WO2022081531A1 - Device location determination in 5g non-terrestrial networks - Google Patents

Device location determination in 5g non-terrestrial networks Download PDF

Info

Publication number
WO2022081531A1
WO2022081531A1 PCT/US2021/054505 US2021054505W WO2022081531A1 WO 2022081531 A1 WO2022081531 A1 WO 2022081531A1 US 2021054505 W US2021054505 W US 2021054505W WO 2022081531 A1 WO2022081531 A1 WO 2022081531A1
Authority
WO
WIPO (PCT)
Prior art keywords
location information
network
location
cgi
geographic area
Prior art date
Application number
PCT/US2021/054505
Other languages
French (fr)
Inventor
Alexandre Saso STOJANOVSKI
Sudeep K. PALAT
Alexander Sirotkin
Candy YIU
Original Assignee
Intel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corporation filed Critical Intel Corporation
Publication of WO2022081531A1 publication Critical patent/WO2022081531A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • aspects pertain to wireless communications. Some aspects relate to wireless networks including 3 GPP (Third Generation Partnership Project) networks, 3GPP LTE (Long Tenn Evolution) networks, 3GPP LTE-A (LTE Advanced) networks, (MulteFire, LTE-U), and fifth-generation (5G) networks including 5G new radio (NR) (or 5G-NR) networks, 5G-LTE networks such as 5G NR unlicensed spectrum (NR-U) networks and other unlicensed networks including Wi-Fi, CBRS (OnGo), etc. Other aspects are directed to techniques for device location determination in 5G-NR networks including 5G non- terrestrial networks (NTNs).
  • NTNs non- terrestrial networks
  • 5G-NR networks will continue to evolve based on 3GPP LTE- Advanced with additional potential new radio access technologies (RATs) to enrich people’s lives with seamless wireless connectivity solutions delivering fast, rich content and sendees.
  • RATs new radio access technologies
  • mm Wave millimeter wave
  • LTE operation in the unlicensed spectrum includes (and is not limited to) the LTE operation in the unlicensed spectrum via dual connectivity (DC), or DC-based LAA, and the standalone LTE system in the unlicensed spectrum, according to which LTE-based technology solely operates in the unlicensed spectrum without requiring an “anchor” in the licensed spectrum, called MulteFire.
  • Further enhanced operation of LTE and NR systems in the licensed, as well as unlicensed spectrum, is expected in future releases and 5G systems.
  • Such enhanced operations can include techniques for device location determination in 5G-NR networks including 5G NTNs.
  • FIG. 1 A illustrates an architecture of a network, in accordance with some aspects.
  • FIG. IB and FIG. 1C illustrate a non-roaming 5G system architecture in accordance with some aspects.
  • FIG. 2, FIG. 3, and FIG. 4 illustrate various systems, devices, and components that may implement aspects of disclosed embodiments.
  • FIG. 5 illustrates a non-terrestrial network using a non- transparent payload, according to some embodiments.
  • FIG. 6 illustrates a non-terrestrial network using a regenerative payload, according to some embodiments.
  • FIG. 7 illustrates a non-terrestrial network including a networking- RAN architecture with a transparent satellite, according to some embodiments.
  • FIG. 8 illustrates a non-terrestrial network including a regenerative satellite without inter-satellite links (ISL), according to some embodiments.
  • ISL inter-satellite links
  • FIG. 9 illustrates a non-terrestrial network including a regenerative satellite with ISL, according to some embodiments.
  • FIG. 10 illustrates example Earth-moving cells and cell global identifiers (CGIs) mapped to static geographic areas, according to some embodiments.
  • CGIs cell global identifiers
  • FIG. 11 is a swimlane diagram of example communication flow for determining UE location based on multiple CGIs, according to some embodiments.
  • FIG. 12 is a swimlane diagram of example communi cation flow for determining LIE location based on UE-provided location, according to some embodiments.
  • FIG. 13 illustrates a block diagram of a communication device such as an evolved Node-B (eNB), a new generation Node-B (gNB) (or another RAN node), an access point (AP), a wireless station (STA), a mobile station (MS), or a user equipment (LIE), in accordance with some aspects.
  • eNB evolved Node-B
  • gNB new generation Node-B
  • AP access point
  • STA wireless station
  • MS mobile station
  • LIE user equipment
  • FIG. 1A illustrates an architecture of a. network in accordance with some aspects.
  • the network 140A is shown to include user equipment (UE) 101 and UE 102.
  • the UEs 101 and 102 are illustrated as smartphones (e.g., handheld touchscreen mobile computing devices connectable to one or more cellular networks) but may also include any mobile or non-mobile computing device, such as Personal Data Assistants (PDAs), pagers, laptop computers, desktop computers, wireless handsets, drones, or any other computing device including a wared and/or wireless communications interface.
  • PDAs Personal Data Assistants
  • the UEs 101 and 102 can be collectively referred to herein as UE 101, and UE 101 can be used to perform one or more of the techniques disclosed herein.
  • Any of the radio links described herein may operate according to any exemplary' radio communication technology and/or standard.
  • LTE and LTE -Advanced are standards for wireless communications of high-speed data for UE such as mobile telephones.
  • carrier aggregation is a technology according to which multiple carrier signals operating on different frequencies may be used to cany communications for a single UE, thus increasing the bandwidth available to a single device.
  • carrier aggregation maybe used where one or more component carriers operate on unlicensed frequencies.
  • aspects described herein can be used in the context of any spectrum management scheme including, for example, dedicated licensed spectrum, unlicensed spectrum, (licensed) shared spectrum (such as Licensed Shared Access (USA) in 23-2.4 GHz, 3,4-3.6 GHz, 3.6-3.8 GHz, and further frequencies and Spectrum Access System (SAS) in 3.55-3.7 GHz and further frequencies).
  • spectrum management scheme including, for example, dedicated licensed spectrum, unlicensed spectrum, (licensed) shared spectrum (such as Licensed Shared Access (USA) in 23-2.4 GHz, 3,4-3.6 GHz, 3.6-3.8 GHz, and further frequencies and Spectrum Access System (SAS) in 3.55-3.7 GHz and further frequencies).
  • SAS Spectrum Access System
  • any of the UEs 101 and 102 can comprise an Internet-of- Things (loT) UE or a Cellular loT (CIoT) UE, which can comprise a network access layer designed for low-power loT applications utilizing short- lived UE connections.
  • any of the UEs 101 and 102 can include a narrowband (NB) loT UE (e.g., such as an enhanced NB-IoT (eNB-IoT) UE and Further Enhanced (FeNB-IoT) UE).
  • NB narrowband
  • eNB-IoT enhanced NB-IoT
  • FeNB-IoT Further Enhanced
  • An loT UE can utilize technologies such as machine-to-machine (M2M) or machine-type communications (MTC) for exchanging data with an MTC server or device via a public land mobile network (PLMN), Proximity -Based Service (ProSe), or device-to-device (D2D) communication, sensor networks, or loT networks.
  • M2M or MTC exchange of data may be a machine-initiated exchange of data.
  • An loT network includes interconnecting loT UEs, which may include uniquely identifiable embedded computing devices (within the Internet infrastructure), with short-lived connections.
  • the loT UEs may execute background applications (e.g., keep- alive messages, status updates, etc.) to facilitate the connections of the loT network.
  • any of the UEs 101 and 102 can include enhanced MTC (eMTC) UEs or further enhanced MTC (FeMTC) UEs.
  • eMTC enhanced MTC
  • FeMTC enhanced MTC
  • the UEs 101 and 102 may be configured to connect, e.g., communicatively couple, with a radio access network (RAN) 1 10.
  • the RAN 110 may be, for example, a Universal Mobile Telecommunications System (UMTS), an Evolved Universal Terrestrial Radio Access Network (E-UTRAN), a NextGen RAN (NG RAN), or some other type of RAN.
  • UMTS Universal Mobile Telecommunications System
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • NG RAN NextGen RAN
  • the UEs 101 and 102 utilize connections 103 and 104, respectively, each of which comprises a physical communications interface or layer (discussed in further detail below); in this example, the connections 103 and 104 are illustrated as an air interface to enable communicative coupling and can be consistent with cellular communications protocols, such as a Global System for Mobile Communications (GSM) protocol, a code-division multiple access (CDM A) network protocol, a Push-to-Talk (PTT) protocol, a PTT over Cellular (POC) protocol, a Universal Mobile Telecommunications System (UMTS) protocol, a 3GPP Long Term Evolution (LTE) protocol, a fifth-generation (5G) protocol, a New Radio (NR) protocol, and the like.
  • GSM Global System for Mobile Communications
  • CDMA code-division multiple access
  • PTT Push-to-Talk
  • POC PTT over Cellular
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • 5G fifth-generation
  • NR New Radio
  • the UEs 101 and 102 may further directly exchange communication data via a ProSe interface 105.
  • the ProSe interface 105 may alternatively be referred to as a sidelink interface comprising one or more logical channels, including but not limited to a Physical Sidelink Control Channel (PSCCH), a Physical Sidelink Shared Channel (PSSCH), a Physical Sidelink Discovery Channel (PSDCH), and a Physical Sidelink Broadcast Channel (PSBCH).
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSDCH Physical Sidelink Discovery Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • the UE 102 is shown to be configured to access an access point
  • connection 107 can comprise a local wireless connection, such as, for example, a connection consistent with any IEEE 802.11 protocol, according to which the AP 106 can comprise a wireless fidelity (WiFi®) router.
  • WiFi® wireless fidelity
  • the AP 106 is shown to be connected to the Internet without connecting to the core network of the wireless system (described in further detail below).
  • the RAN 110 can include one or more access nodes that enable connections 103 and 104.
  • These access nodes can be referred to as base stations (BSs), NodeBs, evolved NodeBs (eNBs), Next Generation NodeBs (gNBs), RAN network nodes, and the like, and can comprise ground stations (e.g., terrestrial access points) or satellite stations providing coverage within a geographic area (e.g., a cell).
  • BSs base stations
  • eNBs evolved NodeBs
  • gNBs Next Generation NodeBs
  • RAN network nodes and the like, and can comprise ground stations (e.g., terrestrial access points) or satellite stations providing coverage within a geographic area (e.g., a cell).
  • the communication nodes 111 and 112 can be transmission/reception points (TRPs), In instances when the communication nodes 11 1 and 112 are NodeBs (e.g., eNBs or gNBs), one or more TRPs can function within the communication cell of the NodeBs.
  • the RAN 110 may include one or more RAN nodes for providing macrocells, e.g., macro RAN node 111, and one or more RAN nodes for providing femtocells or picocells (e.g., cells having smaller coverage areas, smaller user capacity, or higher bandwidth compared to macrocells), e.g., low power (LP) RAN node 112 or an unlicensed spectrum based secondary' ILAN node 112.
  • LP low power
  • any of the RAN nodes 111 and 1 12 can terminate the air interface protocol and can be the first point of contact for the UEs 101 and 102.
  • any of the RAN nodes 111 and 112 can fulfill various logical functions for the RAN 110 including, but not limited to, radio network controller (RNC) functions such as radio bearer management, uplink and downlink dynamic radio resource management, and data packet scheduling, and mobility management.
  • RNC radio network controller
  • any of the nodes 111 and/or 112 can be a new generation Node-B (gNB), an evolved node-13 (eNB), or another type of RAN node.
  • gNB Node-B
  • eNB evolved node-13
  • the RAN 110 is shown to be communicatively coupled to a core network (CN) 120 via an SI interface 113.
  • the CN 120 may be an evolved packet core (EPC) network, a NextGen Packet Core (NPC) network, or some other type of CN (e.g., as illustrated in reference to FIGS. 1B-1C).
  • EPC evolved packet core
  • NPC NextGen Packet Core
  • the SI interface 113 is split into two parts: the Sl-U interface 114, which carries user traffic data between the RAN nodes 11 1 and 112 and the serving gateway (S-GW) 122, and the SI -mobility management entity (MME) interface 115, which is a signaling interface between the RAN nodes 111 and 1 12 and MMEs 121.
  • S-GW serving gateway
  • MME SI -mobility management entity
  • the CN 120 comprises the MMEs 121, the S-GW 122, the Packet Data Network (PDN) Gateway (P-GW) 123, and a home subscriber server (HSS) 124.
  • the MMEs 121 may be similar in function to the control plane of legacy Serving General Packet Radio Service (GPRS) Support Nodes (SGSN).
  • the MMEs 121 may manage mobility aspects in access such as gateway selection and tracking area list management.
  • the HSS 124 may comprise a database for network users, including subscription-related information to support the network entities' handling of communication sessions.
  • the CN 120 may comprise one or several HSSs 124, depending on the number of mobile subscribers, on the capacity of the equipment, on the organization of the network, etc.
  • the HSS 124 can provide support for routing/roaming, authentication, authorization, naming/ addressing resolution, location dependencies, etc.
  • the S-GW 122 may terminate the S I interface 113 towards the RAN 110, and route data packets between the RAN 110 and the CN 120.
  • the S-GW 122 may be a local mobility anchor point for inter-RAN node handovers and also may provide an anchor for inter-3GPP mobility. Other responsibilities of the S-GW 122 may include lawful intercept, charging, and some policy enforcement.
  • the P-GW 123 may terminate an SGi interface toward a PDN.
  • the P-GW 123 may route data packets between the EPC network 120 and external networks such as a network including the application server 184 (alternatively referred to as application function (AF)) via an Internet Protocol (IP) interface 125.
  • the P-GW 123 can also communicate data to other external networks 131 A, which can include the Internet, IP multimedia subsystem (IPS) network, and other networks.
  • the application server 184 may be an element offering applications that use IP bearer resources with the core network (e.g., UMTS Packet Sendees (PS) domain, LTE PS data services, etc.).
  • PS Packet Sendees
  • the P-GW 123 is shown to be communicatively coupled to an application server 184 via an IP interface 125.
  • the application server 184 can also be configured to support one or more communication services (e.g., Voice-over- Internet Protocol (VoIP) sessions, PTT sessions, group communication sessions, social networking services, etc.) for the UEs 101 and 102 via the CN 120.
  • VoIP Voice-over- Internet Protocol
  • the P-GW 123 may further be a node for policy enforcement and charging data collection.
  • Policy and Charging Rules Function (PCRF) 126 is the policy and charging control element of the CN 120.
  • PCRF Policy and Charging Rules Function
  • HPLMN Home Public Land Mobile Network
  • IP-CAN Internet Protocol Connectivity Access Network
  • the PCRF 126 may be communicatively coupled to the application server 184 via the P-GW 123.
  • the communication network 140A can be an loT network or a 5G network, including a 5G new' radio network using communications in the licensed (5G NR) and the unlicensed (5GNR-U) spectrum.
  • NB-IoT narrowband-IoT
  • An NG system architecture can include the RAN 110 and a 5G network core (5GC) 120.
  • the NG-RAN 110 can include a plurality of nodes, such as gNBs and NG-eNBs.
  • the core network 120 e.g., a 5G core network or 5GC
  • AMF access and mobility function
  • UPF user plane function
  • the AMF and the UPF can be communicatively coupled to the gNBs and the NG-eNBs via NG interfaces. More specifically, in some aspects, the gNBs and the NG-eNBs can be connected to the AMF by NG-C interfaces, and to the UPF by NG-U interfaces. The gNBs and the NG-eNBs can be coupled to each other via Xn interfaces.
  • the NG system architecture can use reference points between various nodes as provided by 3GPP Technical Specification (TS) 23.501 (e.g., V15.4.0, 2018-12).
  • TS 3GPP Technical Specification
  • each of the gNBs and the NG- eNBs can be implemented as a base station, a mobile edge server, a small cell, a home eNB, a RAN network node, and so forth.
  • a gNB can be a master node (MN) and NG-eNB can be a secondary node (SN) in a 5G architecture.
  • the master/primaiy node may operate in a licensed band and the secondary node may operate in an unlicensed band.
  • FIG. IB illustrates a non-roaming 5G system architecture in accordance with some aspects.
  • a 5G system architecture 140B in a reference point representation. More specifically, UE 102 can be in communication with RAN 110 as well as one or more other 5G core (5GC) network entities.
  • 5GC 5G core
  • the 5G system architecture 140B includes a plurality of network functions (NFs), such as access and mobility management function (AMF) 132, location management function (LMF) 133, session management function (SMF) 136, policy control function (PCF) 148, application function (AF) 150, user plane function (UPF) 134, network slice selection function (NSSF) 142, authentication server function (AUSF) 144, and unified data management (UDM)/home subscriber server (HSS) 146.
  • the UPF 134 can provide a connection to a data network (DN) 152, which can include, for example, operator services, Internet access, or third-party services.
  • the AMF 132 can be used to manage access control and mobility and can also include network slice selection functionality.
  • the SMF 136 can be configured to set up and manage various sessions according to network policy.
  • the UPF 134 can be deployed in one or more configurations according to the desired service type.
  • the PCF 148 can be configured to provide a policy framework using network slicing, mobility management, and roaming (similar to PCRF in a 4G communication system).
  • the UDM can be configured to store subscriber profiles and data (similar to an HSS in a 4G communication system).
  • the LMF 133 may be used in connection with 5G positioning functionalities.
  • LMF 133 receives measurements and assistance information from the next generation radio access network (NG- RAN) 110 and the mobile device (e.g., UE 101) via the AMF 132 over the NLs interface to compute the position of the UE 101.
  • NG-RAN next generation radio access network
  • NRPPa NR positioning protocol A
  • N-C next generation control plane interface
  • LMF 133 configures the UE using the LTE positioning protocol (EPP) via AMF 132.
  • the NG RAN 110 configures the UE 101 using radio resource control (RRC) protocol over LTE-Uu and NR-Uu interfaces.
  • RRC radio resource control
  • the 5G system architecture 140B configures different reference signals to enable positioning measurements.
  • Example reference signals that may be used for positioning measurements include the positioning reference signal (NR PRS) in the downlink and the sounding reference signal (SRS) for positioning in the uplink.
  • the downlink positioning reference signal (PRS) is a reference signal configured to support downlink- based positioning methods.
  • the 5G system architecture 140B includes an IP multimedia subsystem (IMS) 168B as well as a plurality of IP multimedia core network subsystem entities, such as call session control functions (CSCFs).
  • IMS IP multimedia subsystem
  • CSCFs call session control functions
  • the IMS 168B includes a CSCF, which can act as a proxy CSCF (P-CSCF) 162BE, a serving CSCF (S-CSCF) 164B, an emergency CSCF (E-CSCF) (not illustrated in FIG. IB), or interrogating CSCF (1-CSCF) 166B.
  • the P-CSCF 162B can be configured to be the first contact point for the UE 102 within the W subsystem (IMS) 168B.
  • the S-CSCF 164B can be configured to handle the session states in the network, and the E-CSCF can be configured to handle certain aspects of emergency sessions such as routing an emergency request to the correct emergency center or PSAP.
  • the I-CSCF 166B can be configured to function as the contact point within an operator’s network for all IMS connections destined to a subscriber of that network operator, or a roaming subscriber currently located within that network operator's service area.
  • the I-CSCF 166B can be connected to another IP multimedia network 170E, e.g. an IMS operated by a different network operator.
  • the UDM/HSS 146 can be coupled to an application server 160E, which can include a telephony application server (TAS) or another application server (AS).
  • the AS 160B can be coupled to the IMS 168B via the S-CSCF 164B or the I-CSCF 166B.
  • FIG. IB illustrates the following reference points: N1 (between the UE 102 and the AMF 132), N2 (between the ILAN 110 and the AMF 132), N3 (between the ILAN 110 and the UPF 134), N4 (between the SMF 136 and the UPF 134), N5 (between the PCF 148 and the AF 150, not shown), N6 (between the UPF 134 and the DN 152), N7 (between the SMF 136 and the PCF 148, not shown), N8 (between the UDM 146 and the AMF 132, not shown), N9 (between two UPFs 134, not shown),
  • N10 between the UDM 146 and the SMF 136, not shown.
  • Ni l between the AMF 132 and the SMF 136, not shown
  • N12 between the AUSF 144 and the AMF 132, not shown
  • N13 between the AUSF 144 and the UDM 146, not shown
  • N14 between two AMFs 132, not shown
  • N15 between the PCF 148 and the AMF 132 in case of a non-roaming scenario, or between the PCF 148 and a visited network and AMF 132 in case of a roaming scenario, not shown
  • N16 between two SMFs, not shown
  • N22 between AMF 132 and NSSF 142, not shown.
  • FIG. 1C illustrates a 5G system architecture 140C and a service- based representation.
  • system architecture 140C can also include a network exposure function (NEF) 154 and a network repository function (NRF) 156.
  • NEF network exposure function
  • NRF network repository function
  • 5G system architectures can be service-based and interaction between network functions can be represented by corresponding point-to-point reference points Ni or as service-based interfaces.
  • service-based representations can be used to represent network functions within the control plane that enable other authorized network functions to access their services.
  • 5G system architecture 140C can include the following service- based interfaces: Namf 158H (a service-based interface exhibited by the AMF 132), Nsmf 1581 (a service-based interface exhibited by the SMF 136), Nnef 158B (a sendee-based interface exhibited by the NEF 154), Npcf 158D (a sendee-based interface exhibited by the PCF 148), a Nudm 158E (a sendee- based interface exhibited by the UDM 146), Naf 158F (a service-based interface exhibited by the AF 150), Nnrf 158C (a senice-based interface exhibited by the NRF 156), Nnssf 158A (a sendee-based interface exhibited by the NSSF 142), Nausf 158G (a
  • FIG. 2, FIG. 3, FIG. 4, FIG. 5, FIG. 6, FIG. 7, FIG. 8, and FIG. 9 illustrate various systems, devices, and components that may implement aspects of disclosed embodiments in different communication systems, such as 5G-NR networks including 5G non-terrestrial networks (NTNs).
  • 5G-NR networks including 5G non-terrestrial networks (NTNs).
  • UEs, base stations (such as gNBs), and/or other nodes (e.g., satellites or other NTN nodes) discussed in connection with FIGS. 1 A-9 can be configured to perform the disclosed techniques.
  • FIG. 2 illustrates a network 200 in accordance wdth various embodiments.
  • the network 200 may operate in a manner consistent with 3GPP technical specifications for LTE or 5G/NR systems.
  • 3GPP technical specifications for LTE or 5G/NR systems 3GPP technical specifications for LTE or 5G/NR systems.
  • the example embodiments are not limited in this regard and the described embodiments may apply to other networks that benefit from the principles described herein, such as future 3GPP systems, or the like.
  • the network 200 may include a UE 202, which may include any mobile or non-mobile computing device designed to communicate wdth a RAN 204 via an over-the-air connection.
  • the UE 202 may be, but is not limited to, a smartphone, tablet computer, wearable computing device, desktop computer, laptop computer, in-vehicle infotainment, in-car entertainment device, instrument cluster, head-up display device, onboard diagnostic device, dashtop mobile equipment, mobile data terminal, electronic engine management system, electron! c/engine control unit, electronic/engine control module, embedded system, sensor, microcontroller, control module, engine management system, networked appliance, machine-type communication device, M2M or D2D device, loT device, etc.
  • the network 200 may include a plurality of UEs coupled directly with one another via a si delink interface.
  • the UEs may be
  • M2MZD2D devices that communicate using physical sidelink channels such as but not limited to, PSBCH, PSDCH, PSSCH, PSCCH, PSI CH, etc.
  • the UE 202 may additionally communicate with an AP 206 via an over-the-air connection.
  • the AP 206 may manage a WLAN connection, which may serve to offload some/all network traffic from the RAN 204.
  • the connection between the UE 202 and the AP 206 may be consistent with any IEEE 802.1 1 protocol, wherein the AP 206 could be a wireless fidelity (Wi-Fi®) router.
  • the UE 202, RAN 204, and AP 206 may utilize cellular- WLAN aggregation (for example, LWA'LWIP).
  • Cellular- WLAN aggregation may involve the UE 202 being configured by the RAN 204 to utilize both cellular radio resources and WLAN resources.
  • the RAN 204 may include one or more access nodes, for example, access node (AN) 208.
  • AN 208 may terminate air-interface protocols for the UE 202 by providing access stratum protocols including RRC, Packet Data Convergence Protocol (PDCP), Radio Link Control (RLC), MAC, and LI protocols.
  • RRC Radio Resource Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • LI protocols e.g., LEO protocol for Mobile communications
  • the AN 208 may enable data/voice connectivity between the core network (CN) 220 and the UE 202.
  • the AN 208 may be implemented in a discrete device or as one or more software entities running on server computers as part of, for example, a virtual network, which may be referred to as a CRAN or virtual baseband unit pool.
  • the AN 208 be referred to as a BS, gNB, RAN node, eNB, ng-eNB, NodeB, RSU, TRxP, TRP, etc.
  • the AN 208 may be a macrocell base station or a low-power base station for providing femtocells, picocells, or other like cells having smaller coverage areas, smaller user capacity, or higher bandwidth compared to macrocells.
  • the RAN 204 may be coupled with one another via an X2 interface (if the RAN 204 is an LTE RAN) or an Xn interface (if the RAN 204 is a 5G RAN).
  • the X2/Xn interfaces which may be separated into control/user plane interfaces in some embodiments, may allow the ANs to communicate information related to handovers, data/context transfers, mobility, load management, interference coordination, etc.
  • the ANs of the RAN 204 may each manage one or more cells, cell groups, component, carriers, etc. to provide the UE 202 with an air interface for network access.
  • the UE 202 may be simultaneously connected with a plurality of cells provided by the same or different ANs of the RAN 204.
  • the UE 202 and RAN 204 may use carrier aggregation to allow the UE 202 to connect with a plurality of component carriers, each corresponding to a Pcell or Seel I .
  • a first AN may be a master node that provides an MCG and a second AN may be a secondary node that provides an SCG.
  • the first/ second ANs may be any combination of eNB, gNB, ng-eNB, etc.
  • the RAN 204 may provide the air interface over a licensed spectrum or an unlicensed spectrum.
  • the nodes may use LAA, eLAA, and/or feLAA mechanisms based on CA technology with PCells/Scells.
  • the nodes may perform medium/carrier-sensing operations based on, for example, a listen-before-talk (LBT) protocol.
  • LBT listen-before-talk
  • the UE 202 or AN 208 may be or act as a roadside unit (RSU), which may refer to any transportation infrastructure entity used for V2X communications.
  • RSU may be implemented in or by a suitable AN or a stationary' (or relatively stationary-) UE.
  • An RSU implemented in or by: a UE may be referred to as a “UE-type RSU”; an eNB may be referred to as an “eNB-type RSU”; a gNB may be referred to as a “gNB-type RSU”; and the like.
  • an RSU is a computing device coupled with radio frequency circuitry located on a roadside that provides connectivity support to passing vehicle UEs.
  • the RSU may also include internal data storage circuitry to store intersection map geometry, traffic statistics, media, as well as applications/ software to sense and control ongoing vehicular and pedestrian traffic.
  • the RSU may provide very low latency communications required for high-speed events, such as crash avoidance, traffic warnings, and the like. Additionally, or alternatively, the RSU may provide other cellular/WLAN communications services.
  • the components of the RSU may be packaged in a weatherproof enclosure suitable for outdoor installation and may include a network interface controller to provide a wired connection (e.g., Ethernet) to a traffic signal controller or a backhaul network.
  • the RAN 204 may be an LTE RAN 210 with eNBs, for example, eNB 212.
  • the LTE RAN 210 may provide an LTE air interface with the following characteristics: sub-carrier spacing (SCS) of 15 kHz; CP-OFDM waveform for downlink (DL) and SC-FDMA waveform for uplink (UL); turbo codes for data and TBCC for control; etc.
  • SCS sub-carrier spacing
  • DL downlink
  • UL uplink
