WO2022083288A1 - 一种二氧化碳热泵蒸发器 - Google Patents

一种二氧化碳热泵蒸发器 Download PDF

Info

Publication number
WO2022083288A1
WO2022083288A1 PCT/CN2021/115262 CN2021115262W WO2022083288A1 WO 2022083288 A1 WO2022083288 A1 WO 2022083288A1 CN 2021115262 W CN2021115262 W CN 2021115262W WO 2022083288 A1 WO2022083288 A1 WO 2022083288A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric heating
defrosting
evaporator
carbon dioxide
heat pump
Prior art date
Application number
PCT/CN2021/115262
Other languages
English (en)
French (fr)
Inventor
汤晓亮
熊丹
潘浩
康强
宋晓飞
邱昊
陈斌
Original Assignee
江苏苏净集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏苏净集团有限公司 filed Critical 江苏苏净集团有限公司
Priority to US18/042,992 priority Critical patent/US20230358460A1/en
Publication of WO2022083288A1 publication Critical patent/WO2022083288A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/004Control mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/006Defroster control with electronic control circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/02Detecting the presence of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/11Sensor to detect if defrost is necessary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Definitions

  • the invention relates to a heat pump evaporator, in particular to a carbon dioxide heat pump evaporator.
  • the air source carbon dioxide heat pump Due to the characteristics of the refrigerant itself, the air source carbon dioxide heat pump has the characteristics of environmental protection, low temperature resistance, and higher temperature water output, and has attracted more and more attention from the market.
  • the air-source carbon dioxide heat pump has a one-time outlet water temperature of up to 90°C or more, and can normally produce high-temperature hot water at a cold temperature of -30°C. Compared with conventional air-source heat pumps, it has incomparable advantages; but when the environment The temperature is low. When the surface temperature of the fin heat exchanger in the side evaporator of the carbon dioxide heat pump evaporator is lower than 0 °C, the surface is prone to frost.
  • the defrosting time is relatively long, and the defrosting effect is not ideal when the ambient temperature is relatively low, and the defrosting water generated during the defrosting process flows through the evaporator tray to the water receiving tank, and the cold temperature
  • the defrost water has not been discharged and has been frozen for a second time.
  • the ice in the water receiving tank will accumulate thicker and thicker. In severe cases, it will contact the fin heat exchanger, which will affect the heat exchange of the unit and even damage the heat exchanger. This leads to refrigerant leakage.
  • the purpose of the present invention is to overcome the deficiencies of the prior art and provide an improved carbon dioxide heat pump evaporator, which can solve the problems of long defrosting time and poor drainage of the existing carbon dioxide heat pump system when operating at a low ambient temperature. shortcomings.
  • the technical scheme adopted in the present invention is:
  • a carbon dioxide heat pump evaporator the carbon dioxide heat pump evaporator comprises a fixed seat, side evaporators respectively arranged on the left and right sides of the fixed seat and formed with a defrost water circulation channel, and arranged at the bottom of the side evaporator and An evaporator tray for supporting the side evaporator and a defrost drainage system, the defrost drainage system includes a plurality of defrost electric heating pipes inserted in the side evaporator and communicated with the defrost water
  • the water receiving tank communicated with the channel, the water tank electric heating mechanism for heating the water receiving tank, the drain pipe connected with the water receiving tank and provided with the pipeline electric heating heating cable, the evaporator tray, the water receiving tank and all the The drain pipes are arranged sequentially from top to bottom.
  • the carbon dioxide heat pump evaporator further includes a control system and a temperature sensor for detecting the ambient temperature, the control system is respectively connected with the defrosting electric heating tube, the water tank electric heating mechanism, the The pipeline electric heating heating cable is connected in communication with the temperature sensor.
  • the use method of the defrosting drainage system is as follows: when the temperature sensor detects that the ambient temperature is greater than or equal to T1, the defrosting electric heating pipe, the water tank electric heating mechanism and the The pipeline electric heating heating cable does not work; when the temperature sensor detects that the ambient temperature is less than T1, the defrosting starts, and the defrosting electric heating tube, the water tank electric heating mechanism and the pipeline electric heating heating cable start heating, After the defrosting is completed, the electric heating tube for defrosting is powered off, and the electric heating mechanism for the water tank and the electric heating heating cable for the pipeline stop working after a delay of t time.
  • the delay time t is different according to different ambient temperatures.
  • T2 ⁇ ambient temperature ⁇ T1 the electric heating mechanism of the water tank and the electric heating heating cable for the pipeline are disconnected after a delay of t1.
  • T1 is -1 ⁇ 1°C
  • T2 is -6 ⁇ -4°C
  • T3 is -12 ⁇ -8°C
  • t1 is 55-65s
  • t2 is 115-125s
  • t3 for 170-190s.
  • the side evaporator includes An evaporation branch, and the plurality of defrosting electric heating tubes are respectively inserted in any of the An evaporation branch.
  • the carbon dioxide heat pump evaporator further includes a water tank bottom plate disposed at the bottom of the water receiving tank and used for supporting the water receiving tank.
  • the water receiving tank and the evaporator tray are connected by bolts.
  • the water receiving groove includes a threaded drain port
  • the drain pipe has a threaded fastener that cooperates with the thread of the drain port to achieve fastening
  • the drain port is connected to the drain port. Connected with threaded fasteners.
