WO2022082673A1 - 终端获取测量信息的方法、装置、通信设备及存储介质 - Google Patents

终端获取测量信息的方法、装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2022082673A1
WO2022082673A1 PCT/CN2020/123001 CN2020123001W WO2022082673A1 WO 2022082673 A1 WO2022082673 A1 WO 2022082673A1 CN 2020123001 W CN2020123001 W CN 2020123001W WO 2022082673 A1 WO2022082673 A1 WO 2022082673A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
information
scaling
acquisition
configuration
Prior art date
Application number
PCT/CN2020/123001
Other languages
English (en)
French (fr)
Inventor
杨星
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US18/250,145 priority Critical patent/US20230413082A1/en
Priority to CN202080002888.6A priority patent/CN112514419B/zh
Priority to PCT/CN2020/123001 priority patent/WO2022082673A1/zh
Publication of WO2022082673A1 publication Critical patent/WO2022082673A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/027Services making use of location information using location based information parameters using movement velocity, acceleration information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of wireless communication technologies, but is not limited to the field of wireless communication technologies, and in particular, relates to a method, an apparatus, a communication device, and a storage medium for a terminal to obtain measurement information.
  • the base station antenna can be set on a high-altitude platform or satellite, located in the high altitude or space from tens of kilometers to tens of thousands of kilometers from the ground.
  • Each non-terrestrial network (NTN) cell can cover a large area.
  • the coverage diameter can range from tens of kilometers to hundreds of kilometers.
  • NTN Non-Terrestrial Networks
  • the terminal can determine whether the terminal is in the center of the cell or the edge of the cell based on the signal quality.
  • NTN non-terrestrial network
  • the signal quality at the cell edge and the cell center varies little, and it is difficult to determine whether the terminal is located at the cell edge or the cell center based on the signal quality. Therefore, in the process of mobility management, the geographical location of the terminal needs to be considered.
  • the terminal can obtain its own geographic location through the Global Positioning System (GPS, Global Positioning System). However, frequently obtaining geographic location information will result in high power consumption of the terminal.
  • GPS Global Positioning System
  • the embodiments of the present disclosure disclose a method, an apparatus, a communication device, and a storage medium for a terminal to acquire measurement information.
  • a method for a terminal to acquire measurement information wherein, when applied to a terminal, the method includes:
  • the configuration information is used to determine the acquisition period of the measurement information according to the movement information of the terminal.
  • the acquisition cycle includes:
  • the configuration information includes:
  • the first cycle configuration includes: the initial value of the acquisition cycle;
  • the first periodic scaling configuration includes: a reference distance and a scaling value corresponding to the reference distance for scaling the initial value.
  • the movement information includes the measured distance; the method further includes:
  • An acquisition period corresponding to the measured distance is determined according to the measured distance and the first period scaling configuration.
  • determining the measured distance according to the magnitude relationship between the acquisition period of the previous acquisition of the measurement information and the initial value includes:
  • the moving distance is the current position of the terminal relative to the previous acquisition of the measurement
  • the information is the moving distance of the location of the terminal, or the moving distance of the current location of the terminal relative to the location of the reference point in the cell where the terminal is located;
  • the distance scaling parameter is the The ratio of the acquisition period when the terminal acquired the measurement information last time to the initial value.
  • the configuration information includes:
  • the first cycle configuration includes: the initial value of the acquisition cycle;
  • the second periodic scaling configuration includes: a speed level and a scaling value corresponding to the speed level for scaling the initial value.
  • the movement information includes the movement speed of the terminal; the method further includes:
  • the acquisition period corresponding to the movement speed of the terminal is determined according to the movement level corresponding to the movement speed of the terminal and the second period scaling configuration.
  • the method further includes:
  • the configuration information further includes a movement speed configuration; the method further includes:
  • a movement level corresponding to the movement speed of the terminal is determined according to the movement speed and the movement speed configuration; wherein the movement speed configuration includes a movement speed and the speed level corresponding to the movement speed.
  • the configuration information includes:
  • the first cycle configuration includes: the initial value of the acquisition cycle;
  • a third period scaling configuration includes: a signal strength and a scaling value corresponding to the signal strength for scaling the initial value.
  • the movement information includes the signal strength of the reference signal received when the terminal moves; the method further includes:
  • the acquisition period corresponding to the received signal strength is determined according to the signal strength of the received reference signal and the third period scaling configuration.
  • the configuration information includes:
  • Radio Resource Control (RRC) messages For brevation information sent by the base station through Radio Resource Control (RRC) messages.
  • RRC Radio Resource Control
  • the method further includes:
  • RRC radio resource control
  • a method for a terminal to acquire measurement information wherein, when applied to a base station, the method includes:
  • the configuration information is used to determine the acquisition period of the measurement information according to the movement information of the terminal.
  • the acquisition cycle includes:
  • the configuration information includes:
  • the first cycle configuration includes: the initial value of the acquisition cycle;
  • the first periodic scaling configuration includes: a reference distance and a scaling value corresponding to the reference distance for scaling the initial value.
  • the configuration information includes:
  • the first cycle configuration includes: the initial value of the acquisition cycle;
  • the second periodic scaling configuration includes: a speed level and a scaling value corresponding to the speed level for scaling the initial value.
  • the configuration information includes:
  • the first cycle configuration includes: the initial value of the acquisition cycle;
  • a third period scaling configuration includes: a signal strength and a scaling value corresponding to the signal strength for scaling the initial value.
  • the configuration information includes:
  • RRC radio resource control
  • an apparatus for a terminal to acquire measurement information wherein, when applied to a terminal, the apparatus includes a receiving module, wherein,
  • the receiving module is configured to receive configuration information for the terminal to acquire measurement information
  • the configuration information is used to determine the acquisition period of the measurement information according to the movement information of the terminal.
  • an apparatus for a terminal to acquire measurement information wherein, when applied to a base station, the apparatus includes a sending module, wherein:
  • the sending module is configured to send configuration information for the terminal to obtain the measurement information
  • the configuration information is used to determine the acquisition period of the measurement information according to the movement information of the terminal.
  • a communication device comprising:
  • a memory for storing the processor-executable instructions
  • the processor is configured to: when executing the executable instructions, implement the method described in any embodiment of the present disclosure.
  • a computer storage medium stores a computer-executable program, and when the executable program is executed by a processor, implements the method described in any embodiment of the present disclosure.
  • configuration information for the terminal to acquire measurement information is received; wherein, the configuration information is used to determine an acquisition period of the measurement information according to the movement information of the terminal.
  • the terminal can determine the acquisition period for acquiring the measurement information according to the movement information and the configuration information.
  • the acquisition period is determined according to the movement of the terminal. Compared with the method of acquiring measurement information with a fixed acquisition period, the acquisition period can be adapted to the movement of the terminal. Since different acquisition periods correspond to different power consumption of the terminal, this is beneficial to reduce the power consumption of the terminal.
  • FIG. 1 is a schematic structural diagram of a wireless communication system.
  • FIG. 2 is a schematic diagram illustrating a wireless communication scenario according to an exemplary embodiment.
  • Fig. 3 is a schematic diagram of a wireless communication scenario according to an exemplary embodiment.
  • Fig. 4 is a schematic flowchart of a method for a terminal to acquire measurement information according to an exemplary embodiment.
  • Fig. 5 is a schematic flowchart of a method for a terminal to acquire measurement information according to an exemplary embodiment.
  • Fig. 6 is a schematic flowchart of a method for a terminal to acquire measurement information according to an exemplary embodiment.
  • Fig. 7 is a schematic flowchart of a method for a terminal to acquire measurement information according to an exemplary embodiment.
  • Fig. 8 is a schematic flowchart of a method for a terminal to acquire measurement information according to an exemplary embodiment.
  • Fig. 9 is a schematic flowchart of a method for a terminal to acquire measurement information according to an exemplary embodiment.
  • Fig. 10 is a schematic flowchart of a method for a terminal to acquire measurement information according to an exemplary embodiment.
  • FIG. 11 is a schematic flowchart of a method for a terminal to acquire measurement information according to an exemplary embodiment.
  • FIG. 12 is a schematic flowchart of a method for a terminal to acquire measurement information according to an exemplary embodiment.
  • Fig. 13 is a schematic diagram of an apparatus for a terminal to acquire measurement information according to an exemplary embodiment.
  • Fig. 14 is a schematic diagram of an apparatus for a terminal to acquire measurement information according to an exemplary embodiment.
  • Fig. 15 is a block diagram of a base station according to an exemplary embodiment.
  • first, second, third, etc. may be used in embodiments of the present disclosure to describe various pieces of information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • the terms “greater than” or “less than” are used herein when characterizing the relationship of size. However, those skilled in the art can understand that the term “greater than” also covers the meaning of “greater than or equal to”, and “less than” also covers the meaning of "less than or equal to”.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several user equipments 110 and several base stations 120 .
  • the user equipment 110 may be a device that provides voice and/or data connectivity to the user.
  • User equipment 110 may communicate with one or more core networks via a Radio Access Network (RAN), and user equipment 110 may be IoT user equipment such as sensor devices, mobile phones (or "cellular" phones) ) and a computer with IoT user equipment, for example, may be stationary, portable, pocket-sized, hand-held, computer-built or vehicle-mounted.
  • RAN Radio Access Network
  • IoT user equipment such as sensor devices, mobile phones (or "cellular" phones)
  • a computer with IoT user equipment for example, may be stationary, portable, pocket-sized, hand-held, computer-built or vehicle-mounted.
  • station Ses, STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile station
  • remote station remote station
  • access terminal remote user equipment
  • the user equipment 110 may also be a device of an unmanned aerial vehicle.
  • the user equipment 110 may also be an in-vehicle device, for example, a trip computer with a wireless communication function, or a wireless user equipment connected to an external trip computer.
  • the user equipment 110 may also be a roadside device, for example, may be a street light, a signal light, or other roadside devices with a wireless communication function.
  • the base station 120 may be a network-side device in a wireless communication system.
  • the wireless communication system may be a fourth generation mobile communication (the 4th generation mobile communication, 4G) system, also known as a long term evolution (Long Term Evolution, LTE) system; or, the wireless communication system may also be a 5G system, Also known as New Radio System or 5G NR System.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network, a new generation of radio access network).
  • the base station 120 may be an evolved base station (eNB) used in the 4G system.
  • the base station 120 may also be a base station (gNB) that adopts a centralized distributed architecture in a 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 120 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a protocol stack of a Packet Data Convergence Protocol (PDCP) layer, a Radio Link Control Protocol (Radio Link Control, RLC) layer, and a Media Access Control (Media Access Control, MAC) layer; distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 120 is not limited in this embodiment of the present disclosure.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control Protocol
  • MAC Media Access Control
  • distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 120 is not limited in this embodiment of the present disclosure.
  • a wireless connection can be established between the base station 120 and the user equipment 110 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a 5G next-generation mobile communication network technology standard.
  • an E2E (End to End, end-to-end) connection may also be established between the user equipments 110 .
  • V2V vehicle to vehicle, vehicle-to-vehicle
  • V2I vehicle to Infrastructure, vehicle-to-roadside equipment
  • V2P vehicle to pedestrian, vehicle-to-person communication in vehicle-to-everything (V2X) communication etc. scene.
  • the above-mentioned user equipment may be regarded as the terminal equipment of the following embodiments.
  • the above wireless communication system may further include a network management device 130 .
  • the network management device 130 may be a core network device in a wireless communication system.
  • the network management device 130 may be a mobility management entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC). MME).
  • the network management device may also be other core network devices, such as a serving gateway (Serving GateWay, SGW), a public data network gateway (Public Data Network GateWay, PGW), a policy and charging rules functional unit (Policy and Charging Rules) Function, PCRF) or home subscriber server (Home Subscriber Server, HSS), etc.
  • the implementation form of the network management device 130 is not limited in this embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of the received signal strength of a terminal in a terrestrial network (TN, Terrestrial Network) wireless communication scenario.
  • the terrestrial network (TN) includes terrestrial network base stations and terminals.
  • FIG. 3 is a schematic diagram of received signal strength of a terminal in a non-terrestrial network (NTN) wireless communication scenario.
  • the non-terrestrial network (NTN) includes non-terrestrial network base stations and terminals.
  • the terminal can determine whether the terminal is based on the obvious difference between the reference signal received power (RSRP, Reference Signal Receiving Power) or the reference signal received quality (RSRQ, Reference Signal Receiving Quality) between the cell center and the cell edge. on the edge of the cell.
  • RSRP reference signal received power
  • RSRQ Reference Signal Receiving Quality
  • NTN non-terrestrial network
  • the cell radius is large, and the terminal is located at the center or edge of the cell.
  • the difference between the terminal's reference signal received power (RSRP) and reference signal received quality (RSRQ) is small, and the near-far effect is not obvious.
  • the terminal needs to periodically acquire the geographic location through the Global Positioning System (GPS). However, acquiring the geographic location through the Global Positioning System (GPS) consumes the power of the terminal. When the terminal is in the center of the cell, the terminal will not move to other cells, and there is no need to frequently obtain geographic location information, which increases extra power consumption.
  • GPS Global Positioning System
  • this embodiment provides a method for a terminal to acquire measurement information, wherein, when applied to a terminal, the method includes:
  • Step 41 Receive configuration information for the terminal to obtain measurement information
  • the configuration information is used to determine the acquisition period of the measurement information according to the movement information of the terminal.
  • the terminal may be, but is not limited to, a mobile phone, a wearable device, a vehicle-mounted terminal, a roadside unit (RSU, Road Side Unit), a smart home terminal, an industrial sensing device, and/or a medical device, etc.
  • a mobile phone a wearable device
  • vehicle-mounted terminal a roadside unit (RSU, Road Side Unit)
  • RSU Road Side Unit
  • smart home terminal an industrial sensing device, and/or a medical device, etc.
  • the configuration information may be sent by the base station.
  • the base station is an interface device for the terminal to access the network.
  • the network may be a non-terrestrial network (NTN).
  • the base stations may be located on high-altitude platforms or satellites.
  • the base station may be various types of base stations, for example, a base station of a third generation mobile communication (3G) network, a base station of a fourth generation mobile communication (4G) network, a fifth generation mobile communication (5G) network base station or other evolved base station.
  • 3G third generation mobile communication
  • 4G fourth generation mobile communication
  • 5G fifth generation mobile communication
  • the cell in which the terminal is located may be a non-terrestrial network (NTN) cell.
  • NTN non-terrestrial network
  • the measurement information acquired by the terminal is location information used for cell reselection or handover.
  • the terminal may obtain location information of the terminal through a global positioning system (GPS), and based on the location information, determine that the terminal is located in the edge area or central area of a cell of a non-terrestrial network (NTN), and use the location of the terminal to The location relationship within the terrestrial network (NTN) cell, and the reselection or handover of the cell is performed.
  • GPS global positioning system
  • NTN non-terrestrial network
  • the edge area of the cell is located at the periphery of the central area of the cell. Usually, the edge area of the cell is adjacent to the neighboring cell.
  • the terminal when the terminal is located in the central area of a non-terrestrial network (NTN) cell or the distance between the terminal and the central area is within a distance threshold range, the terminal does not need to perform cell reselection or handover.
  • the location information of the terminal may be acquired by stopping or using an acquisition period greater than the period threshold to save power consumption of the terminal.
  • the terminal when the terminal is located in an edge area of a non-terrestrial network (NTN) cell or the distance between the location of the terminal and the edge area is within a distance threshold range, the terminal may need to perform cell reselection or cell handover. At this time, The terminal needs to start or use an acquisition period smaller than the period threshold to acquire the location information of the terminal, so as to realize cell reselection or handover.
  • NTN non-terrestrial network
  • the measurement information acquired by the terminal is: channel measurement result information for transmitting data, and data transmission in a non-terrestrial network (NTN) is performed based on the channel measurement result.
  • NTN non-terrestrial network
  • the measurement objects included in the channel measurement result may include at least one of the following: Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ) and Received Signal Strength Indicator (RSSI, Received Signal Strength Indicator).
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • RSSI Received Signal Strength Indicator
  • the terminal when the terminal is located in the central area of a non-terrestrial network (NTN) cell or the distance between the terminal and the central area is within a distance threshold range, and the transmission quality of the data transmitted by the terminal is good, at this time, the terminal may stop Alternatively, the acquisition period greater than the period threshold is used to acquire the channel measurement result, so as to save the power consumption of the terminal.
  • NTN non-terrestrial network
  • the terminal when the terminal is located in an edge area of a non-terrestrial network (NTN) cell or the distance between the location of the terminal and the edge area is within a distance threshold range, the data transmission quality of the terminal is poor, at this time, the terminal needs to start or The acquisition period less than the period threshold is used to acquire the channel measurement results to achieve stable data transmission.
  • NTN non-terrestrial network
  • the measurement information may include location information of the terminal and/or information of channel measurement results.
  • the terminal may obtain the measurement information from the base station.
  • the terminal may obtain the measurement information from the application layer of the terminal.
  • the terminal sends a request for geographic location information to the application layer of the terminal based on the acquisition period, and acquires the geographic location information from the application layer of the terminal.
  • the terminal may acquire the measurement information periodically.
  • the acquisition period may be a period in which the terminal periodically acquires measurement information.
  • the application layer of the terminal may acquire the measurement information of the terminal, and the protocol layer below the application layer of the terminal periodically acquires the measurement information from the application layer of the terminal.
  • the terminal may receive configuration information sent by the base station for the terminal to acquire measurement information when a radio resource control (RRC) connection is established with the base station.
  • RRC radio resource control
  • the terminal when the terminal needs to acquire the measurement information, it may send an acquisition request of the measurement information to the base station, and after receiving the acquisition request of the terminal, the base station may send the configuration information for the terminal to acquire the measurement information to the terminal.
  • a request for obtaining measurement information is sent to the base station, and after receiving the obtaining request from the terminal, the base station sends configuration information for the terminal to obtain measurement information to the terminal.
  • the movement information may be information related to the movement of the terminal. For example, the moving speed of the terminal and the distance the terminal moves. It should be noted that the movement information may also be information associated with the movement of the terminal, for example, reference signal received power (RSRP) and reference signal received quality (RSRQ) corresponding to the reference signal sent by the base station to the terminal.
  • RSRP reference signal received power
  • RSSQ reference signal received quality
  • the reference signal received power is gradually decreased as the terminal moves away from the central area of the cell.
  • the configuration information may be a mapping relationship between the movement information and the acquisition period. It may also be the initial value of the acquisition period configured by the base station for the terminal.
  • the configuration information may be a mapping relationship between the movement speed of the terminal and the corresponding acquisition period.
  • moving speeds in different ranges may correspond to different acquisition periods.
  • the corresponding ratios between different acquisition periods may be the same.
  • the terminal when the moving speed of the terminal is greater than the first speed threshold, the terminal is in a high-speed movement state at this time, and it is easier to move to the edge area of the cell. At this time, measurement information needs to be acquired frequently, and the acquisition period can be set less than the first cycle threshold.