  • turbo codes for data and TBCC for control
  • the LTE air interface may rely on CSI-RS for CSI acquisition and beam management, PDSCH/PDCCH DMRS for PDSCH/PDCCH demodulation; and CRS for cell search and initial acquisition, channel quality measurements, and channel estimation for coherent demodulation/detection at the UE.
  • the LTE air interface may operate on sub-6 GHz bands.
  • the ILAN 204 may be an NG-RAN 214 with gNBs, for example, gNB 216, or ng-eNBs, for example, ng-eNB 218.
  • the gNB 216 may connect with 5G-enabled UEs using a 5G NR interface.
  • the gNB 216 may connect with a 5G core through an NG interface, which may include an
  • the ng-eNB 218 may also connect with the 5G core through an NG interface but may connect with a UE via an LTE air interface.
  • the gNB 216 and the ng-eNB 218 may connect over an Xn interface.
  • the NG interface may be split into two parts, an NG user plane (NG-U) interface, which carries traffic data between the nodes of the NG-RAN 214 and a UPF 248 (e.g., N3 interface), and an NG control plane (NG-C) interface, which is a signaling interface between the nodes of the NG-RAN214 and an AMF 244 (e.g., N2 interface).
  • NG-U NG user plane
  • N-C NG control plane
  • the NG-RAN 214 may provide a 5G-NR air interface with the following characteristics: variable SCS; CP-OFDM for DL, CP-OFDM and DFT-s-OFDM for UL; polar, repetition, simplex, and Reed-Muller codes for control and LDPC for data.
  • the 5G-NR air interface may rely on CSI-RS, PDSCHZPDCCH DMRS similar to the LTE air interface.
  • the 5G-NR air interface may not use a CRS but may use PBCH DMRS for PBCH demodulation; PTRS for phase tracking for PDSCH and tracking reference signal for time tracking.
  • the 5G-NR air interface may operate on FR1 bands that include sub-6 GHz bands or FR2 bands that include bands from 24.25 GHz to 52.6 GHz.
  • the 5G-NR air interface may include a synchronization signal and physical broadcast channel (SS/PBCH) block (SSB) that is an area of a downlink resource grid that includes PSS/SSS/PBCH.
  • SS/PBCH physical broadcast channel
  • the 5G-NR air interface may utilize BWPs (bandwidth parts) for various purposes.
  • BWP can be used for dynamic adaptation of the SCS.
  • the UE 202 can be configured with multiple BWPs where each BWP configuration has a different SCS.
  • BWP change is indicated to the UE 202, the SCS of the transmission is changed as weir
  • Another use case example of BWP is related to power saving.
  • multiple BWPs can be configured for the UE 202 with different amounts of frequency resources (for example, PRBs) to support data transmission under different traffic loading scenarios.
  • a BWP containing a smaller number of PRBs can be used for data transmission with a small traffic load while allowing power saving at the UE 202 and in some cases at the gNB 216.
  • a BWP containing a larger number of PRBs can be used for scenarios with higher traffic loads.
  • the RAN 204 is communicatively coupled to CN 220 that includes network elements to provide various functions to support data and telecommunications services to custom ers/subscribers (for example, users of UE 202).
  • the components of the CN 220 may be implemented in one physical node or separate physical nodes.
  • NFV may be utilized to virtualize any or all of the functions provided by the network elements of the CN 220 onto physical compute/ storage resources in servers, switches, etc.
  • a logical instantiation of the CN 220 may be referred to as a network slice, and a logical instantiation of a portion of the CN 220 may be referred to as a network sub- slice.
  • the CN 220 may be connected to the LTE radio network as part of the Enhanced Packet System (EPS) 222, which may also be referred to as an EPC (or enhanced packet core).
  • the EPC 222 may include MME 224, SGW 226, SGSN 228, HSS 230, PGW 232, and PCRF 234 coupled with one another over interfaces (or “reference points”) as shown. Functions of the elements of the EPC 222 may be briefly introduced as follows.
  • the MME 224 may implement mobility management functions to track the current location of the UE 202 to facilitate paging, bearer activation/deactivation, handovers, gateway selection, authentication, etc.
  • the SGW 226 may terminate an S I interface toward the RAN and route data packets between the RAN and the EPC 222.
  • the SGW 226 may be a local mobility anchor point for inter-RAN node handovers and also may provide an anchor for inter-3GPP mobility. Other responsibilities may include lawful intercept, charging, and some policy enforcement.
  • the SGSN 228 may track the location of the UE 202 and perform security functions and access control. In addition, the SGSN 228 may perform inter-EPC node signaling for mobility between different RAT networks; PDN and S-GW selection as specified by MME 224; MME selection for handovers; etc.
  • the S3 reference point between the MME 224 and the SGSN 228 mayenable user and bearer information exchange for inter-3GPP access network mobility in idle/active states.
  • the HSS 230 may include a database for network users, including subscription-related information to support the network entities’ handling of communication sessions.
  • the HSS 230 can provide support for routing/roaming, authentication, authorization, naming/addressing resolution, location dependencies, etc.
  • An S6a reference point between the HSS 230 and the MME 224 may enable the transfer of subscription and authentication data for authenticating/authorizing user access to the LTE CN 220.
  • the PGW 232 may terminate an SGi interface toward a data network (DN) 236 that may include an application/content server 238.
  • the PGW 232 may route data packets between the LTE CN 220 and the data network 236.
  • the PGW 232 may be coupled with the SGW 226 by an S5 reference point to facilitate user plane tunneling and tunnel management.
  • the PGW 232 may further include a node for policy enforcement and charging data collection (for example, PCEF).
  • the SGi reference point between the PGW 232 and the data network 236 may be an operator external public, a private PDN, or an intra-operator packet data network, for example, for provision of IMS services.
  • the PGW 232 may be coupled with a PCRF 234 via a Gx reference point.
  • the PCRF 234 is the policy and charging control element of the LTE CN 220.
  • the PCRF 234 may be communicatively coupled to the app/content sen' er 238 to determine appropriate QoS and charging parameters for service flows.
  • the PCRF 234 may provision associated rules into a PCEF (via Gx reference point) with appropriate TFT and QCI.
  • the CN 220 may be a 5GC 240.
  • the 5GC 240 may include an AUSF 242, AMF 244, SMF 246, UPF 248, NSSF 250, NEF
  • NRF 254, PCF 256, UDM 258, and AF 260 coupled with one another over interfaces (or “reference points”) as shown.
  • Functions of the elements of the 5GC 240 may be briefly introduced as follows.
  • the AUSF 242 may store data for authentication of UE 202 and handle authentication-related functionality.
  • the AUSF 242 may facilitate a common authentication framework for various access types.
  • the AUSF 242 may exhibit aNausf service-based interface.
  • the AMF 244 may allow other functions of the 5GC 240 to communicate with the UE 202 and the RAN 204 and to subscribe to notifications about mobility events with respect to the UE 202.
  • the AMF 244 may be responsible for registration management (for example, for registering UE 202), connection management, reachability management, mobility management, lawful interception of AMF -related events, and access authentication and authorization.
  • the AMF 244 may provide transport for SM messages between the UE 202 and the SMF 246, and act as a transparent proxy for routing SM messages.
  • AMF 244 may also provide transport for SMS messages between UE 202 and an SMSF.
  • AMF 244 may interact with the AUSF 242 and the UE 202 to perform various security anchor and context management functions.
  • AMF 244 may be a termination point of a RAN CP interface, which may include or be an N2 reference point between the RAN 204 and the AMF 244; and the AMF 244 may be a termination point of NAS (Nl) signaling, and perform NAS ciphering and integrity protection.
  • AMF 244 may also support NAS signaling with the UE 202 over an N3 IWF interface.
  • the SMF 246 may be responsible for SM (for example, session establishment, tunnel management between UPF 248 and AN 208); UE IP address allocation and management (including optional authorization); selection and control of UP function; configuring traffic steering at UPF 248 to route traffic to proper destination; termination of interfaces toward policy control functions; controlling part of policy enforcement, charging, and QoS; lawful intercept (for SM events and interface to LI system); termination of SM parts of NAS messages, downlink data notification; initiating AN specific SM information, sent via AMF 244 over N2 to AN 208; and determining SSC mode of a session.
  • SM may refer to the management of a PDU session, and a PDU session or “session” may refer to a PDU connectivity service that provides or enables the exchange of PDUs between the UE 202 and the data network 236.
  • the UPF 248 may act as an anchor point for intra-RAT and inter- RAT mobility, an external PDU session point of interconnecting to data network
  • the UPF 248 may also perform packet routing and forwarding, perform packet inspection, enforce the user plane part of policy rules, lawfully intercept packets (LIP collection), perform traffic usage reporting, perform QoS handling for a user plane (e.g., packet filtering, gating, UL/DL rate enforcement), perform uplink traffic verification (e.g., SDF-to-QoS flow mapping), transport level packet marking in the uplink and dowmlink, and perform dowmlink packet buffering and downlink data notification triggering.
  • UPF 248 may include an uplink classifier to support routing traffic flow's to a data network.
  • the NSSF 250 may select a set of network slice instances serving the UE 202.
  • the NSSF 250 may also determine allowed NSSAI and the mapping to the subscribed S-NSSAIs if needed.
  • the NSSF 250 may also determine the AMF set to be used to serve the UE 202, or a list of candidate AMFs based on a suitable configuration and possibly by querying the NRF 254.
  • the selection of a set of network slice instances for the UE 202 may be triggered by the AMF 244 with which the UE 202 is registered by interacting with the NSSF 250, which may lead to a change of AMF.
  • the NSSF 250 may interact with the AMF 244 via an N22 reference point; and may communicate with another NSSF in a visited network via an N31 reference point (not shown). Additionally, the NSSF 250 may exhibit an Nnssf service-based interface.
  • the NEF 252 may securely expose services and capabilities provided by 3GPP network functions for the third party, internal exposure/re- exposure, AFs (e.g., AF 260), edge computing or fog computing systems, etc.
  • the NEF 252 may authenticate, authorize, or throttle the AFs.
  • NEF 252 may also translate information exchanged with the AF 260 and information exchanged with internal network functions. For example, the NEF 252 may translate between an AF-Service-Identifier and an internal 5GC information.
  • NEF 252 may also receive information from other NF's based on the exposed capabilities of other NFs. This information may be stored at the NEF 252 as structured data, or a data storage NF using standardized interfaces. The stored information can then be re-exposed by the NEF 252 to other NFs and AFs, or used for other purposes such as analytics. Additionally, the NEF 252 may exhibit a Nnef service-based interface.
  • the NRF 254 may support service discovery functions, receive NF discovery' requests from NF instances, and provide the information of the discovered NF instances to the NF instances. NRF 254 also maintains information on available NF instances and their supported sendees. As used herein, the terms “instantiate,” “instantiation,” and the like may refer to the creation of an instance, and an “instance” may refer to a concrete occurrence of an object, which may occur, for example, during the execution of program code. Additionally, the NRF 254 may exhibit the Nnrf service-based interface,
  • the PCF 256 may provide policy rules to control plane functions to enforce them, and may also support a unified policy framework to govern network behavior.
  • the PCF 256 may also implement a front end to access subscription information relevant for policy decisions in a UDR of the UDM 258.
  • the PCF 256 exhibits an Npcf service-based interface.
  • the UDM 258 may handle subscription-related information to support the network entities’ handling of communication sessions and may store the subscription data of UE 202.
  • subscription data may be communicated via an N8 reference point between the UDM 258 and the AMF 244.
  • the UDM 258 may include two parts, an application front, end, and a DDR.
  • the UDR may store subscription data and policy data for the UDM 258 and the PCF 256, and/or structured data for exposure and application data (including PFDs for application detection, application request information for multiple UEs 202) for the NEF 252.
  • the Nudr service-based interface may be exhibited by the UDR 221 to allow the UDM 258, PCF 256, and NEF 252 to access a particular set of the stored data, as well as to read, update (e.g., add, modify), delete, and subscribe to the notification of relevant data changes in the UDR.
  • the UDM may include a UDM-FE, which is in charge of processing credentials, location management, subscription management, and so on. Several different front ends may serve the same user in different transactions.
  • the UDM-FE accesses subscription information stored in the UDR and performs authentication credential processing, user identification handling, access authorization, registration/mobility management, and subscription management.
  • the UDM 258 may exhibit the Nudm service-based interface.
  • the AF 260 may provide application influence on traffic routing, provide access to NEF, and interact with the policy framework for policy control.
  • the 5GC 240 may enable edge computing by selecting operator/3rd party services to be geographically close to a point that the UE 202 is attached to the network. This may reduce latency and load on the network.
  • the 5GC 240 may select a UPF 248 close to the LIE 202 and execute traffic steering from the UPF 248 to data network 236 via the N6 interface. This may be based on the UE subscription data, UE location, and information provided by the AF 260. In this way, the AF 260 may influence UPF (re)selection and traffic routing.
  • the network operator may permit AF 260 to interact directly with relevant NFs. Additionally, the AF 260 may exhibit a Naf service-based interface.
  • the data network 236 may represent various network operator services, Internet access, or third-party sendees that, may be provided by one or more servers including, for example, application/content server 238.
  • FIG. 3 schematically illustrates a wireless network 300 in accordance with various embodiments.
  • the wireless network 300 may include a LIE 302 in wireless communication with AN 304.
  • the LIE 302 and AN 304 may be similar to, and substantially interchangeable with, like-named components described elsewhere herein.
  • the UE 302 may be communicatively coupled with the AN 304 via connection 306.
  • the connection 306 is illustrated as an air interface to enable communicative coupling and can be consistent with cellular communications protocols such as an LTE protocol or a 5G NR protocol operating at mmWave or sub-6 GHz frequencies.
  • the UE 302 may include a host platform 308 coupled with a modem platform 310.
  • the host platform 308 may include application processing circuitry 312, which may be coupled with protocol processing circuitry' 314 of the modem platform 310.
  • the application processing circuitry 312 may run various applications for the LIE 302 that source/sink application data.
  • the application processing circuitry/ 312 may further implement one or more layer operations to transmit/receive application data to/from a data network. These layer operations may include transport (for example UDP) and Internet (for example, IP) operations
  • the protocol processing circuitry' 314 may implement one or more layer operations to facilitate transmission or reception of data over the connection 306.
  • the layer operations implemented by the protocol processing circuitry 314 may include, for example, MAC, RLC, PDCP, RRC, and NAS operations.
  • the modem platform 310 may further include digital baseband circuitry 316 that may implement one or more layer operations that are ‘‘below” layer operations performed by the protocol processing circuitry/ 314 in a network protocol stack. These operations may include, for example, PHY operations including one or more of HARQ-ACK functions, scrambling/d escrambling, encoding/ decoding, layer mapping/de-mapping, modulation symbol mapping, received symbol/bit metric determination, multi-antenna port precoding/decoding, which may include one or more of space-time, space- frequency or spatial coding, reference signal generation/detection, preamble sequence generation and/or decoding, synchronization sequence generation/detection, control channel signal blind decoding, and other related functions.
  • the modem platform 310 may further include transmit circuitry
  • the transmit circuitry' 318 may include a digital -to-analog converter, mixer, intermediate frequency (IF) components, etc.
  • the receive circuitry' 320 may include an analog-to-digital converter, mixer, IF components, etc.
  • the RF circuitry 322 may include a low-noise amplifier, a power amplifier, power tracking components, etc.
  • RFFE 324 may include filters (for example, surface/bulk acoustic wave filters), switches, antenna tuners, beamforming components (for example, phase-array antenna components), etc.
  • transmit/receive components may be specific to details of a specific implementation such as, for example, whether the communication is TDM or FDM, in mmWave or sub-6 GHz frequencies, etc.
  • the transmit/receive components may be arranged in multiple parallel transmit/receive chains, may be disposed of in the same or different chips/modules, etc.
  • the protocol processing circuitry 314 may include one or more instances of control circuitry (not shown) to provide control functions for the transmit/receive components.
  • a UE reception may be established by and via the antenna panels 326, RFFE 324, RF circuitry' 322, receive circuitry' 320, digital baseband circuitry 316, and protocol processing circuitry 314.
  • the antenna panels 326 may receive a transmission from the AN 304 by receive- beamforming signals received by a plurality of antennas/antenna elements of the one or more antenna panels 326.
  • a UE transmission may be established by and via the protocol processing circuitry 314, digital baseband circuitry 316, transmit circuitry 318, RF circuitry 322, RFFE 324, and antenna panels 326.
  • the transmit components of the UE 302 may apply a spatial filter to the data to be transmitted to form a transmit beam emitted by the antenna elements of the antenna panels 326.
  • the AN 304 may include a host platform 328 coupled with a modem platform 330.
  • the host platform 328 may include application processing circuitry 332 coupled with protocol processing circuitry 334 of the modem platform 330.
  • the modem platform may further include digital baseband circuitry 336, transmit circuitry 338, receive circuitry’ 340, RF circuitry 342, RFFE circuitry 344, and antenna panels 346.
  • the components of the AN 304 may be similar to and substantially interchangeable with like-named components of the UE 302.
  • the components of the AN 304 may perform various logical functions that include, for example, RNC functions such as radio bearer management, uplink and downlink dynamic radio resource management, and data packet scheduling.
  • FIG. 4 is a block diagram illustrating components, according to some example embodiments, able to read instructions from a machine-readable or computer-readable medium (e.g., a non-transitory machine-readable storage medium) and perform any one or more of the methodologies discussed herein.
  • FIG. 4 shows a diagrammatic representation of hardware resources 400 including one or more processors (or processor cores) 410, one or more memory /storage devices 420, and one or more communication resources 430, each of which may be communicatively coupled via a bus 440 or other interface circuitry-.
  • the processors 410 may include, for example, a processor 412 and a processor 414.
  • the processors 410 may be, for example, a central processing unit (CPU), a reduced instruction set computing (RISC) processor, a complex instruction set computing (CISC) processor, a graphics processing unit (GPU), a DSP such as a baseband processor, an ASIC, an FPGA, a radio- frequency integrated circuit (RFIC), another processor (including those discussed herein), or any suitable combination thereof
  • the memoiy/storage devices 420 may include a main memory, disk storage, or any suitable combination thereof.
  • the memoiy/storage devices 420 may include but are not limited to, any type of volatile, non-volatile, or semi-volatile memory such as dynamic random access memory (DRAM), static random access memory (SRAM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), Flash memory', solid-state storage, etc.
  • the communication resources 430 may include interconnection or network interface controllers, components, or other suitable devices to communicate with one or more peripheral devices 404 or one or more databases 406 or other network elements via a network 408.
  • the communication resources 430 may include wired communication components (e.g., for coupling via USB, Ethernet, etc.), cellular communication components,
  • NFC components Bluetooth® (or Bluetooth® Low Energy) components, Wi- Fi® components, and other communication components.
  • Instructions 450 may comprise software, a program, an application, an applet, an app, or other executable code for causing at least any of the processors 410 to perform any one or more of the methodologies discussed herein.
  • the instructions 450 may reside, completely or partially, within at least one of the processors 410 (e.g., within the processor’s cache memory/), the memory/storage devices 420, or any suitable combination thereof.
  • any portion of the instructions 450 may be transferred to the hardware resources 400 from any combination of the peripheral devices 404 or the databases 406.
  • the memory of processors 410, the memoiy/storage devices 420, the peripheral devices 404, and the databases 406 are examples of computer-readable and machine-readable media.
  • At least one of the components outlined in one or more of the preceding figures may be configured to perform one or more operations, techniques, processes, and/or methods as outlined in the example sections below.
  • baseband circuitry associated with one or more of the preceding figures may be configured to operate in accordance with one or more of the examples set forth below.
  • circuitry associated with a UE, base station, satellite, network element, etc. as described above in connection with one or more of the preceding figures may be configured to operate in accordance with one or more of the examples set forth below in the example section.
  • AI/ML application may refer to a complete and deployable package, environment to achieve a certain function in an operational environment.
  • AI/ML application or the like may be an application that, contains some artificial intelligence (AI)/machine learning (ML) models and application-level descriptions.
  • AI/ML application may be used for configuring or implementing one or more of the disclosed aspects.
  • machine learning refers to the use of computer systems implementing algorithms and/or statistical models to perform a specific task(s) without using explicit instructions but instead relying on patterns and inferences.
  • ML. algorithms build or estimate mathematical model(s) (referred to as “ML models” or the like) based on sample data (referred to as “training data,” “model training information,” or the like) to make predictions or decisions without being explicitly programmed to perform such tasks.
  • ML algorithm is a computer program that learns from experience with respect to some task and some performance measure, and an ML model may be any object or data structure created after an ML algorithm is trained with one or more training datasets. After training, an ML. model may be used to make predictions on new datasets.
  • ML algorithm refers to different concepts than the term “ML model,” these terms as discussed herein may be used interchangeably for the present disclosure.
  • machine learning model may also refer to ML methods and concepts used by an ML-assisted solution.
  • An “ML-assisted solution” is a solution that addresses a specific use case using ML algorithms during operation.
  • ML models include supervised learning (e.g., linear regression, k-nearest neighbor (KNN), decision tree algorithms, support machine vectors, Bayesian algorithm, ensemble algorithms, etc.) unsupervised learning (e.g., K -means clustering, principal component analysis (PCA), etc.), reinforcement learning (e.g., Q-learning, multi-armed bandit learning, deep RL, etc,), neural networks, and the like.
  • supervised learning e.g., linear regression, k-nearest neighbor (KNN), decision tree algorithms, support machine vectors, Bayesian algorithm, ensemble algorithms, etc.
  • unsupervised learning e.g., K -means clustering, principal component analysis (PCA), etc.
  • reinforcement learning e.g., Q-learning, multi-armed bandit learning,
  • An “ML pipeline” is a set of functionalities, functions, or functional entities specific for an ML-assisted solution; an ML pipeline may include one or several data sources in a data pipeline, a model training pipeline, a model evaluation pipeline, and an actor.
  • the “actor” is an entity that hosts an ML-assisted solution using the output of the ML model inference).
  • ML training host refers to an entity, such as a network function, that hosts the training of the model.
  • ML inference host refers to an entity, such as a network function, that hosts the model during inference mode (which includes both the model execution as well as any online learning if applicable).
  • the ML -host informs the actor about the output of the ML algorithm, and the actor decides for an action (an “action” is performed by an actor as a result of the output of an ML-assisted solution).
  • model inference information refers to information used as an input to the ML model for determining inference(s); the data used to train an ML model and the data used to determine inferences may overlap, however, “training data” and “inference data” refer to different concepts.
  • non-terrestrial networks indicates networks, or segments of networks, using an airborne or space-borne vehicle configured as a transmission equipment relay node or a base station.
  • a non-terrestrial network may use RF resources on board a satellite (or unmanned aircraft system (UAS) platform),
  • NTN-gateway indicates that an earth station or gateway is located at the surface of the Earth, and provides sufficient. RF power and RF sensitivity for accessing to the satellite.
  • NTN Gateway is a transport network layer (TNL) node.
  • regenerative pay load indicates a payload that transforms and amplifies an uplink RF signal before transmitting it on the downlink.
  • the transformation of the signal refers to digital processing that may include demodulation, decoding, re-encoding, re-modulation, and/or filtering.
  • round trip delay indicates the time required for a signal to travel from a terminal to the sat-gateway or from the sat- gateway to the terminal and back. This delay may be used in connection with w 7 eb-based applications.
  • the term “satellite” indicates a space-borne vehicle embarking a bent pipe payload or a regenerative payload telecommunication transmitter, placed into Low-Earth Orbit (LEO), Medium- Earth Orbit (MEO), or Geostationary Earth Orbit (GEO).
  • LEO Low-Earth Orbit
  • MEO Medium- Earth Orbit
  • GEO Geostationary Earth Orbit
  • the term “satellite beam” indicates a beam generated by an antenna on-board a satellite.
  • the term “service link” indicates a radio link between a satellite and a UE.
  • transparent payload indicates a payload that changes the frequency carrier of the uplink RF signal, filters, and amplifies it before transmitting it on the downlink.
  • a non-terrestrial network refers to a network, or segment of networks using RF resources on board a satellite (or UAS platform).
  • FIG. 5 and FIG. 6 illustrate example scenarios of a non-terrestrial network providing access to a user equipment. More specifically, FIG. 5 illustrates a non-terrestrial network 500 using a non-transparent payload, according to some embodiments. FIG. 6 illustrates a non-terrestrial network 600 using a regenerative payload, according to some embodiments.
  • the disclosed NTNs may include one or more of the following elements: (a) at least one gateway connecting the NTN to a data network; (b) a GEO satellite fed by at least one gateway deployed across the satellite targeted coverage; (c) a non-GEO satellite served by one or multiple gateways at any given time; (d) a feeder link or radio link between a gateway (e.g., a sat-gateway) and the satellite (or UAS platform); (e) a sendee link or a radio link between the UE and the satellite (or UAS platform); (f) a satellite (or UAS platform) configured with a transparent or a regenerative payload (the satellite may generate multiple beams over a sendee area bounded by its field of view, where the footprints of the beams may be of elliptic shape); (g) a transparent payload; (h) a regenerative payload (e.g., RF filtering, frequency conversion and amplification as well as de
