WO2022080935A1 - Method and apparatus for performing hybrid beamforming communication in wireless communication system - Google Patents

Method and apparatus for performing hybrid beamforming communication in wireless communication system Download PDF

Info

Publication number
WO2022080935A1
WO2022080935A1 PCT/KR2021/014338 KR2021014338W WO2022080935A1 WO 2022080935 A1 WO2022080935 A1 WO 2022080935A1 KR 2021014338 W KR2021014338 W KR 2021014338W WO 2022080935 A1 WO2022080935 A1 WO 2022080935A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminals
channel
digital
transmission beam
Prior art date
Application number
PCT/KR2021/014338
Other languages
French (fr)
Korean (ko)
Inventor
정성엽
최수용
이동헌
Original Assignee
삼성전자 주식회사
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사, 연세대학교 산학협력단 filed Critical 삼성전자 주식회사
Publication of WO2022080935A1 publication Critical patent/WO2022080935A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0682Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using phase diversity (e.g. phase sweeping)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present disclosure relates to a wireless communication system, and more particularly, to a method and apparatus for performing hybrid beamforming communication using a multi-input multi-output (MIMO) antenna.
  • MIMO multi-input multi-output
  • 5G 5th-generation
  • connected devices which are on an explosive increase, will be connected to the communication network.
  • things connected to the network may include vehicles, robots, drones, home appliances, displays, smart sensors installed in various infrastructures, construction machines, and factory equipment.
  • Mobile devices are expected to evolve into various form factors such as augmented reality glasses, virtual reality headsets, and hologram devices.
  • 6G 6th-generation
  • efforts are being made to develop an improved 6G communication system to provide various services by connecting hundreds of billions of devices and things. For this reason, the 6G communication system is called a system after 5G communication (Beyond 5G).
  • the maximum transmission speed is tera (that is, 1,000 gigabytes) bps
  • the wireless latency is 100 microseconds ( ⁇ sec). That is, the transmission speed in the 6G communication system is 50 times faster than in the 5G communication system, and the wireless delay time is reduced by one-tenth.
  • 6G communication systems use the terahertz band (for example, the 95 gigahertz (95 GHz) to 3 terahertz (3 THz) band). implementation is being considered.
  • the terahertz band compared to the millimeter wave (mmWave) band introduced in 5G, the importance of technology that can guarantee the signal reach, that is, the coverage, is expected to increase due to more severe path loss and atmospheric absorption.
  • mmWave millimeter wave
  • the next hyper-connected experience (the next hyper-connected) through the hyper-connectivity of the 6G communication system, which includes not only the connection between objects but also the connection between people and objects. experience) is expected to become possible.
  • the 6G communication system is expected to provide services such as true immersive extended reality (XR), high-fidelity mobile hologram, and digital replica.
  • services such as remote surgery, industrial automation, and emergency response through security and reliability enhancement are provided through the 6G communication system, so it is applied in various fields such as industry, medical care, automobiles, and home appliances.
  • a device that adjusts the amplitude and phase of a signal when performing beamforming is called a beamformer.
  • the method of applying the beamformer at the radio frequency (RF) stage can be called analog beamforming, and the method applied by the baseband modem can be called digital beamforming.
  • digital beamforming is performed based on channel state information (CSI: channel state information) in the baseband, and then the analog beam is passed through a radio frequency chain.
  • CSI channel state information
  • Hybrid beamforming a technology for forming, is also being used.
  • the base station determines the analog reception beam of the base station
  • the interference of channels of each terminal is not considered and the digital transmission beams of the terminals are not taken into account. Accordingly, when the digital transmission beams of the terminals are changed, the channel gain through the analog reception beam of the base station that has been previously selected may be reduced.
  • the base station determines the digital transmission beam of the terminal, the interference of each channel of the terminals is not considered and the analog reception beam of the base station is not considered. Accordingly, when the analog reception beam of the base station is changed, there is a problem in that the channel gain through the digital transmission beam of the terminals that have already been selected is reduced.
  • the present disclosure has been devised to solve the above problems, and an object of the present disclosure is to organically determine a set of terminals to be scheduled in an arbitrary slot, a digital transmission beam of the terminals, and an analog reception beam of a base station.
  • a method performed by a base station of a wireless communication system of the present disclosure for solving the above problems includes: receiving, from terminals, a sounding reference signal (SRS); estimating an uplink digital channel for each of the terminals by using the SRS; determining, by using the estimated uplink digital channel, an analog reception beam of the base station for each of the terminals, a digital transmission beam for each of the terminals, and a set of terminals to be scheduled in an arbitrary slot; and transmitting information on the determined digital transmission beam to the scheduled terminals, wherein the digital transmission beam for each of the terminals considers the estimated uplink digital channel and the analog reception beam of the base station. to be determined.
  • SRS sounding reference signal
  • a method performed by a terminal of a wireless communication system includes: transmitting, to a base station, a sounding reference signal (SRS); receiving, from the base station, information on a digital transmission beam; and transmitting data to the base station by using a digital transmit beam corresponding to the information on the digital transmit beam, wherein the digital transmit beam includes an uplink digital channel estimated by the base station and a function of the base station. It is characterized in that it is determined in consideration of the analog reception beam.
  • SRS sounding reference signal
  • a base station of a wireless communication system includes a transceiver; and receiving a sounding reference signal (SRS) from the terminals through the transceiver, estimating an uplink digital channel for each of the terminals using the SRS, and using the estimated uplink digital channel, Determines a set of terminals to be scheduled in an analog reception beam of the base station for each of the terminals, a digital transmission beam for each of the terminals, and a set of terminals to be scheduled in an arbitrary slot, and sends the determined digital transmission beam to the scheduled terminals.
  • the information is transmitted through the transceiver, and the digital transmission beam for each of the terminals includes a control unit that is determined in consideration of the estimated uplink digital channel and the analog reception beam of the base station.
  • the terminal of the wireless communication system includes a transceiver; and transmitting a sounding reference signal (SRS) to the base station through the transceiver, and receives information on the digital transmission beam from the base station through the transceiver, and provides the base station with digital information corresponding to the digital transmission beam information.
  • SRS sounding reference signal
  • there is an effect of organically determining a set of terminals to be scheduled in an arbitrary slot, a digital transmission beam of terminals, and an analog reception beam of a base station, and an analog reception beam of a base station with better performance and A digital transmission beam of the terminal may be selected.
  • FIG. 1 is a diagram illustrating a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a scenario in which an operation embodiment of a base station and a terminal is determined in consideration of channel reciprocity and power of a terminal in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating an operation sequence of a base station and a terminal in the wireless communication system according to the first embodiment of the present disclosure.
  • FIG. 4 is a diagram illustrating an operation sequence of a base station and a terminal in a wireless communication system according to a second embodiment of the present disclosure.
  • FIG. 5 is a diagram illustrating an operation sequence of a base station in the wireless communication system according to the first embodiment of the present disclosure.
  • FIG. 6 is a diagram illustrating an operation sequence of a terminal in the wireless communication system according to the first embodiment of the present disclosure.
  • FIG. 7 is a diagram illustrating an operation sequence of a base station in a wireless communication system according to a second embodiment of the present disclosure.
  • FIG. 8 is a diagram illustrating an operation sequence of a terminal in a wireless communication system according to a second embodiment of the present disclosure.
  • FIG. 9 is a diagram illustrating a method of organically determining a set of terminals to be scheduled in an analog reception beam of a base station, a digital transmission beam of terminals, and an arbitrary slot in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 10 is a diagram illustrating a tabu search algorithm used to determine an analog reception beam of a base station and a digital transmission beam of terminals in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 11 is a diagram illustrating an example of a third party search algorithm in a wireless communication system according to an embodiment of the present disclosure.
  • SUS semi-orthogonal user scheduling
  • FIG. 13 is a block diagram illustrating an internal structure of a terminal according to an embodiment of the present disclosure.
  • FIG. 14 is a block diagram illustrating an internal structure of a base station according to an embodiment of the present disclosure.
  • each block may represent a module, segment, or portion of code that includes one or more executable instructions for executing specified logical function(s). It may also be possible for the functions recited in blocks to occur out of order in some alternative implementations. For example, two blocks shown one after another may be performed substantially simultaneously, or the blocks may sometimes be performed in the reverse order according to a corresponding function.
  • ' ⁇ unit' used in an embodiment of the present disclosure means software or hardware components such as FPGA or ASIC, and ' ⁇ unit' may perform certain roles.
  • ' ⁇ part' may not mean limited to software or hardware.
  • ' ⁇ ' may be configured to reside on an addressable storage medium or may be configured to refresh one or more processors. Accordingly, as an example, ' ⁇ ' indicates components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, and procedures. , subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.
  • components and ' ⁇ units' may be combined into a smaller number of components and ' ⁇ units' or further separated into additional components and ' ⁇ units'.
  • components and ' ⁇ units' may be implemented to play one or more CPUs in a device or secure multimedia card.
  • ' ⁇ unit' may include one or more processors.
  • the present disclosure may use terms and names defined in the 3rd generation partnership project long term evolution (3GPP LTE) standard.
  • 3GPP LTE 3rd generation partnership project long term evolution
  • the present disclosure is not limited by the terms and names, and may be equally applied to systems conforming to other standards.
  • Beam sweeping may refer to a method of covering the entire cell area while changing a beam by changing a direction to cover one wide cell area using analog beamforming.
  • the base station or the terminal may transmit a reference signal (RS) while changing the analog beam.
  • RS reference signal
  • the plurality of terminals may transmit a reference signal to the base station, and the base station may receive the reference signal while changing the analog reception beam. Thereafter, the base station may determine the analog reception beam of the base station by using at least one of a received signal strength indicator (RSSI), reference signal received quality (RSRQ), and reference signals received power (RSRP) through the received reference signal.
  • RSSI received signal strength indicator
  • RSSRQ reference signal received quality
  • RSRP reference signals received power
  • the base station determines the analog reception beam, it does not consider the interference of each channel of the terminals and does not consider the digital transmission beams of the terminals. Accordingly, when the digital transmission beams of the terminals are changed, the channel gain through the analog reception beam of the base station that has been previously selected may be reduced.
  • the plurality of terminals may transmit a sounding reference signal (SRS) to the base station, and the base station may estimate the channel of each terminal using the received SRS. .
  • the base station may determine the digital transmission beams of the terminals through the estimated channel.
  • the base station may transmit digital transmission beam information for the terminals to the terminals through a transmitted precoding matrix indicator (TPMI), and the terminals transmit data to the base station using a digital transmission beam corresponding to the received digital transmission beam information. can do.
  • SRS sounding reference signal
  • TPMI transmitted precoding matrix indicator
  • the base station determines the digital transmission beam of the terminal
  • the interference of channels of each terminal is not considered and the analog reception beam of the base station is not considered. Accordingly, when the analog reception beam of the base station is changed, the channel gain through the digital transmission beam of the terminals that have already been selected may be reduced.
  • FIG. 1 is a diagram illustrating a wireless communication system according to an embodiment of the present disclosure.
  • a wireless network environment in a wireless communication system may include a plurality of terminals 120 and a base station 110 .
  • the base station 110 may include an inode ratio (“eNodeB” or “eNB”), a 5 th generation node B, a transmission reception point (TRP) in addition to a “base station”. may be used instead.
  • eNodeB inode ratio
  • TRP transmission reception point
  • the base station 110 may be used to mean network infrastructure components that provide wireless access to remote terminals in the following description.
  • the terminal 120 is a "mobile station", “subscriber station”, “remote terminal”, " Other well-known terms such as “wireless terminal", or "user device” may be used.
  • the wireless network environment includes a downlink that is a link from the base station 110 to the terminals 120 and an uplink that is a link from the terminals 120 to the base station 110 . can do.
  • the base station 110 may include a plurality of antennas 116 .
  • the base station 110 may perform transmission through downlink or reception through uplink through the antenna 116 . That is, the antenna 116 may be a transmission/reception (TX/RX) common antenna.
  • the terminals 120 may include a plurality of antennas 126 .
  • the antenna 126 may be a transmit/receive (TX/RX) common antenna.
  • the antennas of the base station 110 and the terminals 120 have been described as a common transmission/reception antenna, but the present invention is not limited thereto. Accordingly, the base station 110 and the terminals 120 according to various embodiments of the present disclosure may not include a common transmit/receive antenna. In other words, the base station 110 and the terminals 120 may include a transmission antenna and a reception antenna physically separated.
  • the base station 110 may transmit downlink data to the terminals 120 through the antenna 116 .
  • the base station 110 may determine any one downlink transmission beam from among a plurality of downlink transmission beams having different directions for transmission of downlink data.
  • the base station 110 may use the uplink beam search result for a downlink beam search procedure. In other words, the base station 110 may determine a beam used for uplink reception as a downlink transmission beam by using channel reciprocity.
  • the base station 110 may receive uplink data from the terminals 120 through the antenna 116 .
  • the base station 110 may determine any one uplink reception beam from among a plurality of uplink reception beams having different directions in order to receive uplink data.
  • the base station 110 may use a downlink beam search result for an uplink beam search procedure. In other words, the base station 110 may determine a beam used for downlink transmission as an uplink reception beam by using channel reciprocity.
  • the terminals 120 may transmit uplink data to the base station 110 through the antenna 126 .
  • the terminals 120 may determine any one uplink transmission beam from among a plurality of uplink transmission beams having different directions for transmission of uplink data.
  • the terminals 120 may use the downlink beam search result for the uplink beam search procedure. In other words, the terminals 120 may determine a beam used for downlink reception as an uplink transmission beam by using channel reciprocity.
  • the terminals 120 may receive downlink data from the base station 110 through the antenna 126 .
  • the terminals 120 may determine any one downlink reception beam from among a plurality of downlink reception beams having different directions.
  • the terminals 120 may use the uplink beam search result for a downlink beam search procedure. In other words, the terminals 120 may determine a beam used for uplink transmission as a downlink reception beam by using channel reciprocity.
  • Beamforming may mean modulating the amplitude and phase of a signal transmitted and received by each antenna in a state in which a plurality of antenna patterns are overlapped.
  • a signal may be strongly transmitted and received in a specific direction, and a signal may be transmitted/received weakly in other directions. That is, signals transmitted and received from a plurality of antennas may be operated as beams in a specific direction, and signals may be transmitted/received strongly by operating as if a single antenna. Through this, cell coverage can be expanded and transmission speed can be improved.
  • a device that adjusts the amplitude and phase of a signal may be referred to as a beamformer.
  • Analog beamforming (analog beamforming, 114) refers to a method of adjusting the beamformer in the RF (radio frequency) chain 118, 128, and digital beamforming (digital beamforming, 112, 122) is to convert the beamformer to baseband ( baseband) refers to the method controlled by the modem.
  • the beamformer since the beamformer operates in the RF chains 118 and 128, a beam cannot be formed in several directions at the same time, but can transmit and receive only in a specific direction.
  • only one transceiver is required to transmit a signal to the baseband modem, so hardware resources required for implementation may be less and baseband processing may be simple. Therefore, it is easier to implement compared to digital beamforming, and power consumption and implementation cost may be low.
  • the beamformer operates in a baseband modem, and the RF chain (118, 128) and the antenna can transmit/receive a signal to which beamforming is applied in the baseband. Therefore, when multiple users in a cell are in different locations, beamforming for each user can be separately applied through baseband signal processing.
  • OFDMA orthogonal frequency division multiple access
  • beamforming may be applied by allocating different frequency resources for each user in a cell. Therefore, beamforming may be possible for several users at the same time, and in this case, digital beamforming may be used more flexibly than analog beamforming.
  • the number of transceivers that transmit signals from each antenna to the baseband modem through the RF chain is as many as the number of antennas, it may require more hardware resources than analog beamforming and baseband processing may be complicated.
  • hybrid beamforming combining the advantages of the digital beamforming 112 and 122 and the analog beamforming 114 may be used.
  • the beamformer operates on the RF chain and the baseband modem to perform digital beamforming (112, 122) based on channel state information (CSI: channel state information) in the baseband, and analog beamforming through the RF chain (114) techniques can be used.
  • CSI channel state information
  • the number of terminals 120 is X in total, and the number of scheduled terminals may be K.
  • the terminals 120 are Antenna 126 can be used, and the base station 110 Antenna 116 may be used.
  • the base station 110 may use M RF chains 118 , and the analog channel 130 between the k-th terminal 120 and the base station 110 is may be, and the digital transmission beam 122 of the k-th terminal 120 is can be
  • the number of analog reception beams that the base station can select is N.
  • the analog reception beam 114 of the m-th RF chain 118 of the base station is may be, and each RF chain 118 has a selectable analog receive beam. can be thus, may be, and the entire analog reception beam 114 may be represented by the following [Equation 1].
  • the digital channel between the k-th terminal 120 and the base station 110 is may be defined, and the effective channel between the k-th terminal 120 and the base station 110 may be defined by the following [Equation 2].
  • the number determined above is an arbitrary number, and the present disclosure is not limited to the number described above.
  • FIG. 2 is a diagram illustrating a scenario in which an operation embodiment of a base station and a terminal is determined in consideration of channel reciprocity and power of a terminal in a wireless communication system according to an embodiment of the present disclosure.
  • operations of a base station and a terminal using channel reciprocity and operations of a base station and a terminal not using channel reciprocity can be divided according to whether channel reciprocity is used or not.
  • an operation of organically determining a set of terminals to be scheduled in an arbitrary slot, digital transmission beams of terminals, and analog reception beams of the base station by estimating an uplink data channel in the base station can be done.
  • the base station can determine whether the available transmit power for the terminals to repeatedly transmit the SRS is sufficient, and when the available transmit power is not sufficient, the terminals estimate the downlink digital channel and use the channel reciprocity,
  • the base station may perform an operation (the second embodiment) of organically determining a set of terminals to be scheduled in an arbitrary slot, a digital transmission beam of the terminals, and an analog reception beam of the base station
  • the base station may determine 210 whether channel reciprocity can be used by the base station and the terminal. When channel reciprocity cannot be used, the base station and the terminal may operate as in the first embodiment 231 . When channel reciprocity is available, the base station may receive a report on available power headroom (PH) capable of repeatedly transmitting SRS from UEs, and corresponds to the case where the available transmission power is greater than a specific value. It can be determined 220 whether or not. When the available transmission power of the terminals is greater than a specific value, the base station and the terminal may operate as in the first embodiment 231, and when the available transmission power of the terminals is less than a specific value, the second embodiment 233 ), the base station and the terminal can operate. Specific operations of the first and second embodiments will be described below.
  • Whether or not channel reciprocity can be used 210 may be determined according to a wireless communication environment.
  • the wireless communication environment may include a time division duplex (TDD) communication environment, a frequency division duplex (FDD) communication environment, and the like.
  • TDD time division duplex
  • FDD frequency division duplex
  • the TDD communication environment is a method in which uplink transmission and downlink transmission are divided and transmitted in the time domain, uplink and downlink may exist in the same frequency band.
  • the coherence time (a time during which a channel can be assumed to be constant) is sufficiently long, it can be assumed that the channels of the uplink and the downlink are the same, and the base station and the terminal can use channel reciprocity.
  • the coherence time is short in the TDD communication environment, since it may not be possible to assume that the channels of the uplink and the downlink are the same, the base station and the terminal may not be able to use channel reciprocity.
  • the FDD communication environment is a method in which uplink transmission and downlink transmission are divided and transmitted in the frequency domain. Therefore, since the frequency bands of the uplink and the downlink are different from each other, it may not be possible to assume that the channels are the same, and channel reciprocity may not be available.
  • the method for determining the channel reciprocity is not limited to the above case.
  • the terminals report to the base station the available transmit power (PH) of the terminals can do.
  • the available transmit power (PH) of the terminals may be obtained by subtracting the power (Ppusch+Ppucch) currently used for the uplink of the terminals from the maximum transmit power (Pc,max) of the terminals. Through this, the base station can determine whether the available transmission power at which the terminals can repeatedly transmit the SRS is greater than a specific value.
  • FIG. 3 is a diagram illustrating an operation sequence of a base station and a terminal in the wireless communication system according to the first embodiment of the present disclosure.
  • 3 is an operation sequence for organically determining a set of terminals 120 to be scheduled in an arbitrary slot in uplink transmission, a digital transmission beam of the terminals 120, and an analog reception beam of the base station 110 As such, a detailed description of each operation is as follows.
  • the base station 110 may transmit a control message to the terminals 120 to instruct the terminals 120 to repeatedly transmit a sounding reference signal (SRS) to the base station 110 .
  • SRS sounding reference signal
  • the terminals 120 Upon receiving the control message, the terminals 120 repeatedly transmit a sounding reference signal (SRS) to the base station 110 in the uplink direction in step S312, and the base station 110 transmits an analog reception beam.
  • SRS can be received by changing .
  • a digital channel including the analog reception beam of the base station 110 can be estimated.
  • the base station 110 uses the estimated digital channels, a digital transmit beam for each of the terminals 120 , an analog receive beam of the base station 110 , and a set of terminals 120 to be scheduled in an arbitrary slot.
  • the base station 110 may transmit information on the scheduled digital transmission beams of the terminals 120 to the corresponding terminals through a transmitted precoding matrix indicator (TPMI).
  • TPMI transmitted precoding matrix indicator
  • the terminals 120 Upon receiving the information on the digital transmission beam, the terminals 120 apply a precoding matrix corresponding to the received TPMI to the complex symbol generated according to the type of signal or the state of the channel in step S318 to the base station 110 data can be transmitted.
  • the complex symbol may be modulated using a method such as binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), or 16QAM/64QAM (quadrature amplitude modulation) according to a signal type or channel state.
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • 16QAM/64QAM quadrature amplitude modulation
  • the modulated complex symbol may be multiplied by a precoding matrix and assigned to an antenna, and the processed transmission signal is each time-mapped to a frequency resource element and then an orthogonal frequency division multiple access (OFDMA) signal generator. can be transmitted through each antenna.
  • OFDMA orthogonal frequency division multiple access
  • FIG. 4 is a diagram illustrating an operation sequence of a base station and a terminal in a wireless communication system according to a second embodiment of the present disclosure.
  • FIG. 4 illustrates a process in which a base station organically determines a set of terminals 120 to be scheduled in an arbitrary slot, a digital transmit beam of the terminals 120, and an analog receive beam of the base station 110 using channel reciprocity. As illustrated, a detailed description of each operation is as follows.
  • Each terminal receiving the CSI-RS In step S412, 120 may obtain downlink digital channel information (CSI).
  • CSI includes CQI (channel quality information), PMI (precoding matrix indicator), CRI (CSI-RS resource indicator) SSBRI (SS / PBCH resource block indicator), LI (layer indicator), RI (rank indicator) or L1-RSRP ( There may be several components such as reference signal received power).
  • the terminal uses CSI, and a downlink digital channel including an analog transmission beam of the base station 110 can be estimated
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • each terminal 120 transmits a downlink digital channel including an analog transmission beam of the base station 110 . may be transmitted to the base station 110 .
  • the base station 110 may convert the downlink digital channel into an uplink digital channel using channel reciprocity, and may convert the downlink analog transmission beam of the base station 110 into an uplink reception beam. .
  • the base station 110 uses the converted digital channels, a digital transmit beam for each of the terminals 120, an analog receive beam of the base station 110, and a set of terminals 120 to be scheduled in an arbitrary slot. can be organically determined through a tabu search algorithm and a semi-orthogonal user selection (SUS) algorithm.
  • SUS semi-orthogonal user selection
  • the base station 110 may transmit information on the scheduled digital transmission beams of the terminals 120 to the corresponding terminals through a transmitted precoding matrix indicator (TPMI).
  • TPMI transmitted precoding matrix indicator
  • the terminals 120 receiving the information on the digital transmission beam apply a precoding matrix corresponding to the received TPMI to the complex symbol generated according to the type of signal or the state of the channel in step S418 to the base station 110 data can be transmitted.
  • the complex symbol may be modulated using a method such as binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), or 16QAM/64QAM (quadrature amplitude modulation) according to a signal type or channel state.
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • 16QAM/64QAM quadrature amplitude modulation
  • the modulated complex symbol may be multiplied by a precoding matrix and assigned to an antenna, and the processed transmission signal is each time-mapped to a frequency resource element and then an orthogonal frequency division multiple access (OFDMA) signal generator. can be transmitted through each antenna.
  • OFDMA orthogonal frequency division multiple access
  • FIG. 5 is a diagram illustrating an operation sequence of a base station in the wireless communication system according to the first embodiment of the present disclosure.
  • FIG. 5 a flowchart of a detailed operation of a base station in the first embodiment is shown, and each step is divided and expressed as follows.
  • the base station 110 may transmit a control message for SRS transmission to the terminals 120 to instruct the terminals 120 to repeatedly transmit the SRS to the base station 110 .
  • the base station 110 in step S520 the analog reception beam from the terminals SRS can be received by changing . And the base station 110 in step S530, a digital channel including the analog reception beam of the base station 110 can be estimated.
  • the base station 110 uses the estimated digital channels in step S540, a digital transmit beam for each of the terminals 120, an analog receive beam of the base station 110, and the terminals 120 to be scheduled in an arbitrary slot. can be organically determined through the tabu search algorithm and the semi-orthogonal user selection (SUS) algorithm.
  • the base station 110 may transmit information on the digital transmission beam to the scheduled terminals through the TPMI.
  • the base station 110 may receive data from the terminals to be scheduled in any slot, and the data is determined by the base station 110 according to an embodiment of the present invention, and is transmitted to the TPMI notified to the terminal. It is transmitted based on
  • FIG. 6 is a diagram illustrating an operation sequence of a terminal in the wireless communication system according to the first embodiment of the present disclosure.
  • FIG. 6 a flowchart of a specific terminal operation in the first embodiment is shown, and each step is divided and expressed as follows.
  • the terminal 120 may receive a control message for SRS transmission from the base station in step S610. Using the control message, the terminal 120 may repeatedly transmit the SRS to the base station in step S620.
  • the terminal 120 may receive information about the digital transmission beam from the base station through the TPMI.
  • the information on the digital transmission beam is determined by the base station, and is to be scheduled in a digital transmission beam for each of the terminals 120, an analog reception beam of the base station 110, and an arbitrary slot using estimated digital channels.
  • the set of terminals 120 is organically determined through a tabu search algorithm and a semi-orthogonal user selection (SUS) algorithm.
  • the terminal 120 Upon receiving the information on the digital transmission beam, the terminal 120 applies a precoding matrix corresponding to the received TPMI to the complex symbol generated according to the type of signal or the state of the channel in step S640 to the base station 110. data can be transmitted.
  • the complex symbol may be modulated using a method such as binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), or 16QAM/64QAM (quadrature amplitude modulation) according to a signal type or channel state.
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • 16QAM/64QAM quadrature amplitude modulation
  • the modulated complex symbol may be multiplied by a precoding matrix and assigned to an antenna, and the processed transmission signal is each time-mapped to a frequency resource element and then an orthogonal frequency division multiple access (OFDMA) signal generator. can be transmitted through each antenna.
  • OFDMA orthogonal frequency division multiple access
  • FIG. 7 is a diagram illustrating an operation sequence of a base station in a wireless communication system according to a second embodiment of the present disclosure.
  • FIG. 7 a flowchart of a detailed operation of a base station in the second embodiment is shown, and each step is divided and expressed as follows.
  • step S710 the base station 110 transmits the CSI-RS to the terminals as an analog transmission beam. can be transmitted to the terminal by changing And, the base station 110, in step S720, a downlink digital channel including the analog transmission beam of the base station 110 through PUSCH or PUCCH. can receive
  • the base station 110 may convert the downlink digital channel into an uplink digital channel using channel reciprocity, and may convert the downlink analog transmission beam of the base station 110 into an uplink reception beam. .
  • the base station 110 uses the converted digital channels, the digital transmit beam for each of the terminals 120, the analog receive beam of the base station 110, and the terminals 120 to be scheduled in an arbitrary slot. ) can be organically determined through a tabu search algorithm and a semi-orthogonal user selection (SUS) algorithm.
  • SUS semi-orthogonal user selection
  • the base station 110 may transmit information on the digital transmission beam of the scheduled terminals 120 to the corresponding terminals through a transmitted precoding matrix indicator (TPMI).
  • TPMI transmitted precoding matrix indicator
  • the base station 110 may receive data from the terminals to be scheduled in the arbitrary slot in step S760, and the data is determined by the base station 110 according to an embodiment of the present invention and based on the TPMI notified to the terminal will be transmitted.
  • FIG. 8 is a diagram illustrating an operation sequence of a terminal in a wireless communication system according to a second embodiment of the present disclosure.
  • FIG. 8 a flowchart of a specific terminal operation in the second embodiment is shown, and each step is divided and expressed as follows.
  • the terminal 120 may receive the CSI-RS from the base station in step S810. Then, in step S820 , the terminal 120 may obtain downlink digital channel information (CSI) through the received CSI-RS.
  • CSI includes CQI (channel quality information), PMI (precoding matrix indicator), CRI (CSI-RS resource indicator) SSBRI (SS / PBCH resource block indicator), LI (layer indicator), RI (rank indicator) or L1-RSRP ( There may be several components such as reference signal received power).
  • the terminal uses CSI, and a downlink digital channel including an analog transmission beam of the base station 110 can be estimated
  • step S830 the terminal 120 sends a downlink digital channel including an analog transmission beam of the base station 110 to the base station 110 through PUSCH or PUCCH. can be sent.
  • the terminal 120 may receive information on the digital transmission beam from the base station through the TPMI.
  • the information on the digital transmission beam is determined by the base station 110, and a digital transmission beam for each of the terminals 120, an analog reception beam of the base station 110, and an arbitrary slot using estimated digital channels.
  • the set of terminals 120 to be scheduled in . is organically determined through a tabu search algorithm and a semi-orthogonal user selection (SUS) algorithm.
  • the terminal 120 Upon receiving the information on the digital transmission beam, the terminal 120 applies a precoding matrix corresponding to the received TPMI to the complex symbol generated according to the type of signal or the state of the channel in step S850 to the base station 110 . data can be transmitted.
  • the complex symbol may be modulated using a method such as binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), or 16QAM/64QAM (quadrature amplitude modulation) according to a signal type or channel state.
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • 16QAM/64QAM quadrature amplitude modulation
  • the modulated complex symbol may be multiplied by a precoding matrix and assigned to an antenna, and the processed transmission signal is each time-mapped to a frequency resource element and then an orthogonal frequency division multiple access (OFDMA) signal generator. can be transmitted through each antenna.
  • OFDMA orthogonal frequency division multiple access
  • FIG. 9 is a diagram illustrating a method of organically determining a set of terminals to be scheduled in an analog reception beam of a base station, a digital transmission beam of terminals, and an arbitrary slot in a wireless communication system according to an embodiment of the present disclosure.
  • a specific method for determining an analog reception beam of a base station, a digital transmission beam of terminals, and a set of terminals to be scheduled in an arbitrary slot is disclosed.
  • the base station may select an analog reception beam of the base station using the estimated digital channel.
  • the initial value of the analog reception beam 114 may be selected based on a value at which the digital channel gain is the maximum, and the equation for selecting the analog reception beam having the maximum digital channel gain is as shown in Equation 3 below.
  • X represents the total number of terminals sharing time and frequency resources, denotes an analog channel between the k-th terminal and the base station, is the analog reception beam of the base station, denotes a digital channel between the k-th terminal and the base station.
  • the base station may select a digital transmit beam for each of the terminals using the estimated digital channel and the analog receive beam of the base station.
  • the effective channel by multiplying the digital channel of each terminal by the digital transmission beam of the terminal can be formed, and the digital transmission beam of the terminal that maximizes the gain of the effective channel can be obtained.
  • Equation 4 shows an expression for this.
  • Equation 4 is the digital transmission beam of the k-th terminal, denotes an effective channel between the k-th terminal and the base station.
  • the base station may select a set of terminals to be scheduled in an arbitrary slot in consideration of the estimated digital channel, the analog receive beam of the base station, and the digital transmit beam.
  • the base station may determine a set of terminals to be scheduled in an arbitrary slot by using a semi-orthogonal user selection (SUS) technique for an effective channel.
  • SUS is a technique of selecting a set of terminals having a corresponding parameter equal to or greater than a preset reference value by comparing orthogonality of effective channel vectors of each terminal to each other through a parameter.
  • Equation 5 shows an expression for an effective channel.
  • the base station may select the analog reception beam of the base station again from a sum-rate point of view using a tabu search algorithm.
  • the taboo search algorithm is an algorithm that compares the current solution with neighboring candidate groups and updates it, and prevents repeated finding of the same solution, which will be described below.
  • the third to fourth steps can be repeated as many times as the inner iteration number.
  • the second to fifth steps can be repeated as many times as the number of outer iterations.
  • FIG. 10 is a diagram illustrating a tabu search algorithm used to determine an analog reception beam of a base station and a digital transmission beam of terminals in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 11 is a diagram illustrating an example of a third party search algorithm in a wireless communication system according to an embodiment of the present disclosure.
  • the taboo search algorithm is an algorithm for solving a given optimization problem regardless of the type of optimization problem. Since existing optimization algorithms basically operate based on neighboring solution search, there may be a characteristic of proceeding only in the direction of improvement of the current solution. Due to this characteristic, it is possible to frequently converge to a local optimum. In order to solve the problem of convergence to such a local optimal point, the other search algorithm can separately store information about the local optimal point, and can avoid the local optimal point based on this information. In this case, the information on the local optimum may be referred to as tabu. In other words, it is an algorithm that updates the current solution by comparing it with neighboring candidate groups, and it is possible to avoid falling into local optimization by repeatedly searching for the same solution.
  • a process of finding an optimal solution using the other search algorithm may be as follows.
  • Candidate optimal solution updated from candidate solution 1 (1151) to candidate solution 2 (1153) in Region 1 (1110), updated to candidate solution 3 (1155) in Region 2 (1120), and candidate solution in Region 3 (1130) Year 4 (1157) may be updated.
  • the other search algorithm may go through an initialization step in step S1010.
  • An initial candidate solution may be set, p indicating the current number of taboo list checks may be set to 0, and an i value indicating the current number of iterations may be set to 0.
  • parameters M (maximum number of repetitions) and P (length of taboo list) to be compared can be set. These values are arbitrary values and are not limited to the values described above.
  • the other search algorithm may find a neighboring solution of the determined candidate solution in step S1020.
  • the taboo search algorithm may select the most optimal solution from among the found neighboring solutions in step S1030 and determine whether it is more optimal than a solution in the existing taboo list. If it is determined that the new candidate solution is the optimal solution, it may be set as the new candidate solution. Since the candidate solution is newly updated, the number of current taboo list checks (p) can be increased by one.
  • the other search algorithm may determine whether the current number of other part list checks (p) is greater than a predetermined P (length of the other part list). This is because the number of candidate solutions that can be stored in the taboo list is set to P.
  • step S1050 if the current taboo list check count (p) is greater than a predetermined P (length of the taboo list), the first stored candidate solution among the candidate solutions stored in the existing taboo list is deleted, A new candidate solution can be stored. This may be done according to a first-in-first-out method.
  • the taboo search algorithm may store the new candidate solutions in the taboo list in order in step S1060.
  • the taboo search algorithm may increase the current number of iterations (i) by 1 in step S1070.
  • the other search algorithm may determine whether the current number of repetitions is greater than the maximum number of repetitions in step S1080. If the current number of repetitions is greater than the maximum number of repetitions, the search is terminated, and if the current number of repetitions is smaller than the maximum number of repetitions, steps S1020 to S1080 may be performed again.
  • SUS semi-orthogonal user scheduling
  • the set of terminals may be estimated by using the SUS algorithm in consideration of the influence of interference between channels between the terminals and the base station.
  • the steps of the SUS algorithm are as follows.
  • the SUS algorithm may select a user having the highest channel gain in step S1210 and add it to the user set U.
  • step S1220 the SUS algorithm determines the size of the channel and semi-orthogonality component for U ( ) can be added to U by selecting the largest user.
  • step S1230 the number of users is smaller than a specific value (K), and the size of the component ( ) is greater than a specific value (L).
  • the number of users is less than a certain value (K), and the size of the component ( ) is greater than the specific value L, step 1220 may be performed again. If the number of users is greater than a certain value (K), or the size of the component ( ) is less than the specific value L, the corresponding operation may be terminated.
  • an effect of organically determining a set of terminals to be scheduled in an arbitrary slot, a digital transmission beam of the terminals, and an analog reception beam of a base station, and an analog reception beam of a base station having a better channel gain and a digital transmission beam of the terminal may be determined.
  • FIG. 13 is a block diagram illustrating an internal structure of a terminal according to an embodiment of the present disclosure.
  • the terminal may include a transceiver 1310 , a controller 1320 , and a storage 1330 .
  • the controller may be defined as a circuit or an application specific integrated circuit or at least one processor.
  • the transceiver 1310 may transmit/receive signals to and from other network entities.
  • the transceiver 1310 may transmit system information to, for example, a base station, and may transmit a synchronization signal or a reference signal.
  • the controller 1320 may control the overall operation of the terminal according to the embodiment proposed in the present disclosure.
  • the controller 1320 may control a signal flow between blocks to perform an operation according to the procedure described above with reference to FIGS. 1 to 12 .
  • the controller 1320 may control the operation proposed by the present disclosure in the wireless communication system according to the embodiment of the present disclosure.
  • the storage unit 1330 may store at least one of information transmitted/received through the transceiver 1310 and information generated through the control unit 1320 .
  • the storage unit 1330 may store information according to the above-described embodiment.
  • FIG. 14 is a block diagram illustrating an internal structure of a base station according to an embodiment of the present disclosure.
  • the base station may include a transceiver 1410 , a controller 1420 , and a storage 1430 .
  • the controller may be defined as a circuit or an application specific integrated circuit or at least one processor.
  • the transceiver 1410 may transmit/receive signals to and from other network entities.
  • the transceiver 1410 may transmit system information to, for example, a base station, and may transmit a synchronization signal or a reference signal.
  • the controller 1420 may control the overall operation of the base station according to the embodiment proposed in the present disclosure.
  • the controller 1420 may control a signal flow between blocks to perform an operation according to the procedure described above with reference to FIGS. 1 to 12 .
  • the controller 1420 may control the operation proposed by the present disclosure in the wireless communication system according to the embodiment of the present disclosure.
  • the storage unit 1430 may store at least one of information transmitted/received through the transceiver 1410 and information generated through the control unit 1420 .
  • the storage unit 1430 may store information according to the above-described embodiment.
  • a computer-readable storage medium storing one or more programs (software modules) may be provided.
  • One or more programs stored in a computer-readable storage medium may be configured to be executable by one or more processors in an electronic device.
  • One or more programs may include instructions for causing an electronic device to execute methods according to embodiments described in a claim or specification of the present disclosure.
  • Such programs include random access memory, non-volatile memory including flash memory, read only memory (ROM), electrically erasable programmable ROM (EEPROM: electrically erasable programmable read only memory), magnetic disc storage device, compact disc ROM (CD-ROM), digital versatile discs (DVDs), or other types of It may be stored in an optical storage device or a magnetic cassette. Alternatively, it may be stored in a memory composed of a combination of some or all thereof. In addition, each configuration memory may be included in plurality.
  • non-volatile memory including flash memory, read only memory (ROM), electrically erasable programmable ROM (EEPROM: electrically erasable programmable read only memory), magnetic disc storage device, compact disc ROM (CD-ROM), digital versatile discs (DVDs), or other types of It may be stored in an optical storage device or a magnetic cassette. Alternatively, it may be stored in a memory composed of a combination of some or all thereof. In addition, each configuration memory may be included in plurality.
  • the program accesses through a communication network consisting of a communication network such as the Internet, an intranet, a local area network (LAN), a wide LAN (WLAN), or a storage area network (SAN), or a combination thereof. It may be stored in an attachable storage device that can be accessed. Such a storage device may be connected to a device implementing an embodiment of the present disclosure through an external port. In addition, a separate storage device on the communication network may be connected to the device implementing the embodiment of the present disclosure.
  • a communication network such as the Internet, an intranet, a local area network (LAN), a wide LAN (WLAN), or a storage area network (SAN), or a combination thereof. It may be stored in an attachable storage device that can be accessed.
  • Such a storage device may be connected to a device implementing an embodiment of the present disclosure through an external port.
  • a separate storage device on the communication network may be connected to the device implementing the embodiment of the present disclosure.
  • each of the above embodiments may be operated in combination with each other as needed.
  • the base station and the terminal may be operated by combining parts of one embodiment and another embodiment of the present disclosure.
  • a base station and a terminal may be operated by combining parts of a plurality of embodiments of the present disclosure.
  • the above embodiments have been presented based on the FDD LTE system, other modifications based on the technical idea of the embodiment may be implemented in other systems such as the TDD LTE system, 5G or NR system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present disclosure relates to a 5G or 6G communication system for supporting a higher data transmission rate than a 4G communication system such as LTE. The present disclosure can be applied to intelligent services (for example, smart homes, smart buildings, smart cities, smart cars or connected cars, healthcare, digital education, retail businesses, security- and safety-related services, and the like) on the basis of a 5G or 6G communication technology and an IoT-related technology. According to various embodiments of the present disclosure, provided may be a method and apparatus for organically determining scheduling of terminals, a digital transmission beam of the terminals, and an analog reception beam of a base station in a next-generation wireless communication system.