  • the electric heating mechanism for the water tank is provided at the bottom of the outside of the water receiving tank, and the carbon dioxide heat pump evaporator further includes thermal insulation cotton wrapped on the outer wall of the water receiving tank.
  • the heating mechanism is located between the water receiving tank and the thermal insulation cotton.
  • the fixing base is a V-shaped fixing plate.
  • the carbon dioxide heat pump evaporator includes a left evaporator, a right evaporator, a left water tank, a right water tank, an electric heating mechanism for the left water tank, an electric heating mechanism for the right water tank, and a left drain pipe, right drain pipe and tail drain pipe, the left evaporator, the left water tank and the left drain pipe are connected in sequence, and the right evaporator, the right water tank and the right drain pipe are sequentially connected
  • the tail drain pipe is communicated with the left drain pipe and the right drain pipe respectively, the left water tank electric heating mechanism is arranged at the bottom of the outside of the left water tank, and the right water tank electric heating mechanism is arranged at The bottom right is connected to the outside of the sink.
  • the present invention has the following advantages compared with the prior art:
  • the invention innovatively replaces part of the evaporation branch circuit with a defrosting electric heating pipe in the original evaporator structure, and at the same time adds electric heating equipment on the water receiving tank and the drainage pipe, which solves the problem of hot gas bypass when the carbon dioxide heat pump operates at a low ambient temperature.
  • Defrosting causes problems such as long defrosting time, which is conducive to reducing the energy consumption of defrosting, improving the comprehensive low-temperature performance of the carbon dioxide heat pump, and facilitating the smooth drainage of defrosted water at low temperature. It is especially suitable for severe cold areas.
  • the structure is adjusted, which is easy to popularize; at the same time, combined with the level of ambient temperature and the defrosting state of the system, intelligently control the start-stop and running time of the electric heating for defrosting, the electric heating for the water tank and the pipeline heating cable, which is conducive to reducing the energy consumption of defrosting.
  • FIG. 1 is a schematic structural diagram of a carbon dioxide heat pump evaporator according to an embodiment of the present invention
  • FIG. 2 is a schematic side view of a carbon dioxide heat pump evaporator according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the cooperation of the evaporator tray, the water receiving tank and the bottom plate of the water tank in the embodiment of the present invention
  • Fig. 4 is the enlarged schematic diagram of the end in Fig. 3;
  • Fig. 5 is a partial enlarged schematic view of the water receiving tank in Fig. 2;
  • Fig. 6 is the control sequence diagram adopted by the using method of the defrosting drainage system according to the embodiment of the present invention.
  • plural means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • installed may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • a first feature "on” or “under” a second feature may be in direct contact with the first and second features, or in indirect contact with the first and second features through an intermediary .
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • this example provides a carbon dioxide heat pump evaporator for a carbon dioxide heat pump.
  • the carbon dioxide heat pump evaporator includes a fixed seat 2 , which are respectively arranged on the left and right sides of the fixed seat 2 and formed with defrost water circulation.
  • the side evaporator 1 of the channel, the evaporator tray 4 arranged at the bottom of the side evaporator 1 and used to support the side evaporator 1, and the defrost drainage system, the defrost drainage system includes a plurality of The defrosting electric heating pipe 3, the water receiving tank 5 communicated with the defrosting water circulation channel, the water tank electric heating mechanism 6 for heating the water receiving tank 5, the water receiving tank 5 and the pipeline electric heating heating cable 10 (which can prevent the The drain pipe 9, the evaporator tray 4, the water receiving tank 5 and the drain pipe 9 are arranged in order from top to bottom.
  • the fixed seat 2 is a V-shaped fixed plate.
  • the V-shaped design in this example is not necessarily strictly in accordance with the V-shaped design, but the overall appearance is like a V-shaped, for example, it can also be a V-shaped fixed plate
  • Inverted trapezoid with a short bottom side two side evaporators 1 are respectively arranged on the side waist of the inverted trapezoid, and the evaporator tray 4 is arranged on the relatively short bottom side of the inverted trapezoid; the defrosting electric heating tube 3 is inserted in the At the gaps in the side evaporator 1, these gaps can be the gaps between the fins of the side evaporator 1, which is conducive to the direct conduction of heat to the fins, so that the frost layer on the surface of the fins is melted, and the liquid after melting
  • the fluid generally the defrost water, flows down through the defrost drainage system directly down the defrost water circulation
  • the defrosting electric heating tubes 3 there are a plurality of defrosting electric heating tubes 3 in this example, which can be evenly distributed in the gaps between the fins of the side evaporators 1 on the left and right sides. For example, as shown in FIG. 2 , the defrosting water Flowing out from top to bottom, the defrosting water may freeze again during the flow out due to the low ambient temperature. Therefore, the plurality of electric defrosting heating tubes 3 can be arranged to appear on each side evaporator 1 .
  • the upper part is sparse and the lower part is denser, that is to say, a small number of defrosting electric heating tubes 3 can be arranged in the upper part, and more defrosting electric heating tubes 3 can be arranged in the lower part, and two adjacent defrosting electric heating tubes in the lower part can be arranged.
  • the distance between the heating tube 3 paper pieces can be set to be smaller, and a better defrosting effect can be obtained.