  • FIG. 7 illustrates a non-terrestrial network 700 including a networking-RAN architecture with a transparent satellite, according to some embodiments.
  • a satellite payload may implement frequency conversion and an RF amplifier in both the uplink and the downlink.
  • the satellite repeats the NR-Uu radio interface from a feeder link (between the gateway and the satellite) to a service link (between the satellite and the UE) and vice versa.
  • the satellite radio interface (SRI) on the feeder link is the NR-Uu (e.g., the satellite does not terminate NR-Uu), and the gateway supports functionality for forwarding the signal received via the NR-Uu interface.
  • transparent satellites may be connected to the same gNB on the ground.
  • FIG. 8 illustrates a non-terrestrial network 800 including a regenerative satellite without inter-satellite links (ISL), according to some embodiments.
  • a satellite payload may be configured for regeneration of the signals received from Earth, where the NR-Uu interface may be used on the sendee link between the UE and the satellite, and a satellite radio interface (SRI) may be used on the feeder link between the gateway and the satellite.
  • the SRI may be configured as a transport link between the gateway and the satellite.
  • the satellite payload may be associated with ISL between multiple satellites.
  • ISL may be configured as a radio interface or an optical interface (e.g., 3GPP or non ⁇ 3GPP defined).
  • the gateway may be configured as a transport network layer node supporting one or more transport protocols.
  • FIG. 9 illustrates a non-tenestrial network 900 including a regenerative satellite with ISL, according to some embodiments. More specifically, FIG. 9 illustrates that a UE served by a gNB on board a satellite could access a 5G core network via the ISL.
  • the gNB may be configured onboard different satellites and may be connected to the same 5G core network on the ground.
  • the disclosed 5G communication systems may be configured to support non-terrestrial access (e.g. satellites, high-altitude platforms, etc.).
  • non-terrestrial access e.g. satellites, high-altitude platforms, etc.
  • the satellite beam projected on the Earth surface can be either earth-fixed (by using beam steering techniques) or can be earth-moving. In the latter case, there may be an issue with the UE location information that the Radio Access Network (RAN) provides to the 5G Core Network (CN).
  • RAN Radio Access Network
  • CN 5G Core Network
  • the initial message on the RAN-CN interface may contain information about the UE location expressed via a Cell Global Identifier (CGI) of the cell through which the UE has attempted to connect.
  • CGI Cell Global Identifier
  • the CN may be configured with information that maps the CGI into a geographic area. In some aspects, with terrestrial access, the geographic area indicated by the CGI may coincide with the actual radio coverage of the cell (e.g., as illustrated in FIG. 10).
  • FIG. 10 illustrates a diagram 1000 of example Earth-moving cells and cell global identifiers (CGIs) mapped to static geographic areas, according to some embodiments.
  • CGIs cell global identifiers
  • FIG. 10 illustrates communication scenarios in the case of LEO satellite access with earth-moving beams.
  • the CGI parameter maps to a static “nominal” geographic area, while the actual radio coverage of the cell coincides with the “nominal” geographic area only at certain instants.
  • FIG. 10 illustrates the case of two LEO satellites following each other on a common trajectory. The beam projection on the earth of the first and second satellite are depicted in FIG. 10 with no shading and with shading respectively.
  • the beam projection of each cell coincides with the “nominal” geographic area, i.e., the radio coverage of Radio Cell 1 coincides with the “nominal” geographic area indicated by CGI 1 , whereas the radio coverage of Radio Cell 2 coincides with the “nominal” geographic coverage of CGI 2.
  • Cell ID 2 the Cell ID provided by the UE (Cell ID 2) will correspond to the “nominal” geographic area of CGI 2 (i.e., it can be used as an accurate descriptor of the UE location).
  • the Cell ID provided by the UE (Cell ID 1) will correspond to a “nominal” geographic area corresponding to CGI 2, i.e., it may not be used as an accurate descriptor of the UE location.
  • the disclosed techniques may be used in communication scenarios with satellite (e.g., LEO satellite) access with moving beams, to ensure that the CGI indicated by the RAN to the CN corresponds to a fixed geographical area.
  • the CGI granularity may be deemed sufficient. Specifically, it may be used to assist Public Safety Answering Point (PSAP) selection for emergency calls. If finer location granularity is needed (e.g., for locating the user making an emergency call), the network can initiate location-based services (LCS) using one or more positioning techniques (e.g., techniques specified by 3 GPP).
  • LEO satellite Location-based services
  • FIG. 11 is a swimlane diagram 1100 of example communication flow for determining UE location based on multiple CGIs, according to some embodiments.
  • radio resource control (RRC) connection may be established based on the illustrated communication sequence: RRC connection request sent from the UE to the gNB, RRC setup information is communicated from the gNB to the UE, and RRC setup complete message is communicated from the UE to the gNB.
  • the UE may provide a CGI upon establishment of the RRC connection (e.g., the CGI is associated with a cell through which the UE establishes the RRC connection).
  • the gNB (as part of the RAN) may communicate two or more CGIs in the initial UE message sent to the CN (e.g., LMF of the CN) as an indication of the UE location.
  • One CGI is the CGI provided by the UE upon establishment of the RRC connection.
  • the other CGI (or CGIs) may be determined by the gNB based on, for example, the knowledge of the satellite trajectory', the time of the day, or other configuration information associated with the satellite (as illustrated in FIG. 11).
  • the initial UE message may be defined in TS 38.413 (clause
  • the UE’s location (e.g., as indicated by the NR CGI) may be included in the User Location Information (ULI) parameter (listed in the above Table 1), which is defined in TS 38.413 (clause 9.3.1.16) as provided in Table 2 below:
  • UMI User Location Information
  • the location when a UE accesses via NR access, the location may be expressed in terms of CGI. In some aspects, only one CGI may be included as part of the ULI. In some embodiments, two or more CGIs (e.g., NR CGI and Additional NR CGI) may be indicated as part of the ULI parameter, as provided in Table 3 below (showing an example ULI parameter with two CGIs):
  • the uncertainty of locating the UE in a fixed geographical area is limited to two adjacent cells, and signaling an additional CGI may be sufficient.
  • the exi sting NR CGI parameter corresponds to the actual Cell Identifier provided by the UE
  • the Additional NR CGI parameter may be determined by the RAN based on, e.g., the cell adjacencies, the satellite trajectory, and the time of the day.
  • the additional CGI can be indicated in any message sent from the RAN (e.g., the gNB) to the CN (e.g., the LMF) that contains the ULI parameter.
  • the RAN e.g., the gNB
  • the CN e.g., the LMF
  • mapping the UE location to a fixed geographical area may be resolved by mapping the UE location to a fixed geographical area that is twice the size of a cell.
  • the UE provides its location (e.g,, using geo-location information such as GPS coordinates) as part of the establishment of the RRC connection, as illustrated in FIG. 12.
  • location e.g,, using geo-location information such as GPS coordinates
  • FIG. 12 is a swimlane diagram 1200 of example communication flow for determining UE location based on UE-provided location, according to some embodiments.
  • radio resource control (RRC) connection may be established based on the illustrated communication sequence: RRC connection request sent from the UE to the gNB, RRC setup information is communicated from the gNB to the UE, and RRC setup complete message is communicated from the UE to the gNB.
  • the UE may provide geo-location information (e.g., GPS information or other geo-location indicative of the UE location) to the gNB as part of the RRC setup complete message.
  • the gNB compares the received geo-location information (e.g., GPS coordinates) with the radio cell in which the UE originated the call. If the UE- provided location is valid (e.g., the geo-location information corresponds to the geographic area associated with the cell), the gNB uses that information to determine the CGI corresponding to the “nominal” geographical location where the UE resides. The determined CGI is communicated to the CN (e.g., to the LMF in the CN) using a notification message (e.g., an initial UE message as described hereinabove).
  • a notification message e.g., an initial UE message as described hereinabove.
  • a method for determining UE location in a 5G system with LEO satellite access with earth-moving beams is disclosed.
  • the Core Network (CN) is configured with information that maps a Cell Global Identifier (CGI) into a nominal fixed geographical area.
  • CGI Cell Global Identifier
  • the actual radio coverage of a cell identified with CGI coincides with the nominal fixed geographical area only at predefined periodic instants.
  • the RAN uses the CGI corresponding to the radio cell where the UE attempted the connection and determines the initial UE location information that it forwards to the CN.
  • the initial UE location provided by the RAN in the Initial UE message to the Core Network (CN) is expressed by two Cell Global Identifiers (CGIs).
  • the first CGI is the CGI corresponding to the radio cell where UE attempted the connection.
  • the second CGI is the CGI of an adjacent cell as determined by the RAN based on the cell adjacencies, the satellite trajectory, and the time of the day.
  • the two CGIs are provided by RAN to CN as part of any NGAP message where UE location information is present.
  • the CN uses the two CGIs to determine the UE location with a granularity of two cells.
  • the RAN indicates more than two CGIs and where CN uses more than two CGIs to determine the UE location with the granularity of more than two cells.
  • the UE reports the UE’s location estimate (e.g. in GPS coordinates) to the R AN as part of the RRC connection establishment. In some embodiments, the UE reports the UE’s location estimate (e.g. in GPS coordinates) to RAN in the RRC Setup Complete message. In some embodiments, the RAN uses the location information provided by the UE to determine the CGI that RAN indicates to the Core Network. [00138] FIG.
  • FIG. 13 illustrates a block diagram of a communication device such as an evolved Node-B (eNB), a new generation Node-B (gNB) (or another RAN node), an access point (AP), a wireless station (STA), a mobile station (MS), or a user equipment (UE), in accordance with some aspects and to perform one or more of the techniques disclosed herein.
  • the communication device 1300 may operate as a standalone device or may be connected (e.g., networked) to other communication devices.
  • Circuitry e.g., processing circuitry
  • circuitry is a collection of circuits implemented in tangible entities of the device 1300 that include hardware (e.g., simple circuits, gates, logic, etc.). Circuitry membership may be flexible over time. Circuitries include members that may, alone or in combination, perform specified operations when operating. In an example, the hardware of the circuitry may be immutably designed to carry' out a specific operation (e.g., hardwired).
  • the hardware of the circuitry may include variably connected physical components (e.g., execution units, transistors, simple circuits, etc.) including a machine-readable medium physically modified (e.g., magnetically, electrically, moveable placement of invariant massed particles, etc.) to encode instructions of the specific operation.
  • variably connected physical components e.g., execution units, transistors, simple circuits, etc.
  • machine-readable medium e.g., magnetically, electrically, moveable placement of invariant massed particles, etc.
  • the underlying electrical properties of a hardware constituent are changed, for example, from an insulator to a conductor or vice versa.
  • the instructions enable embedded hardware (e.g., the execution units or a loading mechanism) to create members of the circuitry in hardware via the variable connections to carry out portions of the specific operation when in operation.
  • the machine-readable medium elements are part of the circuitry' or are communicatively coupled to the other components of the circuitry when the device is operating.
  • any' of the physical components may be used in more than one member of more than one circuitry.
  • execution units may be used in a first circuit of a first circuitry at one point in time and reused by a second circuit in the first circuitry', or by a third circuit in a second circuitry/ at a different time.
  • execution units may be used in a first circuit of a first circuitry at one point in time and reused by a second circuit in the first circuitry', or by a third circuit in a second circuitry/ at a different time.
  • execution units may be used in a first circuit of a first circuitry at one point in time and reused by a second circuit in the first circuitry', or by a third circuit in a second circuitry/ at a different time.
  • the device 1300 may operate as a standalone device or may be connected (e.g., networked) to other devices.
  • the communication device 1300 may operate in the capacity of a server communication device, a client communication device, or both in server- client network environments.
  • the communication device 1300 may act as a peer communication device in a peer-to-peer (P2P) (or other distributed) network environment.
  • the communication device 1300 may be a UE, eNB, PC, a tablet PC, an STB, a PDA, a mobile telephone, a smartphone, a web appliance, a network router, switch or bridge, or any communication device capable of executing instructions (sequential or otherwise) that specify actions to be taken by that communication device.
  • communication device shall also be taken to include any collection of communication devices that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein, such as cloud computing, software as a service (SaaS), and other computer cluster configurations.
  • cloud computing software as a service
  • SaaS software as a service
  • Examples, as described herein, may include, or may operate on, logic or a number of components, modules, or mechanisms.
  • Modules are tangible entities (e.g., hardware) capable of performing specified operations and may be configured or arranged in a certain manner.
  • circuits may be arranged (e.g., internally or with respect to external entities such as other circuits) in a specified manner as a module.
  • the whole or part of one or more computer systems e.g., a standalone, client, or server computer system
  • one or more hardware processors may be configured by firmware or software (e.g., instructions, an application portion, or an application) as a module that operates to perform specified operations.
  • the software may reside on a communication device-readable medium.
  • the software when executed by the underlying hardware of the module, causes the hardware to perform the specified operations.
  • module is understood to encompass a tangible entity, be that an entity that is physically constructed, specifically configured (e.g., hardwired), or temporarily (e.g., transitorily) configured (e.g., programmed) to operate in a specified manner or to perform part or all of any operation described herein.
  • each of the modules need not be instantiated at any one moment in time.
  • the modules comprise a general-purpose hardware processor configured using the software
  • the general -purpose hardware processor may be configured as respective different modules at different times.
  • the software may accordingly configure a hardware processor, for example, to constitute a particular module at one instance of time and to constitute a different module at a different instance of time.
  • the communication device (e.g., UE) 1300 may include a hardware processor 1302 (e.g., a central processing unit (CPU), a graphics processing unit (GPU), a hardware processor core, or any combination thereof), a main memory 1304, a static memory 1306, and a storage device 1307 (e.g., hard drive, tape drive, flash storage, or other block or storage devices), some or all of which may communicate with each other via an interlink (e.g., bus) 1308.
  • the communication device 1300 may further include a display device 1310, an alphanumeric input device 1312 (e.g., a keyboard), and a user interface (UI) navigation device 1314 (e.g., a mouse).
  • a hardware processor 1302 e.g., a central processing unit (CPU), a graphics processing unit (GPU), a hardware processor core, or any combination thereof
  • main memory 1304 e.g., a main memory 1304, a static memory 1306, and a storage device 1307 (
  • the display device 1310, input device 1312, and UI navigation device 1314 may be a touchscreen display.
  • the communication device 1300 may additionally include a signal generation device 1318 (e.g., a speaker), a network interface device 1320, and one or more sensors 1321, such as a global positioning system (GPS) sensor, compass, accelerometer, or another sensor.
  • the communication device 1300 may include an output controller 1328, such as a serial (e.g., universal serial bus (USB), parallel, or other wired or wireless (e.g., infrared (IR), near field communication (NFC), etc. ) connection to communicate or control one or more peripheral devices (e.g., a printer, card reader, etc.).
  • a serial e.g., universal serial bus (USB), parallel, or other wired or wireless (e.g., infrared (IR), near field communication (NFC), etc. ) connection to communicate or control one or more peripheral devices (e.g., a printer, card
  • the storage device 1307 may include a communication device- readable medium 1322, on which is stored one or more sets of data structures or instructions 1324 (e.g,, software) embodying or utilized by any one or more of the techniques or functions described herein.
  • registers of the processor 1302, the main memory 1304, the static memory/ 1306, and/or the storage device 1307 may be, or include (completely or at least partially), the device-readable medium 1322, on which is stored the one or more sets of data structures or instructions 1324, embodying or utilized by any one or more of the techniques or functions described herein.
  • one or any combination of the hardware processor 1302, the main memory 1304, the static memory 1306, or the mass storage 1316 may constitute the device-readable medium 1322.
  • the term "device-readable medium” is interchangeable with “computer-readable medium” or “machine-readable medium”. While the communication device-readable medium 1322 is illustrated as a single medium, the term “communication device-readable medium” may include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) configured to store the one or more instructions 1324.
  • communication device-readable medium is inclusive of the terms “machine-readable medium” or “computer-readable medium”, and may include any medium that is capable of storing, encoding, or carrying instructions (e.g., instructions 1324) for execution by the communication device 1300 and that causes the communication device 1300 to perform any one or more of the techniques of the present disclosure, or that is capable of storing, encoding or carrying data structures used by or associated with such instructions.
  • Non-limiting communication device-readable medium examples may include solid-state memories and optical and magnetic media.
  • communication device-readable media may include non- volatile memory, such as semiconductor memory/ devices (e.g., Electrically Programmable Read-Only Memory (EPROM), Electrically Erasable Programmable Read-Only Memory' (EEPROM)) and flash memory devices; magnetic disks, such as internal hard disks and removable disks; magneto- optical disks; Random Access Memory/ (RAM); and CD-ROM and DVD-ROM disks.
  • EPROM Electrically Programmable Read-Only Memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory'
  • flash memory devices e.g., Electrically Programmable Read-Only Memory (EPROM), Electrically Erasable Programmable Read-Only Memory' (EEPROM)
  • flash memory devices e.g., Electrically Programmable Read-Only Memory (EPROM), Electrically Erasable Programmable Read-Only Memory' (EEPROM)
  • flash memory devices e.g., Electrically Erasable Programmable Read-Only Memory (EEPROM)
  • flash memory devices e.g
  • Instructions 1324 may further be transmitted or received over a communications network 1326 using a transmission medium via the network interface device 1320 utilizing any one of a number of transfer protocols.
  • the network interface device 1320 may include one or more physical jacks (e.g., Ethernet, coaxial, or phonejacks) or one or more antennas to connect to the communi cations network 1326.
  • the network interface device 1320 may include a plurality of antennas to wirelessly communicate using at least one of single-input-multiple-output (SIMO), MEMO, or multiple- input-single-output (MISO) techniques.
  • SIMO single-input-multiple-output
  • MEMO multi-input
  • MISO multiple- input-single-output
  • the network interface device 1320 may wirelessly communicate using Multiple User MEMO techniques.
  • transmission medium shall be taken to include any intangible medium that is capable of storing, encoding, or carrying instructions for execution by the communication device 1300, and includes digital or analog communications signals or another intangible medium to facilitate communication of such software.
  • a transmission medium in the context of this disclosure is a device-readable medium.
  • machine-readable medium means the same thing and may be used interchangeably in this disclosure.
  • the terms are defined to include both machine-storage media and transmission media.
  • the terms include both storage devices/media and carrier waves/modulated data signals.
  • Described implementations of the subject matter can include one or more features, alone or in combination as illustrated below by way of examples.
  • Example 1 is an apparatus for a base station configured for operation in a Fifth Generation New 7 Radio (5GNR) network with non-terrestrial access, the apparatus comprising: processing circuitry, wherein to configure the base station for user equipment (UE) location determination in the 5G NR network, the processing circuitry/ is to: decode radio resource control (RRC) signaling, the RRC signaling received from the UE via a satellite node of the 5G NR network and the RRC signaling including first location information associated with the UE; determine second location information associated with the UE based on a trajectory of the satellite node, the second location information being different from the first location information; and encode the first location information and the second location information for transmission to a location management function (LMF) via an access and mobility management function (AMF) of the 5G NR network, the LMF function performing the UE location determination; and a memory' coupled to the processing circuitry' and configured to store the first location information and the second location information.
  • RRC radio resource control
  • Example 2 the subject matter of Example 1 includes subject matter where the first location information is a first cell global identifier (CGI) of a first cell through which the UE transmits the RRC signaling, the first CGI corresponding to a first geographic area that coincides with a first beam projection by the satellite node at a first time.
  • CGI cell global identifier
  • Example 3 the subject matter of Example 2 includes subject matter where the second location information is a second CGI of a second cell associated with a second geographic area, the second geographic area is neighboring the first geographic area and coincides at least partially with a second beam projection by the satellite node at a second time, the second time being after the first time.
  • the second location information is a second CGI of a second cell associated with a second geographic area
  • the second geographic area is neighboring the first geographic area and coincides at least partially with a second beam projection by the satellite node at a second time, the second time being after the first time.
  • Example 4 the subject matter of Examples 1-3 includes subject matter where the RRC signaling is an RRC Setup Complete message received from the UE via the satellite node.
  • Example 5 the subject matter of Examples 1-4 includes subject matter where the processing circuitry is configured to determine the second location information associated with the UE further based on a time of day when determining the second location information is initiated.
  • Example 6 the subject matter of Examples 1-5 includes subject matter where the processing circuitry is configured to encode an initial UE message for transmission to the LMF, the initial UE message including the first location information and the second location information.
  • Example 7 the subject matter of Example 6 includes subject matter where the initial UE message includes user location information (ULI), the ULI comprising the first location information and the second location information.
  • ULI user location information
  • Example 8 the subject matter of Examples 1-7 includes subject matter where the first location information includes geo-location coordinates of the UE.
  • Example 9 the subject matter of Example 8 includes subject matter where the processing circuitry is configured to determine a cell global identifier (CGI) of a cell through which the UE transmits the RRC signaling, the CGI corresponding to a geographic area of the cell; and perform a verification that the geo-location coordinates of the UE are within the geographic area.
  • CGI cell global identifier
  • Example 10 the subject matter of Example 9 includes subject matter where the processing circuitry is configured to: encode the CGI for transmission to the LMF based on the verification.
  • Example 11 the subject matter of Examples 1—10 includes, transceiver circuitry coupled to the processing circuitry; and one or more antennas coupled to the transceiver circuitry.
  • Example 12 is a computer-readable storage medium that stores instructions for execution by one or more processors of a base station, the instructions to configure the base station for operation in a Fifth Generation New Radio (5G NR) network with non-terrestrial access and to cause the base station to perform operations comprising: decoding radio resource control (RRC) signaling, the RRC signaling received from a user equipment (UE) via a satellite node of the 5G NR network, and the RRC signaling including geo-location coordinates of the UE, determining a cell global identifier (CGI) of a cell through which the UE transmits the RRC signaling, the CGI corresponding to a geographic area of the cell; performing a verification that the geo-location coordinates of the UE are within the geographic area; and encoding the CGI for transmission to a location management function (LMF) based on the verification, the transmission performed via an access and mobility management function (AMF) of the 5G NR network, the LMF function performing location determination of the UE.
  • RRC radio
  • Example 13 the subject matter of Example 12 includes subject matter where the RRC signaling is an RRC Setup Complete message received from the UE via the satellite node.
  • Example 14 the subject matter of Examples 12—13 includes, the operations further comprising: encoding an initial UE message for transmission to the LMF, the initial UE message including the CGI.
  • Example 16 the subject matter of Example 15 includes subject matter where the first location information is a first cell global identifier (CGI) of a first cell through which the UE transmits the RRC signaling, the first CGI corresponding to a first geographic area that coincides with a first beam projection by the satellite node at a first time.
  • the subject matter of Example 16 includes subject matter where the second location information is a second CGI of a second cell associated with a second geographic area, the second geographic area is neighboring the first geographic area and coincides at least partially with a second beam projection by the satellite node at a second time, the second time being after the first time.
  • CGI cell global identifier
  • Example 18 the subject matter of Examples 15—17 includes subject matter where the RRC signaling is an RRC Setup Complete message received from the UE via the satellite node.
  • Example 19 the subject matter of Examples 15-18 includes, the operations further comprising: determining the second location information associated with the UE further based on a time of day when determining the second location information is initiated.
  • Example 20 the subject matter of Examples 15-19 includes, the operations further comprising: encoding an initial UE message for transmission to the LMF, the initial UE message including the first location information and the second location information, wherein the initial UE message includes user location information (ULI), the ULI comprising the first location information and the second location information.
  • Example 21 is at least one machine-readable medium including instructions that, when executed by processing circuitry, cause the processing circuitry to perform operations to implement any of Examples 1 -20.
  • Example 22 is an apparatus comprising means to implement any of Examples 1-20.
  • Example 23 is a system to implement any of Examples 1-20.
  • Example 24 is a method to implement any of Examples 1-20,