Description

무선 통신 시스템에서 하이브리드 빔포밍 통신을 수행하는 방법 및 장치Method and apparatus for performing hybrid beamforming communication in a wireless communication system
본 개시는 무선 통신 시스템에 관한 것으로, 보다 구체적으로 다중 입출력 안테나(MIMO, multi-input multi-output)를 이용하여 하이브리드 빔포밍 통신을 수행하는 방법 및 장치에 관한 것이다.The present disclosure relates to a wireless communication system, and more particularly, to a method and apparatus for performing hybrid beamforming communication using a multi-input multi-output (MIMO) antenna.
무선 통신 세대를 거듭하면서 발전한 과정을 돌아보면 음성, 멀티미디어, 데이터 등 주로 인간 대상의 서비스를 위한 기술이 개발되어 왔다. 5G (5th-generation) 통신 시스템 상용화 이후 폭발적인 증가 추세에 있는 커넥티드 기기들이 통신 네트워크에 연결될 것으로 전망되고 있다. 네트워크에 연결된 사물의 예로는 차량, 로봇, 드론, 가전제품, 디스플레이, 각종 인프라에 설치된 스마트 센서, 건설기계, 공장 장비 등이 있을 수 있다. 모바일 기기는 증강현실 안경, 가상현실 헤드셋, 홀로그램 기기 등 다양한 폼팩터로 진화할 것으로 예상된다. 6G (6th-generation) 시대에는 수천억 개의 기기 및 사물을 연결하여 다양한 서비스를 제공하기 위해, 개선된 6G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 6G 통신 시스템은 5G 통신 이후 (Beyond 5G) 시스템이라 불리어지고 있다. Looking back on the progress of wireless communication generations, technologies for mainly human services such as voice, multimedia, and data have been developed. After the commercialization of the 5G (5th-generation) communication system, it is expected that connected devices, which are on an explosive increase, will be connected to the communication network. Examples of things connected to the network may include vehicles, robots, drones, home appliances, displays, smart sensors installed in various infrastructures, construction machines, and factory equipment. Mobile devices are expected to evolve into various form factors such as augmented reality glasses, virtual reality headsets, and hologram devices. In the 6th-generation (6G) era, efforts are being made to develop an improved 6G communication system to provide various services by connecting hundreds of billions of devices and things. For this reason, the 6G communication system is called a system after 5G communication (Beyond 5G).
2030년쯤 실현될 것으로 예측되는 6G 통신 시스템에서 최대 전송 속도는 테라 (즉, 1,000기가) bps, 무선 지연시간은 100마이크로초(μsec) 이다. 즉, 5G 통신 시스템대비 6G 통신 시스템에서의 전송 속도는 50배 빨라지고 무선 지연시간은 10분의 1로 줄어든다.In a 6G communication system that is predicted to be realized around 2030, the maximum transmission speed is tera (that is, 1,000 gigabytes) bps, and the wireless latency is 100 microseconds (μsec). That is, the transmission speed in the 6G communication system is 50 times faster than in the 5G communication system, and the wireless delay time is reduced by one-tenth.
이러한 높은 데이터 전송 속도 및 초저(ultra low) 지연시간을 달성하기 위해, 6G 통신 시스템은 테라헤르츠(terahertz) 대역 (예를 들어, 95기가헤르츠(95GHz)에서 3테라헤르츠(3THz)대역과 같은)에서의 구현이 고려되고 있다. 테라헤르츠 대역에서는 5G에서 도입된 밀리미터파(mmWave) 대역에 비해 더 심각한 경로손실 및 대기흡수 현상으로 인해서 신호 도달거리, 즉 커버리지를 보장할 수 있는 기술의 중요성이 더 커질 것으로 예상된다. 커버리지를 보장하기 위한 주요 기술로서 RF(radio frequency) 소자, 안테나, OFDM (orthogonal frequency division multiplexing)보다 커버리지 측면에서 더 우수한 신규 파형(waveform), 빔포밍(beamforming) 및 거대 배열 다중 입출력(massive multiple-input and multiple-output (MIMO)), 전차원 다중입출력(full dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 대규모 안테나(large scale antenna)와 같은 다중 안테나 전송 기술 등이 개발되어야 한다. 이 외에도 테라헤르츠 대역 신호의 커버리지를 개선하기 위해 메타물질(metamaterial) 기반 렌즈 및 안테나, OAM(orbital angular momentum)을 이용한 고차원 공간 다중화 기술, RIS(reconfigurable intelligent surface) 등 새로운 기술들이 논의되고 있다.In order to achieve such high data rates and ultra low latency, 6G communication systems use the terahertz band (for example, the 95 gigahertz (95 GHz) to 3 terahertz (3 THz) band). implementation is being considered. In the terahertz band, compared to the millimeter wave (mmWave) band introduced in 5G, the importance of technology that can guarantee the signal reach, that is, the coverage, is expected to increase due to more severe path loss and atmospheric absorption. As major technologies to ensure coverage, new waveforms, beamforming, and massive arrays that are superior in terms of coverage than radio frequency (RF) devices, antennas, orthogonal frequency division multiplexing (OFDM) input and multiple-output (MIMO)), full dimensional MIMO (FD-MIMO), an array antenna, and a multi-antenna transmission technology such as a large scale antenna should be developed. In addition, new technologies such as metamaterial-based lenses and antennas, high-dimensional spatial multiplexing technology using orbital angular momentum (OAM), and reconfigurable intelligent surface (RIS) are being discussed to improve the coverage of terahertz band signals.
또한 주파수 효율 향상 및 시스템 네트워크 개선을 위해, 6G 통신 시스템에서는 상향링크(uplink)와 하향링크(downlink)가 동일 시간에 동일 주파수 자원을 동시에 활용하는 전이중화(full duplex) 기술, 위성(satellite) 및 HAPS(high-altitude platform stations)등을 통합적으로 활용하는 네트워크 기술, 이동 기지국 등을 지원하고 네트워크 운영 최적화 및 자동화 등을 가능하게 하는 네트워크 구조 혁신 기술, 스펙트럼 사용 예측에 기초한 충돌 회피를 통한 동적 주파수 공유 (dynamic spectrum sharing) 기술, AI (artificial intelligence)를 설계 단계에서부터 활용하고 종단간(end-to-end) AI 지원 기능을 내재화하여 시스템 최적화를 실현하는 AI 기반 통신 기술, 단말 연산 능력의 한계를 넘어서는 복잡도의 서비스를 초고성능 통신과 컴퓨팅 자원(mobile edge computing (MEC), 클라우드 등)을 활용하여 실현하는 차세대 분산 컴퓨팅 기술 등의 개발이 이루어지고 있다. 뿐만 아니라 6G 통신 시스템에서 이용될 새로운 프로토콜의 설계, 하드웨어 기반의 보안 환경의 구현 및 데이터의 안전 활용을 위한 메커니즘 개발 및 프라이버시 유지 방법에 관한 기술 개발을 통해 디바이스 간의 연결성을 더 강화하고, 네트워크를 더 최적화하고, 네트워크 엔티티의 소프트웨어화를 촉진하며, 무선 통신의 개방성을 높이려는 시도가 계속되고 있다.In addition, in order to improve frequency efficiency and system network, in a 6G communication system, a full duplex technology in which uplink and downlink simultaneously use the same frequency resource at the same time, satellite and Network technology that integrates high-altitude platform stations (HAPS), etc., network structure innovation that supports mobile base stations, etc. and enables optimization and automation of network operation, and dynamic frequency sharing through collision avoidance based on spectrum usage prediction AI-based communication technology that realizes system optimization by utilizing (dynamic spectrum sharing) technology and artificial intelligence (AI) from the design stage and internalizing end-to-end AI support functions, The development of next-generation distributed computing technology that realizes complex services by utilizing ultra-high-performance communication and computing resources (mobile edge computing (MEC), cloud, etc.) is being developed. In addition, through the design of a new protocol to be used in the 6G communication system, the implementation of a hardware-based security environment, the development of mechanisms for the safe use of data, and the development of technologies for maintaining privacy, the connectivity between devices is further strengthened and the network is further enhanced. Attempts to optimize, promote the softwareization of network entities, and increase the openness of wireless communication continue.
이러한 6G 통신 시스템의 연구 및 개발로 인해, 사물 간의 연결뿐만 아니라 사람과사물 간의 연결까지 모두 포함하는 6G 통신 시스템의 초연결성(hyper-connectivity)을 통해 새로운 차원의 초연결 경험(the next hyper-connected experience)이 가능해질 것으로 기대된다. 구체적으로 6G 통신 시스템을 통해 초실감 확장 현실(truly immersive extended reality (XR)), 고정밀 모바일 홀로그램(high-fidelity mobile hologram), 디지털 복제(digital replica) 등의 서비스 제공이 가능할 것으로 전망된다. 또한 보안 및 신뢰도 증진을 통한 원격 수술(remote surgery), 산업 자동화(industrial automation) 및 비상 응답(emergency response)과 같은 서비스가 6G 통신 시스템을 통해 제공됨으로써 산업, 의료, 자동차, 가전 등 다양한 분야에서 응용될 것이다.Due to the research and development of this 6G communication system, the next hyper-connected experience (the next hyper-connected) through the hyper-connectivity of the 6G communication system, which includes not only the connection between objects but also the connection between people and objects. experience) is expected to become possible. Specifically, the 6G communication system is expected to provide services such as true immersive extended reality (XR), high-fidelity mobile hologram, and digital replica. In addition, services such as remote surgery, industrial automation, and emergency response through security and reliability enhancement are provided through the 6G communication system, so it is applied in various fields such as industry, medical care, automobiles, and home appliances. will be
빔포밍을 수행할 때 신호의 진폭과 위상을 조절하는 장치를 빔포머(beamformer)라고 한다. 빔포머를 RF(radio frequency) 단에서 적용하는 방식을 아날로그 빔포밍(analog beamforming)이라 할 수 있고, 기저대역(baseband) 모뎀에서 적용하는 방식을 디지털 빔포밍(digital beamforming)이라 할 수 있다. A device that adjusts the amplitude and phase of a signal when performing beamforming is called a beamformer. The method of applying the beamformer at the radio frequency (RF) stage can be called analog beamforming, and the method applied by the baseband modem can be called digital beamforming.
또한, 디지털 빔포밍과 아날로그 빔포밍의 장점을 결합하기 위해, 기저 대역에서 채널의 상태 정보(CSI: channel state information)를 토대로 디지털 빔포밍을 한 후에, 무선 주파수(radio frequency) 체인을 거쳐 아날로그 빔포밍을 하는 기술인 하이브리드 빔포밍(hybrid beamforming)도 사용되고 있다.In addition, in order to combine the advantages of digital beamforming and analog beamforming, digital beamforming is performed based on channel state information (CSI:  channel   state information) in the baseband, and then the analog beam is passed through a radio frequency chain. Hybrid beamforming, a technology for forming, is also being used.
그런데, 이러한 하이브리드 빔포밍 시에, 기지국이 기지국의 아날로그 수신 빔을 결정하는 경우, 단말들 각각의 채널의 간섭을 고려하지 않고, 단말들의 디지털 송신 빔을 고려하지 않는다. 따라서 단말들의 디지털 송신 빔이 변경되면 이미 선택되었던 기지국의 아날로그 수신 빔을 통한 채널 이득은 감소할 수 있다.However, in the hybrid beamforming, when the base station determines the analog reception beam of the base station, the interference of channels of each terminal is not considered and the digital transmission beams of the terminals are not taken into account. Accordingly, when the digital transmission beams of the terminals are changed, the channel gain through the analog reception beam of the base station that has been previously selected may be reduced.
또한, 기지국이 단말의 디지털 송신 빔을 결정하는 경우, 단말들 각각의 채널의 간섭을 고려하지 않고, 기지국의 아날로그 수신 빔을 고려하지 않는다. 따라서, 기지국의 아날로그 수신 빔이 변경되면 이미 선택되었던 단말들의 디지털 송신 빔을 통한 채널 이득은 감소하는 문제점이 있다. In addition, when the base station determines the digital transmission beam of the terminal, the interference of each channel of the terminals is not considered and the analog reception beam of the base station is not considered. Accordingly, when the analog reception beam of the base station is changed, there is a problem in that the channel gain through the digital transmission beam of the terminals that have already been selected is reduced.
본 개시는 상기와 같은 문제점을 해결하기 위해 안출된 것으로 임의의 슬롯에서 스케쥴링될 단말들의 집합, 단말들의 디지털 송신 빔, 및 기지국의 아날로그 수신 빔을 유기적으로 결정하는 것을 목적으로 한다.The present disclosure has been devised to solve the above problems, and an object of the present disclosure is to organically determine a set of terminals to be scheduled in an arbitrary slot, a digital transmission beam of the terminals, and an analog reception beam of a base station.
상기와 같은 문제점을 해결하기 위한 본 개시의 무선통신 시스템의 기지국에 의해 수행되는 방법은, 단말들로부터, SRS(sounding reference signal)을 수신하는 단계; 상기 SRS를 이용하여, 상기 단말들 각각에 대한 상향링크 디지털 채널을 추정하는 단계; 상기 추정된 상향링크 디지털 채널을 이용하여, 상기 단말들 각각에 대한 상기 기지국의 아날로그 수신 빔, 상기 단말들 각각에 대한 디지털 송신 빔, 및 임의의 슬롯에서 스케쥴링될 단말들의 집합을 결정하는 단계; 및 상기 스케쥴링된 단말들에게 상기 결정된 디지털 송신 빔에 대한 정보를 송신하는 단계를 포함하고, 상기 단말들 각각에 대한 디지털 송신 빔은, 상기 추정된 상향링크 디지털 채널과 상기 기지국의 아날로그 수신 빔을 고려하여 결정하는 것을 특징으로 한다. A method performed by a base station of a wireless communication system of the present disclosure for solving the above problems includes: receiving, from terminals, a sounding reference signal (SRS); estimating an uplink digital channel for each of the terminals by using the SRS; determining, by using the estimated uplink digital channel, an analog reception beam of the base station for each of the terminals, a digital transmission beam for each of the terminals, and a set of terminals to be scheduled in an arbitrary slot; and transmitting information on the determined digital transmission beam to the scheduled terminals, wherein the digital transmission beam for each of the terminals considers the estimated uplink digital channel and the analog reception beam of the base station. to be determined.
또한, 본 개시의 다른 일 실시 예에 따른 무선 통신 시스템의 단말에 의해 수행되는 방법은, 기지국에게, SRS(sounding reference signal)을 송신하는 단계; 상기 기지국으로부터, 디지털 송신 빔에 대한 정보를 수신하는 단계; 및 상기 기지국에게 상기 디지털 송신 빔에 대한 정보에 상응하는 디지털 송신 빔을 이용하여, 데이터를 송신하는 단계를 포함하고, 상기 디지털 송신 빔은, 상기 기지국에 의해 추정된 상향링크 디지털 채널과 상기 기지국의 아날로그 수신 빔을 고려하여 결정하는 것을 특징으로 한다. In addition, a method performed by a terminal of a wireless communication system according to another embodiment of the present disclosure includes: transmitting, to a base station, a sounding reference signal (SRS); receiving, from the base station, information on a digital transmission beam; and transmitting data to the base station by using a digital transmit beam corresponding to the information on the digital transmit beam, wherein the digital transmit beam includes an uplink digital channel estimated by the base station and a function of the base station. It is characterized in that it is determined in consideration of the analog reception beam.
또한, 본 개시의 다른 일 실시 예에 따른 무선 통신 시스템의 기지국은 송수신부; 및 단말들로부터, SRS(sounding reference signal)을 상기 송수신부를 통해 수신하고, 상기 SRS를 이용하여, 상기 단말들 각각에 대한 상향링크 디지털 채널을 추정하고, 상기 추정된 상향링크 디지털 채널을 이용하여, 상기 단말들 각각에 대한 상기 기지국의 아날로그 수신 빔, 상기 단말들 각각에 대한 디지털 송신 빔, 및 임의의 슬롯에서 스케쥴링될 단말들의 집합을 결정하고, 상기 스케쥴링된 단말들에게 상기 결정된 디지털 송신 빔에 대한 정보를 상기 송수신부를 통해 송신하고, 상기 단말들 각각에 대한 디지털 송신 빔은, 상기 추정된 상향링크 디지털 채널과 상기 기지국의 아날로그 수신 빔을 고려하여 결정되는 제어부를 포함하는 것을 특징으로 한다. In addition, a base station of a wireless communication system according to another embodiment of the present disclosure includes a transceiver; and receiving a sounding reference signal (SRS) from the terminals through the transceiver, estimating an uplink digital channel for each of the terminals using the SRS, and using the estimated uplink digital channel, Determines a set of terminals to be scheduled in an analog reception beam of the base station for each of the terminals, a digital transmission beam for each of the terminals, and a set of terminals to be scheduled in an arbitrary slot, and sends the determined digital transmission beam to the scheduled terminals. The information is transmitted through the transceiver, and the digital transmission beam for each of the terminals includes a control unit that is determined in consideration of the estimated uplink digital channel and the analog reception beam of the base station.
또한, 본 개시의 다른 일 실시 예에 따른 무선 통신 시스템의 단말은 송수신부; 및 기지국에게, SRS(sounding reference signal)을 상기 송수신부를 통해 송신하고, 상기 기지국으로부터, 디지털 송신 빔에 대한 정보를 상기 송수신부를 통해 수신하며, 상기 기지국에게 상기 디지털 송신 빔에 대한 정보에 해당되는 디지털 송신 빔을 이용하여, 데이터를 상기 송수신부를 통해 송신하고, 상기 디지털 송신 빔은, 상기 기지국에 의해 추정된 상향링크 디지털 채널과 상기 기지국의 아날로그 수신 빔을 고려하여 결정되는 제어부를 포함하는 것을 특징으로 한다.In addition, the terminal of the wireless communication system according to another embodiment of the present disclosure includes a transceiver; and transmitting a sounding reference signal (SRS) to the base station through the transceiver, and receives information on the digital transmission beam from the base station through the transceiver, and provides the base station with digital information corresponding to the digital transmission beam information. Transmitting data through the transceiver using a transmission beam, wherein the digital transmission beam comprises a control unit determined in consideration of an uplink digital channel estimated by the base station and an analog reception beam of the base station do.
본 개시의 일 실시 예에 따르면, 임의의 슬롯에서 스케쥴링될 단말들의 집합, 단말들의 디지털 송신 빔, 및 기지국의 아날로그 수신 빔을 유기적으로 결정하는 효과가 있고, 성능이 더 좋은 기지국의 아날로그 수신 빔과 단말의 디지털 송신 빔을 선택할 수 있다. According to an embodiment of the present disclosure, there is an effect of organically determining a set of terminals to be scheduled in an arbitrary slot, a digital transmission beam of terminals, and an analog reception beam of a base station, and an analog reception beam of a base station with better performance and A digital transmission beam of the terminal may be selected.
또한, 채널 상호성이 있는 경우에, 채널 상호성을 이용하여, 동일한 효과를 얻을 수 있다.In addition, when there is channel reciprocity, the same effect can be obtained by using channel reciprocity.
도 1은 본 개시의 일 실시 예에 따른 무선 통신 시스템을 도시하는 도면이다.1 is a diagram illustrating a wireless communication system according to an embodiment of the present disclosure.
도 2는 본 개시의 일 실시 예에 따른 무선 통신 시스템에서, 채널 상호성과 단말의 전력을 고려하여 기지국과 단말의 동작 실시 예를 결정하는 시나리오를 도시하는 도면이다.2 is a diagram illustrating a scenario in which an operation embodiment of a base station and a terminal is determined in consideration of channel reciprocity and power of a terminal in a wireless communication system according to an embodiment of the present disclosure.
도 3은 본 개시의 제1 실시 예에 따른 무선 통신 시스템에서, 기지국 및 단말의 동작 순서를 도시하는 도면이다.3 is a diagram illustrating an operation sequence of a base station and a terminal in the wireless communication system according to the first embodiment of the present disclosure.
도 4는 본 개시의 제2 실시 예에 따른 무선 통신 시스템에서, 기지국 및 단말의 동작 순서를 도시하는 도면이다.4 is a diagram illustrating an operation sequence of a base station and a terminal in a wireless communication system according to a second embodiment of the present disclosure.
도 5는 본 개시의 제1 실시 예에 따른 무선 통신 시스템에서, 기지국의 동작 순서를 도시하는 도면이다.5 is a diagram illustrating an operation sequence of a base station in the wireless communication system according to the first embodiment of the present disclosure.
도 6은 본 개시의 제1 실시 예에 따른 무선 통신 시스템에서, 단말의 동작 순서를 도시하는 도면이다. 6 is a diagram illustrating an operation sequence of a terminal in the wireless communication system according to the first embodiment of the present disclosure.
도 7는 본 개시의 제2 실시 예에 따른 무선 통신 시스템에서, 기지국의 동작 순서를 도시하는 도면이다.7 is a diagram illustrating an operation sequence of a base station in a wireless communication system according to a second embodiment of the present disclosure.
도 8은 본 개시의 제2 실시 예에 따른 무선 통신 시스템에서, 단말의 동작 순서를 도시하는 도면이다. 8 is a diagram illustrating an operation sequence of a terminal in a wireless communication system according to a second embodiment of the present disclosure.
도 9는 본 개시의 일 실시 예에 따른 무선 통신 시스템에서, 기지국의 아날로그 수신 빔, 단말들의 디지털 송신 빔, 및 임의의 슬롯에서 스케쥴링될 단말들의 집합을 유기적으로 결정하는 방법을 도시하는 도면이다. 9 is a diagram illustrating a method of organically determining a set of terminals to be scheduled in an analog reception beam of a base station, a digital transmission beam of terminals, and an arbitrary slot in a wireless communication system according to an embodiment of the present disclosure.
도 10은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서, 기지국의 아날로그 수신 빔, 단말들의 디지털 송신 빔을 결정하기 위해 이용되는 타부 서치(tabu search) 알고리즘을 도시하는 도면이다. 10 is a diagram illustrating a tabu search algorithm used to determine an analog reception beam of a base station and a digital transmission beam of terminals in a wireless communication system according to an embodiment of the present disclosure.
도 11은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서, 타부 서치 알고리즘의 일 예를 도시하는 도면이다.11 is a diagram illustrating an example of a third party search algorithm in a wireless communication system according to an embodiment of the present disclosure.
도 12는 본 개시의 일 실시 예에 따른 무선 통신 시스템에서, 임의의 슬롯에서 스케쥴링될 단말들의 집합을 결정하기 위해 이용되는 SUS(semi-orthogonal user scheduling) 알고리즘을 도시하는 도면이다. 12 is a diagram illustrating a semi-orthogonal user scheduling (SUS) algorithm used to determine a set of terminals to be scheduled in an arbitrary slot in a wireless communication system according to an embodiment of the present disclosure.
