WO2022082712A1 - Joint srs and csi trigger - Google Patents

Joint srs and csi trigger Download PDF

Info

Publication number
WO2022082712A1
WO2022082712A1 PCT/CN2020/123164 CN2020123164W WO2022082712A1 WO 2022082712 A1 WO2022082712 A1 WO 2022082712A1 CN 2020123164 W CN2020123164 W CN 2020123164W WO 2022082712 A1 WO2022082712 A1 WO 2022082712A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
srs
resource set
srs resource
report
Prior art date
Application number
PCT/CN2020/123164
Other languages
French (fr)
Inventor
Chenxi HAO
Yu Zhang
Hao Xu
Liangming WU
Wei XI
Wanshi Chen
Muhammad Sayed Khairy Abdelghaffar
Alexandros MANOLAKOS
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/123164 priority Critical patent/WO2022082712A1/en
Publication of WO2022082712A1 publication Critical patent/WO2022082712A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]

Definitions

  • aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for channel state information (CSI) and sounding reference signal (SRS) triggering.
  • CSI channel state information
  • SRS sounding reference signal
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, etc. ) .
  • available system resources e.g., bandwidth, transmit power, etc.
  • multiple-access systems examples include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems, to name a few.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • LTE-A LTE Advanced
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • a wireless multiple-access communication system may include a number of base stations (BSs) , which are each capable of simultaneously supporting communication for multiple communication devices, otherwise known as user equipments (UEs) .
  • BSs base stations
  • UEs user equipments
  • a set of one or more base stations may define an eNodeB (eNB) .
  • eNB eNodeB
  • a wireless multiple access communication system may include a number of distributed units (DUs) (e.g., edge units (EUs) , edge nodes (ENs) , radio heads (RHs) , smart radio heads (SRHs) , transmission reception points (TRPs) , etc.
  • DUs distributed units
  • EUs edge units
  • ENs edge nodes
  • RHs radio heads
  • SSRHs smart radio heads
  • TRPs transmission reception points
  • CUs central units
  • CNs central nodes
  • ANCs access node controllers
  • a set of one or more DUs, in communication with a CU may define an access node (e.g., which may be referred to as a BS, 5G NB, next generation NodeB (gNB or gNodeB) , transmission reception point (TRP) , etc. ) .
  • BS central nodes
  • 5G NB next generation NodeB
  • TRP transmission reception point
  • a BS or DU may communicate with a set of UEs on downlink channels (e.g., for transmissions from a BS or DU to a UE) and uplink channels (e.g., for transmissions from a UE to BS or DU) .
  • downlink channels e.g., for transmissions from a BS or DU to a UE
  • uplink channels e.g., for transmissions from a UE to BS or DU
  • NR e.g., new radio or 5G
  • LTE long term evolution
  • NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP.
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) .
  • OFDMA orthogonal frequency division multiple access
  • CP cyclic prefix
  • DL downlink
  • UL uplink
  • NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • MIMO multiple-input multiple-output
  • Certain aspects of the disclosure relate to a method for wireless communication by a user equipment (UE) .
  • the method generally includes receiving a configuration indicating a first aperiodic channel state information (A-CSI) report setting for first A-CSI report based on first aperiodic CSI reference (A-CSI-RS) , determining a non-zero first timing offset to be applied to the A-CSI-RS based, at least in part, on a codebook type configured for the first A-CSI report, receiving signaling triggering the first A-CSI report, and monitoring for the A-CSI-RS, in accordance with the first timing offset.
  • A-CSI aperiodic channel state information
  • A-CSI-RS first aperiodic CSI reference
  • Certain aspects of the disclosure relate to a method for wireless communication by a network entity.
  • the method generally includes transmitting a user equipment (UE) a configuration indicating a first aperiodic channel state information (A-CSI) report setting for first A-CSI report based on first aperiodic CSI reference (A-CSI-RS) , determining a non-zero first timing offset to be applied to the A-CSI-RS based, at least in part, on a codebook type configured for the first A-CSI report, transmitting the UE signaling triggering the first A-CSI report, and transmitting the A-CSI-RS, in accordance with the first timing offset.
  • UE user equipment
  • A-CSI-RS first aperiodic CSI reference
  • Certain aspects of the disclosure relate to a method for wireless communication by a user equipment (UE) .
  • the method generally includes receiving a configuration indicating one or more channel state information (CSI) report setting including CSI reference signals (CSI-RS) associated with each of the one or more CSI report, receiving a configuration indicating one or more SRS resource set, determining an association between at least a first CSI report setting and a first sounding reference signal (SRS) resource set, receiving signaling jointly triggering at least the first CSI report and the associated SRS resource set, transmitting SRS in accordance with the triggering, and monitoring for the CSI-RS, and transmitting the first CSI report, in accordance with the triggering.
  • CSI channel state information
  • SRS sounding reference signal
  • Certain aspects of the disclosure relate to a method for wireless communication by a network entity.
  • the method generally includes transmitting a user equipment (UE) a configuration indicating one or more channel state information (CSI) report setting including CSI reference signals (CSI-RS) associated with each of the one or more CSI report, transmitting a configuration indicating one or more SRS resource set, determining an association between at least a first CSI report setting and a first sounding reference signal (SRS) resource set, transmitting signaling jointly triggering at least the first CSI report and the associated SRS resource set, monitoring for SRS in accordance with the triggering, and transmitting the CSI-RS, and monitoring for the first CSI report, in accordance with the triggering.
  • CSI channel state information
  • SRS sounding reference signal
  • Certain aspects of the disclosure relate to a method for wireless communication by a user equipment (UE) .
  • the method generally includes determining an association between semi-persistent channel state information reference signals (SP-CSI-RS) and semi-persistent sounding reference signals (SP-SRS) , receiving signaling jointly triggering the SP-CSI-RS and associated SP-SRS, transmitting the SP-SRS in accordance with the SP-SRS configuration, and monitoring for the SP-CSI-RS in accordance with the SP-CSI-RS configuration.
  • SP-CSI-RS semi-persistent channel state information reference signals
  • SP-SRS semi-persistent sounding reference signals
  • Certain aspects of the disclosure relate to a method for wireless communication by a network entity.
  • the method generally includes determining an association between semi-persistent channel state information reference signals (SP-CSI-RS) and semi-persistent sounding reference signals (SP-SRS) , transmitting signaling jointly triggering the SP-CSI-RS and associated SP-SRS, monitoring for the SP-SRS in accordance with the SP-SRS configuration, and transmitting the SP-CSI-RS in accordance with the SP-CSI-RS configuration.
  • SP-CSI-RS semi-persistent channel state information reference signals
  • SP-SRS semi-persistent sounding reference signals
  • aspects of the present disclosure also provide various apparatuses, means, and computer readable including instructions for performing the operations described herein.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the appended drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed.
  • FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
  • FIG. 2 is a block diagram showing examples for implementing a communication protocol stack in the example RAN architecture, in accordance with certain aspects of the present disclosure.
  • FIG. 3 is a block diagram conceptually illustrating a design of an example base station (BS) and user equipment (UE) , in accordance with certain aspects of the present disclosure.
  • BS base station
  • UE user equipment
  • FIG. 4 illustrates an example of a frame format for a telecommunication system, in accordance with certain aspects of the present disclosure.
  • FIG. 5 illustrates a conceptual example of precoder matrices, in accordance with certain aspects of the present disclosure.
  • FIG. 6 is a call flow diagram illustrating a first example of Type II CSI feedback.
  • FIG. 7 is a call flow diagram illustrating a second example of Type II CSI feedback.
  • FIGs. 8A and 8B illustrate example ports and layer to port mapping.
  • FIG. 9 illustrates an example CSI-RS report configuration.
  • FIG. 10 illustrates example structure for specifying CSI trigger states.
  • FIGs. 11A and 11B illustrate examples of SRS and CSI triggering.
  • FIG. 12 illustrates example operations for wireless communication by a UE, in accordance with certain aspects of the present disclosure.
  • FIG. 13 illustrates example operations for wireless communication by a network entity, in accordance with certain aspects of the present disclosure.
  • FIG. 14 illustrates an example of SRS and CSI triggering with a non-zero slot offset for A-CSI-RS, in accordance with certain aspects of the present disclosure.
  • FIG. 15 illustrates example operations for wireless communication by a UE, in accordance with certain aspects of the present disclosure.
  • FIG. 16 illustrates example operations for wireless communication by a network entity, in accordance with certain aspects of the present disclosure.
  • FIGs. 17A and 17B illustrate example mechanisms for associating SRS resource sets and CSI reports, in accordance with certain aspects of the present disclosure.
  • FIGs. 18A and 18B illustrate examples of joint SRS and CSI triggering, in accordance with certain aspects of the present disclosure.
  • FIG. 19 illustrates example operations for wireless communication by a UE, in accordance with certain aspects of the present disclosure.
  • FIG. 20 illustrates example operations for wireless communication by a network entity, in accordance with certain aspects of the present disclosure.
  • FIG. 21 illustrates a device with example components capable of performing various operations in accordance with certain aspects of the present disclosure.
  • aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for performing efficiently triggering sounding reference signal (SRS) transmissions and channel state information (CSI) reporting.
  • SRS sounding reference signal
  • CSI channel state information
  • CSI enhancements with frequency division duplexing (FDD) reciprocity is a focus for improving system performance.
  • FDD frequency division duplexing
  • a UE may first transmit SRS and the network will determine spatial domain (SD) and frequency domain (FD) bases used for CSI-RS beamforming. The UE may then measure beamformed CSI-RS ports and reports CSI as a linear combination of the beamformed ports.
  • SD spatial domain
  • FD frequency domain
  • SRS transmissions play an important role (allowing the network to determine SD and FD bases used for the CSI-beamforming) . Therefore, mechanisms for jointly triggering SRS and CSI reporting, as provided in the present disclosure, may provide welcome flexibility.
  • a CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • cdma2000 covers IS-2000, IS-95 and IS-856 standards.
  • a TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • An OFDMA network may implement a radio technology such as NR (e.g.
  • E-UTRA Evolved UTRA
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDMA
  • UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) .
  • New Radio is an emerging wireless communications technology under development in conjunction with the 5G Technology Forum (5GTF) .
  • 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) .
  • cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • the techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
  • New radio (NR) access may support various wireless communication services, such as enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g., 80 MHz or beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 25 GHz or beyond) , massive machine type communications MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low-latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mmW millimeter wave
  • mMTC massive machine type communications MTC
  • URLLC ultra-reliable low-latency communications
  • These services may include latency and reliability requirements.
  • These services may also have different transmission time intervals (TTI) to meet respective quality of service (QoS) requirements.
  • TTI transmission time intervals
  • QoS quality of service
  • these services may co-exist in the same subframe.
  • FIG. 1 illustrates an example wireless communication network 100 in which aspects of the present disclosure may be performed.
  • a UE 120 in the wireless communication network 100 may include a CSI reporting module configured to perform (or assist the UE 120 in performing) operations 1200, 1500, and/or 1900 described below with reference to FIGs. 12, 15, and 19.
  • a base station 120 e.g., a gNB
  • the wireless communication network 100 may include a number of base stations (BSs) 110 and other network entities.
  • a BS may be a station that communicates with user equipment (UE) .
  • Each BS 110 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a Node B (NB) and/or a NB subsystem serving this coverage area, depending on the context in which the term is used.
  • NB Node B
  • gNodeB next generation NodeB
  • NR BS next generation NodeB
  • 5G NB access point
  • AP access point
  • TRP transmission reception point
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the base stations may be interconnected to one another and/or to one or more other base stations or network nodes (not shown) in wireless communication network 100 through various types of backhaul interfaces, such as a direct physical connection, a wireless connection, a virtual network, or the like using any suitable transport network.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, etc.
  • a frequency may also be referred to as a carrier, a subcarrier, a frequency channel, a tone, a subband, etc.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cells.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having an association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) .
  • CSG Closed Subscriber Group
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • the BSs 110a, 110b and 110c may be macro BSs for the macro cells 102a, 102b and 102c, respectively.
  • the BS 110x may be a pico BS for a pico cell 102x.
  • the BSs 110y and 110z may be femto BSs for the femto cells 102y and 102z, respectively.
  • a BS may support one or multiple (e.g., three) cells.
  • Wireless communication network 100 may also include relay stations.
  • a relay station is a station that receives a transmission of data and/or other information from an upstream station (e.g., a BS or a UE) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that relays transmissions for other UEs.
  • a relay station 110r may communicate with the BS 110a and a UE 120r in order to facilitate communication between the BS 110a and the UE 120r.
  • a relay station may also be referred to as a relay BS, a relay, etc.
  • Wireless communication network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BS, pico BS, femto BS, relays, etc. These different types of BSs may have different transmit power levels, different coverage areas, and different impact on interference in the wireless communication network 100.
  • macro BS may have a high transmit power level (e.g., 20 Watts) whereas pico BS, femto BS, and relays may have a lower transmit power level (e.g., 1 Watt) .
  • Wireless communication network 100 may support synchronous or asynchronous operation.
  • the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time.
  • the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
  • the techniques described herein may be used for both synchronous and asynchronous operation.
  • a network controller 130 may couple to a set of BSs and provide coordination and control for these BSs.
  • the network controller 130 may communicate with the BSs 110 via a backhaul.
  • the BSs 110 may also communicate with one another (e.g., directly or indirectly) via wireless or wireline backhaul.
  • the UEs 120 may be dispersed throughout the wireless communication network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet computer, a camera, a gaming device, a netbook, a smartbook, an ultrabook, an appliance, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc.
  • CPE Customer Premises Equipment
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC machine-type communication
  • eMTC evolved MTC
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • a network e.g., a wide area network such as Internet or a cellular network
  • Some UEs may be considered Internet-of-Things (IoT) devices, which may be narrowband IoT (NB-IoT) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband IoT
  • Certain wireless networks utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink.
  • OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc.
  • K orthogonal subcarriers
  • Each subcarrier may be modulated with data.
  • modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM.
  • the spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth.
  • the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a “resource block” (RB) ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal Fast Fourier Transfer (FFT) size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10, or 20 megahertz (MHz) , respectively.
  • the system bandwidth may also be partitioned into sub-bands. For example, a sub-band may cover 1.8 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8, or 16 sub-bands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
  • Communication systems such as NR may utilize OFDM with a cyclic prefix (CP) on the uplink and downlink and include support for half-duplex operation using time division duplex (TDD) .
  • Beamforming may be supported and beam direction may be dynamically configured.
  • MIMO transmissions with precoding may also be supported.
  • MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 4 streams per UE. Multi-layer transmissions with up to 4 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells.
  • a scheduling entity (e.g., a BS) allocates resources for communication among some or all devices and equipment within its service area or cell.
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity.
  • Base stations are not the only entities that may function as a scheduling entity.
  • a UE may function as a scheduling entity and may schedule resources for one or more subordinate entities (e.g., one or more other UEs) , and the other UEs may utilize the resources scheduled by the UE for wireless communication.
  • a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network.
  • P2P peer-to-peer
  • UEs may communicate directly with one another in addition to communicating with a scheduling entity.
  • a solid line with double arrows indicates desired transmissions between a UE and a serving BS, which is a BS designated to serve the UE on the downlink and/or uplink.
  • a finely dashed line with double arrows indicates interfering transmissions between a UE and a BS.
  • FIG. 2 illustrates a diagram showing examples for implementing a communications protocol stack in a RAN (e.g., such as the RAN 100) , according to aspects of the present disclosure.
  • the illustrated communications protocol stack 200 may be implemented by devices operating in a wireless communication system, such as a 5G NR system (e.g., the wireless communication network 100) .
  • the layers of the protocol stack 200 may be implemented as separate modules of software, portions of a processor or ASIC, portions of non-collocated devices connected by a communications link, or various combinations thereof. Collocated and non-collocated implementations may be used, for example, in a protocol stack for a network access device or a UE.
  • the system may support various services over one or more protocols.
  • One or more protocol layers of the protocol stack 200 may be implemented by the AN and/or the UE.
  • the protocol stack 200 is split in the AN (e.g., BS 110 in FIG. 1) .
  • the RRC layer 205, PDCP layer 210, RLC layer 215, MAC layer 220, PHY layer 225, and RF layer 230 may be implemented by the AN.
  • the CU-CP may implement the RRC layer 205 and the PDCP layer 210.
  • a DU may implement the RLC layer 215 and MAC layer 220.
  • the AU/RRU may implement the PHY layer (s) 225 and the RF layer (s) 230.
  • the PHY layers 225 may include a high PHY layer and a low PHY layer.
  • the UE may implement the entire protocol stack 200 (e.g., the RRC layer 205, the PDCP layer 210, the RLC layer 215, the MAC layer 220, the PHY layer (s) 225, and the RF layer (s) 230) .
  • the entire protocol stack 200 e.g., the RRC layer 205, the PDCP layer 210, the RLC layer 215, the MAC layer 220, the PHY layer (s) 225, and the RF layer (s) 230.
  • FIG. 3 illustrates example components of BS 110 and UE 120 (as depicted in FIG. 1) , which may be used to implement aspects of the present disclosure.
  • antennas 352, processors 366, 358, 364, and/or controller/processor 380 of the UE 120 may be configured (or used) to perform operations 1200, 1500, and/or 1900 described below with reference to FIGs. 12, 15, and 19.
  • antennas 334, processors 320, 330, 338, and/or controller/processor 340 of the BS 110 may be configured (or used) to perform operations 1300, 1600, or 2000 described below with reference to FIGs. 13, 16, and 20.
  • a transmit processor 320 may receive data from a data source 312 and control information from a controller/processor 340.
  • the control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid ARQ indicator channel (PHICH) , physical downlink control channel (PDCCH) , group common PDCCH (GC PDCCH) , etc.
  • the data may be for the physical downlink shared channel (PDSCH) , etc.
  • the processor 320 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • the processor 320 may also generate reference symbols, e.g., for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , and cell-specific reference signal (CRS) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 330 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 332a through 332t. Each modulator 332 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 332a through 332t may be transmitted via the antennas 334a through 334t, respectively.
  • the antennas 352a through 352r may receive the downlink signals from the base station 110 and may provide received signals to the demodulators (DEMODs) in transceivers 354a through 354r, respectively.
  • Each demodulator 354 may condition (e.g., filter, amplify, down-convert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • a MIMO detector 356 may obtain received symbols from all the demodulators 354a through 354r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 358 may process (e.g., demodulate, de-interleave, and decode) the detected symbols, provide decoded data for the UE 120 to a data sink 360, and provide decoded control information to a controller/processor 380.
  • a transmitter e.g., BS 120
  • a receiver e.g., UE 110
  • receive antennas 352a through 352r there are a plurality of signal paths 394 from the transmit antennas 354a through 354r to the receive antennas 352a through 352r.
  • Each of the transmitter and the receiver may be implemented, for example, within a UE 110, a BS 120, or any other suitable wireless communication device.
  • Spatial multiplexing may be used to transmit different streams of data, also referred to as layers, simultaneously on the same time-frequency resource.
  • the data streams may be transmitted to a single UE to increase the data rate or to multiple UEs to increase the overall system capacity, the latter being referred to as multi-user MIMO (MU-MIMO) .
  • MU-MIMO multi-user MIMO
  • This is achieved by spatially precoding each data stream (i.e., multiplying the data streams with different weighting and phase shifting) and then transmitting each spatially precoded stream through multiple transmit antennas on the downlink.
  • the spatially precoded data streams arrive at the UE (s) with different spatial signatures, which enables each of the UE (s) to recover the one or more data streams destined for that UE.
  • each UE transmits a spatially precoded data stream, which enables the base station to identify the source of each spatially precoded data stream.
  • the number of data streams or layers corresponds to the rank of the transmission.
  • the rank of the MIMO system is limited by the number of transmit or receive antennas, whichever is lower.
  • the channel conditions at the UE, as well as other considerations, such as the available resources at the base station may also affect the transmission rank.
  • the rank (and therefore, the number of transmission layers) assigned to a particular UE on the downlink may be determined based on the rank indicator (RI) transmitted from the UE to the base station.
  • the RI may be determined based on the antenna configuration (e.g., the number of transmit and receive antennas) and a measured signal-to-interference-and-noise ratio (SINR) on each of the receive antennas.
  • SINR signal-to-interference-and-noise ratio
  • the RI may indicate, for example, the number of layers that may be supported under the current channel conditions.
  • the base station may use the RI, along with resource information (e.g., the available resources and amount of data to be scheduled for the UE) , to assign a transmission rank to the UE.
  • resource information e.g., the available resources and amount of data to be scheduled for the UE
  • a transmit processor 364 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from a data source 362 and control information (e.g., for the physical uplink control channel (PUCCH) from the controller/processor 380.
  • the transmit processor 364 may also generate reference symbols for a reference signal (e.g., for the sounding reference signal (SRS) ) .
  • the symbols from the transmit processor 364 may be precoded by a TX MIMO processor 366 if applicable, further processed by the demodulators in transceivers 354a through 354r (e.g., for SC-FDM, etc. ) , and transmitted to the base station 110.
  • the uplink signals from the UE 120 may be received by the antennas 334, processed by the modulators 332, detected by a MIMO detector 336 if applicable, and further processed by a receive processor 338 to obtain decoded data and control information sent by the UE 120.
  • the receive processor 338 may provide the decoded data to a data sink 339 and the decoded control information to the controller/processor 340.
  • FIG. 4 is a diagram showing an example of a frame format 400 for NR.
  • the transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames.
  • Each radio frame may have a predetermined duration (e.g., 10 ms) and may be partitioned into 10 subframes, each of 1 ms, with indices of 0 through 9.
  • Each subframe may include a variable number of slots depending on the subcarrier spacing.
  • Each slot may include a variable number of symbol periods (e.g., 7 or 14 symbols) depending on the subcarrier spacing.
  • the symbol periods in each slot may be assigned indices.
  • a mini-slot which may be referred to as a sub-slot structure, refers to a transmit time interval having a duration less than a slot (e.g., 2, 3, or 4 symbols) .
  • Each symbol in a slot may indicate a link direction (e.g., DL, UL, or flexible) for data transmission and the link direction for each subframe may be dynamically switched.
  • the link directions may be based on the slot format.
  • Each slot may include DL/UL data as well as DL/UL control information.
  • a synchronization signal (SS) block is transmitted.
  • the SS block includes a PSS, a SSS, and a two symbol PBCH.
  • the SS block can be transmitted in a fixed slot location, such as the symbols 0-3 as shown in FIG. 4.
  • the PSS and SSS may be used by UEs for cell search and acquisition.
  • the PSS may provide half-frame timing, the SS may provide the CP length and frame timing.
  • the PSS and SSS may provide the cell identity.
  • the PBCH carries some basic system information, such as downlink system bandwidth, timing information within radio frame, SS burst set periodicity, system frame number, etc.
  • the SS blocks may be organized into SS bursts to support beam sweeping.
  • Further system information such as, remaining minimum system information (RMSI) , system information blocks (SIBs) , other system information (OSI) can be transmitted on a physical downlink shared channel (PDSCH) in certain subframes.
  • the SS block can be transmitted up to sixty-four times, for example, with up to sixty-four different beam directions for mmW.
  • the up to sixty-four transmissions of the SS block are referred to as the SS burst set.
  • SS blocks in an SS burst set are transmitted in the same frequency region, while SS blocks in different SS bursts sets can be transmitted at different frequency locations.
  • a UE may operate in various radio resource configurations, including a configuration associated with transmitting pilots using a dedicated set of resources (e.g., a radio resource control (RRC) dedicated state, etc. ) or a configuration associated with transmitting pilots using a common set of resources (e.g., an RRC common state, etc. ) .
  • RRC radio resource control
  • the UE may select a dedicated set of resources for transmitting a pilot signal to a network.
  • the UE may select a common set of resources for transmitting a pilot signal to the network.
  • a pilot signal transmitted by the UE may be received by one or more network access devices, such as an AN, or a DU, or portions thereof.
  • Each receiving network access device may be configured to receive and measure pilot signals transmitted on the common set of resources, and also receive and measure pilot signals transmitted on dedicated sets of resources allocated to the UEs for which the network access device is a member of a monitoring set of network access devices for the UE.
  • One or more of the receiving network access devices, or a CU to which receiving network access device (s) transmit the measurements of the pilot signals may use the measurements to identify serving cells for the UEs, or to initiate a change of serving cell for one or more of the UEs.
  • Channel state information may refer to channel properties of a communication link.
  • the CSI may represent the combined effects of, for example, scattering, fading, and power decay with distance between a transmitter and receiver.
  • Channel estimation using pilots such as CSI reference signals (CSI-RS) , may be performed to determine these effects on the channel.
  • CSI may be used to adapt transmissions based on the current channel conditions, which is useful for achieving reliable communication, in particular, with high data rates in multi-antenna systems.
  • CSI is typically measured at the receiver, quantized, and fed back to the transmitter.
  • CSI may include Channel Quality Indicator (CQI) , precoding matrix indicator (PMI) , CSI-RS resource indicator (CRI) , SS/PBCH Block Resource indicator (SSBRI) , layer indicator (LI) , rank indicator (RI) and/or L1-RSRP.
  • CQI Channel Quality Indicator
  • PMI precoding matrix indicator
  • CSI-RS resource indicator CRI
  • SSBRI SS/PBCH Block Resource indicator
  • LI layer indicator
  • RI rank indicator
  • L1-RSRP L1-RSRP
  • the base station may configure UEs for CSI reporting.
  • the BS configures the UE with a CSI report configuration or with multiple CSI report configurations.
  • the CSI report configuration may be provided to the UE via higher layer signaling, such as radio resource control (RRC) signaling (e.g., CSI-ReportConfig) .
  • RRC radio resource control
  • the CSI report configuration may be associated with CSI-RS resources for channel measurement (CM) , interference measurement (IM) , or both.
  • CM channel measurement
  • IM interference measurement
  • the CSI report configuration configures CSI-RS resources for measurement (e.g., CSI-ResourceConfig) .
  • the CSI-RS resources provide the UE with the configuration of CSI-RS ports, or CSI-RS port groups, mapped to time and frequency resources (e.g., resource elements (REs) ) .
  • CSI-RS resources can be zero power (ZP) or non-zero power (NZP) resources. At least one NZP CSI-RS resource may be configured for CM.
  • the PMI is a linear combination of beams; it has a subset of orthogonal beams to be used for linear combination and has per layer, per polarization, amplitude and phase for each beam.
  • the PMI of any type there can be wideband (WB) PMI and/or subband (SB) PMI as configured.
  • WB wideband
  • SB subband
  • the CSI report configuration may configure the UE for aperiodic, periodic, or semi-persistent CSI reporting.
  • periodic CSI the UE may be configured with periodic CSI-RS resources.
  • Periodic CSI on physical uplink control channel (PUCCH) may be triggered via RRC.
  • Semi-persistent CSI reporting on physical uplink control channel (PUCCH) may be activated via a medium access control (MAC) control element (CE) .
  • MAC medium access control
  • CE control element
  • the BS may signal the UE a CSI report trigger indicating for the UE to send a CSI report for one or more CSI-RS resources, or configuring the CSI-RS report trigger state (e.g., CSI-AperiodicTriggerStateList and CSI-SemiPersistentOnPUSCH-TriggerStateList) .
  • the CSI report trigger for aperiodic CSI and semi-persistent CSI on PUSCH may be provided via downlink control information (DCI) .
  • DCI downlink control information
  • the UE may report the CSI feedback based on the CSI report configuration and the CSI report trigger. For example, the UE may measure the channel on which the triggered CSI-RS resources (associated with the CSI report configuration) is conveyed. Based on the measurements, the UE may select a preferred CSI-RS resource. The UE reports the CSI feedback for the selected CSI-RS resource.
  • LI may be calculated conditioned on the reported CQI, PMI, RI and CRI; CQI may be calculated conditioned on the reported PMI, RI and CRI; PMI may be calculated conditioned on the reported RI and CRI; and RI may be calculated conditioned on the reported CRI.
  • Each CSI report configuration may be associated with a single downlink bandwidth part (BWP) .
  • the CSI report setting configuration may define a CSI reporting band as a subset of subbands of the BWP.
  • the associated DL BWP may indicated by a higher layer parameter (e.g., bwp-Id) in the CSI report configuration for channel measurement and contains parameter (s) for one CSI reporting band, such as codebook configuration, time-domain behavior, frequency granularity for CSI, measurement restriction configurations, and the CSI-related quantities to be reported by the UE.
  • Each CSI resource setting may be located in the DL BWP identified by the higher layer parameter, and all CSI resource settings may be linked to a CSI report setting have the same DL BWP.
  • the UE can be configured via higher layer signaling (e.g., in the CSI report configuration) with one out of two possible subband sizes (e.g., reportFreqConfiguration contained in a CSI-ReportConfig) which indicates a frequency granularity of the CSI report, where a subband may be defined as contiguous physical resource blocks (PRBs) and depends on the total number of PRBs in the bandwidth part.
  • the UE may further receive an indication of the subbands for which the CSI feedback is requested.
  • a subband mask is configured for the requested subbands for CSI reporting.
  • the UE computes precoders for each requested subband and finds the PMI that matches the computed precoder on each of the subbands.
  • a user equipment may be configured for channel state information (CSI) reporting, for example, by receiving a CSI configuration message from the base station.