Abstract

An apparatus for a base station configured for operation in a 5G NR network with non-terrestrial access includes processing circuitry coupled to a memory. To configure the base station for UE location determination, the processing circuitry is to decode RRC signaling received from the UE via a satellite node. The RRC signaling includes first location information associated with the UE. Second location information associated with the UE is determined based on the trajectory of the satellite node. The first and second location information is encoded for transmission to an LMF for performing the UE location determination.

Description

DEVICE LOCATION DETERMINATION IN 5G NON-TERRESTRIAL
NETWORKS
PRIORITY CLAIM
[0001] This application claims the benefit of priority to United States
Provisional Patent Application 63/090,660, filed October 12, 2020, and entitled “DETERMINING DEVICE LOCATION IN CELLULAR. NETWORK WITH NON-TERRESTRIAL ACCESS,” which patent application is incorporated herein by reference in its entirety.
TECHNICAL FIELD
[0002] Aspects pertain to wireless communications. Some aspects relate to wireless networks including 3 GPP (Third Generation Partnership Project) networks, 3GPP LTE (Long Tenn Evolution) networks, 3GPP LTE-A (LTE Advanced) networks, (MulteFire, LTE-U), and fifth-generation (5G) networks including 5G new radio (NR) (or 5G-NR) networks, 5G-LTE networks such as 5G NR unlicensed spectrum (NR-U) networks and other unlicensed networks including Wi-Fi, CBRS (OnGo), etc. Other aspects are directed to techniques for device location determination in 5G-NR networks including 5G non- terrestrial networks (NTNs).
BACKGROUND
[0003] Mobile communications have evolved significantly from early voice systems to today’s highly sophisticated integrated communication platform. With the increase in different types of devices communicating with various network devices, usage of 3 GPP LTE systems has increased. The penetration of mobile devices (user equipment or UEs) in modern society has continued to drive demand for a wide variety of networked devices in many disparate environments. Fifth-generation (5G) wireless systems are forthcoming and are expected to enable even greater speed, connectivity, and usability. Next generation 5G networks (or NR networks) are expected to increase throughput, coverage, and robustness and reduce latency and operational and capital expenditures. 5G-NR networks will continue to evolve based on 3GPP LTE- Advanced with additional potential new radio access technologies (RATs) to enrich people’s lives with seamless wireless connectivity solutions delivering fast, rich content and sendees. As current cellular network frequency is saturated, higher frequencies, such as millimeter wave (mm Wave) frequency, can be beneficial due to their high bandwidth.
[0004] Potential LTE operation in the unlicensed spectrum includes (and is not limited to) the LTE operation in the unlicensed spectrum via dual connectivity (DC), or DC-based LAA, and the standalone LTE system in the unlicensed spectrum, according to which LTE-based technology solely operates in the unlicensed spectrum without requiring an “anchor” in the licensed spectrum, called MulteFire. Further enhanced operation of LTE and NR systems in the licensed, as well as unlicensed spectrum, is expected in future releases and 5G systems. Such enhanced operations can include techniques for device location determination in 5G-NR networks including 5G NTNs.
BRIEF DESCRIPTION OF THE FIGURES
[0005] In the figures, which are not necessarily drawn to scale, like numerals may describe similar components in different views. Like numerals having different letter suffixes may represent different instances of similar components. The figures illustrate generally, by way of example, but not by way of limitation, various aspects discussed in the present document.
[0006] FIG. 1 A illustrates an architecture of a network, in accordance with some aspects.
[0007] FIG. IB and FIG. 1C illustrate a non-roaming 5G system architecture in accordance with some aspects.
[0008] FIG. 2, FIG. 3, and FIG. 4 illustrate various systems, devices, and components that may implement aspects of disclosed embodiments.
[0009] FIG. 5 illustrates a non-terrestrial network using a non- transparent payload, according to some embodiments. [0010] FIG. 6 illustrates a non-terrestrial network using a regenerative payload, according to some embodiments.
[0011] FIG. 7 illustrates a non-terrestrial network including a networking- RAN architecture with a transparent satellite, according to some embodiments. [0012] FIG. 8 illustrates a non-terrestrial network including a regenerative satellite without inter-satellite links (ISL), according to some embodiments.
[0013] FIG. 9 illustrates a non-terrestrial network including a regenerative satellite with ISL, according to some embodiments. [0014] FIG. 10 illustrates example Earth-moving cells and cell global identifiers (CGIs) mapped to static geographic areas, according to some embodiments.
[0015] FIG. 11 is a swimlane diagram of example communication flow for determining UE location based on multiple CGIs, according to some embodiments. [0016] FIG. 12 is a swimlane diagram of example communi cation flow for determining LIE location based on UE-provided location, according to some embodiments.
[0017] FIG. 13 illustrates a block diagram of a communication device such as an evolved Node-B (eNB), a new generation Node-B (gNB) (or another RAN node), an access point (AP), a wireless station (STA), a mobile station (MS), or a user equipment (LIE), in accordance with some aspects.
DETAILED DESCRIPTION
[0018] The following description and the drawings sufficiently illustrate aspects to enable those skilled in the art to practice them. Other aspects may incorporate structural, logical, electrical, process, and other changes. Portions and features of some aspects may be included in or substituted for, those of other aspects. Aspects outlined in the claims encompass all available equivalents of those claims.
[0019] FIG. 1A illustrates an architecture of a. network in accordance with some aspects. The network 140A is shown to include user equipment (UE) 101 and UE 102. The UEs 101 and 102 are illustrated as smartphones (e.g., handheld touchscreen mobile computing devices connectable to one or more cellular networks) but may also include any mobile or non-mobile computing device, such as Personal Data Assistants (PDAs), pagers, laptop computers, desktop computers, wireless handsets, drones, or any other computing device including a wared and/or wireless communications interface. The UEs 101 and 102 can be collectively referred to herein as UE 101, and UE 101 can be used to perform one or more of the techniques disclosed herein.
[0020] Any of the radio links described herein (e.g., as used in the network 140A or any other illustrated network) may operate according to any exemplary' radio communication technology and/or standard.
[0021] LTE and LTE -Advanced are standards for wireless communications of high-speed data for UE such as mobile telephones. In LTE- Advanced and various wireless systems, carrier aggregation is a technology according to which multiple carrier signals operating on different frequencies may be used to cany communications for a single UE, thus increasing the bandwidth available to a single device. In some aspects, carrier aggregation maybe used where one or more component carriers operate on unlicensed frequencies.
[0022] Aspects described herein can be used in the context of any spectrum management scheme including, for example, dedicated licensed spectrum, unlicensed spectrum, (licensed) shared spectrum (such as Licensed Shared Access (USA) in 23-2.4 GHz, 3,4-3.6 GHz, 3.6-3.8 GHz, and further frequencies and Spectrum Access System (SAS) in 3.55-3.7 GHz and further frequencies).
[0023] Aspects described herein can also be applied to different Single Carrier or OFDM flavors (CP-OFDM, SC-FDMA, SC-OFDM, filter bank-based multicarrier (FBMC), OFDMA, etc.) and in particular 3GPP NR (New Radio) by allocating the OFDM carrier data bit vectors to the corresponding symbol resources.
[0024] In some aspects, any of the UEs 101 and 102 can comprise an Internet-of- Things (loT) UE or a Cellular loT (CIoT) UE, which can comprise a network access layer designed for low-power loT applications utilizing short- lived UE connections. In some aspects, any of the UEs 101 and 102 can include a narrowband (NB) loT UE (e.g., such as an enhanced NB-IoT (eNB-IoT) UE and Further Enhanced (FeNB-IoT) UE). An loT UE can utilize technologies such as machine-to-machine (M2M) or machine-type communications (MTC) for exchanging data with an MTC server or device via a public land mobile network (PLMN), Proximity -Based Service (ProSe), or device-to-device (D2D) communication, sensor networks, or loT networks. The M2M or MTC exchange of data may be a machine-initiated exchange of data. An loT network includes interconnecting loT UEs, which may include uniquely identifiable embedded computing devices (within the Internet infrastructure), with short-lived connections. The loT UEs may execute background applications (e.g., keep- alive messages, status updates, etc.) to facilitate the connections of the loT network.
[0025] In some aspects, any of the UEs 101 and 102 can include enhanced MTC (eMTC) UEs or further enhanced MTC (FeMTC) UEs.
[0026] The UEs 101 and 102 may be configured to connect, e.g., communicatively couple, with a radio access network (RAN) 1 10. The RAN 110 may be, for example, a Universal Mobile Telecommunications System (UMTS), an Evolved Universal Terrestrial Radio Access Network (E-UTRAN), a NextGen RAN (NG RAN), or some other type of RAN. The UEs 101 and 102 utilize connections 103 and 104, respectively, each of which comprises a physical communications interface or layer (discussed in further detail below); in this example, the connections 103 and 104 are illustrated as an air interface to enable communicative coupling and can be consistent with cellular communications protocols, such as a Global System for Mobile Communications (GSM) protocol, a code-division multiple access (CDM A) network protocol, a Push-to-Talk (PTT) protocol, a PTT over Cellular (POC) protocol, a Universal Mobile Telecommunications System (UMTS) protocol, a 3GPP Long Term Evolution (LTE) protocol, a fifth-generation (5G) protocol, a New Radio (NR) protocol, and the like.
[0027] In an aspect, the UEs 101 and 102 may further directly exchange communication data via a ProSe interface 105. The ProSe interface 105 may alternatively be referred to as a sidelink interface comprising one or more logical channels, including but not limited to a Physical Sidelink Control Channel (PSCCH), a Physical Sidelink Shared Channel (PSSCH), a Physical Sidelink Discovery Channel (PSDCH), and a Physical Sidelink Broadcast Channel (PSBCH). [0028] The UE 102 is shown to be configured to access an access point
(AP) 106 via connection 107. The connection 107 can comprise a local wireless connection, such as, for example, a connection consistent with any IEEE 802.11 protocol, according to which the AP 106 can comprise a wireless fidelity (WiFi®) router. In this example, the AP 106 is shown to be connected to the Internet without connecting to the core network of the wireless system (described in further detail below).
[0029] The RAN 110 can include one or more access nodes that enable connections 103 and 104. These access nodes (ANs) can be referred to as base stations (BSs), NodeBs, evolved NodeBs (eNBs), Next Generation NodeBs (gNBs), RAN network nodes, and the like, and can comprise ground stations (e.g., terrestrial access points) or satellite stations providing coverage within a geographic area (e.g., a cell). In some aspects, the communication nodes 111 and 112 can be transmission/reception points (TRPs), In instances when the communication nodes 11 1 and 112 are NodeBs (e.g., eNBs or gNBs), one or more TRPs can function within the communication cell of the NodeBs. The RAN 110 may include one or more RAN nodes for providing macrocells, e.g., macro RAN node 111, and one or more RAN nodes for providing femtocells or picocells (e.g., cells having smaller coverage areas, smaller user capacity, or higher bandwidth compared to macrocells), e.g., low power (LP) RAN node 112 or an unlicensed spectrum based secondary' ILAN node 112.
[0030] Any of the RAN nodes 111 and 1 12 can terminate the air interface protocol and can be the first point of contact for the UEs 101 and 102. In some aspects, any of the RAN nodes 111 and 112 can fulfill various logical functions for the RAN 110 including, but not limited to, radio network controller (RNC) functions such as radio bearer management, uplink and downlink dynamic radio resource management, and data packet scheduling, and mobility management. In an example, any of the nodes 111 and/or 112 can be a new generation Node-B (gNB), an evolved node-13 (eNB), or another type of RAN node.
[0031] The RAN 110 is shown to be communicatively coupled to a core network (CN) 120 via an SI interface 113. In aspects, the CN 120 may be an evolved packet core (EPC) network, a NextGen Packet Core (NPC) network, or some other type of CN (e.g., as illustrated in reference to FIGS. 1B-1C). In this aspect, the SI interface 113 is split into two parts: the Sl-U interface 114, which carries user traffic data between the RAN nodes 11 1 and 112 and the serving gateway (S-GW) 122, and the SI -mobility management entity (MME) interface 115, which is a signaling interface between the RAN nodes 111 and 1 12 and MMEs 121.
[0032] In this aspect, the CN 120 comprises the MMEs 121, the S-GW 122, the Packet Data Network (PDN) Gateway (P-GW) 123, and a home subscriber server (HSS) 124. The MMEs 121 may be similar in function to the control plane of legacy Serving General Packet Radio Service (GPRS) Support Nodes (SGSN). The MMEs 121 may manage mobility aspects in access such as gateway selection and tracking area list management. The HSS 124 may comprise a database for network users, including subscription-related information to support the network entities' handling of communication sessions. The CN 120 may comprise one or several HSSs 124, depending on the number of mobile subscribers, on the capacity of the equipment, on the organization of the network, etc. For example, the HSS 124 can provide support for routing/roaming, authentication, authorization, naming/ addressing resolution, location dependencies, etc. [0033] The S-GW 122 may terminate the S I interface 113 towards the RAN 110, and route data packets between the RAN 110 and the CN 120. In addition, the S-GW 122 may be a local mobility anchor point for inter-RAN node handovers and also may provide an anchor for inter-3GPP mobility. Other responsibilities of the S-GW 122 may include lawful intercept, charging, and some policy enforcement.
[0034] The P-GW 123 may terminate an SGi interface toward a PDN. The P-GW 123 may route data packets between the EPC network 120 and external networks such as a network including the application server 184 (alternatively referred to as application function (AF)) via an Internet Protocol (IP) interface 125. The P-GW 123 can also communicate data to other external networks 131 A, which can include the Internet, IP multimedia subsystem (IPS) network, and other networks. Generally, the application server 184 may be an element offering applications that use IP bearer resources with the core network (e.g., UMTS Packet Sendees (PS) domain, LTE PS data services, etc.). In this aspect, the P-GW 123 is shown to be communicatively coupled to an application server 184 via an IP interface 125. The application server 184 can also be configured to support one or more communication services (e.g., Voice-over- Internet Protocol (VoIP) sessions, PTT sessions, group communication sessions, social networking services, etc.) for the UEs 101 and 102 via the CN 120.
[0035] The P-GW 123 may further be a node for policy enforcement and charging data collection. Policy and Charging Rules Function (PCRF) 126 is the policy and charging control element of the CN 120. In a non-roaming scenario, in some aspects, there may be a single PCRF in the Home Public Land Mobile Network (HPLMN) associated with a UE's Internet Protocol Connectivity Access Network (IP-CAN) session. In a roaming scenario with a local breakout of traffic, there may be two PCRFs associated with a UE's IP-CAN session: a Home PCRF (H-PCRF) within an HPLMN and a Visited PCRF (V-PCRF) within a Visited Public Land Mobile Network (VPLMN). The PCRF 126 may be communicatively coupled to the application server 184 via the P-GW 123.
[0036] In some aspects, the communication network 140A can be an loT network or a 5G network, including a 5G new' radio network using communications in the licensed (5G NR) and the unlicensed (5GNR-U) spectrum. One of the current enablers of loT is the narrowband-IoT (NB-IoT). [0037] An NG system architecture can include the RAN 110 and a 5G network core (5GC) 120. The NG-RAN 110 can include a plurality of nodes, such as gNBs and NG-eNBs. The core network 120 (e.g., a 5G core network or 5GC) can include an access and mobility function (AMF) and/or a user plane function (UPF). The AMF and the UPF can be communicatively coupled to the gNBs and the NG-eNBs via NG interfaces. More specifically, in some aspects, the gNBs and the NG-eNBs can be connected to the AMF by NG-C interfaces, and to the UPF by NG-U interfaces. The gNBs and the NG-eNBs can be coupled to each other via Xn interfaces.
[0038] In some aspects, the NG system architecture can use reference points between various nodes as provided by 3GPP Technical Specification (TS) 23.501 (e.g., V15.4.0, 2018-12). In some aspects, each of the gNBs and the NG- eNBs can be implemented as a base station, a mobile edge server, a small cell, a home eNB, a RAN network node, and so forth. In some aspects, a gNB can be a master node (MN) and NG-eNB can be a secondary node (SN) in a 5G architecture. In some aspects, the master/primaiy node may operate in a licensed band and the secondary node may operate in an unlicensed band.
[0039] FIG. IB illustrates a non-roaming 5G system architecture in accordance with some aspects. Referring to FIG. IB, there is illustrated a 5G system architecture 140B in a reference point representation. More specifically, UE 102 can be in communication with RAN 110 as well as one or more other 5G core (5GC) network entities. The 5G system architecture 140B includes a plurality of network functions (NFs), such as access and mobility management function (AMF) 132, location management function (LMF) 133, session management function (SMF) 136, policy control function (PCF) 148, application function (AF) 150, user plane function (UPF) 134, network slice selection function (NSSF) 142, authentication server function (AUSF) 144, and unified data management (UDM)/home subscriber server (HSS) 146. The UPF 134 can provide a connection to a data network (DN) 152, which can include, for example, operator services, Internet access, or third-party services. The AMF 132 can be used to manage access control and mobility and can also include network slice selection functionality. The SMF 136 can be configured to set up and manage various sessions according to network policy. The UPF 134 can be deployed in one or more configurations according to the desired service type.
The PCF 148 can be configured to provide a policy framework using network slicing, mobility management, and roaming (similar to PCRF in a 4G communication system). The UDM can be configured to store subscriber profiles and data (similar to an HSS in a 4G communication system).
[0040] The LMF 133 may be used in connection with 5G positioning functionalities. In some aspects, LMF 133 receives measurements and assistance information from the next generation radio access network (NG- RAN) 110 and the mobile device (e.g., UE 101) via the AMF 132 over the NLs interface to compute the position of the UE 101. In some aspects, NR positioning protocol A (NRPPa) may be used to carry' the positioning information between NG-RAN and LMF 133 over a next generation control plane interface (NG-C). In some aspects, LMF 133 configures the UE using the LTE positioning protocol (EPP) via AMF 132. The NG RAN 110 configures the UE 101 using radio resource control (RRC) protocol over LTE-Uu and NR-Uu interfaces.
[0041] In some aspects, the 5G system architecture 140B configures different reference signals to enable positioning measurements. Example reference signals that may be used for positioning measurements include the positioning reference signal (NR PRS) in the downlink and the sounding reference signal (SRS) for positioning in the uplink. The downlink positioning reference signal (PRS) is a reference signal configured to support downlink- based positioning methods.
[0042] In some aspects, the 5G system architecture 140B includes an IP multimedia subsystem (IMS) 168B as well as a plurality of IP multimedia core network subsystem entities, such as call session control functions (CSCFs).
More specifically, the IMS 168B includes a CSCF, which can act as a proxy CSCF (P-CSCF) 162BE, a serving CSCF (S-CSCF) 164B, an emergency CSCF (E-CSCF) (not illustrated in FIG. IB), or interrogating CSCF (1-CSCF) 166B. The P-CSCF 162B can be configured to be the first contact point for the UE 102 within the W subsystem (IMS) 168B. The S-CSCF 164B can be configured to handle the session states in the network, and the E-CSCF can be configured to handle certain aspects of emergency sessions such as routing an emergency request to the correct emergency center or PSAP. The I-CSCF 166B can be configured to function as the contact point within an operator’s network for all IMS connections destined to a subscriber of that network operator, or a roaming subscriber currently located within that network operator's service area. In some aspects, the I-CSCF 166B can be connected to another IP multimedia network 170E, e.g. an IMS operated by a different network operator.
[0043] In some aspects, the UDM/HSS 146 can be coupled to an application server 160E, which can include a telephony application server (TAS) or another application server (AS). The AS 160B can be coupled to the IMS 168B via the S-CSCF 164B or the I-CSCF 166B.
[0044] A reference point representation shows that interaction can exist between corresponding NF services. For example, FIG. IB illustrates the following reference points: N1 (between the UE 102 and the AMF 132), N2 (between the ILAN 110 and the AMF 132), N3 (between the ILAN 110 and the UPF 134), N4 (between the SMF 136 and the UPF 134), N5 (between the PCF 148 and the AF 150, not shown), N6 (between the UPF 134 and the DN 152), N7 (between the SMF 136 and the PCF 148, not shown), N8 (between the UDM 146 and the AMF 132, not shown), N9 (between two UPFs 134, not shown),
N10 (between the UDM 146 and the SMF 136, not shown). Ni l (between the AMF 132 and the SMF 136, not shown), N12 (between the AUSF 144 and the AMF 132, not shown), N13 (between the AUSF 144 and the UDM 146, not shown), N14 (between two AMFs 132, not shown), N15 (between the PCF 148 and the AMF 132 in case of a non-roaming scenario, or between the PCF 148 and a visited network and AMF 132 in case of a roaming scenario, not shown), N16 (between two SMFs, not shown), and N22 (between AMF 132 and NSSF 142, not shown). Other reference point representations not shown in FIG. IB can also be used. [0045] FIG. 1C illustrates a 5G system architecture 140C and a service- based representation. In addition to the network entities illustrated in FIG. 1 B, system architecture 140C can also include a network exposure function (NEF) 154 and a network repository function (NRF) 156. In some aspects, 5G system architectures can be service-based and interaction between network functions can be represented by corresponding point-to-point reference points Ni or as service-based interfaces.