도 13은 본 개시의 일 실시 예에 따른 단말의 내부 구조를 도시하는 블록도이다.13 is a block diagram illustrating an internal structure of a terminal according to an embodiment of the present disclosure.
도 14는 본 개시의 일 실시 예에 따른 기지국의 내부 구조를 도시하는 블록도이다.14 is a block diagram illustrating an internal structure of a base station according to an embodiment of the present disclosure.
이하, 본 개시의 실시 예를 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings.
실시 예를 설명함에 있어서 본 개시가 속하는 기술 분야에 익히 알려져 있고 본 개시와 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략할 수 있다. 이는 불필요한 설명을 생략함으로써 본 개시의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.In describing the embodiments, descriptions of technical contents that are well known in the technical field to which the present disclosure pertains and are not directly related to the present disclosure may be omitted. This is to more clearly convey the gist of the present disclosure without obscuring the gist of the present disclosure by omitting unnecessary description.
마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시될 수 있다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아닐 수 있다. 각 도면에서 동일한 또는 대응하는 구성요소에는 동일한 참조 번호를 부여할 수 있다.For the same reason, some components may be exaggerated, omitted, or schematically illustrated in the accompanying drawings. In addition, the size of each component may not fully reflect the actual size. The same reference numbers may be assigned to the same or corresponding elements in each figure.
본 개시의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 수 있다. 본 개시는 이하에서 개시되는 실시 예들에 한정되는 것이 아니며, 서로 다른 다양한 형태로 구현될 수 있다. 단지 본 실시 예들은 본 개시의 개시가 완전하도록 하고, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 개시의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 개시는 청구항의 범주에 의해 정의될 수 있다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭할 수 있다.Advantages and features of the present disclosure, and a method for achieving them may become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. The present disclosure is not limited to the embodiments disclosed below, and may be implemented in various different forms. Only the present embodiments are provided so that the disclosure of the present disclosure is complete, and to fully inform those of ordinary skill in the art to which the present disclosure belongs, the scope of the disclosure, and the present disclosure is defined by the scope of the claims can be Like reference numerals may refer to like elements throughout.
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또한, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능할 수 있다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.Additionally, each block may represent a module, segment, or portion of code that includes one or more executable instructions for executing specified logical function(s). It may also be possible for the functions recited in blocks to occur out of order in some alternative implementations. For example, two blocks shown one after another may be performed substantially simultaneously, or the blocks may sometimes be performed in the reverse order according to a corresponding function.
이 때, 본 개시의 실시 예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA 또는 ASIC과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행할 수 있다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아닐 수 있다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함할 수 있다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다. 또한 실시 예에서 '~부'는 하나 이상의 프로세서를 포함할 수 있다. At this time, the term '~ unit' used in an embodiment of the present disclosure means software or hardware components such as FPGA or ASIC, and '~ unit' may perform certain roles. However, '~ part' may not mean limited to software or hardware. '~' may be configured to reside on an addressable storage medium or may be configured to refresh one or more processors. Accordingly, as an example, '~' indicates components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, and procedures. , subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables. The functions provided in the components and '~ units' may be combined into a smaller number of components and '~ units' or further separated into additional components and '~ units'. In addition, components and '~ units' may be implemented to play one or more CPUs in a device or secure multimedia card. Also, in an embodiment, '~ unit' may include one or more processors.
이하 설명의 편의를 위하여, 본 개시는 3GPP LTE(3rd generation partnership project long term evolution) 규격에서 정의하고 있는 용어 및 명칭들을 사용할 수 있다. 하지만, 본 개시가 상기 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하게 적용될 수 있다.For convenience of description below, the present disclosure may use terms and names defined in the 3rd generation partnership project long term evolution (3GPP LTE) standard. However, the present disclosure is not limited by the terms and names, and may be equally applied to systems conforming to other standards.
빔 스위핑이란, 아날로그 빔포밍을 사용하여 하나의 넓은 셀 영역을 커버하기 위해 방향을 달리하여, 빔을 변경하면서 전체 셀 영역을 커버하는 방식을 의미할 수 있다. 아날로그 빔과 디지털 빔으로 구성된 하이브리드 빔에서 아날로그 빔을 선택하기 위해 기지국 또는 단말에서 아날로그 빔을 변화시키며 기준 신호(RS, reference signal)를 전송할 수 있다. Beam sweeping may refer to a method of covering the entire cell area while changing a beam by changing a direction to cover one wide cell area using analog beamforming. In order to select an analog beam from a hybrid beam composed of an analog beam and a digital beam, the base station or the terminal may transmit a reference signal (RS) while changing the analog beam.
기지국이 기지국의 아날로그 수신 빔을 결정하는 경우, 복수의 단말들은 기지국으로 기준 신호를 송신하고 기지국은 아날로그 수신 빔을 변화시키며 기준 신호를 수신할 수 있다. 그 후, 기지국은 수신한 기준 신호를 통해 RSSI(received signal strength indicator), RSRQ(reference signal received quality), RSRP(reference signals received power) 중 적어도 하나를 이용하여 기지국의 아날로그 수신 빔을 결정할 수 있다. When the base station determines the analog reception beam of the base station, the plurality of terminals may transmit a reference signal to the base station, and the base station may receive the reference signal while changing the analog reception beam. Thereafter, the base station may determine the analog reception beam of the base station by using at least one of a received signal strength indicator (RSSI), reference signal received quality (RSRQ), and reference signals received power (RSRP) through the received reference signal.
그러나, 상기 기지국이 아날로그 수신 빔을 결정하는 경우에는, 단말들 각각의 채널의 간섭을 고려하지 않고, 단말들의 디지털 송신 빔을 고려하지 않는다. 따라서, 단말들의 디지털 송신 빔이 변경되면 이미 선택되었던 기지국의 아날로그 수신 빔을 통한 채널 이득은 감소할 수 있다.However, when the base station determines the analog reception beam, it does not consider the interference of each channel of the terminals and does not consider the digital transmission beams of the terminals. Accordingly, when the digital transmission beams of the terminals are changed, the channel gain through the analog reception beam of the base station that has been previously selected may be reduced.
또한, 기지국이 단말의 디지털 송신 빔을 결정하는 경우, 복수의 단말들은 SRS(sounding reference signal)를 기지국으로 송신할 수 있고, 기지국은 수신한 SRS를 이용하여 단말들 각각의 채널을 추정할 수 있다. 기지국은 추정된 채널을 통해 단말들의 디지털 송신 빔을 결정할 수 있다. 기지국은 단말들에 대한 디지털 송신 빔 정보를 TPMI(transmitted precoding matrix indicator)를 통해 단말들에게 송신할 수 있고, 단말들은 수신한 디지털 송신 빔 정보에 해당되는 디지털 송신 빔을 사용하여 기지국으로 데이터를 송신할 수 있다. In addition, when the base station determines the digital transmission beam of the terminal, the plurality of terminals may transmit a sounding reference signal (SRS) to the base station, and the base station may estimate the channel of each terminal using the received SRS. . The base station may determine the digital transmission beams of the terminals through the estimated channel. The base station may transmit digital transmission beam information for the terminals to the terminals through a transmitted precoding matrix indicator (TPMI), and the terminals transmit data to the base station using a digital transmission beam corresponding to the received digital transmission beam information. can do.
그러나, 상기 기지국이 단말의 디지털 송신 빔을 결정하는 경우에는, 단말들 각각의 채널의 간섭을 고려하지 않고, 기지국의 아날로그 수신 빔을 고려하지 않는다. 따라서, 기지국의 아날로그 수신 빔이 변경되면 이미 선택되었던 단말들의 디지털 송신 빔을 통한 채널 이득은 감소할 수 있다.However, when the base station determines the digital transmission beam of the terminal, the interference of channels of each terminal is not considered and the analog reception beam of the base station is not considered. Accordingly, when the analog reception beam of the base station is changed, the channel gain through the digital transmission beam of the terminals that have already been selected may be reduced.
이와 같은 문제를 해결하기 위해, 본 개시의 일 실시 예에 따르면, 임의의 슬롯에서 스케쥴링될 단말들의 집합, 단말들의 디지털 송신 빔, 및 기지국의 아날로그 수신 빔을 유기적으로 결정하는 효과가 있고, 채널 이득이 더 좋은 기지국의 아날로그 수신 빔과 단말의 디지털 송신 빔을 결정할 수 있다. In order to solve this problem, according to an embodiment of the present disclosure, there is an effect of organically determining a set of terminals to be scheduled in an arbitrary slot, a digital transmission beam of the terminals, and an analog reception beam of a base station, and a channel gain It is possible to determine the better analog reception beam of the base station and the digital transmission beam of the terminal.
또한, 채널 상호성이 있는 경우에, 채널 상호성을 이용하여, 동일한 효과를 얻을 수 있다.In addition, when there is channel reciprocity, the same effect can be obtained by using channel reciprocity.
이하에서는 상기와 같은 목적을 해결하기 위한 본 발명의 제1 실시 예와 제2 실시 예의 기지국과 단말의 동작에 대해서 도면을 참고하여 구체적으로 설명하도록 한다.Hereinafter, operations of the base station and the terminal according to the first and second embodiments of the present invention for solving the above object will be described in detail with reference to the drawings.
도 1은 본 개시의 일 실시 예에 따른 무선 통신 시스템을 도시하는 도면이다.1 is a diagram illustrating a wireless communication system according to an embodiment of the present disclosure.
도 1을 참조하면, 무선 통신 시스템에서 무선 네트워크 환경은 복수의 단말들(120)과 기지국(110)을 포함할 수 있다. 네트워크 유형에 따라, 상기 기지국(110)은 "기지국(base station)" 외에 이노드비("eNodeB" 또는 "eNB"), 5G 노드(5th generation node B), 송수신 포인트(transmission reception point, TRP)들이 대신 사용될 수 있다. 또한 편의상, 기지국(110)은 하기 설명에서 원격(remote) 단말들(terminals)에 무선 액세스를 제공하는 네트워크 인프라스트럭쳐(infrastructure) 구성 요소들을 의미하기 위해 사용될 수 있다. 또한, 네트워크 유형에 따라, 단말(120)은 사용자 장비 “(user equipment, UE)" 외에 "이동국(mobile station)", "가입자국(subscriber station)", "원격 단말(remote terminal)", "무선 단말(wireless terminal)", 또는 "사용자 장치(user device)"와 같은 다른 잘 알려진 용어들이 사용될 수도 있다. Referring to FIG. 1 , a wireless network environment in a wireless communication system may include a plurality of terminals 120 and a base station 110 . Depending on the network type, the base station 110 may include an inode ratio (“eNodeB” or “eNB”), a 5 th generation node B, a transmission reception point (TRP) in addition to a “base station”. may be used instead. Also for convenience, the base station 110 may be used to mean network infrastructure components that provide wireless access to remote terminals in the following description. In addition, depending on the network type, the terminal 120 is a "mobile station", "subscriber station", "remote terminal", " Other well-known terms such as "wireless terminal", or "user device" may be used.
상기 무선 네트워크 환경은 상기 기지국(110)에서 상기 단말들(120)으로의 링크인 하향링크(downlink) 및 상기 단말들(120)에서 상기 기지국(110)으로의 링크인 상향링크(uplink)를 포함할 수 있다.The wireless network environment includes a downlink that is a link from the base station 110 to the terminals 120 and an uplink that is a link from the terminals 120 to the base station 110 . can do.
상기 기지국(110)은 다수의 안테나(116)를 포함할 수 있다. 상기 기지국(110)은, 상기 안테나(116)를 통하여 하향링크를 통한 송신(transmission) 또는 상향링크를 통한 수신(reception)을 수행할 수 있다. 즉, 상기 안테나(116)은 송수신(TX/RX) 공용 안테나일 수 있다. 또한, 상기 단말들(120)은 다수의 안테나(126)를 포함할 수 있다. 상기 안테나(126)은 송수신(TX/RX) 공용 안테나일 수 있다.The base station 110 may include a plurality of antennas 116 . The base station 110 may perform transmission through downlink or reception through uplink through the antenna 116 . That is, the antenna 116 may be a transmission/reception (TX/RX) common antenna. Also, the terminals 120 may include a plurality of antennas 126 . The antenna 126 may be a transmit/receive (TX/RX) common antenna.
도 1에서 기지국(110)과 단말들(120)의 안테나는 모두 송수신 공용 안테나로 설명하였으나, 이러한 도시에 한정되지 않는다. 따라서, 본 개시의 다양한 실시 예들에 따른 기지국(110)과 단말들(120)은 송수신 공용 안테나를 포함하지 않을 수 있다. 다시 말해, 상기 기지국(110)과 상기 단말들(120)은 물리적으로 분리된 송신용 안테나 및 수신용 안테나를 포함할 수 있다. In FIG. 1 , the antennas of the base station 110 and the terminals 120 have been described as a common transmission/reception antenna, but the present invention is not limited thereto. Accordingly, the base station 110 and the terminals 120 according to various embodiments of the present disclosure may not include a common transmit/receive antenna. In other words, the base station 110 and the terminals 120 may include a transmission antenna and a reception antenna physically separated.
상기 기지국(110)은 상기 안테나(116)를 통하여, 상기 단말들(120)에게 하향링크 데이터를 송신할 수 있다. 상기 기지국(110)은 하향링크 데이터의 송신을 위하여, 상이한 방향을 가지는 복수 개의 하향링크 송신 빔들 중에서, 어느 하나의 하향링크 송신 빔을 결정할 수 있다. 또한, 상기 기지국(110)은 상향링크에서의 빔 탐색 결과를 하향링크 빔 탐색 절차에 이용할 수 있다. 다시 말하면, 상기 기지국(110)은 채널 상호성을 이용하여, 상향링크 수신 시 사용한 빔을 하향링크 송신 빔으로 결정할 수 있다. The base station 110 may transmit downlink data to the terminals 120 through the antenna 116 . The base station 110 may determine any one downlink transmission beam from among a plurality of downlink transmission beams having different directions for transmission of downlink data. Also, the base station 110 may use the uplink beam search result for a downlink beam search procedure. In other words, the base station 110 may determine a beam used for uplink reception as a downlink transmission beam by using channel reciprocity.
또한, 상기 기지국(110)은, 상기 안테나(116)를 통하여, 상기 단말들(120)로부터 상향링크 데이터를 수신할 수 있다. 상기 기지국(110)은 상향링크 데이터의 수신을 위하여, 상이한 방향을 가지는 복수 개의 상향링크 수신 빔들 중에서, 어느 하나의 상향링크 수신 빔을 결정할 수 있다. 또한, 상기 기지국(110)은 하향링크에서의 빔 탐색 결과를 상향링크 빔 탐색 절차에 이용할 수 있다. 다시 말하면, 상기 기지국(110)은 채널 상호성을 이용하여, 하향링크 송신 시 사용한 빔을 상향링크 수신 빔으로 결정할 수 있다.Also, the base station 110 may receive uplink data from the terminals 120 through the antenna 116 . The base station 110 may determine any one uplink reception beam from among a plurality of uplink reception beams having different directions in order to receive uplink data. Also, the base station 110 may use a downlink beam search result for an uplink beam search procedure. In other words, the base station 110 may determine a beam used for downlink transmission as an uplink reception beam by using channel reciprocity.
상기 단말들(120)은 상기 안테나(126)를 통하여, 상기 기지국(110)에게 상향링크 데이터를 송신할 수 있다. 상기 단말들(120)은 상향링크 데이터의 송신을 위하여, 상이한 방향을 가지는 복수 개의 상향링크 송신 빔들 중에서, 어느 하나의 상향링크 송신 빔을 결정할 수 있다. 또한 상기 단말들(120)은 하향링크에서의 빔 탐색 결과를 상향링크 빔 탐색 절차에 이용할 수 있다. 다시 말하면, 상기 단말들(120)은 채널 상호성을 이용하여, 하향링크 수신 시 사용한 빔을 상향링크 송신 빔으로 결정할 수 있다. The terminals 120 may transmit uplink data to the base station 110 through the antenna 126 . The terminals 120 may determine any one uplink transmission beam from among a plurality of uplink transmission beams having different directions for transmission of uplink data. Also, the terminals 120 may use the downlink beam search result for the uplink beam search procedure. In other words, the terminals 120 may determine a beam used for downlink reception as an uplink transmission beam by using channel reciprocity.
또한, 상기 단말들(120)은 상기 안테나(126)를 통하여, 상기 기지국(110)으로부터 하향링크 데이터를 수신할 수 있다. 상기 단말들(120)은 하향링크 데이터의 수신을 위하여, 상이한 방향을 가지는 복수개의 하향링크 수신 빔들 중에서, 어느 하나의 하향링크 수신 빔을 결정할 수 있다. 또한 상기 단말들(120)은 상향링크에서의 빔 탐색 결과를 하향링크 빔 탐색 절차에 이용할 수 있다. 다시 말하면, 상기 단말들(120)은 채널 상호성을 이용하여, 상향링크 송신 시 사용한 빔을 하향링크 수신 빔으로 결정할 수 있다.Also, the terminals 120 may receive downlink data from the base station 110 through the antenna 126 . In order to receive downlink data, the terminals 120 may determine any one downlink reception beam from among a plurality of downlink reception beams having different directions. Also, the terminals 120 may use the uplink beam search result for a downlink beam search procedure. In other words, the terminals 120 may determine a beam used for uplink transmission as a downlink reception beam by using channel reciprocity.
빔포밍은 복수의 안테나 패턴을 겹치게 한 상태에서 각 안테나로 송수신되는 신호의 진폭과 위상을 변조하는 것을 의미할 수 있다. 빔포밍을 통해, 특정한 방향으로는 신호를 세게 송수신하고, 그 외의 방향으로는 신호를 약하게 송수신할 수 있다. 즉, 복수의 안테나에서 송수신되는 신호를 특정한 방향의 빔처럼 작동할 수 있으며, 마치 하나의 안테나처럼 동작하여 신호를 세게 송수신할 수 있다. 이를 통해, 셀 커버리지가 확대될 수 있고 전송속도를 향상할 수 있다.Beamforming may mean modulating the amplitude and phase of a signal transmitted and received by each antenna in a state in which a plurality of antenna patterns are overlapped. Through beamforming, a signal may be strongly transmitted and received in a specific direction, and a signal may be transmitted/received weakly in other directions. That is, signals transmitted and received from a plurality of antennas may be operated as beams in a specific direction, and signals may be transmitted/received strongly by operating as if a single antenna. Through this, cell coverage can be expanded and transmission speed can be improved.
빔포밍에서, 신호의 진폭과 위상을 조절하는 장치를 빔포머(beamformer)라고 할 수 있다. 아날로그 빔포밍(analog beamforming, 114)은 빔포머를 RF(radio frequency) 체인(118, 128)에서 조절하는 방식을 의미하고, 디지털 빔포밍(digital beamforming, 112, 122)은 빔포머를 기저대역(baseband) 모뎀에서 조절하는 방식을 의미한다. In beamforming, a device that adjusts the amplitude and phase of a signal may be referred to as a beamformer. Analog beamforming (analog beamforming, 114) refers to a method of adjusting the beamformer in the RF (radio frequency) chain 118, 128, and digital beamforming (digital beamforming, 112, 122) is to convert the beamformer to baseband ( baseband) refers to the method controlled by the modem.
아날로그 빔포밍(114)은 빔포머가 RF 체인(118, 128)에서 동작하기 때문에 동시에 여러 방향으로 빔을 형성할 수 없고 특정한 방향으로만 송수신할 수 있다. 또한 안테나 수와 관계없이, 기저대역 모뎀까지 신호를 전달하는 트랜시버가 하나만 필요하여 구현에 필요한 하드웨어 자원이 적을 수 있고 기저대역의 프로세싱이 간단할 수 있다. 따라서 디지털 빔포밍에 비해 구현하기 쉽고 전력 소모량과 구현 비용도 낮을 수 있다.In the analog beamforming 114, since the beamformer operates in the RF chains 118 and 128, a beam cannot be formed in several directions at the same time, but can transmit and receive only in a specific direction. In addition, regardless of the number of antennas, only one transceiver is required to transmit a signal to the baseband modem, so hardware resources required for implementation may be less and baseband processing may be simple. Therefore, it is easier to implement compared to digital beamforming, and power consumption and implementation cost may be low.
