 0.5 L, 1.0 L, 1.5 L, 2.0 L, 2.5 L, 3.0 L, 3.5 L, 4.0 L, 4.5 L, 5.0 L, 5.5 L, 6.0 L, 6.5 L, 7.0 L, 7.5 L, 8.0 L, 8.5 L, 9.0 L, 9.5 L, 10 L, 15 L, or 20 L. The capacity of the reservoir can provide a spray coverage of at least 500 square feet (sq ft) , 1000 sq ft, 1500 sq ft, 2000 sq ft, 2500 sq ft, 3000 sq ft, 3500 sq ft, 4000 sq ft, 4500 sq ft, 5000 sq ft, 6000 sq ft, ,000 sq ft, 8000 sq ft, 9000 sq ft, or 10000 sq ft. The capacity of the reservoir can enable a run time of the electrostatic spraying device at least 3 minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes, 30 minutes, 35 minutes, 40 minutes, 45 minutes, 50 minutes, 55 minutes, 60 minutes, 70 minutes, 80, minutes, 90 minutes, 100 minutes, 110 minutes or 120 minutes per tank.
The liquid atomizer 202 can be configured to break the stream of target stream, which is transported from the reservoir though the fluid passageway 203, into a spray of fine droplets (e.g., droplet having a size from 10 micrometers to 1000 micrometers) . The liquid atomizer can comprise one or more nozzles each having one or more orifices. In some instances, multiple nozzles can be mounted on a manifold, such that the target solution is sprayed simultaneously  from the multiple nozzles. A cap 222 can be provided to cover an outlet of the liquid atomizer and/or an outlet of the electrostatic spraying device. The cap can be electrically insulating.
In some instances, atomization of target solution can be implemented with a hydraulic nozzle. The hydraulic nozzle can comprise one or more orifices having a reduced cross-sectional dimension than an upstream channel. A speed and pressure of the fluid stream passing through the nozzle can be increased due to the reduced cross section when the fluid stream travels to the orifice. Atomization can be induced by the increased pressure which causes the liquid to breakup. After the liquid passes through the nozzle orifice, a spray can be developed. In some instances, atomization of target solution can be implemented with a pneumatic nozzle. Atomization can be induced by combining a stream of compressed air with the target solution either internally to the nozzle or outside of the nozzle. A high degree of atomization (e.g., fine droplets) can be achieved by pneumatic atomization. Pneumatic nozzles can be used, for example, to atomize fluids that are more viscous than water. In some instances, atomization of target solution can be implemented with an ultrasonic atomization nozzle. An ultrasonic nozzle operates by converting high frequency sound waves into mechanical energy that is transferred into the liquid, creating standing waves. As the liquid exits the atomizing surface of the nozzle, it is broken into a fine mist of droplets.
The spray nozzle can be made with an electrically conductive material. Optionally, the spray nozzle can be made with an insulating material. In some instances, the spray nozzle can be made with metal such as steel. A property of the spray, including at least a spray pattern (e.g., flat fan, full cone, hollow cone, fog or mist) , a flow rate, a droplet size, a distribution and a spray range, can be designed or predetermined by selection of nozzles. The nozzle can be detachable and replaceable with respect to the fluid passageway. For instance, multiple nozzles having different properties can be provided to the electrostatic sprayer device, each producing a spray having different droplet size, spray pattern, spray range and/or flow rate.
The target solution can be transported from the reservoir to the nozzle with aid of the fluid transfer device 206. In some instances, the fluid transfer device can comprise a pump which is operably coupled to the reservoir or the at least one fluid passageway, e.g., in fluidic communication with the fluid passageway. The pump can cause a pressure differential to draw the target solution from the reservoir toward the liquid atomizer and also expel the target  solution out of the liquid atomizer. A trigger 213 can be provided to control a switch on and switch off of the pump. For instance, the pump can be actuated when the operator holds the handle and presses the trigger down, thereby the target solution is transferred to the nozzle and sprayed out.
Examples of the pump can include, but not limited to, a centrifugal pump a piston pump, a micropump, and a peristaltic pump. In some instance, the fluid transfer device can comprise a pressurizing device configured to pressurize the target solution within the reservoir. The pressurizing device can comprise a high-pressure air tank in communication with the reservoir. Compressed air can be provided into the reservoir to increase a pressure therein, forcing the target solution flowing toward the liquid atomizer. A flow rate of the pump, which is the volume of fluid moved in the unit of time, can be at least 1.0 ounce/min, 1.5 ounce/min, 2.0 ounce/min, 2.5 ounce/min, 3.0 ounce/min, 3.5 ounce/min, 4.0 ounce/min, 4.5 ounce/min, 5.0 ounce/min, 5.5 ounce/min, 6.0 ounce/min, 6.5 ounce/min, 7.0 ounce/min, 7.5 ounce/min, 8.0 ounce/min, 8.5 ounce/min, 9.0 ounce/min, 9.5 ounce/min, 10 ounce/min, 15 ounce/min, 20 ounce/min, 25 ounce/min, 30 ounce/min, 40 ounce/min, or 50 ounce/min. The flow rate of the pump can be adjustable either by the operator.
The electrostatic charging system 204 can be configured to electrostatically charge the target solution. The electrostatic charging system can comprise an electrostatic generator module that is configured to generate an electrostatic voltage. The electrostatic charging system can comprise an electrostatic charging module that is electrically coupled to the electrostatic generator module and configured to add charges to the target solution. An electrostatic charging to the target solution can be optional. An electrostatic switch 224 can be provided to the sprayer to switch on or switch off the electrostatic system. A polarity of the charged spray can be switched between a positively charged and a negatively charged by changing a polarity of the generated electrostatic voltage. For instance, a switch can be provided to the sprayer to select the polarity of the charged spray.