  • the electric defrosting heating tubes 3 can also be arranged on the side evaporators 1 at equal intervals and in equal numbers, and each electric defrosting heating tube 3 can be powered on and off independently, and then According to the actual defrosting effect, the required defrosting electric heating tubes 3 can be activated respectively.
  • the carbon dioxide heat pump evaporator also includes a control system and a temperature sensor for detecting the ambient temperature.
  • the control system is respectively connected to the defrosting electric heating tube 3, the water tank electric heating mechanism 6, the pipeline electric heating heating cable 10 and the temperature sensor. , Through the control system, the start and stop of each equipment can be accurately controlled, which is convenient to improve work efficiency.
  • the carbon dioxide heat pump evaporator further includes a water tank bottom plate 8 disposed at the bottom of the water receiving tank 5 and used to support the water receiving tank 5, which improves stability and facilitates the connection of other components.
  • the water receiving grooves 5 there are two water receiving grooves 5 arranged opposite to each other and are respectively connected with the evaporator tray 4 by bolts.
  • the water receiving grooves 5 on the left and right sides of this example respectively include drain ports with threads (as shown in FIG. 2, including drain port a and drain port b).
  • the drain port is connected with the threaded fastener, which facilitates the replacement of the drain pipe 9, and the mutual connection between the two is simpler, which is beneficial to the operation.
  • the water tank electric heating mechanism 6 is arranged at the bottom of the outside of the water receiving tank 5, and the carbon dioxide heat pump evaporator also includes a thermal insulation cotton 7 wrapped on the outer wall of the water receiving tank 5, and the water tank electric heating mechanism 6 is located in the water receiving tank. 5 and insulation cotton 7 between.
  • This arrangement prevents the heat generated by the water tank electric heating mechanism 6 from dissipating too quickly, and on the other hand ensures that the water tank electric heating mechanism 6 can closely fit the bottom of the water tank 5 to improve the heating effect.
  • the carbon dioxide heat pump evaporator in this example has a roughly symmetrical structure, including a left evaporator, a right evaporator, a left water tank, a right water tank, an electric heating mechanism for the left water tank, and a right water tank.
  • the electric heating mechanism of the water tank, the left drain pipe, the right drain pipe and the tail drain pipe 11, the left evaporator, the left water tank and the left drain pipe are connected in turn, the right evaporator, the right water tank and the right drain pipe are connected in turn, and the tail drain
  • the pipes are respectively connected with the left drain pipe and the right drain pipe, the electric heating mechanism of the left water tank is arranged on the bottom of the outer part of the left water tank, and the electric heating mechanism of the right water tank is arranged at the bottom of the outer part of the right water tank.
  • Figure 6 is the system control sequence diagram used in this example. After the system is started, when the temperature sensor detects that the ambient temperature is greater than or equal to T1, the defrosting electric heating tube 3 , Water tank electric heating mechanism 6 and pipeline electric heating heating cable 10 do not work; when the ambient temperature ⁇ T1 is detected by the temperature sensor, defrosting starts, defrosting electric heating pipe 3, water tank electric heating mechanism 6 and pipeline electric heating heating cable 10. Start the heating. After the defrosting is completed, the electric heating tube 3 for defrosting is powered off, and the electric heating mechanism 6 for the water tank and the electric heating heating cable for the pipeline stop working after a delay of t for 10 time;
  • the delay time t is different according to the different ambient temperature.
  • T2 ⁇ ambient temperature ⁇ T1 the electric heating mechanism 6 of the water tank and the electric heating cable 10 of the pipeline will be powered off after a delay of t1 time;
  • T3 ⁇ ambient temperature ⁇ T2 The water tank electric heating mechanism 6 and the pipeline electric heating heating cable 10 are powered off after a delay of t2 time; when the ambient temperature is less than T3, the water tank electric heating mechanism 6 and the pipeline electric heating cable 10 are powered off after a delay of t3 time.
  • T1 is -1 ⁇ 1°C
  • T2 is -6 ⁇ -4°C
  • T3 is -12 ⁇ -8°C
  • t1 is 55-65s
  • t2 is 115-125s
  • t3 is 170-190s; specifically, T1 may be 0°C
  • T2 may be -5°C
  • T3 may be -10°C
  • t1 may be 60s
  • t2 may be 120s
  • t3 may be 180s.
  • the temperature of T1-T3 can be different, and t1-t3 can also be different.
  • the present invention innovatively replaces part of the evaporation branch with the defrosting electric heating pipe 3 in the original evaporator structure, and at the same time adds electric heating equipment on the water receiving tank 5 and the drain pipe 9, which solves the problem of low ambient temperature of the carbon dioxide heat pump.
  • the defrosting time is too long due to the defrosting of the hot gas bypass, which is conducive to reducing the energy consumption of defrosting, improving the comprehensive low temperature performance of the carbon dioxide heat pump, and facilitating the smooth drainage of the defrosting water at low temperature, especially suitable for severe cold areas.
  • the overall structure It is simple and can be adjusted in the existing structure, which is easy to popularize; at the same time, combined with the ambient temperature and the defrosting state of the system, intelligently control the start-stop and running time of the electric heating for defrosting, the electric heating for the water tank and the pipeline heating cable, which is beneficial to Reduce defrosting energy consumption. Therefore, the carbon dioxide heat pump evaporator of the present invention is suitable for low temperature regions, especially for severe cold regions, and has the characteristics of short defrosting time and smooth drainage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Defrosting Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