  • CSI channel state information
  • the UE may be configured to report at least a Type II precoder across configured frequency domain (FD) units.
  • the precoder matrix W r for layer r includes the W 1 matrix, reporting a subest of selected beams using spatial compression and the W 2, r matrix, reporting (for cross-polarization) the linear combination coefficients for the selected beams (2L) across the configured FD units:
  • b i is the selected beam
  • c i is the set of linear combination coefficients (i.e., entries of W 2, r matrix)
  • L is the number of selected spatial beams
  • N 3 corresponds to the number of frequency units (e.g., subbands, resource blocks (RBs) , etc. ) .
  • L is RRC configured.
  • the precoder is based on a linear combination of DFT beams.
  • the Type II codebook may improve MU-MIMO performance.
  • the W 2, r matrix has size 2L X N 3 .
  • the UE may be configured to report FD compressed precoder feedback to reduce overhead of the CSI report.
  • the matrix 520 consists of the linear combination coefficients (amplitude and co-phasing) , where each element represents the coefficient of a tap for a beam.
  • the matrix 520 as shown is defined by size 2L X M, where one row corresponds to one spatial beam in W 1 (not shown) of size P X 2L (where L is network configured via RRC) , and one entry therein represents the coefficient of one tap for this spatial beam.
  • the UE may be configured to report (e.g., CSI report) a subset K 0 ⁇ 2LM of the linear combination coefficients of the matrix 520.
  • an entry in the matrix 520 corresponds to a row of matrix 530.
  • both the matrix 520 at layer 0 and the matrix 550 at layer 1 are 2L X M.
  • the matrix 530 is composed of the basis vectors (each row is a basis vector) used to perform compression in frequency domain.
  • the UE may report a subset of selected basis of the matrix via CSI report.
  • the M bases specifically selected at layer 0 and layer 1. That is, the M bases selected at layer 0 can be same/partially-overlapped/non-overlapped with the M bases selected at layer 1.
  • FIGs. 6 and 7 illustrate examples of such CSI based feedback where a gNB obtains the following terms based on a combination of SRS measurements taken at the gNB and feedback from the UE:
  • FIG. 6 is a call flow diagram illustrating an example of Type II port-selection CSI feedback (according to Release 16) .
  • the UE transmits SRS that the gNB measures to determine a spatial domain basis (b i ) . Assuming spatial reciprocity, the gNB precodes CSI-RS via the spatial domain basis (b i ) , wherein each CSI-RS port may be precoded via a particular spatial domain basis. Based on measurements of the precoded CSI-RS, the UE determines preferred CSI-RS ports and reports them and also reports other terms (c i, m and ) used to combine the preferred CSI-RS ports.
  • CSI-RS port refers to an antenna port used for CSI-RS transmission.
  • An antenna port is a logical concept related to physical layer (L1) , rather than an actual physical RF antenna.
  • L1 physical layer
  • an antenna port is defined such that the channel over which a symbol on the antenna port is conveyed can be inferred from the channel over which another symbol on the same antenna port is conveyed.
  • each individual downlink transmission is carried out from a specific antenna port, the identity of which is known to the UE and the UE can assume that two transmitted signals have experienced the same radio channel if and only if they are transmitted from the same antenna port.
  • the mapping of antenna ports to physical antennas is generally controlled by beam forming as a certain beam needs to transmits the signal on certain antenna ports to form a desired beam. As such, it is possible that two antenna ports may be mapped to one physical antenna port or that a single antenna port may be mapped to multiple physical antenna ports.
  • FIG. 7 is a call flow diagram illustrating another example of Type II CSI feedback (according to Release 17) .
  • the gNB determines both (b i ) and based on SRS measurements. Assuming both spatial and delay reciprocity, the gNB precodes CSI-RS via the spatial domain basis (b i ) and the frequency domain basis wherein each CSI-RS port maybe precoded via a particular pair of a spatial domain basis and a frequency domain basis. Based on measurements of the precoded CSI-RS, the UE determines preferred CSI-RS ports and reports them and also reports c i, m used to combine the preferred CSI-RS ports.
  • the CSI reporting of FIG. 7 may have certain benefits.
  • benefits include lower reporting overhead, lower UE complexity, and higher performance due to finer resolution of frequency domain basis and higher performance due to better spatial and frequency bases (gNB can use bases other than DFT bases, e.g., SVD bases, to gain more performance benefit) .
  • the precoder of a CSI-RS port is formed by a pair of an SD basis (or spatial domain transmission filter) b i and an FD basis (frequency domain transmission filter/weight) f m .
  • SD basis or spatial domain transmission filter
  • FD basis frequency domain transmission filter/weight
  • H is the wireless channel between UE and gNB without precoding, where i (p) and m (p) denote the indices of the spatial and frequency bases applied on port p, respectively.
  • the UE For each layer, the UE selects a subset of total ports, and reports a single coefficient per port across the frequency band.
  • the PMI for a certain layer on any of the N 3 FD units is given as:
  • P is the total number of CSI-RS ports.
  • the UE reports and or a subset of wherein the unreported coefficients are set to 0, K 0 is the maximum number of ports allowed to be selected for linear combination.
  • the CSI-RS port index in each resource starts from 3000.
  • the UE calculates CQI assuming a virtual PDSCH:
  • CSI-RS port precoding may be less than ideal for various reasons.
  • the UL and DL band are mismatched so that UL/DL reciprocity may be poor which may impact the accuracy of precoding.
  • the gNB may determine the SD/FD combination used to precode each CSI-RS port.
  • the UL/DL reciprocity may be poor considering UL/DL band mismatch and Rx/Tx calibration errors and/or practical sounding errors.
  • aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for performing efficiently triggering sounding reference signal (SRS) transmissions and channel state information (CSI) reporting.
  • SRS sounding reference signal
  • CSI channel state information
  • FIG. 9 illustrates an example CSI-RS report configuration.
  • the configuration may indicate, for a CSI report/resource setting, one non zero-power CSI-RS (NZP-CSI-RS) resource setting for channel measurement and zero or more (e.g., 0-2) resources for interference measurement (IM) .
  • NZP-CSI-RS non zero-power CSI-RS
  • IM interference measurement
  • IMR IM resource
  • the IMR can be configured as either CSI-IM (zero-power) setting or NZP-CSI-RS setting.
  • these resources may be configured as CSI-IM setting plus NZP CSI-RS settings.
  • any single port in the activated resources may be assumed as an interference layer, in which case, a UE may be configured to aggregate all the interference layers in CSI calculation. As indicated in FIG. 9, there may be a resource-wise association between CMR and CSI-IM resources.
  • aperiodic CSI reporting may be triggered, for example, via a mechanism involving radio resource control (RRC) , medium access control (MAC) control element (CE) , and downlink control information (DCI) .
  • RRC radio resource control
  • MAC medium access control
  • CE control element
  • DCI downlink control information
  • RRC signaling may be used to configure up to 128 trigger states per serving cell, where each trigger state comprises one or more CSI report configurations (e.g., as shown in the example CSI trigger state information element shown in FIG. 10) .
  • RRC signaling may also be used to activate one resource set from the multiple resource sets of each CSI report configurations.
  • a MAC CE may be used to downselect 64 trigger states from the 128 states, while a DCI may be used to trigger one trigger state from the (downselected) 64 states (e.g., via a 6-bit CSI-request in UL-related DCI, such as DCI format 0_1, 0_2) .
  • the network configures the UE (via RRC signaling) with one or more SRS resource sets.
  • Each resource set includes a list of resources.
  • a usage type, indicating the purpose of the SRS, and resource type are also indicated as:
  • Resource type ⁇ aperiodic, semi-persistent, periodic ⁇ .
  • the UE For aperiodic SRS triggering, the UE receives, in the RRC configuration, a slot offset (0-31 slots) indicating the timing for sending the SRS relative to the DCI triggering the SRS.
  • a trigger state index is also configured for aperiodic SRS sets.
  • the UE receives an SRS request (via either UL DCI 0_0, 0_1, 0_2, DL DCI 1_0, 1_1, 1_2 and group common DCI 2_3) triggering a SRS trigger state. All SRS resource sets associated with the triggered state are triggered.
  • NR Rel-17 port-selection Type II CSI is based on SRS transmission prior to the CSI-RS transmission, allowing the base station to determine the SD-FD bases for CSI-RS beamforming.
  • the A-CSI and A-SRS separately using one or two DCIs.
  • the UE receives a first DCI to trigger A-SRS and, after the A-SRS transmission, receives a second DCI to trigger A-CSI (whose associated CSI-RS is beamformed based on the measurement of the A-SRS transmission) .
  • Drawbacks to this approach include the overhead of two DCI and associated long cycle.
  • A-SRS slot offset can be 0-31 and A-CSI slot offset can be 0-31, but the offset for the associated A-CSI-RS can be 0 (i.e., same slot as the DCI) in FR1 (subject to the minmumSchedulingOffsetK0 configured for DL BWP) .
  • the minimum scheduling offset is configured semi-statically via RRC, and is applied to any DL scheduling (not only for CSI-RS) .
  • This approach may be restrictive, however.
  • the network may configure a zero offset for minimum scheduling offset, then the A-CSI-RS (sent in the same slot as the triggering DCI) would be prior to SRS, resulting in the non-causal issue described above.
  • minmumSchedulingOffsetK0 e.g. 8-slots
  • this may address the non-causal issue (allowing A-SRS to be sent before A-CSI-RS) , but also means that all nominal PDSCH scheduling would need to be at least 8-slots after the scheduling DCI.
  • the techniques include jointly triggering A-SRS and A-CSI with an explicit timing rule for A-SRS and A-CSI, and/or separately triggering A-SRS and A-CSI by relaxing the slot offset condition for A-CSI-RS (and allowing non-zero slot offset for CSI-RS in certain cases) .
  • FIG. 12 illustrates example operations 1200 for wireless communication by a UE.
  • operations 1200 may be performed by a UE 120 (of FIG. 1 or FIG. 3) for CSI reporting, in accordance with certain aspects of the present disclosure.
  • Operations 1200 begin, at 1202, by receiving a configuration indicating a first aperiodic channel state information (A-CSI) report setting for first A-CSI report based on first aperiodic CSI reference (A-CSI-RS) .
  • the UE receives signaling triggering the first A-CSI report.
  • the UE may receive the configuration, an indication of the non-zero first timing offset, and the triggering signaling, via the antenna (s) and receiver/transceiver components of the UE 120a shown in FIG. 3 and/or of the apparatus shown in FIG. 21, for example, using any suitable detection and decoding algorithm.
  • the configuration and non-zero timing offset may be received via RRC signaling, while the triggering signaling may be received via a DCI.
  • the UE monitors for the A-CSI-RS, in accordance with a non-zero first timing offset applied to the A-CSI-RS, wherein the timing offset is in accordance with a codebook type configured for the first A-CSI report.
  • the may monitor for the A-CSI-RS e.g., via the antenna (s) and receiver/transceiver components of the UE 120a shown in FIG. 3 and/or of the apparatus shown in FIG. 21 using any suitable monitoring and detection algorithm in a number of slots indicated by the non-zero slot offset, after the triggering DCI.
  • FIG. 13 illustrates example operations 1300 that may be considered complementary to operations 1200 of FIG. 12.
  • operations 1300 may be performed by a network entity (e.g., a base station, such as an eNB or gNB) , to configure and receive CSI reports from a UE (performing operations 1200 of FIG. 12) .
  • a network entity e.g., a base station, such as an eNB or gNB
  • Operations 1300 begin, at 1302, by transmitting a user equipment (UE) a configuration indicating a first aperiodic channel state information (A-CSI) report setting for first A-CSI report based on first aperiodic CSI reference (A-CSI-RS) .
  • UE user equipment
  • A-CSI aperiodic channel state information
  • the network entity transmits the UE signaling triggering the first A-CSI report.
  • the network entity transmits the A-CSI-RS, in accordance with a non-zero first timing offset applied to the A-CSI-RS, wherein the timing offset is in accordance with a codebook type configured for the first A-CSI report.
  • the network entity may transmit the (A-CSI) report setting (e.g., via RRC signaling) triggering signaling (e.g., a DCI) and A-CSI-RS via the antenna (s) and receiver/transceiver components of the BS 110a shown in FIG. 3 and/or of the apparatus shown in FIG. 21 using any suitable encoding and transmission algorithms.
  • FIGs. 12 and 13 may be understood with reference to the timing diagram of FIG. 14, which illustrates an example of SRS and CSI triggering with a non-zero slot offset for A-CSI-RS, in accordance with certain aspects of the present disclosure.
  • the UE may receive a configuration of aperiodic CSI-RS and determine a non-zero slot offset is applied to the A-CSI-RS.
  • the non-zero slot offset may be applied if the A-CSI-RS is associated with a port-selection CSI feedback, while a zero offset may be applied to A-CSI-RS for other usage types (codebook types) .
  • the CSI-RS triggering offset may be set at zero.
  • the network may use one DCI (0_0, 0_1, 0_2) to trigger A-SRS and A-CSI together (A-CSI request and A-SRS request are separate fields in these DCIs) .
  • A-CSI request and A-SRS request are separate fields in these DCIs.
  • the non-zero slot offset may only applied to a CSI report setting whose codebook type is port-selection.
  • the slot offset may be fixed at zero. For example, assuming A-CSI-RS is associated with a first CSI report (CSI report 1) used for port-selection CSI and a second CSI report (CSI report 2) used for non-PMI based CSI feedback, then the non-zero slot offset configured via RRC would only apply if CSI report 1 is triggered (if CSI report 2 is triggered, then slot offset of zero would apply) .
  • the non-zero slot offset can be RRC configured or indicated via MAC-CE or DCI. In some cases, a set of non-zero slot offset values could be configured (e.g., via RRC) and one of the values selected via MAC-CE and/or DCI.
  • the techniques include jointly triggering A-SRS and A-CSI with an explicit timing rule for A-SRS and A-CSI, and/or separately triggering A-SRS and A-CSI by relaxing the slot offset condition for A-CSI-RS (and allowing non-zero slot offset for CSI-RS in certain cases) .
  • aspects of the present disclosure also provide techniques for jointly triggering A-SRS and A-CSI.
  • This joint triggering may provide an efficient mechanism (e.g., via a single DCI) providing flexibility for enhanced CSI procedures.
  • FIG. 15 illustrates example operations 1500 for wireless communication by a UE.
  • operations 1500 may be performed by a UE 120 (of FIG. 1 or FIG. 3) for CSI reporting, in accordance with certain aspects of the present disclosure.
  • Operations 1500 begin, at 1502, by receiving a configuration indicating one or more channel state information (CSI) report setting including CSI reference signals (CSI-RS) associated with each of the one or more CSI report.
  • the UE receives a configuration indicating one or more SRS resource set. While shown as separate steps, operations 1502 and 1504 may not be separate in some cases. For example, the UE could receive RRC signaling that conveys a configuration of CSI-RS and SRS, and an association between them (if such an association is configured) .
  • CSI channel state information
  • SRS CSI reference signals
  • the UE receives signaling jointly triggering at least the first CSI report and a first sounding reference signal (SRS) resource set associated with at least the first CSI report setting.
  • the UE may receive the configurations (together or separately) and the triggering signaling, via the antenna (s) and receiver/transceiver components of the UE 120a shown in FIG. 3 and/or of the apparatus shown in FIG. 21 using any suitable monitoring and detection algorithm.
  • the UE may also receive signaling indicating the association, according to different options described below.
  • the UE transmits SRS in accordance with the triggering.
  • the UE monitors for the CSI-RS, and transmitting the first CSI report, in accordance with the triggering.
  • the UE may transmit the SRS, monitor for the CSI-RS, and transmit the first CSI-report via the antenna (s) and receiver/transceiver components of the UE 120a shown in FIG. 3 and/or of the apparatus shown in FIG. 21 using any suitable encoding and transmission algorithm.
  • FIG. 16 illustrates example operations 1600 that may be considered complementary to operations 1500 of FIG. 15.
  • operations 1600 may be performed by a network entity (e.g., a base station, such as an eNB or gNB) , to configure and receive CSI reports from a UE (performing operations 1500 of FIG. 15) .
  • a network entity e.g., a base station, such as an eNB or gNB
  • Operations 1600 begin, at 1602, by transmitting a user equipment (UE) a configuration indicating one or more channel state information (CSI) report setting including CSI reference signals (CSI-RS) associated with each of the one or more CSI report.
  • the network entity transmits a configuration indicating one or more SRS resource set.
  • the network entity may transmit the configurations (together or separately) via the antenna (s) and receiver/transceiver components of the BS 110a shown in FIG. 3 and/or of the apparatus shown in FIG. 21 using any suitable encoding and transmission algorithm. While shown as separate steps, operations 1602 and 1604 may not be separate in some cases.
  • the network entity could send RRC signaling that conveys a configuration of CSI-RS and SRS, and an association between them (if such an association is configured) .
  • the network entity transmits signaling jointly triggering at least the first CSI report and an associated SRS resource set.
  • the network entity monitors for SRS in accordance with the triggering.
  • the network entity transmits the CSI-RS, and monitoring for the first CSI report, in accordance with the triggering.
  • the network entity may transmit the triggering signaling, monitor for SRS, and transmit the first CSI-RS via the antenna (s) and receiver/transceiver components of the BS 110a shown in FIG. 3 and/or of the apparatus shown in FIG. 21 using any suitable decoding/encoding and/or receiving/transmission algorithm (s) .
  • FIGs. 17A and 17B illustrate two options for determining an association between a CSI report setting and a SRS resource set.
  • RRC signaling may be used to indicate an SRS resource set ID in each CSI report configuration setting.
  • RRC signaling may be used to indicate a list of SRS resource set IDs in the trigger state configuration (if SP-CSI on PUSCH or A-CSI) . In this manner, there may be a report-wise association between the SRS resource set and CSI report setting.
  • the associated SRS resource set can be changed via MAC-CE.
  • the cell of the SRS resource set may be the same cell for receiving CSI-RS associated to the respective CSI report setting.
  • the UE may receive a CSI request via an uplink related DCI (e.g., DCI formats 0_0, 0_1, 0_2) if SP-CSI on PUSCH or A-CSI, via SP-CSI MACCE activation command if SP-CSI on PUCCH, or via RRC configuration of SRS resource set and CSI report and their association (if P-CSI) .
  • DCI Downlink related DCI
  • SP-CSI MACCE activation command if SP-CSI on PUCCH
  • RRC configuration of SRS resource set and CSI report and their association (if P-CSI) e.g., the type (periodic/semi-persistent/aperiodic, P/SP/AP) for SRS and CSI-RS should be same.
  • the cell ID of the SRS resource set follows the cell ID of the CSI-RS associated to the corresponding CSI report.
  • another way to determine the association is to indicate (e.g., via RRC) a CSI report ID in each SRS resource set configuration.
  • the associated CSI report configuration can be changed via MAC_CE.
  • the cell of the CSI report configuration and the associated CSI-RS may be the cell for transmitting the SRS resource set.
  • the UE may receive an SRS request via UL related DCI (e.g., format 0_0, 0_1, 0_2) , DL related DCI (e.g., format 1_0, 1_1, 1_2 or group common DCI 2-3 used for SRS carrier switching and transmit power control) if aperiodic SRS, via semi-persistent (SP) -SRS MACCE activation command if SP-SRS, or via RRC configuration of SRS resource set and CSI report and their association (if periodic CSI and periodic SRS) .
  • SP semi-persistent
  • RRC configuration of SRS resource set and CSI report and their association (if periodic CSI and periodic SRS) if periodic CSI and periodic SRS.
  • the type (P/SP/AP) of SRS and CSI should be same.
  • a UE may receiving a group common DCI dedicated for joint A-SRS and A-CSI triggering.
  • the group common DCI may contain a number of (B) blocks, where each block is intended for a respective UE.
  • each block there may be two fields: Field 1, an A-SRS request and Field 2, an A-CSI request.
  • Field 1 an A-SRS request
  • Field 2 an A-CSI request.
  • the A-SRS and A-CSI in the same block are triggered jointly, transmitting the triggered A-SRS and A-CSI per request and per configuration.
  • the cell of the A-SRS resource set transmission may be the same as the cell for receiving CSI-RS associated to the triggered CSI report.
  • the SRS is A-SRS
  • the CSI is A-CSI
  • the associated CSI-RS is A-CSI-RS
  • X may be a fixed value predefined in standards. In such cases, X can be dependent or independent to the numerology of the cell of A-SRS transmission and A-CSI-RS reception.
  • X may be indicated via DCI, MACCE, RRC, or a combination thereof.
  • a list of candidate X values may be determined and indicated via RRC or fixed in a standard.
  • a MAC-CE may down-select a subset from this list.
  • MAC-CE or DCI may indicate a value from the list or the subset.
  • X can be jointly indicated with the slot offset of SRS.
  • UE may not expect to be configured with an X value such that the gap between the end of SRS transmission and the starting of the CSI-RS reception is smaller than a threshold.
  • the slot offset configured to its associated A-CSI-RS may be interpreted as the slot offset relative the end of the jointly triggered A-SRS.
  • an indication may trigger one or more instances of SRS transmission and one or more instance of CSI transmission, wherein the CSI reported in the CSI transmission is complimentary to the information conveyed via SRS transmission.
  • the SD-FD bases may be determined using SRS in UL and (non-precoded) CSI-RS in DL may be reciprocal.
  • the fast fading (characteristics) associated with the SD-FD bases are non-reciprocal, so it may make sense to send SRS for the network to determine the SD-FD bases and use the A-CSI report to feedback the coefficients associated to the SD-FD bases, based on measuring the fast fading characteristics in DL via non-precoded CSI-RS.
  • the BS may determine SD-FD bases based on measurement of SRS.
  • the UE may determine SD-FD bases based on measurement of (non-beamformed) CSI-RS, and report a partial PMI comprising linear combination coefficients associated to the SD-FD bases (assuming same SD-FD bases obtained from the SRS and CSI-RS) .
  • the number of SRS/CSI instances and the location of the instances are pre-defined or configured.
  • the number of instances for CSI may typically be larger than the number of instances for SRS transmission, this is because CSI-RS is not only used for determining long-term statistics, e.g., SD-FD bases, but also used for determining fast fading parameters.
  • the UE transmits SRS every 10 slots and the BS transmits CSI-RS every 5 slots.
  • the UE may transmit SRS at slot n, and the BS may transmit CSI-RS multiple times after (e.g., at slot n+5, n+10) .
  • the UE may transmit SRS every 10 slots (e.g., n, n+10, n+20, etc. ) to update the SD-FD bases (for 2nd order statistics) , while the network transmits CSI-RS more frequently (e.g., every 5 slots) for UE to measure and update the linear combination coefficients and CQI (for 1st order statistics) .
  • UE may also report one or more instances of CSI per configuration, the number of instances and their locations are predefined or configured. As illustrated in FIG. 18B, the UE transmits CSI at slot n+4, n+9, n+14 and n+19.
  • the periodicity and slot offset of CSI and CSI-RS may be same or different.
  • an UL related DCI triggers one or more SRS resource sets via an A-SRS request, and triggers A-SRS jointly with A-CSI by A-CSI request.
  • only one A-SRS trigger takes precedence.
  • the former (earlier occurring) A-SRS trigger may take precedence.
  • the latter (later occurring) the UE may ignore the A-CSI which is joint with A-SRS, and respond to the other triggered A-CSIs.
  • the latter may take precedence, while the former is ignored, and no SRS is transmitted.
  • both an A-SRS trigger via A-SRS request and A-CSI request may be considered valid. For example, if there is common SRS resource set triggered by the A-SRS request and A-CSI request, the SRS resources in the corresponding resource set may be transmitted once. If the SRS resource (e.g., SRS 1) triggered via the A-SRS request is overlapped with the SRS resource (e.g., SRS 2) triggered via the A-CSI request on one or more OFDM symbols, only one SRS resource (either SRS 1 or SRS 2) may be transmitted during the overlapping part and the overlapping part for other may not be transmitted.
  • SRS resource e.g., SRS 1 triggered via the A-SRS request
  • SRS 2 triggered via the A-CSI request on one or more OFDM symbols
  • aspects of the present disclosure also provide techniques that may allow for joint activation of SP-CSI-RS and SP-SRS.
  • FIG. 19 illustrates example operations 1900 for wireless communication by a UE.
  • operations 1900 may be performed by a UE 120 (of FIG. 1 or FIG. 3) for CSI reporting, in accordance with certain aspects of the present disclosure.
  • Operations 1900 begin, at 1902, by receiving signaling jointly triggering the SP-CSI-RS and associated SP-SRS.
  • the UE transmits the SP-SRS in accordance with an SP-SRS configuration.
  • the SP-SRS configuration may indicate time and frequency resources allocated for the UE to use for transmitting SP-SRS. When triggered, the UE may transmit on these time and frequency resources.
  • the UE monitors for the SP-CSI-RS in accordance with an SP-CSI-RS configuration.
  • the SP-CSI-RS configuration may indicate time and frequency resources allocated for the UE to use for monitoring for SP-CSI-RS. When triggered, the UE may monitor these time and frequency resources for the SP-CSI-RS transmission from the network entity.
  • the UE may receive the signaling, transmit the SP-SRS, and monitor for the SP-CSI-RS via the antenna (s) and receiver/transceiver components of the UE 120a shown in FIG. 3 and/or of the apparatus shown in FIG. 21 using any suitable decoding/encoding and/or receiving/transmitting algorithm (s) .
  • FIG. 20 illustrates example operations 2000 that may be considered complementary to operations 1900 of FIG. 19.
  • operations 2000 may be performed by a network entity (e.g., a base station, such as an eNB or gNB) , to configure and receive CSI reports from a UE (performing operations 1900 of FIG. 19) .
  • a network entity e.g., a base station, such as an eNB or gNB
  • Operations 2000 begin, at 2002, by transmitting signaling jointly triggering semi-persistent channel state information reference signals (SP-CSI-RS) and semi persistent sounding reference signals (SP-SRS) associated with the SP-CSI-RS.
  • SP-CSI-RS semi-persistent channel state information reference signals
  • SP-SRS semi persistent sounding reference signals
  • the network entity monitors for the SP-SRS in accordance with an SP-SRS configuration.
  • the SP-SRS configuration may indicate time and frequency resources allocated for the UE to use for transmitting SP-SRS.
  • the network entity may monitor these time and frequency resources for the SP-SRS transmissions from the UE.
  • the network entity transmits the SP-CSI-RS in accordance with an SP-CSI-RS configuration.
  • the SP-CSI-RS configuration may indicate time and frequency resources allocated for the network to use for transmitting SP-CSI-RS.
  • the network entity may transmit SP-CSI-RS on these time and frequency resources.
  • the network entity may transmit the signaling, monitor for the SP-SRS, and transmit the SP-CSI-RS via the antenna (s) and receiver/transceiver components of the BS 110a shown in FIG. 3 and/or of the apparatus shown in FIG. 21 using any suitable decoding/encoding and/or receiving/transmitting algorithm (s) .
  • RRC signaling may indicate an SP-SRS resource set in an SP-CSI-RS resource set configuration or SP-CSI-RS resource setting.
  • a MAC-CE SP-CSI-RS activation command may be used to achieve joint triggering.
  • RRC signaling may indicate an SP-CSI-RS resource set in SP-SRS resource set configuration.
  • a MAC-CE SP-SRS activation command may be used to achieve joint triggering.
  • a single MAC-CE may be used to trigger an SP-CSI-RS resource set and an SP-SRS together.
  • FIG. 21 illustrates a device with example components capable of performing various operations in accordance with certain aspects of the present disclosure.
  • FIG. 21 illustrates a communications device 2100 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein.
  • the device 2100 may be a UE configured to perform operations illustrated in FIGs. 12, 15, and/or 19 or the device 2100 may be a network entity configured to perform operations illustrated in FIGs. 13, 16, and/or 20.
  • the communications device 2100 includes a processing system 2102 coupled to a transceiver 2108 (e.g., a transmitter and/or a receiver) .
  • the transceiver 2108 is configured to transmit and receive signals for the communications device 2100 via an antenna 2110, such as the various signals as described herein.
  • the processing system 2102 may be configured to perform processing functions for the communications device 2100, including processing signals received and/or to be transmitted by the communications device 2100.
  • the processing system 2102 includes a processor 2104 coupled to a computer-readable medium/memory 1412 via a bus 1406.
  • the computer-readable medium/memory 1412 is configured to store instructions (e.g., computer-executable code) that when executed by the processor 1404, cause the processor 1404 to perform the operations illustrated in FIGs. 12, 13, 15, 16, 19 and/or 20, or other operations for performing the various techniques discussed herein.
  • computer-readable medium/memory 2112 stores code 2114 for receiving (that may be used to perform the various receiving operations of FIGs. 12, 13, 15, 16, 19 and/or 20) ; code 2116 for transmitting (that may be used to perform the various transmitting operations of FIGs.
  • the processor 2104 has circuitry configured to implement the code stored in the computer-readable medium/memory 2112.
  • the processor 2104 includes circuitry 2124 for receiving (that may be used to perform the various receiving operations of FIGs. 12, 13, 15, 16, 19 and/or 20) ; circuitry 2126 for transmitting (that may be used to perform the various transmitting operations of FIGs.
  • circuitry 2128 for determining that may be used to perform the various determining operations of FIGs. 12, 13, 15, 16, 19 and/or 20
  • circuitry 2129 for monitoring that may be used to perform the various monitoring operations of FIGs. 12, 13, 15, 16, 19 and/or 20.
  • the methods disclosed herein comprise one or more steps or actions for achieving the methods.
  • the method steps and/or actions may be interchanged with one another without departing from the scope of the claims.
  • the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
  • a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • determining encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
  • the various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions.
  • the means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor.
  • ASIC application specific integrated circuit
  • the various processor shown in FIG. 3 may be configured to perform operations of FIGs. 12, 13, 15, 16, 19 and/or 20) .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • PLD programmable logic device
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • an example hardware configuration may comprise a processing system in a wireless node.
  • the processing system may be implemented with a bus architecture.
  • the bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints.
  • the bus may link together various circuits including a processor, machine-readable media, and a bus interface.
  • the bus interface may be used to connect a network adapter, among other things, to the processing system via the bus.
  • the network adapter may be used to implement the signal processing functions of the PHY layer.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • the bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further.
  • the processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
  • the functions may be stored or transmitted over as one or more instructions or code on a computer readable medium.
  • Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • the processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media.
  • a computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor.
  • the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface.
  • the machine-readable media, or any portion thereof may be integrated into the processor, such as the case may be with cache and/or general register files.
  • machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrical Erasable Programmable Read-Only Memory
  • registers magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • the machine-readable media may be embodied in a computer-program product.
  • a software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media.
  • the computer-readable media may comprise a number of software modules.
  • the software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions.
  • the software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices.
  • a software module may be loaded into RAM from a hard drive when a triggering event occurs.
  • the processor may load some of the instructions into cache to increase access speed.
  • One or more cache lines may then be loaded into a general register file for execution by the processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers.
  • computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) .
  • computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
  • certain aspects may comprise a computer program product for performing the operations presented herein.
  • a computer program product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein (e.g., instructions for performing the operations described herein and illustrated in FIGs. 12, 13, 15, 16, 19 and/or 20) .
  • modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable.
  • a user terminal and/or base station can be coupled to a server to facilitate the transfer of means for performing the methods described herein.
  • various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device.
  • storage means e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc.
  • CD compact disc
  • floppy disk etc.
  • any other suitable technique for providing the methods and techniques described herein to a device can be utilized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Certain aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for performing efficiently triggering sounding reference signal (SRS) transmissions and channel state information (CSI) reporting.