  • the terminal When the moving speed of the terminal is greater than the second speed threshold and less than the first speed threshold, the terminal is in a medium-speed moving state, and the acquisition period can be set to be greater than the first period threshold and less than the second period threshold.
  • the terminal When the moving speed of the terminal is less than the second speed threshold, the terminal is in a low-speed moving state at this time, and the acquisition period can be set to be greater than the second period threshold.
  • the first speed threshold is greater than the second speed threshold; the first cycle threshold is less than the second cycle threshold.
  • the acquisition period can be adjusted according to the moving speed of the terminal, so that the acquisition period can be adapted to the moving speed of the terminal. Since different acquisition periods correspond to different power consumption of the terminal, the power consumption of the terminal can be adjusted according to the acquisition period. It is beneficial to save the power consumption of the terminal, so that the terminal is more power-saving.
  • the configuration information may be a mapping relationship between the moving distance of the terminal and the corresponding acquisition period.
  • the moving distances in different ranges may correspond to different acquisition periods.
  • the corresponding ratios between different acquisition periods may be the same.
  • the terminal when the moving distance determined by the terminal for two consecutive positionings is greater than the first distance threshold, the terminal may be close to the edge area of the cell. In this case, the measurement information needs to be acquired frequently, and the acquisition period can be set to be shorter than the first distance. period threshold.
  • the acquisition period may be set greater than the first period threshold and less than the second period threshold.
  • the terminal may still be located near the center of the cell at this time, and the acquisition period can be set to be greater than the second period threshold.
  • the first distance threshold is greater than the second distance threshold; the first period threshold is smaller than the second period threshold.
  • the acquisition period can be adjusted according to the moving distance of the terminal, so that the acquisition period can be adapted to the moving distance of the terminal. Since different acquisition periods correspond to different power consumption of the terminal, the power consumption of the terminal can be adjusted according to the acquisition period. It is beneficial to save the power consumption of the terminal, so that the terminal is more power-saving.
  • the moving distance may also be a relative distance between the location of the terminal and the reference point of the cell.
  • the reference point of the cell may be the center point of the cell.
  • the configuration information may be a mapping relationship between the signal strength of the reference signal received by the terminal and the corresponding acquisition period.
  • the signal strengths in different ranges can correspond to different acquisition periods.
  • the corresponding ratios between different acquisition periods may be the same.
  • the terminal when the signal strength of the reference signal received by the terminal is less than the first signal strength threshold, the terminal may be close to the edge area of the cell. In this case, measurement information needs to be acquired frequently, and the acquisition period can be set to be shorter than the first period threshold.
  • the acquisition period may be set greater than the first period threshold and less than the second period threshold.
  • the terminal When the signal strength of the reference signal received by the terminal is greater than the second signal strength threshold, the terminal may still be located near the center of the cell at this time, and the acquisition period can be set to be greater than the second period threshold.
  • the first signal strength threshold is less than the second strength threshold; the first period threshold is less than the second period threshold.
  • the acquisition period can be adjusted according to the signal strength of the reference signal received by the terminal, so that the acquisition period can be adapted to the signal strength of the reference signal received by the terminal. Since different acquisition periods correspond to different power consumption of the terminal, the power consumption of the terminal can follow Adjusting the acquisition period is beneficial to save the power consumption of the terminal, so that the terminal is more power-saving.
  • the terminal acquires the measurement information according to the currently determined acquisition cycle.
  • the terminal after receiving the configuration information for the terminal to obtain the measurement information, the terminal can determine the acquisition period for acquiring the measurement information according to the mobile information and the configuration information. Since the acquisition period is related to the mobile information, the acquisition period is determined by the terminal If the movement situation is determined, compared with the method of adopting a fixed acquisition period, the acquisition period can be adapted to the movement situation of the terminal. Since different acquisition periods correspond to different power consumption of the terminal, this is beneficial to reduce the power consumption of the terminal.
  • the acquisition cycle includes:
  • the terminal may perform cell reselection and selection based on the geographic location information.
  • the terminal may perform data transmission based on the channel measurement result, so as to improve the transmission quality of the data.
  • the configuration information includes:
  • the first cycle configuration including: obtaining the initial value of the cycle;
  • the first cycle scaling configuration includes: a reference distance and a scaling value corresponding to the initial scaling value of the reference distance.
  • the terminal may acquire the measurement information based on the initial value of the acquisition period configured by the configuration information.
  • the adjustment of the acquisition period may be the acquisition period obtained by scaling the initial value according to the set scaling value. For example, if the initial value of the acquisition period is 1.5 and the scaling value is 1/3, the scaled acquisition period is 0.5.
  • the reference distance may be a relative distance between the position of the terminal when the measurement information is currently acquired and the position of the terminal when the terminal acquired the measurement information last time.
  • different reference distances may correspond to different scaling values of the scaling initial value.
  • the terminal can obtain the scaling value of the initial scaling value corresponding to the reference distance according to the first period scaling configuration, and obtain the obtaining period.
  • the first cycle scaling is configured as the reference distance of 10m
  • the scaling value is 1/2
  • the initial value is 1s
  • the corresponding scaling value is 1/2
  • the acquisition period is the initial value of 1 multiplied by the scaling value of 1/2, that is, the acquisition period is equal to 0.5.
  • the scaling value is less than the scaling value threshold.
  • the relationship between the reference distance and the corresponding scaling value can be represented by a linear function.
  • the scaling factor may be k, that is, the scaling value is equal to k multiplied by the reference distance, where 0 ⁇ k ⁇ 1; After the actual distance is measured, the scaling value corresponding to the actual measured distance can be determined based on the proportional relationship between the reference distance and the corresponding scaling value.
  • the relationship between the reference distance and the corresponding scaling value may not be linear.
  • the relationship between the reference distance and the corresponding scaling value can be represented by a nonlinear function.
  • the scaling value when the reference distance is A, the scaling value is a; when the reference distance is B, the scaling value is b; where A>B; a ⁇ b. If the measured distance is C, and A>C>B, the scaling value c corresponding to the measured distance C can be any value greater than a and less than b. For example, c may be (a+b)/2. It should be noted that the correspondence between A and a, and the correspondence between B and b may be pre-stored in the terminal. The correspondence between C and c can be obtained based on the determination rule in this embodiment. In this way, after obtaining any measured distance, the scaling value corresponding to the measured distance can be determined based on the correspondence between the reference distance and the corresponding scaling value.
  • this embodiment provides a method for a terminal to acquire measurement information, wherein the movement information includes the measured distance, and the method includes:
  • Step 51 Determine the measured distance according to the magnitude relationship between the acquisition period of the previous acquisition of the measurement information and the initial value
  • Step 52 Determine an acquisition period corresponding to the measured distance according to the measured distance and the first period scaling configuration.
  • the terminal determines the next acquisition period of the terminal according to the movement distance in the acquisition period of the previous acquisition of measurement information.
  • the movement distance corresponding to the acquisition period of the previous acquisition of measurement information may be normalized to The moving distance corresponding to the initial value is used as the actual measured distance.
  • the initial value is 1s
  • the acquisition period of the previous acquisition of the measurement information is 0.5
  • the terminal moving distance in the acquisition period of the previous acquisition of the measurement information is 10m
  • the movement distance corresponding to the acquisition period of the previous acquisition of the measurement information is normalized.
  • the measured distance is equal to 20m. If the scaling value corresponding to the reference distance of 20m in the first period scaling configuration is 1/2, the acquisition period corresponding to the measured distance is 0.5s.
  • the normalization process in the above technical solution does not need to be performed.
  • the moving distance corresponding to the acquisition cycle of the previous acquisition of the measurement information may be determined as the measured distance.
  • this embodiment provides a method for a terminal to acquire measurement information, wherein, in step 51, according to the magnitude relationship between the acquisition period of the previous acquisition of measurement information and the initial value, the measured distance is determined, including:
  • Step 61 In response to the acquisition cycle of the previous acquisition of the measurement information being the same as the initial value, determine that the measured distance is the moving distance; wherein, the moving distance is the moving distance of the current position of the terminal relative to the position of the terminal when the measurement information was acquired last time. , or the moving distance of the current location of the terminal relative to the location of the reference point in the cell where the terminal is located;
  • the measured distance is the distance obtained by scaling the moving distance based on the distance scaling parameter; wherein, the distance scaling parameter is the acquisition period and the initial value when the terminal previously acquired the measurement information. ratio of values.
  • the acquisition period when the measurement information was acquired last time may be the acquisition period for the terminal to acquire the measurement information once before acquiring the geographic location information this time.
  • the acquisition cycle of the current acquisition of the measurement information is the same as the initial value, so the movement distance does not need to be normalized.
  • the terminal acquires the geographic location information of the terminal using the determined acquisition cycle, so that the moving distance of the current location of the terminal relative to the location of the terminal when the measurement information was acquired last time can be determined.
  • the moving distance may be a straight-line distance between the current position of the terminal relative to the position of the terminal when the measurement information was acquired last time.
  • the moving distance may be a straight-line distance between the current location of the terminal relative to the location of the reference point in the cell where the terminal is located.
  • the movement distance needs to be normalized.
  • the moving distance may be normalized by using the distance scaling parameter to obtain the measured distance.
  • the initial value is 1s
  • the acquisition period of the previous acquisition of measurement information is 0.5
  • the terminal moving distance in the acquisition period of the previous acquisition of measurement information is 10m
  • the distance scaling parameter is 1/2
  • the previous acquisition of measurement information The moving distance corresponding to the information acquisition period is normalized to the moving distance corresponding to the initial value, and the measured distance is equal to 20m. If the scaling value corresponding to the reference distance of 20m in the first period scaling configuration is 1/2, the acquisition period corresponding to the measured distance is 0.5s.
  • the scaling factor when the reference distance is greater than the distance threshold, the scaling factor is less than the coefficient threshold; when the reference distance is less than the distance threshold, the scaling factor is greater than the coefficient threshold. In this way, the scaling factor can be adapted to the reference distance, so that the scaling factor is more adapted to the movement of the terminal.
  • the configuration information includes:
  • the first cycle configuration including: obtaining the initial value of the cycle;
  • the second period scaling configuration includes: a speed level and a scaling value of the scaling initial value corresponding to the speed level.
  • the terminal may acquire the measurement information based on the initial value of the acquisition period configured by the configuration information.
  • the adjustment of the acquisition period may be the acquisition period obtained by scaling the initial value according to the set scaling value. For example, if the initial value of the acquisition period is 1.5 and the scaling value is 1/3, the scaled acquisition period is 0.5.
  • the speed classes may be speed classes corresponding to different moving speeds.
  • the speed level corresponding to the terminal when the moving speed of the terminal is less than the first speed threshold, the speed level corresponding to the terminal is a low speed level; when the moving speed of the terminal is less than the second speed threshold and greater than the first speed threshold, the speed level corresponding to the terminal is medium speed level; when the moving speed of the terminal is greater than the second threshold, the speed level corresponding to the terminal is the high speed level.
  • the first speed threshold is smaller than the second speed threshold.
  • the moving speed of the terminal may be the average speed of the terminal in the previous period in which the geographic location information is obtained this time.
  • different speed levels may correspond to different scaling values of scaling initial values.
  • the terminal can obtain the scaling value of the initial scaling value corresponding to the speed grade according to the second period scaling configuration, and obtain the obtaining period.
  • the second period scaling configuration is such that when the speed level is a high speed level, the scaling value is 1/2; the initial value is 1; then when the speed level obtained by the terminal is a high speed level, the obtained acquisition period is 0.5.
  • this embodiment provides a method for a terminal to acquire measurement information, wherein the movement information includes the movement speed of the terminal; the method includes:
  • Step 71 Determine an acquisition period corresponding to the movement speed of the terminal according to the movement level corresponding to the movement speed of the terminal and the second period scaling configuration.
  • the speed level corresponding to the terminal when the moving speed of the terminal is less than the first speed threshold, the speed level corresponding to the terminal is the first level; when the moving speed of the terminal is less than the second speed threshold and greater than the first speed threshold, the speed level corresponding to the terminal is The second level; when the moving speed of the terminal is greater than the second threshold, the speed level corresponding to the terminal is the third level.
  • the first speed threshold is smaller than the second speed threshold.
  • the moving speed of the terminal may be the average speed of the terminal in the previous period in which the geographic location information is obtained this time.
  • different speed levels may correspond to different scaling values for scaling initial values.
  • the terminal can obtain the scaling value of the initial scaling value corresponding to the speed grade according to the second period scaling configuration, and obtain the obtaining period.
  • the second cycle scaling configuration is such that when the speed level is the first level, the scaling value is 1/3; the initial value is 1.5; then when the speed level obtained by the terminal is the first level, the corresponding scaling value is 1/3, The obtained acquisition period is 0.5.
  • this embodiment provides a method for a terminal to acquire measurement information, wherein the method includes:
  • Step 81 Determine the movement speed of the terminal according to the movement distance and the acquisition period corresponding to the previous acquisition of the measurement information; wherein, the movement distance is the movement distance of the current position of the terminal relative to the position of the terminal when the measurement information was acquired last time .
  • the terminal acquires the geographic location information of the terminal using the determined acquisition cycle, so that the moving distance of the current location of the terminal relative to the location of the terminal when the measurement information was acquired last time can be determined.
  • the moving distance may be a straight-line distance between the current position of the terminal and the position when the measurement information was acquired last time.
  • the average moving speed of the terminal can be determined by dividing the linear distance by the acquisition period corresponding to the previous acquisition of the measurement information. According to the movement level corresponding to the average movement speed and the second period scaling configuration, the acquisition period corresponding to the average movement speed of the terminal can be determined.
  • this embodiment provides a method for a terminal to acquire measurement information, wherein the configuration information further includes a moving speed configuration; the method includes:
  • Step 91 Determine the movement level corresponding to the movement speed of the terminal according to the movement speed and the movement speed configuration; wherein the movement speed configuration includes the movement speed and the speed level corresponding to the movement speed.
  • different movement speeds correspond to different speed levels.
  • the speed level corresponding to the terminal when the moving speed of the terminal is less than the first speed threshold, the speed level corresponding to the terminal is the first level; when the moving speed of the terminal is less than the second speed threshold and greater than the first speed threshold, the speed level corresponding to the terminal is The second level; when the moving speed of the terminal is greater than the second threshold, the speed level corresponding to the terminal is the third level.
  • the first speed threshold is smaller than the second speed threshold.
  • the moving distance may be a straight-line distance between the current position of the terminal and the position when the measurement information was acquired last time.
  • the average moving speed of the terminal can be determined by dividing the linear distance by the acquisition period corresponding to the previous acquisition of the measurement information. According to the movement level and movement speed configuration corresponding to the average movement speed, the acquisition period corresponding to the average movement speed of the terminal can be determined.
  • the configuration information includes:
  • the first cycle configuration including: obtaining the initial value of the cycle;
  • the third period scaling configuration includes: the signal strength and the scaling value of the scaling initial value corresponding to the signal strength.
  • the terminal may acquire the measurement information based on the initial value of the acquisition period configured by the configuration information.
  • the signal strength may be the signal strength of the reference signal received by the terminal.
  • the signal strength when the terminal is in the center area of the cell, the signal strength is greater than the signal strength threshold; when the terminal is in the edge area of the cell, the signal strength is less than the signal strength threshold.
  • the adjustment of the acquisition period may be the acquisition period obtained by scaling the initial value according to the set scaling value. For example, if the initial value of the acquisition period is 1.5 and the scaling value is 1/3, the scaled acquisition period is 0.5.
  • different signal strengths correspond to different scaling values of the scaling initial value.
  • the signal strength may be Reference Signal Received Power (RSRP) or Reference Signal Received Quality (RSRQ).
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • the signal strength may be an average value of reference signals collected during a sampling period.
  • the terminal may determine the scaling value corresponding to the signal strength according to the relationship between the signal strength in the third period scaling configuration and the scaling value of the scaling initial value corresponding to the signal strength , and get the acquisition period based on the scaling value. For example, when the signal strength of the third period scaling configuration is A value, the corresponding scaling value is 1/2; the initial value is 1; then when the signal strength of the reference signal received by the terminal is A, the obtained acquisition period is 0.5.
  • this embodiment provides a method for a terminal to acquire measurement information, wherein the movement information includes the signal strength of a reference signal received when the terminal moves; the method includes:
  • Step 101 Determine an acquisition period corresponding to the received signal strength according to the received signal strength of the reference signal and the third period scaling configuration.
  • the scaling value corresponding to the terminal when the signal strength of the terminal is less than the first signal strength threshold, the scaling value corresponding to the terminal is the first value; when the signal strength of the terminal is less than the second signal strength threshold and greater than the first signal strength threshold, the corresponding scaling value of the terminal is The scaling value is the second value; when the signal strength of the terminal is greater than the second value, the scaling value corresponding to the terminal is the third value.
  • the first signal strength threshold is smaller than the second signal strength threshold.
  • the first value is greater than the second value, and the second value is greater than the third value.
  • the signal strength may be Reference Signal Received Power (RSRP) or Reference Signal Received Quality (RSRQ).
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • the signal strength may be an average value of reference signals collected during a sampling period.
  • Configuration information including:
  • Radio Resource Control (RRC) messages For brevation information sent by the base station through Radio Resource Control (RRC) messages.
  • RRC Radio Resource Control
  • the configuration information may be one or more of the configuration information in the present disclosure.
  • radio resource control (RRC) messages are used to send configuration information to improve the compatibility of radio resource control (RRC) messages.
  • this embodiment provides a method for a terminal to acquire measurement information, wherein the method further includes:
  • Step 111 After receiving the configuration information sent by the base station through a radio resource control (RRC) message, ignore the configuration information sent by the base station through a broadcast message.
  • RRC radio resource control
  • the terminal only uses the configuration information sent by the base station through the radio resource control (RRC) message to determine the acquisition period, which reduces the situation that the terminal needs to receive the configuration information frequently.
  • RRC radio resource control
  • Example 1 The wireless communication system includes a base station and a terminal.
  • Step a1 the base station broadcasts configuration information for the terminal to obtain the measurement information to the terminal.
  • the configuration information is used to determine the acquisition period of the geographic location information according to the movement information of the terminal.