The electrostatic generator module can produce static charges at high voltage and low current. The electrostatic generator module can be, for example, a Van de Graaff generator that uses a friction between two different materials to generate electrostatic charges. The electrostatic generator module can be, for example, an electrostatic wind converter (EWICON)  which generates the electrical power by forcing the charges to move in the opposite direction of the electric field by the wind to increase the energy of the system. The electrostatic generator module can produce a DC voltage at a magnitude of at least 1 kilovolt, 1.5 kilovolts, 2 kilovolts, 2.5 kilovolts, 3 kilovolts, 3.5 kilovolts, 4 kilovolts, 4.5 kilovolts, 5 kilovolts, 5.5 kilovolts, 6 kilovolts, 6.5 kilovolts, 7 kilovolts, 7.5 kilovolts, 8 kilovolts, 8.5 kilovolts, 9 kilovolts, 9.5 kilovolts, 10 kilovolts, 11 kilovolts, 12 kilovolts, 13 kilovolts, 14 kilovolts, 15 kilovolts, 20 kilovolts, 25 kilovolts, 30 kilovolts, 35 kilovolts, 40 kilovolts, 50 kilovolts, 60 kilovolts, 70 kilovolts, 80 kilovolts, 90 kilovolts or 100 kilovolts, at an input voltage of at most 48V, 36V, 24V, 12V or lower. In some instances, the magnitude of the charging voltage produced by the electrostatic generator module can be adjustable/variable. For instance, a rotary knob can be provided at the housing of the electrostatic sprayer device, enabling the operator to select or set the magnitude of the charging voltage. For instance, the magnitude of the charging voltage can be adjusted on basis of at least a sensor detection indicating a property of the target solution stored in the reservoir. The property of the target solution can include at least one of an electrical conductivity, a dielectric constant, a density, a dynamic viscosity, a surface tension, or a temperature of the target solution, which affect the chargeability of the spray liquid. In an exemplary example, a sensor can be provided in the reservoir to detect at least one of an electrical conductivity and a dielectric constant of the target solution. In an exemplary example, a high charging voltage can be applied to the target solution having a low electrical conductivity. Additionally, the magnitude of the charging voltage can be adjusted on basis of an operational parameter such as a flow rate of the pump (e.g., speed of spraying) . For instance, a high charging voltage can be applied to the target solution when the speed of spraying is high. Additionally, the magnitude of the charging voltage can be adjusted on basis of an environmental parameter such as a height of the target object. For instance, a high charging voltage can be applied to the target solution when the spray height is great, thereby the electrostatic charges can sustain long at the droplets.
The electrostatic charging module can be configured to charge the target solution using the charging voltage produced by the electrostatic generator module. The electrostatic charging module can comprise an element that either transmits electrical charges into the target solution or induces electrical charges onto the target solution. The electrostatic charging can be  performed without requiring physical contact with the target solution and/or emission of ions. Configuration of the electrostatic charging module will be described with reference to embodiments described hereinafter in the disclosure.
Components in the electrostatic spraying device, including at least the pump and the electrostatic charging system, can be powered by a power source (not shown in FIG. 2) . The power source can comprise a battery. Examples of the battery can include a DC (direct current) battery and a AC (alternate current) battery. The battery can be a rechargeable battery. Different combinations of electrode materials and electrolytes can be used in the a rechargeable battery, including lead–acid, zinc-air, nickel–cadmium (NiCd) , nickel–metal hydride (NiMH) , lithium-ion (Li-ion) , Lithium Iron Phosphate (LiFePO4) , and lithium-ion polymer (Li-ion polymer) . For instance, in case the electrostatic spraying device is a cordless device such as a handheld sprayer or a backpack sprayer, the power source can comprise one or more batteries. The battery can be detachable and/or replaceable to enable an extended spraying. The battery can be integrated with another component of the electrostatic spraying device, for example the handle. The battery can be rechargeable, such as a lithium-ion battery.
A capacity of the battery can be at least 500 mAh, 1000 mAh, 1500 mAh, 2000 mAh, 2500 mAh, 3000 mAh, 3500 mAh, 4000 mAh, 4500 mAh, 5000 mAh, 5500 mAh, 6000 mAh, 6500 mAh, 7000 mAh, 7500 mAh, 8000 mAh, 8500 mAh, 9000 mAh, 9500 mAh, or 10000 mAh. The capacity of the battery can enable a continuous spraying of at least 0.5 hr, 1.0 hr, 1.5 hr, 2.0 hr, 2.5 hr, 3.0 hr, 3.5 hr, 4.0 hr, 4.5 hr, 5.0 hr, 5.5 hr, 6.0 hr, 6.5 hr, 7.0 hr, 7.5 hr, 8.0 hr, 8.5 hr, 9.0 hr, 9.5 hr, 10 hr, 15 hr, or 20 hr. The capacity of the battery can enable a run time of the electrostatic spraying device at least 3 minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes, 30 minutes, 35 minutes, 40 minutes, 45 minutes, 50 minutes, 55 minutes, 60 minutes, 70 minutes, 80, minutes, 90 minutes, 100 minutes, 110 minutes or 120 minutes.
An output voltage of the battery can be at least 12 V, 24 V, 36V, 48 V or higher. In some instances, the output voltage of the battery can be adjustable. A charger can be provided to the electrostatic sprayer device. The charger can be a separate apparatus. For example, the battery can be detached from the electrostatic sprayer device and charged by coupling to the charger. The charger can be provided within the electrostatic sprayer device in a form of charger circuit, enabling to charge the battery when the battery is coupled to the electrostatic  sprayer device. A charge time of the battery can be less than 240 minutes, 210 minutes, 180 minutes, 150 minutes, 120 minutes, 90 minutes, 60 minutes, 30 minutes, or 10 minutes.