Description

JOINT SRS AND CSI TRIGGER BACKGROUND
Field of the Disclosure
Aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for channel state information (CSI) and sounding reference signal (SRS) triggering.
Description of Related Art
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, etc. ) . Examples of such multiple-access systems include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems, to name a few.
In some examples, a wireless multiple-access communication system may include a number of base stations (BSs) , which are each capable of simultaneously supporting communication for multiple communication devices, otherwise known as user equipments (UEs) . In an LTE or LTE-A network, a set of one or more base stations may define an eNodeB (eNB) . In other examples (e.g., in a next generation, a new radio (NR) , or 5G network) , a wireless multiple access communication system may include a number of distributed units (DUs) (e.g., edge units (EUs) , edge nodes (ENs) , radio heads (RHs) , smart radio heads (SRHs) , transmission reception points (TRPs) , etc. ) in communication with a number of central units (CUs) (e.g., central nodes (CNs) , access node controllers (ANCs) , etc. ) , where a set of one or more DUs, in communication with a CU, may define an access node (e.g., which may be referred to as a BS, 5G NB, next generation NodeB (gNB or gNodeB) , transmission reception point (TRP) , etc. ) . A BS or DU may  communicate with a set of UEs on downlink channels (e.g., for transmissions from a BS or DU to a UE) and uplink channels (e.g., for transmissions from a UE to BS or DU) .
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. NR (e.g., new radio or 5G) is an example of an emerging telecommunication standard. NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP. NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) . To these ends, NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in NR and LTE technology. Preferably, these improvements should be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The systems, methods, and devices of the disclosure each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this disclosure as expressed by the claims which follow, some features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description” one will understand how the features of this disclosure provide advantages that include improved communications between access points and stations in a wireless network.
Certain aspects of the disclosure relate to a method for wireless communication by a user equipment (UE) . The method generally includes receiving a configuration indicating a first aperiodic channel state information (A-CSI) report setting for first A-CSI report based on first aperiodic CSI reference (A-CSI-RS) , determining a non-zero first timing offset to be applied to the A-CSI-RS based, at least in part, on a codebook type configured for the first A-CSI report, receiving signaling triggering the first A-CSI report, and monitoring for the A-CSI-RS, in accordance with the first timing offset.
Certain aspects of the disclosure relate to a method for wireless communication by a network entity. The method generally includes transmitting a user equipment (UE) a configuration indicating a first aperiodic channel state information (A-CSI) report setting for first A-CSI report based on first aperiodic CSI reference (A-CSI-RS) , determining a non-zero first timing offset to be applied to the A-CSI-RS based, at least in part, on a codebook type configured for the first A-CSI report, transmitting the UE signaling triggering the first A-CSI report, and transmitting the A-CSI-RS, in accordance with the first timing offset.
Certain aspects of the disclosure relate to a method for wireless communication by a user equipment (UE) . The method generally includes receiving a configuration indicating one or more channel state information (CSI) report setting including CSI reference signals (CSI-RS) associated with each of the one or more CSI report, receiving a configuration indicating one or more SRS resource set, determining an association between at least a first CSI report setting and a first sounding reference signal (SRS) resource set, receiving signaling jointly triggering at least the first CSI report and the associated SRS resource set, transmitting SRS in accordance with the triggering, and monitoring for the CSI-RS, and transmitting the first CSI report, in accordance with the triggering.
Certain aspects of the disclosure relate to a method for wireless communication by a network entity. The method generally includes transmitting a user equipment (UE) a configuration indicating one or more channel state information (CSI) report setting including CSI reference signals (CSI-RS) associated with each of the one or more CSI report, transmitting a configuration indicating one or more SRS resource set, determining an association between at least a first CSI report setting and a first sounding reference signal (SRS) resource set, transmitting signaling jointly triggering at least the first CSI report and the associated SRS resource set, monitoring for SRS in accordance with the triggering, and transmitting the CSI-RS, and monitoring for the first CSI report, in accordance with the triggering.
Certain aspects of the disclosure relate to a method for wireless communication by a user equipment (UE) . The method generally includes determining an association between semi-persistent channel state information reference signals (SP-CSI-RS) and semi-persistent sounding reference signals (SP-SRS) , receiving signaling  jointly triggering the SP-CSI-RS and associated SP-SRS, transmitting the SP-SRS in accordance with the SP-SRS configuration, and monitoring for the SP-CSI-RS in accordance with the SP-CSI-RS configuration.
Certain aspects of the disclosure relate to a method for wireless communication by a network entity. The method generally includes determining an association between semi-persistent channel state information reference signals (SP-CSI-RS) and semi-persistent sounding reference signals (SP-SRS) , transmitting signaling jointly triggering the SP-CSI-RS and associated SP-SRS, monitoring for the SP-SRS in accordance with the SP-SRS configuration, and transmitting the SP-CSI-RS in accordance with the SP-CSI-RS configuration.
Aspects of the present disclosure also provide various apparatuses, means, and computer readable including instructions for performing the operations described herein.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the appended drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the manner in which the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects.
FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
FIG. 2 is a block diagram showing examples for implementing a communication protocol stack in the example RAN architecture, in accordance with certain aspects of the present disclosure.
FIG. 3 is a block diagram conceptually illustrating a design of an example base station (BS) and user equipment (UE) , in accordance with certain aspects of the present disclosure.
FIG. 4 illustrates an example of a frame format for a telecommunication system, in accordance with certain aspects of the present disclosure.
FIG. 5 illustrates a conceptual example of precoder matrices, in accordance with certain aspects of the present disclosure.
FIG. 6 is a call flow diagram illustrating a first example of Type II CSI feedback.
FIG. 7 is a call flow diagram illustrating a second example of Type II CSI feedback.
FIGs. 8A and 8B illustrate example ports and layer to port mapping.
FIG. 9 illustrates an example CSI-RS report configuration.
FIG. 10 illustrates example structure for specifying CSI trigger states.
FIGs. 11A and 11B illustrate examples of SRS and CSI triggering.
FIG. 12 illustrates example operations for wireless communication by a UE, in accordance with certain aspects of the present disclosure.
FIG. 13 illustrates example operations for wireless communication by a network entity, in accordance with certain aspects of the present disclosure.
FIG. 14 illustrates an example of SRS and CSI triggering with a non-zero slot offset for A-CSI-RS, in accordance with certain aspects of the present disclosure.
FIG. 15 illustrates example operations for wireless communication by a UE, in accordance with certain aspects of the present disclosure.
FIG. 16 illustrates example operations for wireless communication by a network entity, in accordance with certain aspects of the present disclosure.
FIGs. 17A and 17B illustrate example mechanisms for associating SRS resource sets and CSI reports, in accordance with certain aspects of the present disclosure.
FIGs. 18A and 18B illustrate examples of joint SRS and CSI triggering, in accordance with certain aspects of the present disclosure.
FIG. 19 illustrates example operations for wireless communication by a UE, in accordance with certain aspects of the present disclosure.
FIG. 20 illustrates example operations for wireless communication by a network entity, in accordance with certain aspects of the present disclosure.
FIG. 21 illustrates a device with example components capable of performing various operations in accordance with certain aspects of the present disclosure.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one aspect may be beneficially utilized on other aspects without specific recitation.
DETAILED DESCRIPTION
Aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for performing efficiently triggering sounding reference signal (SRS) transmissions and channel state information (CSI) reporting.
CSI enhancements with frequency division duplexing (FDD) reciprocity (in uplink and downlink) is a focus for improving system performance. In some enhanced CSI procedures, a UE may first transmit SRS and the network will determine spatial domain (SD) and frequency domain (FD) bases used for CSI-RS beamforming. The UE may then measure beamformed CSI-RS ports and reports CSI as a linear combination of the beamformed ports.
In this enhanced CSI procedure, SRS transmissions play an important role (allowing the network to determine SD and FD bases used for the CSI-beamforming) . Therefore, mechanisms for jointly triggering SRS and CSI reporting, as provided in the present disclosure, may provide welcome flexibility.
The following description provides examples, and is not limiting of the scope, applicability, or examples set forth in the claims. Changes may be made in the function and arrangement of elements discussed without departing from the scope of the disclosure. Various examples may omit, substitute, or add various procedures or components as appropriate. For instance, the methods described may be performed in an order different from that described, and various steps may be added, omitted, or combined. Also, features described with respect to some examples may be combined in some other examples. For  example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to, or other than, the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects.
The techniques described herein may be used for various wireless communication technologies, such as LTE, CDMA, TDMA, FDMA, OFDMA, SC-FDMA and other networks. The terms “network” and “system” are often used interchangeably. A CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. cdma2000 covers IS-2000, IS-95 and IS-856 standards. A TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) . An OFDMA network may implement a radio technology such as NR (e.g. 5G RA) , Evolved UTRA (E-UTRA) , Ultra Mobile Broadband (UMB) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDMA, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) .
New Radio (NR) is an emerging wireless communications technology under development in conjunction with the 5G Technology Forum (5GTF) . 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) . cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
New radio (NR) access (e.g., 5G technology) may support various wireless communication services, such as enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g., 80 MHz or beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 25 GHz or beyond) , massive machine type communications MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low-latency communications (URLLC) . These services may include latency and reliability requirements. These services may also have different transmission time intervals (TTI) to meet respective quality of service (QoS) requirements. In addition, these services may co-exist in the same subframe.
Example Wireless Communications System
FIG. 1 illustrates an example wireless communication network 100 in which aspects of the present disclosure may be performed. For example, a UE 120 in the wireless communication network 100 may include a CSI reporting module configured to perform (or assist the UE 120 in performing)  operations  1200, 1500, and/or 1900 described below with reference to FIGs. 12, 15, and 19. Similarly, a base station 120 (e.g., a gNB) may be configured to perform  operations  1300, 1600, or 2000 described below with reference to FIGs. 13, 16, and 20 to configure and process CSI reports received from a UE (performing  operations  1200, 1500, and/or 1900 described below with reference to FIGs. 12, 15, and 19) .
As illustrated in FIG. 1, the wireless communication network 100 may include a number of base stations (BSs) 110 and other network entities. A BS may be a station that communicates with user equipment (UE) . Each BS 110 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a Node B (NB) and/or a NB subsystem serving this coverage area, depending on the context in which the term is used. In NR systems, the term “cell” and next generation NodeB (gNB or gNodeB) , NR BS, 5G NB, access point (AP) , or transmission reception point (TRP) may be interchangeable. In some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some examples, the base stations may be interconnected to one another and/or to one or more other base stations or network nodes (not shown) in wireless communication network 100 through various types of backhaul interfaces, such as a direct  physical connection, a wireless connection, a virtual network, or the like using any suitable transport network.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, etc. A frequency may also be referred to as a carrier, a subcarrier, a frequency channel, a tone, a subband, etc. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cells. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having an association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in FIG. 1, the  BSs  110a, 110b and 110c may be macro BSs for the  macro cells  102a, 102b and 102c, respectively. The BS 110x may be a pico BS for a pico cell 102x. The BSs 110y and 110z may be femto BSs for the  femto cells  102y and 102z, respectively. A BS may support one or multiple (e.g., three) cells.
Wireless communication network 100 may also include relay stations. A relay station is a station that receives a transmission of data and/or other information from an upstream station (e.g., a BS or a UE) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that relays transmissions for other UEs. In the example shown in FIG. 1, a relay station 110r may communicate with the BS 110a and a UE 120r in order to facilitate communication between the BS 110a and the UE 120r. A relay station may also be referred to as a relay BS, a relay, etc.
Wireless communication network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BS, pico BS, femto BS, relays, etc. These different types of BSs may have different transmit power levels, different coverage areas, and different impact on interference in the wireless communication network 100. For example, macro BS may have a high transmit power level (e.g., 20 Watts) whereas pico BS, femto BS, and relays may have a lower transmit power level (e.g., 1 Watt) .
Wireless communication network 100 may support synchronous or asynchronous operation. For synchronous operation, the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time. For asynchronous operation, the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time. The techniques described herein may be used for both synchronous and asynchronous operation.
network controller 130 may couple to a set of BSs and provide coordination and control for these BSs. The network controller 130 may communicate with the BSs 110 via a backhaul. The BSs 110 may also communicate with one another (e.g., directly or indirectly) via wireless or wireline backhaul.
The UEs 120 (e.g., 120x, 120y, etc. ) may be dispersed throughout the wireless communication network 100, and each UE may be stationary or mobile. A UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet computer, a camera, a gaming device, a netbook, a smartbook, an ultrabook, an appliance, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc. ) , an entertainment device (e.g., a music device, a video device, a satellite radio, etc. ) , a vehicular component or sensor, a smart meter/sensor, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium. Some UEs may be considered machine-type communication (MTC) devices or evolved MTC (eMTC) devices. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS,  another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, which may be narrowband IoT (NB-IoT) devices.
Certain wireless networks (e.g., LTE) utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink. OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc. Each subcarrier may be modulated with data. In general, modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM. The spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth. For example, the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a “resource block” (RB) ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal Fast Fourier Transfer (FFT) size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10, or 20 megahertz (MHz) , respectively. The system bandwidth may also be partitioned into sub-bands. For example, a sub-band may cover 1.8 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8, or 16 sub-bands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
Communication systems such as NR may utilize OFDM with a cyclic prefix (CP) on the uplink and downlink and include support for half-duplex operation using time division duplex (TDD) . Beamforming may be supported and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported. MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 4 streams per UE. Multi-layer transmissions with up to 4 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells.
In some examples, access to the air interface may be scheduled. A scheduling entity (e.g., a BS) allocates resources for communication among some or all devices and equipment within its service area or cell. The scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate  entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity. Base stations are not the only entities that may function as a scheduling entity. In some examples, a UE may function as a scheduling entity and may schedule resources for one or more subordinate entities (e.g., one or more other UEs) , and the other UEs may utilize the resources scheduled by the UE for wireless communication. In some examples, a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network. In a mesh network example, UEs may communicate directly with one another in addition to communicating with a scheduling entity.
In FIG. 1, a solid line with double arrows indicates desired transmissions between a UE and a serving BS, which is a BS designated to serve the UE on the downlink and/or uplink. A finely dashed line with double arrows indicates interfering transmissions between a UE and a BS.
FIG. 2 illustrates a diagram showing examples for implementing a communications protocol stack in a RAN (e.g., such as the RAN 100) , according to aspects of the present disclosure. The illustrated communications protocol stack 200 may be implemented by devices operating in a wireless communication system, such as a 5G NR system (e.g., the wireless communication network 100) . In various examples, the layers of the protocol stack 200 may be implemented as separate modules of software, portions of a processor or ASIC, portions of non-collocated devices connected by a communications link, or various combinations thereof. Collocated and non-collocated implementations may be used, for example, in a protocol stack for a network access device or a UE. As shown in FIG. 2, the system may support various services over one or more protocols. One or more protocol layers of the protocol stack 200 may be implemented by the AN and/or the UE.
As shown in FIG. 2, the protocol stack 200 is split in the AN (e.g., BS 110 in FIG. 1) . The RRC layer 205, PDCP layer 210, RLC layer 215, MAC layer 220, PHY layer 225, and RF layer 230 may be implemented by the AN. For example, the CU-CP may implement the RRC layer 205 and the PDCP layer 210. A DU may implement the RLC layer 215 and MAC layer 220. The AU/RRU may implement the PHY layer (s) 225 and the RF layer (s) 230. The PHY layers 225 may include a high PHY layer and a low PHY layer.
The UE may implement the entire protocol stack 200 (e.g., the RRC layer 205, the PDCP layer 210, the RLC layer 215, the MAC layer 220, the PHY layer (s) 225, and the RF layer (s) 230) .
FIG. 3 illustrates example components of BS 110 and UE 120 (as depicted in FIG. 1) , which may be used to implement aspects of the present disclosure. For example, antennas 352,  processors  366, 358, 364, and/or controller/processor 380 of the UE 120 may be configured (or used) to perform  operations  1200, 1500, and/or 1900 described below with reference to FIGs. 12, 15, and 19. Similarly, antennas 334,  processors  320, 330, 338, and/or controller/processor 340 of the BS 110 may be configured (or used) to perform  operations  1300, 1600, or 2000 described below with reference to FIGs. 13, 16, and 20.
At the BS 110, a transmit processor 320 may receive data from a data source 312 and control information from a controller/processor 340. The control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid ARQ indicator channel (PHICH) , physical downlink control channel (PDCCH) , group common PDCCH (GC PDCCH) , etc. The data may be for the physical downlink shared channel (PDSCH) , etc. The processor 320 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. The processor 320 may also generate reference symbols, e.g., for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , and cell-specific reference signal (CRS) . A transmit (TX) multiple-input multiple-output (MIMO) processor 330 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 332a through 332t. Each modulator 332 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 332a through 332t may be transmitted via the antennas 334a through 334t, respectively.
At the UE 120, the antennas 352a through 352r may receive the downlink signals from the base station 110 and may provide received signals to the demodulators (DEMODs) in transceivers 354a through 354r, respectively. Each demodulator 354 may  condition (e.g., filter, amplify, down-convert, and digitize) a respective received signal to obtain input samples. Each demodulator may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols. A MIMO detector 356 may obtain received symbols from all the demodulators 354a through 354r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 358 may process (e.g., demodulate, de-interleave, and decode) the detected symbols, provide decoded data for the UE 120 to a data sink 360, and provide decoded control information to a controller/processor 380.
In a MIMO system, a transmitter (e.g., BS 120) includes multiple transmit antennas 354a through 354r, and a receiver (e.g., UE 110) includes multiple receive antennas 352a through 352r. Thus, there are a plurality of signal paths 394 from the transmit antennas 354a through 354r to the receive antennas 352a through 352r. Each of the transmitter and the receiver may be implemented, for example, within a UE 110, a BS 120, or any other suitable wireless communication device.
The use of such multiple antenna technology enables the wireless communication system to exploit the spatial domain to support spatial multiplexing, beamforming, and transmit diversity. Spatial multiplexing may be used to transmit different streams of data, also referred to as layers, simultaneously on the same time-frequency resource. The data streams may be transmitted to a single UE to increase the data rate or to multiple UEs to increase the overall system capacity, the latter being referred to as multi-user MIMO (MU-MIMO) . This is achieved by spatially precoding each data stream (i.e., multiplying the data streams with different weighting and phase shifting) and then transmitting each spatially precoded stream through multiple transmit antennas on the downlink. The spatially precoded data streams arrive at the UE (s) with different spatial signatures, which enables each of the UE (s) to recover the one or more data streams destined for that UE. On the uplink, each UE transmits a spatially precoded data stream, which enables the base station to identify the source of each spatially precoded data stream.
The number of data streams or layers corresponds to the rank of the transmission. In general, the rank of the MIMO system is limited by the number of transmit or receive antennas, whichever is lower. In addition, the channel conditions at the UE, as well as other considerations, such as the available resources at the base station,  may also affect the transmission rank. For example, the rank (and therefore, the number of transmission layers) assigned to a particular UE on the downlink may be determined based on the rank indicator (RI) transmitted from the UE to the base station. The RI may be determined based on the antenna configuration (e.g., the number of transmit and receive antennas) and a measured signal-to-interference-and-noise ratio (SINR) on each of the receive antennas. The RI may indicate, for example, the number of layers that may be supported under the current channel conditions. The base station may use the RI, along with resource information (e.g., the available resources and amount of data to be scheduled for the UE) , to assign a transmission rank to the UE.