  • the configuration information at least includes: the initial value of the acquisition period, the reference distance, and the scaling value of the initial scaling value corresponding to the reference distance.
  • the initial value of the acquisition period for obtaining geographic location information is 1s
  • the scaling value of the reference distance and the initial scaling value corresponding to the reference distance when the reference distance is 10m, the scaling value is 0.5; when the reference distance is 5m, scaling The value is 1; when the reference distance is 1m, the zoom value is 1.5.
  • Step a2 the terminal receives the configuration information.
  • Step a3 Obtain the geographic location information from the application layer of the terminal according to the period of the acquisition period of 1s, and obtain the distance between the current location of the terminal and the location where the geographic location information was obtained through calculation is 11m, then determine according to the configuration information.
  • the scaling value is 0.5.
  • a scaled period of 0.5s is obtained.
  • step a4 the terminal obtains the geographic location information from the application layer of the terminal according to the obtaining period of 0.5s, and the distance between the location where the terminal is obtained through calculation and the location where the geographic location information of the terminal was obtained last time is 6m. It is determined that the ratio of the initial value to the period in which the geographic location information of the terminal is acquired last time is 2. Use 2 to zoom in by 6m to get a zoomed distance of 12m. According to the configuration information, it is determined that the scaling value corresponding to the 12m is 0.5, and then the acquisition period is determined to be 0.5s according to the initial value and the scaling value.
  • Step b1 the base station sends configuration information for the terminal to acquire measurement information to the terminal through a radio resource control (RRC) message.
  • the configuration information is used to determine the acquisition period of the geographic location information according to the movement information of the terminal.
  • the configuration information includes at least an initial value of the acquisition period, a speed level, a scaling value corresponding to the initial scaling value of the speed level, and a moving speed and a speed level corresponding to the moving speed.
  • the initial value of the acquisition period for acquiring the geographic location information is 1s.
  • Speed class and acquisition cycle corresponding to the speed class when it is a high speed class, the obtaining cycle is 0.5s; when it is a medium speed class, the obtaining cycle is 1s; when it is a low speed class, the obtaining cycle is 1.5s.
  • Movement speed and the speed grade corresponding to the movement speed when the movement speed is less than 1m/s, the corresponding speed grade is the low speed grade; when the movement speed is greater than 1m/s and less than 10m/s, the corresponding speed grade is the medium speed grade; If the speed is greater than 10m/s, the corresponding speed class is high-speed class.
  • Step b2 Obtain geographic location information from the application layer of the terminal according to a period of 1 s, and obtain the distance between the current location of the terminal and the location where the geographic location information was obtained last time through calculation to be 11 m. Determine the speed to be 11m/s. The terminal is determined to be in the high speed class.
  • step b3 the scaling value of the terminal is determined to be 0.5 according to the configuration information, and the acquisition period is determined to be 0.5s according to the initial value and the scaling value.
  • this embodiment provides a method for a terminal to acquire measurement information, wherein, when applied to a base station, the method includes:
  • Step 121 Send configuration information for the terminal to obtain measurement information
  • the configuration information is used to determine the acquisition period of the measurement information according to the movement information of the terminal.
  • the terminal may be, but is not limited to, a mobile phone, a wearable device, a vehicle-mounted terminal, a roadside unit (RSU, Road Side Unit), a smart home terminal, an industrial sensing device, and/or a medical device, etc.
  • a mobile phone a wearable device
  • vehicle-mounted terminal a roadside unit (RSU, Road Side Unit)
  • RSU Road Side Unit
  • smart home terminal an industrial sensing device, and/or a medical device, etc.
  • the base station is an interface device for the terminal to access the network.
  • the network may be a non-terrestrial network (NTN).
  • the base stations may be located on high-altitude platforms or satellites.
  • the base station may be various types of base stations, for example, a base station of a third generation mobile communication (3G) network, a base station of a fourth generation mobile communication (4G) network, a fifth generation mobile communication (5G) network base station or other evolved base station.
  • 3G third generation mobile communication
  • 4G fourth generation mobile communication
  • 5G fifth generation mobile communication
  • the cell in which the terminal is located may be a non-terrestrial network (NTN) cell.
  • NTN non-terrestrial network
  • the terminal may acquire the location information of the terminal through a global positioning system (GPS), and based on the location information, determine that the terminal is located in the edge area or the center area of a cell of a non-terrestrial network (NTN), and use the location of the terminal to correlate with the non-terrestrial network (NTN).
  • GPS global positioning system
  • NTN non-terrestrial network
  • the location relationship of the terrestrial network (NTN) cell, and the reselection or handover of the cell is performed.
  • the terminal when the terminal is located in the central area of a non-terrestrial network (NTN) cell or the distance between the terminal and the central area is within a distance threshold range, the terminal does not need to perform cell reselection or handover.
  • the location information of the terminal may be acquired by stopping or using an acquisition period greater than the period threshold to save power consumption of the terminal.
  • the measurement information acquired by the terminal is location information used for cell reselection or handover.
  • the terminal when the terminal is located in an edge area of a non-terrestrial network (NTN) cell or the distance between the location of the terminal and the edge area is within a distance threshold range, the terminal may need to perform cell reselection or handover. At this time, The terminal needs to start or use an acquisition period smaller than the period threshold to acquire the location information of the terminal, so as to realize cell reselection or handover.
  • NTN non-terrestrial network
  • the measurement information acquired by the terminal is channel measurement result information for transmitting data, and data transmission in a non-terrestrial network (NTN) is performed based on the channel measurement result.
  • NTN non-terrestrial network
  • the measurement objects included in the channel measurement result may include at least one of the following: Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ) and Received Signal Strength Indicator (RSSI, Received Signal Strength Indicator).
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • RSSI Received Signal Strength Indicator
  • the terminal when the terminal is located in the central area of a non-terrestrial network (NTN) cell or the distance between the terminal and the central area is within a distance threshold range, and the transmission quality of the data transmitted by the terminal is good, at this time, the terminal may stop Alternatively, the acquisition period greater than the period threshold is used to acquire the channel measurement result, so as to save the power consumption of the terminal.
  • NTN non-terrestrial network
  • the terminal when the terminal is located in an edge area of a non-terrestrial network (NTN) cell or the distance between the location of the terminal and the edge area is within a distance threshold range, the data transmission quality of the terminal is poor, at this time, the terminal needs to start or The acquisition period less than the period threshold is used to acquire the channel measurement results to achieve stable data transmission.
  • NTN non-terrestrial network
  • the measurement information may include location information of the terminal and/or information of channel measurement results.
  • the terminal may obtain the measurement information from the base station.
  • the terminal may obtain the measurement information from the application layer of the terminal.
  • the terminal sends a request for geographic location information to the application layer of the terminal based on the acquisition period, and acquires the geographic location information from the application layer of the terminal.
  • the terminal may acquire the measurement information periodically.
  • the acquisition period may be a period in which the terminal periodically acquires measurement information.
  • the terminal may receive configuration information sent by the base station for the terminal to acquire measurement information when a radio resource control (RRC) connection is established with the base station.
  • RRC radio resource control
  • the terminal when the terminal needs to acquire the measurement information, it may send an acquisition request of the measurement information to the base station, and after receiving the acquisition request of the terminal, the base station may send the configuration information for the terminal to acquire the measurement information to the terminal.
  • a request for obtaining measurement information is sent to the base station, and after receiving the obtaining request from the terminal, the base station sends configuration information for the terminal to obtain measurement information to the terminal.
  • the movement information may be information related to the movement of the terminal. For example, the moving speed of the terminal and the distance the terminal moves. It should be noted that the movement information may also be information associated with the movement of the terminal, for example, reference signal received power (RSRP) and reference signal received quality (RSRQ) corresponding to the reference signal sent by the base station to the terminal. In one embodiment, the reference signal received power (RSRP) is gradually decreased as the terminal moves away from the central area of the cell.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • the configuration information may be a mapping relationship between the movement information and the acquisition period. It may also be the initial value of the acquisition period configured by the base station for the terminal.
  • the configuration information may be a mapping relationship between the movement speed of the terminal and the corresponding acquisition period.
  • moving speeds in different ranges may correspond to different acquisition periods.
  • the corresponding ratios between different acquisition periods may be the same.
  • the terminal when the moving speed of the terminal is greater than the first speed threshold, the terminal is in a high-speed movement state at this time, and it is easier to move to the edge area of the cell. At this time, measurement information needs to be acquired frequently, and the acquisition period can be set less than the first cycle threshold.
  • the moving speed of the terminal is greater than the second speed threshold and less than the first speed threshold, the terminal is in a medium-speed moving state, and the acquisition period can be set to be greater than the first period threshold and less than the second period threshold.
  • the acquisition period can be set to be greater than the second period threshold.
  • the first speed threshold is greater than the second speed threshold; the first cycle threshold is smaller than the second cycle threshold.
  • the acquisition period can be adjusted according to the moving speed of the terminal, so that the acquisition period can be adapted to the moving speed of the terminal. Since different acquisition periods correspond to different power consumption of the terminal, the power consumption of the terminal can be adjusted according to the acquisition period. It is beneficial to save the power consumption of the terminal, so that the terminal is more power-saving.
  • the configuration information may be a mapping relationship between the moving distance of the terminal and the corresponding acquisition period.
  • the moving distances in different ranges may correspond to different acquisition periods.
  • the corresponding ratios between different acquisition periods may be the same.
  • the terminal when the moving distance determined by the terminal for two consecutive positionings is greater than the first distance threshold, the terminal may be close to the edge area of the cell. In this case, the measurement information needs to be acquired frequently, and the acquisition period can be set to be shorter than the first distance. period threshold.
  • the acquisition period When the moving distance determined by the terminal for two consecutive positionings is greater than the second distance threshold and less than the first distance threshold, the acquisition period may be set greater than the first period threshold and less than the second period threshold.
  • the terminal When the moving distance determined by the terminal for two consecutive positionings is less than the second distance threshold, the terminal may still be located near the center of the cell at this time, and the acquisition period can be set to be greater than the second period threshold.
  • the first distance threshold is greater than the second distance threshold; the first period threshold is smaller than the second period threshold.
  • the acquisition period can be adjusted according to the moving distance of the terminal, so that the acquisition period can be adapted to the moving distance of the terminal. Since different acquisition periods correspond to different power consumption of the terminal, the power consumption of the terminal can be adjusted according to the acquisition period. It is beneficial to save the power consumption of the terminal, so that the terminal is more power-saving.
  • the moving distance may also be a relative distance between the location of the terminal and the reference point of the cell.
  • the configuration information may be a mapping relationship between the signal strength of the reference signal received by the terminal and the corresponding acquisition period.
  • the signal strengths in different ranges may correspond to different acquisition periods.
  • the corresponding ratios between different acquisition periods may be the same.
  • the terminal when the signal strength of the reference signal received by the terminal is less than the first signal strength threshold, the terminal may be close to the edge area of the cell. In this case, measurement information needs to be acquired frequently, and the acquisition period can be set to be shorter than the first period threshold.
  • the acquisition period can be set to be greater than the first period threshold and less than the second period threshold.
  • the terminal When the signal strength of the reference signal received by the terminal is greater than the second signal strength threshold, the terminal may still be located near the center of the cell at this time, and the acquisition period can be set to be greater than the second period threshold.
  • the first signal strength threshold is less than the second strength threshold; the first period threshold is less than the second period threshold.
  • the acquisition period can be adjusted according to the signal strength of the reference signal received by the terminal, so that the acquisition period can be adapted to the signal strength of the reference signal received by the terminal. Since different acquisition periods correspond to different power consumption of the terminal, the power consumption of the terminal can follow Adjusting the acquisition period is beneficial to save the power consumption of the terminal, so that the terminal is more power-saving.
  • the terminal acquires the measurement information according to the currently determined acquisition cycle.
  • the terminal after receiving the configuration information for the terminal to obtain the measurement information, the terminal can determine the acquisition period for acquiring the measurement information according to the mobile information and the configuration information. Since the acquisition period is related to the mobile information, the acquisition period is determined by the terminal If the movement situation is determined, compared with the method of adopting a fixed acquisition period, the acquisition period can be adapted to the movement situation of the terminal. Since different acquisition periods correspond to different power consumption of the terminal, this is beneficial to reduce the power consumption of the terminal.
  • the acquisition cycle includes:
  • the terminal may perform cell reselection and selection based on the geographic location information.
  • the terminal may perform data transmission based on the channel measurement result, so as to improve the transmission quality of the data.
  • the configuration information includes:
  • the first cycle configuration including: obtaining the initial value of the cycle;
  • the first cycle scaling configuration includes: a reference distance and a scaling value corresponding to the initial scaling value of the reference distance.
  • the terminal may acquire the measurement information based on the initial value of the acquisition period configured by the configuration information.
  • the adjustment of the acquisition period may be the acquisition period obtained by scaling the initial value according to the set scaling value. For example, if the initial value of the acquisition period is 1.5 and the scaling value is 1/3, the scaled acquisition period is 0.5.
  • the reference distance may be a relative distance between the position of the terminal when the measurement information is currently acquired and the position of the terminal when the terminal acquired the measurement information last time.
  • different reference distances may correspond to different scaling values of the scaling initial value.
  • the terminal can obtain the scaling value of the initial scaling value corresponding to the reference distance according to the first period scaling configuration, and obtain the obtaining period. For example, when the first period scaling configuration is set to the reference distance of 10m, the scaling value is 1/2; the initial value is 1s; then when the reference distance obtained by the terminal is 10, the corresponding scaling value is 1/2, and the obtained acquisition period is 0.5.
  • the configuration information includes:
  • the first cycle configuration including: obtaining the initial value of the cycle;
  • the second period scaling configuration includes: a speed level and a scaling value of the scaling initial value corresponding to the speed level.
  • the terminal may acquire the measurement information based on the initial value of the acquisition period configured by the configuration information.
  • the adjustment of the acquisition period may be the acquisition period obtained by scaling the initial value according to the set scaling value. For example, if the initial value of the acquisition period is 1.5 and the scaling value is 1/3, the scaled acquisition period is 0.5.
  • the speed classes may be speed classes corresponding to different moving speeds.
  • the speed level corresponding to the terminal when the moving speed of the terminal is less than the first speed threshold, the speed level corresponding to the terminal is a low speed level; when the moving speed of the terminal is less than the second speed threshold and greater than the first speed threshold, the speed level corresponding to the terminal is medium speed level; when the moving speed of the terminal is greater than the second threshold, the speed level corresponding to the terminal is the high speed level.
  • the first speed threshold is smaller than the second speed threshold.
  • the moving speed of the terminal may be the average speed of the terminal in the previous period in which the geographic location information is obtained this time.
  • different speed levels may correspond to different scaling values of scaling initial values.
  • the terminal can obtain the scaling value of the initial scaling value corresponding to the speed grade according to the second period scaling configuration, and obtain the obtaining period.
  • the second period scaling configuration is such that when the speed level is a high speed level, the scaling value is 1/2; the initial value is 1; then when the speed level obtained by the terminal is a high speed level, the obtained acquisition period is 0.5.
  • the configuration information includes:
  • the first cycle configuration including: obtaining the initial value of the cycle;
  • the third period scaling configuration includes: the signal strength and the scaling value of the scaling initial value corresponding to the signal strength.
  • the terminal may acquire the measurement information based on the initial value of the acquisition period configured by the configuration information.
  • the signal strength may be the signal strength of the reference signal received by the terminal.
  • the signal strength when the terminal is in the center area of the cell, the signal strength is greater than the signal strength threshold; when the terminal is in the edge area of the cell, the signal strength is less than the signal strength threshold.
  • the adjustment of the acquisition period may be the acquisition period obtained by scaling the initial value according to the set scaling value. For example, if the initial value of the acquisition period is 1.5 and the scaling value is 1/3, the scaled acquisition period is 0.5.
  • different signal strengths correspond to different scaling values of the scaling initial value.
  • the signal strength may be Reference Signal Received Power (RSRP) or Reference Signal Received Quality (RSRQ).
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • the signal strength may be an average value of reference signals collected during a sampling period.
  • the terminal may determine the scaling value corresponding to the signal strength according to the relationship between the signal strength in the third period scaling configuration and the scaling value of the scaling initial value corresponding to the signal strength , and get the acquisition period based on the scaling value. For example, when the signal strength of the third period scaling configuration is A value, the corresponding scaling value is 1/2; the initial value is 1; then when the signal strength of the reference signal received by the terminal is A, the obtained acquisition period is 0.5.
  • this embodiment provides an apparatus for a terminal to acquire measurement information, wherein, when applied to a terminal, the apparatus includes a receiving module 131, wherein,
  • the receiving module 131 is configured to receive configuration information for the terminal to obtain the measurement information
  • the configuration information is used to determine the acquisition period of the measurement information according to the movement information of the terminal.
  • this embodiment provides an apparatus for a terminal to acquire measurement information, wherein, when applied to a base station, the apparatus includes a sending module 141 , wherein,
  • the sending module 141 is configured to send configuration information for the terminal to obtain the measurement information
  • the configuration information is used to determine the acquisition period of the measurement information according to the movement information of the terminal.
  • Embodiments of the present disclosure provide a communication device, the communication device includes:
  • memory for storing processor-executable instructions
  • the processor is configured to, when executing the executable instructions, implement the method applied to any embodiment of the present disclosure.
  • the processor may include various types of storage media, which are non-transitory computer storage media that can continue to memorize and store information on the communication device after the power is turned off.
  • the processor can be connected to the memory through a bus or the like, and is used to read the executable program stored on the memory.
  • An embodiment of the present disclosure further provides a computer storage medium, wherein the computer storage medium stores a computer-executable program, and when the executable program is executed by a processor, the method of any embodiment of the present disclosure is implemented.
  • an embodiment of the present disclosure shows a structure of a base station.
  • the base station 900 may be provided as a network-side device.
  • base station 900 includes processing component 922, which further includes one or more processors, and a memory resource represented by memory 932 for storing instructions executable by processing component 922, such as application programs.
  • An application program stored in memory 932 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to perform any of the aforementioned methods applied to the base station.
  • Base station 900 may also include a power supply assembly 926 configured to perform power management of base station 900, a wired or wireless network interface 950 configured to connect base station 900 to a network, and an input output (I/O) interface 958.
  • Base station 900 may operate based on an operating system stored in memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)