A ground wire can be provided to the electrostatic sprayer device, thereby connecting at least the electrostatic generator module to a ground. The ground wire can be provided and positioned to enable an electrical contact with the operator during spraying operation. In an embodiment, the ground wire can be positioned at a handle 211 of the electrostatic sprayer device, such that the operator is in electrical contact with the ground wire when the operator grasps the handle during spraying operation. For instance, the ground wire can comprise a metal strip 212 which is partially embedded in the handle. In another embodiment, the ground wire can be electrically connected to a wristband through a conductive cable, and the wristband can be worn by the operator during operation. For instance, the wristband can comprise a spiral conductive cable having a distal end provided with a plug, and the plug can be adapted to insert into a hole on the housing of the electrostatic sprayer device to be connected with the ground wire.
The electrostatic sprayer device can be provided with a device control system 214 which regulates an operation of various components of the electrostatic sprayer device. The device control system can comprise one or more circuits, such as PCB (Printed Circuit Board) positioned in the housing of the electrostatic sprayer device. For instance, the device control system can be programed to regulate a flow rate and/or a flow range (e.g., a distance to which the droplets can reach) of the droplet spray. The electrostatic sprayer device can be further provided with an interface through which the operator can monitor an operating status of the sprayer and/or input or select an operating parameter. For instance, the interface can comprise an array of LEDs, a lighting pattern of which indicates an operating status of the sprayer (e.g., a fault) . For instance, the interface can comprise an electronic display on which an operating status of the sprayer is displayed (e.g., whether the sprayer is properly grounded) . The electronic display can be a touch screen which enables the operator to select and input an operating parameter (e.g., spray range) . For instance, one or more buttons or knobs can be provided on the housing of the sprayer, enabling the operator to select a desired operating parameter (e.g., strength of charging) .
The electrostatic sprayer device can be provided with an electromagnetic shielding component (not shown in FIG. 2) to prevent electrical circuits of the electrostatic sprayer from an interference originated from the electrostatic charging system or an external environment. As used here, the term “electromagnetic shielding” generally means the practice of reducing or eliminating an electrostatic field, an electromagnetic field and/or an electrical signal in a space by blocking the electrostatic field, electromagnetic field and/or electrical signal with barriers. During operation, the electrostatic charging system (e.g., the electrostatic generator module) can generate at least one of an electrostatic field, an electromagnetic field and/or an electrical signal (e.g., radio frequency signal) which can interference with an operation of circuits of the electrostatic sprayer device or even damage the circuits. In some instances, the electromagnetic shielding component can be provided to the electrostatic charging system to prevent an emission/leakage of the electrostatic field, electromagnetic field and/or electrical signal to an outside environment. For instance, at least one of the electrostatic generator module, the electrostatic charging module and the wire/cable therebetween can be enclosed by the electromagnetic shielding component to isolate them from their surrounding environment. In some instances, the electromagnetic shielding component can be provided to the device control system. For instance, the PCB of the device control system can be enclosed by the electromagnetic shielding component to isolate it from external electrostatic field, electromagnetic field and/or electrical signal.
The electromagnetic shielding component can comprise a cage to receive therein the device control system, the electrostatic generator module or electrostatic charging module. The cage can be made of a sheet, a mesh of a material or a combination thereof. The electromagnetic shielding component can comprise a mesh surrounding the electrical wire/cable. The electromagnetic shielding component can comprise a coating or layer of a material on the outside and/or inside of an enclosure of the device control system, the electrostatic generator module or electrostatic charging module. In some instances, a material of the electromagnetic shielding component can comprise an electrically conductive material such as copper, brass, nickel, silver, steel, and tin.
A variety of accessories can be provided to the electrostatic sprayer device, including but not limited to extension wands, tanks, nozzles, batteries, carry straps, to extend the functionality  and application scenario. For instance, a replaceable nozzle can be coupled to the sprayer to provide a full cone spray at a droplet size of 40 microns . For instance, an extension wand can be coupled to the electrostatic sprayer device thereby providing extra reach of the spray. For instance, a carry strap can allow the operator to free up both hands while keeping the sprayer within reach. In an exemplary configuration, a system status indicator, such as a LED light or an array of LED lights, can be provided at the electrostatic sprayer device to indicate an operating status of the electrostatic sprayer device. For instance, an ON/OFF of the LED light can indicate an ON/OFF of the electrostatic sprayer device or an ON/OFF of the electrostatic charging system. The system status indicator can be provided for example in proximity to the nozzle, such that an operator of the electrostatic sprayer device can observe the operating status. In an exemplary configuration, an end cap can be provided to the nozzle. The end cap can be made of electrically insulating material such as rubber, PVC, fiberglass, plastic, resin. In an exemplary configuration, a tank switch can be additionally provided to the fluid reservoir to ensure a secure locking of the fluid reservoir to a body of the electrostatic sprayer device.
FIG. 3 is a cross-sectional view showing configuration of an electrostatic sprayer device adapted to operate with a carrier in accordance with embodiments of the disclosure. The electrostatic sprayer device can operate together with a carrier. The carrier can be a system that does not provide the ability of electrostatic charging and solution spraying. An example of the carrier can be a scrubber which is configured to clean a surface. The scrubber can be a walk-behind scrubber or a rider scrubber. Another example of the carrier can be a vehicle capable of moving on a surface (e.g., ground) , either in a semi-autonomous or an autonomous manner. The carrier can comprise one or more components that are necessary to effect an operation of the electrostatic sprayer device. For instance, the carrier can comprise at least one of a liquid reservoir, a power source, an electrostatic charging system or a pump. These components can accordingly omitted from a design of the electrostatic sprayer device. The electrostatic sprayer device can be actuated by manipulating a system switch 317.
