WO2022080886A1 - 2-keto-4-hydroxybutyrate biosynthetic system - Google Patents

2-keto-4-hydroxybutyrate biosynthetic system Download PDF

Info

Publication number
WO2022080886A1
WO2022080886A1 PCT/KR2021/014224 KR2021014224W WO2022080886A1 WO 2022080886 A1 WO2022080886 A1 WO 2022080886A1 KR 2021014224 W KR2021014224 W KR 2021014224W WO 2022080886 A1 WO2022080886 A1 WO 2022080886A1
Authority
WO
WIPO (PCT)
Prior art keywords
aldolase
seq
keto
amino acid
activity
Prior art date
Application number
PCT/KR2021/014224
Other languages
French (fr)
Korean (ko)
Inventor
염수진
김정선
정연주
서필원
Original Assignee
전남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210131531A external-priority patent/KR102404898B1/en
Application filed by 전남대학교 산학협력단 filed Critical 전남대학교 산학협력단
Publication of WO2022080886A1 publication Critical patent/WO2022080886A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids

Definitions

  • the present invention relates to a 2-keto-4-hydroxybutate biosynthetic system.
  • C1 gas utilization technologies have emerged, but they are focused on the production of basic C1 chemicals or fuels such as methanol and formic acid.
  • basic C1 chemicals or fuels such as methanol and formic acid.
  • C1 chemical due to the price of C1 chemical, which is only about 300-500 USD per ton, it is difficult to secure economic feasibility when simple C1 material is produced by C1 gas refinery. Therefore, it is very important to use C1 chemicals to produce high value-added substances higher than C3.
  • formaldehyde is known as a very important intermediate in the metabolism of C1 compounds.
  • the present inventors confirmed an enzyme that binds formaldehyde-pyruvate carbon after a long study, and discovered three new enzyme groups with more than twice the activity than previously known enzymes. Thereafter, mutations were induced in the active site to enhance the activity of aldolase, and two single mutant enzymes whose activity was increased by 1.7 times compared to the wild-type enzyme among aldolases derived from Pseudomonas aeruginosa PAO1 and wild-type enzymes from aldolase derived from Deinococcus radiodurans R1 Three single mutant enzymes with 1.33, 1.64, and 1.71 times higher than the enzyme were obtained.
  • One aspect of the present invention is an aldolase variant in which any one amino acid of P195, G196, S222, L227, L247 and R250 is substituted in the amino acid sequence of SEQ ID NO: 2 or V121, V237 and L241 in the amino acid sequence of SEQ ID NO: 3
  • An object of the present invention is to provide an aldolase variant in which one or more amino acids are substituted.
  • composition for biosynthesis of 2-keto-4-hydroxybutyrate comprising the aldolase variant or aldolase of any one of SEQ ID NOs: 1 to 3 is intended to provide
  • Another aspect of the present invention is to provide a polynucleotide encoding the aldolase variant or aldolase.
  • another aspect of the present invention aims to provide a recombinant microorganism having the ability to produce 2-keto-4-hydroxybutate from formaldehyde and pyruvic acid including the polynucleotide.
  • another aspect of the present invention aims to provide a method for producing 2-keto-4-hydroxybutate comprising the step of culturing the recombinant microorganism in the presence of formaldehyde.
  • One aspect of the present invention is an aldolase variant in which any one amino acid of P195, G196, S222, L227, L247 and R250 is substituted in the amino acid sequence of SEQ ID NO: 2 or V121, V237 and L241 in the amino acid sequence of SEQ ID NO: 3
  • aldolase variants in which any one or more amino acids are substituted.
  • P195 is substituted with serine (S) or glutamine (Q)
  • G196 and S222 are substituted with alanine (A)
  • L227 and L247 are valine ( is substituted with V)
  • R250 is substituted with alanine (A)
  • V121, V237 and L241 in the amino acid sequence of SEQ ID NO: 3 are substituted with alanine (A).
  • composition for biosynthesis of 2-keto-4-hydroxybutyrate comprising the aldolase variant or aldolase of any one of SEQ ID NOs: 1 to 3 provides
  • the aldolase variant or aldolase binds formaldehyde and pyruvic acid.
  • Another aspect of the present invention provides a polynucleotide encoding the aldolase variant or aldolase of any one of SEQ ID NOs: 1 to 3.
  • Another aspect of the present invention provides a recombinant microorganism having the ability to produce 2-keto-4-hydroxybutate from formaldehyde and pyruvic acid including the polynucleotide.
  • Another aspect of the present invention provides a method for producing 2-keto-4-hydroxybutate comprising the step of culturing the recombinant microorganism in the presence of formaldehyde.
  • the 2-keto-4-hydroxybutate biosynthetic system of the present invention has superior activity compared to that of conventional aldolase, and thus can contribute to the production of various high-addition compounds.
  • FIG. 1 to 12 show the temperature (FIG. 1, FIG. 3, FIG. 5), pH (FIG. 2, FIG. 4, FIG. 6), metal ion (FIG. 7, FIG. 9, and FIG. 11) of Example 2, and MgCl 2 It is a graph showing the activity of aldolase according to the concentration (Fig. 8, Fig. 10, Fig. 12).
  • FIG. 13 to 16 are results according to Example 2, showing the activity of aldolase according to the aldolase concentration (FIG. 13), the substrate concentration (FIGS. 14 and 15) and the reaction time (FIG. 16).
  • 17 and 18 are graphs comparing the relative activity of the conventional aldolase according to Example 3 and the present aldolase of the present invention.
  • 19 and 20 are graphs comparing the activity of the aldolase variant of the present invention according to Example 4.
  • One aspect of the present invention is an aldolase variant in which any one amino acid of P195, G196, S222, L227, L247 and R250 is substituted in the amino acid sequence of SEQ ID NO: 2 or V121, V237 and L241 in the amino acid sequence of SEQ ID NO: 3
  • aldolase variants in which any one or more amino acids are substituted.
  • SEQ ID NO: 2 is an aldolase derived from Deinococcus radiodurans R1
  • SEQ ID NO: 3 is an amino acid sequence of aldolase derived from Pseudomonas aeruginosa PAO1 , as described below.
  • P195 is substituted with serine (S) or glutamine (Q)
  • G196 and S222 are substituted with alanine (A)
  • L227 and L247 are valine ( is substituted with V)
  • R250 is substituted with alanine (A)
  • V121, V237 and L241 are aldolase variants substituted with alanine (A).
  • the aldolase variant has the effect of having superior activity compared to the aldolase derived from Deinococcus radiodurans R1 of SEQ ID NO: 2 or the aldolase derived from Pseudomonas aeruginosa PAO1 of SEQ ID NO: 3 through the above-described mutation (FIGS. 19 and 20) .
  • composition for biosynthesis of 2-keto-4-hydroxybutyrate comprising the amino acid sequence of any one of the above-described aldolase variants or SEQ ID NOs: 1 to 3 provides
  • SEQ ID NO: 1 is an aldolase derived from Achromobacter xylosoxidans
  • SEQ ID NO: 2 is an aldolase derived from Deinococcus radiodurans R1
  • SEQ ID NO: 3 is an aldolase derived from Pseudomonas aeruginosa PAO1 .