[0046] In some aspects, as illustrated in FIG. I C, service-based representations can be used to represent network functions within the control plane that enable other authorized network functions to access their services. In this regard, 5G system architecture 140C can include the following service- based interfaces: Namf 158H (a service-based interface exhibited by the AMF 132), Nsmf 1581 (a service-based interface exhibited by the SMF 136), Nnef 158B (a sendee-based interface exhibited by the NEF 154), Npcf 158D (a sendee-based interface exhibited by the PCF 148), a Nudm 158E (a sendee- based interface exhibited by the UDM 146), Naf 158F (a service-based interface exhibited by the AF 150), Nnrf 158C (a senice-based interface exhibited by the NRF 156), Nnssf 158A (a sendee-based interface exhibited by the NSSF 142), Nausf 158G (a senice-based interface exhibited by the AUSF 144). Other sendee-based interfaces (e.g., Nudr, N5g-eir, and Nudsf) not shown in FIG. 1C can also be used.
[0047] FIG. 2, FIG. 3, FIG. 4, FIG. 5, FIG. 6, FIG. 7, FIG. 8, and FIG. 9 illustrate various systems, devices, and components that may implement aspects of disclosed embodiments in different communication systems, such as 5G-NR networks including 5G non-terrestrial networks (NTNs). UEs, base stations (such as gNBs), and/or other nodes (e.g., satellites or other NTN nodes) discussed in connection with FIGS. 1 A-9 can be configured to perform the disclosed techniques.
[0048] FIG. 2 illustrates a network 200 in accordance wdth various embodiments. The network 200 may operate in a manner consistent with 3GPP technical specifications for LTE or 5G/NR systems. However, the example embodiments are not limited in this regard and the described embodiments may apply to other networks that benefit from the principles described herein, such as future 3GPP systems, or the like.
[0049] The network 200 may include a UE 202, which may include any mobile or non-mobile computing device designed to communicate wdth a RAN 204 via an over-the-air connection. The UE 202 may be, but is not limited to, a smartphone, tablet computer, wearable computing device, desktop computer, laptop computer, in-vehicle infotainment, in-car entertainment device, instrument cluster, head-up display device, onboard diagnostic device, dashtop mobile equipment, mobile data terminal, electronic engine management system, electron! c/engine control unit, electronic/engine control module, embedded system, sensor, microcontroller, control module, engine management system, networked appliance, machine-type communication device, M2M or D2D device, loT device, etc.
[0050] In some embodiments, the network 200 may include a plurality of UEs coupled directly with one another via a si delink interface. The UEs may be
M2MZD2D devices that communicate using physical sidelink channels such as but not limited to, PSBCH, PSDCH, PSSCH, PSCCH, PSI CH, etc.
[0051] In some embodiments, the UE 202 may additionally communicate with an AP 206 via an over-the-air connection. The AP 206 may manage a WLAN connection, which may serve to offload some/all network traffic from the RAN 204. The connection between the UE 202 and the AP 206 may be consistent with any IEEE 802.1 1 protocol, wherein the AP 206 could be a wireless fidelity (Wi-Fi®) router. In some embodiments, the UE 202, RAN 204, and AP 206 may utilize cellular- WLAN aggregation (for example, LWA'LWIP). Cellular- WLAN aggregation may involve the UE 202 being configured by the RAN 204 to utilize both cellular radio resources and WLAN resources.
[0052] The RAN 204 may include one or more access nodes, for example, access node (AN) 208. AN 208 may terminate air-interface protocols for the UE 202 by providing access stratum protocols including RRC, Packet Data Convergence Protocol (PDCP), Radio Link Control (RLC), MAC, and LI protocols. In this manner, the AN 208 may enable data/voice connectivity between the core network (CN) 220 and the UE 202, In some embodiments, the AN 208 may be implemented in a discrete device or as one or more software entities running on server computers as part of, for example, a virtual network, which may be referred to as a CRAN or virtual baseband unit pool. The AN 208 be referred to as a BS, gNB, RAN node, eNB, ng-eNB, NodeB, RSU, TRxP, TRP, etc. The AN 208 may be a macrocell base station or a low-power base station for providing femtocells, picocells, or other like cells having smaller coverage areas, smaller user capacity, or higher bandwidth compared to macrocells.
[0053] In embodiments in which the RAN 204 includes a plurality of ANs, they may be coupled with one another via an X2 interface (if the RAN 204 is an LTE RAN) or an Xn interface (if the RAN 204 is a 5G RAN). The X2/Xn interfaces, which may be separated into control/user plane interfaces in some embodiments, may allow the ANs to communicate information related to handovers, data/context transfers, mobility, load management, interference coordination, etc.
[0054] The ANs of the RAN 204 may each manage one or more cells, cell groups, component, carriers, etc. to provide the UE 202 with an air interface for network access. The UE 202 may be simultaneously connected with a plurality of cells provided by the same or different ANs of the RAN 204. For example, the UE 202 and RAN 204 may use carrier aggregation to allow the UE 202 to connect with a plurality of component carriers, each corresponding to a Pcell or Seel I . In dual connectivity scenarios, a first AN may be a master node that provides an MCG and a second AN may be a secondary node that provides an SCG. The first/ second ANs may be any combination of eNB, gNB, ng-eNB, etc.
[0055] The RAN 204 may provide the air interface over a licensed spectrum or an unlicensed spectrum. To operate in the unlicensed spectrum, the nodes may use LAA, eLAA, and/or feLAA mechanisms based on CA technology with PCells/Scells. Before accessing the unlicensed spectrum, the nodes may perform medium/carrier-sensing operations based on, for example, a listen-before-talk (LBT) protocol.
[0056] In V2X scenarios, the UE 202 or AN 208 may be or act as a roadside unit (RSU), which may refer to any transportation infrastructure entity used for V2X communications. An RSU may be implemented in or by a suitable AN or a stationary' (or relatively stationary-) UE. An RSU implemented in or by: a UE may be referred to as a “UE-type RSU”; an eNB may be referred to as an “eNB-type RSU”; a gNB may be referred to as a “gNB-type RSU”; and the like. In one example, an RSU is a computing device coupled with radio frequency circuitry located on a roadside that provides connectivity support to passing vehicle UEs. The RSU may also include internal data storage circuitry to store intersection map geometry, traffic statistics, media, as well as applications/ software to sense and control ongoing vehicular and pedestrian traffic. The RSU may provide very low latency communications required for high-speed events, such as crash avoidance, traffic warnings, and the like. Additionally, or alternatively, the RSU may provide other cellular/WLAN communications services. The components of the RSU may be packaged in a weatherproof enclosure suitable for outdoor installation and may include a network interface controller to provide a wired connection (e.g., Ethernet) to a traffic signal controller or a backhaul network.
[0057] In some embodiments, the RAN 204 may be an LTE RAN 210 with eNBs, for example, eNB 212. The LTE RAN 210 may provide an LTE air interface with the following characteristics: sub-carrier spacing (SCS) of 15 kHz; CP-OFDM waveform for downlink (DL) and SC-FDMA waveform for uplink (UL); turbo codes for data and TBCC for control; etc. The LTE air interface may rely on CSI-RS for CSI acquisition and beam management, PDSCH/PDCCH DMRS for PDSCH/PDCCH demodulation; and CRS for cell search and initial acquisition, channel quality measurements, and channel estimation for coherent demodulation/detection at the UE. The LTE air interface may operate on sub-6 GHz bands.
[0058] In some embodiments, the ILAN 204 may be an NG-RAN 214 with gNBs, for example, gNB 216, or ng-eNBs, for example, ng-eNB 218. The gNB 216 may connect with 5G-enabled UEs using a 5G NR interface. The gNB 216 may connect with a 5G core through an NG interface, which may include an
N2 interface or an N3 interface. The ng-eNB 218 may also connect with the 5G core through an NG interface but may connect with a UE via an LTE air interface. The gNB 216 and the ng-eNB 218 may connect over an Xn interface.
[0059] In some embodiments, the NG interface may be split into two parts, an NG user plane (NG-U) interface, which carries traffic data between the nodes of the NG-RAN 214 and a UPF 248 (e.g., N3 interface), and an NG control plane (NG-C) interface, which is a signaling interface between the nodes of the NG-RAN214 and an AMF 244 (e.g., N2 interface). [0060] The NG-RAN 214 may provide a 5G-NR air interface with the following characteristics: variable SCS; CP-OFDM for DL, CP-OFDM and DFT-s-OFDM for UL; polar, repetition, simplex, and Reed-Muller codes for control and LDPC for data. The 5G-NR air interface may rely on CSI-RS, PDSCHZPDCCH DMRS similar to the LTE air interface. The 5G-NR air interface may not use a CRS but may use PBCH DMRS for PBCH demodulation; PTRS for phase tracking for PDSCH and tracking reference signal for time tracking. The 5G-NR air interface may operate on FR1 bands that include sub-6 GHz bands or FR2 bands that include bands from 24.25 GHz to 52.6 GHz. The 5G-NR air interface may include a synchronization signal and physical broadcast channel (SS/PBCH) block (SSB) that is an area of a downlink resource grid that includes PSS/SSS/PBCH.
[0061] In some embodiments, the 5G-NR air interface may utilize BWPs (bandwidth parts) for various purposes. For example, BWP can be used for dynamic adaptation of the SCS. For example, the UE 202 can be configured with multiple BWPs where each BWP configuration has a different SCS. When a BWP change is indicated to the UE 202, the SCS of the transmission is changed as weir Another use case example of BWP is related to power saving. In particular, multiple BWPs can be configured for the UE 202 with different amounts of frequency resources (for example, PRBs) to support data transmission under different traffic loading scenarios. A BWP containing a smaller number of PRBs can be used for data transmission with a small traffic load while allowing power saving at the UE 202 and in some cases at the gNB 216. A BWP containing a larger number of PRBs can be used for scenarios with higher traffic loads.
[0062] The RAN 204 is communicatively coupled to CN 220 that includes network elements to provide various functions to support data and telecommunications services to custom ers/subscribers (for example, users of UE 202). The components of the CN 220 may be implemented in one physical node or separate physical nodes. In some embodiments, NFV may be utilized to virtualize any or all of the functions provided by the network elements of the CN 220 onto physical compute/ storage resources in servers, switches, etc. A logical instantiation of the CN 220 may be referred to as a network slice, and a logical instantiation of a portion of the CN 220 may be referred to as a network sub- slice.
[0063] In some embodiments, the CN 220 may be connected to the LTE radio network as part of the Enhanced Packet System (EPS) 222, which may also be referred to as an EPC (or enhanced packet core). The EPC 222 may include MME 224, SGW 226, SGSN 228, HSS 230, PGW 232, and PCRF 234 coupled with one another over interfaces (or “reference points”) as shown. Functions of the elements of the EPC 222 may be briefly introduced as follows.
[0064] The MME 224 may implement mobility management functions to track the current location of the UE 202 to facilitate paging, bearer activation/deactivation, handovers, gateway selection, authentication, etc.
[0065] The SGW 226 may terminate an S I interface toward the RAN and route data packets between the RAN and the EPC 222. The SGW 226 may be a local mobility anchor point for inter-RAN node handovers and also may provide an anchor for inter-3GPP mobility. Other responsibilities may include lawful intercept, charging, and some policy enforcement.
[0066] The SGSN 228 may track the location of the UE 202 and perform security functions and access control. In addition, the SGSN 228 may perform inter-EPC node signaling for mobility between different RAT networks; PDN and S-GW selection as specified by MME 224; MME selection for handovers; etc. The S3 reference point between the MME 224 and the SGSN 228 mayenable user and bearer information exchange for inter-3GPP access network mobility in idle/active states.
[0067] The HSS 230 may include a database for network users, including subscription-related information to support the network entities’ handling of communication sessions. The HSS 230 can provide support for routing/roaming, authentication, authorization, naming/addressing resolution, location dependencies, etc. An S6a reference point between the HSS 230 and the MME 224 may enable the transfer of subscription and authentication data for authenticating/authorizing user access to the LTE CN 220.
[0068] The PGW 232 may terminate an SGi interface toward a data network (DN) 236 that may include an application/content server 238. The PGW 232 may route data packets between the LTE CN 220 and the data network 236. The PGW 232 may be coupled with the SGW 226 by an S5 reference point to facilitate user plane tunneling and tunnel management. The PGW 232 may further include a node for policy enforcement and charging data collection (for example, PCEF). Additionally, the SGi reference point between the PGW 232 and the data network 236 may be an operator external public, a private PDN, or an intra-operator packet data network, for example, for provision of IMS services. The PGW 232 may be coupled with a PCRF 234 via a Gx reference point.
[0069] The PCRF 234 is the policy and charging control element of the LTE CN 220. The PCRF 234 may be communicatively coupled to the app/content sen' er 238 to determine appropriate QoS and charging parameters for service flows. The PCRF 234 may provision associated rules into a PCEF (via Gx reference point) with appropriate TFT and QCI.
[0070] In some embodiments, the CN 220 may be a 5GC 240. The 5GC 240 may include an AUSF 242, AMF 244, SMF 246, UPF 248, NSSF 250, NEF
252, NRF 254, PCF 256, UDM 258, and AF 260 coupled with one another over interfaces (or “reference points”) as shown. Functions of the elements of the 5GC 240 may be briefly introduced as follows.
[0071] The AUSF 242 may store data for authentication of UE 202 and handle authentication-related functionality. The AUSF 242 may facilitate a common authentication framework for various access types. In addition to communicating with other elements of the 5GC 240 over reference points as shown, the AUSF 242 may exhibit aNausf service-based interface.
[0072] The AMF 244 may allow other functions of the 5GC 240 to communicate with the UE 202 and the RAN 204 and to subscribe to notifications about mobility events with respect to the UE 202. The AMF 244 may be responsible for registration management (for example, for registering UE 202), connection management, reachability management, mobility management, lawful interception of AMF -related events, and access authentication and authorization. The AMF 244 may provide transport for SM messages between the UE 202 and the SMF 246, and act as a transparent proxy for routing SM messages. AMF 244 may also provide transport for SMS messages between UE 202 and an SMSF. AMF 244 may interact with the AUSF 242 and the UE 202 to perform various security anchor and context management functions.
Furthermore, AMF 244 may be a termination point of a RAN CP interface, which may include or be an N2 reference point between the RAN 204 and the AMF 244; and the AMF 244 may be a termination point of NAS (Nl) signaling, and perform NAS ciphering and integrity protection. AMF 244 may also support NAS signaling with the UE 202 over an N3 IWF interface.
[0073] The SMF 246 may be responsible for SM (for example, session establishment, tunnel management between UPF 248 and AN 208); UE IP address allocation and management (including optional authorization); selection and control of UP function; configuring traffic steering at UPF 248 to route traffic to proper destination; termination of interfaces toward policy control functions; controlling part of policy enforcement, charging, and QoS; lawful intercept (for SM events and interface to LI system); termination of SM parts of NAS messages, downlink data notification; initiating AN specific SM information, sent via AMF 244 over N2 to AN 208; and determining SSC mode of a session. SM may refer to the management of a PDU session, and a PDU session or “session” may refer to a PDU connectivity service that provides or enables the exchange of PDUs between the UE 202 and the data network 236.
[0074] The UPF 248 may act as an anchor point for intra-RAT and inter- RAT mobility, an external PDU session point of interconnecting to data network
236, and a branching point to support multi-homed PDU sessions. The UPF 248 may also perform packet routing and forwarding, perform packet inspection, enforce the user plane part of policy rules, lawfully intercept packets (LIP collection), perform traffic usage reporting, perform QoS handling for a user plane (e.g., packet filtering, gating, UL/DL rate enforcement), perform uplink traffic verification (e.g., SDF-to-QoS flow mapping), transport level packet marking in the uplink and dowmlink, and perform dowmlink packet buffering and downlink data notification triggering. UPF 248 may include an uplink classifier to support routing traffic flow's to a data network. [0075] The NSSF 250 may select a set of network slice instances serving the UE 202. The NSSF 250 may also determine allowed NSSAI and the mapping to the subscribed S-NSSAIs if needed. The NSSF 250 may also determine the AMF set to be used to serve the UE 202, or a list of candidate AMFs based on a suitable configuration and possibly by querying the NRF 254. The selection of a set of network slice instances for the UE 202 may be triggered by the AMF 244 with which the UE 202 is registered by interacting with the NSSF 250, which may lead to a change of AMF. The NSSF 250 may interact with the AMF 244 via an N22 reference point; and may communicate with another NSSF in a visited network via an N31 reference point (not shown). Additionally, the NSSF 250 may exhibit an Nnssf service-based interface.
[0076] The NEF 252 may securely expose services and capabilities provided by 3GPP network functions for the third party, internal exposure/re- exposure, AFs (e.g., AF 260), edge computing or fog computing systems, etc. In such embodiments, the NEF 252 may authenticate, authorize, or throttle the AFs. NEF 252 may also translate information exchanged with the AF 260 and information exchanged with internal network functions. For example, the NEF 252 may translate between an AF-Service-Identifier and an internal 5GC information. NEF 252 may also receive information from other NF's based on the exposed capabilities of other NFs. This information may be stored at the NEF 252 as structured data, or a data storage NF using standardized interfaces. The stored information can then be re-exposed by the NEF 252 to other NFs and AFs, or used for other purposes such as analytics. Additionally, the NEF 252 may exhibit a Nnef service-based interface.
[0077] The NRF 254 may support service discovery functions, receive NF discovery' requests from NF instances, and provide the information of the discovered NF instances to the NF instances. NRF 254 also maintains information on available NF instances and their supported sendees. As used herein, the terms “instantiate,” “instantiation,” and the like may refer to the creation of an instance, and an “instance” may refer to a concrete occurrence of an object, which may occur, for example, during the execution of program code. Additionally, the NRF 254 may exhibit the Nnrf service-based interface,
[0078] The PCF 256 may provide policy rules to control plane functions to enforce them, and may also support a unified policy framework to govern network behavior. The PCF 256 may also implement a front end to access subscription information relevant for policy decisions in a UDR of the UDM 258. In addition to communicating with functions over reference points as shown, the PCF 256 exhibits an Npcf service-based interface.
[0079] The UDM 258 may handle subscription-related information to support the network entities’ handling of communication sessions and may store the subscription data of UE 202. For example, subscription data may be communicated via an N8 reference point between the UDM 258 and the AMF 244. The UDM 258 may include two parts, an application front, end, and a DDR. The UDR may store subscription data and policy data for the UDM 258 and the PCF 256, and/or structured data for exposure and application data (including PFDs for application detection, application request information for multiple UEs 202) for the NEF 252. The Nudr service-based interface may be exhibited by the UDR 221 to allow the UDM 258, PCF 256, and NEF 252 to access a particular set of the stored data, as well as to read, update (e.g., add, modify), delete, and subscribe to the notification of relevant data changes in the UDR. The UDM may include a UDM-FE, which is in charge of processing credentials, location management, subscription management, and so on. Several different front ends may serve the same user in different transactions. The UDM-FE accesses subscription information stored in the UDR and performs authentication credential processing, user identification handling, access authorization, registration/mobility management, and subscription management. In addition to communicating with other NFs over reference points as shown, the UDM 258 may exhibit the Nudm service-based interface.
[0080] The AF 260 may provide application influence on traffic routing, provide access to NEF, and interact with the policy framework for policy control.
[0081] In some embodiments, the 5GC 240 may enable edge computing by selecting operator/3rd party services to be geographically close to a point that the UE 202 is attached to the network. This may reduce latency and load on the network. To provide edge-computing implementations, the 5GC 240 may select a UPF 248 close to the LIE 202 and execute traffic steering from the UPF 248 to data network 236 via the N6 interface. This may be based on the UE subscription data, UE location, and information provided by the AF 260. In this way, the AF 260 may influence UPF (re)selection and traffic routing. Based on operator deployment, when AF 260 is considered to be a trusted entity, the network operator may permit AF 260 to interact directly with relevant NFs. Additionally, the AF 260 may exhibit a Naf service-based interface.
[0082] The data network 236 may represent various network operator services, Internet access, or third-party sendees that, may be provided by one or more servers including, for example, application/content server 238.
[0083] FIG. 3 schematically illustrates a wireless network 300 in accordance with various embodiments. The wireless network 300 may include a LIE 302 in wireless communication with AN 304. The LIE 302 and AN 304 may be similar to, and substantially interchangeable with, like-named components described elsewhere herein.
[0084] The UE 302 may be communicatively coupled with the AN 304 via connection 306. The connection 306 is illustrated as an air interface to enable communicative coupling and can be consistent with cellular communications protocols such as an LTE protocol or a 5G NR protocol operating at mmWave or sub-6 GHz frequencies.