디지털 빔포밍(112, 122)은 빔포머가 기저대역 모뎀에서 동작하고 RF 체인(118, 128)과 안테나에서는 기저대역에서 빔포밍이 적용된 신호를 송수신 할 수 있다. 따라서 셀 내의 여러 사용자가 다른 위치에 있을 때, 기저대역 신호 처리를 통해서 각 사용자를 위한 빔포밍을 별도로 적용할 수 있다. 직교 주파수 분할 다중 접속 (OFDMA: orthogonal frequency division multiple access) 방식을 사용하는 LTE와 5G 무선 통신 시스템의 경우에는, 셀 내의 사용자 별로 다른 주파수 자원을 할당하여 빔포밍을 적용할 수 있다. 따라서, 동시에 여러 사용자 별로 빔포밍이 가능할 수 있고, 이러한 경우 디지털 빔포밍은 아날로그 빔포밍보다 더 유연하게 활용될 수 있다. 반면 각 안테나에서부터 RF 체인을 거쳐 기저대역 모뎀까지 신호를 전달하는 트랜시버가 안테나 수만큼 필요하기 때문에, 아날로그 빔포밍보다 하드웨어 자원이 많이 필요할 수 있고 기저대역의 프로세싱이 복잡할 수 있다.In the digital beamforming (112, 122), the beamformer operates in a baseband modem, and the RF chain (118, 128) and the antenna can transmit/receive a signal to which beamforming is applied in the baseband. Therefore, when multiple users in a cell are in different locations, beamforming for each user can be separately applied through baseband signal processing. In the case of LTE and 5G wireless communication systems using an orthogonal frequency division multiple access (OFDMA:  orthogonal   frequency division   multiple access) method, beamforming may be applied by allocating different frequency resources for each user in a cell. Therefore, beamforming may be possible for several users at the same time, and in this case, digital beamforming may be used more flexibly than analog beamforming. On the other hand, since the number of transceivers that transmit signals from each antenna to the baseband modem through the RF chain is as many as the number of antennas, it may require more hardware resources than analog beamforming and baseband processing may be complicated.
따라서, 디지털 빔포밍(112,122)과 아날로그 빔포밍(114)의 장점을 결합한 하이브리드 빔포밍이 사용될 수 있다. 도 1과 같이 RF 체인과 기저대역 모뎀에 빔포머가 동작하여 기저 대역에서 채널의 상태 정보(CSI: channel state information)를 토대로 디지털 빔포밍(112, 122)을 하고, RF 체인을 거쳐 아날로그 빔포밍(114)을 하는 기술이 사용될 수 있다. Accordingly, hybrid beamforming combining the advantages of the digital beamforming 112 and 122 and the analog beamforming 114 may be used. As shown in FIG. 1, the beamformer operates on the RF chain and the baseband modem to perform digital beamforming (112, 122) based on channel state information (CSI: channel state information) in the baseband, and analog beamforming through the RF chain (114) techniques can be used.
또한, 도 1에서 상기 단말들(120)은 총 X 개이며, 스케쥴링되는 단말의 수는K 개라고 할 수 있다. 상기 단말들(120)은
Figure PCTKR2021014338-appb-I000001
개의 안테나(126)를 사용할 수 있고, 상기 기지국(110)은
Figure PCTKR2021014338-appb-I000002
개의 안테나(116)를 사용할 수 있다.
Also, in FIG. 1 , the number of terminals 120 is X in total, and the number of scheduled terminals may be K. The terminals 120 are
Figure PCTKR2021014338-appb-I000001
Antenna 126 can be used, and the base station 110
Figure PCTKR2021014338-appb-I000002
Antenna 116 may be used.
또한, 상기 기지국(110)은 M 개의 RF chain(118)을 사용할 수 있으며, 상기 k 번째 단말(120)과 상기 기지국(110) 사이의 아날로그 채널(130)은
Figure PCTKR2021014338-appb-I000003
일 수 있고, 상기 k 번째 단말(120)의 디지털 송신 빔(122)은
Figure PCTKR2021014338-appb-I000004
일 수 있다.
In addition, the base station 110 may use M RF chains 118 , and the analog channel 130 between the k-th terminal 120 and the base station 110 is
Figure PCTKR2021014338-appb-I000003
may be, and the digital transmission beam 122 of the k-th terminal 120 is
Figure PCTKR2021014338-appb-I000004
can be
또한, 상기 기지국이 선택 가능한 아날로그 수신 빔의 수는 N 개라고 할 수 있다. 기지국의 m 번째 RF chain(118)의 아날로그 수신 빔(114)은
Figure PCTKR2021014338-appb-I000005
일 수 있고, 각 RF chain(118)이 선택 가능한 아날로그 수신 빔을
Figure PCTKR2021014338-appb-I000006
일 수 있다. 따라서,
Figure PCTKR2021014338-appb-I000007
가 될 수 있고, 전체 아날로그 수신 빔(114)은 하기의 [수학식 1]이 될 수 있다.
In addition, it may be said that the number of analog reception beams that the base station can select is N. The analog reception beam 114 of the m-th RF chain 118 of the base station is
Figure PCTKR2021014338-appb-I000005
may be, and each RF chain 118 has a selectable analog receive beam.
Figure PCTKR2021014338-appb-I000006
can be thus,
Figure PCTKR2021014338-appb-I000007
may be, and the entire analog reception beam 114 may be represented by the following [Equation 1].
Figure PCTKR2021014338-appb-M000001
Figure PCTKR2021014338-appb-M000001
또한, 상기 k 번째 단말(120)과 상기 기지국(110) 사이의 디지털 채널은
Figure PCTKR2021014338-appb-I000008
로 정의될 수 있고, k 번째 단말(120)과 기지국(110) 사이의 유효 채널은 하기의 [수학식 2] 로 정의 될 수 있다.
In addition, the digital channel between the k-th terminal 120 and the base station 110 is
Figure PCTKR2021014338-appb-I000008
may be defined, and the effective channel between the k-th terminal 120 and the base station 110 may be defined by the following [Equation 2].
Figure PCTKR2021014338-appb-M000002
Figure PCTKR2021014338-appb-M000002
상기에서 정해진 개수는 임의의 개수이며, 본 개시는 상기 기재된 개수에 국한되지 않는다.The number determined above is an arbitrary number, and the present disclosure is not limited to the number described above.
도 2는 본 개시의 일 실시 예에 따른 무선 통신 시스템에서, 채널 상호성과 단말의 전력을 고려하여 기지국과 단말의 동작 실시 예를 결정하는 시나리오를 도시하는 도면이다.2 is a diagram illustrating a scenario in which an operation embodiment of a base station and a terminal is determined in consideration of channel reciprocity and power of a terminal in a wireless communication system according to an embodiment of the present disclosure.
도 2를 참조하면, 채널 상호성의 이용 여부에 따라 채널 상호성을 이용하는 기지국과 단말의 동작과, 채널 상호성을 이용하지 않는 기지국과 단말의 동작으로 구분할 수 있다.Referring to FIG. 2 , operations of a base station and a terminal using channel reciprocity and operations of a base station and a terminal not using channel reciprocity can be divided according to whether channel reciprocity is used or not.
채널 상호성을 이용하기 힘든 환경에서는, 기지국에서 상향링크 데이터 채널을 추정하여, 임의의 슬롯에서 스케쥴링될 단말들의 집합, 단말들의 디지털 송신 빔, 및 기지국의 아날로그 수신 빔을 유기적으로 결정하는 동작(제1 실시 예)을 할 수 있다. In an environment where it is difficult to use channel reciprocity, an operation of organically determining a set of terminals to be scheduled in an arbitrary slot, digital transmission beams of terminals, and analog reception beams of the base station by estimating an uplink data channel in the base station (first example) can be done.
기지국은 단말들이 SRS를 반복적으로 송신할 수 있는 가용 전송 전력이 충분한지 판단할 수 있고, 가용 전송 전력이 충분하지 않은 경우에는 단말들에서, 하향링크 디지털 채널을 추정하고, 채널 상호성을 이용하여, 기지국이 임의의 슬롯에서 스케쥴링될 단말들의 집합, 단말들의 디지털 송신 빔, 및 기지국의 아날로그 수신 빔을 유기적으로 결정하는 동작(제2 실시 예)을 할 수 있다 The base station can determine whether the available transmit power for the terminals to repeatedly transmit the SRS is sufficient, and when the available transmit power is not sufficient, the terminals estimate the downlink digital channel and use the channel reciprocity, The base station may perform an operation (the second embodiment) of organically determining a set of terminals to be scheduled in an arbitrary slot, a digital transmission beam of the terminals, and an analog reception beam of the base station
도 2에 따르면, 기지국은 기지국 및 단말에서 채널 상호성을 이용할 수 있는 지를 판단(210)할 수 있다. 채널 상호성을 이용할 수 없는 경우에는 제1 실시 예(231)와 같이 기지국과 단말이 동작할 수 있다. 채널 상호성을 이용할 수 있는 경우에는, 기지국은 단말들로부터 SRS를 반복적으로 송신할 수 있는 가용 전송 전력(power headroom, PH)에 관한 보고를 받을 수 있고, 가용 전송 전력이 특정 값보다 큰 경우에 해당하는 지를 판단(220)할 수 있다. 단말들의 가용 전송 전력이 특정 값보다 큰 경우에는, 제1 실시 예(231)와 같이 기지국과 단말이 동작할 수 있고, 단말들의 가용 전송 전력이 특정 값보다 작은 경우에는, 제2 실시 예(233)와 같이 기지국과 단말이 동작할 수 있다. 제1 실시 예와 제2 실시 예의 구체적인 동작은 하기에서 설명한다. According to FIG. 2 , the base station may determine 210 whether channel reciprocity can be used by the base station and the terminal. When channel reciprocity cannot be used, the base station and the terminal may operate as in the first embodiment 231 . When channel reciprocity is available, the base station may receive a report on available power headroom (PH) capable of repeatedly transmitting SRS from UEs, and corresponds to the case where the available transmission power is greater than a specific value. It can be determined 220 whether or not. When the available transmission power of the terminals is greater than a specific value, the base station and the terminal may operate as in the first embodiment 231, and when the available transmission power of the terminals is less than a specific value, the second embodiment 233 ), the base station and the terminal can operate. Specific operations of the first and second embodiments will be described below.
채널 상호성을 이용할 수 있는지 여부(210)는 무선 통신 환경에 따라 결정할 수 있다. 무선 통신 환경의 예로, TDD(time division duplex) 통신 환경, FDD(frequency division duplex) 통신 환경 등이 있을 수 있다.Whether or not channel reciprocity can be used 210 may be determined according to a wireless communication environment. Examples of the wireless communication environment may include a time division duplex (TDD) communication environment, a frequency division duplex (FDD) communication environment, and the like.
TDD 통신 환경은 상향링크 전송과 하향링크 전송을 시간 영역에서 나누어 전송하는 방식이므로, 상향링크와 하향링크가 동일한 주파수 대역에서 존재할 수 있다. 이러한 TDD 통신 환경에서 coherence time(채널이 일정하다고 가정할 수 있는 시간)이 충분히 긴 경우에는, 상향링크와 하향링크의 채널이 동일하다고 가정할 수 있고 기지국과 단말은 채널 상호성을 이용할 수 있다. 반대로, TDD 통신 환경에서 coherence time이 짧은 경우에는, 상향링크와 하향링크의 채널이 동일하다고 가정할 수 없을 수 있으므로, 기지국과 단말은 채널 상호성을 이용할 수 없을 수 있다.Since the TDD communication environment is a method in which uplink transmission and downlink transmission are divided and transmitted in the time domain, uplink and downlink may exist in the same frequency band. In such a TDD communication environment, if the coherence time (a time during which a channel can be assumed to be constant) is sufficiently long, it can be assumed that the channels of the uplink and the downlink are the same, and the base station and the terminal can use channel reciprocity. Conversely, when the coherence time is short in the TDD communication environment, since it may not be possible to assume that the channels of the uplink and the downlink are the same, the base station and the terminal may not be able to use channel reciprocity.
또한 FDD 통신 환경은 상향링크 전송과 하향링크 전송을 주파수 영역에서 나누어 전송하는 방식이다. 따라서 상향링크와 하향링크의 주파수 대역이 서로 다르기 때문에 채널이 동일하다고 가정할 수 없을 수 있고, 채널 상호성을 이용할 수 없을 수 있다.In addition, the FDD communication environment is a method in which uplink transmission and downlink transmission are divided and transmitted in the frequency domain. Therefore, since the frequency bands of the uplink and the downlink are different from each other, it may not be possible to assume that the channels are the same, and channel reciprocity may not be available.
채널 상호성을 판단하는 방법은 상기의 경우만으로 국한되는 것은 아니다. The method for determining the channel reciprocity is not limited to the above case.
기지국이 단말들이 SRS를 반복적으로 송신할 수 있는 가용 전송 전력(PH)이 특정 값보다 큰지 여부를 판단하는 경우(220)와 관련하여, 단말들은 기지국에게, 단말들의 가용 전송 전력(PH)을 보고할 수 있다. 단말들의 가용 전송 전력(PH)은 단말들의 최대 전송 전력(Pc,max)에서 단말들의 현재 상향링크에 사용되는 전력(Ppusch+Ppucch)을 뺀 값을 통해 구할 수 있다. 이를 통해, 기지국은 단말들이 SRS를 반복적으로 전송할 수 있는 가용 전송 전력이 특정 값보다 큰 경우인지를 판단할 수 있다. In relation to the case 220 when the base station determines whether the available transmit power (PH) at which the terminals can repeatedly transmit the SRS is greater than a specific value (220), the terminals report to the base station the available transmit power (PH) of the terminals can do. The available transmit power (PH) of the terminals may be obtained by subtracting the power (Ppusch+Ppucch) currently used for the uplink of the terminals from the maximum transmit power (Pc,max) of the terminals. Through this, the base station can determine whether the available transmission power at which the terminals can repeatedly transmit the SRS is greater than a specific value.
도 3은 본 개시의 제1 실시 예에 따른 무선 통신 시스템에서, 기지국 및 단말의 동작 순서를 도시하는 도면이다.3 is a diagram illustrating an operation sequence of a base station and a terminal in the wireless communication system according to the first embodiment of the present disclosure.
도 3은 상향링크 전송에서 임의의 슬롯에서 스케쥴링될 단말들(120)의 집합, 단말들(120)의 디지털 송신 빔, 및 기지국(110)의 아날로그 수신 빔을 유기적으로 결정하는 동작 순서를 도시하는 것으로, 각 동작에 대한 구체적인 설명은 하기와 같다.3 is an operation sequence for organically determining a set of terminals 120 to be scheduled in an arbitrary slot in uplink transmission, a digital transmission beam of the terminals 120, and an analog reception beam of the base station 110 As such, a detailed description of each operation is as follows.
기지국(110)은 S310 단계에서, 단말들(120)에게 제어메시지를 송신하여, 단말들(120)이 기지국(110)으로 SRS(sounding reference signal)를 반복 송신하도록 지시할 수 있다. In step S310 , the base station 110 may transmit a control message to the terminals 120 to instruct the terminals 120 to repeatedly transmit a sounding reference signal (SRS) to the base station 110 .
제어메시지를 수신한 단말들(120)은 S312 단계에서, 상향 링크 방향으로 SRS(sounding reference signal)를 기지국(110)으로 반복적으로 송신하고 기지국(110)은 아날로그 수신 빔
Figure PCTKR2021014338-appb-I000009
을 변화시키며 SRS를 수신할 수 있다.
Upon receiving the control message, the terminals 120 repeatedly transmit a sounding reference signal (SRS) to the base station 110 in the uplink direction in step S312, and the base station 110 transmits an analog reception beam.
Figure PCTKR2021014338-appb-I000009
SRS can be received by changing .
기지국(110)은 S314 단계에서, 기지국(110)의 아날로그 수신 빔을 포함한 디지털 채널
Figure PCTKR2021014338-appb-I000010
을 추정할 수 있다. 또한, 기지국(110)은 추정된 디지털 채널들을 이용하여 상기 단말들(120) 각각에 대한 디지털 송신 빔, 상기 기지국(110)의 아날로그 수신 빔 및 임의의 슬롯에서 스케쥴링될 단말들(120)의 집합을 타부 서치(tabu search) 알고리즘과 SUS(semi-orthogonal user selection) 알고리즘을 통해 유기적으로 결정할 수 있다.
The base station 110 in step S314, a digital channel including the analog reception beam of the base station 110
Figure PCTKR2021014338-appb-I000010
can be estimated. In addition, the base station 110 uses the estimated digital channels, a digital transmit beam for each of the terminals 120 , an analog receive beam of the base station 110 , and a set of terminals 120 to be scheduled in an arbitrary slot. can be organically determined through a tabu search algorithm and a semi-orthogonal user selection (SUS) algorithm.
기지국(110)은 S316 단계에서, 상기 스케쥴링 된 단말들(120)의 디지털 송신 빔에 대한 정보를 TPMI(transmitted precoding matrix indicator)를 통해 해당 단말들에게 전송할 수 있다.In step S316 , the base station 110 may transmit information on the scheduled digital transmission beams of the terminals 120 to the corresponding terminals through a transmitted precoding matrix indicator (TPMI).
디지털 송신 빔에 대한 정보를 수신한 단말들(120)은 S318 단계에서, 신호의 종류 또는 채널의 상태에 따라 생성된 복소 심볼에, 수신한 TPMI에 상응하는 프리코딩 매트릭스를 적용하여 기지국(110)으로 데이터를 송신할 수 있다. Upon receiving the information on the digital transmission beam, the terminals 120 apply a precoding matrix corresponding to the received TPMI to the complex symbol generated according to the type of signal or the state of the channel in step S318 to the base station 110 data can be transmitted.
상기 복소 심볼은 신호의 종류 또는 채널의 상태에 따라 BPSK(binary phase shift keying), QPSK(quadrature phase shift keying) 또는 16QAM/64QAM(quadrature amplitude modulation) 등의 방식을 이용하여 변조될 수 있다. 변조된 복소 심볼은 프리코딩 행렬(precoding matrix)과 곱해져 안테나에 할당될 수 있고, 이와 같이 처리된 전송 신호는 각각 시간-주파수 자원 요소에 맵핑된 후 OFDMA(orthogonal frequency division multiple access) 신호 생성기를 거쳐 각 안테나를 통해 송신될 수 있다.The complex symbol may be modulated using a method such as binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), or 16QAM/64QAM (quadrature amplitude modulation) according to a signal type or channel state. The modulated complex symbol may be multiplied by a precoding matrix and assigned to an antenna, and the processed transmission signal is each time-mapped to a frequency resource element and then an orthogonal frequency division multiple access (OFDMA) signal generator. can be transmitted through each antenna.
도 4는 본 개시의 제2 실시 예에 따른 무선 통신 시스템에서, 기지국 및 단말의 동작 순서를 도시하는 도면이다.4 is a diagram illustrating an operation sequence of a base station and a terminal in a wireless communication system according to a second embodiment of the present disclosure.
도 4는 채널 상호성을 이용하여 기지국이 임의의 슬롯에서 스케쥴링될 단말들(120)의 집합, 단말들(120)의 디지털 송신 빔, 및 기지국(110)의 아날로그 수신 빔을 유기적으로 결정하는 과정을 도시하는 것으로, 각 동작에 대한 구체적인 설명은 하기와 같다. 4 illustrates a process in which a base station organically determines a set of terminals 120 to be scheduled in an arbitrary slot, a digital transmit beam of the terminals 120, and an analog receive beam of the base station 110 using channel reciprocity. As illustrated, a detailed description of each operation is as follows.
기지국(110)은 S410 단계에서, 하향 링크 방향으로 CSI-RS(channel state information - reference signal)를 아날로그 송신 빔
Figure PCTKR2021014338-appb-I000011
을 변화시키며 단말로 송신할 수 있다.
In step S410, the base station 110 transmits an analog transmission beam of a CSI-RS (channel state information-reference signal) in the downlink direction.
Figure PCTKR2021014338-appb-I000011
can be transmitted to the terminal by changing
CSI-RS를 수신한 각 단말
Figure PCTKR2021014338-appb-I000012
(120)은 S412 단계에서, 하향링크 디지털 채널 정보(CSI)를 얻을 수 있다. CSI에는 CQI(channel quality information), PMI(precoding matrix indicator), CRI(CSI-RS resource indicator) SSBRI(SS/PBCH resource block indicator), LI(layer indicator), RI(rank indicator) 또는 L1-RSRP(reference signal received power) 등의 여러 구성요소가 있을 수 있다. 단말은 CSI를 이용하여, 기지국(110)의 아날로그 송신 빔을 포함한 하향 링크 디지털 채널
Figure PCTKR2021014338-appb-I000013
들을 추정할 수 있다. 또한 PUSCH(physical uplink shared channel) 또는 PUCCH(physical uplink control channel)을 통해 각 단말(120)은 기지국(110)의 아날로그 송신 빔을 포함한 하향 링크 디지털 채널
Figure PCTKR2021014338-appb-I000014
을 기지국(110)으로 송신할 수 있다.
Each terminal receiving the CSI-RS
Figure PCTKR2021014338-appb-I000012
In step S412, 120 may obtain downlink digital channel information (CSI). CSI includes CQI (channel quality information), PMI (precoding matrix indicator), CRI (CSI-RS resource indicator) SSBRI (SS / PBCH resource block indicator), LI (layer indicator), RI (rank indicator) or L1-RSRP ( There may be several components such as reference signal received power). The terminal uses CSI, and a downlink digital channel including an analog transmission beam of the base station 110
Figure PCTKR2021014338-appb-I000013
can be estimated In addition, through a physical uplink shared channel (PUSCH) or a physical uplink control channel (PUCCH), each terminal 120 transmits a downlink digital channel including an analog transmission beam of the base station 110 .
Figure PCTKR2021014338-appb-I000014
may be transmitted to the base station 110 .
기지국(110)은 S414 단계에서, 채널 상호성을 이용하여 하향링크 디지털 채널을 상향링크 디지털 채널로 변환할 수 있고, 상기 기지국(110)의 하향 링크 아날로그 송신 빔을 상향 링크 수신 빔으로 변환할 수 있다. 상기 기지국(110)은 변환된 디지털 채널들을 이용하여, 상기 단말들 (120) 각각에 대한 디지털 송신 빔, 상기 기지국(110)의 아날로그 수신 빔 및 임의의 슬롯에서 스케쥴링될 단말들(120)의 집합을 타부 서치(tabu search) 알고리즘과 SUS(semi-orthogonal user selection) 알고리즘을 통해 유기적으로 결정할 수 있다.In step S414 , the base station 110 may convert the downlink digital channel into an uplink digital channel using channel reciprocity, and may convert the downlink analog transmission beam of the base station 110 into an uplink reception beam. . The base station 110 uses the converted digital channels, a digital transmit beam for each of the terminals 120, an analog receive beam of the base station 110, and a set of terminals 120 to be scheduled in an arbitrary slot. can be organically determined through a tabu search algorithm and a semi-orthogonal user selection (SUS) algorithm.
기지국(110)은 S416 단계에서, 상기 스케쥴링 된 단말들(120)의 디지털 송신 빔에 대한 정보를 TPMI(transmitted precoding matrix indicator)를 통해 해당 단말들에게 송신할 수 있다.In step S416 , the base station 110 may transmit information on the scheduled digital transmission beams of the terminals 120 to the corresponding terminals through a transmitted precoding matrix indicator (TPMI).
디지털 송신 빔에 대한 정보를 수신한 단말들(120)은 S418 단계에서, 신호의 종류 또는 채널의 상태에 따라 생성된 복소 심볼에, 수신한 TPMI에 상응하는 프리코딩 매트릭스를 적용하여 기지국(110)으로 데이터를 송신할 수 있다. The terminals 120 receiving the information on the digital transmission beam apply a precoding matrix corresponding to the received TPMI to the complex symbol generated according to the type of signal or the state of the channel in step S418 to the base station 110 data can be transmitted.