本发明公开了一种二氧化碳热泵蒸发器,包括形成有化霜水流通通道的侧蒸发器、设置在侧蒸发器的底部且用于支撑侧蒸发器的蒸发器托盘以及化霜排水系统,化霜排水系统包括插设在侧蒸发器中的多个化霜电加热管、与化霜水流通通道连通的接水槽、用于给接水槽加热的水槽电加热机构、与接水槽连通且设置有管道电加热伴热带的排水管,蒸发器托盘、接水槽和排水管由上而下依次设置;本发明的二氧化碳热泵蒸发器适用于低温地区特别适用于严寒地区,具有化霜时间短、排水通畅等特点。

Description

一种二氧化碳热泵蒸发器 技术领域
本发明涉及一种热泵蒸发器,具体涉及了一种二氧化碳热泵蒸发器。
背景技术
空气源二氧化碳热泵由于制冷剂自身特性,具有环保、耐低温、更高温度的出水等特点,越来越受到市场的关注。空气源二氧化碳热泵一次性出水温度最高可达90℃以上,且能够在-30℃严寒气温下正常制取高温热水,相比常规空气源热泵而言,具有无可比拟的优势;但当环境温度较低,二氧化碳热泵蒸发器的侧蒸发器中的翅片换热器表面温度低于0℃时,其表面容易结霜,随着霜层不断加厚,换热热阻增大,导致机组换热性能下降,故需及时除霜。目前空气源二氧化碳热泵多采用热气旁通除霜,将压缩机排出的较高温度的制冷剂直接旁通后通向蒸发器内部,从而使翅片表面霜层融化,但由于热气旁通除霜仅仅利用的是压缩机本身产生的热量,除霜时间比较长,环境温度比较低时除霜效果不理想,且除霜过程中产生的化霜水经蒸发器托盘流到接水槽内,严寒气温下,化霜水尚未排出已被二次结冰,如此反复,接水槽内的冰越积越厚,严重时会接触到翅片换热器,影响机组的换热,甚至会损坏换热器进而导致制冷剂泄漏。
发明内容
本发明的目的是克服现有技术的不足,提供一种改进的二氧化碳热泵蒸发器,该蒸发器能够解决现有二氧化碳热泵系统在低环境温度运行时存在的除霜时间过长且排水不畅等不足之处。
为达到上述目的,本发明采用的技术方案是:
一种二氧化碳热泵蒸发器,所述二氧化碳热泵蒸发器包括固定座、分别设置在所述固定座左右两侧且形成有化霜水流通通道的侧蒸发器、设置在所述侧蒸发器的底部且用于支撑所述侧蒸发器的蒸发器托盘以及化霜排水系统,所述化霜排水系统包括插设在所述侧蒸发器中的多个化霜电加热管、与所述化霜水流通通道连通的接水槽、用于给所述接水槽加热的水槽电加热机构、与所述接水槽连通且设置有管道电加热伴热 带的排水管,所述蒸发器托盘、所述接水槽和所述排水管由上而下依次设置。
根据本发明的一些优选方面,所述二氧化碳热泵蒸发器还包括控制系统和用于检测环境温度的温度传感器,所述控制系统分别与所述化霜电加热管、所述水槽电加热机构、所述管道电加热伴热带和所述温度传感器通信连接。
根据本发明的一些优选方面,所述化霜排水系统的使用方法为:当通过所述温度传感器检测到环境温度≥T1时,所述化霜电加热管、所述水槽电加热机构和所述管道电加热伴热带不工作;通过所述温度传感器检测到环境温度<T1时,除霜开始,所述化霜电加热管、所述水槽电加热机构和所述管道电加热伴热带启动加热,除霜结束后,所述化霜电加热管断电,所述水槽电加热机构和所述管道电加热伴热带延时t时间后停止工作。
根据本发明的一些优选方面,所述延时时间t根据环境温度不同而不同,当T2≤环境温度<T1时,所述水槽电加热机构和所述管道电加热伴热带延时t1时间后断电;当T3≤环境温度<T2时,所述水槽电加热机构和所述管道电加热伴热带延时t2时间后断电;当环境温度<T3时,所述水槽电加热机构和所述管道电加热伴热带延时t3时间后断电。
根据本发明的一些优选且具体的方面,T1为-1~1℃,T2为-6~-4℃,T3为-12~-8℃,t1为55-65s,t2为115-125s,t3为170-190s。
根据本发明的一些优选且具体的方面,所述侧蒸发器包括A n支蒸发分路,所述的多个化霜电加热管分别插设在任一的第A n支蒸发分路中。
根据本发明的一些优选方面,所述的多个化霜电加热管按照如下规律设置:从下而上第n个所述化霜电加热管插设在第A n支蒸发分路上,且满足:A n=n+(n-1)(n-2)/2。
根据本发明的一些优选方面,所述二氧化碳热泵蒸发器还包括设置在所述接水槽底部且用于支撑所述接水槽的水槽底板。
在本发明的一些实施方式中,所述接水槽与所述蒸发器托盘通过螺栓连接。