The electrostatic sprayer device provided in the embodiment can be releasably coupled to and detached from the carrier. The electrostatic sprayer device can comprise an adapter 315 that is configured to couple the electrostatic sprayer device to the carrier. The adapter can comprise at least one electrical interfaces which is adapted to provide electrical connectivity  between the electrostatic sprayer device and the carrier. For instance, the electrostatic sprayer device, which has no battery onboard, can receive electrical power from a power source of the carrier. The adapter can comprise a grounding interface which provides a grounding to the electrostatic sprayer device. The grounding interface can be electrically connected the ground wire of the electrostatic sprayer device with a ground wire of the carrier. The adapter can comprise at least one mechanical interface which releasably locks the electrostatic sprayer device onto the carrier. The mechanical interface can comprise, for example, a releasable snap lock which enables both a secured locking and an easy detaching. The electrostatic sprayer device can additionally comprise a manipulation section such as a handle 311 to facilitate a manipulation of the sprayer.
The electrostatic sprayer device can be operably coupled to from the carrier. The operable coupling can provide a fluidic connection between the electrostatic sprayer device and the carrier. In an embodiment, the electrostatic sprayer device can comprise at least one port 316 that is configured to operably couple the electrostatic sprayer device to the carrier. The port can comprise at least one fluid passageway 303 for enabling transport of the target solution from a tank carried on the carrier to the nozzle in the electrostatic sprayer device.
The electrostatic sprayer device can comprise at least one liquid atomizer 302. The liquid atomizer can be operably coupled to the at least one fluid passageway 303 and configured to atomize and dispense a target solution. Examples of the liquid atomizer can comprise one or more spray nozzles. In some instances, the target solution can be transported from a tank carried on the carrier through the fluid passageway with the aid of a pump. In some instances, the target solution can be transported from a liquid reservoir carried on the electrostatic sprayer device through the fluid passageway with the aid of a pump. The pump can be either carried on the carrier or on the electrostatic sprayer device (e.g., pump 306) .
The electrostatic sprayer device can comprise an electrostatic generator module 304 that is configured to electrostatically charge the target solution. The electrostatic system can comprise an electrostatic generator module that is configured to generate a fixed or a variable electrostatic voltage. The electrostatic system can comprise an electrostatic charging module that is coupled to the electrostatic generator module and configured to electrostatically charge the target solution without requiring physical contact with the target solution and/or emission of  ions. The electrostatic system can be grounded via the adapter, as discussed hereinabove in the disclosure. For instance, a ground wire can be electrically coupled to the electrostatic generator and then to a grounding element of the carrier via the grounding interface of the adaptor. The electrostatic system can be selectively actuated by manipulating an electrostatic system switch 318.
FIG. 4 is an enlarged cross-sectional view showing an electrostatic charging in the exemplary electrostatic sprayer device of FIG. 3. The electrostatic charging scheme described with reference to FIG. 3 and FIG. 4 can be adapted to various types of electrostatic sprayer device in the disclosure, such as a handheld sprayer (e.g., the one described with reference to FIG. 2) , a backpack sprayer and a sprayer carried on a carrier. The electrostatic system can be configured to electrostatically charge the target solution before the target solution is atomized into a spray by the at least one nozzle 302. The electrostatic system can comprise the electrostatic generator module 304 and an electrostatic charging module electrically coupled to the electrostatic generator module via a charging cable 322. It is apparent to those in the art that the electrostatic charging described with reference to FIG. 3 and FIG. 4 is compatible with the embodiment described with reference to FIG. 2.
The electrostatic generator module can be configured to generate a fixed or variable electrostatic voltage ranging from about 1 kilovolt to 100 kilovolts, as described hereinabove in the disclosure. The electrostatic charging module can comprise at least one electrode 321 in proximity to the conductive nozzle 302. The electrode can be electrically coupled to the electrostatic generator module via a charging cable. In some instances, the electrode can be provided as an elongated pin that extends in a direction substantially perpendicular to a flow direction of the target solution within the nozzle. The elongated pin can be positioned not in direct contact with the nozzle. A clearance between a tip of the elongated pin and the nozzle can be in a range about 0.5 millimeter (mm) to about 10 mm. In some instance, the clearance can be 10 mm, 9.5 mm, 9.0 mm, 8.5 mm, 8.0 mm, 7.5 mm, 7.0 mm, 6.5 mm, 6.0 mm, 5.5 mm, 5.0 mm, 4.5 mm, 4.0 mm, 3.5 mm, 3.0 mm, 2.5 mm, 2.0 mm, 1.5 mm, 1.0 mm, or 0.5 mm. The clearance can be in an range between any value selected from above listed values. In an embodiment, the clearance can be in a range about 1.0 mm to about 1.5 mm.
Upon application of the electrostatic voltage generated from the electrostatic generator module, an electric arc can be generated across the clearance, thereby forming an electrical path between the electrostatic generator module and the conductive nozzle. Charges generated at the electrostatic generator module can therefore be transported to the nozzle through the charging cable and the elongated pin. In some instances, a positive electrostatic voltage is generated at the electrostatic generator module, therefore positive charges can be added to the target solution and the spray existing the nozzle can be positively charged. In some instances, a negative electrostatic voltage is generated at the electrostatic generator module, therefore negative charges can be added to the target solution and the spray existing the nozzle can be negatively charged. In a testing experiment where the electrostatic voltage generated at the electrostatic generator module is 7 kilovolts and a flow rate is 0.028-0.1 L/min, the spray existing the nozzle carries an electrostatic voltage of 4.5 to 5 kilovolts.
The nozzle can be at least partially encapsulated in a first insulating seat 323. The elongated pin can also be at least partially encapsulated in a second insulating seat 324. The first and second insulating seat can be manufactured with an electrically insulating material such as rubber and Polypropylene (PP) . The first insulating seat can extend outward more than the nozzle in a flowing direction of the target solution, such that the operator’s finger does not contact the nozzle to prevent an electric shock. The first insulating seat can be detachably coupled to the second insulating seat. In an embodiment, the first insulating case can be provided with a recess or hole having a shape mating with the plug-like second insulating seat, thereby the second insulating seat can be coupled to the first insulating seat by a snap-fit. In another embodiment, the first insulating case can be provided with a threaded hole mating with the plug-like threaded second insulating seat, thereby the second insulating seat can be screwed onto the first insulating seat. The clearance between the tip of the elongated pin and the nozzle can be maintained once the first and second insulating cases are coupled together. In some instances, the clearance between the tip of the elongated pin and the nozzle can be adjusted by providing a screw coupling between the first and second insulating seat.