Abstract

本公开实施例提供了一种终端获取测量信息的方法,其中,应用于终端中,该方法,包括:接收供终端获取测量信息的配置信息;其中,配置信息,用于根据终端的移动信息确定测量信息的获取周期。

Description

终端获取测量信息的方法、装置、通信设备及存储介质 技术领域
本公开涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种终端获取测量信息的方法、装置、通信设备及存储介质。
背景技术
在非地面网络(NTN,Non-Territorial Network)中,基站天线可以设置在高空平台或者卫星上,位于距离地面数十公里至上万公里的高空或者太空中。每个非地面网络(NTN)小区可以覆盖较大的范围。根据发射天线的高度,覆盖直径可以达数十公里到上百公里。非地面网络(NTN)主要用于覆盖没有地面网络的地区,例如海洋,沙漠等。
在地面网络中,终端可以基于信号质量来确定终端是在小区中心还是小区边缘。在非地面网络(NTN)中,小区边缘和小区中心的信号质量变化很小,基于信号质量难以确定终端是处于小区的边缘还是小区的中心。因此,在移动性管理过程中,需要考虑终端的地理位置。终端可以通过全球定位系统(GPS,Global Positioning System)获取自身的地理位置。但是,频繁地获取地理位置信息,会导致终端的功耗高。
发明内容
本公开实施例公开了一种终端获取测量信息的方法、装置、通信设备及存储介质。
根据本公开实施例的第一方面,提供一种终端获取测量信息的方法,其中,应用于终端中,所述方法,包括:
接收供所述终端获取测量信息的配置信息;
其中,所述配置信息,用于根据所述终端的移动信息确定所述测量信息的获取周期。
在一个实施例中,所述获取周期包括:
所述终端的地理位置信息的获取周期;
和/或,
所述终端对信道测量结果的获取周期。
在一个实施例中,所述配置信息,包括:
第一周期配置,包括:所述获取周期的初始值;
第一周期缩放配置,包括:参考距离及与所述参考距离对应的缩放所述初始值的缩放值。
在一个实施例中,所述移动信息包括实测距离;所述方法,还包括:
根据前一次获取所述测量信息的获取周期与所述初始值之间的大小关系,确定所述实测距离;
根据所述实测距离与所述第一周期缩放配置,确定与所述实测距离对应的获取周期。
在一个实施例中,所述根据前一次获取所述测量信息的获取周期与所述初始值之间的大小关系,确定所述实测距离,包括:
响应于前一次获取所述测量信息的获取周期与所述初始值相同,确定所述实测距离为移动距离;其中,所述移动距离,为所述终端当前所在位置相对于前一次获取所述测量信息时所述终端所处位置的移动距离,或者为所述终端在当前所处位置相对于终端所在小区中参考点的位置的移动距离;
或者,
响应于前一次获取所述测量信息的获取周期与所述初始值不同,确定所述实测距离为基于距离缩放参数缩放所述移动距离所获得的距离;其中,所述距离缩放参数,为所述终端前一次获取所述测量信息时的获取周期与 所述初始值的比值。
在一个实施例中,所述配置信息,包括:
第一周期配置,包括:所述获取周期的初始值;
第二周期缩放配置,包括:速度等级及与所述速度等级对应的缩放所述初始值的缩放值。
在一个实施例中,所述移动信息包括所述终端的移动速度;所述方法,还包括:
根据所述终端的移动速度对应的移动等级和所述第二周期缩放配置,确定与所述终端的移动速度对应的所述获取周期。
在一个实施例中,所述方法,还包括:
根据移动距离与前一次获取所述测量信息时对应的获取周期,确定所述终端的移动速度;其中,所述移动距离,为所述终端当前所处位置相对于前一次获取所述测量信息时所述终端所处位置的移动距离。
在一个实施例中,所述配置信息还包括移动速度配置;所述方法,还包括:
根据所述移动速度与所述移动速度配置,确定与所述终端的移动速度对应的移动等级;其中,所述移动速度配置,包括:移动速度及与所述移动速度对应的所述速度等级。
在一个实施例中,所述配置信息,包括:
第一周期配置,包括:所述获取周期的初始值;
第三周期缩放配置,包括:信号强度及与所述信号强度对应的缩放所述初始值的缩放值。
在一个实施例中,所述移动信息包括终端移动时接收到的参考信号的信号强度;所述方法,还包括:
根据所述接收到的参考信号的信号强度以及所述第三周期缩放配置,确定与所述接收到的信号强度对应的所述获取周期。
在一个实施例中,所述配置信息,包括:
基站通过广播消息发送的配置信息;
和/或,
基站通过无线资源控制(RRC)消息发送的配置信息。
在一个实施例中,所述方法,还包括:
在接收到所述基站通过无线资源控制(RRC)消息发送的配置信息后,忽略所述基站通过所述广播消息发送的配置信息。
根据本公开实施例的第二方面,提供一种终端获取测量信息的方法,其中,应用于基站中,所述方法,包括:
发送供终端获取测量信息的配置信息;
其中,所述配置信息,用于根据所述终端的移动信息确定所述测量信息的获取周期。
在一个实施例中,所述获取周期包括:
所述终端的地理位置信息的获取周期;
和/或,
所述终端对信道测量结果的获取周期。
在一个实施例中,所述配置信息,包括:
第一周期配置,包括:所述获取周期的初始值;
第一周期缩放配置,包括:参考距离及与所述参考距离对应的缩放所述初始值的缩放值。
在一个实施例中,所述配置信息,包括:
第一周期配置,包括:所述获取周期的初始值;
第二周期缩放配置,包括:速度等级及与所述速度等级对应的缩放所述初始值的缩放值。
在一个实施例中,所述配置信息,包括:
第一周期配置,包括:所述获取周期的初始值;
第三周期缩放配置,包括:信号强度及与所述信号强度对应的缩放所述初始值的缩放值。
在一个实施例中,所述配置信息,包括:
广播所述配置信息;
和/或,
发送携带所述配置信息的无线资源控制(RRC)消息。
根据本公开实施例的第三方面,提供一种终端获取测量信息的装置,其中,应用于终端中,所述装置包括接收模块,其中,
所述接收模块,被配置为接收供所述终端获取测量信息的配置信息;
其中,所述配置信息,用于根据所述终端的移动信息确定所述测量信息的获取周期。
根据本公开实施例的第四方面,提供一种终端获取测量信息的装置,其中,应用于基站中,所述装置包括发送模块,其中,
所述发送模块,被配置为发送供终端获取测量信息的配置信息;
其中,所述配置信息,用于根据所述终端的移动信息确定所述测量信息的获取周期。
根据本公开实施例的第五方面,提供一种通信设备,所述通信设备,包括:
处理器;
用于存储所述处理器可执行指令的存储器;
其中,所述处理器被配置为:用于运行所述可执行指令时,实现本公开任意实施例所述的方法。
根据本公开实施例的第六方面,提供一种计算机存储介质,所述计算机存储介质存储有计算机可执行程序,所述可执行程序被处理器执行时实现本公开任意实施例所述的方法。
本公开实施例中,接收供所述终端获取测量信息的配置信息;其中, 所述配置信息,用于根据所述终端的移动信息确定所述测量信息的获取周期。如此,所述终端在接收到所述终端获取测量信息的配置信息后,就可以根据所述移动信息和所述配置信息确定获取所述测量信息的所述获取周期,由于所述获取周期与所述移动信息相关,获取周期是根据终端的移动情况确定的,相较于采用固定的获取周期获取测量信息的方式,可以使得所述获取周期与所述终端的移动情况相适应。由于不同的获取周期对应不同的终端的消耗功率,这有利于降低所述终端的功耗。
附图说明
图1是一种无线通信系统的结构示意图。
图2是根据一示例性实施例示出的一种无线通信场景的示意图。
图3是根据一示例性实施例示出的一种无线通信场景的示意图。
图4是根据一示例性实施例示出的一种终端获取测量信息的方法的流程示意图。
图5是根据一示例性实施例示出的一种终端获取测量信息的方法的流程示意图。
图6是根据一示例性实施例示出的一种终端获取测量信息的方法的流程示意图。
图7是根据一示例性实施例示出的一种终端获取测量信息的方法的流程示意图。
图8是根据一示例性实施例示出的一种终端获取测量信息的方法的流程示意图。
图9是根据一示例性实施例示出的一种终端获取测量信息的方法的流程示意图。
图10是根据一示例性实施例示出的一种终端获取测量信息的方法的流 程示意图。
图11是根据一示例性实施例示出的一种终端获取测量信息的方法的流程示意图。
图12是根据一示例性实施例示出的一种终端获取测量信息的方法的流程示意图。
图13是根据一示例性实施例示出的一种终端获取测量信息的装置的示意图。
图14是根据一示例性实施例示出的一种终端获取测量信息的装置的示意图。
图15是根据一示例性实施例示出的一种基站的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。 取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个用户设备110以及若干个基站120。
其中,用户设备110可以是指向用户提供语音和/或数据连通性的设备。用户设备110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备110可以是物联网用户设备,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网用户设备的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程用户设备(remote terminal)、接入用户设备(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户设备(user equipment)。或者,用户设备110也可以是无人飞行器的设备。或者,用户设备110也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线用户设备。或者,用户设备110也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站120可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口系统或5G NR系统。或者,该 无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。
其中,基站120可以是4G系统中采用的演进型基站(eNB)。或者,基站120也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站120的具体实现方式不加以限定。
基站120和用户设备110之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,用户设备110之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
这里,上述用户设备可认为是下面实施例的终端设备。
在一些实施例中,上述无线通信系统还可以包含网络管理设备130。
若干个基站120分别与网络管理设备130相连。其中,网络管理设备130可以是无线通信系统中的核心网设备,比如,该网络管理设备130可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是 其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备130的实现形态,本公开实施例不做限定。
为了更好地理解本公开任一个实施例所描述的技术方案,首先,通过一个实施例对一种无线通信的场景做说明。
在第五代移动通信技术(5G)系统中,引入了非陆地网络(NTN)。请参见图2和图3,为不同场景下的终端的接收信号强度的远近效应示意图。其中,图2为陆地网络(TN,Terrestrial Network)无线通信场景下终端的接收信号强度的示意图。该陆地网络(TN)包括陆地网络基站和终端。图3为非陆地网络(NTN)无线通信场景下终端的接收信号强度的示意图。该非陆地网络(NTN)包括非陆地网络基站和终端。
在陆地网络(TN)系统中,终端可以根据小区中心与小区边缘的参考信号接收功率(RSRP,Reference Signal Receiving Power)或者参考信号接收质量(RSRQ,Reference Signal Receiving Quality)的明显差异来确定终端是否处于小区边缘。但在非陆地网络(NTN)中,小区半径大,终端在小区中心或者边缘,终端的参考信号接收功率(RSRP)和参考信号接收质量(RSRQ)差异较小,远近效应并不明显。为了支持移动性管理,终端需要周期性的通过全球定位系统(GPS)来获取地理位置,然而通过全球定位系统(GPS)来获取地理位置会消耗终端的电量。当终端处于小区中心时,终端不会移动到其他小区,没必要频繁获取地理位置信息,增加额外的电量消耗。
如图4所示,本实施例中提供一种终端获取测量信息的方法,其中,应用于终端中,该方法,包括:
步骤41、接收供终端获取测量信息的配置信息;
其中,配置信息,用于根据终端的移动信息确定测量信息的获取周期。
在一些实施例中,该终端可以是但不限于是手机、可穿戴设备、车载终端、路侧单元(RSU,Road Side Unit)、智能家居终端、工业用传感设备和/或医疗设备等。
在一个实施例中,可以是基站发送配置信息。这里,基站为终端接入网络的接口设备。这里,网络可以是非陆地网络(NTN)。
在一些实施例中,基站可以设置在高空平台或者卫星上。
在一些实施例中,基站可以为各种类型的基站,例如,第三代移动通信(3G)网络的基站、第四代移动通信(4G)网络的基站、第五代移动通信(5G)网络的基站或其它演进型基站。
在一些实施例中,终端所处的小区可以是非陆地网络(NTN)的小区。
在一个实施例中,终端获取的测量信息为用于小区重选或切换的位置信息。
在一个实施例中,终端可以通过全球定位系统(GPS)获取终端的位置信息,并基于该位置信息确定终端位于非陆地网络(NTN)的小区的边缘区域或者中心区域,利用终端的位置在非陆地网络(NTN)小区内的位置关系,进行小区的重选或切换。
小区的边缘区域位于小区的中心区域的外围,通常,小区的边缘区域,会与邻小区相邻。
在一些实施例中,当终端位于非陆地网络(NTN)小区的中心区域或者终端所处位置与该中心区域的距离在距离阈值范围内,终端无需进行小区的重选或切换,此时,终端可以停止或者采用大于周期阈值的获取周期来获取终端的位置信息,以节省终端的功耗。
在一些实施例中,当终端位于非陆地网络(NTN)小区的边缘区域或者终端所处位置与该边缘区域的距离在距离阈值范围内,终端可能需要进 行小区重选或小区切换,此时,终端需要启动或者采用小于周期阈值的获取周期来获取终端的位置信息,以实现小区的重选或切换。
在一个实施例中,终端获取的测量信息为:用于传输数据的信道测量结果信息,并基于该信道测量结果进行非陆地网络(NTN)中的数据传输。
在一个实施例中,信道测量结果中包含的测量对象可以包括一下至少之一:参考信号接收功率(RSRP)、参考信号接收质量(RSRQ)和接收信号强度指示(RSSI,Received Signal Strength Indicator)。
在一些实施例中,当终端位于非陆地网络(NTN)小区的中心区域或者终端所处位置与该中心区域的距离在距离阈值范围内,终端传输数据的传输质量好,此时,终端可以停止或者采用大于周期阈值的获取周期来获取信道测量结果,以节省终端的功耗。
在一些实施例中,当终端位于非陆地网络(NTN)小区的边缘区域或者终端所处位置与该边缘区域的距离在距离阈值范围内,终端的数据传输质量差,此时,终端需要启动或者采用小于周期阈值的获取周期来获取信道测量结果,以实现稳定的数据传输。
在一些实施例中,测量信息可以包括终端的位置信息和/或信道测量结果的信息。
在一个实施例中,终端可以是向基站获取测量信息。
在另一个实施例中,终端可以是向终端的应用层获取测量信息。
在一个实施例中,当获取周期确定后,终端基于该获取周期向终端的应用层发送地理位置信息请求,从终端的应用层获取地理位置信息。
在一个实施例中,终端可以是周期性地获取测量信息。这里,获取周期可以是终端周期性地获取测量信息的周期。
在一个实施例中,可以是终端的应用层获取了终端的测量信息,终端的应用层以下的协议层从该终端的应用层周期性地获取测量信息。
在一个实施例中,终端可以是在与基站建立无线资源控制(RRC)连 接时,接收基站发送的终端获取测量信息的配置信息。
在一个实施例中,可以是终端在需要获取测量信息时,向基站发送测量信息的获取请求,基站在接收到终端的获取请求后,向终端发送终端获取测量信息的配置信息。
在一个实施例中,响应于终端启动,向基站发送测量信息的获取请求,基站在接收到终端的获取请求后,向终端发送终端获取测量信息的配置信息。