  • biosynthesis used in the present invention means not chemically synthesized, but biologically synthesized, specifically, the amino acid sequence of any one of SEQ ID NOs: 1 to 3, synthesized by aldolase do.
  • aldolase is specifically pyruvate aldolase, and is an enzyme that decomposes sugars such as aldol or causes aldol condensation.
  • the aldolase mutant or aldolase may combine formaldehyde and pyruvic acid.
  • formaldehyde produced by methane monooxygenase and methanol dehydrogenase and pyruvic acid produced by glycolysis are subjected to an aldol condensation reaction and 2-keto-4-hydroxybutate is produced.
  • 2-keto-4-hydroxybutate as a precursor of 1,3-propane diol, undergoes additional reaction and is used in industrial materials such as biodiesel, adhesives, laminations, coatings, molds, aliphatic compounds, and copolyesters. can be
  • the aldolase of the present invention has >2 times more activity than the previously known aldolase (YfaU) (see FIGS. 17 and 18), and the aldolase variant is Deinococcus radiodurans R1 of SEQ ID NO: 2
  • the derived aldolase or SEQ ID NO: 3 has superior activity compared to the aldolase derived from Pseudomonas aeruginosa PAO1 , and thus can contribute to the production of various high value-added compounds.
  • Another aspect of the present invention provides a polynucleotide encoding the amino acid sequence of any one of the aldolase variants or SEQ ID NOs: 1 to 3.
  • the polynucleotide may be DNA or RNA, and when the polynucleotide of the present invention is RNA, it may be understood that T (thymine) of DNA is replaced with uracil (U).
  • the polynucleotide can be prepared by a known chemical synthesis method.
  • Another aspect of the present invention provides a recombinant microorganism having the ability to produce 2-keto-4-hydroxybutate from formaldehyde and pyruvic acid including the polynucleotide.
  • the recombinant microorganism inserts the aldolase variant or a polynucleotide encoding any one of SEQ ID NOs: 1 to 3 into the chromosome of the microorganism, or inserts the recombinant vector onto the plasmid of the microorganism. It can be prepared by introducing
  • vector means a DNA preparation containing a DNA sequence operably linked to suitable regulatory sequences capable of expressing the DNA in a suitable host.
  • a vector can be a plasmid, a phage particle or simply a potential genomic insert. Upon transformation into an appropriate host, the vector may replicate and function independently of the host genome, or in some cases may be integrated into the genome itself. Since a plasmid is currently the most commonly used form of vector, “plasmid” and “vector” are sometimes used interchangeably in the context of the present invention. For the purposes of the present invention, it is preferred to use a plasmid vector.
  • Typical plasmid vectors that can be used for this purpose include (a) an initiation point of replication that allows efficient replication to include hundreds of plasmid vectors per host cell, and (b) a selection of host cells transformed with the plasmid vector. It has a structure including an antibiotic resistance gene and (c) a restriction enzyme cleavage site into which a foreign DNA fragment can be inserted. Even if an appropriate restriction enzyme cleavage site does not exist, the vector and foreign DNA can be easily ligated by using a synthetic oligonucleotide adapter or linker according to a conventional method. After ligation, the vector must be transformed into an appropriate host cell.
  • the vector according to one embodiment of the present invention may be selected from the group consisting of viral vectors such as plasmid vectors, cosmid vectors and bacteriophage vectors, adenoviral vectors, retroviral vectors and adeno-associated viral vectors.
  • viral vectors such as plasmid vectors, cosmid vectors and bacteriophage vectors, adenoviral vectors, retroviral vectors and adeno-associated viral vectors.
  • Vectors that can be used as recombinant expression vectors include plasmids used in the art (eg, pcDNA series, pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1).
  • phage eg, ⁇ gt4 ⁇ B, ⁇ -Charon, ⁇ z1, M13, etc.
  • viral vectors eg, adeno-associated virus (AAV) vectors, etc. It may be manufactured based on, but is not limited to.
  • the preferred host cell is a prokaryotic cell.
  • Suitable prokaryotic host cells include E. coli XL-1Blue (Stratagene), E. coli DH5 ⁇ , E. coli JM101, E. coli K12, E. coli W3110, E. coli X1776, E. coli BL21, and the like.
  • E. coli strains such as FMB101, NM522, NM538 and NM539 and other prokaryotic species and genera and the like may also be used.
  • Agrobacterium sp In addition to the above E. coli, Agrobacterium sp.
  • strains such as Agrobacterium A4, bacilli such as Bacillus subtilis, Salmonella typhimurium or Serratia marcescens ) and other Enterobacteriaceae and various Pseudomonas genus strains can be used as host cells.
  • a commonly known genetic manipulation method may be used.
  • a physical method there are microinjection (injecting DNA directly into the cell), liposome, directed DNA uptake, receptor mediated DNA transfer, or DNA transport using Ca ++.
  • virus Gene transfer methods are widely used. Examples include methods using retroviral vectors, adenovirus vectors, adeno-associated virus vectors, herpes simplex virus vectors, poxvirus vectors or lentiviral vectors, etc.
  • retroviruses have high gene transfer efficiency and It can be used in a wide range of cells without binding by host DNA and rearrangement (rearrangement: changing a region similar to self DNA in host DNA, resulting in change in host DNA function).
  • the microorganism is Agrobacterium, Aspergillus, Acetobacter, Aminobacter, Agromonas, Acidphilium, Bulleromyces, Bullera, Brevundimonas, Cryptococcus, Chionosphaera, Candida, Cerinosterus, Escherichia, Exisophiala, Exobasidium, Fellomyces, Filobasidium, Geotrichum, Graphiola, Gluconobacter, Kockovaella, Curtzmanomyces, Lalaria, Leucospoidium, Legionella, Psedozyma, Paracoccus, Petromyc, Rhodotorula, Rhodotorula , Rhizomonas, Rhodobium, Rhodoplanes, Rhodopseudomonas, Rhodobacter, Sporobolomyces, Spridobolus, Saitoella, Schizosaccharomyces, Sphingomonas, Sporotrichum
  • Another aspect of the present invention provides a method for producing 2-keto-4-hydroxybutate comprising the step of culturing the recombinant microorganism in the presence of formaldehyde.
  • the recombinant microorganism includes a polynucleotide encoding the amino acid sequence of the aldolase variant or the amino acid sequence of any one of SEQ ID NOs: 1 to 3, the amino acid or SEQ ID NO: 1 of the aldolase variant in culture Any one of amino acids to 3, aldolase can be expressed, and the aldolase can produce 2-keto-4-hydroxybutate by aldol condensation reaction of formaldehyde and pyruvic acid produced in microorganisms. there is.
  • the enzyme reported to have the best activity is 2-keto-3-deoxy-L-rhamnonate aldolase (YfaU) derived from Escherichia coli K12 .