The nozzle, optionally together with the first insulating seat, can be detachably coupled to the fluid passageway, enabling a replacement of the nozzle. For instance, the operator can pull out the nozzle from the first insulating seat and then insert another nozzle into the first  insulating seat. For instance, the operator can disconnect the first insulating seat from the second insulating seat and replace the first insulating seat together with the nozzle with new ones.
The disclosure also provides a method of electrostatically spraying a target solution. The method can comprise transporting a target solution from a reservoir to at least one nozzle via at least one fluid passageway; electrostatically charging the target solution as the target solution flows through the at least one fluid passageway towards the at least one nozzle; and atomizing the electrostatically charged target solution into a spray as the electrostatically charged target solution is being dispensed from the at least one nozzle. The target solution can be electrostatically charged without requiring (1) physical contact with the target solution and/or (2) emission of ions. The method can further comprise detaching and refilling the reservoir. The method can further comprise replacing the at least one nozzle. The method can further comprise switching off the electrostatically charging. The method can further comprise adjusting a strength/degree in the electrostatically charging.
FIG. 5 is a cross-sectional view showing configuration of another electrostatic sprayer device adapted to operate with a carrier in accordance with embodiments of the disclosure. The electrostatic charging in the exemplary electrostatic sprayer device is shown in the enlarged cross-sectional view of FIG. 6. The electrostatic charging scheme described with reference to FIG. 5 and FIG. 6 can be adapted to various types of electrostatic sprayer device in the disclosure, such as a handheld sprayer (e.g., the one described with reference to FIG. 2) , a backpack sprayer and a sprayer carried on a carrier.
Components of the electrostatic sprayer device of FIG. 5, including the at least one liquid atomizer 302, the electrostatic generator module 304, the pump 306, the adapter 315, the port 316 and the handle 311, can be substantially the same as those described with reference to FIG. 3 except for the fluid passageway 503. The fluid passageway 503 in the exemplary electrostatic sprayer device can be made of an electrically insulating material such as rubber and Polypropylene (PP) . At least a portion of an inner surface of the fluid passageway can comprise a conductive component 607 which physically contacts the target solution. Examples of the conductive component can comprise a metal wire, plate or tube. In some instances, the fluid  passageway can be an electrically insulating tubing having metal coil disposed at the inner surface thereof.
The electrostatic system can be configured to electrostatically charge the target solution before the target solution reaches the at least one nozzle. The electrostatic charging module can comprise a conductive ring 625 positioned around a periphery of at least a portion of the fluid passageway 303. In some instances, the electrostatic charging module can comprise a plurality of conductive rings. In some instances, the plurality of conductive rings can be positioned axially apart from each other. In some instances, the plurality of conductive rings can also be positioned at least partially overlapping with each other. The conductive ring can be in contact with the periphery of the fluid passageway. The conductive ring can be electrically coupled to the electrostatic generator module via the charging cable 322. The conductive ring can be manufactured with a metal material. Examples of the metal material can include, but not limited to, copper, steel, silver, aluminum, zinc, brass, nickel, or an alloy thereof. An axial width of the conductive ring can be at least 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 10 mm, 11 mm, 12 mm, 13 mm, 14 mm, 15 mm, 16 mm, 17 mm, 18 mm, 19 mm, 20 mm, 21 mm, 22 mm, 23 mm, 24 mm, 25 mm, 26 mm, 27 mm, 28 mm, 29 mm, 30 mm, 35 mm, 40 mm, 45 mm, 50 mm, 55 mm, 60 mm, 65 mm, 70 mm, 85 mm, 90 mm, 95 mm or 100 mm. In some instances, the conductive ring can be a full ring. In some instances, the conductive ring can be a partial ring.
The conductive component 607 can be in the same potential as the electrostatic voltage generated from the electrostatic generator module. With the potential at the conductive component, a potential can be induced at the conductive component 607 within the fluid passageway. The target solution can be electrostatically charged by the conductive component which physically contacts and transfers charges into the target solution. The target solution can be positively charged or negatively charged depending on the polarity of the electrostatic voltage generated at the electrostatic generator module. In a testing experiment where the electrostatic voltage generated at the electrostatic generator module being 7 kilovolts and a flow rate of target solution being 0.028-0.1 L/min, the spray exiting the nozzle carries an electrostatic voltage of 3.0 to 3.5 kilovolts.
The nozzle can be at least partially encapsulated in an insulating seat 323, as discussed in the embodiment described with reference to FIG. 4 in the disclosure. The insulating seat can prevent an electric shock. The insulating seat can be detachably coupled to fluid passageway, thereby enabling a replacement of the nozzle. For instance, the operator can pull out the nozzle from the insulating seat and then insert another nozzle into the insulating seat. For instance, the operator can pull out the insulating seat, which encapsulates the nozzle, from the fluid passageway and replace the insulating seat together with the nozzle with new ones.
The disclosure also provides a system comprising the electrostatic sprayer device as described hereinabove with reference to FIG. 3 to FIG. 6 and the carrier. The carrier can be provided with cleaning components such as scrub head and squeegee, thereby being capable of cleaning a surface (e.g., a floor) . The system can therefore be capable of cleaning a surface and in the meantime, spraying the target solution (e.g., disinfectant) onto the surface or other objects. The carrier can be driven by an operator or programed to move autonomously. In some instances, the carrier can be powered by power grid. In some instances, a battery pack can be provided onboard the carrier to cover an even wider cleaning area.