在一个实施例中,移动信息可以是与终端的移动的信息。例如,终端的移动速度和终端移动的距离。需要说明的是,移动信息也可以是与终端的移动相关联的信息,例如,基站给终端发送的参考信号对应的参考信号接收功率(RSRP)和参考信号接收质量(RSRQ)等。
在一个实施例中,终端远离小区的中心区域移动时,参考信号接收功率(RSRP)逐渐减小。
在一个实施例中,配置信息可以是移动信息与获取周期之间的映射关系。也可以是基站给终端配置的获取周期的初始值。
在一个实施例中,配置信息可以是终端的移动速度和对应的获取周期之间的映射关系。这里,不同范围内的移动速度可以对应不同的获取周期。这里,不同的获取周期之间对应的比值可以相同。
在一个实施例中,当终端移动的速度大于第一速度阈值时,终端此时处于高速移动状态,更容易移动至小区的边缘区域,此时需要高频次地获取测量信息,可以设置获取周期小于第一周期阈值。
当终端移动的速度大于第二速度阈值且小于第一速度阈值时,终端此时处于中速移动状态,可以设置获取周期大于第一周期阈值且小于第二周期阈值。
当终端移动的速度小于第二速度阈值时,终端此时处于低速移动状态,可以设置获取周期大于第二周期阈值。这里,第一速度阈值大于第二速度 阈值;第一周期阈值小于第二周期阈值。
如此,获取周期可以根据终端的移动速度做调整,使得获取周期可以与终端的移动速度相适应,由于不同的获取周期对应不同的终端的消耗功率,终端的消耗功率可以跟随获取周期做调整,有利于节省终端的消耗功率,使得终端更加省电。
在一个实施例中,配置信息可以是终端的移动距离和对应的获取周期之间的映射关系。这里,不同范围内的移动距离可以对应不同的获取周期。这里,不同的获取周期之间对应的比值可以相同。
在一个实施例中,当终端连续两次定位确定的移动距离大于第一距离阈值时,终端可能已经接近小区的边缘区域,此时需要高频次地获取测量信息,可以设置获取周期小于第一周期阈值。
当终端连续两次定位确定的移动距离大于第二距离阈值且小于第一距离阈值时,可以设置获取周期大于第一周期阈值且小于第二周期阈值。当终端连续两次定位确定的移动距离小于第二距离阈值时,终端此时可能还位于接近小区的中心区域,可以设置获取周期大于第二周期阈值。
这里,第一距离阈值大于第二距离阈值;第一周期阈值小于第二周期阈值。
如此,获取周期可以根据终端的移动距离做调整,使得获取周期可以与终端的移动距离相适应,由于不同的获取周期对应不同的终端的消耗功率,终端的消耗功率可以跟随获取周期做调整,有利于节省终端的消耗功率,使得终端更加省电。
在一个实施例中,移动距离还可以是终端所在位置相对小区的参考点的相对距离。
在一个实施例中,小区的参考点可以是小区的中心点。
在一个实施例中,配置信息可以是终端接收参考信号的信号强度和对应的获取周期之间的映射关系。这里,不同范围内的信号强度可以对应不 同的获取周期。这里,不同的获取周期之间对应的比值可以相同。
在一个实施例中,当终端接收参考信号的信号强度小于第一信号强度阈值时,终端可能已经接近小区的边缘区域,此时需要高频次地获取测量信息,可以设置获取周期小于第一周期阈值。
当终端接收参考信号的信号强度大于第一信号强度阈值且小于第二信号强度阈值时,可以设置获取周期大于第一周期阈值且小于第二周期阈值。
当终端接收参考信号的信号强度大于第二信号强度阈值时,终端此时可能还位于接近小区的中心区域,可以设置获取周期大于第二周期阈值。这里,第一信号强度阈值小于第二强度阈值;第一周期阈值小于第二周期阈值。
如此,获取周期可以根据终端接收参考信号的信号强度做调整,使得获取周期可以与终端接收参考信号的信号强度相适应,由于不同的获取周期对应不同的终端的消耗功率,终端的消耗功率可以跟随获取周期做调整,有利于节省终端的消耗功率,使得终端更加省电。
在一个实施例中,终端根据当前确定的获取周期获取测量信息。
在本公开实施例中,终端在接收到终端获取测量信息的配置信息后,就可以根据移动信息和配置信息确定获取测量信息的获取周期,由于获取周期与移动信息相关,获取周期是根据终端的移动情况确定的,相较于采用固定的获取周期的方式,可以使得获取周期与终端的移动情况相适应。由于不同的获取周期对应不同的终端的消耗功率,这有利于降低终端的功耗。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
在一个实施例中,获取周期包括:
终端的地理位置信息的获取周期;
和/或,
终端对信道测量结果的获取周期。
这里,终端获取终端的地理位置信息后,可以是基于该地理位置信息进行小区的重选和选择。
这里,终端获取信道测量结果后,可以是基于该信道测量结果进行数据的传输,以提高数据的传输质量。
在一个实施例中,配置信息,包括:
第一周期配置,包括:获取周期的初始值;
第一周期缩放配置,包括:参考距离及与参考距离对应的缩放初始值的缩放值。
这里,终端在接收到配置信息后,可以基于该配置信息配置的获取周期的初始值进行测量信息的获取。
在一个实施例中,获取周期的调整可以是按照设置的缩放值缩放该初始值后获得的获取周期。例如,获取周期的初始值为1.5,缩放值为1/3,则缩放后的获取周期为0.5。
在一个实施例中,参考距离可以是当前获取测量信息时终端所处的位置和前一次终端获取测量信息时终端所处的位置之间的相对距离。
在一个实施例中,不同的参考距离可以对应不同的缩放初始值的缩放值。这样,终端在获得参考距离后,就可以根据第一周期缩放配置获得该参考距离对应的缩放初始值的缩放值,获得获取周期。例如,第一周期缩放配置为参考距离为10m时,缩放值为1/2;初始值为1s;则当终端获取的实测距离为10m时,对应的缩放值为1/2,可以将获得的获取周期为初始值1乘以缩放值1/2,即获取周期等于0.5。
在一个实施例中,参考距离大于距离阈值时,缩放值小于缩放值阈值。
在一个实施例中,参考距离与对应的缩放值之间具有线性关系。参考距离与对应的缩放值之间的关系可以通过线性函数表示。
在一个实施例中,参考距离与对应的缩放值之间成反比例关系,其比例系数可以为k,即缩放值等于k乘以参考距离,其中,0<k<1;这样,在获得任一实测距离后,都可以基于参考距离与对应的缩放值之间的比例关系确定该实测距离对应的缩放值。
在一个实施例中,参考距离与对应的缩放值之间也可以不是线性关系。参考距离与对应的缩放值之间的关系可以通过非线性函数表示。
在一个实施例中,当参考距离为A时,缩放值为a;当参考距离为B时,缩放值为b;其中A>B;a<b。如果实测距离为C,且A>C>B,则实测距离C对应的缩放值c可以是大于a小于b之间的任一取值。例如,c可以是(a+b)/2。需要说明的是A与a的对应关系,以及B与b的对应关系可以预先存储在终端中。C与c的对应关系可以基于该实施例中的判定规则得出。这样,在获得任一实测距离后,都可以基于参考距离与对应的缩放值之间的对应确定该实测距离对应的缩放值。
如图5所示,本实施例中提供一种终端获取测量信息的方法,其中,移动信息包括实测距离,该方法,包括:
步骤51、根据前一次获取测量信息的获取周期与初始值之间的大小关系,确定实测距离;
步骤52、根据实测距离与第一周期缩放配置,确定与实测距离对应的获取周期。
在一个实施例中,终端根据前一次获取测量信息的获取周期内的移动距离确定终端接下来的获取周期,为了准确调整获取周期,可以将前一次获取测量信息的获取周期对应的移动距离归一至初始值对应的移动距离,并将该移动距离作为实测距离。例如,初始值为1s,前一次获取测量信息的获取周期为0.5,前一次获取测量信息的获取周期内的终端移动距离为10m,则在将前一次获取测量信息的获取周期对应的移动距离归一至初始值 对应的移动距离后为实测距离等于20m。如果第一周期缩放配置参考距离20m对应的缩放值为1/2,则与实测距离对应的获取周期为0.5s。
在一个实施例中,当前一次获取测量信息的获取周期与初始值相等时,不需要进行上述技术方案中的归一处理。可以将前一次获取测量信息的获取周期对应的移动距离确定为该实测距离。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图6所示,本实施例中提供一种终端获取测量信息的方法,其中,步骤51,根据前一次获取测量信息的获取周期与初始值之间的大小关系,确定实测距离,包括:
步骤61、响应于前一次获取测量信息的获取周期与初始值相同,确定实测距离为移动距离;其中,移动距离,为终端当前所在位置相对于前一次获取测量信息时终端所处位置的移动距离,或者为终端在当前所处位置相对于终端所在小区中参考点的位置的移动距离;
或者,
响应于前一次获取测量信息的获取周期与初始值不同,确定实测距离为基于距离缩放参数缩放移动距离所获得的距离;其中,距离缩放参数,为终端前一次获取测量信息时的获取周期与初始值的比值。
这里,前一次获取测量信息时的获取周期可以是终端在本次获取地理位置信息之前的一次获取测量信息的获取周期。
在一个实施例中,当前一次获取测量信息的获取周期与初始值相同,则不需要对移动距离做归一处理。
在一个实施例中,在当前位置,终端会采用已经确定的获取周期获取终端的地理位置信息,从而可以确定终端当前所在位置相对于前一次获取测量信息时终端所处位置的移动距离。
在一个实施例中,移动距离可以是终端当前所在位置相对于前一次获取测量信息时终端所处位置的直线距离。
在一个实施例中,移动距离可以是终端在当前所处位置相对于终端所在小区中参考点的位置的直线距离。
在一个实施例中,当前一次获取测量信息的获取周期与初始值不同,则需要对移动距离做归一处理。这里,可以是利用距离缩放参数对移动距离做归一处理,获得实测距离。例如,初始值为1s,前一次获取测量信息的获取周期为0.5,前一次获取测量信息的获取周期内的终端移动距离为10m,则距离缩放参数为1/2,则在将前一次获取测量信息的获取周期对应的移动距离归一至初始值对应的移动距离后为实测距离等于20m。如果第一周期缩放配置参考距离20m对应的缩放值为1/2,则与实测距离对应的获取周期为0.5s。
在一个实施例中,在参考距离大于距离阈值时,缩放系数小于系数阈值;当参考距离小于距离阈值时,缩放系数大于系数阈值。这样,缩放系数可以适应于参考距离,使得缩放系数更加适应于终端的移动。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
在一个实施例中,配置信息,包括:
第一周期配置,包括:获取周期的初始值;
第二周期缩放配置,包括:速度等级及与速度等级对应的缩放初始值的缩放值。
这里,终端在接收到配置信息后,可以基于该配置信息配置的获取周期的初始值进行测量信息的获取。
在一个实施例中,获取周期的调整可以是按照设置的缩放值缩放该初始值后获得的获取周期。例如,获取周期的初始值为1.5,缩放值为1/3, 则缩放后的获取周期为0.5。
在一个实施例中,速度等级可以是不同的移动速度对应的速度等级。
在一个实施例中,当终端的移动速度小于第一速度阈值,终端对应的速度等级为低速等级;当终端的移动速度小于第二速度阈值且大于第一速度阈值,终端对应的速度等级为中速等级;当终端的移动速度大于第二于都阈值,终端对应的速度等级为高速等级。这里,第一速度阈值小于第二速度阈值。
在一个实施例中,终端的移动速度可以是本次获取地理位置信息的前一个周期内终端的平均速度。
在一个实施例中,不同的速度等级可以对应不同的缩放初始值的缩放值。这样,终端在获得速度等级后,就可以根据第二周期缩放配置获得该速度等级对应的缩放初始值的缩放值,获得获取周期。例如,第二周期缩放配置为速度等级为高速等级时,缩放值为1/2;初始值为1;则当终端获取的速度等级为高速等级时,得到的获取周期为0.5。
如图7所示,本实施例中提供一种终端获取测量信息的方法,其中,移动信息包括终端的移动速度;该方法,包括:
步骤71、根据终端的移动速度对应的移动等级和第二周期缩放配置,确定与终端的移动速度对应的获取周期。
在一个实施例中,当终端的移动速度小于第一速度阈值,终端对应的速度等级为第一等级;当终端的移动速度小于第二速度阈值且大于第一速度阈值,终端对应的速度等级为第二等级;当终端的移动速度大于第二于都阈值,终端对应的速度等级为第三等级。这里,第一速度阈值小于第二速度阈值。
在一个实施例中,终端的移动速度可以是本次获取地理位置信息的前一个周期内终端的平均速度。
在一个实施例中,不同的速度等级可以对应不同的缩放初始值的缩放 值。这样,终端在获得速度等级后,就可以根据第二周期缩放配置获得该速度等级对应的缩放初始值的缩放值,获得获取周期。例如,第二周期缩放配置为速度等级为第一等级时,缩放值为1/3;初始值为1.5;则当终端获取的速度等级为第一等级时,对应的缩放值为1/3,获得的获取周期为0.5。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图8所示,本实施例中提供一种终端获取测量信息的方法,其中,该方法,包括:
步骤81、根据移动距离与前一次获取测量信息时对应的获取周期,确定终端的移动速度;其中,移动距离,为终端当前所处位置相对于前一次获取测量信息时终端所处位置的移动距离。
在一个实施例中,在当前位置,终端会采用已经确定的获取周期获取终端的地理位置信息,从而可以确定终端当前所在位置相对于前一次获取测量信息时终端所处位置的移动距离。
在一个实施例中,移动距离可以是终端当前所处位置与前一次获取测量信息时所处位置之间的直线距离。利用该直线距离除以前一次获取测量信息时对应的获取周期就可以确定终端的平均移动速度。根据该平均移动速度对应的移动等级和第二周期缩放配置,就可以确定与终端的平均移动速度对应的获取周期。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图9所示,本实施例中提供一种终端获取测量信息的方法,其中,配置信息还包括移动速度配置;该方法,包括:
步骤91、根据移动速度与移动速度配置,确定与终端的移动速度对应 的移动等级;其中,移动速度配置,包括:移动速度及与移动速度对应的速度等级。
在一个实施例中,不同的移动速度对应不同的速度等级。
在一个实施例中,当终端的移动速度小于第一速度阈值,终端对应的速度等级为第一等级;当终端的移动速度小于第二速度阈值且大于第一速度阈值,终端对应的速度等级为第二等级;当终端的移动速度大于第二于都阈值,终端对应的速度等级为第三等级。这里,第一速度阈值小于第二速度阈值。
在一个实施例中,移动距离可以是终端当前所处位置与前一次获取测量信息时所处位置之间的直线距离。利用该直线距离除以前一次获取测量信息时对应的获取周期就可以确定终端的平均移动速度。根据该平均移动速度对应的移动等级和移动速度配置,就可以确定与终端的平均移动速度对应的获取周期。
在一个实施例中,配置信息,包括:
第一周期配置,包括:获取周期的初始值;
第三周期缩放配置,包括:信号强度及与信号强度对应的缩放初始值的缩放值。
这里,终端在接收到配置信息后,可以基于该配置信息配置的获取周期的初始值进行测量信息的获取。
在一个实施例中,信号强度可以是终端接收参考信号的信号强度。这里,当终端在小区的中心区域时,信号强度大于信号强度阈值;当终端在小区的边缘区域时,信号强度小于信号强度阈值。
在一个实施例中,获取周期的调整可以是按照设置的缩放值缩放该初始值后获得的获取周期。例如,获取周期的初始值为1.5,缩放值为1/3,则缩放后的获取周期为0.5。
在一个实施例中,不同的信号强度对应不同的缩放初始值的缩放值。
在一个实施例中,信号强度可以是参考信号接收功率(RSRP)或者参考信号接收质量(RSRQ)。
在一个实施例中,信号强度可以是采样时间段内采集到的参考信号的平均值。
在一个实施例中,终端在获得信号强度后,就可以根据第三周期缩放配置中的信号强度及与信号强度对应的缩放初始值的缩放值之间的关系,确定该信号强度对应的缩放值,并基于该缩放值得到获取周期。例如,第三周期缩放配置为信号强度为A值时时,对应的缩放值为1/2;初始值为1;则当终端接收到参考信号的信号强度为A时,得到的获取周期为0.5。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图10所示,本实施例中提供一种终端获取测量信息的方法,其中,移动信息包括终端移动时接收到的参考信号的信号强度;该方法,包括:
步骤101、根据接收到的参考信号的信号强度以及第三周期缩放配置,确定与接收到的信号强度对应的获取周期。
在一个实施例中,当终端的信号强度小于第一信号强度阈值,终端对应的缩放值为第一值;当终端的信号强度小于第二信号强度阈值且大于第一信号强度阈值,终端对应的缩放值为第二值;当终端的信号强度大于第二值,终端对应的缩放值为第三值。这里,第一信号强度阈值小于第二信号强度阈值。在一个实施例中,第一值大于第二值,第二值大于第三值。
在一个实施例中,信号强度可以是参考信号接收功率(RSRP)或者参考信号接收质量(RSRQ)。
在一个实施例中,信号强度可以是采样时间段内采集到的参考信号的平均值。
配置信息,包括:
基站通过广播消息发送的配置信息;
和/或,