On the uplink, at UE 120, a transmit processor 364 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from a data source 362 and control information (e.g., for the physical uplink control channel (PUCCH) from the controller/processor 380. The transmit processor 364 may also generate reference symbols for a reference signal (e.g., for the sounding reference signal (SRS) ) . The symbols from the transmit processor 364 may be precoded by a TX MIMO processor 366 if applicable, further processed by the demodulators in transceivers 354a through 354r (e.g., for SC-FDM, etc. ) , and transmitted to the base station 110. At the BS 110, the uplink signals from the UE 120 may be received by the antennas 334, processed by the modulators 332, detected by a MIMO detector 336 if applicable, and further processed by a receive processor 338 to obtain decoded data and control information sent by the UE 120. The receive processor 338 may provide the decoded data to a data sink 339 and the decoded control information to the controller/processor 340.
FIG. 4 is a diagram showing an example of a frame format 400 for NR. The transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames. Each radio frame may have a predetermined duration (e.g., 10 ms) and may be partitioned into 10 subframes, each of 1 ms, with indices of 0 through 9. Each subframe may include a variable number of slots depending on the subcarrier spacing. Each slot may include a variable number of symbol periods (e.g., 7 or 14 symbols) depending on the subcarrier spacing. The symbol periods in each slot may be assigned indices. A mini-slot, which may be referred to as a sub-slot structure, refers to a transmit time interval having a duration less than a slot (e.g., 2, 3, or 4 symbols) . Each symbol in a slot may indicate a link direction (e.g., DL, UL, or flexible) for data transmission and the link direction for each subframe may be dynamically switched. The link directions  may be based on the slot format. Each slot may include DL/UL data as well as DL/UL control information.
In NR, a synchronization signal (SS) block is transmitted. The SS block includes a PSS, a SSS, and a two symbol PBCH. The SS block can be transmitted in a fixed slot location, such as the symbols 0-3 as shown in FIG. 4. The PSS and SSS may be used by UEs for cell search and acquisition. The PSS may provide half-frame timing, the SS may provide the CP length and frame timing. The PSS and SSS may provide the cell identity. The PBCH carries some basic system information, such as downlink system bandwidth, timing information within radio frame, SS burst set periodicity, system frame number, etc. The SS blocks may be organized into SS bursts to support beam sweeping. Further system information such as, remaining minimum system information (RMSI) , system information blocks (SIBs) , other system information (OSI) can be transmitted on a physical downlink shared channel (PDSCH) in certain subframes. The SS block can be transmitted up to sixty-four times, for example, with up to sixty-four different beam directions for mmW. The up to sixty-four transmissions of the SS block are referred to as the SS burst set. SS blocks in an SS burst set are transmitted in the same frequency region, while SS blocks in different SS bursts sets can be transmitted at different frequency locations.
A UE may operate in various radio resource configurations, including a configuration associated with transmitting pilots using a dedicated set of resources (e.g., a radio resource control (RRC) dedicated state, etc. ) or a configuration associated with transmitting pilots using a common set of resources (e.g., an RRC common state, etc. ) . When operating in the RRC dedicated state, the UE may select a dedicated set of resources for transmitting a pilot signal to a network. When operating in the RRC common state, the UE may select a common set of resources for transmitting a pilot signal to the network. In either case, a pilot signal transmitted by the UE may be received by one or more network access devices, such as an AN, or a DU, or portions thereof. Each receiving network access device may be configured to receive and measure pilot signals transmitted on the common set of resources, and also receive and measure pilot signals transmitted on dedicated sets of resources allocated to the UEs for which the network access device is a member of a monitoring set of network access devices for the UE. One or more of the receiving network access devices, or a CU to which receiving network access device (s)  transmit the measurements of the pilot signals, may use the measurements to identify serving cells for the UEs, or to initiate a change of serving cell for one or more of the UEs.
Example CSI Report Configuration
Channel state information (CSI) may refer to channel properties of a communication link. The CSI may represent the combined effects of, for example, scattering, fading, and power decay with distance between a transmitter and receiver. Channel estimation using pilots, such as CSI reference signals (CSI-RS) , may be performed to determine these effects on the channel. CSI may be used to adapt transmissions based on the current channel conditions, which is useful for achieving reliable communication, in particular, with high data rates in multi-antenna systems. CSI is typically measured at the receiver, quantized, and fed back to the transmitter.
The time and frequency resources that can be used by the UE to report CSI are controlled by a base station (e.g., gNB) . CSI may include Channel Quality Indicator (CQI) , precoding matrix indicator (PMI) , CSI-RS resource indicator (CRI) , SS/PBCH Block Resource indicator (SSBRI) , layer indicator (LI) , rank indicator (RI) and/or L1-RSRP. However, as described below, additional or other information may be included in the report.
The base station may configure UEs for CSI reporting. For example, the BS configures the UE with a CSI report configuration or with multiple CSI report configurations. The CSI report configuration may be provided to the UE via higher layer signaling, such as radio resource control (RRC) signaling (e.g., CSI-ReportConfig) . The CSI report configuration may be associated with CSI-RS resources for channel measurement (CM) , interference measurement (IM) , or both. The CSI report configuration configures CSI-RS resources for measurement (e.g., CSI-ResourceConfig) . The CSI-RS resources provide the UE with the configuration of CSI-RS ports, or CSI-RS port groups, mapped to time and frequency resources (e.g., resource elements (REs) ) . CSI-RS resources can be zero power (ZP) or non-zero power (NZP) resources. At least one NZP CSI-RS resource may be configured for CM.
For the Type II codebook, the PMI is a linear combination of beams; it has a subset of orthogonal beams to be used for linear combination and has per layer, per polarization, amplitude and phase for each beam. For the PMI of any type, there can be wideband (WB) PMI and/or subband (SB) PMI as configured.
The CSI report configuration may configure the UE for aperiodic, periodic, or semi-persistent CSI reporting. For periodic CSI, the UE may be configured with periodic CSI-RS resources. Periodic CSI on physical uplink control channel (PUCCH) may be triggered via RRC. Semi-persistent CSI reporting on physical uplink control channel (PUCCH) may be activated via a medium access control (MAC) control element (CE) . For aperiodic and semi-persistent CSI on the physical uplink shared channel (PUSCH) , the BS may signal the UE a CSI report trigger indicating for the UE to send a CSI report for one or more CSI-RS resources, or configuring the CSI-RS report trigger state (e.g., CSI-AperiodicTriggerStateList and CSI-SemiPersistentOnPUSCH-TriggerStateList) . The CSI report trigger for aperiodic CSI and semi-persistent CSI on PUSCH may be provided via downlink control information (DCI) .
The UE may report the CSI feedback based on the CSI report configuration and the CSI report trigger. For example, the UE may measure the channel on which the triggered CSI-RS resources (associated with the CSI report configuration) is conveyed. Based on the measurements, the UE may select a preferred CSI-RS resource. The UE reports the CSI feedback for the selected CSI-RS resource. LI may be calculated conditioned on the reported CQI, PMI, RI and CRI; CQI may be calculated conditioned on the reported PMI, RI and CRI; PMI may be calculated conditioned on the reported RI and CRI; and RI may be calculated conditioned on the reported CRI.
Each CSI report configuration may be associated with a single downlink bandwidth part (BWP) . The CSI report setting configuration may define a CSI reporting band as a subset of subbands of the BWP. The associated DL BWP may indicated by a higher layer parameter (e.g., bwp-Id) in the CSI report configuration for channel measurement and contains parameter (s) for one CSI reporting band, such as codebook configuration, time-domain behavior, frequency granularity for CSI, measurement restriction configurations, and the CSI-related quantities to be reported by the UE. Each CSI resource setting may be located in the DL BWP identified by the higher layer parameter, and all CSI resource settings may be linked to a CSI report setting have the same DL BWP.
In certain systems, the UE can be configured via higher layer signaling (e.g., in the CSI report configuration) with one out of two possible subband sizes (e.g., reportFreqConfiguration contained in a CSI-ReportConfig) which indicates a  frequency granularity of the CSI report, where a subband may be defined as 
Figure PCTCN2020123164-appb-000001
 contiguous physical resource blocks (PRBs) and depends on the total number of PRBs in the bandwidth part. The UE may further receive an indication of the subbands for which the CSI feedback is requested. In some examples, a subband mask is configured for the requested subbands for CSI reporting. The UE computes precoders for each requested subband and finds the PMI that matches the computed precoder on each of the subbands.
Compressed CSI Feedback Coefficient Reporting
As discussed above, a user equipment (UE) may be configured for channel state information (CSI) reporting, for example, by receiving a CSI configuration message from the base station. In certain systems (e.g., 3GPP Release 15 5G NR) , the UE may be configured to report at least a Type II precoder across configured frequency domain (FD) units. For example, the precoder matrix W r for layer r includes the W 1 matrix, reporting a subest of selected beams using spatial compression and the W 2, r matrix, reporting (for cross-polarization) the linear combination coefficients for the selected beams (2L) across the configured FD units:
Figure PCTCN2020123164-appb-000002
where
Figure PCTCN2020123164-appb-000003
where b i is the selected beam, c i is the set of linear combination coefficients (i.e., entries of W 2, r matrix) , L is the number of selected spatial beams, and N 3 corresponds to the number of frequency units (e.g., subbands, resource blocks (RBs) , etc. ) . In certain configurations, L is RRC configured. The precoder is based on a linear combination of DFT beams. The Type II codebook may improve MU-MIMO performance. In some configurations considering there are two polarizations, the W 2, r matrix has size 2L X N 3.
In certain systems (e.g., Rel-16 5G NR) , the UE may be configured to report FD compressed precoder feedback to reduce overhead of the CSI report. As shown in FIG. 5, the precoder matrix (W 2, i) for layer i with i=0, 1 may use an FD compression
Figure PCTCN2020123164-appb-000004
matrix to compress the precoder matrix into
Figure PCTCN2020123164-appb-000005
matrix size to 2L X M (where M is network configured and communicated in the CSI configuration message via RRC or DCI, and M < N 3) given as:
Figure PCTCN2020123164-appb-000006
Where the precoder matrix W i (not shown) has P = 2N 1N 2 rows (spatial domain, number of ports) and N 3 columns (frequency-domain compression unit containing RBs or reporting sub-bands) , and where M bases are selected for each of layer 0 and layer 1 independently. The
Figure PCTCN2020123164-appb-000007
matrix 520 consists of the linear combination coefficients (amplitude and co-phasing) , where each element represents the coefficient of a tap for a beam. The
Figure PCTCN2020123164-appb-000008
matrix 520 as shown is defined by size 2L X M, where one row corresponds to one spatial beam in W 1 (not shown) of size P X 2L (where L is network configured via RRC) , and one entry therein represents the coefficient of one tap for this spatial beam. The UE may be configured to report (e.g., CSI report) a subset K 0 < 2LM of the linear combination coefficients of the
Figure PCTCN2020123164-appb-000009
matrix 520. For example, the UE may report K NZ, i < K 0 coefficients (where K NZ, i corresponds to a maximum number of non-zero coefficients for layer-i with i=0 or 1, and K 0 is network configured via RRC) illustrated as shaded squares (unreported coefficients are set to zero) . In some configurations, an entry in the
Figure PCTCN2020123164-appb-000010
matrix 520 corresponds to a row of
Figure PCTCN2020123164-appb-000011
matrix 530. In the example shown, both the
Figure PCTCN2020123164-appb-000012
matrix 520 at layer 0 and the
Figure PCTCN2020123164-appb-000013
matrix 550 at layer 1 are 2L X M.
The
Figure PCTCN2020123164-appb-000014
matrix 530 is composed of the basis vectors (each row is a basis vector) used to perform compression in frequency domain. In the example shown, both the
Figure PCTCN2020123164-appb-000015
matrix 530 at layer 0 and the
Figure PCTCN2020123164-appb-000016
matrix 560 at layer 1 include M=4 FD basis (illustrated as shaded rows) from N 3 candidate DFT basis. In some configurations, the UE may report a subset of selected basis of the
Figure PCTCN2020123164-appb-000017
matrix via CSI report. The M bases specifically selected at layer 0 and layer 1. That is, the M bases selected at layer 0 can be same/partially-overlapped/non-overlapped with the M bases selected at layer 1.
Example Decoupled Port Selection and Coefficients Reporting
Some deployments (e.g., NR Release 16 and 17 systems) support enhancements to CSI based feedback that are designed to exploit directional (angle) and delay reciprocity (meaning the same or similar conditions may be assumed to be observed on the uplink and downlink) . FIGs. 6 and 7 illustrate examples of such CSI based feedback where a gNB obtains the following terms based on a combination of SRS measurements taken at the gNB and feedback from the UE:
b i: spatial domain basis;
Figure PCTCN2020123164-appb-000018
frequency domain basis; and
c i, m: linear combination coefficients.
FIG. 6 is a call flow diagram illustrating an example of Type II port-selection CSI feedback (according to Release 16) . The UE transmits SRS that the gNB measures to determine a spatial domain basis (b i) . Assuming spatial reciprocity, the gNB precodes CSI-RS via the spatial domain basis (b i) , wherein each CSI-RS port may be precoded via a particular spatial domain basis. Based on measurements of the precoded CSI-RS, the UE determines preferred CSI-RS ports and reports them and also reports other terms (c i, m and
Figure PCTCN2020123164-appb-000019
) used to combine the preferred CSI-RS ports.
The term CSI-RS port refers to an antenna port used for CSI-RS transmission. An antenna port is a logical concept related to physical layer (L1) , rather than an actual physical RF antenna. According to the 3GPP specification definition, an antenna port is defined such that the channel over which a symbol on the antenna port is conveyed can be inferred from the channel over which another symbol on the same antenna port is conveyed. In other words, each individual downlink transmission is carried out from a specific antenna port, the identity of which is known to the UE and the UE can assume that two transmitted signals have experienced the same radio channel if and only if they are transmitted from the same antenna port. The mapping of antenna ports to physical antennas is generally controlled by beam forming as a certain beam needs to transmits the signal on certain antenna ports to form a desired beam. As such, it is possible that two antenna ports may be mapped to one physical antenna port or that a single antenna port may be mapped to multiple physical antenna ports.
FIG. 7 is a call flow diagram illustrating another example of Type II CSI feedback (according to Release 17) . In this case, the gNB determines both (b i) and
Figure PCTCN2020123164-appb-000020
based on SRS measurements. Assuming both spatial and delay reciprocity, the gNB precodes CSI-RS via the spatial domain basis (b i) and the frequency domain basis
Figure PCTCN2020123164-appb-000021
wherein each CSI-RS port maybe precoded via a particular pair of a spatial domain basis and a frequency domain basis. Based on measurements of the precoded CSI-RS, the UE determines preferred CSI-RS ports and reports them and also reports c i, m used to combine the preferred CSI-RS ports.
In scenarios where there is an ideal spatial and delay reciprocity in the uplink and downlink frequency band, such as time division duplexing (TDD) scenarios, the CSI  reporting of FIG. 7 may have certain benefits. Examples of such benefits include lower reporting overhead, lower UE complexity, and higher performance due to finer resolution of frequency domain basis and higher performance due to better spatial and frequency bases (gNB can use bases other than DFT bases, e.g., SVD bases, to gain more performance benefit) .
For the frequency selective precoding shown in FIG. 7, on an FD unit (RB or subband) , the precoder of a CSI-RS port is formed by a pair of an SD basis (or spatial domain transmission filter) b i and an FD basis (frequency domain transmission filter/weight) f m. When generating a wideband (WB) CSI report, for a given port p, the UE observes:
Figure PCTCN2020123164-appb-000022
on FD unit n;
based on which the UE calculates CSI. In this equation, H is the wireless channel between UE and gNB without precoding, where i (p) and m (p) denote the indices of the spatial and frequency bases applied on port p, respectively.
For each layer, the UE selects a subset of total ports, and reports a single coefficient per port across the frequency band. The PMI for a certain layer on any of the N 3 FD units is given as:
Figure PCTCN2020123164-appb-000023
where
Figure PCTCN2020123164-appb-000024
is of size P×1 with only one “1” in row i k, P is the total number of CSI-RS ports. The UE reports
Figure PCTCN2020123164-appb-000025
and
Figure PCTCN2020123164-appb-000026
or a subset of
Figure PCTCN2020123164-appb-000027
wherein the unreported coefficients are set to 0, K 0 is the maximum number of ports allowed to be selected for linear combination.
As illustrated in FIG. 8A, in current standards, the CSI-RS port index in each resource starts from 3000. As shown in FIG. 8B, the UE calculates CQI assuming a virtual PDSCH:
Figure PCTCN2020123164-appb-000028
and the actual precoder of the virtual PDSCH is given as:
Figure PCTCN2020123164-appb-000029
CSI-RS port precoding may be less than ideal for various reasons. In certain conditions, such as frequency division duplexing, the UL and DL band are mismatched so that UL/DL reciprocity may be poor which may impact the accuracy of precoding. For example, the gNB may determine the SD/FD combination used to precode each CSI-RS port. However, the UL/DL reciprocity may be poor considering UL/DL band mismatch and Rx/Tx calibration errors and/or practical sounding errors.
Example Joint SRS and CSI Report Triggering
Aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for performing efficiently triggering sounding reference signal (SRS) transmissions and channel state information (CSI) reporting. Mechanisms for jointly triggering SRS and CSI reporting, as provided in the present disclosure, may provide flexibility to the enhanced CSI procedure described above.
FIG. 9 illustrates an example CSI-RS report configuration. As illustrated, the configuration may indicate, for a CSI report/resource setting, one non zero-power CSI-RS (NZP-CSI-RS) resource setting for channel measurement and zero or more (e.g., 0-2) resources for interference measurement (IM) . If one IM resource (IMR) is configured, the IMR can be configured as either CSI-IM (zero-power) setting or NZP-CSI-RS setting. If two IMRs, these resources may be configured as CSI-IM setting plus NZP CSI-RS settings. For NZP-CSI-RS IMR, any single port in the activated resources may be assumed as an interference layer, in which case, a UE may be configured to aggregate all the interference layers in CSI calculation. As indicated in FIG. 9, there may be a resource-wise association between CMR and CSI-IM resources.
In some cases, aperiodic CSI reporting may be triggered, for example, via a mechanism involving radio resource control (RRC) , medium access control (MAC) control element (CE) , and downlink control information (DCI) . For example, RRC signaling may be used to configure up to 128 trigger states per serving cell, where each trigger state comprises one or more CSI report configurations (e.g., as shown in the example CSI trigger state information element shown in FIG. 10) . In each trigger state, RRC signaling may also be used to activate one resource set from the multiple resource sets of each CSI report configurations. In some cases, a MAC CE may be used to downselect 64 trigger states from the 128 states, while a DCI may be used to trigger one  trigger state from the (downselected) 64 states (e.g., via a 6-bit CSI-request in UL-related DCI, such as DCI format 0_1, 0_2) .
To configure a UE for SRS transmissions, the network configures the UE (via RRC signaling) with one or more SRS resource sets. Each resource set includes a list of resources. In each resource configuration, there is configuration of various parameters, including transmission comb, number of ports, resource mapping in the time domain, frequency domain position, hopping configuration, and spatial relation information. A usage type, indicating the purpose of the SRS, and resource type are also indicated as:
Usage = {beamManagement, codebook, nonCodebook, antennaSwitching} ; and
Resource type = {aperiodic, semi-persistent, periodic} .
For aperiodic SRS triggering, the UE receives, in the RRC configuration, a slot offset (0-31 slots) indicating the timing for sending the SRS relative to the DCI triggering the SRS. A trigger state index is also configured for aperiodic SRS sets. The UE receives an SRS request (via either UL DCI 0_0, 0_1, 0_2, DL DCI 1_0, 1_1, 1_2 and group common DCI 2_3) triggering a SRS trigger state. All SRS resource sets associated with the triggered state are triggered.
As described above, NR Rel-17 port-selection Type II CSI is based on SRS transmission prior to the CSI-RS transmission, allowing the base station to determine the SD-FD bases for CSI-RS beamforming. In current systems, the A-CSI and A-SRS separately using one or two DCIs.
As illustrated in FIG. 11A, if using two DCIs, the UE receives a first DCI to trigger A-SRS and, after the A-SRS transmission, receives a second DCI to trigger A-CSI (whose associated CSI-RS is beamformed based on the measurement of the A-SRS transmission) . Drawbacks to this approach include the overhead of two DCI and associated long cycle.
As illustrated in FIG. 11B, using a single DCI (e.g., using a DCI 0_0, 0_1 or 0_2) with separate fields to trigger A-SRS and A-CSI together may result in a non-causal issue for SRS and CSI-RS. As noted above, in current systems, A-SRS slot offset can be 0-31 and A-CSI slot offset can be 0-31, but the offset for the associated A-CSI-RS can be 0 (i.e., same slot as the DCI) in FR1 (subject to the minmumSchedulingOffsetK0 configured for DL BWP) .
The minimum scheduling offset is configured semi-statically via RRC, and is applied to any DL scheduling (not only for CSI-RS) . This approach may be restrictive, however. For example, as shown in FIG. 11B, if the network prefers zero offset for nominal PDSCH, the network may configure a zero offset for minimum scheduling offset, then the A-CSI-RS (sent in the same slot as the triggering DCI) would be prior to SRS, resulting in the non-causal issue described above. On the other hand, if the network configures a non-zero offset for minmumSchedulingOffsetK0 (e.g., 8-slots) , this may address the non-causal issue (allowing A-SRS to be sent before A-CSI-RS) , but also means that all nominal PDSCH scheduling would need to be at least 8-slots after the scheduling DCI.
Aspects of the present disclosure, provide techniques that may help avoid this non-causal issue. As will be described in greater detail below, the techniques include jointly triggering A-SRS and A-CSI with an explicit timing rule for A-SRS and A-CSI, and/or separately triggering A-SRS and A-CSI by relaxing the slot offset condition for A-CSI-RS (and allowing non-zero slot offset for CSI-RS in certain cases) .
FIG. 12 illustrates example operations 1200 for wireless communication by a UE. For example, operations 1200 may be performed by a UE 120 (of FIG. 1 or FIG. 3) for CSI reporting, in accordance with certain aspects of the present disclosure.
Operations 1200 begin, at 1202, by receiving a configuration indicating a first aperiodic channel state information (A-CSI) report setting for first A-CSI report based on first aperiodic CSI reference (A-CSI-RS) . At 1204, the UE receives signaling triggering the first A-CSI report. For example, the UE may receive the configuration, an indication of the non-zero first timing offset, and the triggering signaling, via the antenna (s) and receiver/transceiver components of the UE 120a shown in FIG. 3 and/or of the apparatus shown in FIG. 21, for example, using any suitable detection and decoding algorithm. The configuration and non-zero timing offset may be received via RRC signaling, while the triggering signaling may be received via a DCI.
At 1206, the UE monitors for the A-CSI-RS, in accordance with a non-zero first timing offset applied to the A-CSI-RS, wherein the timing offset is in accordance with a codebook type configured for the first A-CSI report. For example, as illustrated in FIG. 14, the may monitor for the A-CSI-RS (e.g., via the antenna (s) and receiver/transceiver components of the UE 120a shown in FIG. 3 and/or of the apparatus shown in FIG. 21 using any suitable monitoring and detection algorithm in a number of  slots indicated by the non-zero slot offset, after the triggering DCI.
FIG. 13 illustrates example operations 1300 that may be considered complementary to operations 1200 of FIG. 12. For example, operations 1300 may be performed by a network entity (e.g., a base station, such as an eNB or gNB) , to configure and receive CSI reports from a UE (performing operations 1200 of FIG. 12) .
Operations 1300 begin, at 1302, by transmitting a user equipment (UE) a configuration indicating a first aperiodic channel state information (A-CSI) report setting for first A-CSI report based on first aperiodic CSI reference (A-CSI-RS) .