The disclosure also provides a method of electrostatically spraying a target solution. The method can comprise transporting a target solution from a reservoir to at least one nozzle via at least one fluid passageway; electrostatically charging the target solution as the target solution flows through the at least one fluid passageway towards the at least one nozzle; and atomizing the electrostatically charged target solution into a spray as the electrostatically charged target solution is being dispensed from the at least one nozzle. The target solution can be electrostatically charged without requiring (1) physical contact with the target solution and/or (2) emission of ions. The method can further comprise detaching and refilling the reservoir. The method can further comprise replacing the at least one nozzle. The method can further comprise switching off the electrostatically charging. The method can further comprise adjusting a strength/degree in the electrostatically charging.
The disclosure also provides a method of electrostatically spraying a target solution. The method can comprise coupling an electrostatic sprayer device to a carrier via an adaptor; transporting the target solution from the carrier to at least one nozzle of the electrostatic sprayer device via a port, the port comprising at least one fluid passageway for enabling transport of the  target solution from the carrier to the at least one nozzle; electrostatically charging the target solution as the target solution flows through the at least one fluid passageway towards the at least one nozzle; and atomizing the electrostatically charged target solution into a spray as the electrostatically charged target solution is being dispensed from the at least one nozzle. The target solution can be electrostatically charged without requiring (1) physical contact with the target solution and/or (2) emission of ions. The method can further comprise switching on or switching off the electrostatically charging. The method can further comprise adjusting a strength/degree in the electrostatically charging.
The present disclosure provides a device control system that is programmed to effect and regulate operation of the electrostatic sprayer device. FIG. 7 shows a computer system 701 that is programmed or otherwise configured to implement the device control system (e.g., the device control system 214) . The computer system 701 can regulate various aspects of the present disclosure, for example, actuation of the electrostatic system, magnitude of electrostatic voltage generated at the electrostatic generator, polarity in charging the target solution, pattern of the spray, range/distance of spraying, and other functions and parameters as described elsewhere herein.
The computer system 701 can include a central processing unit (CPU, also “processor” and “computer processor” herein) 709, which can be a single core or multi core processor, or a plurality of processors for parallel processing. The computer system 701 can also include memory 710 (e.g., random-access memory, read-only memory, flash memory) , electronic storage unit 715 (e.g., hard disk) , communication interface 720 (e.g., network adapter) for communicating with one or more other systems, and peripheral devices 725, such as cache, other memory, data storage and/or electronic display adapters. The memory 710, storage unit 715, interface 720 and peripheral devices 725 can be in communication with the CPU 709 through a communication bus. The computer system 701 can be operatively coupled to a computer network 730 with the aid of the communication interface 720. The network 730 can be a telecommunication, the Internet, or an intranet and/or extranet that is in communication with the Internet. The network 730 can include one or more computer servers, which can enable distributed computing, such as cloud computing. Such cloud computing can be provided by  cloud computing platforms such as, for example, Amazon Web Services (AWS) , Microsoft Azure, Google Cloud Platform, and IBM cloud.
The CPU 709 can execute a sequence of machine-readable instructions, which can be embodied in a program or software. The instructions can be stored in a memory, such as the memory 710. The instructions can be directed to the CPU 709, which can subsequently program or otherwise configure the CPU 709 to implement methods of the present disclosure. Examples of operations performed by the CPU 709 can include fetch, decode, execute, and writeback. The CPU 709 can be part of a circuit, such as an integrated circuit. One or more other components of the system 701 can be included in the circuit. In some cases, the circuit can be an application specific integrated circuit (ASIC) .
The storage unit 715 can store files, such as drivers, libraries and saved programs. The storage unit 715 can store user data, e.g., user preferences and user programs. The computer system 701 in some cases can include one or more additional data storage units that are external to the computer system 701, such as located on a remote server that is in communication with the computer system 701 through an intranet or the Internet.
The computer system 701 can communicate with one or more remote computer systems through the network 730. For instance, the computer system 701 can communicate with a remote computer system. Examples of remote computer systems include personal computers (e.g., portable PC) , slate or tablet PC’s (e.g., 
Figure PCTCN2021124671-appb-000001
iPad, 
Figure PCTCN2021124671-appb-000002
Galaxy Tab) , telephones, Smart phones (e.g., 
Figure PCTCN2021124671-appb-000003
iPhone, Android-enabled device, 
Figure PCTCN2021124671-appb-000004
) , or personal digital assistants. The user can access the computer system 701 via the network 730. For example, the operator can control the electrostatic sprayer device via a software (e.g., App) running on the mobile electronic device.
Methods as described herein can be implemented by way of machine executable code stored on an electronic storage location of the computer system 701, such as, for example, on the memory 710 or storage unit 715. The machine executable or machine readable code can be provided in the form of software. During use, the code can be executed by the processor 709. In some cases, the code can be retrieved from the storage unit 715 and stored on the memory 710 for ready access by the processor 709. In some situations, the electronic storage unit 715 can be precluded, and machine-executable instructions are stored on memory 710.
The computer system 701 can include or be in communication with an electronic display 735 that comprises a user interface (UI) 740 for displaying various operation parameter (e.g., remaining run time, remaining solution, flow rate, spray pattern, particle size, etc. ) of the electrostatic sprayer device. The operator can also input desired operation parameter through the user interface 740. Examples of UI’s include, without limitation, a graphical user interface (GUI) and web-based user interface.
Methods and systems of the present disclosure can be implemented by way of one or more algorithms. An algorithm can be implemented by way of software upon execution by the central processing unit 709. The algorithm can, for example, generate instructions to operate one or more components of the electrostatic sprayer device.
It should be understood from the foregoing that, while particular implementations have been illustrated and described, various modifications can be made thereto and are contemplated herein. It is also not intended that the invention be limited by the specific examples provided within the specification. While the invention has been described with reference to the disclosure, the descriptions and illustrations of the preferable embodiments herein are not meant to be construed in a limiting sense. Furthermore, it shall be understood that all aspects of the invention are not limited to the specific depictions, configurations or relative proportions set forth herein which depend upon a variety of conditions and variables. Various modifications in form and detail of the embodiments of the invention will be apparent to a person skilled in the art. It is therefore contemplated that the invention shall also cover any such modifications, variations and equivalents.