基站通过无线资源控制(RRC)消息发送的配置信息。
在一个实施例中,配置信息可以是本公开中的一种或多种配置信息。
在一个实施例中,利用无线资源控制(RRC)消息发送配置信息,可以提升无线资源控制(RRC)消息的兼容性。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图11所示,本实施例中提供一种终端获取测量信息的方法,其中,该方法,还包括:
步骤111、在接收到基站通过无线资源控制(RRC)消息发送的配置信息后,忽略基站通过广播消息发送的配置信息。
这样,终端只采用基站通过无线资源控制(RRC)消息发送的配置信息确定获取周期,减少终端需要频繁接收配置信息的情况。
为了进一步对本技术方案的理解,以下通过2个示例性实施例对本技术方案进行进一步说明:
示例1:该无线通信系统包括基站和终端。
步骤a1、基站向终端广播供终端获取测量信息的配置信息。
其中,配置信息,用于根据终端的移动信息确定地理位置信息的获取周期。其中,配置信息至少包括:获取周期的初始值和参考距离及与参考距离对应的缩放初始值的缩放值。
这里,获取地理位置信息的获取周期的初始值为1s,参考距离及与参考距离对应的缩放初始值的缩放值:当参考距离为10m时,缩放值为0.5;当参考距离为5m时,缩放值为1;当参考距离为1m时,缩放值为1.5。
步骤a2、终端接收配置信息。
步骤a3、按照获取周期为1s的周期从终端的应用层获取地理位置信息,经过计算获得终端当前所处位置与前一次获取地理位置信息所处位置之间的距离为11m,则根据配置信息确定缩放值为0.5。获得经过缩放后的周期为0.5s。
步骤a4、终端按照0.5s的获取周期从终端的应用层获取地理位置信息,通过计算获得终端所处位置与前一次获取终端的地理位置信息所处位置之间的距离为6m。确定初始值与上一次获取终端的地理位置信息的周期的比值为2。用2放大6m,得到缩放后的距离12m。根据配置信息确定该12m对应的缩放值为0.5,则根据初始值和缩放值确定获取周期为0.5s。
示例2:
步骤b1、基站通过无线资源控制(RRC)消息向终端发送供终端获取测量信息的配置信息。其中,配置信息,用于根据终端的移动信息确定地理位置信息的获取周期。其中,配置信息至少包括:获取周期的初始值、速度等级和及与速度等级对应的缩放初始值的缩放值以及移动速度及与移动速度对应的速度等级。
这里,获取地理位置信息的获取周期的初始值为1s。速度等级和及与速度等级对应的获取周期:当为高速等级时,获取周期为0.5s;当为中速等级时,获取周期为1s;当为低速等级时,获取周期为1.5s。移动速度及与移动速度对应的速度等级:当移动速度小于1m/s,对应的速度等级为低速等级;当移动速度大于1m/s小于10m/s,对应的速度等级为中速等级;当移动速度大于10m/s,对应的速度等级为高速等级。
步骤b2、按照获取周期为1s的周期从终端的应用层获取地理位置信息,经过计算获得终端当前所处位置与前一次获取地理位置信息所处位置之间的距离为11m。确定速度为11m/s。终端确定处于高速等级。
步骤b3、根据配置信息确定终端的缩放值为0.5,根据初始值和缩放值确定获取周期为0.5s。
如图12所示,本实施例中提供一种终端获取测量信息的方法,其中,应用于基站中,该方法,包括:
步骤121、发送供终端获取测量信息的配置信息;
其中,配置信息,用于根据终端的移动信息确定测量信息的获取周期。
在一些实施例中,该终端可以是但不限于是手机、可穿戴设备、车载终端、路侧单元(RSU,Road Side Unit)、智能家居终端、工业用传感设备和/或医疗设备等。
在一个实施例中,基站为终端接入网络的接口设备。这里,网络可以是非陆地网络(NTN)。
在一些实施例中,基站可以设置在高空平台或者卫星上。
在一些实施例中,基站可以为各种类型的基站,例如,第三代移动通信(3G)网络的基站、第四代移动通信(4G)网络的基站、第五代移动通信(5G)网络的基站或其它演进型基站。
在一些实施例中,终端所处的小区可以是非陆地网络(NTN)的小区。
在一个实施例中,终端可以通过全球定位系统(GPS)获取终端的位置信息,并基于该位置信息确定终端位于非陆地网络(NTN)的小区的边缘区域或者中心区域,利用终端的位置与非陆地网络(NTN)小区的位置关系,进行小区的重选或切换。
在一些实施例中,当终端位于非陆地网络(NTN)小区的中心区域或者终端所处位置与该中心区域的距离在距离阈值范围内,终端无需进行小区的重选或切换,此时,终端可以停止或者采用大于周期阈值的获取周期来获取终端的位置信息,以节省终端的功耗。
在一个实施例中,终端获取的测量信息为用于小区重选或切换的位置 信息。
在一些实施例中,当终端位于非陆地网络(NTN)小区的边缘区域或者终端所处位置与该边缘区域的距离在距离阈值范围内,终端可能需要进行小区的重选或切换,此时,终端需要启动或者采用小于周期阈值的获取周期来获取终端的位置信息,以实现小区的重选或切换。
在一个实施例中,终端获取的测量信息为用于传输数据的信道测量结果信息,并基于该信道测量结果进行非陆地网络(NTN)中的数据传输。
在一个实施例中,信道测量结果中包含的测量对象可以包括一下至少之一:参考信号接收功率(RSRP)、参考信号接收质量(RSRQ)和接收信号强度指示(RSSI,Received Signal Strength Indicator)。
在一些实施例中,当终端位于非陆地网络(NTN)小区的中心区域或者终端所处位置与该中心区域的距离在距离阈值范围内,终端传输数据的传输质量好,此时,终端可以停止或者采用大于周期阈值的获取周期来获取信道测量结果,以节省终端的功耗。
在一些实施例中,当终端位于非陆地网络(NTN)小区的边缘区域或者终端所处位置与该边缘区域的距离在距离阈值范围内,终端的数据传输质量差,此时,终端需要启动或者采用小于周期阈值的获取周期来获取信道测量结果,以实现稳定的数据传输。
在一些实施例中,测量信息可以包括终端的位置信息和/或信道测量结果的信息。
在一个实施例中,终端可以是向基站获取测量信息。
在另一个实施例中,终端可以是向终端的应用层获取测量信息。
在一个实施例中,当获取周期确定后,终端基于该获取周期向终端的应用层发送地理位置信息请求,从终端的应用层获取地理位置信息。
在一个实施例中,终端可以是周期性地获取测量信息。这里,获取周期可以是终端周期性地获取测量信息的周期。
在一个实施例中,终端可以是在与基站建立无线资源控制(RRC)连接时,接收基站发送的终端获取测量信息的配置信息。
在一个实施例中,可以是终端在需要获取测量信息时,向基站发送测量信息的获取请求,基站在接收到终端的获取请求后,向终端发送终端获取测量信息的配置信息。
在一个实施例中,响应于终端启动,向基站发送测量信息的获取请求,基站在接收到终端的获取请求后,向终端发送终端获取测量信息的配置信息。
在一个实施例中,移动信息可以是与终端的移动的信息。例如,终端的移动速度和终端移动的距离。需要说明的是,移动信息也可以是与终端的移动相关联的信息,例如,基站给终端发送的参考信号对应的参考信号接收功率(RSRP)和参考信号接收质量(RSRQ)等。在一个实施例中,终端远离小区的中心区域移动时,参考信号接收功率(RSRP)逐渐减小。
在一个实施例中,配置信息可以是移动信息与获取周期之间的映射关系。也可以是基站给终端配置的获取周期的初始值。
在一个实施例中,配置信息可以是终端的移动速度和对应的获取周期之间的映射关系。这里,不同范围内的移动速度可以对应不同的获取周期。这里,不同的获取周期之间对应的比值可以相同。
在一个实施例中,当终端移动的速度大于第一速度阈值时,终端此时处于高速移动状态,更容易移动至小区的边缘区域,此时需要高频次地获取测量信息,可以设置获取周期小于第一周期阈值。当终端移动的速度大于第二速度阈值且小于第一速度阈值时,终端此时处于中速移动状态,可以设置获取周期大于第一周期阈值且小于第二周期阈值。当终端移动的速度小于第二速度阈值时,终端此时处于低速移动状态,可以设置获取周期大于第二周期阈值。这里,第一速度阈值大于第二速度阈值;第一周期阈值小于第二周期阈值。如此,获取周期可以根据终端的移动速度做调整, 使得获取周期可以与终端的移动速度相适应,由于不同的获取周期对应不同的终端的消耗功率,终端的消耗功率可以跟随获取周期做调整,有利于节省终端的消耗功率,使得终端更加省电。
在一个实施例中,配置信息可以是终端的移动距离和对应的获取周期之间的映射关系。这里,不同范围内的移动距离可以对应不同的获取周期。这里,不同的获取周期之间对应的比值可以相同。
在一个实施例中,当终端连续两次定位确定的移动距离大于第一距离阈值时,终端可能已经接近小区的边缘区域,此时需要高频次地获取测量信息,可以设置获取周期小于第一周期阈值。当终端连续两次定位确定的移动距离大于第二距离阈值且小于第一距离阈值时,可以设置获取周期大于第一周期阈值且小于第二周期阈值。当终端连续两次定位确定的移动距离小于第二距离阈值时,终端此时可能还位于接近小区的中心区域,可以设置获取周期大于第二周期阈值。这里,第一距离阈值大于第二距离阈值;第一周期阈值小于第二周期阈值。如此,获取周期可以根据终端的移动距离做调整,使得获取周期可以与终端的移动距离相适应,由于不同的获取周期对应不同的终端的消耗功率,终端的消耗功率可以跟随获取周期做调整,有利于节省终端的消耗功率,使得终端更加省电。
在一个实施例中,移动距离还可以是终端所在位置相对小区的参考点的相对距离。
在一个实施例中,配置信息可以是终端接收参考信号的信号强度和对应的获取周期之间的映射关系。这里,不同范围内的信号强度可以对应不同的获取周期。这里,不同的获取周期之间对应的比值可以相同。
在一个实施例中,当终端接收参考信号的信号强度小于第一信号强度阈值时,终端可能已经接近小区的边缘区域,此时需要高频次地获取测量信息,可以设置获取周期小于第一周期阈值。当终端接收参考信号的信号强度大于第一信号强度阈值且小于第二信号强度阈值时,可以设置获取周 期大于第一周期阈值且小于第二周期阈值。当终端接收参考信号的信号强度大于第二信号强度阈值时,终端此时可能还位于接近小区的中心区域,可以设置获取周期大于第二周期阈值。这里,第一信号强度阈值小于第二强度阈值;第一周期阈值小于第二周期阈值。如此,获取周期可以根据终端接收参考信号的信号强度做调整,使得获取周期可以与终端接收参考信号的信号强度相适应,由于不同的获取周期对应不同的终端的消耗功率,终端的消耗功率可以跟随获取周期做调整,有利于节省终端的消耗功率,使得终端更加省电。
在一个实施例中,终端根据当前确定的获取周期获取测量信息。
在本公开实施例中,终端在接收到终端获取测量信息的配置信息后,就可以根据移动信息和配置信息确定获取测量信息的获取周期,由于获取周期与移动信息相关,获取周期是根据终端的移动情况确定的,相较于采用固定的获取周期的方式,可以使得获取周期与终端的移动情况相适应。由于不同的获取周期对应不同的终端的消耗功率,这有利于降低终端的功耗。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
在一个实施例中,获取周期包括:
终端的地理位置信息的获取周期;
和/或,
所述终端对信道测量结果的获取周期。
这里,终端获取终端的地理位置信息后,可以是基于该地理位置信息进行小区的重选和选择。
这里,终端获取信道测量结果后,可以是基于该信道测量结果进行数据的传输,以提高数据的传输质量。
在一个实施例中,配置信息,包括:
第一周期配置,包括:获取周期的初始值;
第一周期缩放配置,包括:参考距离及与参考距离对应的缩放初始值的缩放值。
这里,终端在接收到配置信息后,可以基于该配置信息配置的获取周期的初始值进行测量信息的获取。
在一个实施例中,获取周期的调整可以是按照设置的缩放值缩放该初始值后获得的获取周期。例如,获取周期的初始值为1.5,缩放值为1/3,则缩放后的获取周期为0.5。
在一个实施例中,参考距离可以是当前获取测量信息时终端所处的位置和前一次终端获取测量信息时终端所处的位置之间的相对距离。
在一个实施例中,不同的参考距离可以对应不同的缩放初始值的缩放值。这样,终端在获得参考距离后,就可以根据第一周期缩放配置获得该参考距离对应的缩放初始值的缩放值,获得获取周期。例如,第一周期缩放配置为参考距离为10m时,缩放值为1/2;初始值为1s;则当终端获取的参考距离为10时,对应的缩放值为1/2,获得的获取周期为0.5。
在一个实施例中,配置信息,包括:
第一周期配置,包括:获取周期的初始值;
第二周期缩放配置,包括:速度等级及与速度等级对应的缩放初始值的缩放值。
这里,终端在接收到配置信息后,可以基于该配置信息配置的获取周期的初始值进行测量信息的获取。
在一个实施例中,获取周期的调整可以是按照设置的缩放值缩放该初始值后获得的获取周期。例如,获取周期的初始值为1.5,缩放值为1/3,则缩放后的获取周期为0.5。
在一个实施例中,速度等级可以是不同的移动速度对应的速度等级。
在一个实施例中,当终端的移动速度小于第一速度阈值,终端对应的速度等级为低速等级;当终端的移动速度小于第二速度阈值且大于第一速度阈值,终端对应的速度等级为中速等级;当终端的移动速度大于第二于都阈值,终端对应的速度等级为高速等级。这里,第一速度阈值小于第二速度阈值。
在一个实施例中,终端的移动速度可以是本次获取地理位置信息的前一个周期内终端的平均速度。
在一个实施例中,不同的速度等级可以对应不同的缩放初始值的缩放值。这样,终端在获得速度等级后,就可以根据第二周期缩放配置获得该速度等级对应的缩放初始值的缩放值,获得获取周期。例如,第二周期缩放配置为速度等级为高速等级时,缩放值为1/2;初始值为1;则当终端获取的速度等级为高速等级时,得到的获取周期为0.5。
在一个实施例中,配置信息,包括:
第一周期配置,包括:获取周期的初始值;
第三周期缩放配置,包括:信号强度及与信号强度对应的缩放初始值的缩放值。
这里,终端在接收到配置信息后,可以基于该配置信息配置的获取周期的初始值进行测量信息的获取。
在一个实施例中,信号强度可以是终端接收参考信号的信号强度。这里,当终端在小区的中心区域时,信号强度大于信号强度阈值;当终端在小区的边缘区域时,信号强度小于信号强度阈值。
在一个实施例中,获取周期的调整可以是按照设置的缩放值缩放该初始值后获得的获取周期。例如,获取周期的初始值为1.5,缩放值为1/3,则缩放后的获取周期为0.5。
在一个实施例中,不同的信号强度对应不同的缩放初始值的缩放值。
在一个实施例中,信号强度可以是参考信号接收功率(RSRP)或者参 考信号接收质量(RSRQ)。
在一个实施例中,信号强度可以是采样时间段内采集到的参考信号的平均值。
在一个实施例中,终端在获得信号强度后,就可以根据第三周期缩放配置中的信号强度及与信号强度对应的缩放初始值的缩放值之间的关系,确定该信号强度对应的缩放值,并基于该缩放值得到获取周期。例如,第三周期缩放配置为信号强度为A值时时,对应的缩放值为1/2;初始值为1;则当终端接收到参考信号的信号强度为A时,得到的获取周期为0.5。
如图13所示,本实施例中提供一种终端获取测量信息的装置,其中,应用于终端中,该装置包括接收模块131,其中,
接收模块131,被配置为接收供终端获取测量信息的配置信息;
其中,配置信息,用于根据终端的移动信息确定测量信息的获取周期。
如图14所示,本实施例中提供一种终端获取测量信息的装置,其中,应用于基站中,该装置包括发送模块141,其中,
发送模块141,被配置为发送供终端获取测量信息的配置信息;
其中,配置信息,用于根据终端的移动信息确定测量信息的获取周期。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开实施例提供一种通信设备,通信设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:用于运行可执行指令时,实现应用于本公开任意实施例的方法。
其中,处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序。
本公开实施例还提供一种计算机存储介质,其中,计算机存储介质存储有计算机可执行程序,可执行程序被处理器执行时实现本公开任意实施例的方法。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
如图15所示,本公开一实施例示出一种基站的结构。例如,基站900可以被提供为一网络侧设备。参照图15,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在基站的任意方法。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包 括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (23)