[Rectified under Rule 91, 03.02.2021]
At 1304, the network entity transmits the UE signaling triggering the first A-CSI report. At 1306, the network entity transmits the A-CSI-RS, in accordance with a non-zero first timing offset applied to the A-CSI-RS, wherein the timing offset is in accordance with a codebook type configured for the first A-CSI report. For example, the network entity may transmit the (A-CSI) report setting (e.g., via RRC signaling) triggering signaling (e.g., a DCI) and A-CSI-RS via the antenna (s) and receiver/transceiver components of the BS 110a shown in FIG. 3 and/or of the apparatus shown in FIG. 21 using any suitable encoding and transmission algorithms.
Operations of FIGs. 12 and 13 may be understood with reference to the timing diagram of FIG. 14, which illustrates an example of SRS and CSI triggering with a non-zero slot offset for A-CSI-RS, in accordance with certain aspects of the present disclosure.
As noted above, the UE may receive a configuration of aperiodic CSI-RS and determine a non-zero slot offset is applied to the A-CSI-RS. In some cases, the non-zero slot offset may be applied if the A-CSI-RS is associated with a port-selection CSI feedback, while a zero offset may be applied to A-CSI-RS for other usage types (codebook types) . For example, if the UE is not configured with minimumSchedulingOffsetK0 for any DL BWP or minimumSchedulingOffsetK2 for any UL BWP and if all the associated trigger states do not have the higher layer parameter qcl-Type set to 'QCL-TypeD' in the corresponding TCI states and if the CSI-RS is not associated to CSI report setting whose codebook type is any of ‘typeII-PortSelection’ , ‘typeII-PortSelection-r16’ or ‘typeII-PortSelection-r17’ , the CSI-RS triggering offset may be set at zero.
As illustrated in FIG. 14, the network may use one DCI (0_0, 0_1, 0_2) to trigger A-SRS and A-CSI together (A-CSI request and A-SRS request are separate fields in these DCIs) . By setting the slot offset for the triggered A-SRS to be less than the (non-zero) slot offset for the triggered A-CSI-RS, arrival of A-SRS before A-CSI-RS can be ensured (e.g., using slotOffset for SRS = 8, and slotOffset for A-CSI-RS = 24) .
If the associated A-CSI-RS is associated with more than one CSI report setting, the non-zero slot offset may only applied to a CSI report setting whose codebook type is port-selection. For CSI report settings with other codebook types, the slot offset may be fixed at zero. For example, assuming A-CSI-RS is associated with a first CSI report (CSI report 1) used for port-selection CSI and a second CSI report (CSI report 2) used for non-PMI based CSI feedback, then the non-zero slot offset configured via RRC would only apply if CSI report 1 is triggered (if CSI report 2 is triggered, then slot offset of zero would apply) . The non-zero slot offset can be RRC configured or indicated via MAC-CE or DCI. In some cases, a set of non-zero slot offset values could be configured (e.g., via RRC) and one of the values selected via MAC-CE and/or DCI.
Aspects of the present disclosure, provide techniques that may help avoid this non-causal issue. As will be described in greater detail below, the techniques include jointly triggering A-SRS and A-CSI with an explicit timing rule for A-SRS and A-CSI, and/or separately triggering A-SRS and A-CSI by relaxing the slot offset condition for A-CSI-RS (and allowing non-zero slot offset for CSI-RS in certain cases) .
Aspects of the present disclosure also provide techniques for jointly triggering A-SRS and A-CSI. This joint triggering may provide an efficient mechanism (e.g., via a single DCI) providing flexibility for enhanced CSI procedures.
FIG. 15 illustrates example operations 1500 for wireless communication by a UE. For example, operations 1500 may be performed by a UE 120 (of FIG. 1 or FIG. 3) for CSI reporting, in accordance with certain aspects of the present disclosure.
Operations 1500 begin, at 1502, by receiving a configuration indicating one or more channel state information (CSI) report setting including CSI reference signals (CSI-RS) associated with each of the one or more CSI report. At 1504, the UE receives a configuration indicating one or more SRS resource set. While shown as separate steps,  operations  1502 and 1504 may not be separate in some cases. For example, the UE could receive RRC signaling that conveys a configuration of CSI-RS and SRS, and an association between them (if such an association is configured) .
At 1506, the UE receives signaling jointly triggering at least the first CSI report and a first sounding reference signal (SRS) resource set associated with at least the first CSI report setting. For example, the UE may receive the configurations (together or separately) and the triggering signaling, via the antenna (s) and receiver/transceiver components of the UE 120a shown in FIG. 3 and/or of the apparatus shown in FIG. 21 using any suitable monitoring and detection algorithm. The UE may also receive signaling indicating the association, according to different options described below.
At 1510, the UE transmits SRS in accordance with the triggering. At 1512, the UE monitors for the CSI-RS, and transmitting the first CSI report, in accordance with the triggering. For example, the UE may transmit the SRS, monitor for the CSI-RS, and transmit the first CSI-report via the antenna (s) and receiver/transceiver components of the UE 120a shown in FIG. 3 and/or of the apparatus shown in FIG. 21 using any suitable encoding and transmission algorithm.
FIG. 16 illustrates example operations 1600 that may be considered complementary to operations 1500 of FIG. 15. For example, operations 1600 may be performed by a network entity (e.g., a base station, such as an eNB or gNB) , to configure and receive CSI reports from a UE (performing operations 1500 of FIG. 15) .
Operations 1600 begin, at 1602, by transmitting a user equipment (UE) a configuration indicating one or more channel state information (CSI) report setting including CSI reference signals (CSI-RS) associated with each of the one or more CSI report. At 1604, the network entity transmits a configuration indicating one or more SRS resource set. For example, the network entity may transmit the configurations (together or separately) via the antenna (s) and receiver/transceiver components of the BS 110a shown in FIG. 3 and/or of the apparatus shown in FIG. 21 using any suitable encoding and transmission algorithm. While shown as separate steps,  operations  1602 and 1604 may not be separate in some cases. For example, the network entity could send RRC signaling that conveys a configuration of CSI-RS and SRS, and an association between them (if such an association is configured) .
At 1606, the network entity transmits signaling jointly triggering at least the first CSI report and an associated SRS resource set. At 1608, the network entity monitors for SRS in accordance with the triggering. At 1610, the network entity transmits the CSI-RS, and monitoring for the first CSI report, in accordance with the triggering. For  example, the network entity may transmit the triggering signaling, monitor for SRS, and transmit the first CSI-RS via the antenna (s) and receiver/transceiver components of the BS 110a shown in FIG. 3 and/or of the apparatus shown in FIG. 21 using any suitable decoding/encoding and/or receiving/transmission algorithm (s) .
FIGs. 17A and 17B illustrate two options for determining an association between a CSI report setting and a SRS resource set.
As shown in FIG. 17A (left figure) , RRC signaling may be used to indicate an SRS resource set ID in each CSI report configuration setting. Alternatively, as also shown in FIG. 17A (right figure) , RRC signaling may be used to indicate a list of SRS resource set IDs in the trigger state configuration (if SP-CSI on PUSCH or A-CSI) . In this manner, there may be a report-wise association between the SRS resource set and CSI report setting.
For each CSI report setting, the associated SRS resource set can be changed via MAC-CE. The cell of the SRS resource set may be the same cell for receiving CSI-RS associated to the respective CSI report setting.
In this case, for joint triggering, the UE may receive a CSI request via an uplink related DCI (e.g., DCI formats 0_0, 0_1, 0_2) if SP-CSI on PUSCH or A-CSI, via SP-CSI MACCE activation command if SP-CSI on PUCCH, or via RRC configuration of SRS resource set and CSI report and their association (if P-CSI) . In either case, the type (periodic/semi-persistent/aperiodic, P/SP/AP) for SRS and CSI-RS should be same. In some example, the cell ID of the SRS resource set follows the cell ID of the CSI-RS associated to the corresponding CSI report.
As illustrated in FIG. 17B, another way to determine the association is to indicate (e.g., via RRC) a CSI report ID in each SRS resource set configuration. For each SRS resource set, the associated CSI report configuration can be changed via MAC_CE. The cell of the CSI report configuration and the associated CSI-RS may be the cell for transmitting the SRS resource set.
In this case, for joint triggering, the UE may receive an SRS request via UL related DCI (e.g., format 0_0, 0_1, 0_2) , DL related DCI (e.g., format 1_0, 1_1, 1_2 or group common DCI 2-3 used for SRS carrier switching and transmit power control) if aperiodic SRS, via semi-persistent (SP) -SRS MACCE activation command if SP-SRS, or  via RRC configuration of SRS resource set and CSI report and their association (if periodic CSI and periodic SRS) . The type (P/SP/AP) of SRS and CSI should be same.
In some cases, a UE may receiving a group common DCI dedicated for joint A-SRS and A-CSI triggering. In such cases, the group common DCI may contain a number of (B) blocks, where each block is intended for a respective UE. In each block, there may be two fields: Field 1, an A-SRS request and Field 2, an A-CSI request. In such cases, the A-SRS and A-CSI in the same block are triggered jointly, transmitting the triggered A-SRS and A-CSI per request and per configuration. The cell of the A-SRS resource set transmission may be the same as the cell for receiving CSI-RS associated to the triggered CSI report.
For various joint triggered cases described above, if the SRS is A-SRS, the CSI is A-CSI and the associated CSI-RS is A-CSI-RS, there are options for determining a slot offset X between the A-SRS and the A-CSI-RS associated to CSI report or determining a slot offset X between the DCI and A-CSI-RS.
According to a first option, X may be a fixed value predefined in standards. In such cases, X can be dependent or independent to the numerology of the cell of A-SRS transmission and A-CSI-RS reception.
According to a second option, X may be indicated via DCI, MACCE, RRC, or a combination thereof. For example, in a first step, a list of candidate X values may be determined and indicated via RRC or fixed in a standard. In some cases, a MAC-CE may down-select a subset from this list. In a second step, MAC-CE or DCI may indicate a value from the list or the subset. In such cases, X can be jointly indicated with the slot offset of SRS.
There may be a minimum requirement for X. For instance, UE may not expect to be configured with an X value such that the gap between the end of SRS transmission and the starting of the CSI-RS reception is smaller than a threshold.
In some cases, as shown in FIG. 18A, if a CSI report is jointly triggered with A-SRS, the slot offset configured to its associated A-CSI-RS may be interpreted as the slot offset relative the end of the jointly triggered A-SRS.
In some cases, an indication may trigger one or more instances of SRS transmission and one or more instance of CSI transmission, wherein the CSI reported in the CSI transmission is complimentary to the information conveyed via SRS transmission.
As an example, assuming partial reciprocity in FDD systems, in the angle/delay domain, the SD-FD bases may be determined using SRS in UL and (non-precoded) CSI-RS in DL may be reciprocal. In such cases, only the fast fading (characteristics) associated with the SD-FD bases are non-reciprocal, so it may make sense to send SRS for the network to determine the SD-FD bases and use the A-CSI report to feedback the coefficients associated to the SD-FD bases, based on measuring the fast fading characteristics in DL via non-precoded CSI-RS.
In some cases, the BS may determine SD-FD bases based on measurement of SRS. In some cases, the UE may determine SD-FD bases based on measurement of (non-beamformed) CSI-RS, and report a partial PMI comprising linear combination coefficients associated to the SD-FD bases (assuming same SD-FD bases obtained from the SRS and CSI-RS) .
In some cases, the number of SRS/CSI instances and the location of the instances are pre-defined or configured. The number of instances for CSI may typically be larger than the number of instances for SRS transmission, this is because CSI-RS is not only used for determining long-term statistics, e.g., SD-FD bases, but also used for determining fast fading parameters. For example, in the timeline of FIG. 18B, the UE transmits SRS every 10 slots and the BS transmits CSI-RS every 5 slots. Generally, the UE may transmit SRS at slot n, and the BS may transmit CSI-RS multiple times after (e.g., at slot n+5, n+10) . In some cases, the UE may transmit SRS every 10 slots (e.g., n, n+10, n+20, etc. ) to update the SD-FD bases (for 2nd order statistics) , while the network transmits CSI-RS more frequently (e.g., every 5 slots) for UE to measure and update the linear combination coefficients and CQI (for 1st order statistics) . UE may also report one or more instances of CSI per configuration, the number of instances and their locations are predefined or configured. As illustrated in FIG. 18B, the UE transmits CSI at slot n+4, n+9, n+14 and n+19. In general, the periodicity and slot offset of CSI and CSI-RS may be same or different.
There are various options to handle what may be considered a collision, if an UL related DCI triggers one or more SRS resource sets via an A-SRS request, and triggers A-SRS jointly with A-CSI by A-CSI request.
According to a first option, only one A-SRS trigger takes precedence. For example, the former (earlier occurring) A-SRS trigger may take precedence. For the latter (later occurring) , the UE may ignore the A-CSI which is joint with A-SRS, and respond to the other triggered A-CSIs. Alternatively, the latter may take precedence, while the former is ignored, and no SRS is transmitted.
According to a second option, both an A-SRS trigger via A-SRS request and A-CSI request may be considered valid. For example, if there is common SRS resource set triggered by the A-SRS request and A-CSI request, the SRS resources in the corresponding resource set may be transmitted once. If the SRS resource (e.g., SRS 1) triggered via the A-SRS request is overlapped with the SRS resource (e.g., SRS 2) triggered via the A-CSI request on one or more OFDM symbols, only one SRS resource (either SRS 1 or SRS 2) may be transmitted during the overlapping part and the overlapping part for other may not be transmitted.
Aspects of the present disclosure also provide techniques that may allow for joint activation of SP-CSI-RS and SP-SRS.
FIG. 19 illustrates example operations 1900 for wireless communication by a UE. For example, operations 1900 may be performed by a UE 120 (of FIG. 1 or FIG. 3) for CSI reporting, in accordance with certain aspects of the present disclosure.
Operations 1900 begin, at 1902, by receiving signaling jointly triggering the SP-CSI-RS and associated SP-SRS. At 1904, the UE transmits the SP-SRS in accordance with an SP-SRS configuration. For example, the SP-SRS configuration may indicate time and frequency resources allocated for the UE to use for transmitting SP-SRS. When triggered, the UE may transmit on these time and frequency resources. At 1906, the UE monitors for the SP-CSI-RS in accordance with an SP-CSI-RS configuration. For example, For example, the SP-CSI-RS configuration may indicate time and frequency resources allocated for the UE to use for monitoring for SP-CSI-RS. When triggered, the UE may monitor these time and frequency resources for the SP-CSI-RS transmission from the network entity. The UE may receive the signaling, transmit the SP-SRS, and monitor for the SP-CSI-RS via the antenna (s) and receiver/transceiver components of the  UE 120a shown in FIG. 3 and/or of the apparatus shown in FIG. 21 using any suitable decoding/encoding and/or receiving/transmitting algorithm (s) .
FIG. 20 illustrates example operations 2000 that may be considered complementary to operations 1900 of FIG. 19. For example, operations 2000 may be performed by a network entity (e.g., a base station, such as an eNB or gNB) , to configure and receive CSI reports from a UE (performing operations 1900 of FIG. 19) .
Operations 2000 begin, at 2002, by transmitting signaling jointly triggering semi-persistent channel state information reference signals (SP-CSI-RS) and semi persistent sounding reference signals (SP-SRS) associated with the SP-CSI-RS. At 2004, the network entity monitors for the SP-SRS in accordance with an SP-SRS configuration. For example, the SP-SRS configuration may indicate time and frequency resources allocated for the UE to use for transmitting SP-SRS. After transmitting signaling jointly transmitting the SP-SRS and associated SP-SRS, the network entity may monitor these time and frequency resources for the SP-SRS transmissions from the UE. At 2006, the network entity transmits the SP-CSI-RS in accordance with an SP-CSI-RS configuration. For example, the SP-CSI-RS configuration may indicate time and frequency resources allocated for the network to use for transmitting SP-CSI-RS. After transmitting signaling jointly transmitting the SP-SRS and associated SP-SRS, the network entity may transmit SP-CSI-RS on these time and frequency resources. The network entity may transmit the signaling, monitor for the SP-SRS, and transmit the SP-CSI-RS via the antenna (s) and receiver/transceiver components of the BS 110a shown in FIG. 3 and/or of the apparatus shown in FIG. 21 using any suitable decoding/encoding and/or receiving/transmitting algorithm (s) .
There are various options for joint activation of SP-CSI-RS and SP-SRS. For example, according to one option, RRC signaling may indicate an SP-SRS resource set in an SP-CSI-RS resource set configuration or SP-CSI-RS resource setting. In this case, a MAC-CE SP-CSI-RS activation command may be used to achieve joint triggering.
According to another option, RRC signaling may indicate an SP-CSI-RS resource set in SP-SRS resource set configuration. In this case, a MAC-CE SP-SRS activation command may be used to achieve joint triggering. According to still another option, a single MAC-CE may be used to trigger an SP-CSI-RS resource set and an SP-SRS together.
FIG. 21 illustrates a device with example components capable of performing various operations in accordance with certain aspects of the present disclosure.
FIG. 21 illustrates a communications device 2100 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein. For example, the device 2100 may be a UE configured to perform operations illustrated in FIGs. 12, 15, and/or 19 or the device 2100 may be a network entity configured to perform operations illustrated in FIGs. 13, 16, and/or 20. The communications device 2100 includes a processing system 2102 coupled to a transceiver 2108 (e.g., a transmitter and/or a receiver) . The transceiver 2108 is configured to transmit and receive signals for the communications device 2100 via an antenna 2110, such as the various signals as described herein. The processing system 2102 may be configured to perform processing functions for the communications device 2100, including processing signals received and/or to be transmitted by the communications device 2100.
The processing system 2102 includes a processor 2104 coupled to a computer-readable medium/memory 1412 via a bus 1406. In certain aspects, the computer-readable medium/memory 1412 is configured to store instructions (e.g., computer-executable code) that when executed by the processor 1404, cause the processor 1404 to perform the operations illustrated in FIGs. 12, 13, 15, 16, 19 and/or 20, or other operations for performing the various techniques discussed herein. In certain aspects, computer-readable medium/memory 2112 stores code 2114 for receiving (that may be used to perform the various receiving operations of FIGs. 12, 13, 15, 16, 19 and/or 20) ; code 2116 for transmitting (that may be used to perform the various transmitting operations of FIGs. 12, 13, 15, 16, 19 and/or 20) ; code 2118 for determining (that may be used to perform the various determining operations of FIGs. 12, 13, 15, 16, 19 and/or 20) ; and code 2119 for monitoring (that may be used to perform the various monitoring operations of FIGs. 12, 13, 15, 16, 19 and/or 20) . In certain aspects, the processor 2104 has circuitry configured to implement the code stored in the computer-readable medium/memory 2112. The processor 2104 includes circuitry 2124 for receiving (that may be used to perform the various receiving operations of FIGs. 12, 13, 15, 16, 19 and/or 20) ; circuitry 2126 for transmitting (that may be used to perform the various transmitting operations of FIGs. 12, 13, 15, 16, 19 and/or 20) ; circuity 2128 for determining (that may be used to perform the various determining operations of FIGs. 12, 13, 15, 16, 19 and/or 20) ; and circuitry 2129  for monitoring (that may be used to perform the various monitoring operations of FIGs. 12, 13, 15, 16, 19 and/or 20) .
The methods disclosed herein comprise one or more steps or actions for achieving the methods. The method steps and/or actions may be interchanged with one another without departing from the scope of the claims. In other words, unless a specific order of steps or actions is specified, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
As used herein, the term “determining” encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Unless specifically stated otherwise, the term “some” refers to one or more. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112 (f) unless the element is expressly  recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for. ”
The various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions. The means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor. For example, the various processor shown in FIG. 3 may be configured to perform operations of FIGs. 12, 13, 15, 16, 19 and/or 20) .
The various illustrative logical blocks, modules and circuits described in connection with the present disclosure may be implemented or performed with a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device (PLD) , discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
If implemented in hardware, an example hardware configuration may comprise a processing system in a wireless node. The processing system may be implemented with a bus architecture. The bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints. The bus may link together various circuits including a processor, machine-readable media, and a bus interface. The bus interface may be used to connect a network adapter, among other things, to the processing system via the bus. The network adapter may be used to implement the signal processing functions of the PHY layer. In the case of a user terminal 120 (see FIG. 1) , a user interface (e.g., keypad, display, mouse, joystick, etc. ) may also be connected to the bus. The bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further. The processor may be implemented with one or more  general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
If implemented in software, the functions may be stored or transmitted over as one or more instructions or code on a computer readable medium. Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. The processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media. A computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. By way of example, the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface. Alternatively, or in addition, the machine-readable media, or any portion thereof, may be integrated into the processor, such as the case may be with cache and/or general register files. Examples of machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof. The machine-readable media may be embodied in a computer-program product.
A software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media. The computer-readable media may comprise a number of software modules. The software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various  functions. The software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices. By way of example, a software module may be loaded into RAM from a hard drive when a triggering event occurs. During execution of the software module, the processor may load some of the instructions into cache to increase access speed. One or more cache lines may then be loaded into a general register file for execution by the processor. When referring to the functionality of a software module below, it will be understood that such functionality is implemented by the processor when executing instructions from that software module.
Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and
Figure PCTCN2020123164-appb-000030
disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Thus, in some aspects computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) . In addition, for other aspects computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
Thus, certain aspects may comprise a computer program product for performing the operations presented herein. For example, such a computer program product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein (e.g., instructions for performing the operations described herein and illustrated in FIGs. 12, 13, 15, 16, 19 and/or 20) .
Further, it should be appreciated that modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable. For example, such a device can be coupled to a server to facilitate the transfer of means for performing the  methods described herein. Alternatively, various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device. Moreover, any other suitable technique for providing the methods and techniques described herein to a device can be utilized.
It is to be understood that the claims are not limited to the precise configuration and components illustrated above. Various modifications, changes and variations may be made in the arrangement, operation and details of the methods and apparatus described above without departing from the scope of the claims.