[0085] The UE 302 may include a host platform 308 coupled with a modem platform 310. The host platform 308 may include application processing circuitry 312, which may be coupled with protocol processing circuitry' 314 of the modem platform 310. The application processing circuitry 312 may run various applications for the LIE 302 that source/sink application data. The application processing circuitry/ 312 may further implement one or more layer operations to transmit/receive application data to/from a data network. These layer operations may include transport (for example UDP) and Internet (for example, IP) operations
[0086] The protocol processing circuitry' 314 may implement one or more layer operations to facilitate transmission or reception of data over the connection 306. The layer operations implemented by the protocol processing circuitry 314 may include, for example, MAC, RLC, PDCP, RRC, and NAS operations.
[0087] The modem platform 310 may further include digital baseband circuitry 316 that may implement one or more layer operations that are ‘‘below” layer operations performed by the protocol processing circuitry/ 314 in a network protocol stack. These operations may include, for example, PHY operations including one or more of HARQ-ACK functions, scrambling/d escrambling, encoding/ decoding, layer mapping/de-mapping, modulation symbol mapping, received symbol/bit metric determination, multi-antenna port precoding/decoding, which may include one or more of space-time, space- frequency or spatial coding, reference signal generation/detection, preamble sequence generation and/or decoding, synchronization sequence generation/detection, control channel signal blind decoding, and other related functions. [0088] The modem platform 310 may further include transmit circuitry
318, receive circuitry 320, RF circuitry 322, and RF front end (RFFE) 324, which may include or connect to one or more antenna panels 326. Briefly, the transmit circuitry' 318 may include a digital -to-analog converter, mixer, intermediate frequency (IF) components, etc.; the receive circuitry' 320 may include an analog-to-digital converter, mixer, IF components, etc.; the RF circuitry 322 may include a low-noise amplifier, a power amplifier, power tracking components, etc.; RFFE 324 may include filters (for example, surface/bulk acoustic wave filters), switches, antenna tuners, beamforming components (for example, phase-array antenna components), etc. The selection and arrangement of the components of the transmit circuitry' 318, receive circuitry 320, RF circuitry 322, RFFE 324, and antenna panels 326 (referred generically as “transmit/receive components”) may be specific to details of a specific implementation such as, for example, whether the communication is TDM or FDM, in mmWave or sub-6 GHz frequencies, etc. In some embodiments, the transmit/receive components may be arranged in multiple parallel transmit/receive chains, may be disposed of in the same or different chips/modules, etc.
[0089] In some embodiments, the protocol processing circuitry 314 may include one or more instances of control circuitry (not shown) to provide control functions for the transmit/receive components.
[0090] A UE reception may be established by and via the antenna panels 326, RFFE 324, RF circuitry' 322, receive circuitry' 320, digital baseband circuitry 316, and protocol processing circuitry 314. In some embodiments, the antenna panels 326 may receive a transmission from the AN 304 by receive- beamforming signals received by a plurality of antennas/antenna elements of the one or more antenna panels 326.
[0091] A UE transmission may be established by and via the protocol processing circuitry 314, digital baseband circuitry 316, transmit circuitry 318, RF circuitry 322, RFFE 324, and antenna panels 326. In some embodiments, the transmit components of the UE 302 may apply a spatial filter to the data to be transmitted to form a transmit beam emitted by the antenna elements of the antenna panels 326.
[0092] Similar to the UE 302, the AN 304 may include a host platform 328 coupled with a modem platform 330. The host platform 328 may include application processing circuitry 332 coupled with protocol processing circuitry 334 of the modem platform 330. The modem platform may further include digital baseband circuitry 336, transmit circuitry 338, receive circuitry’ 340, RF circuitry 342, RFFE circuitry 344, and antenna panels 346. The components of the AN 304 may be similar to and substantially interchangeable with like-named components of the UE 302. In addition to performing data transmission/reception as described above, the components of the AN 304 may perform various logical functions that include, for example, RNC functions such as radio bearer management, uplink and downlink dynamic radio resource management, and data packet scheduling.
[0093] FIG. 4 is a block diagram illustrating components, according to some example embodiments, able to read instructions from a machine-readable or computer-readable medium (e.g., a non-transitory machine-readable storage medium) and perform any one or more of the methodologies discussed herein. Specifically, FIG. 4 shows a diagrammatic representation of hardware resources 400 including one or more processors (or processor cores) 410, one or more memory /storage devices 420, and one or more communication resources 430, each of which may be communicatively coupled via a bus 440 or other interface circuitry-. For embodiments where node virtualization (e.g., NFV) is utilized, a hypervisor 402 may be executed to provide an execution environment for one or more network slices/ sub-slices to utilize the hardware resources 400. [0094] The processors 410 may include, for example, a processor 412 and a processor 414. The processors 410 may be, for example, a central processing unit (CPU), a reduced instruction set computing (RISC) processor, a complex instruction set computing (CISC) processor, a graphics processing unit (GPU), a DSP such as a baseband processor, an ASIC, an FPGA, a radio- frequency integrated circuit (RFIC), another processor (including those discussed herein), or any suitable combination thereof
[0095] The memoiy/storage devices 420 may include a main memory, disk storage, or any suitable combination thereof. The memoiy/storage devices 420 may include but are not limited to, any type of volatile, non-volatile, or semi-volatile memory such as dynamic random access memory (DRAM), static random access memory (SRAM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), Flash memory', solid-state storage, etc. [0096] The communication resources 430 may include interconnection or network interface controllers, components, or other suitable devices to communicate with one or more peripheral devices 404 or one or more databases 406 or other network elements via a network 408. For example, the communication resources 430 may include wired communication components (e.g., for coupling via USB, Ethernet, etc.), cellular communication components,
NFC components, Bluetooth® (or Bluetooth® Low Energy) components, Wi- Fi® components, and other communication components.
[0097] Instructions 450 may comprise software, a program, an application, an applet, an app, or other executable code for causing at least any of the processors 410 to perform any one or more of the methodologies discussed herein. The instructions 450 may reside, completely or partially, within at least one of the processors 410 (e.g., within the processor’s cache memory/), the memory/storage devices 420, or any suitable combination thereof. Furthermore, any portion of the instructions 450 may be transferred to the hardware resources 400 from any combination of the peripheral devices 404 or the databases 406. Accordingly, the memory of processors 410, the memoiy/storage devices 420, the peripheral devices 404, and the databases 406 are examples of computer-readable and machine-readable media. [0098] For one or more embodiments, at least one of the components outlined in one or more of the preceding figures may be configured to perform one or more operations, techniques, processes, and/or methods as outlined in the example sections below. For example, baseband circuitry associated with one or more of the preceding figures may be configured to operate in accordance with one or more of the examples set forth below. For another example, circuitry associated with a UE, base station, satellite, network element, etc. as described above in connection with one or more of the preceding figures may be configured to operate in accordance with one or more of the examples set forth below in the example section.
[0099] The term “application” may refer to a complete and deployable package, environment to achieve a certain function in an operational environment. The term “AI/ML application” or the like may be an application that, contains some artificial intelligence (AI)/machine learning (ML) models and application-level descriptions. In some embodiments, an AI/ML application may be used for configuring or implementing one or more of the disclosed aspects.
[00100] The term “machine learning” or “ML” refers to the use of computer systems implementing algorithms and/or statistical models to perform a specific task(s) without using explicit instructions but instead relying on patterns and inferences. ML. algorithms build or estimate mathematical model(s) (referred to as “ML models” or the like) based on sample data (referred to as “training data,” “model training information,” or the like) to make predictions or decisions without being explicitly programmed to perform such tasks. Generally, an ML algorithm is a computer program that learns from experience with respect to some task and some performance measure, and an ML model may be any object or data structure created after an ML algorithm is trained with one or more training datasets. After training, an ML. model may be used to make predictions on new datasets. Although the term “ML algorithm” refers to different concepts than the term “ML model,” these terms as discussed herein may be used interchangeably for the present disclosure.
[00101] The term “machine learning model,” “ML model,” or the like may also refer to ML methods and concepts used by an ML-assisted solution. An “ML-assisted solution” is a solution that addresses a specific use case using ML algorithms during operation. ML models include supervised learning (e.g., linear regression, k-nearest neighbor (KNN), decision tree algorithms, support machine vectors, Bayesian algorithm, ensemble algorithms, etc.) unsupervised learning (e.g., K -means clustering, principal component analysis (PCA), etc.), reinforcement learning (e.g., Q-learning, multi-armed bandit learning, deep RL, etc,), neural networks, and the like. Depending on the implementation a specific ML model could have many sub-models as components and the ML model may train all sub-models together. Separately trained ML models can also be chained together in an ML pipeline during inference. An “ML pipeline” is a set of functionalities, functions, or functional entities specific for an ML-assisted solution; an ML pipeline may include one or several data sources in a data pipeline, a model training pipeline, a model evaluation pipeline, and an actor.
The “actor” is an entity that hosts an ML-assisted solution using the output of the ML model inference). The term “ML training host” refers to an entity, such as a network function, that hosts the training of the model. The term “ML inference host” refers to an entity, such as a network function, that hosts the model during inference mode (which includes both the model execution as well as any online learning if applicable). The ML -host informs the actor about the output of the ML algorithm, and the actor decides for an action (an “action” is performed by an actor as a result of the output of an ML-assisted solution). The term “model inference information” refers to information used as an input to the ML model for determining inference(s); the data used to train an ML model and the data used to determine inferences may overlap, however, “training data” and “inference data” refer to different concepts.
[00102] As used herein, the term “non-terrestrial networks” (or NTNs) indicates networks, or segments of networks, using an airborne or space-borne vehicle configured as a transmission equipment relay node or a base station. In this regard, a non-terrestrial network may use RF resources on board a satellite (or unmanned aircraft system (UAS) platform),
[00103] As used herein, the term “NTN-gateway” (or “NTN Gateway” or “gateway” or “ sat-gateway ”) indicates that an earth station or gateway is located at the surface of the Earth, and provides sufficient. RF power and RF sensitivity for accessing to the satellite. In some aspects, NTN Gateway is a transport network layer (TNL) node.
[00104] As used herein, the term “regenerative pay load” indicates a payload that transforms and amplifies an uplink RF signal before transmitting it on the downlink. The transformation of the signal refers to digital processing that may include demodulation, decoding, re-encoding, re-modulation, and/or filtering.
[00105] As used herein, the term “round trip delay” indicates the time required for a signal to travel from a terminal to the sat-gateway or from the sat- gateway to the terminal and back. This delay may be used in connection with w7eb-based applications.
[00106] As used herein, the term “satellite” (or satellite node) indicates a space-borne vehicle embarking a bent pipe payload or a regenerative payload telecommunication transmitter, placed into Low-Earth Orbit (LEO), Medium- Earth Orbit (MEO), or Geostationary Earth Orbit (GEO). As used herein, the term “satellite beam” indicates a beam generated by an antenna on-board a satellite. As used herein, the term “service link” indicates a radio link between a satellite and a UE.
[00107] As used herein, the term “transparent payload” indicates a payload that changes the frequency carrier of the uplink RF signal, filters, and amplifies it before transmitting it on the downlink.
[00108] In some embodiments, a non-terrestrial network refers to a network, or segment of networks using RF resources on board a satellite (or UAS platform).
[00109] FIG. 5 and FIG. 6 illustrate example scenarios of a non-terrestrial network providing access to a user equipment. More specifically, FIG. 5 illustrates a non-terrestrial network 500 using a non-transparent payload, according to some embodiments. FIG. 6 illustrates a non-terrestrial network 600 using a regenerative payload, according to some embodiments.
[00110] In some embodiments, the disclosed NTNs may include one or more of the following elements: (a) at least one gateway connecting the NTN to a data network; (b) a GEO satellite fed by at least one gateway deployed across the satellite targeted coverage; (c) a non-GEO satellite served by one or multiple gateways at any given time; (d) a feeder link or radio link between a gateway (e.g., a sat-gateway) and the satellite (or UAS platform); (e) a sendee link or a radio link between the UE and the satellite (or UAS platform); (f) a satellite (or UAS platform) configured with a transparent or a regenerative payload (the satellite may generate multiple beams over a sendee area bounded by its field of view, where the footprints of the beams may be of elliptic shape); (g) a transparent payload; (h) a regenerative payload (e.g., RF filtering, frequency conversion and amplification as well as demodulation/'decoding, switch and/or routing, coding/modulation may be performed, which may be equivalent to having all or part, of base station functionalities on board the satellite); (h) inter- satellite links (ISL) may be used optionally in case of a swami of satellites (ISL may operate in an RF frequency or in optical bands); and (i) UEs may be served by the satellite within a targeted service area.
[00111] FIG. 7 illustrates a non-terrestrial network 700 including a networking-RAN architecture with a transparent satellite, according to some embodiments.
[00112] In some embodiments, a satellite payload may implement frequency conversion and an RF amplifier in both the uplink and the downlink.
In this regard, the satellite repeats the NR-Uu radio interface from a feeder link (between the gateway and the satellite) to a service link (between the satellite and the UE) and vice versa.
[00113] In some embodiments, the satellite radio interface (SRI) on the feeder link is the NR-Uu (e.g., the satellite does not terminate NR-Uu), and the gateway supports functionality for forwarding the signal received via the NR-Uu interface. In some embodiments and as illustrated in FIGs. 7-9, transparent satellites may be connected to the same gNB on the ground.
[00114] FIG. 8 illustrates a non-terrestrial network 800 including a regenerative satellite without inter-satellite links (ISL), according to some embodiments. [00115] In some embodiments, a satellite payload may be configured for regeneration of the signals received from Earth, where the NR-Uu interface may be used on the sendee link between the UE and the satellite, and a satellite radio interface (SRI) may be used on the feeder link between the gateway and the satellite. In some embodiments, the SRI may be configured as a transport link between the gateway and the satellite. In some embodiments, the satellite payload may be associated with ISL between multiple satellites. In some aspects, ISL may be configured as a radio interface or an optical interface (e.g., 3GPP or non~3GPP defined). In some aspects, the gateway may be configured as a transport network layer node supporting one or more transport protocols. [00116] FIG. 9 illustrates a non-tenestrial network 900 including a regenerative satellite with ISL, according to some embodiments. More specifically, FIG. 9 illustrates that a UE served by a gNB on board a satellite could access a 5G core network via the ISL. In some aspects, the gNB may be configured onboard different satellites and may be connected to the same 5G core network on the ground. In some embodiments when the satellite hosts more than one gNB, the same SRI may be used for transporting NG interface instances. [00117] In some embodiments, the disclosed 5G communication systems may be configured to support non-terrestrial access (e.g. satellites, high-altitude platforms, etc.). In the case of Low Earth Orbit (LEO) satellites, the satellite beam projected on the Earth surface can be either earth-fixed (by using beam steering techniques) or can be earth-moving. In the latter case, there may be an issue with the UE location information that the Radio Access Network (RAN) provides to the 5G Core Network (CN). Namely, when a UE connects to a RAN node, the initial message on the RAN-CN interface may contain information about the UE location expressed via a Cell Global Identifier (CGI) of the cell through which the UE has attempted to connect. The CN may be configured with information that maps the CGI into a geographic area. In some aspects, with terrestrial access, the geographic area indicated by the CGI may coincide with the actual radio coverage of the cell (e.g., as illustrated in FIG. 10).
[00118] FIG. 10 illustrates a diagram 1000 of example Earth-moving cells and cell global identifiers (CGIs) mapped to static geographic areas, according to some embodiments.
[00119] More specifically, FIG. 10 illustrates communication scenarios in the case of LEO satellite access with earth-moving beams. In this case, it may be assumed that, the CGI parameter maps to a static “nominal” geographic area, while the actual radio coverage of the cell coincides with the “nominal” geographic area only at certain instants. FIG. 10 illustrates the case of two LEO satellites following each other on a common trajectory. The beam projection on the earth of the first and second satellite are depicted in FIG. 10 with no shading and with shading respectively.
[00120] At time t = Tl, the beam projection of each cell coincides with the “nominal” geographic area, i.e., the radio coverage of Radio Cell 1 coincides with the “nominal” geographic area indicated by CGI 1 , whereas the radio coverage of Radio Cell 2 coincides with the “nominal” geographic coverage of CGI 2.
[00121] The same observation applies at time t = T3, noting that the second satellite (with shading) takes over the beam projection for Radio Cell 2, whereas the first satellite (without shading) has switched to the following cell (Radio Cell 3). [00122] At any time t :;= T2 within the interval (T1 , T3), the radio coverage of the cells does not coincide with the “nominal” geographic area of the corresponding CGI. In this regard, a static UE illustrated in FIG. 10 will be in the coverage of Radio Cell 2 at time t = T1, followed by Radio Cell 1 at time t ::: T2, and then again Radio Cell 2 at time t = T3. [00123] If the UE attempts the initial connection at t = T1, the Cell ID provided by the UE (Cell ID 2) will correspond to the “nominal” geographic area of CGI 2 (i.e., it can be used as an accurate descriptor of the UE location).
[00124] However, if the UE attempts the initial connection at t = T2, the Cell ID provided by the UE (Cell ID 1) will correspond to a “nominal” geographic area corresponding to CGI 2, i.e., it may not be used as an accurate descriptor of the UE location.
[00125] The disclosed techniques may be used in communication scenarios with satellite (e.g., LEO satellite) access with moving beams, to ensure that the CGI indicated by the RAN to the CN corresponds to a fixed geographical area. In some aspects associated with terrestrial access, the CGI granularity may be deemed sufficient. Specifically, it may be used to assist Public Safety Answering Point (PSAP) selection for emergency calls. If finer location granularity is needed (e.g., for locating the user making an emergency call), the network can initiate location-based services (LCS) using one or more positioning techniques (e.g., techniques specified by 3 GPP).
[00126] FIG. 11 is a swimlane diagram 1100 of example communication flow for determining UE location based on multiple CGIs, according to some embodiments. Referring to FIG, 11, radio resource control (RRC) connection may be established based on the illustrated communication sequence: RRC connection request sent from the UE to the gNB, RRC setup information is communicated from the gNB to the UE, and RRC setup complete message is communicated from the UE to the gNB. In some embodiments, the UE may provide a CGI upon establishment of the RRC connection (e.g., the CGI is associated with a cell through which the UE establishes the RRC connection).
[00127] In some embodiments, the gNB (as part of the RAN) may communicate two or more CGIs in the initial UE message sent to the CN (e.g., LMF of the CN) as an indication of the UE location. One CGI is the CGI provided by the UE upon establishment of the RRC connection. The other CGI (or CGIs) may be determined by the gNB based on, for example, the knowledge of the satellite trajectory', the time of the day, or other configuration information associated with the satellite (as illustrated in FIG. 11).
[00128] The initial UE message may be defined in TS 38.413 (clause
9.2.5.1) as provided in Table 1 below:
Figure imgf000036_0001
TABLE 1
[00129] The UE’s location (e.g., as indicated by the NR CGI) may be included in the User Location Information (ULI) parameter (listed in the above Table 1), which is defined in TS 38.413 (clause 9.3.1.16) as provided in Table 2 below:
Figure imgf000038_0001
Figure imgf000039_0001
Figure imgf000040_0001
TABE 2
[00130] In some aspects and as indicated in the above Table 2, when a UE accesses via NR access, the location may be expressed in terms of CGI. In some aspects, only one CGI may be included as part of the ULI. In some embodiments, two or more CGIs (e.g., NR CGI and Additional NR CGI) may be indicated as part of the ULI parameter, as provided in Table 3 below (showing an example ULI parameter with two CGIs):
Figure imgf000041_0001