  • YfaU 2-keto-3-deoxy-L-rhamnonate aldolase
  • the sequence was searched based on the pyruvate aldolase sequence derived from Escherichia coli K12, and the sequence of the candidate enzyme group of aldolase, an essential enzyme, was obtained through sequence mining.
  • three pyruvate aldolases derived from Achromobacter xylosoxidans , Deinococcus radiodurans R1 and Pseudomonas aeruginosa PAO1 were selected.
  • aldolase candidate genes were cloned into pET28a vector containing T7 promoter-based, Maltose binding site, TEV cleavage site, and His tag.
  • Each cloned gene was transformed into C2566 Escherichia coli (NEB), and a single colony was selected after culturing at 37° C. for 16 hours.
  • a single colony was inoculated into LB containing 50 ⁇ g/ml ampicillin in a 10 ml tube, incubated at 37° C. for more than 4 hours, and when OD 600 was 0.6, 0.1 mM IPTG was added. After incubation for 1 hour, it was incubated for 20 hours at 150 rpm in an incubator at 20°C.
  • Example 1 the activity of the secured aldolase was evaluated.
  • Example [1] 50 mM PIPES containing 0.05 mg/ml of protein having the amino acid sequence of SEQ ID NOs: 1, 2, and 3 purified and isolated in Example [1], 100 mM pyruvate, 100 mM formaldehyde, and 1 mM CoCl 2 It was added to a buffer solution (pH 7.0), reacted at 37° C. for 10 minutes, and the reaction was terminated at -80° C., and the amount of 2-keto-4-hydroxybutate produced in the buffer solution where the reaction was completed was measured.
  • a buffer solution pH 7.0
  • the produced 2-keto-4-hydroxybutate was pretreated with o -benzylhydroxylamine hydrochloride and then analyzed by HPLC.
  • the pretreatment process is to make a BnONH 2 solution by dissolving 21 mg of BnONH 2 ( o -benzylhydroxylamine hydrochloride), 660 ⁇ l of pyridine, 900 ⁇ l of methanol, and 40 ⁇ l of distilled water to make a BnONH 2 solution, and 15 ⁇ l of the sample to be analyzed is BnONH 2 solution 80 It was put in ⁇ l and reacted at room temperature for 2 hours. Then, centrifuged at 13000 rpm for 10 minutes, the supernatant was extracted, filtered with a 0.2 ⁇ m filter, and components were analyzed through HPLC.
  • the mobile phase used to perform the high-pressure liquid chromatography as described above consists of a mixture of acetonitrile containing 0.1% trifluoroacetic acid (mobile phase A) and 0.095% TFA and H2O in a ratio of 4:1 (mobile phase B), It was flowed for 30 minutes at a flow rate of 1 ml/min, and the concentration of mobile phase B was increased to 10% to 100%.
  • Example [1] 50mM PIPES pH7.0, 1mM CoCl2
  • the protein having the amino acid sequence of SEQ ID NOs: 1, 2, 3 was mixed with 0.05 mg/ml, 100 mM pyruvate, and 100 mM formaldehyde, and reacted at 20, 25, 30, 35, 40, 45, 50 and 55 ° C for 10 minutes, respectively. made it
  • the amount of 2-keto-4-hydroxybutate produced in the buffer solution where the reaction was completed as described above was measured and the relative values were compared.
  • AxADL and DrADL showed the highest activity at 50°C and PaADL at 45°C, as shown in FIGS. 1, 3, and 5 .
  • Example [1] Protein 0.05mg/ml, 100mM pyruvate, 100mM formaldehyde and 1mM CoCl2 together with PIPES buffer at pH 6.5 to 7.5, EPPS buffer at pH 7.5 to 8.5 and CHES buffer at pH 8.5 to 10, respectively , were reacted in the range of pH 6.5 to 10, respectively.
  • Example [2-1] the amount of 2-keto-4-hydroxybutate produced in the buffer solution where the reaction was completed as described above was measured and the relative values were compared. As a result, it was confirmed that AxADL showed the highest activity at pH 9.0, and DrADL and PaADL at pH 8.5, as shown in FIGS. 2, 4, and 6 .
  • Example [1] AxADL containing amino acid sequence protein 0.05 mg/ml, 100mM pyruvate and 100mM formaldehyde at pH9.0, DrADL and PaADL at pH8.5 buffer solution with 1mM EDTA or 1mM metal cations (MgCl2, CaCl2, MnCl2 , NiCl2, CoCl2, CuCl2 and ZnCl2) were added, and AxADL and DrADL were reacted at 50°C and PaADL at 45°C for 10 minutes, respectively.
  • MgCl2, CaCl2, MnCl2 , NiCl2, CoCl2, CuCl2 and ZnCl2 1mM metal cations
  • the aldolases of the present invention exhibited the highest activity in 1 mM MgCl2.
  • the metal salt added to the enzyme mixture was changed to 0, 0.5, 1.0, 2.5, 5.0, and 10 mM MgCl2 as a result of the experiment, as shown in FIGS. 8, 10, and 12, AxADL At 5 mM silver, it was confirmed that DrADL and PaADL were saturated with activity at 1 mM.
  • the concentration of the enzyme on the enzyme activity of the protein having the amino acid sequence of SEQ ID NO: 3 was confirmed.
  • the protein having the amino acid sequence of SEQ ID NO: 3 contained in 50 mM EPPS pH 8.5, 1 mM MgCl 2 , 100 mM pyruvate and 100 mM formaldehyde was purified and separated in Example [1], 0.01, 0.05, 0.1, 0.5, 1.0, 2.5 and 5.0 mg/ml were mixed and reacted at 45°C for 10 minutes, respectively.
  • the amount of 2-keto-4-hydroxybutate produced in the buffer solution where the reaction was completed as described above was measured and compared.
  • Example [1] The effect of formaldehyde on the enzymatic activity of the protein having the amino acid sequence of SEQ ID NO: 3 was confirmed. Specifically, 0.1 mg/ml of the protein having the amino acid sequence of SEQ ID NO: 3 purified and isolated in Example [1], 100 mM pyruvate, and 1 mM MgCl2 were mixed in 50 mM EPPS pH 8.5 buffer, 20, 40, 60, 80, 100, 150, 200, 300 and 400 mM formaldehyde were added and reacted, respectively. And in the same manner as in Example [2-1], the amount of 2-keto-4-hydroxybutate produced in the buffer solution where the reaction was completed as described above was measured and compared.
  • Example [1] 150 mM formaldehyde, and 1 mM MgCl2 were mixed in 50 mM EPPS pH 8.5 buffer, 20, 40, 60, 80, 100, 150, 200 and 300 mM pyruvate were added and reacted, respectively. And in the same manner as in Example [2-1], the amount of 2-keto-4-hydroxybutate produced in the buffer solution where the reaction was completed as described above was measured and compared.
  • YfaU derived from E. coli , which has previously been reported to produce 2-keto-4-hydroxybutate from pyruvate and formaldehyde, and activity was compared.