在本发明的一些实施方式中,所述接水槽包括带螺纹的排水口,所述排水管具有与所述排水口的螺纹相配合实现紧固的螺纹紧固件,所述排水口与所述螺纹紧固件相连接。
根据本发明的一些优选方面,所述水槽电加热机构设置在所述接水槽的外部的底部,所述二氧化碳热泵蒸发器还包括包覆在所述接水槽的外壁的保温棉,所述水槽电 加热机构位于所述接水槽与所述保温棉之间。
根据本发明的一些优选且具体的方面,所述固定座为V型固定板。
根据本发明的一些优选且具体的方面,所述二氧化碳热泵蒸发器包括左侧蒸发器、右侧蒸发器、左接水槽、右接水槽、左水槽电加热机构、右水槽电加热机构、左排水管、右排水管和尾排水管,所述左侧蒸发器、所述左接水槽和所述左排水管依次连通,所述右侧蒸发器、所述右接水槽和所述右排水管依次连通,所述尾排水管分别与所述左排水管和所述右排水管连通,所述左水槽电加热机构设置在所述左接水槽的外部的底部,所述右水槽电加热机构设置在所述右接水槽的外部的底部。
由于上述技术方案运用,本发明与现有技术相比具有下列优点:
本发明创新地在原有蒸发器结构中,替换部分蒸发分路为化霜电加热管,同时在接水槽和排水管上均增设电加热设备,解决了二氧化碳热泵低环温运行时因热气旁通除霜造成除霜时间过长等问题,有利于降低除霜能耗,提高二氧化碳热泵综合低温性能,有利于低温时化霜水排水畅通,特别适用于严寒地区,整体结构简单且均在已有结构做出调整,易于推广;同时结合环境温度的高低和系统除霜状态,智能控制化霜电加热、接水槽电加热和管道伴热带的启停及运行时间,有利于降低化霜能耗。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例二氧化碳热泵蒸发器的结构示意图;
图2为本发明实施例二氧化碳热泵蒸发器的侧面示意图;
图3为本发明实施例中蒸发器托盘、接水槽和水槽底板的配合示意图;
图4为图3中端部的放大示意图;
图5为图2中接水槽处的部分放大示意图;
图6为本发明实施例化霜排水系统的使用方法所采用的控制时序图;
其中,1、侧蒸发器;2、固定座;3、化霜电加热管;4、蒸发器托盘;5、接水槽;6、水槽电加热机构;7、保温棉;8、水槽底板;9、排水管;10、管道电加热伴热带;11、尾排水管;a、b分别代表一个排水口。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图与具体实施方式对本发明做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
下面结合附图对本发明优选的实施方式进行详细说明。
如图1至图6所示,本例提供一种二氧化碳热泵蒸发器,用于二氧化碳热泵,该二氧化碳热泵蒸发器包括固定座2、分别设置在固定座2左右两侧且形成有化霜水流通通道的侧蒸发器1、设置在侧蒸发器1的底部且用于支撑侧蒸发器1的蒸发器托盘4以及化霜排水系统,化霜排水系统包括插设在侧蒸发器1中的多个化霜电加热管3、与化霜水流通通道连通的接水槽5、用于给接水槽5加热的水槽电加热机构6、与接 水槽5连通且设置有管道电加热伴热带10(可以防止排水管9被结冰堵死等情况发生)的排水管9,蒸发器托盘4、接水槽5和排水管9由上而下依次设置。
具体地,如图1和图2所示,固定座2为V型固定板,当然本例中的V型并不一定严格按照V型设计,但整体上呈现类V型,例如也可以呈一个底边较短的倒置梯形,两个侧蒸发器1分别设置在倒置梯形的侧腰上,蒸发器托盘4设置在倒置梯形的相对较短的底边上;化霜电加热管3插设在侧蒸发器1中的空隙处,该些空隙可以为侧蒸发器1的翅片之间的间隙,从而有利于将热量直接传导至翅片上,从而使翅片表面霜层融化,融化之后的液态流体,一般即为化霜水直接顺着化霜水流通通道向下经化霜排水系统流出。进一步地,本例中的化霜电加热管3具有多个,该多个可以均匀分布在左右两侧的侧蒸发器1翅片之间的间隙处,例如按照图2所示,化霜水从上向下流出,则由于环境温度较低,化霜水有可能在流出的过程中再次结冰,因此可以将该多个化霜电加热管3设置成在每个侧蒸发器1上呈现上部稀疏下部较密的分布状态,也即可以在上部设置叫少量的化霜电加热管3,而在下部设置较多的化霜电加热管3,且下部的两两相邻的化霜电加热管3纸件的间距可以设置的更小,可以获得更好的化霜效果。
在其它实施例中,化霜电加热管3也可以在每侧的侧蒸发器1上采用等间隔等数量设置的方式,而且每个化霜电加热管3都能够独立地通电启停,进而可根据实际化霜效果,分别启动所需的化霜电加热管3。