Claims (196)

  1. A method for wireless communications by a user equipment (UE) , comprising:
    receiving a configuration indicating a first aperiodic channel state information (A-CSI) report setting for a first A-CSI report based on a first aperiodic CSI reference signal (A-CSI-RS) ;
    receiving signaling triggering the first A-CSI report; and
    monitoring for the A-CSI-RS, in accordance with a non-zero first timing offset applied to the A-CSI-RS, wherein the timing offset is in accordance with a codebook type configured for the first A-CSI report.
  2. The method of claim 1, wherein the non-zero first timing offset is based on the codebook type being for port selection.
  3. The method of any of claims 1-2, the determination of non-zero timing offset is per configuration in the resource configuration of the first A-CSI-RS.
  4. The method of any of claims 1-2, further comprising:
    receiving a configuration indicating a second A-CSI report setting for a second A-CSI report based on the first A-CSI-RS; and
    applying a zero timing offset to the first A-CSI-RS based, at least in part, on a codebook type configured for the second A-CSI report.
  5. The method of any of claims 1-4, further comprising receiving a medium access control (MAC) control element (CE) that conveys a change to a value of the non-zero first timing offset.
  6. The method of any of claims 1-5, further comprising:
    receiving a list of candidate values for the non-zero first timing offset; and
    receiving downlink control information (DCI) indicating one of the candidate values.
  7. A method for wireless communications by a user equipment (UE) , comprising:
    receiving a configuration indicating one or more channel state information (CSI) report setting including CSI reference signals (CSI-RS) associated with each of the one or more CSI report;
    receiving a configuration indicating one or more SRS resource set;
    receiving signaling jointly triggering at least the first CSI report and a first sounding reference signal (SRS) resource set associated with at least the first CSI report setting;
    transmitting SRS in accordance with the triggering; and
    monitoring for the CSI-RS, and transmitting the first CSI report, in accordance with the triggering.
  8. The method of claim 7, wherein the association is based on an SRS resource set ID indicated in the first CSI report setting.
  9. The method of any of claims 7-8, wherein the association is based on a list of one or more SRS resource set IDs indicated in a trigger state configuration for a list of one or more CSI reports and a 1-to-1 association between SRS resource set ID and the first CSI report based on the order in the list.
  10. The method of any of claims 7-9, further comprising receiving medium access control (MAC) control element (CE) signaling that changes the association between the first CSI report setting and the at least one SRS resource set.
  11. The method of claim 10, wherein a cell of the SRS resource set is a same cell as the CSI-RS associated with the first CSI-RS report.
  12. The method of any of claims 7-11, wherein the signaling jointly triggering the first CSI report and the associated SRS resource set comprises a CSI request if the associated CSI comprises semi persistent CSI (SP-CSI) to be transmitted on PUSCH or aperiodic CSI (A-CSI) .
  13. The method of any of claims 7-12, wherein the signaling jointly triggering the first CSI report and the associated SRS resource set comprises a semi persistent CSI  (SP-CSI) activation command conveyed via medium access control (MAC) control element (CE) if the associated CSI comprises semi persistent CSI to be transmitted on PUCCH.
  14. The method of any of claims 7-13, wherein the signaling jointly triggering the first CSI report and the associated SRS resource set comprises radio resource control (RRC) configuration signaling of the SRS resource set, CSI report setting, and their association if the associated CSI comprises periodic CSI (P-CSI) .
  15. The method of any of claims 7-14, wherein SRS resource set and CSI report setting are of a same periodic, aperiodic, or semi-persistent type.
  16. The method of any of claims 7-15, wherein the association is based on a CSI report ID indicated in an SRS resource set configuration.
  17. The method of claim 16, further comprising receiving a medium access control (MAC) control element (CE) that conveys a change to at least one CSI report ID associated with at least one SRS resource set.
  18. The method of any of claim 16, wherein a cell of the SRS resource set is a same cell as the associated CSI report.
  19. The method of claim 16, wherein the signaling jointly triggering the first CSI report and the associated SRS resource set comprises a SRS request conveyed via a downlink control information (DCI) if the associated SRS resource set is for aperiodic SRS (A-SRS) .
  20. The method of claim 16, wherein the signaling jointly triggering the first CSI report and the associated SRS resource set comprises a semi persistent SRS (SP-SRS) medium access control (MAC) control element (CE) activation command.
  21. The method of claim 16, wherein the signaling jointly triggering the first CSI report and the associated SRS resource set comprises radio resource control (RRC)  configuration signaling of the SRS resource set, CSI report setting, and their association and CSI report and their association if the associated CSI comprises periodic CSI (P-CSI) and the SRS comprises P-SRS.
  22. The method of any of claims 7-22, wherein the signaling jointly triggering the first CSI report and the associated SRS resource set comprises a group common downlink control information (DCI) .
  23. The method of claim 22, wherein:
    the group common DCI includes a plurality of blocks;
    each block is intended for a respective UE; and
    each block has an aperiodic SRS (A-SRS) request field and an aperiodic CSI (A-CSI) request field.
  24. The method of claim 23, wherein:
    A-SRS and A-CSI corresponding to A-SRS and A-CSI requests in the same block are triggered jointly; and
    the UE transmits the A-SRS and monitors CSI-RS associated with the A-CSI and reports the A-CSI per request.
  25. The method of any of claims 7-24, wherein:
    the CSI-RS comprises aperiodic CSI-RS (A-CSI-RS) , the SRS comprises aperiodic SRS (A-SRS) , and the CSI report comprises an aperiodic CSI (A-CSI) report, with a timing offset between at least one of the A-SRS and the A-CSI-RS or between the DCI and the A-CSI-RS.
  26. The method of claim 25, wherein a value of the timing offset is dependent, at least in part, on numerology of a cell of the A-SRS transmission and A-CSI-RS monitoring.
  27. The method of claim 25, wherein the value of the timing offset is based on at least one of a downlink control information (DCI) , a medium access control (MAC) control element (CE) , or radio resource control (RRC) signaling.
  28. The method of claim 27, wherein:
    a list of candidate values for the timing offset is signaled via RRC signaling;
    a subset of the candidate values is indicated via a MAC CE; and
    one of the subset of candidate values is indicated via the DCI.
  29. The method of claim 27, wherein:
    a list of candidate values for the timing offset is signaled via RRC signaling; and
    one of the subset of candidate values is indicated via the DCI.
  30. The method of claim 25, wherein the timing offset is jointly indicated with a slot offset for SRS.
  31. The method of claim 25, wherein the timing offset is subject to a minimum requirement.
  32. The method of claim 25, further comprising:
    receiving a slot offset configuration in the CSI-RS resource configuration, wherein the timing offset is applied relative an end of the jointly triggered A-SRS if its associated CSI report is jointly triggered with A-SRS.
  33. The method of any of claims 7-32, wherein:
    one or more instances of the CSI reports are triggered and one or more instances of the SRS resource set are triggered; and
    the content of information in the CSI report depends, at least in part, on information conveyed via or a usage of at least one of the SRS transmissions or the CSI-RS associated to the CSI reports.
  34. The method of claim 33, wherein:
    the SRS is transmitted for a network entity to determine the at least one of spatial duplexed (SD) or frequency duplexed (FD) bases; and
    the information in the CSI report indicates coefficients associated with the at least one of SD or FD bases.
  35. The method of claim 33, wherein:
    the UE determines at least one of spatial duplexed (SD) or frequency duplexed (FD) bases based on measurements of the CSI-RS; and
    the information in the CSI report comprises a partial precoding matrix indicator PMI comprising linear combination coefficients associated with the at least one of SD or FD bases.
  36. The method of claim 33, wherein:
    at least one of a number or location of SRS instances for transmitting the SRS per configuration or as pre-defined; or
    at least one of a number or location of CSI instances to transmitting CSI reports per configuration or as pre-defined.
  37. The method of any of claims 7-36, further comprising, taking one or more collision handling actions if a downlink control information (DCI) triggers one or more SRS resource sets via an aperiodic SRS (A-SRS) request and triggers one or more SRS resource sets jointly with an aperiodic CSI (A-CSI) request.
  38. The method of claim 37, wherein the collision handling actions comprise:
    giving priority to only one of the SRS resource sets triggered via the A-SRS request or the SRS resource sets triggered jointly with the A-CSI request.
  39. The method of claim 38, wherein the SRS resource sets triggered via A-SRS request take precedence, transmit SRS resource set triggered via A-SRS resource set, ignore the CSI reports with association to SRS resource set triggered by the A-CSI request and ignore the associated SRS resource set, response other CSI reports triggered by the A-CSI request.
  40. The method of claim 38, wherein the SRS resource sets triggered via A-CSI request take precedence, transmit CSI reports and the associated SRS resource set triggered via A-CSI request, ignore the SRS resource set triggered via A-SRS request.
  41. The method of claim 37, wherein the collision handling actions comprise:
    if there is common SRS resource set triggered by both the A-SRS request and the A-CSI request, transmitting SRS resources in the common SRS resource set once.
  42. The method of claim 37, wherein:
    if a first SRS resource triggered via the A-SRS request overlaps with a second SRS resource triggered via the A-CSI request on one or more OFDM symbols, only one of the first or second SRS resource is transmitted during the overlapping part and the overlapping part for the other of the first or second SRS resource is not transmitted.
  43. A method for wireless communications by a user equipment (UE) , comprising:
    receiving signaling jointly triggering semi-persistent channel state information reference signals (SP-CSI-RS) and semi-persistent sounding reference signals (SP-SRS) associated with the SP-CSI-RS;
    transmitting the SP-SRS in accordance with an SP-SRS configuration; and
    monitoring for the SP-CSI-RS in accordance with an SP-CSI-RS configuration.
  44. The method of claim 43, wherein:
    the association is based on radio resource control (RRC) of an SRS resource set ID indicated in at least one of an SP-CSI-RS resource set configuration or an SP-CSI-RS resource setting; and
    the triggering is signaled via a medium access control (MAC) control element (CE) SP-CSI-RS activation command.
  45. The method of any of claims 43-44, wherein:
    the association is based on radio resource control (RRC) of an SP-CSI-RS resource set ID indicated in an SP-SRS resource set configuration; and
    the triggering is signaled via a medium access control (MAC) control element (CE) SP-SRS activation command.
  46. The method of any of claims 43-45, wherein the triggering is signaled via a single medium access control (MAC) control element (CE) to trigger an SP-CSI-RS resource set and an SP-SRS resource set together.
  47. A method for wireless communications by a network entity, comprising:
    transmitting a user equipment (UE) a configuration indicating a first aperiodic channel state information (A-CSI) report setting for a first A-CSI report based on a first aperiodic CSI reference (A-CSI-RS) ;
    transmitting a configuration of the non-zero first timing offset to the UE;
    transmitting the UE signaling triggering the first A-CSI report; and
    transmitting the A-CSI-RS, in accordance with a non-zero first timing offset applied to the A-CSI-RS, wherein the timing offset is in accordance with a codebook type configured for the first A-CSI report.
  48. The method of claim 47, wherein the non-zero first timing offset is determined based on the codebook type configured for the first A-CSI report being for port selection.
  49. The method of claim 48, the non-zero timing offset is per configuration in the resource configuration of the first A-CSI-RS.
  50. The method of claim 48, further comprising:
    transmitting the UE a configuration indicating a second A-CSI report setting for a second A-CSI report based on the first A-CSI-RS; and
    applying a zero timing offset to the first A-CSI-RS based, at least in part, on a codebook type configured for the second A-CSI report.
  51. The method of any of claims 47-50, further comprising transmitting the UE a medium access control (MAC) control element (CE) that conveys a change to a value of the non-zero first timing offset.
  52. The method of any of claims 47-50, further comprising:
    transmitting a list of candidate values for the non-zero first timing offset; and
    transmitting downlink control information (DCI) indicating one of the candidate values.
  53. A method for wireless communications by a network entity, comprising:
    transmitting a user equipment (UE) a configuration indicating one or more channel state information (CSI) report setting including CSI reference signals (CSI-RS) associated with each of the one or more CSI report;
    transmitting a configuration indicating one or more SRS resource set;
    transmitting signaling to facilitate determining an association between at least a first CSI report setting and a first sounding reference signal (SRS) resource set;
    transmitting signaling jointly triggering at least the first CSI report and the associated SRS resource set;
    monitoring for SRS in accordance with the triggering; and
    transmitting the CSI-RS, and monitoring for the first CSI report, in accordance with the triggering.
  54. The method of claim 53, wherein the association is based on an SRS resource set ID indicated in the first CSI report setting.
  55. The method of any of claims 53-54, wherein the association is based on a list of one or more SRS resource set IDs indicated in a trigger state configuration for a list of one or more CSI reports and on a 1-to-1 association between SRS resource set ID and the first CSI report based on the order in the list.
  56. The method of any of claims 53-55, further comprising transmitting the UE medium access control (MAC) control element (CE) signaling that changes the association between the first CSI report setting and the at least one SRS resource set.
  57. The method of any of claims 56, wherein a cell of the SRS resource set is a same cell as the CSI-RS associated with the first CSI-RS report.
  58. The method of any of claims 53-57, wherein the signaling jointly triggering the first CSI report and the associated SRS resource set comprises a CSI request if the associated CSI comprises semi persistent CSI (SP-CSI) to be transmitted on PUSCH or aperiodic CSI (A-CSI) .
  59. The method of any of claims 53-58, wherein the signaling jointly triggering the first CSI report and the associated SRS resource set comprises a semi persistent CSI (SP-CSI) activation command conveyed via medium access control (MAC) control element (CE) if the associated CSI comprises semi persistent CSI to be transmitted on PUCCH.
  60. The method of any of claims 53-59, wherein the signaling jointly triggering the first CSI report and the associated SRS resource set comprises radio resource control (RRC) configuration signaling of the SRS resource set, CSI report setting, and their association if the associated CSI comprises periodic CSI (P-CSI) .
  61. The method of any of claims 53-60, wherein SRS resource set and CSI report setting are of a same periodic, aperiodic, or semi-persistent type.
  62. The method of any of claims 53-61, wherein the association is based on a CSI report ID indicated in an SRS resource set configuration.
  63. The method of claim 62, further comprising transmitting a medium access control (MAC) control element (CE) that conveys a change to at least one CSI report ID associated with at least one SRS resource set.
  64. The method of any of claim 62, wherein a cell of the SRS resource set is a same cell as the associated CSI report.
  65. The method of claim 62, wherein the signaling jointly triggering the first CSI report and the associated SRS resource set comprises a SRS request conveyed via a downlink control information (DCI) if the associated SRS resource set is for aperiodic SRS (A-SRS) .
  66. The method of claim 62, wherein the signaling jointly triggering the first CSI report and the associated SRS resource set comprises a semi persistent SRS (SP-SRS) medium access control (MAC) control element (CE) activation command.
  67. The method of claim 62, wherein the signaling jointly triggering the first CSI report and the associated SRS resource set comprises radio resource control (RRC) configuration signaling of the SRS resource set, CSI report setting, and their association and CSI report and their association if the associated CSI comprises periodic CSI (P-CSI) and the SRS comprises P-SRS.
  68. The method of any of claims 53-68, wherein the signaling jointly triggering the first CSI report and the associated SRS resource set comprises a group common downlink control information (DCI) .
  69. The method of claim 68, wherein:
    the group common DCI includes a plurality of blocks;
    each block is intended for a respective UE; and
    each block has an aperiodic SRS (A-SRS) request field and an aperiodic CSI (A-CSI) request field.
  70. The method of claim 69, wherein:
    A-SRS and A-CSI corresponding to A-SRS and A-CSI requests in the same block are triggered jointly; and
    the network entity monitors for the A-SRS and transmits CSI-RS associated with the A-CSI and monitors for the A-CSI report per request.
  71. The method of any of claims 53-70, wherein:
    the CSI-RS comprises aperiodic CSI-RS (A-CSI-RS) , the SRS comprises aperiodic SRS (A-SRS) , and the CSI report comprises an aperiodic CSI (A-CSI) report, with a timing offset between at least one of the A-SRS and the A-CSI-RS or between the DCI and the A-CSI-RS.
  72. The method of claim 71, wherein a value of the timing offset is dependent, at least in part, on numerology of a cell of the A-SRS transmission and A-CSI-RS monitoring.
  73. The method of claim 71, wherein the value of the timing offset is based on indicating the value via at least one of a downlink control information (DCI) , a medium access control (MAC) control element (CE) , or radio resource control (RRC) signaling.
  74. The method of claim 73, wherein:
    a list of candidate values for the timing offset is signaled via RRC signaling;
    a subset of the candidate values is indicated via a MAC CE; and
    one of the subset of candidate values is indicated via the DCI.
  75. The method of claim 73, wherein:
    a list of candidate values for the timing offset is signaled via RRC signaling; and
    one of the subset of candidate values is indicated via the DCI.
  76. The method of claim 71, wherein the timing offset is jointly indicated with a slot offset for SRS.
  77. The method of claim 71, wherein the timing offset is subject to a minimum requirement.
  78. The method of claim 71, further comprising:
    transmitting the UE a slot offset configuration in the CSI-RS resource configuration, wherein the timing offset is applied as the slot offset relative an end of the jointly triggered A-SRS if its associated CSI report is jointly triggered with A-SRS.
  79. The method of any of claims 53-78, wherein:
    one or more instances of the CSI reports are triggered and one or more instances of the SRS resource set are triggered; and
    the content of information in the CSI report depends, at least in part, on information conveyed via or a usage of at least one of the SRS transmissions or the CSI-RS associated to the CSI reports.
  80. The method of claim 79, wherein:
    the SRS is transmitted for a network entity to determine the at least one of spatial duplexed (SD) or frequency duplexed (FD) bases; and
    the information in the CSI report indicates coefficients associated with the at least one of SD or FD bases.
  81. The method of claim 79, wherein:
    at least one of spatial duplexed (SD) or frequency duplexed (FD) bases based on measurements of the CSI-RS; and
    the information in the CSI report comprises a partial precoding matrix indicator PMI comprising linear combination coefficients associated with the at least one of SD or FD bases.
  82. The method of claim 79, wherein:
    at least one of a number or location of SRS instances for transmitting the SRS as pre-defined or transmitting configuration for the at least one of a number or location of SRS instances; or
    at least one of a number or location of CSI instances to transmitting CSI reports as pre-defined or transmitting configuration for the at least one of a number or location of CSI instances.
  83. The method of any of claims 53-82, further comprising, taking one or more collision handling actions if a downlink control information (DCI) triggers one or more SRS resource sets via an aperiodic SRS (A-SRS) request and triggers one or more SRS resource sets jointly with an aperiodic CSI (A-CSI) request.
  84. The method of claim 83, wherein the collision handling actions comprise:
    giving priority to only one of the SRS resource sets triggered via the A-SRS request or the SRS resource sets triggered jointly with the A-CSI request.
  85. The method of claim 84, further comprising monitoring for SRS resource set triggered via A-SRS resource set, ignoring the CSI reports with association to SRS resource set triggered by the A-CSI request and ignoring monitoring the associated SRS resource set.
  86. The method of claim 84, further comprising monitoring for CSI reports and the associated SRS resource set triggered via A-CSI request and ignoring monitoring for the SRS resource set triggered via A-SRS request.
  87. The method of claim 83, wherein the collision handling actions comprise:
    if there is common SRS resource set triggered by both the A-SRS request and the A-CSI request, monitoring for SRS resources in the common SRS resource set that are transmitted once.
  88. The method of claim 83, wherein:
    if a first SRS resource triggered via the A-SRS request overlaps with a second SRS resource triggered via the A-CSI request on one or more OFDM symbols, only one of the first or second SRS resource is transmitted during the overlapping part and the overlapping part for the other of the first or second SRS resource is not transmitted.
  89. A method for wireless communications by a network entity, comprising:
    transmitting signaling jointly triggering semi-persistent channel state information reference signals (SP-CSI-RS) and semi-persistent sounding reference signals (SP-SRS) associated with the SP-CSI-RS;
    monitoring for the SP-SRS in accordance with an SP-SRS configuration; and
    transmitting the SP-CSI-RS in accordance with an SP-CSI-RS configuration.
  90. The method of claim 89, wherein:
    the association is based on radio resource control (RRC) of an SRS resource set ID indicated in at least one of an SP-CSI-RS resource set configuration or an SP-CSI-RS resource setting; and
    the triggering is signaled via a medium access control (MAC) control element (CE) SP-CSI-RS activation command.
  91. The method of any of claims 89-90, wherein:
    the association is based on radio resource control (RRC) of an SP-CSI-RS resource set ID indicated in an SP-SRS resource set configuration; and
    the triggering is signaled via a medium access control (MAC) control element (CE) SP-SRS activation command.
  92. The method of any of claims 89-91, wherein the triggering is signaled via a single medium access control (MAC) control element (CE) to trigger an SP-CSI-RS resource set and an SP-SRS resource set together.
  93. An apparatus for wireless communications by a user equipment (UE) , comprising:
    at least one processor and a memory configured to
    receive a configuration indicating a first aperiodic channel state information (A-CSI) report setting for a first A-CSI report based on a first aperiodic CSI reference signal (A-CSI-RS) ;
    receive signaling triggering the first A-CSI report; and
    monitor for the A-CSI-RS, in accordance with a non-zero first timing offset applied to the A-CSI-RS, wherein the timing offset is in accordance with a codebook type configured for the first A-CSI report.
  94. The apparatus of claim 93, wherein the non-zero first timing offset is determined based on the codebook type configured for the first A-CSI report being for port selection.
  95. The apparatus of claim 94, the determination of non-zero timing offset is per configuration in the resource configuration of the first A-CSI-RS.
  96. The apparatus of claim 94, wherein the at least one processor and memory are further configured to:
    receive a configuration indicating a second A-CSI report setting for a second A-CSI report based on the first A-CSI-RS; and
    determine a zero timing offset to be applied to the first A-CSI-RS based, at least in part, on a codebook type configured for the second A-CSI report.
  97. The apparatus of claim 93, wherein the at least one processor and memory are further configured to receive a medium access control (MAC) control element (CE) that conveys a change to a value of the non-zero first timing offset.
  98. The apparatus of claim 93, wherein the at least one processor and memory are further configured to:
    receive a list of candidate values for the non-zero first timing offset; and
    receive downlink control information (DCI) indicating one of the candidate values.
  99. An apparatus for wireless communications by a user equipment (UE) , comprising:
    at least one processor and a memory configured to
    receive a configuration indicating one or more channel state information (CSI) report setting including CSI reference signals (CSI-RS) associated with each of the one or more CSI report;
    receive a configuration indicating one or more SRS resource set;
    receive signaling jointly triggering at least the first CSI report and a first sounding reference signal (SRS) resource set associated with at least the first CSI report setting;
    transmit SRS in accordance with the triggering; and
    monitor for the CSI-RS, and transmitting the first CSI report, in accordance with the triggering.
  100. The apparatus of claim 99, wherein the association is determined based on an SRS resource set ID indicated in the first CSI report setting.
  101. The apparatus of claim 99, wherein the association is determined based on a list of one or more SRS resource set IDs indicated in a trigger state configuration for a list of one or more CSI reports and a 1-to-1 association between SRS resource set ID and the first CSI report based on the order in the list.
  102. The apparatus of any of claims 99-101, wherein the at least one processor and memory are further configured to receive medium access control (MAC) control element (CE) signaling that changes the association between the first CSI report setting and the at least one SRS resource set.
  103. The apparatus of any of claims 102, wherein the at least one processor and memory are further configured to determine that a cell of the SRS resource set is a same cell as the CSI-RS associated with the first CSI-RS report.
  104. The apparatus of claim 99, wherein the signaling jointly triggering the first CSI report and the associated SRS resource set comprises a CSI request if the associated CSI comprises semi persistent CSI (SP-CSI) to be transmitted on PUSCH or aperiodic CSI (A-CSI) .
  105. The apparatus of claim 99, wherein the signaling jointly triggering the first CSI report and the associated SRS resource set comprises a semi persistent CSI (SP-CSI) activation command conveyed via medium access control (MAC) control element (CE) if the associated CSI comprises semi persistent CSI to be transmitted on PUCCH.
  106. The apparatus of claim 99, wherein the signaling jointly triggering the first CSI report and the associated SRS resource set comprises radio resource control (RRC) configuration signaling of the SRS resource set, CSI report setting, and their association if the associated CSI comprises periodic CSI (P-CSI) .
  107. The apparatus of claim 99, wherein SRS resource set and CSI report setting are of a same periodic, aperiodic, or semi-persistent type.
  108. The apparatus of claim 99, wherein the association is determined based on a CSI report ID indicated in an SRS resource set configuration.
  109. The apparatus of claim 108, wherein the at least one processor and memory are further configured to receive a medium access control (MAC) control element (CE) that  conveys a change to at least one CSI report ID associated with at least one SRS resource set.