상기 복소 심볼은 신호의 종류 또는 채널의 상태에 따라 BPSK(binary phase shift keying), QPSK(quadrature phase shift keying) 또는 16QAM/64QAM(quadrature amplitude modulation) 등의 방식을 이용하여 변조될 수 있다. 변조된 복소 심볼은 프리코딩 행렬(precoding matrix)과 곱해져 안테나에 할당될 수 있고, 이와 같이 처리된 전송 신호는 각각 시간-주파수 자원 요소에 맵핑된 후 OFDMA(orthogonal frequency division multiple access) 신호 생성기를 거쳐 각 안테나를 통해 송신될 수 있다.The complex symbol may be modulated using a method such as binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), or 16QAM/64QAM (quadrature amplitude modulation) according to a signal type or channel state. The modulated complex symbol may be multiplied by a precoding matrix and assigned to an antenna, and the processed transmission signal is each time-mapped to a frequency resource element and then an orthogonal frequency division multiple access (OFDMA) signal generator. can be transmitted through each antenna.
도 5는 본 개시의 제1 실시 예에 따른 무선 통신 시스템에서, 기지국의 동작 순서를 도시하는 도면이다.5 is a diagram illustrating an operation sequence of a base station in the wireless communication system according to the first embodiment of the present disclosure.
도 5를 참조하면, 제1 실시 예에서의 구체적인 기지국의 동작의 순서도를 나타내며, 각 단계를 나누어 표현하면 다음과 같다.Referring to FIG. 5 , a flowchart of a detailed operation of a base station in the first embodiment is shown, and each step is divided and expressed as follows.
기지국(110)은 S510 단계에서, 단말들(120)에게 SRS 전송을 위한 제어 메시지 송신하여, 단말들(120)이 기지국(110)으로 SRS를 반복 송신하도록 지시할 수 있다.In step S510 , the base station 110 may transmit a control message for SRS transmission to the terminals 120 to instruct the terminals 120 to repeatedly transmit the SRS to the base station 110 .
기지국(110)은 S520 단계에서, 단말들로부터 아날로그 수신 빔
Figure PCTKR2021014338-appb-I000015
을 변화시키며 SRS를 수신할 수 있다. 그리고 기지국(110)은 S530 단계에서, 기지국(110)의 아날로그 수신 빔을 포함한 디지털 채널
Figure PCTKR2021014338-appb-I000016
을 추정할 수 있다.
The base station 110 in step S520, the analog reception beam from the terminals
Figure PCTKR2021014338-appb-I000015
SRS can be received by changing . And the base station 110 in step S530, a digital channel including the analog reception beam of the base station 110
Figure PCTKR2021014338-appb-I000016
can be estimated.
기지국(110)은 S540 단계에서, 추정된 디지털 채널들을 이용하여 상기 단말들(120) 각각에 대한 디지털 송신 빔, 상기 기지국(110)의 아날로그 수신 빔 및 임의의 슬롯에서 스케쥴링될 단말들(120)의 집합을 타부 서치(tabu search) 알고리즘과 SUS(semi-orthogonal user selection) 알고리즘을 통해 유기적으로 결정할 수 있다. 기지국(110)은 S550 단계에서, 상기 스케쥴링 될 단말들에게 TPMI를 통해 디지털 송신 빔에 대한 정보를 송신할 수 있다. 그리고 기지국(110)은 S560 단계에서, 임의의 슬롯에서 상기 스케쥴링될 단말들로부터 데이터를 수신할 수 있고, 상기 데이터는 기지국(110)이 본 발명의 실시 예에 따라 결정하여, 단말에게 알려준 TPMI에 기반하여 송신되는 것이다. The base station 110 uses the estimated digital channels in step S540, a digital transmit beam for each of the terminals 120, an analog receive beam of the base station 110, and the terminals 120 to be scheduled in an arbitrary slot. can be organically determined through the tabu search algorithm and the semi-orthogonal user selection (SUS) algorithm. In step S550 , the base station 110 may transmit information on the digital transmission beam to the scheduled terminals through the TPMI. And, in step S560, the base station 110 may receive data from the terminals to be scheduled in any slot, and the data is determined by the base station 110 according to an embodiment of the present invention, and is transmitted to the TPMI notified to the terminal. It is transmitted based on
도 6은 본 개시의 제1 실시 예에 따른 무선 통신 시스템에서, 단말의 동작 순서를 도시하는 도면이다. 6 is a diagram illustrating an operation sequence of a terminal in the wireless communication system according to the first embodiment of the present disclosure.
도 6을 참조하면, 제1 실시 예에서의 구체적인 단말의 동작의 순서도를 나타내며, 각 단계를 나누어 표현하면 다음과 같다.Referring to FIG. 6 , a flowchart of a specific terminal operation in the first embodiment is shown, and each step is divided and expressed as follows.
단말(120)은 S610 단계에서, 기지국으로부터 SRS 전송을 위한 제어 메시지 수신할 수 있다. 상기 제어메시지를 이용하여, 단말(120)은 S620 단계에서, 상기 기지국에게 SRS 반복 송신할 수 있다.The terminal 120 may receive a control message for SRS transmission from the base station in step S610. Using the control message, the terminal 120 may repeatedly transmit the SRS to the base station in step S620.
단말(120)은 S630 단계에서, 상기 기지국으로부터 TPMI를 통해 디지털 송신 빔에 대한 정보를 수신할 수 있다. 상기 디지털 송신 빔에 대한 정보는 기지국에 의해 결정된 것으로, 추정된 디지털 채널들을 이용하여 상기 단말들(120) 각각에 대한 디지털 송신 빔, 상기 기지국(110)의 아날로그 수신 빔 및 임의의 슬롯에서 스케쥴링될 단말들(120)의 집합을 타부 서치(tabu search) 알고리즘과 SUS(semi-orthogonal user selection) 알고리즘을 통해 유기적으로 결정된 것이다.In step S630 , the terminal 120 may receive information about the digital transmission beam from the base station through the TPMI. The information on the digital transmission beam is determined by the base station, and is to be scheduled in a digital transmission beam for each of the terminals 120, an analog reception beam of the base station 110, and an arbitrary slot using estimated digital channels. The set of terminals 120 is organically determined through a tabu search algorithm and a semi-orthogonal user selection (SUS) algorithm.
디지털 송신 빔에 대한 정보를 수신한 단말(120)은 S640 단계에서, 신호의 종류 또는 채널의 상태에 따라 생성된 복소 심볼에, 수신한 TPMI에 상응하는 프리코딩 매트릭스를 적용하여 기지국(110)으로 데이터를 송신할 수 있다. Upon receiving the information on the digital transmission beam, the terminal 120 applies a precoding matrix corresponding to the received TPMI to the complex symbol generated according to the type of signal or the state of the channel in step S640 to the base station 110. data can be transmitted.
상기 복소 심볼은 신호의 종류 또는 채널의 상태에 따라 BPSK(binary phase shift keying), QPSK(quadrature phase shift keying) 또는 16QAM/64QAM(quadrature amplitude modulation) 등의 방식을 이용하여 변조될 수 있다. 변조된 복소 심볼은 프리코딩 행렬(precoding matrix)과 곱해져 안테나에 할당될 수 있고, 이와 같이 처리된 전송 신호는 각각 시간-주파수 자원 요소에 맵핑된 후 OFDMA(orthogonal frequency division multiple access) 신호 생성기를 거쳐 각 안테나를 통해 송신될 수 있다.The complex symbol may be modulated using a method such as binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), or 16QAM/64QAM (quadrature amplitude modulation) according to a signal type or channel state. The modulated complex symbol may be multiplied by a precoding matrix and assigned to an antenna, and the processed transmission signal is each time-mapped to a frequency resource element and then an orthogonal frequency division multiple access (OFDMA) signal generator. can be transmitted through each antenna.
도 7는 본 개시의 제2 실시 예에 따른 무선 통신 시스템에서, 기지국의 동작 순서를 도시하는 도면이다.7 is a diagram illustrating an operation sequence of a base station in a wireless communication system according to a second embodiment of the present disclosure.
도 7을 참조하면, 제2 실시 예에서의 구체적인 기지국의 동작의 순서도를 나타내며, 각 단계를 나누어 표현하면 다음과 같다.Referring to FIG. 7 , a flowchart of a detailed operation of a base station in the second embodiment is shown, and each step is divided and expressed as follows.
기지국(110)은 S710 단계에서, 단말들에게 CSI-RS를 아날로그 송신 빔
Figure PCTKR2021014338-appb-I000017
을 변화시키며 단말로 송신할 수 있다. 그리고, 기지국(110)은 S720 단계에서, PUSCH 또는 PUCCH를 통해 상기 기지국(110)의 아날로그 송신 빔을 포함한 하향 링크 디지털 채널
Figure PCTKR2021014338-appb-I000018
을 수신할 수 있다.
In step S710, the base station 110 transmits the CSI-RS to the terminals as an analog transmission beam.
Figure PCTKR2021014338-appb-I000017
can be transmitted to the terminal by changing And, the base station 110, in step S720, a downlink digital channel including the analog transmission beam of the base station 110 through PUSCH or PUCCH.
Figure PCTKR2021014338-appb-I000018
can receive
기지국(110)은 S730 단계에서, 채널 상호성을 이용하여 하향링크 디지털 채널을 상향링크 디지털 채널로 변환할 수 있고, 상기 기지국(110)의 하향 링크 아날로그 송신 빔을 상향 링크 수신 빔으로 변환할 수 있다. In step S730 , the base station 110 may convert the downlink digital channel into an uplink digital channel using channel reciprocity, and may convert the downlink analog transmission beam of the base station 110 into an uplink reception beam. .
기지국(110)은 S740 단계에서, 변환된 디지털 채널들을 이용하여, 상기 단말들 (120) 각각에 대한 디지털 송신 빔, 상기 기지국(110)의 아날로그 수신 빔 및 임의의 슬롯에서 스케쥴링될 단말들(120)의 집합을 타부 서치(tabu search) 알고리즘과 SUS(semi-orthogonal user selection) 알고리즘을 통해 유기적으로 결정할 수 있다.In step S740, the base station 110 uses the converted digital channels, the digital transmit beam for each of the terminals 120, the analog receive beam of the base station 110, and the terminals 120 to be scheduled in an arbitrary slot. ) can be organically determined through a tabu search algorithm and a semi-orthogonal user selection (SUS) algorithm.
기지국(110)은 S750 단계에서, 상기 스케쥴링 된 단말들(120)의 디지털 송신 빔에 대한 정보를 TPMI(transmitted precoding matrix indicator)를 통해 해당 단말들에게 송신할 수 있다.In step S750 , the base station 110 may transmit information on the digital transmission beam of the scheduled terminals 120 to the corresponding terminals through a transmitted precoding matrix indicator (TPMI).
기지국(110)은 S760 단계에서, 상기 임의의 슬롯에서 스케쥴링될 단말들로부터 데이터를 수신할 수 있고, 상기 데이터는 기지국(110)이 본 발명의 실시 예에 따라 결정하여, 단말에게 알려준 TPMI에 기반하여 송신되는 것이다.The base station 110 may receive data from the terminals to be scheduled in the arbitrary slot in step S760, and the data is determined by the base station 110 according to an embodiment of the present invention and based on the TPMI notified to the terminal will be transmitted.
도 8은 본 개시의 제2 실시 예에 따른 무선 통신 시스템에서, 단말의 동작 순서를 도시하는 도면이다. 8 is a diagram illustrating an operation sequence of a terminal in a wireless communication system according to a second embodiment of the present disclosure.
도 8을 참조하면, 제2 실시 예에서의 구체적인 단말의 동작의 순서도를 나타내며, 각 단계를 나누어 표현하면 다음과 같다.Referring to FIG. 8 , a flowchart of a specific terminal operation in the second embodiment is shown, and each step is divided and expressed as follows.
단말(120)은 S810 단계에서, 기지국으로부터 CSI-RS 수신할 수 있다. 그리고, 단말(120)은 S820 단계에서, 수신한 CSI-RS를 통해 하향링크 디지털 채널 정보(CSI)를 얻을 수 있다. CSI에는 CQI(channel quality information), PMI(precoding matrix indicator), CRI(CSI-RS resource indicator) SSBRI(SS/PBCH resource block indicator), LI(layer indicator), RI(rank indicator) 또는 L1-RSRP(reference signal received power) 등의 여러 구성요소가 있을 수 있다. 단말은 CSI를 이용하여, 기지국(110)의 아날로그 송신 빔을 포함한 하향 링크 디지털 채널
Figure PCTKR2021014338-appb-I000019
들을 추정할 수 있다.
The terminal 120 may receive the CSI-RS from the base station in step S810. Then, in step S820 , the terminal 120 may obtain downlink digital channel information (CSI) through the received CSI-RS. CSI includes CQI (channel quality information), PMI (precoding matrix indicator), CRI (CSI-RS resource indicator) SSBRI (SS / PBCH resource block indicator), LI (layer indicator), RI (rank indicator) or L1-RSRP ( There may be several components such as reference signal received power). The terminal uses CSI, and a downlink digital channel including an analog transmission beam of the base station 110
Figure PCTKR2021014338-appb-I000019
can be estimated
단말(120)은 S830 단계에서, 상기 기지국(110)에게 PUSCH 또는 PUCCH를 통해 기지국(110)의 아날로그 송신 빔을 포함한 하향 링크 디지털 채널
Figure PCTKR2021014338-appb-I000020
을 송신할 수 있다.
In step S830, the terminal 120 sends a downlink digital channel including an analog transmission beam of the base station 110 to the base station 110 through PUSCH or PUCCH.
Figure PCTKR2021014338-appb-I000020
can be sent.
단말(120)은 S840 단계에서, 상기 기지국으로부터 TPMI를 통해 디지털 송신 빔에 대한 정보를 수신할 수 있다. 상기 디지털 송신 빔에 대한 정보는 기지국(110)에 의해 결정된 것으로, 추정된 디지털 채널들을 이용하여 상기 단말들(120) 각각에 대한 디지털 송신 빔, 상기 기지국(110)의 아날로그 수신 빔 및 임의의 슬롯에서 스케쥴링될 단말들(120)의 집합을 타부 서치(tabu search) 알고리즘과 SUS(semi-orthogonal user selection) 알고리즘을 통해 유기적으로 결정된 것이다.In step S840, the terminal 120 may receive information on the digital transmission beam from the base station through the TPMI. The information on the digital transmission beam is determined by the base station 110, and a digital transmission beam for each of the terminals 120, an analog reception beam of the base station 110, and an arbitrary slot using estimated digital channels. The set of terminals 120 to be scheduled in . is organically determined through a tabu search algorithm and a semi-orthogonal user selection (SUS) algorithm.
디지털 송신 빔에 대한 정보를 수신한 단말(120)은 S850 단계에서, 신호의 종류 또는 채널의 상태에 따라 생성된 복소 심볼에, 수신한 TPMI에 상응하는 프리코딩 매트릭스를 적용하여 기지국(110)으로 데이터를 송신할 수 있다. Upon receiving the information on the digital transmission beam, the terminal 120 applies a precoding matrix corresponding to the received TPMI to the complex symbol generated according to the type of signal or the state of the channel in step S850 to the base station 110 . data can be transmitted.
상기 복소 심볼은 신호의 종류 또는 채널의 상태에 따라 BPSK(binary phase shift keying), QPSK(quadrature phase shift keying) 또는 16QAM/64QAM(quadrature amplitude modulation) 등의 방식을 이용하여 변조될 수 있다. 변조된 복소 심볼은 프리코딩 행렬(precoding matrix)과 곱해져 안테나에 할당될 수 있고, 이와 같이 처리된 전송 신호는 각각 시간-주파수 자원 요소에 맵핑된 후 OFDMA(orthogonal frequency division multiple access) 신호 생성기를 거쳐 각 안테나를 통해 송신될 수 있다.The complex symbol may be modulated using a method such as binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), or 16QAM/64QAM (quadrature amplitude modulation) according to a signal type or channel state. The modulated complex symbol may be multiplied by a precoding matrix and assigned to an antenna, and the processed transmission signal is each time-mapped to a frequency resource element and then an orthogonal frequency division multiple access (OFDMA) signal generator. can be transmitted through each antenna.
도 9는 본 개시의 일 실시 예에 따른 무선 통신 시스템에서, 기지국의 아날로그 수신 빔, 단말들의 디지털 송신 빔, 및 임의의 슬롯에서 스케쥴링될 단말들의 집합을 유기적으로 결정하는 방법을 도시하는 도면이다. 9 is a diagram illustrating a method of organically determining a set of terminals to be scheduled in an analog reception beam of a base station, a digital transmission beam of terminals, and an arbitrary slot in a wireless communication system according to an embodiment of the present disclosure.
도 9를 참조하면, 제1 실시 예와 제2 실시 예에서, 기지국의 아날로그 수신 빔, 단말들의 디지털 송신 빔, 및 임의의 슬롯에서 스케쥴링될 단말들의 집합을 결정하는 구체적인 방법을 개시하고 있다. Referring to FIG. 9 , in the first and second embodiments, a specific method for determining an analog reception beam of a base station, a digital transmission beam of terminals, and a set of terminals to be scheduled in an arbitrary slot is disclosed.
첫 번째 단계로, 기지국은 추정된 디지털 채널을 이용하여, 기지국의 아날로그 수신 빔을 선택할 수 있다.As a first step, the base station may select an analog reception beam of the base station using the estimated digital channel.
아날로그 수신 빔(114)의 초기 값은 디지털 채널 이득이 최대가 되는 값을 기반으로 선택될 수 있고, 디지털 채널 이득이 최대가 되는 아날로그 수신 빔을 선택하는 식은 하기 [수학식 3]와 같다.The initial value of the analog reception beam 114 may be selected based on a value at which the digital channel gain is the maximum, and the equation for selecting the analog reception beam having the maximum digital channel gain is as shown in Equation 3 below.
Figure PCTKR2021014338-appb-M000003
Figure PCTKR2021014338-appb-M000003
상기 [수학식 3]에서, X 는 시간, 주파수 자원을 공유하는 총 단말의 수를 나타내며,
Figure PCTKR2021014338-appb-I000021
는 k 번째 단말과 기지국 사이의 아날로그 채널을 의미하고,
Figure PCTKR2021014338-appb-I000022
는 기지국의 아날로그 수신 빔을 의미하고,
Figure PCTKR2021014338-appb-I000023
는 k 번째 단말과 기지국 사이의 디지털 채널을 의미한다.
In [Equation 3], X represents the total number of terminals sharing time and frequency resources,
Figure PCTKR2021014338-appb-I000021
denotes an analog channel between the k-th terminal and the base station,
Figure PCTKR2021014338-appb-I000022
is the analog reception beam of the base station,
Figure PCTKR2021014338-appb-I000023
denotes a digital channel between the k-th terminal and the base station.
두 번째 단계로, 기지국은 추정된 디지털 채널과, 상기 기지국의 아날로그 수신 빔을 이용하여, 단말들 각각에 대한 디지털 송신 빔을 선택할 수 있다.In a second step, the base station may select a digital transmit beam for each of the terminals using the estimated digital channel and the analog receive beam of the base station.
각 단말의 디지털 채널에 단말의 디지털 송신 빔을 곱하여 유효채널
Figure PCTKR2021014338-appb-I000024
을 형성할 수 있고, 유효채널의 이득을 최대화하는 단말의 디지털 송신 빔을 구할 수 있다. 하기 [수학식 4]는 이에 대한 식을 나타낸다.
The effective channel by multiplying the digital channel of each terminal by the digital transmission beam of the terminal
Figure PCTKR2021014338-appb-I000024
can be formed, and the digital transmission beam of the terminal that maximizes the gain of the effective channel can be obtained. The following [Equation 4] shows an expression for this.
Figure PCTKR2021014338-appb-M000004
Figure PCTKR2021014338-appb-M000004
상기 [수학식 4]에서,
Figure PCTKR2021014338-appb-I000025
는 k 번째 단말의 디지털 송신 빔을 의미하고,
Figure PCTKR2021014338-appb-I000026
는 k 번째 단말과 기지국 사이의 유효채널을 의미한다.
In the above [Equation 4],
Figure PCTKR2021014338-appb-I000025
is the digital transmission beam of the k-th terminal,
Figure PCTKR2021014338-appb-I000026
denotes an effective channel between the k-th terminal and the base station.
세 번째 단계로, 기지국은 추정된 디지털 채널, 상기 기지국의 아날로그 수신 빔, 및 상기 디지털 송신 빔을 고려하여, 임의의 슬롯에서 스케쥴링될 단말들의 집합을 선택할 수 있다. 기지국은 유효채널에 대해 SUS(semi-orthogonal user selection) 기법을 이용하여 임의의 슬롯에서 스케쥴링될 단말들의 집합을 결정할 수 있다. SUS는 각 단말의 유효채널 벡터들의 서로에 대한 직교성을 파라미터를 통해 비교하여 해당 파라미터가 미리 설정된 기준 값 이상인 단말들의 집합을 선택하는 기법이다. 하기 [수학식 5]는 유효채널에 대한 식을 나타낸다. In a third step, the base station may select a set of terminals to be scheduled in an arbitrary slot in consideration of the estimated digital channel, the analog receive beam of the base station, and the digital transmit beam. The base station may determine a set of terminals to be scheduled in an arbitrary slot by using a semi-orthogonal user selection (SUS) technique for an effective channel. SUS is a technique of selecting a set of terminals having a corresponding parameter equal to or greater than a preset reference value by comparing orthogonality of effective channel vectors of each terminal to each other through a parameter. [Equation 5] below shows an expression for an effective channel.
Figure PCTKR2021014338-appb-M000005
Figure PCTKR2021014338-appb-M000005
네 번째 단계로, 기지국은 타부 서치(tabu search) 알고리즘을 이용하여 sum-rate 관점에서 기지국의 아날로그 수신 빔을 다시 선택할 수 있다. 타부 서치 알고리즘은 현재 해를 주변의 후보 군들과 비교하며 최신화해 나가는 알고리즘으로 동일한 해를 반복하여 찾는 것을 방지하는 알고리즘으로, 하기에서 설명하도록 한다.In a fourth step, the base station may select the analog reception beam of the base station again from a sum-rate point of view using a tabu search algorithm. The taboo search algorithm is an algorithm that compares the current solution with neighboring candidate groups and updates it, and prevents repeated finding of the same solution, which will be described below.
다섯 번째 단계로, 세 번째 단계부터 네 번째 단계를 Inner iteration 수만큼 반복하여 진행할 수 있다. (910)As the fifth step, the third to fourth steps can be repeated as many times as the inner iteration number. (910)
여섯 번째 단계로, 두 번째 단계부터 다섯 번째 단계를 Outer iteration 수만큼 반복하여 진행할 수 있다. (920)As the sixth step, the second to fifth steps can be repeated as many times as the number of outer iterations. (920)
도 10은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서, 기지국의 아날로그 수신 빔, 단말들의 디지털 송신 빔을 결정하기 위해 이용되는 타부 서치(tabu search) 알고리즘을 도시하는 도면이다. 10 is a diagram illustrating a tabu search algorithm used to determine an analog reception beam of a base station and a digital transmission beam of terminals in a wireless communication system according to an embodiment of the present disclosure.
도 11은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서, 타부 서치 알고리즘의 일 예를 도시하는 도면이다.11 is a diagram illustrating an example of a third party search algorithm in a wireless communication system according to an embodiment of the present disclosure.