Claims (52)

  1. An electrostatic sprayer device, comprising:
    a reservoir configured to hold a target solution;
    at least one nozzle operably coupled to the reservoir via at least one fluid passageway, wherein the at least one nozzle is configured to atomize the target solution into a spray;
    a pump operably coupled to the reservoir or the at least one fluid passageway, wherein the pump is configured to propel the target solution from the reservoir to the at least one nozzle via the at least one fluid passageway;
    an electrostatic system that is configured to electrostatically charge the target solution without requiring (1) physical contact with the target solution and/or (2) emission of ions; and
    a power source configured to power the pump and the electrostatic system.
  2. The electrostatic sprayer device of claim 1, wherein the electrostatic system is configured to electrostatically charge the target solution before the target solution reaches the at least one nozzle.
  3. The electrostatic sprayer device of claim 1, wherein the electrostatic system is configured to electrostatically charge the target solution before the target solution is atomized into a spray by the at least one nozzle.
  4. The electrostatic sprayer device of claim 1, wherein the reservoir is detachable with respect to a body of the electrostatic sprayer device.
  5. The electrostatic sprayer device of claim 1, wherein the at least one nozzle is detachably coupled to the at least one fluid passageway.
  6. The electrostatic sprayer device of claim 1, wherein the least one nozzle comprises one or more orifices through which the target solution is expelled.
  7. The electrostatic sprayer device of claim 1, wherein the least one nozzle is made of an electrically conductive material.
  8. The electrostatic sprayer device of claim 1, wherein the electrostatic system comprises an electrostatic generator module that is configured to generate an electrostatic voltage.
  9. The electrostatic sprayer device of claim 8, wherein the target solution is electrostatically charged at an electrostatic voltage from about 4 KV to about 8 KV.
  10. The electrostatic sprayer device of claim 8, wherein the electrostatic generator module is configured to generate a fixed electrostatic voltage.
  11. The electrostatic sprayer device of claim 8, wherein the electrostatic generator module is configured to generate a variable electrostatic voltage.
  12. The electrostatic sprayer device of claim 1, wherein the electrostatic system comprises an electrostatic charging module having at least one electrode in proximity to the at least one nozzle, wherein the at least one electrode is not in direct contact with the at least one nozzle.
  13. The electrostatic sprayer device of claim 12, wherein the electrode is an elongated pin that extends in a direction perpendicular to a flow direction of the target solution.
  14. The electrostatic sprayer device of claim 13, wherein a clearance between a tip of the elongated pin and the at least one nozzle is about 1 millimeter (mm) to about 1.5 mm.
  15. The electrostatic sprayer device of claim 1, wherein the electrostatic charging module comprises a conductive ring positioned around a periphery of at least a portion of the fluid passageway.
  16. The electrostatic sprayer device of claim 15, wherein the fluid passageway is made of an electrically insulating material.
  17. The electrostatic sprayer device of claim 15, wherein a portion of an inner surface of the fluid passageway comprises a conductive component which physically contacts the target solution.
  18. The electrostatic sprayer device of claim 17, wherein the conductive component comprises a wire, a plate or a tube.
  19. The electrostatic sprayer device of claim 17, wherein the conductive component comprises steel.
  20. The electrostatic sprayer device of claim 1, wherein the target solution is positively charged by the electrostatic system such that droplets in the spray are positively charged.
  21. The electrostatic sprayer device of claim 1, wherein the target solution is negatively charged by the electrostatic system such that the droplets in the spray are negatively charged.
  22. The electrostatic sprayer device of claim 1, wherein the power source is detachable from a body of the electrostatic sprayer device.
  23. The electrostatic sprayer device of claim 1, wherein the power source is a direct current (DC) battery.
  24. The electrostatic sprayer device of claim 23, wherein the DC battery is replaceable or rechargeable.
  25. The electrostatic sprayer device of claim 1, further comprising an electrical grounding component operably coupled to the electrostatic system.
  26. The electrostatic sprayer device of claim 1, wherein the electrostatic sprayer device is sized and shaped to be held in a user’s hand.
  27. The electrostatic sprayer device of claim 26, wherein the electrostatic sprayer device includes a handle.
  28. The electrostatic sprayer device of claim 1, wherein a weight of the electrostatic sprayer device is from about 2.5 kilograms (kg) to about 3.5 kg.
  29. The electrostatic sprayer device of claim 1, wherein the electrostatic sprayer device comprises a trigger to actuate the electrostatic system.
  30. The electrostatic sprayer device of claim 1, further comprising a device control system that is configured to regulate an operation of at least one of the electrostatic system and the pump.
  31. The electrostatic sprayer device of claim 30, wherein the device control system comprises one or more circuits.
  32. The electrostatic sprayer device of claim 31, wherein the one or more circuits are provided on a printed circuit board (PCB) .
  33. The electrostatic sprayer device of claim 30, further comprising an electromagnetic shielding component that is configured to prevent the device control system from an electromagnetic interference originated from the electrostatic charging system or an external environment.
  34. The electrostatic sprayer device of claim 33, wherein the electromagnetic shielding component comprises a metal cage enclosing the device control system.
  35. A method of electrostatically spraying a target solution, comprising:
    transporting a target solution from a reservoir to at least one nozzle via at least one fluid passageway;
    electrostatically charging the target solution as the target solution flows through the at least one fluid passageway towards the at least one nozzle, wherein the target solution is electrostatically charged without requiring (1) physical contact with the target solution and/or (2) emission of ions; and
    atomizing the electrostatically charged target solution into a spray as the electrostatically charged target solution is being dispensed from the at least one nozzle.