作为可选的实施方式,本例中,侧蒸发器1包括A n支蒸发分路,上述多个化霜电加热管3分别插设在任一的第A n支蒸发分路中;进一步地,本例中,上述多个化霜电加热管3按照如下规律设置:从下而上第n个化霜电加热管3插设在第A n支蒸发分路上,且满足:A n=n+(n-1)(n-2)/2;总体呈现“下密上疏”的特点,可以提升二氧化碳热泵在低环温下的化霜性能;另外,本例中的化霜电加热管3可为星型接法,其中n为3的倍数。具体地,在本例中,化霜电加热管3可以是替换了原先其中一个蒸发分路(也可称管路),多个化霜电加热管3即是占据了原先多个蒸发分路(也可称管路)的位置。
本例中,二氧化碳热泵蒸发器还包括控制系统和用于检测环境温度的温度传感器,控制系统分别与化霜电加热管3、水槽电加热机构6、管道电加热伴热带10和温度传感器通信连接,通过控制系统能够准确控制各个设备的启停,便于提升工作效率。
本例中,如图1-4所示,二氧化碳热泵蒸发器还包括设置在接水槽5底部且用于支撑接水槽5的水槽底板8,提升稳定性的同时便于其他部件的连接。
具体地,本例中的接水槽5具有相对设置的两个且分别与蒸发器托盘4通过螺栓连接。同时本例的左右两侧的接水槽5分别包括带螺纹的排水口(如图2所示,包括排水口a和排水口b),排水管9具有与排水口的螺纹相配合实现紧固的螺纹紧固件,排水口与螺纹紧固件相连接,如此方便更换排水管9,且两者之间相互连接更简单,有利于操作。
进一步地,本例中,将水槽电加热机构6设置在接水槽5的外部的底部,二氧化碳热泵蒸发器还包括包覆在接水槽5的外壁的保温棉7,水槽电加热机构6位于接水槽5与保温棉7之间。如此设置,一方面防止水槽电加热机构6产生的热量散失过快,另一方面保证水槽电加热机构6能够紧密贴合接水槽5的底部,提升加热效果。
具体地,如图2所示,本例中的二氧化碳热泵蒸发器大致为左右对称结构,其包括左侧蒸发器、右侧蒸发器、左接水槽、右接水槽、左水槽电加热机构、右水槽电加热机构、左排水管、右排水管和尾排水管11,左侧蒸发器、左接水槽和左排水管依次连通,右侧蒸发器、右接水槽和右排水管依次连通,尾排水管分别与左排水管和右排水管连通,左水槽电加热机构设置在左接水槽的外部的底部,右水槽电加热机构设置在右接水槽的外部的底部。
本例中的化霜排水系统的使用方法为:图6为本例中采用的系统控制时序图,当该系统启动后,当通过温度传感器检测到环境温度≥T1时,化霜电加热管3、水槽电加热机构6和管道电加热伴热带10不工作;当通过温度传感器检测到环境温度<T1时,除霜开始,化霜电加热管3、水槽电加热机构6和管道电加热伴热带10启动加热,除霜结束后,化霜电加热管3断电,水槽电加热机构6和管道电加热伴热带10延时t时间后停止工作;
其中,延时时间t根据环境温度不同而不同,当T2≤环境温度<T1时,水槽电加热机构6和管道电加热伴热带10延时t1时间后断电;当T3≤环境温度<T2时,水槽电加热机构6和管道电加热伴热带10延时t2时间后断电;当环境温度<T3时,水槽电加热机构6和管道电加热伴热带10延时t3时间后断电。
本例中,在某些地区的环境下,T1为-1~1℃,T2为-6~-4℃,T3为-12~-8℃,t1为55-65s,t2为115-125s,t3为170-190s;具体地,T1可以为0℃,T2为可以-5℃, T3可以为-10℃,t1可以为60s,t2可以为120s,t3可以为180s。当然对于地域不同,T1-T3的温度可以有所不同,t1-t3也可以有所差异。
综上,本发明创新地在原有蒸发器结构中,替换部分蒸发分路为化霜电加热管3,同时在接水槽5和排水管9上均增设电加热设备,解决了二氧化碳热泵低环温运行时因热气旁通除霜造成除霜时间过长等问题,有利于降低除霜能耗,提高二氧化碳热泵综合低温性能,有利于低温时化霜水排水畅通,特别适用于严寒地区,整体结构简单且均在已有结构做出调整,易于推广;同时结合环境温度的高低和系统除霜状态,智能控制化霜电加热、接水槽电加热和管道伴热带的启停及运行时间,有利于降低化霜能耗。因此,本发明的二氧化碳热泵蒸发器适用于低温地区特别适用于严寒地区,具有化霜时间短、排水通畅等特点。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (14)