타부 서치 알고리즘은 최적화 문제의 형태에 상관없이 주어진 최적화 문제를 풀기 위한 알고리즘이다. 기존의 최적화 알고리즘들은 기본적으로 이웃 해 서치를 기반으로 동작하기 때문에, 현재 해의 개선되는 방향으로만 진행하려는 특징이 있을 수 있다. 이런 특징으로 인해, 빈번하게 지역 최적점에 수렴할 수 있다. 타부 서치 알고리즘은 이런 지역 최적점에 수렴하는 문제를 해결하기 위해, 지역 최적점에 대한 정보를 따로 저장할 수 있고, 이 정보를 기반으로 지역 최적점을 회피할 수 있다. 이때 지역 최적점에 대한 정보를 타부(tabu)라고 할 수 있다. 다시 말해, 현재 해를 주변의 후보 군들과 비교하며 업데이트 해나가는 알고리즘이며, 동일한 해를 반복하여, 찾는 것을 방지함으로써, 지역 최적화에 빠지는 것을 회피할 수 있다. The taboo search algorithm is an algorithm for solving a given optimization problem regardless of the type of optimization problem. Since existing optimization algorithms basically operate based on neighboring solution search, there may be a characteristic of proceeding only in the direction of improvement of the current solution. Due to this characteristic, it is possible to frequently converge to a local optimum. In order to solve the problem of convergence to such a local optimal point, the other search algorithm can separately store information about the local optimal point, and can avoid the local optimal point based on this information. In this case, the information on the local optimum may be referred to as tabu. In other words, it is an algorithm that updates the current solution by comparing it with neighboring candidate groups, and it is possible to avoid falling into local optimization by repeatedly searching for the same solution.
도 11을 참고하면, 타부 서치 알고리즘을 이용하여 최적 해를 찾아가는 과정은 다음과 같을 수 있다. 후보 최적 해로, Region 1(1110)에서 후보 해1(1151)에서 후보 해2(1153)로 업데이트되고, Region 2(1120)에서 후보 해3(1155)로 업데이트되며, Region 3(1130)에서 후보 해4(1157)로 업데이트가 될 수 있다. Region 4(1140)에서 최적 해로, 후보 해1(1151)과 후보 해5(1159)과 가능할 수 있는데, 기존의 최적 해로 업데이트되었던 후보 해1(1151)을 타부 리스트에 저장을 미리 해두어서, 기존의 타부 리스트에 있는 최적 해를 제외한 후보 해를 서치함으로써, 지역 최적 해에 수렴하는 것을 회피할 수 있다. Referring to FIG. 11 , a process of finding an optimal solution using the other search algorithm may be as follows. Candidate optimal solution, updated from candidate solution 1 (1151) to candidate solution 2 (1153) in Region 1 (1110), updated to candidate solution 3 (1155) in Region 2 (1120), and candidate solution in Region 3 (1130) Year 4 (1157) may be updated. As the optimal solution in Region 4 (1140), it may be possible with candidate solution 1 (1151) and candidate solution 5 (1159). Convergence to the local optimal solution can be avoided by searching for candidate solutions excluding the optimal solution in the tabular list of .
도 10을 참고하면, 타부 서치 알고리즘의 순서도에 대해서 알 수 있다. Referring to FIG. 10 , a flowchart of a search algorithm for other parts may be known.
타부 서치 알고리즘은 S1010 단계에서, 초기화 단계를 거칠 수 있다. 초기 후보 해를 설정할 수 있고, 현재 타부 리스트 체크 횟수를 나타내는 p를 0으로 설정할 수 있고, 현재 반복 횟수를 나타내는 i 값을 0으로 설정할 수 있다. 또한, 비교 대상이 될 파라미터 M(최대 반복 횟수), P(타부 리스트의 길이)를 설정할 수 있다. 해당 값들은 임의의 값으로, 상기 기재된 값에 한정되지 않는다. The other search algorithm may go through an initialization step in step S1010. An initial candidate solution may be set, p indicating the current number of taboo list checks may be set to 0, and an i value indicating the current number of iterations may be set to 0. In addition, parameters M (maximum number of repetitions) and P (length of taboo list) to be compared can be set. These values are arbitrary values and are not limited to the values described above.
그리고, 타부 서치 알고리즘은 S1020 단계에서, 정해진 후보 해의 이웃 해를 찾을 수 있다. In addition, the other search algorithm may find a neighboring solution of the determined candidate solution in step S1020.
타부 서치 알고리즘은 S1030 단계에서, 찾아진 이웃 해 중 가장 최적 해를 고르고 기존의 타부 리스트에 있던 해보다 최적 해인지 판단할 수 있다. 새로운 후보 해가 최적 해로 판단되면, 새로운 후보 해로 설정할 수 있다. 후보 해가 새로 업데이트 되었으므로, 현재 타부 리스트 체크 횟수(p)를 1개 증가 시킬 수 있다. The taboo search algorithm may select the most optimal solution from among the found neighboring solutions in step S1030 and determine whether it is more optimal than a solution in the existing taboo list. If it is determined that the new candidate solution is the optimal solution, it may be set as the new candidate solution. Since the candidate solution is newly updated, the number of current taboo list checks (p) can be increased by one.
또한, 타부 서치 알고리즘은 S1040 단계에서, 현재 타부 리스트 체크 횟수(p)가 정해진 P(타부 리스트의 길이) 보다 큰 지를 판단할 수 있다. 이는 타부 리스트에 저장할 수 있는 후보 해의 개수가 P개로 정해져 있기 때문이다.In addition, in step S1040, the other search algorithm may determine whether the current number of other part list checks (p) is greater than a predetermined P (length of the other part list). This is because the number of candidate solutions that can be stored in the taboo list is set to P.
타부 서치 알고리즘은 S1050 단계에서, 현재 타부 리스트 체크 횟수(p)가 정해진 P(타부 리스트의 길이) 보다 크다면, 기존의 타부 리스트에 저장되어 있는 후보 해 중에서 제일 먼저 저장되었던, 후보 해를 지우고, 새로운 후보 해를 저장할 수 있다. 이는 선입선출 방식에 따를 수 있다. In the taboo search algorithm, in step S1050, if the current taboo list check count (p) is greater than a predetermined P (length of the taboo list), the first stored candidate solution among the candidate solutions stored in the existing taboo list is deleted, A new candidate solution can be stored. This may be done according to a first-in-first-out method.
그리고 타부 서치 알고리즘은 S1060 단계에서, 새로운 후보 해를 타부 리스트에, 순서에 맞게 저장할 수 있다.In addition, the taboo search algorithm may store the new candidate solutions in the taboo list in order in step S1060.
타부 서치 알고리즘은 S1070 단계에서, 현재 반복 횟수(i)를 1 증가 시킬 수 있다. The taboo search algorithm may increase the current number of iterations (i) by 1 in step S1070.
타부 서치 알고리즘은 S1080 단계에서, 현재 반복 횟수가 최대 반복 횟수보다 큰 지를 판단할 수 있다. 현재 반복 횟수가 최대 반복 횟수보다 크다면, 해당 서치를 종료하고, 현재 반복 횟수가 최대 반복 횟수보다 작다면, S1020 단계부터 S1080 단계를 다시 수행할 수 있다. The other search algorithm may determine whether the current number of repetitions is greater than the maximum number of repetitions in step S1080. If the current number of repetitions is greater than the maximum number of repetitions, the search is terminated, and if the current number of repetitions is smaller than the maximum number of repetitions, steps S1020 to S1080 may be performed again.
도 12는 본 개시의 일 실시 예에 따른 무선 통신 시스템에서, 임의의 슬롯에서 스케쥴링될 단말들의 집합을 결정하기 위해 이용되는 SUS(semi-orthogonal user scheduling) 알고리즘을 도시하는 도면이다. 12 is a diagram illustrating a semi-orthogonal user scheduling (SUS) algorithm used to determine a set of terminals to be scheduled in an arbitrary slot in a wireless communication system according to an embodiment of the present disclosure.
도 12를 참조하면, SUS 알고리즘을 이용하여, 단말들과 기지국 사이의 채널들 간에 간섭의 영향을 고려하여, 단말들의 집합을 추정할 수 있다. SUS 알고리즘의 단계는 하기와 같다.Referring to FIG. 12 , the set of terminals may be estimated by using the SUS algorithm in consideration of the influence of interference between channels between the terminals and the base station. The steps of the SUS algorithm are as follows.
SUS 알고리즘은 S1210 단계에서, 채널 이득이 가장 높은 유저를 선택하여, user set U 에 추가할 수 있다. The SUS algorithm may select a user having the highest channel gain in step S1210 and add it to the user set U.
SUS 알고리즘은 S1220 단계에서, U 에 대한 채널과 semi-orthogonality 성분의 크기(
Figure PCTKR2021014338-appb-I000027
)가 가장 큰 유저를 선택하여, U 에 추가할 수 있다.
In step S1220, the SUS algorithm determines the size of the channel and semi-orthogonality component for U (
Figure PCTKR2021014338-appb-I000027
) can be added to U by selecting the largest user.
SUS 알고리즘은 S1230 단계에서, 유저 수가 특정 값(K) 보다 작고, 성분의 크기(
Figure PCTKR2021014338-appb-I000028
)가 특정 값(L)보다 큰 지를 판단할 수 있다. 유저 수가 특정 값(K) 보다 작고, 성분의 크기(
Figure PCTKR2021014338-appb-I000029
)가 특정 값(L)보다 크다면, 다시 1220 단계를 수행할 수 있다. 유저 수가 특정 값(K) 보다 크거나, 성분의 크기(
Figure PCTKR2021014338-appb-I000030
)가 특정 값(L)보다 작다면, 해당 동작을 종료할 수 있다.
In the SUS algorithm, in step S1230, the number of users is smaller than a specific value (K), and the size of the component (
Figure PCTKR2021014338-appb-I000028
) is greater than a specific value (L). The number of users is less than a certain value (K), and the size of the component (
Figure PCTKR2021014338-appb-I000029
) is greater than the specific value L, step 1220 may be performed again. If the number of users is greater than a certain value (K), or the size of the component (
Figure PCTKR2021014338-appb-I000030
) is less than the specific value L, the corresponding operation may be terminated.
이를 통해, 단말들과 기지국 사이의 채널들 간에 orthogonality와 간섭의 영향을 고려한 단말들의 집합을 추정할 수 있다.Through this, it is possible to estimate a set of terminals considering the influence of orthogonality and interference between channels between the terminals and the base station.
본 개시의 일 실시 예에 따르면, 임의의 슬롯에서 스케쥴링될 단말들의 집합, 단말들의 디지털 송신 빔, 및 기지국의 아날로그 수신 빔을 유기적으로 결정하는 효과가 있고, 채널 이득이 더 좋은 기지국의 아날로그 수신 빔과 단말의 디지털 송신 빔을 결정할 수 있다. According to an embodiment of the present disclosure, there is an effect of organically determining a set of terminals to be scheduled in an arbitrary slot, a digital transmission beam of the terminals, and an analog reception beam of a base station, and an analog reception beam of a base station having a better channel gain and a digital transmission beam of the terminal may be determined.
도 13은 본 개시의 일 실시 예에 따른 단말의 내부 구조를 도시하는 블록도이다.13 is a block diagram illustrating an internal structure of a terminal according to an embodiment of the present disclosure.
도 13을 참고하면, 단말은 송수신부 (1310), 제어부 (1320), 저장부 (1330)을 포함할 수 있다. 본 개시에서 제어부는, 회로 또는 어플리케이션 특정 통합 회로 또는 적어도 하나의 프로세서라고 정의될 수 있다. Referring to FIG. 13 , the terminal may include a transceiver 1310 , a controller 1320 , and a storage 1330 . In the present disclosure, the controller may be defined as a circuit or an application specific integrated circuit or at least one processor.
송수신부 (1310)는 다른 네트워크 엔티티와 신호를 송수신할 수 있다. 송수신부(1310)는 예를 들어, 기지국에 시스템 정보를 전송할 수 있으며, 동기 신호 또는 기준 신호를 전송할 수 있다. The transceiver 1310 may transmit/receive signals to and from other network entities. The transceiver 1310 may transmit system information to, for example, a base station, and may transmit a synchronization signal or a reference signal.
제어부 (1320)은 본 개시에서 제안하는 실시 예에 따른 단말의 전반적인 동작을 제어할 수 있다. 예를 들어, 제어부 (1320)는 도 1 내지 도 12을 참고하여 상술한 절차에 따른 동작을 수행하도록 각 블록 간 신호 흐름을 제어할 수 있다. 구체적으로, 제어부 (1320)는 본 개시의 실시예에 따른 무선 통신 시스템에서 본 개시에서 제안하는 동작을 제어할 수 있다.The controller 1320 may control the overall operation of the terminal according to the embodiment proposed in the present disclosure. For example, the controller 1320 may control a signal flow between blocks to perform an operation according to the procedure described above with reference to FIGS. 1 to 12 . Specifically, the controller 1320 may control the operation proposed by the present disclosure in the wireless communication system according to the embodiment of the present disclosure.
저장부(1330)는 상기 송수신부 (1310)를 통해 송수신되는 정보 및 제어부 (1320)을 통해 생성되는 정보 중 적어도 하나를 저장할 수 있다. 예를 들어, 저장부 (1330)는 상술한 실시 예에 따른 정보들을 저장할 수 있다.The storage unit 1330 may store at least one of information transmitted/received through the transceiver 1310 and information generated through the control unit 1320 . For example, the storage unit 1330 may store information according to the above-described embodiment.
도 14는 본 개시의 일 실시 예에 따른 기지국의 내부 구조를 도시하는 블록도이다. 14 is a block diagram illustrating an internal structure of a base station according to an embodiment of the present disclosure.
도 14를 참고하면, 기지국은 송수신부(1410), 제어부(1420), 저장부(1430)을 포함할 수 있다. 본 개시에서 제어부는, 회로 또는 어플리케이션 특정 통합 회로 또는 적어도 하나의 프로세서라고 정의될 수 있다. Referring to FIG. 14 , the base station may include a transceiver 1410 , a controller 1420 , and a storage 1430 . In the present disclosure, the controller may be defined as a circuit or an application specific integrated circuit or at least one processor.
송수신부(1410)는 다른 네트워크 엔티티와 신호를 송수신할 수 있다. 송수신부(1410)는 예를 들어, 기지국에 시스템 정보를 전송할 수 있으며, 동기 신호 또는 기준 신호를 전송할 수 있다. The transceiver 1410 may transmit/receive signals to and from other network entities. The transceiver 1410 may transmit system information to, for example, a base station, and may transmit a synchronization signal or a reference signal.
제어부(1420)은 본 개시에서 제안하는 실시 예에 따른 기지국의 전반적인 동작을 제어할 수 있다. 예를 들어, 제어부 (1420)는 도 1 내지 도 12을 참고하여 상술한 절차에 따른 동작을 수행하도록 각 블록 간 신호 흐름을 제어할 수 있다. 구체적으로, 제어부(1420)는 본 개시의 실시예에 따른 무선 통신 시스템에서 본 개시에서 제안하는 동작을 제어할 수 있다.The controller 1420 may control the overall operation of the base station according to the embodiment proposed in the present disclosure. For example, the controller 1420 may control a signal flow between blocks to perform an operation according to the procedure described above with reference to FIGS. 1 to 12 . Specifically, the controller 1420 may control the operation proposed by the present disclosure in the wireless communication system according to the embodiment of the present disclosure.
저장부(1430)는 상기 송수신부 (1410)를 통해 송수신되는 정보 및 제어부 (1420)을 통해 생성되는 정보 중 적어도 하나를 저장할 수 있다. 예를 들어, 저장부(1430)는 상술한 실시 예에 따른 정보들을 저장할 수 있다.The storage unit 1430 may store at least one of information transmitted/received through the transceiver 1410 and information generated through the control unit 1420 . For example, the storage unit 1430 may store information according to the above-described embodiment.
본 개시의 청구항 또는 명세서에 기재된 실시 예들에 따른 방법들은 하드웨어, 소프트웨어, 또는 하드웨어와 소프트웨어의 조합의 형태로 구현될(implemented) 수 있다. Methods according to the embodiments described in the claims or specifications of the present disclosure may be implemented in the form of hardware, software, or a combination of hardware and software.
소프트웨어로 구현하는 경우, 하나 이상의 프로그램(소프트웨어 모듈)을 저장하는 컴퓨터 판독 가능 저장 매체가 제공될 수 있다. 컴퓨터 판독 가능 저장 매체에 저장되는 하나 이상의 프로그램은, 전자 장치(device) 내의 하나 이상의 프로세서에 의해 실행 가능하도록 구성될 수 있다. 하나 이상의 프로그램은, 전자 장치로 하여금 본 개시의 청구항 또는 명세서에 기재된 실시 예들에 따른 방법들을 실행하게 하는 명령어(instructions)를 포함할 수 있다. When implemented in software, a computer-readable storage medium storing one or more programs (software modules) may be provided. One or more programs stored in a computer-readable storage medium may be configured to be executable by one or more processors in an electronic device. One or more programs may include instructions for causing an electronic device to execute methods according to embodiments described in a claim or specification of the present disclosure.
이러한 프로그램(소프트웨어 모듈, 소프트웨어)은 랜덤 액세스 메모리 (random access memory), 플래시(flash) 메모리를 포함하는 불휘발성(non-volatile) 메모리, 롬(ROM: read only memory), 전기적 삭제가능 프로그램가능 롬(EEPROM: electrically erasable programmable read only memory), 자기 디스크 저장 장치(magnetic disc storage device), 컴팩트 디스크 롬(CD-ROM: compact disc-ROM), 디지털 다목적 디스크(DVDs: digital versatile discs) 또는 다른 형태의 광학 저장 장치, 마그네틱 카세트(magnetic cassette)에 저장될 수 있다. 또는, 이들의 일부 또는 전부의 조합으로 구성된 메모리에 저장될 수 있다. 또한, 각각의 구성 메모리는 다수 개 포함될 수도 있다. Such programs (software modules, software) include random access memory, non-volatile memory including flash memory, read only memory (ROM), electrically erasable programmable ROM (EEPROM: electrically erasable programmable read only memory), magnetic disc storage device, compact disc ROM (CD-ROM), digital versatile discs (DVDs), or other types of It may be stored in an optical storage device or a magnetic cassette. Alternatively, it may be stored in a memory composed of a combination of some or all thereof. In addition, each configuration memory may be included in plurality.
또한, 프로그램은 인터넷(internet), 인트라넷(intranet), LAN(local area network), WLAN(wide LAN), 또는 SAN(storage area network)과 같은 통신 네트워크, 또는 이들의 조합으로 구성된 통신 네트워크를 통하여 접근(access)할 수 있는 부착 가능한(attachable) 저장 장치(storage device)에 저장될 수 있다. 이러한 저장 장치는 외부 포트를 통하여 본 개시의 실시 예를 수행하는 장치에 접속할 수 있다. 또한, 통신 네트워크상의 별도의 저장장치가 본 개시의 실시 예를 수행하는 장치에 접속할 수도 있다.In addition, the program accesses through a communication network consisting of a communication network such as the Internet, an intranet, a local area network (LAN), a wide LAN (WLAN), or a storage area network (SAN), or a combination thereof. It may be stored in an attachable storage device that can be accessed. Such a storage device may be connected to a device implementing an embodiment of the present disclosure through an external port. In addition, a separate storage device on the communication network may be connected to the device implementing the embodiment of the present disclosure.
상술한 본 개시의 구체적인 실시 예들에서, 개시에 포함되는 구성 요소는 제시된 구체적인 실시 예에 따라 단수 또는 복수로 표현되었다. 그러나, 단수 또는 복수의 표현은 설명의 편의를 위해 제시한 상황에 적합하게 선택된 것으로서, 본 개시가 단수 또는 복수의 구성 요소에 제한되는 것은 아니며, 복수로 표현된 구성 요소라 하더라도 단수로 구성되거나, 단수로 표현된 구성 요소라 하더라도 복수로 구성될 수 있다.In the specific embodiments of the present disclosure described above, elements included in the disclosure are expressed in the singular or plural according to the specific embodiments presented. However, the singular or plural expression is appropriately selected for the context presented for convenience of description, and the present disclosure is not limited to the singular or plural component, and even if the component is expressed in plural, it is composed of the singular or singular. Even an expressed component may be composed of a plurality of components.
한편, 본 명세서와 도면에 개시된 본 개시의 실시 예들은 본 개시의 기술 내용을 쉽게 설명하고 본 개시의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 개시의 범위를 한정하고자 하는 것은 아니다. 즉 본 개시의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 개시의 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다. 또한 상기 각각의 실시 예는 필요에 따라 서로 조합되어 운용할 수 있다. 예컨대, 본 개시의 일 실시 예와 다른 일 실시 예의 일부분들이 서로 조합되어 기지국과 단말이 운용될 수 있다. 예를 들면, 본 개시의 복수의 실시 예의 일부분들이 서로 조합되어 기지국과 단말이 운용될 수 있다. 또한 상기 실시 예들은 FDD LTE 시스템을 기준으로 제시되었지만, TDD LTE 시스템, 5G 혹은 NR 시스템 등 다른 시스템에도 상기 실시 예의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능할 것이다.On the other hand, the embodiments of the present disclosure disclosed in the present specification and drawings are only presented as specific examples to easily explain the technical content of the present disclosure and help the understanding of the present disclosure, and are not intended to limit the scope of the present disclosure. That is, it is apparent to those of ordinary skill in the art to which the present disclosure pertains that other modified examples can be implemented based on the technical spirit of the present disclosure. In addition, each of the above embodiments may be operated in combination with each other as needed. For example, the base station and the terminal may be operated by combining parts of one embodiment and another embodiment of the present disclosure. For example, a base station and a terminal may be operated by combining parts of a plurality of embodiments of the present disclosure. In addition, although the above embodiments have been presented based on the FDD LTE system, other modifications based on the technical idea of the embodiment may be implemented in other systems such as the TDD LTE system, 5G or NR system.
상술한 본 개시의 구체적인 실시 예들에서, 개시에 포함되는 구성 요소는 제시된 구체적인 실시 예에 따라 단수 또는 복수로 표현되었다. 그러나, 단수 또는 복수의 표현은 설명의 편의를 위해 제시한 상황에 적합하게 선택된 것으로서, 본 개시가 단수 또는 복수의 구성 요소에 제한되는 것은 아니며, 복수로 표현된 구성 요소라 하더라도 단수로 구성되거나, 단수로 표현된 구성 요소라 하더라도 복수로 구성될 수 있다.In the specific embodiments of the present disclosure described above, elements included in the disclosure are expressed in the singular or plural according to the specific embodiments presented. However, the singular or plural expression is appropriately selected for the context presented for convenience of description, and the present disclosure is not limited to the singular or plural component, and even if the component is expressed in plural, it is composed of the singular or singular. Even an expressed component may be composed of a plurality of components.
한편 본 개시의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 개시의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 개시의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.Meanwhile, although specific embodiments have been described in the detailed description of the present disclosure, various modifications are possible without departing from the scope of the present disclosure. Therefore, the scope of the present disclosure should not be limited to the described embodiments and should be defined by the claims described below as well as the claims and equivalents.