  36. The method of claim 35, wherein the target solution is electrostatically charged before the target solution reaches the at least one nozzle.
  37. The method of claim 35, wherein the target solution is electrostatically charged before the target solution is atomized into a spray by the at least one nozzle.
  38. The method of claim 35, further comprising detaching and refilling the reservoir.
  39. The method of claim 35, further comprising detaching and replacing the at least one nozzle.
  40. The method of claim 35, wherein the least one nozzle is made of an electrically conductive material.
  41. The method of claim 35, wherein the target solution is electrostatically charged at an electrostatic voltage from about 4 KV to about 8 KV.
  42. The method of claim 35, wherein the target solution is electrostatically charged by at least one electrode in proximity to the at least one nozzle, wherein the at least one electrode is not in direct contact with the at least one nozzle.
  43. The method of claim 42, wherein the electrode is an elongated pin that extends in a direction perpendicular to a flow direction of the target solution.
  44. The method of claim 43, wherein a clearance between a tip of the elongated pin and the at least one nozzle is about 1 millimeter (mm) to about 1.5 mm.
  45. The method of claim 35, wherein the target solution is electrostatically charged by a conductive ring positioned around a periphery of at least a portion of the fluid passageway.
  46. The method of claim 45, wherein the fluid passageway is made of an electrically insulating material.
  47. The method of claim 45, wherein a portion of an inner surface of the fluid passageway comprises a conductive component which physically contacts the target solution.
  48. The method of claim 47, wherein the conductive component comprises a wire, a plate or a tube.
  49. The method of claim 35, wherein the target solution is positively charged such that droplets in the spray are positively charged.
  50. The method of claim 35, wherein the target solution is negatively charged such that the droplets in the spray are negatively charged.
  51. The method of claim 35, further comprising switching off the electrostatically charging.
  52. The method of claim 35, further comprising adjusting a strength/degree in the electrostatically charging.
PCT/CN2021/124671 2020-10-19 2021-10-19 Electrostatic spraying devices and methods WO2022083578A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2020121802 2020-10-19
CNPCT/CN2020/121802 2020-10-19

Publications (1)

Publication Number Publication Date
WO2022083578A1 true WO2022083578A1 (en) 2022-04-28

Family

ID=81291552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124671 WO2022083578A1 (en) 2020-10-19 2021-10-19 Electrostatic spraying devices and methods

Country Status (1)

Country Link
WO (1) WO2022083578A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204907641U (en) * 2015-09-09 2015-12-30 太仓市金港植保器械科技有限公司 Electronic wind liquor charging of backpack power electrostatic spray ware
CN106687218A (en) * 2014-09-04 2017-05-17 胜利创新公司 Electrostatic fluid delivery system
CN107110070A (en) * 2014-10-09 2017-08-29 静电喷涂系统有限公司 Portable induced electricity spraying apparatus and kit
CN108698056A (en) * 2015-12-21 2018-10-23 胜利创新公司 Electrostatic fluid conveys knapsack system
US20190060922A1 (en) * 2017-08-31 2019-02-28 Victory Innovations Company Electrostatic Fluid Delivery System
WO2019094677A1 (en) * 2017-11-09 2019-05-16 Spraying Systems Co. Electrostatically charged spray device with ultrasonic atomization

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106687218A (en) * 2014-09-04 2017-05-17 胜利创新公司 Electrostatic fluid delivery system
CN107110070A (en) * 2014-10-09 2017-08-29 静电喷涂系统有限公司 Portable induced electricity spraying apparatus and kit
CN204907641U (en) * 2015-09-09 2015-12-30 太仓市金港植保器械科技有限公司 Electronic wind liquor charging of backpack power electrostatic spray ware
CN108698056A (en) * 2015-12-21 2018-10-23 胜利创新公司 Electrostatic fluid conveys knapsack system
US20190060922A1 (en) * 2017-08-31 2019-02-28 Victory Innovations Company Electrostatic Fluid Delivery System
WO2019094677A1 (en) * 2017-11-09 2019-05-16 Spraying Systems Co. Electrostatically charged spray device with ultrasonic atomization

Similar Documents

Publication Publication Date Title
US11623231B2 (en) Electrostatic fluid delivery system
CN108698056B (en) Electrostatic fluid conveying backpack system
US9138760B2 (en) Electrostatic liquid spray nozzle having an internal dielectric shroud
EP0775528B1 (en) Electrostatic spraying devices
US7150412B2 (en) Method and apparatus for electrostatic spray
US4358059A (en) Electrostatic spraying
CZ20031492A3 (en) Electrostatic spraying apparatus
MX2014012419A (en) Air flow switch for an electrostatic tool.
US20210346901A1 (en) Portable Spray System
JP5400995B2 (en) Electrostatic painting spray gun
WO2022083578A1 (en) Electrostatic spraying devices and methods
CN212439496U (en) Electrostatic aerosol spray disinfection machine
JP6261083B2 (en) Electrostatic coating gun, electrostatic coating gun charging device, and electrostatic coating device
JP2008119557A (en) External charging type electrostatic coating gun equipped with external electrode
CN212439495U (en) Electrostatic aerosol spray sterilizer with active air supply function
EP2986392B1 (en) Electrostatic spray tool system
US20230033525A1 (en) Powered sprayer
US20220088626A1 (en) Electostatic spray wand
JP2015533643A (en) Ground rod for electrostatic spray gun
CN215784196U (en) Electrostatic liquid spraying device
CN215784197U (en) Electrostatic liquid spraying device
CN102669080A (en) Electrostatic absorption atomizer
JP4347753B2 (en) Spray gun for electrostatic painting
JP2006095498A (en) Electrostatic coating gun and electrostatic coating method
JPWO2013132687A1 (en) Spray device for electrostatic coating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21881994

Country of ref document: EP

Kind code of ref document: A1