  110. The apparatus of any of claim 108, wherein the at least one processor and memory are further configured to determine that a cell of the SRS resource set is a same cell as the associated CSI report.
  111. The apparatus of claim 108, wherein the signaling jointly triggering the first CSI report and the associated SRS resource set comprises a SRS request conveyed via a downlink control information (DCI) if the associated SRS resource set is for aperiodic SRS (A-SRS) .
  112. The apparatus of claim 108, wherein the signaling jointly triggering the first CSI report and the associated SRS resource set comprises a semi persistent SRS (SP-SRS) medium access control (MAC) control element (CE) activation command.
  113. The apparatus of claim 108, wherein the signaling jointly triggering the first CSI report and the associated SRS resource set comprises radio resource control (RRC) configuration signaling of the SRS resource set, CSI report setting, and their association and CSI report and their association if the associated CSI comprises periodic CSI (P-CSI) and the SRS comprises P-SRS.
  114. The apparatus of claim 99, wherein the signaling jointly triggering the first CSI report and the associated SRS resource set comprises a group common downlink control information (DCI) .
  115. The apparatus of claim 114, wherein:
    the group common DCI includes a plurality of blocks;
    each block is intended for a respective UE; and
    each block has an aperiodic SRS (A-SRS) request field and an aperiodic CSI (A-CSI) request field.
  116. The apparatus of claim 115, wherein:
    A-SRS and A-CSI corresponding to A-SRS and A-CSI requests in the same block are triggered jointly; and
    the UE transmits the A-SRS and monitors CSI-RS associated with the A-CSI and reports the A-CSI per request.
  117. The apparatus of claim 99, wherein:
    the CSI-RS comprises aperiodic CSI-RS (A-CSI-RS) , the SRS comprises aperiodic SRS (A-SRS) , and the CSI report comprises an aperiodic CSI (A-CSI) report; and
    the apparatus further comprises determining a timing offset between at least one of the A-SRS and the A-CSI-RS or between the DCI and the A-CSI-RS.
  118. The apparatus of claim 117, wherein a value of the timing offset is dependent, at least in part, on numerology of a cell of the A-SRS transmission and A-CSI-RS monitoring.
  119. The apparatus of claim 117, wherein the value of the timing offset is determined based on at least one of a downlink control information (DCI) , a medium access control (MAC) control element (CE) , or radio resource control (RRC) signaling.
  120. The apparatus of claim 119, wherein:
    a list of candidate values for the timing offset is signaled via RRC signaling;
    a subset of the candidate values is indicated via a MAC CE; and
    one of the subset of candidate values is indicated via the DCI.
  121. The apparatus of claim 119, wherein:
    a list of candidate values for the timing offset is signaled via RRC signaling; and
    one of the subset of candidate values is indicated via the DCI.
  122. The apparatus of claim 117, wherein the timing offset is jointly indicated with a slot offset for SRS.
  123. The apparatus of claim 117, wherein the timing offset is subject to a minimum requirement.
  124. The apparatus of claim 117, wherein the at least one processor and memory are further configured to:
    receive a slot offset configuration in the CSI-RS resource configuration; and
    determine the timing offset as the slot offset relative an end of the jointly triggered A-SRS if its associated CSI report is jointly triggered with A-SRS.
  125. The apparatus of claim 99, wherein the at least one processor and memory are further configured to:
    determine that one or more instances of the CSI reports are triggered and one or more instances of the SRS resource set are triggered; and
    determine the content of information in the CSI report depends, at least in part, on information conveyed via or a usage of at least one of the SRS transmissions or the CSI-RS associated to the CSI reports.
  126. The apparatus of claim 125, wherein:
    the SRS is transmitted for a network entity to determine the at least one of spatial duplexed (SD) or frequency duplexed (FD) bases; and
    the information in the CSI report indicates coefficients associated with the at least one of SD or FD bases.
  127. The apparatus of claim 125, wherein:
    the UE determines at least one of spatial duplexed (SD) or frequency duplexed (FD) bases based on measurements of the CSI-RS; and
    the information in the CSI report comprises a partial precoding matrix indicator PMI comprising linear combination coefficients associated with the at least one of SD or FD bases.
  128. The apparatus of claim 125, wherein the at least one processor and memory are further configured to:
    determine at least one of a number or location of SRS instances for transmitting the SRS per configuration or as pre-defined; or
    determine at least one of a number or location of CSI instances to transmitting CSI reports per configuration or as pre-defined.
  129. The apparatus of claim 99, wherein the at least one processor and memory are further configured to, take one or more collision handling actions if a downlink control information (DCI) triggers one or more SRS resource sets via an aperiodic SRS (A-SRS) request and triggers one or more SRS resource sets jointly with an aperiodic CSI (A-CSI) request.
  130. The apparatus of claim 129, wherein the collision handling actions comprise:
    giving priority to only one of the SRS resource sets triggered via the A-SRS request or the SRS resource sets triggered jointly with the A-CSI request.
  131. The apparatus of claim 130, determining the SRS resource sets triggered via A-SRS request take precedence, transmit SRS resource set triggered via A-SRS resource set, ignore the CSI reports with association to SRS resource set triggered by the A-CSI request and ignore the associated SRS resource set, response other CSI reports triggered by the A-CSI request.
  132. The apparatus of claim 130, determining the SRS resource sets triggered via A-CSI request take precedence, transmit CSI reports and the associated SRS resource set triggered via A-CSI request, ignore the SRS resource set triggered via A-SRS request.
  133. The apparatus of claim 129, wherein the collision handling actions comprise:
    if there is common SRS resource set triggered by both the A-SRS request and the A-CSI request, transmitting SRS resources in the common SRS resource set once.
  134. The apparatus of claim 129, wherein:
    if a first SRS resource triggered via the A-SRS request overlaps with a second SRS resource triggered via the A-CSI request on one or more OFDM symbols, only one  of the first or second SRS resource is transmitted during the overlapping part and the overlapping part for the other of the first or second SRS resource is not transmitted.
  135. An apparatus for wireless communications by a user equipment (UE) , comprising:
    at least one processor and a memory configured to
    receive signaling jointly triggering semi-persistent channel state information reference signals (SP-CSI-RS) and semi-persistent sounding reference signals (SP-SRS) associated with the SP-CSI-RS;
    transmit the SP-SRS in accordance with an SP-SRS configuration; and
    monitor for the SP-CSI-RS in accordance with an SP-CSI-RS configuration.
  136. The apparatus of claim 135, wherein:
    the association is determined based on radio resource control (RRC) of an SRS resource set ID indicated in at least one of an SP-CSI-RS resource set configuration or an SP-CSI-RS resource setting; and
    the triggering is signaled via a medium access control (MAC) control element (CE) SP-CSI-RS activation command.
  137. The apparatus of claim 135, wherein:
    the association is determined based on radio resource control (RRC) of an SP-CSI-RS resource set ID indicated in an SP-SRS resource set configuration; and
    the triggering is signaled via a medium access control (MAC) control element (CE) SP-SRS activation command.
  138. The apparatus of claim 135, wherein the triggering is signaled via a single medium access control (MAC) control element (CE) to trigger an SP-CSI-RS resource set and an SP-SRS resource set together.
  139. An apparatus for wireless communications by a network entity, comprising:
    at least one processor and a memory configured to
    transmit a user equipment (UE) a configuration indicating a first aperiodic channel state information (A-CSI) report setting for a first A-CSI report based on a first aperiodic CSI reference (A-CSI-RS) ;
    transmit a configuration of the non-zero first timing offset to the UE;
    transmit the UE signaling triggering the first A-CSI report; and
    transmit the A-CSI-RS, in accordance with a non-zero first timing offset applied to the A-CSI-RS, wherein the timing offset is in accordance with a codebook type configured for the first A-CSI report.
  140. The apparatus of claim 139, wherein the non-zero first timing offset is determined based on the codebook type configured for the first A-CSI report being for port selection.
  141. The apparatus of claim 140, the determination of non-zero timing offset is per configuration in the resource configuration of the first A-CSI-RS.
  142. The apparatus of claim 140, wherein the at least one processor and memory are further configured to:
    transmit the UE a configuration indicating a second A-CSI report setting for a second A-CSI report based on the first A-CSI-RS; and
    determine a zero timing offset to be applied to the first A-CSI-RS based, at least in part, on a codebook type configured for the second A-CSI report.
  143. The apparatus of claim 139, wherein the at least one processor and memory are further configured to transmit the UE a medium access control (MAC) control element (CE) that conveys a change to a value of the non-zero first timing offset.
  144. The apparatus of claim 139, wherein the at least one processor and memory are further configured to:
    transmit a list of candidate values for the non-zero first timing offset; and
    transmit downlink control information (DCI) indicating one of the candidate values.
  145. An apparatus for wireless communications by a network entity, comprising:
    at least one processor and a memory configured to
    transmit a user equipment (UE) a configuration indicating one or more channel state information (CSI) report setting including CSI reference signals (CSI-RS) associated with each of the one or more CSI report;
    transmit a configuration indicating one or more SRS resource set;
    transmit signaling to facilitate determining an association between at least a first CSI report setting and a first sounding reference signal (SRS) resource set;
    transmit signaling jointly triggering at least the first CSI report and the associated SRS resource set;
    monitor for SRS in accordance with the triggering; and
    transmit the CSI-RS, and monitoring for the first CSI report, in accordance with the triggering.
  146. The apparatus of claim 145, wherein the association is determined based on an SRS resource set ID indicated in the first CSI report setting.
  147. The apparatus of claim 145, wherein the association is determined based on a list of one or more SRS resource set IDs indicated in a trigger state configuration for a list of one or more CSI reports and on a 1-to-1 association between SRS resource set ID and the first CSI report based on the order in the list.
  148. The apparatus of any of claims 145-147, wherein the at least one processor and memory are further configured to transmit the UE medium access control (MAC) control element (CE) signaling that changes the association between the first CSI report setting and the at least one SRS resource set.
  149. The apparatus of any of claims 148, wherein the at least one processor and memory are further configured to determine that a cell of the SRS resource set is a same cell as the CSI-RS associated with the first CSI-RS report.
  150. The apparatus of claim 145, wherein the signaling jointly triggering the first CSI report and the associated SRS resource set comprises a CSI request if the associated CSI comprises semi persistent CSI (SP-CSI) to be transmitted on PUSCH or aperiodic CSI (A-CSI) .
  151. The apparatus of claim 145, wherein the signaling jointly triggering the first CSI report and the associated SRS resource set comprises a semi persistent CSI (SP-CSI) activation command conveyed via medium access control (MAC) control element (CE) if the associated CSI comprises semi persistent CSI to be transmitted on PUCCH.
  152. The apparatus of claim 145, wherein the signaling jointly triggering the first CSI report and the associated SRS resource set comprises radio resource control (RRC) configuration signaling of the SRS resource set, CSI report setting, and their association if the associated CSI comprises periodic CSI (P-CSI) .
  153. The apparatus of claim 145, wherein SRS resource set and CSI report setting are of a same periodic, aperiodic, or semi-persistent type.
  154. The apparatus of claim 145, wherein the association is determined based on a CSI report ID indicated in an SRS resource set configuration.
  155. The apparatus of claim 154, wherein the at least one processor and memory are further configured to transmit a medium access control (MAC) control element (CE) that conveys a change to at least one CSI report ID associated with at least one SRS resource set.
  156. The apparatus of any of claim 154, wherein the at least one processor and memory are further configured to determine that a cell of the SRS resource set is a same cell as the associated CSI report.
  157. The apparatus of claim 154, wherein the signaling jointly triggering the first CSI report and the associated SRS resource set comprises a SRS request conveyed via a  downlink control information (DCI) if the associated SRS resource set is for aperiodic SRS (A-SRS) .
  158. The apparatus of claim 154, wherein the signaling jointly triggering the first CSI report and the associated SRS resource set comprises a semi persistent SRS (SP-SRS) medium access control (MAC) control element (CE) activation command.
  159. The apparatus of claim 154, wherein the signaling jointly triggering the first CSI report and the associated SRS resource set comprises radio resource control (RRC) configuration signaling of the SRS resource set, CSI report setting, and their association and CSI report and their association if the associated CSI comprises periodic CSI (P-CSI) and the SRS comprises P-SRS.
  160. The apparatus of claim 145, wherein the signaling jointly triggering the first CSI report and the associated SRS resource set comprises a group common downlink control information (DCI) .
  161. The apparatus of claim 160, wherein:
    the group common DCI includes a plurality of blocks;
    each block is intended for a respective UE; and
    each block has an aperiodic SRS (A-SRS) request field and an aperiodic CSI (A-CSI) request field.
  162. The apparatus of claim 161, wherein:
    A-SRS and A-CSI corresponding to A-SRS and A-CSI requests in the same block are triggered jointly; and
    the network entity monitors for the A-SRS and transmits CSI-RS associated with the A-CSI and monitors for the A-CSI report per request.
  163. The apparatus of claim 145, wherein:
    the CSI-RS comprises aperiodic CSI-RS (A-CSI-RS) , the SRS comprises aperiodic SRS (A-SRS) , and the CSI report comprises an aperiodic CSI (A-CSI) report; and
    the wherein the at least one processor and memory are further configured to determine a timing offset between at least one of the A-SRS and the A-CSI-RS or between the DCI and the A-CSI-RS.
  164. The apparatus of claim 163, wherein a value of the timing offset is dependent, at least in part, on numerology of a cell of the A-SRS transmission and A-CSI-RS monitoring.
  165. The apparatus of claim 163, wherein the value of the timing offset is determined based on indicating the value via at least one of a downlink control information (DCI) , a medium access control (MAC) control element (CE) , or radio resource control (RRC) signaling.
  166. The apparatus of claim 165, wherein:
    a list of candidate values for the timing offset is signaled via RRC signaling;
    a subset of the candidate values is indicated via a MAC CE; and
    one of the subset of candidate values is indicated via the DCI.
  167. The apparatus of claim 165, wherein:
    a list of candidate values for the timing offset is signaled via RRC signaling; and
    one of the subset of candidate values is indicated via the DCI.
  168. The apparatus of claim 163, wherein the timing offset is jointly indicated with a slot offset for SRS.
  169. The apparatus of claim 163, wherein the timing offset is subject to a minimum requirement.
  170. The apparatus of claim 163, wherein the at least one processor and memory are further configured to:
    transmit the UE a slot offset configuration in the CSI-RS resource configuration; and
    determine the timing offset as the slot offset relative an end of the jointly triggered A-SRS if its associated CSI report is jointly triggered with A-SRS.
  171. The apparatus of claim 145, wherein the at least one processor and memory are further configured to:
    determine that one or more instances of the CSI reports are triggered and one or more instances of the SRS resource set are triggered; and
    determine the content of information in the CSI report depends, at least in part, on information conveyed via or a usage of at least one of the SRS transmissions or the CSI-RS associated to the CSI reports.
  172. The apparatus of claim 171, wherein:
    the SRS is transmitted for a network entity to determine the at least one of spatial duplexed (SD) or frequency duplexed (FD) bases; and
    the information in the CSI report indicates coefficients associated with the at least one of SD or FD bases.
  173. The apparatus of claim 171, wherein:
    the UE determines at least one of spatial duplexed (SD) or frequency duplexed (FD) bases based on measurements of the CSI-RS; and
    the information in the CSI report comprises a partial precoding matrix indicator PMI comprising linear combination coefficients associated with the at least one of SD or FD bases.
  174. The apparatus of claim 171, wherein the at least one processor and memory are further configured to:
    determine at least one of a number or location of SRS instances for transmitting the SRS as pre-defined or transmitting configuration for the at least one of a number or location of SRS instances; or
    determine at least one of a number or location of CSI instances to transmitting CSI reports as pre-defined or transmitting configuration for the at least one of a number or location of CSI instances.
  175. The apparatus of claim 145, wherein the at least one processor and memory are further configured to, take one or more collision handling actions if a downlink control information (DCI) triggers one or more SRS resource sets via an aperiodic SRS (A-SRS) request and triggers one or more SRS resource sets jointly with an aperiodic CSI (A-CSI) request.
  176. The apparatus of claim 175, wherein the collision handling actions comprise:
    giving priority to only one of the SRS resource sets triggered via the A-SRS request or the SRS resource sets triggered jointly with the A-CSI request.
  177. The apparatus of claim 176, wherein the at least one processor and memory are further configured to determine the SRS resource sets triggered via A-SRS request take precedence, monitoring for SRS resource set triggered via A-SRS resource set, ignoring the CSI reports with association to SRS resource set triggered by the A-CSI request and ignoring monitoring the associated SRS resource set, response other CSI reports triggered by the A-CSI request.
  178. The apparatus of claim 176, wherein the at least one processor and memory are further configured to determine the SRS resource sets triggered via A-CSI request take precedence, monitoring for CSI reports and the associated SRS resource set triggered via A-CSI request, ignoring monitoring for the SRS resource set triggered via A-SRS request.
  179. The apparatus of claim 175, wherein the collision handling actions comprise:
    if there is common SRS resource set triggered by both the A-SRS request and the A-CSI request, monitoring for SRS resources in the common SRS resource set that are transmitted once.
  180. The apparatus of claim 175, wherein:
    if a first SRS resource triggered via the A-SRS request overlaps with a second SRS resource triggered via the A-CSI request on one or more OFDM symbols, only one of the first or second SRS resource is transmitted during the overlapping part and the overlapping part for the other of the first or second SRS resource is not transmitted.
  181. An apparatus for wireless communications by a network entity, comprising:
    at least one processor and a memory configured to
    transmit signaling jointly triggering semi-persistent channel state information reference signals (SP-CSI-RS) and semi-persistent sounding reference signals (SP-SRS) associated with the SP-CSI-RS;
    monitor for the SP-SRS in accordance with an SP-SRS configuration; and
    transmit the SP-CSI-RS in accordance with an SP-CSI-RS configuration.
  182. The apparatus of claim 181, wherein:
    the association is determined based on radio resource control (RRC) of an SRS resource set ID indicated in at least one of an SP-CSI-RS resource set configuration or an SP-CSI-RS resource setting; and
    the triggering is signaled via a medium access control (MAC) control element (CE) SP-CSI-RS activation command.
  183. The apparatus of claim 181, wherein:
    the association is determined based on radio resource control (RRC) of an SP-CSI-RS resource set ID indicated in an SP-SRS resource set configuration; and
    the triggering is signaled via a medium access control (MAC) control element (CE) SP-SRS activation command.
  184. The apparatus of claim 181, wherein the triggering is signaled via a single medium access control (MAC) control element (CE) to trigger an SP-CSI-RS resource set and an SP-SRS resource set together.
  185. An apparatus for wireless communications by a user equipment (UE) , comprising:
    means for receiving a configuration indicating a first aperiodic channel state information (A-CSI) report setting for a first A-CSI report based on a first aperiodic CSI reference signal (A-CSI-RS) ;
    means for receiving signaling triggering the first A-CSI report; and
    means for monitoring for the A-CSI-RS, in accordance with a non-zero first timing offset applied to the A-CSI-RS, wherein the timing offset is in accordance with a codebook type configured for the first A-CSI report.
  186. An apparatus for wireless communications by a user equipment (UE) , comprising:
    means for receiving a configuration indicating one or more channel state information (CSI) report setting including CSI reference signals (CSI-RS) associated with each of the one or more CSI report;
    means for receiving a configuration indicating one or more SRS resource set;
    means for receiving signaling jointly triggering at least the first CSI report and a first sounding reference signal (SRS) resource set associated with at least the first CSI report setting;
    means for transmitting SRS in accordance with the triggering; and
    means for monitoring for the CSI-RS, and transmitting the first CSI report, in accordance with the triggering.
  187. An apparatus for wireless communications by a user equipment (UE) , comprising:
    means for receiving signaling jointly triggering semi-persistent channel state information reference signals (SP-CSI-RS) and semi-persistent sounding reference signals (SP-SRS) associated with the SP-CSI-RS;
    means for transmitting the SP-SRS in accordance with an SP-SRS configuration; and
    means for monitoring for the SP-CSI-RS in accordance with an SP-CSI-RS configuration.
  188. An apparatus for wireless communications by a network entity, comprising:
    means for transmitting a user equipment (UE) a configuration indicating a first aperiodic channel state information (A-CSI) report setting for a first A-CSI report based on a first aperiodic CSI reference (A-CSI-RS) ;
    means for transmitting a configuration of the non-zero first timing offset to the UE;
    means for transmitting the UE signaling triggering the first A-CSI report; and
    means for transmitting the A-CSI-RS, in accordance with a non-zero first timing offset applied to the A-CSI-RS, wherein the timing offset is in accordance with a codebook type configured for the first A-CSI report.
  189. An apparatus for wireless communications by a network entity, comprising:
    means for transmitting a user equipment (UE) a configuration indicating one or more channel state information (CSI) report setting including CSI reference signals (CSI-RS) associated with each of the one or more CSI report;
    means for transmitting a configuration indicating one or more SRS resource set;
    means for transmitting signaling to facilitate determining an association between at least a first CSI report setting and a first sounding reference signal (SRS) resource set;
    means for transmitting signaling jointly triggering at least the first CSI report and the associated SRS resource set;
    means for monitoring for SRS in accordance with the triggering; and
    means for transmitting the CSI-RS, and monitoring for the first CSI report, in accordance with the triggering.
  190. An apparatus for wireless communications by a network entity, comprising:
    means for transmitting signaling jointly triggering semi-persistent channel state information reference signals (SP-CSI-RS) and semi-persistent sounding reference signals (SP-SRS) associated with the SP-CSI-RS;
    means for monitoring for the SP-SRS in accordance with an SP-SRS configuration; and
    means for transmitting the SP-CSI-RS in accordance with an SP-CSI-RS configuration.
  191. A computer readable medium having instructions stored thereon for:
    receiving a configuration indicating a first aperiodic channel state information (A-CSI) report setting for a first A-CSI report based on a first aperiodic CSI reference signal (A-CSI-RS) ;
    receiving signaling triggering the first A-CSI report; and
    monitoring for the A-CSI-RS, in accordance with a non-zero first timing offset applied to the A-CSI-RS, wherein the timing offset is in accordance with a codebook type configured for the first A-CSI report.
  192. A computer readable medium having instructions stored thereon for:
    receiving a configuration indicating one or more channel state information (CSI) report setting including CSI reference signals (CSI-RS) associated with each of the one or more CSI report;
    receiving a configuration indicating one or more SRS resource set;
    receiving signaling jointly triggering at least the first CSI report and a first sounding reference signal (SRS) resource set associated with at least the first CSI report setting;
    transmitting SRS in accordance with the triggering; and
    monitoring for the CSI-RS, and transmitting the first CSI report, in accordance with the triggering.
  193. A computer readable medium having instructions stored thereon for:
    receiving signaling jointly triggering semi-persistent channel state information reference signals (SP-CSI-RS) and semi-persistent sounding reference signals (SP-SRS) associated with the SP-CSI-RS;
    transmitting the SP-SRS in accordance with an SP-SRS configuration; and
    monitoring for the SP-CSI-RS in accordance with an SP-CSI-RS configuration.
  194. A computer readable medium having instructions stored thereon for:
    transmitting a user equipment (UE) a configuration indicating a first aperiodic channel state information (A-CSI) report setting for a first A-CSI report based on a first aperiodic CSI reference (A-CSI-RS) ;
    transmitting a configuration of the non-zero first timing offset to the UE;
    transmitting the UE signaling triggering the first A-CSI report; and
    transmitting the A-CSI-RS, in accordance with a non-zero first timing offset applied to the A-CSI-RS, wherein the timing offset is in accordance with a codebook type configured for the first A-CSI report.
  195. A computer readable medium having instructions stored thereon for:
    transmitting a user equipment (UE) a configuration indicating one or more channel state information (CSI) report setting including CSI reference signals (CSI-RS) associated with each of the one or more CSI report;
    transmitting a configuration indicating one or more SRS resource set;
    transmitting signaling to facilitate determining an association between at least a first CSI report setting and a first sounding reference signal (SRS) resource set;
    transmitting signaling jointly triggering at least the first CSI report and the associated SRS resource set;
    monitoring for SRS in accordance with the triggering; and
    transmitting the CSI-RS, and monitoring for the first CSI report, in accordance with the triggering.
  196. A computer readable medium having instructions stored thereon for:
    transmitting signaling jointly triggering semi-persistent channel state information reference signals (SP-CSI-RS) and semi-persistent sounding reference signals (SP-SRS) associated with the SP-CSI-RS;
    monitoring for the SP-SRS in accordance with an SP-SRS configuration; and
    transmitting the SP-CSI-RS in accordance with an SP-CSI-RS configuration.
PCT/CN2020/123164 2020-10-23 2020-10-23 Joint srs and csi trigger WO2022082712A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/123164 WO2022082712A1 (en) 2020-10-23 2020-10-23 Joint srs and csi trigger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/123164 WO2022082712A1 (en) 2020-10-23 2020-10-23 Joint srs and csi trigger