Figure imgf000042_0001
Figure imgf000043_0001
TABLE 3
[00131] In some embodiments, the uncertainty of locating the UE in a fixed geographical area is limited to two adjacent cells, and signaling an additional CGI may be sufficient. Assuming that the exi sting NR CGI parameter corresponds to the actual Cell Identifier provided by the UE, the Additional NR CGI parameter may be determined by the RAN based on, e.g., the cell adjacencies, the satellite trajectory, and the time of the day.
[00132] In some embodiments, the additional CGI can be indicated in any message sent from the RAN (e.g., the gNB) to the CN (e.g., the LMF) that contains the ULI parameter.
[00133] In some aspects, mapping the UE location to a fixed geographical area may be resolved by mapping the UE location to a fixed geographical area that is twice the size of a cell.
[00134] In some embodiments, the UE provides its location (e.g,, using geo-location information such as GPS coordinates) as part of the establishment of the RRC connection, as illustrated in FIG. 12.
[00135] FIG. 12 is a swimlane diagram 1200 of example communication flow for determining UE location based on UE-provided location, according to some embodiments. Referring to FIG. 12, radio resource control (RRC) connection may be established based on the illustrated communication sequence: RRC connection request sent from the UE to the gNB, RRC setup information is communicated from the gNB to the UE, and RRC setup complete message is communicated from the UE to the gNB. In some embodiments, the UE may provide geo-location information (e.g., GPS information or other geo-location indicative of the UE location) to the gNB as part of the RRC setup complete message. The gNB compares the received geo-location information (e.g., GPS coordinates) with the radio cell in which the UE originated the call. If the UE- provided location is valid (e.g., the geo-location information corresponds to the geographic area associated with the cell), the gNB uses that information to determine the CGI corresponding to the “nominal” geographical location where the UE resides. The determined CGI is communicated to the CN (e.g., to the LMF in the CN) using a notification message (e.g., an initial UE message as described hereinabove).
[00136] In some embodiments, a method for determining UE location in a 5G system with LEO satellite access with earth-moving beams is disclosed. In some embodiments, the Core Network (CN) is configured with information that maps a Cell Global Identifier (CGI) into a nominal fixed geographical area. In some embodiments, the actual radio coverage of a cell identified with CGI coincides with the nominal fixed geographical area only at predefined periodic instants. In some embodiments, the RAN uses the CGI corresponding to the radio cell where the UE attempted the connection and determines the initial UE location information that it forwards to the CN. In some embodiments, the initial UE location provided by the RAN in the Initial UE message to the Core Network (CN) is expressed by two Cell Global Identifiers (CGIs). In some aspects, the first CGI is the CGI corresponding to the radio cell where UE attempted the connection. In some aspects, the second CGI is the CGI of an adjacent cell as determined by the RAN based on the cell adjacencies, the satellite trajectory, and the time of the day. In some aspects, the two CGIs are provided by RAN to CN as part of any NGAP message where UE location information is present. In some embodiments, the CN uses the two CGIs to determine the UE location with a granularity of two cells. In some embodiments, the RAN indicates more than two CGIs and where CN uses more than two CGIs to determine the UE location with the granularity of more than two cells.
[00137] In some embodiments, the UE reports the UE’s location estimate (e.g. in GPS coordinates) to the R AN as part of the RRC connection establishment. In some embodiments, the UE reports the UE’s location estimate (e.g. in GPS coordinates) to RAN in the RRC Setup Complete message. In some embodiments, the RAN uses the location information provided by the UE to determine the CGI that RAN indicates to the Core Network. [00138] FIG. 13 illustrates a block diagram of a communication device such as an evolved Node-B (eNB), a new generation Node-B (gNB) (or another RAN node), an access point (AP), a wireless station (STA), a mobile station (MS), or a user equipment (UE), in accordance with some aspects and to perform one or more of the techniques disclosed herein. In alternative aspects, the communication device 1300 may operate as a standalone device or may be connected (e.g., networked) to other communication devices.
[00139] Circuitry (e.g., processing circuitry) is a collection of circuits implemented in tangible entities of the device 1300 that include hardware (e.g., simple circuits, gates, logic, etc.). Circuitry membership may be flexible over time. Circuitries include members that may, alone or in combination, perform specified operations when operating. In an example, the hardware of the circuitry may be immutably designed to carry' out a specific operation (e.g., hardwired). In an example, the hardware of the circuitry may include variably connected physical components (e.g., execution units, transistors, simple circuits, etc.) including a machine-readable medium physically modified (e.g., magnetically, electrically, moveable placement of invariant massed particles, etc.) to encode instructions of the specific operation.
[00140] In connecting the physical components, the underlying electrical properties of a hardware constituent are changed, for example, from an insulator to a conductor or vice versa. The instructions enable embedded hardware (e.g., the execution units or a loading mechanism) to create members of the circuitry in hardware via the variable connections to carry out portions of the specific operation when in operation. Accordingly, in an example, the machine-readable medium elements are part of the circuitry' or are communicatively coupled to the other components of the circuitry when the device is operating. In an example, any' of the physical components may be used in more than one member of more than one circuitry. For example, under operation, execution units may be used in a first circuit of a first circuitry at one point in time and reused by a second circuit in the first circuitry', or by a third circuit in a second circuitry/ at a different time. .Additional examples of these components with respect to the device 1300 follow'. [00141] In some aspects, the device 1300 may operate as a standalone device or may be connected (e.g., networked) to other devices. In a networked deployment, the communication device 1300 may operate in the capacity of a server communication device, a client communication device, or both in server- client network environments. In an example, the communication device 1300 may act as a peer communication device in a peer-to-peer (P2P) (or other distributed) network environment. The communication device 1300 may be a UE, eNB, PC, a tablet PC, an STB, a PDA, a mobile telephone, a smartphone, a web appliance, a network router, switch or bridge, or any communication device capable of executing instructions (sequential or otherwise) that specify actions to be taken by that communication device. Further, while only a single communication device is illustrated, the term "communication device" shall also be taken to include any collection of communication devices that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein, such as cloud computing, software as a service (SaaS), and other computer cluster configurations.
[00142] Examples, as described herein, may include, or may operate on, logic or a number of components, modules, or mechanisms. Modules are tangible entities (e.g., hardware) capable of performing specified operations and may be configured or arranged in a certain manner. In an example, circuits may be arranged (e.g., internally or with respect to external entities such as other circuits) in a specified manner as a module. In an example, the whole or part of one or more computer systems (e.g., a standalone, client, or server computer system) or one or more hardware processors may be configured by firmware or software (e.g., instructions, an application portion, or an application) as a module that operates to perform specified operations. In an example, the software may reside on a communication device-readable medium. In an example, the software, when executed by the underlying hardware of the module, causes the hardware to perform the specified operations. [00143] Accordingly, the term "module" is understood to encompass a tangible entity, be that an entity that is physically constructed, specifically configured (e.g., hardwired), or temporarily (e.g., transitorily) configured (e.g., programmed) to operate in a specified manner or to perform part or all of any operation described herein. Considering examples in which modules are temporarily configured, each of the modules need not be instantiated at any one moment in time. For example, where the modules comprise a general-purpose hardware processor configured using the software, the general -purpose hardware processor may be configured as respective different modules at different times. The software may accordingly configure a hardware processor, for example, to constitute a particular module at one instance of time and to constitute a different module at a different instance of time.
[00144] The communication device (e.g., UE) 1300 may include a hardware processor 1302 (e.g., a central processing unit (CPU), a graphics processing unit (GPU), a hardware processor core, or any combination thereof), a main memory 1304, a static memory 1306, and a storage device 1307 (e.g., hard drive, tape drive, flash storage, or other block or storage devices), some or all of which may communicate with each other via an interlink (e.g., bus) 1308. [00145] The communication device 1300 may further include a display device 1310, an alphanumeric input device 1312 (e.g., a keyboard), and a user interface (UI) navigation device 1314 (e.g., a mouse). In an example, the display device 1310, input device 1312, and UI navigation device 1314 may be a touchscreen display. The communication device 1300 may additionally include a signal generation device 1318 (e.g., a speaker), a network interface device 1320, and one or more sensors 1321, such as a global positioning system (GPS) sensor, compass, accelerometer, or another sensor. The communication device 1300 may include an output controller 1328, such as a serial (e.g., universal serial bus (USB), parallel, or other wired or wireless (e.g., infrared (IR), near field communication (NFC), etc. ) connection to communicate or control one or more peripheral devices (e.g., a printer, card reader, etc.).
[00146] The storage device 1307 may include a communication device- readable medium 1322, on which is stored one or more sets of data structures or instructions 1324 (e.g,, software) embodying or utilized by any one or more of the techniques or functions described herein. In some aspects, registers of the processor 1302, the main memory 1304, the static memory/ 1306, and/or the storage device 1307 may be, or include (completely or at least partially), the device-readable medium 1322, on which is stored the one or more sets of data structures or instructions 1324, embodying or utilized by any one or more of the techniques or functions described herein. In an example, one or any combination of the hardware processor 1302, the main memory 1304, the static memory 1306, or the mass storage 1316 may constitute the device-readable medium 1322.
[00147] As used herein, the term "device-readable medium" is interchangeable with “computer-readable medium” or “machine-readable medium”. While the communication device-readable medium 1322 is illustrated as a single medium, the term "communication device-readable medium" may include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) configured to store the one or more instructions 1324. The term "communication device-readable medium" is inclusive of the terms “machine-readable medium” or “computer-readable medium”, and may include any medium that is capable of storing, encoding, or carrying instructions (e.g., instructions 1324) for execution by the communication device 1300 and that causes the communication device 1300 to perform any one or more of the techniques of the present disclosure, or that is capable of storing, encoding or carrying data structures used by or associated with such instructions. Non-limiting communication device-readable medium examples may include solid-state memories and optical and magnetic media. Specific examples of communication device-readable media may include non- volatile memory, such as semiconductor memory/ devices (e.g., Electrically Programmable Read-Only Memory (EPROM), Electrically Erasable Programmable Read-Only Memory' (EEPROM)) and flash memory devices; magnetic disks, such as internal hard disks and removable disks; magneto- optical disks; Random Access Memory/ (RAM); and CD-ROM and DVD-ROM disks. In some examples, communication device-readable media may include non-transitory communication device-readable media. In some examples, communication device-readable media may include communication device- readable media that is not a transitory/ propagating signal.
[00148] Instructions 1324 may further be transmitted or received over a communications network 1326 using a transmission medium via the network interface device 1320 utilizing any one of a number of transfer protocols. In an example, the network interface device 1320 may include one or more physical jacks (e.g., Ethernet, coaxial, or phonejacks) or one or more antennas to connect to the communi cations network 1326. In an example, the network interface device 1320 may include a plurality of antennas to wirelessly communicate using at least one of single-input-multiple-output (SIMO), MEMO, or multiple- input-single-output (MISO) techniques. In some examples, the network interface device 1320 may wirelessly communicate using Multiple User MEMO techniques.
[00149] The term "transmission medium" shall be taken to include any intangible medium that is capable of storing, encoding, or carrying instructions for execution by the communication device 1300, and includes digital or analog communications signals or another intangible medium to facilitate communication of such software. In this regard, a transmission medium in the context of this disclosure is a device-readable medium.
[00150] The terms “machine-readable medium,” “computer-readable medium,” and “device-readable medium” mean the same thing and may be used interchangeably in this disclosure. The terms are defined to include both machine-storage media and transmission media. Thus, the terms include both storage devices/media and carrier waves/modulated data signals.
[00151] Described implementations of the subject matter can include one or more features, alone or in combination as illustrated below by way of examples.
[00152] Example 1 is an apparatus for a base station configured for operation in a Fifth Generation New7 Radio (5GNR) network with non-terrestrial access, the apparatus comprising: processing circuitry, wherein to configure the base station for user equipment (UE) location determination in the 5G NR network, the processing circuitry/ is to: decode radio resource control (RRC) signaling, the RRC signaling received from the UE via a satellite node of the 5G NR network and the RRC signaling including first location information associated with the UE; determine second location information associated with the UE based on a trajectory of the satellite node, the second location information being different from the first location information; and encode the first location information and the second location information for transmission to a location management function (LMF) via an access and mobility management function (AMF) of the 5G NR network, the LMF function performing the UE location determination; and a memory' coupled to the processing circuitry' and configured to store the first location information and the second location information.
[00153] In Example 2, the subject matter of Example 1 includes subject matter where the first location information is a first cell global identifier (CGI) of a first cell through which the UE transmits the RRC signaling, the first CGI corresponding to a first geographic area that coincides with a first beam projection by the satellite node at a first time.
[00154] In Example 3, the subject matter of Example 2 includes subject matter where the second location information is a second CGI of a second cell associated with a second geographic area, the second geographic area is neighboring the first geographic area and coincides at least partially with a second beam projection by the satellite node at a second time, the second time being after the first time.
[00155] In Example 4, the subject matter of Examples 1-3 includes subject matter where the RRC signaling is an RRC Setup Complete message received from the UE via the satellite node.
[00156] In Example 5, the subject matter of Examples 1-4 includes subject matter where the processing circuitry is configured to determine the second location information associated with the UE further based on a time of day when determining the second location information is initiated.
[00157] In Example 6, the subject matter of Examples 1-5 includes subject matter where the processing circuitry is configured to encode an initial UE message for transmission to the LMF, the initial UE message including the first location information and the second location information. [00158] In Example 7, the subject matter of Example 6 includes subject matter where the initial UE message includes user location information (ULI), the ULI comprising the first location information and the second location information.
[00159] In Example 8, the subject matter of Examples 1-7 includes subject matter where the first location information includes geo-location coordinates of the UE.
[00160] In Example 9, the subject matter of Example 8 includes subject matter where the processing circuitry is configured to determine a cell global identifier (CGI) of a cell through which the UE transmits the RRC signaling, the CGI corresponding to a geographic area of the cell; and perform a verification that the geo-location coordinates of the UE are within the geographic area.
[00161] In Example 10, the subject matter of Example 9 includes subject matter where the processing circuitry is configured to: encode the CGI for transmission to the LMF based on the verification.
[00162] In Example 11, the subject matter of Examples 1—10 includes, transceiver circuitry coupled to the processing circuitry; and one or more antennas coupled to the transceiver circuitry.
[00163] Example 12 is a computer-readable storage medium that stores instructions for execution by one or more processors of a base station, the instructions to configure the base station for operation in a Fifth Generation New Radio (5G NR) network with non-terrestrial access and to cause the base station to perform operations comprising: decoding radio resource control (RRC) signaling, the RRC signaling received from a user equipment (UE) via a satellite node of the 5G NR network, and the RRC signaling including geo-location coordinates of the UE, determining a cell global identifier (CGI) of a cell through which the UE transmits the RRC signaling, the CGI corresponding to a geographic area of the cell; performing a verification that the geo-location coordinates of the UE are within the geographic area; and encoding the CGI for transmission to a location management function (LMF) based on the verification, the transmission performed via an access and mobility management function (AMF) of the 5G NR network, the LMF function performing location determination of the UE.
[00164] In Example 13, the subject matter of Example 12 includes subject matter where the RRC signaling is an RRC Setup Complete message received from the UE via the satellite node.
[00165] In Example 14, the subject matter of Examples 12—13 includes, the operations further comprising: encoding an initial UE message for transmission to the LMF, the initial UE message including the CGI. [00166] Example 15 is a computer-readable storage medium that stores instructions for execution by one or more processors of a base station, the instructions to configure the base station for operation in a Fifth Generation New Radio (5G NR) network with non-terrestrial access and to cause the base station to perform operations comprising: decoding radio resource control (RRC) signaling, the RRC signaling received from a user equipment (UE) via a satellite node of the 5G NR network and the RRC signaling including first location information associated with the UE; determining second location information associated with the UE based on a trajectory' of the satellite node, the second location information being different from the first location information; and encoding the first location information and the second location information for transmission to a location management function (LMF) via an access and mobility management function (AMF) of the 5GNR network, the LMF function performing location determination of the UE. [00167] In Example 16, the subject matter of Example 15 includes subject matter where the first location information is a first cell global identifier (CGI) of a first cell through which the UE transmits the RRC signaling, the first CGI corresponding to a first geographic area that coincides with a first beam projection by the satellite node at a first time. [00168] In Example 17, the subject matter of Example 16 includes subject matter where the second location information is a second CGI of a second cell associated with a second geographic area, the second geographic area is neighboring the first geographic area and coincides at least partially with a second beam projection by the satellite node at a second time, the second time being after the first time.
[00169] In Example 18, the subject matter of Examples 15—17 includes subject matter where the RRC signaling is an RRC Setup Complete message received from the UE via the satellite node.
[00170] In Example 19, the subject matter of Examples 15-18 includes, the operations further comprising: determining the second location information associated with the UE further based on a time of day when determining the second location information is initiated.
[00171] In Example 20, the subject matter of Examples 15-19 includes, the operations further comprising: encoding an initial UE message for transmission to the LMF, the initial UE message including the first location information and the second location information, wherein the initial UE message includes user location information (ULI), the ULI comprising the first location information and the second location information. [00172] Example 21 is at least one machine-readable medium including instructions that, when executed by processing circuitry, cause the processing circuitry to perform operations to implement any of Examples 1 -20.
[00173] Example 22 is an apparatus comprising means to implement any of Examples 1-20.
[00174] Example 23 is a system to implement any of Examples 1-20.
[00175] Example 24 is a method to implement any of Examples 1-20,
[00176] Although an aspect has been described with reference to specific exemplary aspects, it will be evident that various modifications and changes may be made to these aspects without departing from the broader scope of the present disclosure. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense. This Detailed Description, therefore, is not to be taken in a limiting sense, and the scope of various aspects is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled.