  • Proteins having the amino acid sequences of SEQ ID NOs: 2 and 3 were obtained, and residues interacting with the substrate pyruvate at a distance of 20 ⁇ in the active site of the crystal structure were selected (see Tables 1 and 2). Based on the nucleotide sequences of SEQ ID NOs: 2 and 3 to replace selected residues in the protein having the amino acid sequence of SEQ ID NOs: 2 and 3, primers of SEQ ID NOs: 4 to 109 as shown in Table 1 and Table 2 were designed respectively.
  • PaADL mutation SEQ ID NO: primer pair sequence (5'->3') Trp22Ala 68 forward primer gcagatcggtctggcgctgggtctggcg 69 reverse primer cgccagacccagcgccagaccgatctgc Asp45Ala 70 forward primer ggctgctgctggccggtgaacacgc 71 reverse primer gcgtgttcaccggccagcagcagcc Arg73Ala 72 forward primer ggtcagccggttatcgctccggttcagggtg 73 reverse primer caccctgaaccggagcgataaccggctgacc Val121Ala 74 forward primer gggtgttcgtggtggttctgcgctgg 75 reverse primer ccagcgcagaaccagcaccacgaacaccc Leu125Ala 76 forward primer gtgttggtttt
  • the nucleotide sequence primers of SEQ ID NOs: 4 to 109 were synthesized at the request of Macrogen, and PCR was performed using each of the designed primer pairs of SEQ ID NOs: 4 to 109 using the nucleotide sequences of SEQ ID NOs: 2 and 3 as a template.
  • Each PCR product amplified by PCR using polymerases such as Phusion, STAR max, etc. was used by itself or ligation / kynation method was used to connect the end of the nucleotide sequence, and sequencing (Macrogen) was performed. Through this, it was confirmed that the residues were correctly substituted with the nucleotide sequence encoding the intended amino acid.
  • Each of the base sequences was transformed into E. coli C2566 strain (Novagen, USA), and 20% glycerin solution was added and stored frozen before use.
  • a single colony is inoculated into LB containing 50 ⁇ g/ml ampicillin in a 10 ml tube and cultured at 37° C. for more than 4 hours and the OD 600 is 0.6 days.
  • IPTG 0.1 mM IPTG was added. After incubation for 1 hour, it was incubated for 20 hours at 150 rpm in an incubator at 20 °C. After recovering the cells from the culture medium using a centrifuge, the cells were disrupted with a sonicator, and only the supernatant was selected and purified using His tag affinity chromatography.
  • the concentrations of the purified mutant enzymes were measured using BSA assay, and 0.005 mg/ml of DrADL variant protein or 0.05 mg/ml PaADL variant protein and 100 mM pyruvate, 100 mM formaldehyde and 1 mM MgCl2 in pH 8.5 buffer solution.
  • the reaction was carried out at 50°C or 45°C for 10 minutes.
  • the amount of 2-keto-4-hydroxybutate produced in the buffer solution where the reaction was completed as described above was measured, and the relative values were compared.
  • aldolase having G196A, S222A and L247V mutants showed 1.71, 1.33 and 1.64 times higher activity than the wild-type enzyme, respectively, as shown in Fig. 19. Confirmed.
  • aldolase having V121A, L241A, and V121A/L241A mutants among the point mutations derived from SEQ ID NO: 3 showed about 1.4 times higher activity than the wild-type enzyme. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The present invention relates to a 2-keto-4-hydroxybutyrate biosynthetic system, and provides Achromobacter xylosoxidans, Deinococcus radiodurans R1, and Pseudomonas aeruginosa PAO1-derived aldolases and aldolase variants, which have more than twice the activity of conventional E.coli K12-derived aldolases, and the objective of the present invention is to contribute to production of various high value-added compounds by means of biosynthesis of 2-keto-4-hydroxybutyrate with the aldolases or aldolase variants.

Description

2-케토-4-하이드록시뷰트레이트 생합성 시스템2-keto-4-hydroxybutate biosynthetic system
본 발명은 2-케토-4-하이드록시뷰트레이트 생합성 시스템에 관한 것이다.The present invention relates to a 2-keto-4-hydroxybutate biosynthetic system.
최근 다양한 C1 가스 활용 기술이 등장하고 있으나, 메탄올, 포름산 등 기본적 C1 케미칼 또는 연료 생산에 집중되어 있다. 그러나 톤당 약 300-500$에 불과한 C1 케미칼의 가격으로 인해 C1 가스 리파이너리에 의해 단순 C1 물질을 생산할 경우 경제성을 확보하는 것이 어렵다. 따라서 C1 케미칼을 이용하여 C3 이상의 고부가가치 물질을 생산하는 것이 매우 중요하다. 이중에, 포름알데히드는 C1 화합물의 대사과정에서 매우 중요한 중간체로 알려져 있다.Recently, various C1 gas utilization technologies have emerged, but they are focused on the production of basic C1 chemicals or fuels such as methanol and formic acid. However, due to the price of C1 chemical, which is only about 300-500 USD per ton, it is difficult to secure economic feasibility when simple C1 material is produced by C1 gas refinery. Therefore, it is very important to use C1 chemicals to produce high value-added substances higher than C3. Among them, formaldehyde is known as a very important intermediate in the metabolism of C1 compounds.
현재까지 밝혀진, formaldehyde-pyruvate 탄소결합을 하는 효소는 대장균 유래의 2-keto-4-hydroxybutyrate aldolase 임이 알려져 있다. (ACS Synth. Biol. 2019, 8, 2483-2493) 그러나, 아직까지는 그 활성이 미미하고, 효소 안정성이 떨어지는 것으로 알려져 있다. It is known that the enzyme that binds formaldehyde-pyruvate to carbon, which has been discovered so far, is 2-keto-4-hydroxybutyrate aldolase derived from E. coli. (ACS Synth. Biol. 2019, 8, 2483-2493) However, it is known that the activity is still insignificant and the enzyme stability is poor.
이에 본 발명자들은 오랜 연구 끝에 formaldehyde-pyruvate 탄소결합을 하는 효소를 확인하였고, 이는 기존에 알려진 효소보다 2배 이상 활성이 뛰어난 신규 효소군 3개를 발굴하였다. 이 후 알돌라아제의 활성 증진을 위해 활성 부위에 돌연변이를 유발하여 Pseudomonas aeruginosa PAO1 유래의 알돌라아제 중 야생형 효소보다 활성이 1.7배 증가된 단일 돌연변이 효소 2개와 Deinococcus radiodurans R1 유래의 알돌라아제 중 야생형 효소보다 1.33, 1.64, 1.71배 증가된 단일 돌연변이 효소 3개를 확보하였다. 또한 적은 효소 및 기질로 최대의 생산량을 끌어내기 위하여 생산량이 포화가 되는 최적의 반응 조건을 확인하였다. 최종적으로 실험관 내에서 메탄올과 피루베이트를 기질로 메탄올 디하이드로게네이즈와 알돌라아제를 함께 반응시켰을때 최종 산물이 합성되는 것을 명확하게 증명하여 본 발명을 완성하였다.Accordingly, the present inventors confirmed an enzyme that binds formaldehyde-pyruvate carbon after a long study, and discovered three new enzyme groups with more than twice the activity than previously known enzymes. Thereafter, mutations were induced in the active site to enhance the activity of aldolase, and two single mutant enzymes whose activity was increased by 1.7 times compared to the wild-type enzyme among aldolases derived from Pseudomonas aeruginosa PAO1 and wild-type enzymes from aldolase derived from Deinococcus radiodurans R1 Three single mutant enzymes with 1.33, 1.64, and 1.71 times higher than the enzyme were obtained. In addition, in order to draw the maximum production with a small amount of enzyme and substrate, the optimal reaction conditions in which the production is saturated were confirmed. Finally, the present invention was completed by clearly demonstrating that the final product was synthesized when methanol and pyruvate as substrates were reacted together with methanol dehydrogenase and aldolase in a test tube.