  1. 一种终端获取测量信息的方法,其中,应用于终端中,所述方法,包括:
    接收供所述终端获取测量信息的配置信息;
    其中,所述配置信息,用于根据所述终端的移动信息确定所述测量信息的获取周期。
  2. 根据权利要求1所述的方法,其中,所述获取周期包括:
    所述终端的地理位置信息的获取周期;
    和/或,
    所述终端对信道测量结果的获取周期。
  3. 根据权利要求1或2所述的方法,其中,所述配置信息,包括:
    第一周期配置,包括:所述获取周期的初始值;
    第一周期缩放配置,包括:参考距离及与所述参考距离对应的缩放所述初始值的缩放值。
  4. 根据权利要求3所述的方法,其中,所述移动信息包括实测距离;所述方法,还包括:
    根据前一次获取所述测量信息的获取周期与所述初始值之间的大小关系,确定所述实测距离;
    根据所述实测距离与所述第一周期缩放配置,确定与所述实测距离对应的获取周期。
  5. 根据权利要求4所述的方法,其中,所述根据前一次获取所述测量信息的获取周期与所述初始值之间的大小关系,确定所述实测距离,包括:
    响应于前一次获取所述测量信息的获取周期与所述初始值相同,确定所述实测距离为移动距离;其中,所述移动距离,为所述终端当前所在位置相对于前一次获取所述测量信息时所述终端所处位置的移动距离,或者 为所述终端在当前所处位置相对于终端所在小区中参考点的位置的移动距离;
    或者,
    响应于前一次获取所述测量信息的获取周期与所述初始值不同,确定所述实测距离为基于距离缩放参数缩放所述移动距离所获得的距离;其中,所述距离缩放参数,为所述终端前一次获取所述测量信息时的获取周期与所述初始值的比值。
  6. 根据权利要求1或2所述的方法,其中,所述配置信息,包括:
    第一周期配置,包括:所述获取周期的初始值;
    第二周期缩放配置,包括:速度等级及与所述速度等级对应的缩放所述初始值的缩放值。
  7. 根据权利要求6所述的方法,其中,所述移动信息包括所述终端的移动速度;所述方法,还包括:
    根据所述终端的移动速度对应的移动等级和所述第二周期缩放配置,确定与所述终端的移动速度对应的所述获取周期。
  8. 根据权利要求7所述的方法,其中,所述方法,还包括:
    根据移动距离与前一次获取所述测量信息时对应的获取周期,确定所述终端的移动速度;其中,所述移动距离,为所述终端当前所处位置相对于前一次获取所述测量信息时所述终端所处位置的移动距离。
  9. 根据权利要求7所述的方法,其中,所述配置信息还包括移动速度配置;所述方法,还包括:
    根据所述移动速度与所述移动速度配置,确定与所述终端的移动速度对应的移动等级;其中,所述移动速度配置,包括:移动速度及与所述移动速度对应的所述速度等级。
  10. 根据权利要求1或2所述的方法,其中,所述配置信息,包括:
    第一周期配置,包括:所述获取周期的初始值;
    第三周期缩放配置,包括:信号强度及与所述信号强度对应的缩放所述初始值的缩放值。
  11. 根据权利要求10所述的方法,其中,所述移动信息包括终端移动时接收到的参考信号的信号强度;所述方法,还包括:
    根据所述接收到的参考信号的信号强度以及所述第三周期缩放配置,确定与所述接收到的信号强度对应的所述获取周期。
  12. 根据权利要求1所述的方法,其中,所述配置信息,包括:
    基站通过广播消息发送的配置信息;
    和/或,
    基站通过无线资源控制RRC消息发送的配置信息。
  13. 根据权利要求12所述的方法,其中,所述方法,还包括:
    在接收到所述基站通过RRC消息发送的配置信息后,忽略所述基站通过所述广播消息发送的配置信息。
  14. 一种终端获取测量信息的方法,其中,应用于基站中,所述方法,包括:
    发送供终端获取测量信息的配置信息;
    其中,所述配置信息,用于根据所述终端的移动信息确定所述测量信息的获取周期。
  15. 根据权利要求14所述的方法,其中,所述获取周期包括:
    所述终端的地理位置信息的获取周期;
    和/或,
    所述终端对信道测量结果的获取周期。
  16. 根据权利要求14或15所述的方法,其中,所述配置信息,包括:
    第一周期配置,包括:所述获取周期的初始值;
    第一周期缩放配置,包括:参考距离及与所述参考距离对应的缩放所述初始值的缩放值。
  17. 根据权利要求14或15所述的方法,其中,所述配置信息,包括:
    第一周期配置,包括:所述获取周期的初始值;
    第二周期缩放配置,包括:速度等级及与所述速度等级对应的缩放所述初始值的缩放值。
  18. 根据权利要求14或15所述的方法,其中,所述配置信息,包括:
    第一周期配置,包括:所述获取周期的初始值;
    第三周期缩放配置,包括:信号强度及与所述信号强度对应的缩放所述初始值的缩放值。
  19. 根据权利要求14所述的方法,其中,所述配置信息,包括:
    广播所述配置信息;
    和/或,
    发送携带所述配置信息的无线资源控制RRC消息。
  20. 一种终端获取测量信息的装置,其中,应用于终端中,所述装置包括接收模块,其中,
    所述接收模块,被配置为接收供所述终端获取测量信息的配置信息;
    其中,所述配置信息,用于根据所述终端的移动信息确定所述测量信息的获取周期。
  21. 一种终端获取测量信息的装置,其中,应用于基站中,所述装置包括发送模块,其中,
    所述发送模块,被配置为发送供终端获取测量信息的配置信息;
    其中,所述配置信息,用于根据所述终端的移动信息确定所述测量信息的获取周期。
  22. 一种通信设备,其中,包括:
    天线;
    存储器;
    处理器,分别与所述天线及存储器连接,被配置为通执行存储在所述 存储器上的计算机可执行指令,控制所述天线的收发,并能够实现权利要求1至13或权利要求14至权利要求19任一项提供的方法。
  23. 一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令被处理器执行后能够实现权利要求1至13或权利要求14至权利要求19任一项提供的方法。
PCT/CN2020/123001 2020-10-22 2020-10-22 终端获取测量信息的方法、装置、通信设备及存储介质 WO2022082673A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/250,145 US20230413082A1 (en) 2020-10-22 2020-10-22 Method and device for acquiring measurement information for terminal
CN202080002888.6A CN112514419B (zh) 2020-10-22 2020-10-22 终端获取测量信息的方法、装置、通信设备及存储介质
PCT/CN2020/123001 WO2022082673A1 (zh) 2020-10-22 2020-10-22 终端获取测量信息的方法、装置、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/123001 WO2022082673A1 (zh) 2020-10-22 2020-10-22 终端获取测量信息的方法、装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022082673A1 true WO2022082673A1 (zh) 2022-04-28