  1. 一种二氧化碳热泵蒸发器,其特征在于,所述二氧化碳热泵蒸发器包括固定座、分别设置在所述固定座左右两侧且形成有化霜水流通通道的侧蒸发器、设置在所述侧蒸发器的底部且用于支撑所述侧蒸发器的蒸发器托盘以及化霜排水系统,所述化霜排水系统包括插设在所述侧蒸发器中的多个化霜电加热管、与所述化霜水流通通道连通的接水槽、用于给所述接水槽加热的水槽电加热机构、与所述接水槽连通且设置有管道电加热伴热带的排水管,所述蒸发器托盘、所述接水槽和所述排水管由上而下依次设置;
    所述二氧化碳热泵蒸发器还包括控制系统和用于检测环境温度的温度传感器,所述控制系统分别与所述化霜电加热管、所述水槽电加热机构、所述管道电加热伴热带和所述温度传感器通信连接;
    所述化霜排水系统的使用方法为:当通过所述温度传感器检测到环境温度≥T1时,所述化霜电加热管、所述水槽电加热机构和所述管道电加热伴热带不工作;通过所述温度传感器检测到环境温度<T1时,除霜开始,所述化霜电加热管、所述水槽电加热机构和所述管道电加热伴热带启动加热,除霜结束后,所述化霜电加热管断电,所述水槽电加热机构和所述管道电加热伴热带延时t时间后停止工作;
    所述延时时间t根据环境温度不同而不同,当T2≤环境温度<T1时,所述水槽电加热机构和所述管道电加热伴热带延时t1时间后断电;当T3≤环境温度<T2时,所述水槽电加热机构和所述管道电加热伴热带延时t2时间后断电;当环境温度<T3时,所述水槽电加热机构和所述管道电加热伴热带延时t3时间后断电;T1为-1~1℃,T2为-6~-4℃,T3为-12~-8℃,t1为55-65s,t2为115-125s,t3为170-190s;
    所述侧蒸发器包括A n支蒸发分路,所述的多个化霜电加热管分别插设在任一的第A n支蒸发分路中,所述的多个化霜电加热管按照如下规律设置:从下而上第n个所述化霜电加热管插设在第A n支蒸发分路上,且满足:A n=n+(n-1)(n-2)/2;
    所述接水槽包括带螺纹的排水口,所述排水管具有与所述排水口的螺纹相配合实现紧固的螺纹紧固件,所述排水口与所述螺纹紧固件相连接;所述水槽电加热机构设置在所述接水槽的外部的底部,所述二氧化碳热泵蒸发器还包括包覆在所述接水槽的外壁的保温棉,所述水槽电加热机构位于所述接水槽与所述保温棉之间。
  2. 一种二氧化碳热泵蒸发器,包括形成有化霜水流通通道的侧蒸发器,其特征在 于,所述二氧化碳热泵蒸发器还包括化霜排水系统,所述化霜排水系统包括插设在所述侧蒸发器中的多个化霜电加热管。
  3. 根据权利要求2所述的二氧化碳热泵蒸发器,其特征在于,所述化霜排水系统还包括与所述化霜水流通通道连通的接水槽、用于给所述接水槽加热的水槽电加热机构、与所述接水槽连通且设置有管道电加热伴热带的排水管。
  4. 根据权利要求3所述的二氧化碳热泵蒸发器,其特征在于,所述二氧化碳热泵蒸发器还包括控制系统和用于检测环境温度的温度传感器,所述控制系统分别与所述化霜电加热管、所述水槽电加热机构、所述管道电加热伴热带和所述温度传感器通信连接。
  5. 根据权利要求3所述的二氧化碳热泵蒸发器,其特征在于,所述化霜排水系统的使用方法为:当通过所述温度传感器检测到环境温度≥T1时,所述化霜电加热管、所述水槽电加热机构和所述管道电加热伴热带不工作;通过所述温度传感器检测到环境温度<T1时,除霜开始,所述化霜电加热管、所述水槽电加热机构和所述管道电加热伴热带启动加热,除霜结束后,所述化霜电加热管断电,所述水槽电加热机构和所述管道电加热伴热带延时t时间后停止工作。
  6. 根据权利要求5所述的二氧化碳热泵蒸发器,其特征在于,所述延时时间t根据环境温度不同而不同,当T2≤环境温度<T1时,所述水槽电加热机构和所述管道电加热伴热带延时t1时间后断电;当T3≤环境温度<T2时,所述水槽电加热机构和所述管道电加热伴热带延时t2时间后断电;当环境温度<T3时,所述水槽电加热机构和所述管道电加热伴热带延时t3时间后断电。
  7. 根据权利要求6所述的二氧化碳热泵蒸发器,其特征在于,T1为-1~1℃,T2为-6~-4℃,T3为-12~-8℃,t1为55-65s,t2为115-125s,t3为170-190s。
  8. 根据权利要求2所述的二氧化碳热泵蒸发器,其特征在于,所述侧蒸发器包括A n支蒸发分路,所述的多个化霜电加热管分别插设在任一的第A n支蒸发分路中。
  9. 根据权利要求8所述的二氧化碳热泵蒸发器,其特征在于,所述的多个化霜电加热管按照如下规律设置:从下而上第n个所述化霜电加热管插设在第A n支蒸发分路上,且满足:A n=n+(n-1)(n-2)/2。
  10. 根据权利要求3所述的二氧化碳热泵蒸发器,其特征在于,所述二氧化碳热泵蒸发器还包括设置在所述侧蒸发器的底部且用于支撑所述侧蒸发器的蒸发器托盘、设 置在所述接水槽底部且用于支撑所述接水槽的水槽底板,所述蒸发器托盘、所述接水槽和所述排水管由上而下依次设置。
  11. 根据权利要求10所述的二氧化碳热泵蒸发器,其特征在于,所述接水槽与所述蒸发器托盘通过螺栓连接。
  12. 根据权利要求3所述的二氧化碳热泵蒸发器,其特征在于,所述接水槽包括带螺纹的排水口,所述排水管具有与所述排水口的螺纹相配合实现紧固的螺纹紧固件,所述排水口与所述螺纹紧固件相连接。
  13. 根据权利要求3所述的二氧化碳热泵蒸发器,其特征在于,所述水槽电加热机构设置在所述接水槽的外部的底部,所述二氧化碳热泵蒸发器还包括包覆在所述接水槽的外壁的保温棉,所述水槽电加热机构位于所述接水槽与所述保温棉之间。
  14. 根据权利要求3所述的二氧化碳热泵蒸发器,其特征在于,所述二氧化碳热泵蒸发器包括左侧蒸发器、右侧蒸发器、左接水槽、右接水槽、左水槽电加热机构、右水槽电加热机构、左排水管、右排水管和尾排水管,所述左侧蒸发器、所述左接水槽和所述左排水管依次连通,所述右侧蒸发器、所述右接水槽和所述右排水管依次连通,所述尾排水管分别与所述左排水管和所述右排水管连通,所述左水槽电加热机构设置在所述左接水槽的外部的底部,所述右水槽电加热机构设置在所述右接水槽的外部的底部。
PCT/CN2021/115262 2020-10-21 2021-08-30 一种二氧化碳热泵蒸发器 WO2022083288A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/042,992 US20230358460A1 (en) 2020-10-21 2021-08-30 Carbon dioxide heat pump evaporator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011129579.3 2020-10-21
CN202011129579.3A CN112097412A (zh) 2020-10-21 2020-10-21 一种二氧化碳热泵蒸发器