본 발명의 일 양상은 서열번호 2의 아미노산 서열에서 P195, G196, S222, L227, L247 및 R250 중 어느 하나의 아미노산이 치환된 알돌라아제 변이체 또는 서열번호 3의 아미노산 서열에서 V121, V237 및 L241 중 어느 하나 이상의 아미노산이 치환된 알돌라아제 변이체를 제공하는 것을 목적으로 한다.One aspect of the present invention is an aldolase variant in which any one amino acid of P195, G196, S222, L227, L247 and R250 is substituted in the amino acid sequence of SEQ ID NO: 2 or V121, V237 and L241 in the amino acid sequence of SEQ ID NO: 3 An object of the present invention is to provide an aldolase variant in which one or more amino acids are substituted.
본 발명의 다른 일 양상은 상기 알돌라아제 변이체 또는 서열번호 1 내지 3중 어느 하나의 알돌라아제를 포함하는 2-케토-4-하이드록시뷰트레이트 (2-keto-4-hydroxybutyrate) 생합성용 조성물을 제공하는 것을 목적으로 한다.Another aspect of the present invention is a composition for biosynthesis of 2-keto-4-hydroxybutyrate comprising the aldolase variant or aldolase of any one of SEQ ID NOs: 1 to 3 is intended to provide
본 발명의 다른 일 양상은 상기 알돌라아제 변이체 또는 알돌라아제를 암호화 하는 폴리뉴클레오티드를 제공하는 것을 목적으로 한다. Another aspect of the present invention is to provide a polynucleotide encoding the aldolase variant or aldolase.
그리고, 본 발명의 다른 일 양상은 상기 폴리뉴클레오티드를 포함하는 포름알데히드 및 피루브산으로부터 2-케토-4-하이드록시뷰트레이트 생성능을 가진 재조합 미생물을 제공하는 것을 목적으로 한다.And, another aspect of the present invention aims to provide a recombinant microorganism having the ability to produce 2-keto-4-hydroxybutate from formaldehyde and pyruvic acid including the polynucleotide.
또한, 본 발명의 다른 일 양상은 상기 재조합 미생물을 포름알데히드 존재하에서 배양하는 단계를 포함하는 2-케토-4-하이드록시뷰트레이트를 생산하는 방법을 제공하는 것을 목적으로 한다. In addition, another aspect of the present invention aims to provide a method for producing 2-keto-4-hydroxybutate comprising the step of culturing the recombinant microorganism in the presence of formaldehyde.
본 발명의 일 양상은 서열번호 2의 아미노산 서열에서 P195, G196, S222, L227, L247 및 R250 중 어느 하나의 아미노산이 치환된 알돌라아제 변이체 또는 서열번호 3의 아미노산 서열에서 V121, V237 및 L241 중 어느 하나 이상의 아미노산이 치환된 알돌라아제 변이체를 제공한다. One aspect of the present invention is an aldolase variant in which any one amino acid of P195, G196, S222, L227, L247 and R250 is substituted in the amino acid sequence of SEQ ID NO: 2 or V121, V237 and L241 in the amino acid sequence of SEQ ID NO: 3 Provided are aldolase variants in which any one or more amino acids are substituted.
본 발명의 일 구체예로 상기 서열번호 2의 아미노산 서열에서 P195 는 세린 (S) 또는 글루타민 (Q)으로 치환되는 것이고, G196 및 S222 는 알라닌 (A)로 치환되는 것이고, L227 및 L247 은 발린 (V)으로 치환되는 것이며, R250 는 알라닌 (A)로 치환되는 것이고,상기 서열번호 3의 아미노산 서열에서 V121, V237 및 L241은 알라닌 (A)로 치환되는 것이다. In one embodiment of the present invention, in the amino acid sequence of SEQ ID NO: 2, P195 is substituted with serine (S) or glutamine (Q), G196 and S222 are substituted with alanine (A), and L227 and L247 are valine ( is substituted with V), R250 is substituted with alanine (A), and V121, V237 and L241 in the amino acid sequence of SEQ ID NO: 3 are substituted with alanine (A).
본 발명의 다른 일 양상은 상기 알돌라아제 변이체 또는 서열번호 1 내지 3중 어느 하나의 알돌라아제를 포함하는 2-케토-4-하이드록시뷰트레이트 (2-keto-4-hydroxybutyrate) 생합성용 조성물을 제공한다. Another aspect of the present invention is a composition for biosynthesis of 2-keto-4-hydroxybutyrate comprising the aldolase variant or aldolase of any one of SEQ ID NOs: 1 to 3 provides
본 발명의 일 구체예로 상기 알돌라아제 변이체 또는 알돌라아제는 포름알데히드와 피루브산을 결합시키는 것이다. In one embodiment of the present invention, the aldolase variant or aldolase binds formaldehyde and pyruvic acid.
본 발명의 다른 일 양상은 상기 알돌라아제 변이체 또는 서열번호 1 내지 3 중 어느 하나의 알돌라아제를 암호화하는 폴리뉴클레오티드를 제공한다. Another aspect of the present invention provides a polynucleotide encoding the aldolase variant or aldolase of any one of SEQ ID NOs: 1 to 3.
본 발명의 다른 일 양상은 상기 폴리뉴클레오티드를 포함하는 포름알데히드 및 피루브산으로부터 2-케토-4-하이드록시뷰트레이트 생성능을 가진 재조합 미생물을 제공한다. Another aspect of the present invention provides a recombinant microorganism having the ability to produce 2-keto-4-hydroxybutate from formaldehyde and pyruvic acid including the polynucleotide.
본 발명의 다른 일 양상은 상기 재조합 미생물을 포름알데히드 존재하에서 배양하는 단계를 포함하는 2-케토-4-하이드록시뷰트레이트를 생산하는 방법을 제공한다. Another aspect of the present invention provides a method for producing 2-keto-4-hydroxybutate comprising the step of culturing the recombinant microorganism in the presence of formaldehyde.