Claims (15)

  1. 무선 통신 시스템의 기지국에 의해 수행되는 방법에 있어서,A method performed by a base station of a wireless communication system, comprising:
    단말들로부터, SRS(sounding reference signal)을 수신하는 단계;Receiving a sounding reference signal (SRS) from the terminals;
    상기 SRS를 이용하여, 상기 단말들 각각에 대한 상향링크 디지털 채널을 추정하는 단계;estimating an uplink digital channel for each of the terminals by using the SRS;
    상기 추정된 상향링크 디지털 채널을 이용하여, 상기 단말들 각각에 대한 상기 기지국의 아날로그 수신 빔, 상기 단말들 각각에 대한 디지털 송신 빔, 및 임의의 슬롯에서 스케쥴링될 단말들의 집합을 결정하는 단계; 및determining, by using the estimated uplink digital channel, an analog reception beam of the base station for each of the terminals, a digital transmission beam for each of the terminals, and a set of terminals to be scheduled in an arbitrary slot; and
    상기 스케쥴링된 단말들에게 상기 결정된 디지털 송신 빔에 대한 정보를 송신하는 단계를 포함하는 것을 특징으로 하는 방법. and transmitting information on the determined digital transmission beam to the scheduled terminals.
  2. 제1 항에 있어서, 상기 단말들 각각에 대한 상기 기지국의 아날로그 수신 빔은, 상기 추정된 상향링크 디지털 채널을 고려하여 결정되고The method of claim 1, wherein the analog reception beam of the base station for each of the terminals is determined in consideration of the estimated uplink digital channel and
    상기 단말들 각각에 대한 디지털 송신 빔은, 상기 추정된 상향링크 디지털 채널과 상기 단말들 각각에 대한 상기 기지국의 아날로그 수신 빔을 고려하여 결정되고, 및The digital transmission beam for each of the terminals is determined in consideration of the estimated uplink digital channel and the analog reception beam of the base station for each of the terminals, and
    상기 스케쥴링될 단말들의 집합은 상기 추정된 상향링크 디지털 채널, 상기 단말들 각각에 대한 상기 기지국의 아날로그 수신 빔, 및 상기 단말들 각각에 대한 디지털 송신 빔을 고려하여 결정되는 것을 특징으로 하는 방법.The set of terminals to be scheduled is determined in consideration of the estimated uplink digital channel, an analog reception beam of the base station for each of the terminals, and a digital transmission beam for each of the terminals.
  3. 제2 항에 있어서, 상기 단말들 각각에 대한 기지국의 아날로그 수신 빔과 상기 단말들 각각에 대한 디지털 송신 빔은 타부 서치(tabu search) 알고리즘에 기반하여 결정되고, 및3. The method of claim 2, wherein the analog reception beam of the base station for each of the terminals and the digital transmission beam for each of the terminals are determined based on a tabu search algorithm, and
    상기 스케쥴링될 단말들의 집합은 SUS(semi-orthogonal user selection) 알고리즘에 기반하여 결정되는 것을 특징으로 하는 방법.The set of terminals to be scheduled is determined based on a semi-orthogonal user selection (SUS) algorithm.
  4. 제3 항에 있어서, 상기 단말들 각각에 대한 상기 기지국의 아날로그 수신 빔과 상기 단말들 각각에 대한 디지털 송신 빔을 결정하기 위한 타부 서치 알고리즘은,According to claim 3, wherein the search algorithm for determining the analog reception beam of the base station for each of the terminals and a digital transmission beam for each of the terminals,
    다음의 [수학식 6][Equation 6]
    [수학식 6][Equation 6]
    Figure PCTKR2021014338-appb-I000031
    Figure PCTKR2021014338-appb-I000031
    을 이용하여 디지털 채널 이득이 최대가 되는 아날로그 수신 빔을 결정하고, 상기 [수학식 6]에서, X 는 시간, 주파수 자원을 공유하는 총 단말의 수를 나타내며,
    Figure PCTKR2021014338-appb-I000032
    는 k 번째 단말과 기지국 사이의 아날로그 채널을 나타내고,
    Figure PCTKR2021014338-appb-I000033
    는 기지국의 아날로그 수신 빔을 나타내고,
    Figure PCTKR2021014338-appb-I000034
    는 k 번째 단말과 기지국 사이의 디지털 채널을 나타내고, 및
    determines the analog reception beam with the maximum digital channel gain using
    Figure PCTKR2021014338-appb-I000032
    represents the analog channel between the k-th terminal and the base station,
    Figure PCTKR2021014338-appb-I000033
    represents the analog reception beam of the base station,
    Figure PCTKR2021014338-appb-I000034
    represents a digital channel between the k-th terminal and the base station, and
    상기 결정된 아날로그 수신 빔과 다음의 [수학식 7]The determined analog reception beam and the following [Equation 7]
    [수학식 7][Equation 7]
    Figure PCTKR2021014338-appb-I000035
    Figure PCTKR2021014338-appb-I000035
    을 이용하여 유효 채널 이득이 최대가 되는 디지털 송신 빔을 결정하고, 상기 [수학식 7]에서,
    Figure PCTKR2021014338-appb-I000036
    는 k 번째 단말의 디지털 송신 빔을 나타내고,
    Figure PCTKR2021014338-appb-I000037
    는 k 번째 단말과 기지국 사이의 유효채널을 나타내는 것을 특징으로 하는 방법.
    Determine the digital transmission beam for which the effective channel gain is maximized using
    Figure PCTKR2021014338-appb-I000036
    represents the digital transmission beam of the k-th terminal,
    Figure PCTKR2021014338-appb-I000037
    is an effective channel between the k-th terminal and the base station.
  5. 제4 항에 있어서, 상기 스케쥴링될 단말들의 집합을 결정하기 위한 SUS(semi-orthogonal user selection) 알고리즘은, The method of claim 4, wherein a semi-orthogonal user selection (SUS) algorithm for determining a set of terminals to be scheduled comprises:
    상기 단말들과 상기 기지국의 유효채널의 직교성을 비교하여, 상기 직교성이 미리 설정된 기준 값 이상의 단말들의 집합을 결정하는 것을 특징으로 하는 방법.Comparing the orthogonality of the effective channels of the terminals and the base station, the method characterized in that the orthogonality determines a set of terminals equal to or greater than a preset reference value.
  6. 제1 항에 있어서, 상기 SRS를 수신하는 단계 이전에,The method of claim 1, wherein before receiving the SRS,
    채널 상호성을 판단하는 단계; 및 determining channel reciprocity; and
    상기 단말들의 전력을 측정하는 단계를 더 포함하고,Further comprising the step of measuring the power of the terminals,
    상기 기지국은, 상기 채널 상호성이 없거나, 상기 단말들의 전력이 특정 값보다 큰 경우에 상기 SRS 전송을 위한 제어 메시지를 상기 단말에 송신하는 것을 특징으로 하는 방법.The base station, when there is no channel reciprocity or the power of the terminals is greater than a specific value, the method characterized in that for transmitting the control message for the SRS transmission to the terminal.
  7. 제6 항에 있어서,7. The method of claim 6,
    상기 채널 상호성이 있고 상기 단말들의 전력이 특정 값보다 작은 경우,If there is the channel reciprocity and the power of the terminals is less than a specific value,
    상기 단말들에게, CSI-RS(channel state information reference signal)을 송신하는 단계;transmitting, to the terminals, a channel state information reference signal (CSI-RS);
    상기 단말들로부터, 상기 단말들 각각에 대한 하향링크 디지털 채널 정보를 수신하는 단계;receiving, from the terminals, downlink digital channel information for each of the terminals;
    상기 채널 상호성을 이용하여, 상기 하향링크 디지털 채널 정보를 상향링크 디지털 채널 정보로 변환하고, 상기 기지국의 하향링크 아날로그 송신 빔을 상향링크 아날로그 수신 빔으로 변환하는 단계;converting the downlink digital channel information into uplink digital channel information using the channel reciprocity, and converting a downlink analog transmission beam of the base station into an uplink analog reception beam;
    상기 상향링크 디지털 채널 정보를 이용하여, 상기 단말들 각각에 대한 상기 기지국의 아날로그 수신 빔, 상기 단말들 각각에 대한 디지털 송신 빔, 및 임의의 슬롯에서 스케쥴링될 단말들의 집합을 결정하는 단계; 및determining, by using the uplink digital channel information, an analog reception beam of the base station for each of the terminals, a digital transmission beam for each of the terminals, and a set of terminals to be scheduled in an arbitrary slot; and
    상기 스케쥴링된 단말들에게 상기 결정된 디지털 송신 빔에 대한 정보를 송신하는 단계를 포함하는 것을 특징으로 하는 방법.and transmitting information on the determined digital transmission beam to the scheduled terminals.
  8. 제7 항에 있어서,8. The method of claim 7,
    상기 단말들 각각에 대한 상기 기지국의 아날로그 수신 빔은, 상기 상향링크 디지털 채널 정보를 고려하여 결정되고,The analog reception beam of the base station for each of the terminals is determined in consideration of the uplink digital channel information,
    상기 단말들 각각에 대한 디지털 송신 빔은, 상기 추정된 상향링크 디지털 채널과 상기 단말들 각각에 대한 상기 기지국의 아날로그 수신 빔을 고려하여 결정되고,The digital transmission beam for each of the terminals is determined in consideration of the estimated uplink digital channel and the analog reception beam of the base station for each of the terminals,
    상기 스케쥴링될 단말들의 집합은 상기 추정된 상향링크 디지털 채널, 상기 단말들 각각에 대한 상기 기지국의 아날로그 수신 빔, 및 상기 단말들 각각에 대한 디지털 송신 빔을 고려하여 결정되는 것을 특징으로 하는 방법.The set of terminals to be scheduled is determined in consideration of the estimated uplink digital channel, an analog reception beam of the base station for each of the terminals, and a digital transmission beam for each of the terminals.
  9. 제1 항에 있어서, 상기 디지털 송신 빔에 대한 정보는 TPMI(transmitted precoding matrix indicator)를 통해 송신되는 것을 특징으로 하는 방법.The method of claim 1, wherein the information on the digital transmission beam is transmitted through a transmitted precoding matrix indicator (TPMI).
  10. 무선 통신 시스템의 단말에 의해 수행되는 방법에 있어서,A method performed by a terminal of a wireless communication system, comprising:
    기지국에게, SRS(sounding reference signal)을 송신하는 단계;transmitting a sounding reference signal (SRS) to the base station;
    상기 기지국으로부터, 디지털 송신 빔에 대한 정보를 수신하는 단계; 및receiving, from the base station, information on a digital transmission beam; and
    상기 기지국에게 상기 디지털 송신 빔에 대한 정보에 상응하는 디지털 송신 빔을 이용하여, 데이터를 송신하는 단계를 포함하고,Transmitting data to the base station by using a digital transmission beam corresponding to information on the digital transmission beam,
    상기 디지털 송신 빔은, 상기 기지국에 의해 추정된 상향링크 디지털 채널과 상기 기지국의 아날로그 수신 빔을 고려하여 결정되는 것을 특징으로 하는 방법.The digital transmit beam is determined in consideration of an uplink digital channel estimated by the base station and an analog receive beam of the base station.
  11. 제10 항에 있어서, 상기 기지국의 아날로그 수신 빔과 상기 단말의 디지털 송신 빔은 타부 서치(tabu search) 알고리즘에 기반하여 결정되며,11. The method of claim 10, wherein the analog reception beam of the base station and the digital transmission beam of the terminal are determined based on a tabu search algorithm,
    상기 기지국의 아날로그 수신 빔과 상기 단말의 디지털 송신 빔을 결정하기 위한 타부 서치 알고리즘은,The other search algorithm for determining the analog reception beam of the base station and the digital transmission beam of the terminal,
    다음의 [수학식 8][Equation 8]
    [수학식 8][Equation 8]
    Figure PCTKR2021014338-appb-I000038
    Figure PCTKR2021014338-appb-I000038
    을 이용하여 디지털 채널 이득이 최대가 되는 아날로그 수신 빔을 결정하고, 상기 [수학식 8]에서, X 는 시간, 주파수 자원을 공유하는 총 단말의 수를 나타내며,
    Figure PCTKR2021014338-appb-I000039
    는 k 번째 단말과 기지국 사이의 아날로그 채널을 나타내고,
    Figure PCTKR2021014338-appb-I000040
    는 기지국의 아날로그 수신 빔을 나타내고,
    Figure PCTKR2021014338-appb-I000041
    는 k 번째 단말과 기지국 사이의 디지털 채널을 나타내고, 및
    determines the analog reception beam with the maximum digital channel gain using
    Figure PCTKR2021014338-appb-I000039
    represents the analog channel between the k-th terminal and the base station,
    Figure PCTKR2021014338-appb-I000040
    represents the analog reception beam of the base station,
    Figure PCTKR2021014338-appb-I000041
    represents a digital channel between the k-th terminal and the base station, and
    상기 결정된 아날로그 수신 빔과 다음의 [수학식 9]The determined analog reception beam and the following [Equation 9]
    [수학식 9][Equation 9]
    Figure PCTKR2021014338-appb-I000042
    Figure PCTKR2021014338-appb-I000042
    을 이용하여 유효 채널 이득이 최대가 되는 디지털 송신 빔을 결정하고, 상기 [수학식 9]에서,
    Figure PCTKR2021014338-appb-I000043
    는 k 번째 단말의 디지털 송신 빔을 나타내고,
    Figure PCTKR2021014338-appb-I000044
    는 k 번째 단말과 기지국 사이의 유효채널을 나타내는 것을 특징으로 하는 방법.
    Determine the digital transmission beam for which the effective channel gain is maximized using
    Figure PCTKR2021014338-appb-I000043
    represents the digital transmission beam of the k-th terminal,
    Figure PCTKR2021014338-appb-I000044
    is an effective channel between the k-th terminal and the base station.
  12. 제10 항에 있어서, 상기 SRS를 송신하는 단계 이전에,11. The method of claim 10, before transmitting the SRS,
    채널 상호성을 판단하는 단계; determining channel reciprocity;
    상기 단말의 전력을 측정하는 단계; 및measuring the power of the terminal; and
    상기 기지국으로부터, 상기 채널 상호성이 없거나, 상기 단말의 전력이 특정 값보다 큰 경우에 상기 SRS 전송을 위한 제어 메시지를 수신하는 단계를 더 포함하는 것을 특징으로 하는 방법.The method further comprising the step of receiving a control message for the SRS transmission from the base station when there is no channel reciprocity or when the power of the terminal is greater than a specific value.
  13. 제12 항에 있어서,13. The method of claim 12,
    상기 채널 상호성이 있고 상기 단말의 전력이 특정 값보다 작은 경우,If there is the channel reciprocity and the power of the terminal is less than a specific value,
    상기 기지국으로부터, CSI-RS(channel state information reference signal)을 수신하는 단계;receiving, from the base station, a channel state information reference signal (CSI-RS);
    상기 CSI-RS를 이용하여, 상기 기지국에 대한 하향링크 디지털 채널을 추정하는 단계;estimating a downlink digital channel for the base station by using the CSI-RS;
    상기 기지국에게, 하향링크 디지털 채널 정보를 송신하는 단계;transmitting downlink digital channel information to the base station;
    상기 기지국으로부터, 디지털 송신 빔에 대한 정보를 수신하는 단계; 및receiving, from the base station, information on a digital transmission beam; and
    상기 기지국에게 상기 디지털 송신 빔에 대한 정보에 해당되는 디지털 송신 빔을 이용하여, 데이터를 송신하는 단계를 포함하고,Transmitting data to the base station by using a digital transmission beam corresponding to information on the digital transmission beam,
    상기 디지털 송신 빔은, 상기 기지국에 의해, 상기 채널 상호성을 이용하여, 변환된 상향링크 디지털 채널과 상기 기지국의 아날로그 수신 빔을 고려하여 결정되는 것을 특징으로 하는 방법.The digital transmission beam is determined by the base station in consideration of the converted uplink digital channel and the analog reception beam of the base station using the channel reciprocity.
  14. 무선 통신 시스템의 기지국에 있어서,In a base station of a wireless communication system,
    송수신부; 및 transceiver; and
    단말들로부터, SRS(sounding reference signal)을 상기 송수신부를 통해 수신하고, 상기 SRS를 이용하여, 상기 단말들 각각에 대한 상향링크 디지털 채널을 추정하고, 상기 추정된 상향링크 디지털 채널을 이용하여, 상기 단말들 각각에 대한 상기 기지국의 아날로그 수신 빔, 상기 단말들 각각에 대한 디지털 송신 빔, 및 임의의 슬롯에서 스케쥴링될 단말들의 집합을 결정하고, 상기 스케쥴링된 단말들에게 상기 결정된 디지털 송신 빔에 대한 정보를 상기 송수신부를 통해 송신하는 제어부를 포함하는 것을 특징으로 하는 기지국.Receiving a sounding reference signal (SRS) from the terminals through the transceiver, estimating an uplink digital channel for each of the terminals using the SRS, and using the estimated uplink digital channel, the Determining an analog reception beam of the base station for each of the terminals, a digital transmission beam for each of the terminals, and a set of terminals to be scheduled in an arbitrary slot, and information on the determined digital transmission beam to the scheduled terminals Base station, characterized in that it comprises a control unit for transmitting through the transceiver.
  15. 무선 통신 시스템의 단말에 있어서,In the terminal of a wireless communication system,
    송수신부; 및transceiver; and
    기지국에게, SRS(sounding reference signal)을 상기 송수신부를 통해 송신하고, 상기 기지국으로부터, 디지털 송신 빔에 대한 정보를 상기 송수신부를 통해 수신하며, 상기 기지국에게 상기 디지털 송신 빔에 대한 정보에 해당되는 디지털 송신 빔을 이용하여, 데이터를 상기 송수신부를 통해 송신하고, 상기 디지털 송신 빔은, 상기 기지국에 의해 추정된 상향링크 디지털 채널과 상기 기지국의 아날로그 수신 빔을 고려하여 결정되는 제어부를 포함하며, Transmitting a sounding reference signal (SRS) to a base station through the transceiver, receiving information on a digital transmission beam from the base station through the transceiver, and digital transmission corresponding to information on the digital transmission beam to the base station Using a beam to transmit data through the transceiver, the digital transmission beam includes a control unit determined in consideration of an uplink digital channel estimated by the base station and an analog reception beam of the base station,
    상기 기지국의 아날로그 수신 빔과 상기 단말의 디지털 송신 빔은 타부 서치(tabu search) 알고리즘에 기반하여 결정되는 것을 특징으로 하는 단말.The terminal according to claim 1, wherein the analog reception beam of the base station and the digital transmission beam of the terminal are determined based on a tabu search algorithm.
PCT/KR2021/014338 2020-10-16 2021-10-15 Method and apparatus for performing hybrid beamforming communication in wireless communication system WO2022080935A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200134635A KR20220050681A (en) 2020-10-16 2020-10-16 Method and apparatus for performing a hybrid beamforming communication in a wireless communication system
KR10-2020-0134635 2020-10-16