Family

ID=74952799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123001 WO2022082673A1 (zh) 2020-10-22 2020-10-22 终端获取测量信息的方法、装置、通信设备及存储介质

Country Status (3)

Country Link
US (1) US20230413082A1 (zh)
CN (1) CN112514419B (zh)
WO (1) WO2022082673A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230232262A1 (en) * 2020-10-23 2023-07-20 Lg Electronics Inc. Ntn-related communication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547465A (zh) * 2008-03-27 2009-09-30 中兴通讯股份有限公司 一种移动信道信号质量的测量方法
CN101610521A (zh) * 2008-06-19 2009-12-23 中国移动通信集团公司 一种调整测量上报周期的方法及装置
CN102098703A (zh) * 2011-01-30 2011-06-15 新邮通信设备有限公司 小区切换中确定终端测量频率的方法和装置
US20150358890A1 (en) * 2013-01-25 2015-12-10 Sony Corporation Device and method in radio communication system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7460869B2 (en) * 2005-03-14 2008-12-02 Nokia Corporation Adaptive handover measurement interval
KR101637385B1 (ko) * 2009-06-09 2016-07-08 삼성전자 주식회사 이동통신시스템의 신호 측정 장치 및 방법
US9220028B2 (en) * 2010-02-12 2015-12-22 Blackberry Limited Methods and apparatus to perform measurements
CN102572989A (zh) * 2012-01-13 2012-07-11 中兴通讯股份有限公司 一种根据终端的移动速度调整参数的方法及系统
US10863433B2 (en) * 2018-02-13 2020-12-08 Mediatek Inc. Power saving on UE reports
CN110839254B (zh) * 2018-08-17 2021-12-24 维沃移动通信有限公司 测量方法和设备
KR20200086623A (ko) * 2019-01-08 2020-07-17 주식회사 케이티 비지상 네트워크를 이용하여 통신을 수행하는 방법 및 그 장치
US11902815B2 (en) * 2019-01-08 2024-02-13 Kt Corporation Method for communicating through non-terrestrial network, and apparatus therefor
CN110149693B (zh) * 2019-04-22 2020-09-18 熊猫电子集团有限公司 卫星移动通信网络、系统、周期性位置更新时长的计算及更新方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547465A (zh) * 2008-03-27 2009-09-30 中兴通讯股份有限公司 一种移动信道信号质量的测量方法
CN101610521A (zh) * 2008-06-19 2009-12-23 中国移动通信集团公司 一种调整测量上报周期的方法及装置
CN102098703A (zh) * 2011-01-30 2011-06-15 新邮通信设备有限公司 小区切换中确定终端测量频率的方法和装置
US20150358890A1 (en) * 2013-01-25 2015-12-10 Sony Corporation Device and method in radio communication system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230232262A1 (en) * 2020-10-23 2023-07-20 Lg Electronics Inc. Ntn-related communication

Also Published As

Publication number Publication date
CN112514419A (zh) 2021-03-16
US20230413082A1 (en) 2023-12-21
CN112514419B (zh) 2024-01-12

Similar Documents

Publication Publication Date Title
WO2022011565A1 (zh) 相对定位的方法、终端、基站、通信设备及存储介质
WO2022047752A1 (zh) 通信方法、终端、通信节点、通信设备及存储介质
WO2022000144A1 (zh) 测量的方法、基站、多模终端、通信设备及存储介质
WO2022000196A1 (zh) 用户设备定位方法及装置、用户设备、存储介质
JP7455241B2 (ja) 位置決定方法、装置、通信機器及び記憶媒体
CN115136655A (zh) 小区切换方法及装置、通信设备及存储介质
WO2022082673A1 (zh) 终端获取测量信息的方法、装置、通信设备及存储介质
US20240039855A1 (en) Cv2x situationally-dependent service prioritization
WO2022027473A1 (zh) 小区测量处理方法、装置、通信设备及存储介质
US20230239039A1 (en) Method for accessing satellite, and communication device
WO2022183477A1 (zh) 干扰处理方法及装置、通信设备和存储介质
WO2022077184A1 (zh) 请求prs配置的方法、装置、通信设备及存储介质
RU2802247C1 (ru) Способ и устройство для определения местоположения и устройство связи
RU2815087C1 (ru) Способ и устройство для запроса конфигурации опорного сигнала позиционирования (prs), а также устройство связи и носитель данных
US20240080687A1 (en) Time period configuration method and apparatus, communication device,and storage medium
WO2022188088A1 (zh) 重选小区的方法、装置、通信设备及存储介质
US20230254034A1 (en) Wireless communication method, terminal, base station, communication device, and storage medium
WO2023155052A1 (zh) 感知业务处理方法及装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958255

Country of ref document: EP

Kind code of ref document: A1