본 발명의 2-케토-4-하이드록시뷰트레이트 생합성 시스템은 종래 알돌라아제의 활성에 비해 우수한 활성을 가지고 있어 다양한 고부가 화합물 생산에 기여할 수 있다.The 2-keto-4-hydroxybutate biosynthetic system of the present invention has superior activity compared to that of conventional aldolase, and thus can contribute to the production of various high-addition compounds.
도 1 내지 도 12는 실시예 2의 온도 (도1, 도3, 도5), pH (도2, 도4, 도6), 금속이온 (도7, 도9, 그리고 도 11) 및 MgCl2농도 (도8, 도10, 도12)에 따른 알돌라아제의 활성을 나타내는 그래프이다.1 to 12 show the temperature (FIG. 1, FIG. 3, FIG. 5), pH (FIG. 2, FIG. 4, FIG. 6), metal ion (FIG. 7, FIG. 9, and FIG. 11) of Example 2, and MgCl 2 It is a graph showing the activity of aldolase according to the concentration (Fig. 8, Fig. 10, Fig. 12).
도 13 내지 16은 실시예 2에 따른 결과로, 알돌라아제 농도 (도 13), 기질농도 (도 14, 15) 및 반응시간 (도 16)에 따른 알돌라아제의 활성을 나타내는 결과이다. 13  to 16 are results according to Example 2, showing the activity of aldolase according to the aldolase concentration (FIG. 13), the substrate concentration (FIGS. 14 and 15) and the reaction time (FIG. 16).
도 17 및 18은 실시예 3에 따른 종래 알돌라아제와 본 발명의 알돌라아제의 상대 활성을 비교한 그래프이다.17 and 18 are graphs comparing the relative activity of the conventional aldolase according to Example 3 and the present aldolase of the present invention.
도 19 및 20은 실시예 4에 따른 본 발명의 알돌라아제 변이체의 활성을 비교한 그래프이다.19 and 20 are graphs comparing the activity of the aldolase variant of the present invention according to Example 4;
본 발명의 일 양상은 서열번호 2의 아미노산 서열에서 P195, G196, S222, L227, L247 및 R250 중 어느 하나의 아미노산이 치환된 알돌라아제 변이체 또는 서열번호 3의 아미노산 서열에서 V121, V237 및 L241 중 어느 하나 이상의 아미노산이 치환된 알돌라아제 변이체를 제공한다.One aspect of the present invention is an aldolase variant in which any one amino acid of P195, G196, S222, L227, L247 and R250 is substituted in the amino acid sequence of SEQ ID NO: 2 or V121, V237 and L241 in the amino acid sequence of SEQ ID NO: 3 Provided are aldolase variants in which any one or more amino acids are substituted.
상기 서열번호 2의 아미노산 서열은 후술되는 바와 같이 Deinococcus radiodurans R1 유래인 알돌라아제이고 서열번호 3은 Pseudomonas aeruginosa PAO1 유래의 알돌라아제의 아미노산 서열이다. The amino acid sequence of SEQ ID NO: 2 is an aldolase derived from Deinococcus radiodurans R1 , and SEQ ID NO: 3 is an amino acid sequence of aldolase derived from Pseudomonas aeruginosa PAO1 , as described below.
본 발명의 일 구체예로서 상기 서열번호 2의 아미노산 서열에서 P195 는 세린 (S) 또는 글루타민 (Q)으로 치환되는 것이고, G196 및 S222 는 알라닌 (A)로 치환되는 것이고, L227 및 L247 은 발린 (V)으로 치환되는 것이며, R250 는 알라닌 (A)로 치환되는 것이고,As an embodiment of the present invention, in the amino acid sequence of SEQ ID NO: 2, P195 is substituted with serine (S) or glutamine (Q), G196 and S222 are substituted with alanine (A), and L227 and L247 are valine ( is substituted with V), R250 is substituted with alanine (A),
상기 서열번호 3의 아미노산 서열에서 V121, V237 및 L241은 알라닌 (A)로 치환되는 알돌라아제 변이체이다. In the amino acid sequence of SEQ ID NO: 3, V121, V237 and L241 are aldolase variants substituted with alanine (A).
상기 알돌라아제 변이체는 전술한 돌연변이를 통해 서열번호 2의 Deinococcus radiodurans R1 유래 알돌라아제 또는 서열번호 3은 Pseudomonas aeruginosa PAO1 유래의 알돌라아제에 비하여 우수한 활성을 가지는 효과가 있다 (도 19 및 20). The aldolase variant has the effect of having superior activity compared to the aldolase derived from Deinococcus radiodurans R1 of SEQ ID NO: 2 or the aldolase derived from Pseudomonas aeruginosa PAO1 of SEQ ID NO: 3 through the above-described mutation (FIGS. 19 and 20) .
본 발명의 다른 일 양상은 상기한 알돌라아제 변이체 또는 서열번호 1 내지 3중 어느 하나의 아미노산 서열을 포함하는 2-케토-4-하이드록시뷰트레이트 (2-keto-4-hydroxybutyrate) 생합성용 조성물을 제공한다.Another aspect of the present invention is a composition for biosynthesis of 2-keto-4-hydroxybutyrate comprising the amino acid sequence of any one of the above-described aldolase variants or SEQ ID NOs: 1 to 3 provides
상기 알돌라아제 변이체는 상기 서열번호 2의 아미노산 서열에서 P195 는 세린 (S) 또는 글루타민 (Q)으로 치환되는 것이고, G196 및 S222 는 알라닌 (A)로 치환되는 것이고, L227 및 L247 은 발린 (V)으로 치환되는 것이며, R250 는 알라닌 (A)로 치환되는 것이고, 상기 서열번호 3의 아미노산 서열에서 V121, V237 및 L241은 알라닌 (A)로 치환되는 것이고, 서열번호 1 내지 3중 어느 하나의 알돌라아제는 구체적으로, 서열번호 1은 Achromobacter xylosoxidans 유래 알돌라아제이고, 서열번호 2는 Deinococcus radiodurans R1 유래 알돌라아제이며, 서열번호 3은 Pseudomonas aeruginosa PAO1 유래의 알돌라아제이다. In the aldolase variant, in the amino acid sequence of SEQ ID NO: 2, P195 is substituted with serine (S) or glutamine (Q), G196 and S222 are substituted with alanine (A), and L227 and L247 are valine (V) ), R250 is to be substituted with alanine (A), V121, V237 and L241 in the amino acid sequence of SEQ ID NO: 3 are substituted with alanine (A), and the egg of any one of SEQ ID NOs: 1 to 3 Specifically, SEQ ID NO: 1 is an aldolase derived from Achromobacter xylosoxidans , SEQ ID NO: 2 is an aldolase derived from Deinococcus radiodurans R1 , and SEQ ID NO: 3 is an aldolase derived from Pseudomonas aeruginosa PAO1 .
본 발명에서 사용되는 용어 "생합성"은 화학적으로 합성되지 않고, 생물학적으로 합성되는 것을 의미하고, 구체적으로는 전술한 서열번호 1 내지 3중 어느 하나의 아미노산 서열, 알돌라아제에 의해 합성되는 것을 의미한다. The term "biosynthesis" used in the present invention means not chemically synthesized, but biologically synthesized, specifically, the amino acid sequence of any one of SEQ ID NOs: 1 to 3, synthesized by aldolase do.