Publications (1)

Publication Number Publication Date
WO2022082712A1 true WO2022082712A1 (en) 2022-04-28

Family

ID=81291479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123164 WO2022082712A1 (en) 2020-10-23 2020-10-23 Joint srs and csi trigger

Country Status (1)

Country Link
WO (1) WO2022082712A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018031727A1 (en) * 2016-08-10 2018-02-15 Interdigital Patent Holdings, Inc. Systems and methods for aperiodic measurement reference signal transmission in multiple antenna systems
CN109417416A (en) * 2016-07-07 2019-03-01 高通股份有限公司 Processing for aperiodicity CSI-RS is relaxed
US20190174466A1 (en) * 2018-01-22 2019-06-06 Intel Corporation Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration
WO2020056180A1 (en) * 2018-09-12 2020-03-19 Intel Corporation Device and method for sounding reference signal triggering and configuration in a new radio network
CN111757434A (en) * 2019-03-29 2020-10-09 华为技术有限公司 Communication method and device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109417416A (en) * 2016-07-07 2019-03-01 高通股份有限公司 Processing for aperiodicity CSI-RS is relaxed
WO2018031727A1 (en) * 2016-08-10 2018-02-15 Interdigital Patent Holdings, Inc. Systems and methods for aperiodic measurement reference signal transmission in multiple antenna systems
US20190174466A1 (en) * 2018-01-22 2019-06-06 Intel Corporation Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration
WO2020056180A1 (en) * 2018-09-12 2020-03-19 Intel Corporation Device and method for sounding reference signal triggering and configuration in a new radio network
CN111757434A (en) * 2019-03-29 2020-10-09 华为技术有限公司 Communication method and device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Design of PDCCH-based power saving signal/channel for NR", 3GPP DRAFT; R1-1906548_DESIGN OF PDCCH-BASED POWER SAVING SIGNAL OR CHANNEL FOR NR_FINAL, vol. RAN WG1, 4 May 2019 (2019-05-04), Reno, USA, pages 1 - 16, XP051708584 *
VIVO: "Discussion on SRS enhancement", 3GPP DRAFT; R1-2005368, vol. RAN WG1, 8 August 2020 (2020-08-08), pages 1 - 17, XP051917393 *

Similar Documents

Publication Publication Date Title
CN112740737B (en) Sounding Reference Signal (SRS) -guided downlink channel state information reference signal (CSI-RS) scanning
US20210160104A1 (en) Transmission rank and precoder signaling in uplink non-codebook based transmission
WO2022094972A1 (en) Methods for csi-rs resource aggregation
WO2020253815A1 (en) Codebook subset restriction (cbsr) on per spatial domain amplitude
WO2021081979A1 (en) Uplink subband precoding via sounding reference signals precoded by frequency domain bases
WO2021128289A1 (en) Uplink grant downlink control information for frequency domain compressed uplink precoding
WO2020224561A1 (en) Frequency domain bases report with a reference index across layers
WO2021109137A1 (en) Robustness considerations for 2-stage dci for frequency domain compressed uplink subband precoding
WO2020172768A1 (en) Number of non-zero coefficients reporting for type ii csi codebook with frequency compression
WO2021081981A1 (en) Uplink subband precoding via linear combination of frequency domain bases
WO2021128258A1 (en) Uplink downlink control information design for sounding reference signals precoded by frequency domain bases
WO2022047759A1 (en) Flexible csi-rs sharing for port selection csi feedback
WO2020150936A1 (en) Precoder matrix quantization for compressed csi feedback
WO2020216202A1 (en) Configuration of intermediate set size for frequency domain basis reporting
WO2022082716A1 (en) Methods for codebook configuration and capability for csi with fdd reciprocity
WO2022082712A1 (en) Joint srs and csi trigger
WO2021243632A1 (en) Decoupled port selection and coefficients reporting
WO2022155942A1 (en) Constraints on csi request and csi report per slot with different numerology
WO2023108543A1 (en) Resource mapping of frequency domain compression based frequency-selective precoder matrix

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958294

Country of ref document: EP

Kind code of ref document: A1