Publications (1)

Publication Number Publication Date
WO2022083288A1 true WO2022083288A1 (zh) 2022-04-28

Family

ID=73784454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115262 WO2022083288A1 (zh) 2020-10-21 2021-08-30 一种二氧化碳热泵蒸发器

Country Status (3)

Country Link
US (1) US20230358460A1 (zh)
CN (1) CN112097412A (zh)
WO (1) WO2022083288A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112097412A (zh) * 2020-10-21 2020-12-18 江苏苏净集团有限公司 一种二氧化碳热泵蒸发器
CN114484767A (zh) * 2022-01-18 2022-05-13 北京小米移动软件有限公司 空调的控制方法、装置、空调及介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310519A (ja) * 2001-04-11 2002-10-23 Nishiyodo Kuchoki Kk ヒートポンプ給湯機
CN2921730Y (zh) * 2005-11-30 2007-07-11 东莞市广大制冷有限公司 具有除霜装置的蒸发器
US20170131005A1 (en) * 2014-07-01 2017-05-11 Sinjin Enertec Co., Ltd. Heat pump heating-cooling system using hybrid heat source and control method thereof
CN206930010U (zh) * 2017-07-07 2018-01-26 唐山国能新能源开发有限公司 一种具有辅助化霜功能的低温空气源热泵
CN108548349A (zh) * 2018-03-26 2018-09-18 广州西奥多科技有限公司 一种智能型热泵的除霜控制系统
CN109282541A (zh) * 2018-10-16 2019-01-29 北京中科华誉热泵设备制造有限公司 极寒工况下的除霜辅助系统、空调热泵机组及除霜方法
CN112097412A (zh) * 2020-10-21 2020-12-18 江苏苏净集团有限公司 一种二氧化碳热泵蒸发器
CN213273263U (zh) * 2020-10-21 2021-05-25 江苏苏净集团有限公司 一种二氧化碳热泵蒸发器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106352491B (zh) * 2016-10-08 2019-08-06 芜湖美智空调设备有限公司 化霜控制方法、化霜控制装置及空调
CN106594962B (zh) * 2016-10-27 2019-07-23 广东美的制冷设备有限公司 空调器化霜控制方法、控制器及空调器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310519A (ja) * 2001-04-11 2002-10-23 Nishiyodo Kuchoki Kk ヒートポンプ給湯機
CN2921730Y (zh) * 2005-11-30 2007-07-11 东莞市广大制冷有限公司 具有除霜装置的蒸发器
US20170131005A1 (en) * 2014-07-01 2017-05-11 Sinjin Enertec Co., Ltd. Heat pump heating-cooling system using hybrid heat source and control method thereof
CN206930010U (zh) * 2017-07-07 2018-01-26 唐山国能新能源开发有限公司 一种具有辅助化霜功能的低温空气源热泵
CN108548349A (zh) * 2018-03-26 2018-09-18 广州西奥多科技有限公司 一种智能型热泵的除霜控制系统
CN109282541A (zh) * 2018-10-16 2019-01-29 北京中科华誉热泵设备制造有限公司 极寒工况下的除霜辅助系统、空调热泵机组及除霜方法
CN112097412A (zh) * 2020-10-21 2020-12-18 江苏苏净集团有限公司 一种二氧化碳热泵蒸发器
CN213273263U (zh) * 2020-10-21 2021-05-25 江苏苏净集团有限公司 一种二氧化碳热泵蒸发器

Also Published As

Publication number Publication date
CN112097412A (zh) 2020-12-18
US20230358460A1 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
WO2022083288A1 (zh) 一种二氧化碳热泵蒸发器
CN104613688A (zh) 一种冰箱的热气除霜系统及其控制方法
CN105258377B (zh) 基于太阳能‑空气源热泵三联供装置
CN201680650U (zh) 多功能太阳能热泵机组
CN106766309B (zh) 利用防冻液实现分段化霜功能的空气源热泵机组及方法
CN103528267B (zh) 带热管回路的低环境温度空气源热泵制冷系统
CN201368590Y (zh) 采用微通道换热器的热泵热水器
CN102252385A (zh) 双回路空调系统
CN213273263U (zh) 一种二氧化碳热泵蒸发器
CN101806515A (zh) 高效太阳能空调热水三联供系统
CN209027318U (zh) 间接空冷散热器的排空气微循环系统
CN208736015U (zh) 圆管三角形翅片一体六边对称布置的冷风机
CN203704456U (zh) 一种多通道扁管冷凝器及采用该冷凝器的冰箱制冷系统
CN105698247A (zh) 一种光伏环路热管辅助双热源热泵供热系统
CN205784170U (zh) 一种新型冷库冷风机系统
CN106918100B (zh) 一种太阳能辅助冰蓄能海水源热泵空调系统
CN108518782A (zh) 一种太阳能集成空气源热泵的冷暖系统
CN211781381U (zh) 一种四热源热泵供热系统
CN210319390U (zh) 一种空温式气化器
CN202066143U (zh) 一种双回路空调系统
CN209541258U (zh) 一种风冷冰箱的风扇进风口化霜装置及风冷冰箱
CN203518333U (zh) 带热管回路的低环境温度空气源热泵制冷系统
CN105571175B (zh) 一种太阳能热水系统输水管解冻装置及其太阳能热水器
CN206347798U (zh) 一种四通阀反向化霜辅助装置
CN100375873C (zh) 双源复合式热泵机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21881707

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21881707

Country of ref document: EP

Kind code of ref document: A1