본 발명에서 알돌라아제는 구체적으로 피루브산 알돌라아제로서, 알돌과 같은 당을 분해 또는 알돌 축합반응을 일으키는 효소이다. In the present invention, aldolase is specifically pyruvate aldolase, and is an enzyme that decomposes sugars such as aldol or causes aldol condensation.
본 발명의 일 구체예로서 상기 알돌라아제 변이체 또는 알돌라아제는 포름알데히드와 피루브산을 결합하는 것일 수 있다. 구체적으로 아래의 화학식 1과 같이 메탄모노옥시게나아제, 메탄올 디하이드로게나아제에 의해 생성된 포름알데히드와 해당과정에 의해 생성된 피루브산의 알돌축합반응을 일으키고 2-케토-4-하이드록시뷰트레이트를 생성한다. 상기 2-케토-4-하이드록시뷰트레이트는 1,3-프로판 다이올의 전구체로서 추가적인 반응을 거쳐 바이오디젤, 접착제, 라미네이션, 코팅, 거푸집, 지방족 화합물, 공폴리에스터 등의 산업 물질들에 활용될 수 있다. In one embodiment of the present invention, the aldolase mutant or aldolase may combine formaldehyde and pyruvic acid. Specifically, as shown in Formula 1 below, formaldehyde produced by methane monooxygenase and methanol dehydrogenase and pyruvic acid produced by glycolysis are subjected to an aldol condensation reaction and 2-keto-4-hydroxybutate is produced. create The 2-keto-4-hydroxybutate, as a precursor of 1,3-propane diol, undergoes additional reaction and is used in industrial materials such as biodiesel, adhesives, laminations, coatings, molds, aliphatic compounds, and copolyesters. can be
Figure PCTKR2021014224-appb-C000001
Figure PCTKR2021014224-appb-C000001
본 발명의 상기 알돌라아제는 기존에 알려진 알돌라아제 (YfaU)보다 >2배 이상의 활성을 가지고 있음을 확인하였고 (도17 및 18 참조), 상기 알돌라아제 변이체는 서열번호 2의 Deinococcus radiodurans R1 유래 알돌라아제 또는 서열번호 3은 Pseudomonas aeruginosa PAO1 유래의 알돌라아제에 비하여 우수한 활성을 가지고 있어 다양한 고부가 화합물 생산에 기여할 수 있다. It was confirmed that the aldolase of the present invention has >2 times more activity than the previously known aldolase (YfaU) (see FIGS. 17 and 18), and the aldolase variant is Deinococcus radiodurans R1 of SEQ ID NO: 2 The derived aldolase or SEQ ID NO: 3 has superior activity compared to the aldolase derived from Pseudomonas aeruginosa PAO1 , and thus can contribute to the production of various high value-added compounds.
본 발명의 다른 일 양상은 상기 알돌라아제 변이체 또는 서열번호 1 내지 3 중 어느 하나의 아미노산 서열을 암호화하는 폴리뉴클레오티드를 제공한다. Another aspect of the present invention provides a polynucleotide encoding the amino acid sequence of any one of the aldolase variants or SEQ ID NOs: 1 to 3.
상기 폴리뉴클레오티드는 DNA 또는 RNA일 수 있으며, 본 발명의 폴리뉴클레오티드가 RNA인 경우 DNA의 T(티민)이 우라실(U)로 대체되는 것으로 이해할 수 있다. 상기 폴리뉴클레오티드는 공지된 화학적 합성법에 의해 제조할 수 있다.The polynucleotide may be DNA or RNA, and when the polynucleotide of the present invention is RNA, it may be understood that T (thymine) of DNA is replaced with uracil (U). The polynucleotide can be prepared by a known chemical synthesis method.
본 발명의 다른 일 양상은 상기 폴리뉴클레오티드를 포함하는 포름알데히드 및 피루브산으로부터 2-케토-4-하이드록시뷰트레이트 생성능을 가진 재조합 미생물을 제공한다.Another aspect of the present invention provides a recombinant microorganism having the ability to produce 2-keto-4-hydroxybutate from formaldehyde and pyruvic acid including the polynucleotide.
상기 재조합 미생물은 상기 알돌라아제 변이체 또는 서열번호 1 내지 3 중 어느 하나의 아미노산을 암호화하는 폴리뉴클레오티드를 미생물의 염색체(chromosome) 상에 삽입시키거나, 상기 재조합 벡터를 미생물의 플라스미드(plasmid) 상에 도입시킴으로써 제조할 수 있다.The recombinant microorganism inserts the aldolase variant or a polynucleotide encoding any one of SEQ ID NOs: 1 to 3 into the chromosome of the microorganism, or inserts the recombinant vector onto the plasmid of the microorganism. It can be prepared by introducing
본 발명에서, "벡터(vector)"는 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주로 형질전환되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, 본 발명의 명세서에서 "플라스미드 (plasmid)" 및 "벡터(vector)"는 때로 상호 교환적으로 사용된다. 본 발명의 목적상, 플라스미드 벡터를 이용하는 게 바람직하다. 이러한 목적에 사용될 수 있는 전형적인 플라스미드 벡터는 (a) 숙주세포당 수백 개의 플라스미드 벡터를 포함하도록 복제가 효율적으로 이루어지도록 하는 복제 개시점, (b) 플라스미드 벡터로 형질전환된 숙주세포가 선발될 수 있도록 하는 항생제 내성 유전자 및 (c) 외래 DNA 절편이 삽입될 수 있는 제한효소 절단부위를 포함하는 구조를 지니고 있다. 적절한 제한효소 절단부위가 존재하지 않을지라도, 통상의 방법에 따른 합성 올리고뉴클레오타이드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용하면 벡터와 외래 DNA를 용이하게 라이게이션(ligation)할 수 있다. 라이게이션 후에, 벡터는 적절한 숙주세포로 형질전환되어야 한다. In the present invention, "vector" means a DNA preparation containing a DNA sequence operably linked to suitable regulatory sequences capable of expressing the DNA in a suitable host. A vector can be a plasmid, a phage particle or simply a potential genomic insert. Upon transformation into an appropriate host, the vector may replicate and function independently of the host genome, or in some cases may be integrated into the genome itself. Since a plasmid is currently the most commonly used form of vector, "plasmid" and "vector" are sometimes used interchangeably in the context of the present invention. For the purposes of the present invention, it is preferred to use a plasmid vector. Typical plasmid vectors that can be used for this purpose include (a) an initiation point of replication that allows efficient replication to include hundreds of plasmid vectors per host cell, and (b) a selection of host cells transformed with the plasmid vector. It has a structure including an antibiotic resistance gene and (c) a restriction enzyme cleavage site into which a foreign DNA fragment can be inserted. Even if an appropriate restriction enzyme cleavage site does not exist, the vector and foreign DNA can be easily ligated by using a synthetic oligonucleotide adapter or linker according to a conventional method. After ligation, the vector must be transformed into an appropriate host cell.