Claims

52 CLAIMS What is claimed is:
1 . An apparatus for a base station configured for operation in a Fifth Generation New Radio (5G NR) network with non-terrestrial access, the apparatus comprising: processing circuitry, wherein to configure the base station for user equipment (LIE) location determination in the 5G NR network, the processing circuitry is to: decode radio resource control (RRC) signaling, the RRC signaling received from the UE via a satellite node of the 5GNR network and the RRC signaling including first location information associated with the UE; determine second location information associated with the UE based on a trajectory of the satellite node, the second location information being different from the first location information; and encode the first location information and the second location information for transmission to a location management function (LMF) via an access and mobility management function (AMF) of the 5GNR network, the LMF function performing the UE location determi nation; and a memory coupled to the processing circuitry and configured to store the first location information and the second location information.
2. The apparatus of claim 1, wherein the first location information is a first cell global identifier (CGI) of a first, cell through which the UE transmits the RRC signaling, the first CGI corresponding to a first geographic area that coincides with a first beam projection by the satellite node at a first time.
3. The apparatus of claim 2, wherein the second location information is a second CGI of a second cell associated with a second geographic area, the 53 second geographic area is neighboring the first geographic area and coincides at least partially with a second beam projection by the satellite node at a second time, the second time being after the first time.
4. The apparatus of claim 1, wherein the RRC signaling is an RRC Setup Complete message received from the UE via the satellite node.
5. The apparatus of claim 1, wherein the processing circuitry is configured to: determine the second location information associated with the UE further based on a time of day when determining the second location information is initiated.
6. The apparatus of claim 1, wherein the processing circuitry' is configured to: encode an initial UE message for transmission to the LMF, the initial UE message including the first location information and the second location information.
7. The apparatus of claim 6, wherein the initial UE message includes user location information (ULI), the ULI comprising the first location information and the second location information.
8. The apparatus of claim 1, wherein the first location information includes geo-location coordinates of the UE.
9. The apparatus of claim 8, wherein the processing circuitry' is configured to: 54 determine a cell global identifier (CGI) of a cell through which the UE transmits the RRC signaling, the CGI corresponding to a geographic area of the ceil; and perform a verification that the geo-location coordinates of the UE are within the geographic area.
10. The apparatus of claim 9, wherein the processing circuitry is configured to: encode the CGI for transmission to the LMF based on the verification,
11. The apparatus of claim 1 , further comprising transceiver circuitry coupled to the processing circuitry; and one or more antennas coupled to the transceiver circuitry.
12. A computer-readable storage medium that stores instructions for execution by one or more processors of a base station, the instructions to configure the base station for operation in a Fifth Generation New? Radio (5G NR) network with non-terrestrial access and to cause the base station to perform operations comprising: decoding radio resource control (RRC) signaling, the RRC signaling received from a user equipment (UE) via a satellite node of the 5G NR network, and the RRC signaling including geo-location coordinates of the UE; determining a cell global identifier (CGI) of a cell through which the UE transmits the RRC signaling, the CGI corresponding to a geographic area of the cell; performing a verification that the geo-location coordinates of the UE are within the geographic area; and encoding the CGI for transmission to a location management function
(LMF) based on the verification, the transmission performed via an access and 55 mobility management function (AMF) of the 5G NR network, the LMF function performing location determination of the UE.
13. The computer-readable storage medium of claim 12, wherein the RRC signaling is an RRC Setup Complete message received from the UE via the satellite node.
14. The computer-readable storage medium of claim 12, the operations further comprising: encoding an initial UE message for transmission to the I AIL the initial UE message including the CGI.
15. A computer-readable storage medium that stores instructions for execution by one or more processors of a base station, the instructions to configure the base station for operation in a Fifth Generation New Radio (5G NR) network with non-terrestrial access and to cause the base station to perform operations comprising: decoding radio resource control (RRC) signaling, the RRC signaling received from a user equipment (UE) via a satellite node of the 5G NR network and the RRC signaling including first location information associated with the UE; determining second location information associated with the UE based on a trajectory of the satellite node, the second location information being different from the first location information; and encoding the first location information and the second location information for transmission to a location management function (LMF) via an access and mobility management function (AMF) of the 5GNR network, the LMF function performing location determination of the UE.
16. The computer-readable storage medium of claim 15, wherein the first location information is a first cell global identifier (CGI) of a first cell through which the UE transmits the RRC signaling, the first CGI corresponding to a first geographic area that coincides with a first beam projection by the satellite node at a first time.
17. The computer-readable storage medium of claim 16, wherein the second location information is a second CGI of a second cell associated with a second geographic area, the second geographic area is neighboring the first geographic area and coincides at least partially with a second beam projection by the satellite node at a second time, the second time being after the first time.
18. The computer-readable storage medium of claim 15, wherein the RRC signaling is an RRC Setup Complete message received from the UE via the satellite node.
19. The computer-readable storage medium of claim 15, the operations further comprising: determining the second location information associated with the UE further based on a time of day when determining the second location information is initiated.
20. The computer-readable storage medium of claim 15, the operations further comprising: encoding an initial UE message for transmission to the LMF, the initial UE message including the first location information and the second location information, wherein the initial UE message includes user location information (ULI), the ULI comprising the first location information and the second location information.
PCT/US2021/054505 2020-10-12 2021-10-12 Device location determination in 5g non-terrestrial networks WO2022081531A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063090660P 2020-10-12 2020-10-12
US63/090,660 2020-10-12

Publications (1)

Publication Number Publication Date
WO2022081531A1 true WO2022081531A1 (en) 2022-04-21

Family

ID=81208541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2021/054505 WO2022081531A1 (en) 2020-10-12 2021-10-12 Device location determination in 5g non-terrestrial networks

Country Status (1)

Country Link
WO (1) WO2022081531A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220053436A1 (en) * 2020-10-15 2022-02-17 Sergey Sosnin Transmit and receive timing errors estimation and compensation
WO2023241271A1 (en) * 2022-06-14 2023-12-21 华为技术有限公司 Paging method and communication apparatus
WO2024027366A1 (en) * 2022-08-03 2024-02-08 大唐移动通信设备有限公司 Uplink positioning method, device and processor-readable storage medium
GB2623114A (en) * 2022-10-07 2024-04-10 Nokia Technologies Oy UE position validation using raw mode for UE transmissions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017072745A1 (en) * 2015-10-30 2017-05-04 Paris Michaels Mobile satellite communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017072745A1 (en) * 2015-10-30 2017-05-04 Paris Michaels Mobile satellite communication system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NG Radio Access Network (NG-RAN); Stage 2 functional specification of User Equipment (UE) positioning in NG-RAN (Release 16)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.305, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. V16.2.0, 2 October 2020 (2020-10-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 117, XP051961363 *
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Solutions for NR to support non-terrestrial networks (NTN) (Release 16)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 38.821, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. V16.0.0, 16 January 2020 (2020-01-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 140, XP051860814 *
CMCC: "Discussion on key issues in NTN", 3GPP DRAFT; R3-205438, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Online; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051916103 *
QUALCOMM INCORPORATED (MODERATOR): "Summary of Offline Discussion on the NTN SA2 LS", 3GPP DRAFT; R3-205490, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Online; 20200817 - 20200828, 2 September 2020 (2020-09-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051928213 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220053436A1 (en) * 2020-10-15 2022-02-17 Sergey Sosnin Transmit and receive timing errors estimation and compensation
WO2023241271A1 (en) * 2022-06-14 2023-12-21 华为技术有限公司 Paging method and communication apparatus
WO2024027366A1 (en) * 2022-08-03 2024-02-08 大唐移动通信设备有限公司 Uplink positioning method, device and processor-readable storage medium
GB2623114A (en) * 2022-10-07 2024-04-10 Nokia Technologies Oy UE position validation using raw mode for UE transmissions

Similar Documents

Publication Publication Date Title
US11924163B2 (en) Initiation of domain name system (DNS) resolution in 5G systems
WO2022087118A1 (en) Non-terrestrial network (ntn) group handover
WO2022081531A1 (en) Device location determination in 5g non-terrestrial networks
US20210368581A1 (en) Ue-to-ue relay service in 5g systems
WO2022031544A1 (en) Dmrs for nr communications above 52.6 ghz
US20220053436A1 (en) Transmit and receive timing errors estimation and compensation
WO2022087137A1 (en) Prs and srs configuration for nr positioning
WO2022031541A1 (en) Beam management for multi-trp operation
WO2023069506A1 (en) New radio (nr) positioning measurement with reduced latency
US20220053450A1 (en) Techniques for supporting low latency nr positioning protocols
WO2022086929A1 (en) Processing time configuration in nr networks
WO2022087094A1 (en) Transmit power control for iab distributed units
US20230379839A1 (en) Enhanced sounding reference signal (srs) power control
US20240107600A1 (en) Enhanced edge enabler client (eec) for edgeapp architectures
US20230388997A1 (en) Techniques for uplink (ul) simultaneous transmission across multi-panels (stxmp)
US20230421222A1 (en) Subband reporting for full duplex operation
WO2023069626A1 (en) Uplink impact on pucch scell activation delay
WO2024030640A1 (en) Network-controlled small gap (ncsg) configurations
WO2022150503A1 (en) Srs resource and tpmi indication in multi-trp
WO2023014884A1 (en) Dci enhancements for soft resource availability indication
WO2022192198A1 (en) Radio resource management (rrm) procedures at high speeds
WO2023205201A1 (en) Tdd configuration and timing at a repeater
WO2022087419A1 (en) Timing advance (ta) configurations for iab networks
KR20230164057A (en) Code block interleaving for DFT-S-OFDM waveforms
WO2022031702A1 (en) Latency reduction for nr beam acquisition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21880881

Country of ref document: EP

Kind code of ref document: A1