Publications (1)

Publication Number Publication Date
WO2022080935A1 true WO2022080935A1 (en) 2022-04-21

Family

ID=81209163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014338 WO2022080935A1 (en) 2020-10-16 2021-10-15 Method and apparatus for performing hybrid beamforming communication in wireless communication system

Country Status (2)

Country Link
KR (1) KR20220050681A (en)
WO (1) WO2022080935A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130097117A (en) * 2012-02-23 2013-09-02 한국전자통신연구원 Method for multi-input multi-output communication in a large-scale antenna system
KR20160030226A (en) * 2013-07-02 2016-03-16 삼성전자주식회사 Methods and apparatus for sounding channel operation in millimeter wave communication systems
US20180176801A1 (en) * 2016-06-15 2018-06-21 Telefonaktiebolaget Lm Ericsson (Publ) Spatial separation as beam reporting condition
US20190116605A1 (en) * 2017-10-12 2019-04-18 Qualcomm Incorporated Beam management schemes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130097117A (en) * 2012-02-23 2013-09-02 한국전자통신연구원 Method for multi-input multi-output communication in a large-scale antenna system
KR20160030226A (en) * 2013-07-02 2016-03-16 삼성전자주식회사 Methods and apparatus for sounding channel operation in millimeter wave communication systems
US20180176801A1 (en) * 2016-06-15 2018-06-21 Telefonaktiebolaget Lm Ericsson (Publ) Spatial separation as beam reporting condition
US20190116605A1 (en) * 2017-10-12 2019-04-18 Qualcomm Incorporated Beam management schemes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GAO XINYU; DAI LINGLONG; YUEN CHAU; WANG ZHAOCHENG: "Turbo-Like Beamforming Based on Tabu Search Algorithm for Millimeter-Wave Massive MIMO Systems", IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, vol. 65, no. 7, 1 July 2016 (2016-07-01), USA, pages 5731 - 5737, XP011616874, ISSN: 0018-9545, DOI: 10.1109/TVT.2015.2461440 *

Also Published As

Publication number Publication date
KR20220050681A (en) 2022-04-25

Similar Documents

Publication Publication Date Title
WO2022035278A1 (en) Method and apparatus for measurement and reporting for multi-beam operations
WO2015147546A1 (en) Method and apparatus for scheduling in a multi-input multi-output system
EP4302424A1 (en) Method and apparatus for support of machine learning or artificial intelligence techniques for csi feedback in fdd mimo systems
WO2019156512A1 (en) Method and apparatus for wideband csi reporting in an advanced wireless communication system
WO2021080391A1 (en) Method and apparatus for antenna parameter configuration for cellular communication systems
WO2022177381A1 (en) Method and apparatus for modular mimo in a wireless communication system
WO2023277454A1 (en) Method and apparatus for channel environment classification in wireless network system
WO2019226028A1 (en) Methods of beam codebook generation for 5g terminals
WO2022186614A1 (en) Resource selection for uplink channels during initial access
WO2023003221A1 (en) Method and apparatus of interlace based sidelink resource pool
EP4272337A1 (en) Method and apparatus for antenna selection for distributed mimo system
WO2016159630A1 (en) Method and apparatus for configuring synchronization signal in wireless communication system on basis of repeating pattern considering cell coverage
EP4309301A1 (en) Method and apparatus for wireless communication using beamforming
WO2021261959A1 (en) Method and apparatus for event-based uplink transmit beam switch
WO2022080935A1 (en) Method and apparatus for performing hybrid beamforming communication in wireless communication system
WO2021221468A1 (en) Method and apparatus for transmission of downlink signal for initial access in a wireless communication system
WO2024072126A1 (en) Method and apparatus for estimating channel state information in advanced mimo antenna systems for cellular communications
WO2023008682A1 (en) Apparatus and method for n1-n2 bitmap generation for cellular communication system
WO2023068868A1 (en) Device and method for transmitting reference signal in multi-antenna system
WO2024029998A1 (en) Low complexity los mimo system design for near field communication
WO2022270897A1 (en) Method and apparatus for transmitting and receiving channel state information in wireless communication system
WO2023214797A1 (en) Method and device for beam training for an intelligent reflecting surface (irs) assisted cellular system
WO2023177240A1 (en) Method and apparatus for an srs procedure
WO2024111930A1 (en) Apparatus and method for timing mis-match calibration in distributed mimo system
WO2023068867A1 (en) Apparatus and method for transmitting data in multi-antenna system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21880582

Country of ref document: EP

Kind code of ref document: A1