본 발명의 일 구체예에 따른 벡터는 플라스미드 벡터, 코즈미드 벡터 및 박테리오파아지 벡터, 아데노바이러스 벡터, 레트로바이러스 벡터 및 아데노-연관 바이러스 벡터와 같은 바이러스 벡터로 이루어진 군으로부터 선택되는 것일 수 있다. 재조합 발현벡터로 사용될 수 있는 벡터는 당업계에서 사용되는 플라스미드(예를 들어, pcDNA 시리즈, pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14, pGEX 시리즈, pET 시리즈, pUC19 등), 파지(예를 들어, λgt4λB, λ-Charon, λ△z1, M13 등) 또는 바이러스 벡터(예를 들어, 아데노-연관 바이러스(AAV) 벡터 등) 등을 기본으로 하여 제작될 수 있으나, 이에 한정되는 것은 아니다.The vector according to one embodiment of the present invention may be selected from the group consisting of viral vectors such as plasmid vectors, cosmid vectors and bacteriophage vectors, adenoviral vectors, retroviral vectors and adeno-associated viral vectors. Vectors that can be used as recombinant expression vectors include plasmids used in the art (eg, pcDNA series, pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1). , pHV14, pGEX series, pET series, pUC19, etc.), phage (eg, λgt4λB, λ-Charon, λΔz1, M13, etc.) or viral vectors (eg, adeno-associated virus (AAV) vectors, etc.) It may be manufactured based on, but is not limited to.
본 발명에 있어서, 선호되는 숙주세포는 원핵세포이다. 적합한 원핵 숙주세포는 E. coli XL-1Blue(Stratagene), E. coli DH5α, E. coli JM101, E. coli K12, E. coli W3110, E. coli X1776, E. coli BL21 등을 포함한다. 그러나 FMB101, NM522, NM538 및 NM539와 같은 E. coli 균주 및 다른 원핵생물의 종(speices) 및 속(genera) 등이 또한 사용될 수 있다. 상기 E.coli에 덧붙여, 아그로박테리움 A4와 같은 아그로박테리움 속 균주, 바실루스 섭틸리스(Bacillus subtilis)와 같은 바실리(bacilli), 살모넬라 타이피뮤리움(Salmonella typhimurium) 또는 세라티아 마르게센스(Serratia marcescens)와 같은 또 다른 장내세균 및 다양한 슈도모나스(Pseudomonas) 속 균주가 숙주세포로서 이용될 수 있다.In the present invention, the preferred host cell is a prokaryotic cell. Suitable prokaryotic host cells include E. coli XL-1Blue (Stratagene), E. coli DH5α, E. coli JM101, E. coli K12, E. coli W3110, E. coli X1776, E. coli BL21, and the like. However, E. coli strains such as FMB101, NM522, NM538 and NM539 and other prokaryotic species and genera and the like may also be used. In addition to the above E. coli, Agrobacterium sp. strains such as Agrobacterium A4, bacilli such as Bacillus subtilis, Salmonella typhimurium or Serratia marcescens ) and other Enterobacteriaceae and various Pseudomonas genus strains can be used as host cells.
본 발명에서 상기 유전자를 숙주세포의 염색체 상에 삽입하는 방법으로는 통상적으로 알려진 유전자조작방법을 사용할 수 있다. 예를 들어, 물리적인 방법으로서, microinjection(세포에 DNA를 직접 넣는 것), liposome, directed DNA uptake, receptor mediated DNA transfer 또는 Ca ++ 을 이용한 DNA 운반 방법 등이 있으며, 최근에는 바이러스(virus)를 이용한 유전자 운반 방 법이 많이 사용되고 있다. 일례로는 레트로바이러스 벡터, 아데노바이러스 벡터, 아데노-연관 바이러스 벡터, 헤르페스 심플렉스 바이러스 벡터, 폭스바이러스 벡터 또는 렌티바이러스 벡터를 이용하는 방법 등이 있으며, 특히, 레트로바이러스는 유전자 전달 효율이 높고 gross deletion이나 숙주 DNA와 재정렬(rearrangement : 숙주 DNA 중 자기 DNA와 유사한 부위를 바꾸는 것으로 숙주 DNA 기능의 변화를 초래함)에 의한 결합 없이 넓은 범위 의 세포들에서 사용할 수 있다.As a method of inserting the gene into the chromosome of a host cell in the present invention, a commonly known genetic manipulation method may be used. For example, as a physical method, there are microinjection (injecting DNA directly into the cell), liposome, directed DNA uptake, receptor mediated DNA transfer, or DNA transport using Ca ++. Recently, virus Gene transfer methods are widely used. Examples include methods using retroviral vectors, adenovirus vectors, adeno-associated virus vectors, herpes simplex virus vectors, poxvirus vectors or lentiviral vectors, etc. In particular, retroviruses have high gene transfer efficiency and It can be used in a wide range of cells without binding by host DNA and rearrangement (rearrangement: changing a region similar to self DNA in host DNA, resulting in change in host DNA function).
본 발명에 있어서, 상기 미생물은 Agrobacterium 속, Aspergillus 속, Acetobacter 속, Aminobacter 속, Agromonas 속, Acidphilium 속, Bulleromyces 속, Bullera 속, Brevundimonas 속, Cryptococcus 속, Chionosphaera 속, Candida 속, Cerinosterus 속, Escherichia 속, Exisophiala 속, Exobasidium 속, Fellomyces 속, Filobasidium 속, Geotrichum 속, Graphiola 속, Gluconobacter 속, Kockovaella 속, Curtzmanomyces 속, Lalaria 속, Leucospoidium 속, Legionella 속, Psedozyma 속, Paracoccus 속, Petromyc 속, Rhodotorula 속, Rhodosporidium 속, Rhizomonas 속, Rhodobium 속, Rhodoplanes 속, Rhodopseudomonas 속, Rhodobacter 속, Sporobolomyces 속, Spridobolus 속, Saitoella 속, Schizosaccharomyces 속, Sphingomonas 속, Sporotrichum 속, Sympodiomycopsis 속, Sterigmatosporidium 속, Tapharina 속, Tremella 속, Trichosporon 속, Tilletiaria 속, Tilletia 속, Tolyposporium 속, Tilletiposis 속, Ustilago 속, Udenlomyce 속, Xanthophilomyces 속, Xanthobacter 속, Paecilomyces 속, Acremonium 속, Hyhomonus 속, Rhizobium 속 등일 수 있다.In the present invention, the microorganism is Agrobacterium, Aspergillus, Acetobacter, Aminobacter, Agromonas, Acidphilium, Bulleromyces, Bullera, Brevundimonas, Cryptococcus, Chionosphaera, Candida, Cerinosterus, Escherichia, Exisophiala, Exobasidium, Fellomyces, Filobasidium, Geotrichum, Graphiola, Gluconobacter, Kockovaella, Curtzmanomyces, Lalaria, Leucospoidium, Legionella, Psedozyma, Paracoccus, Petromyc, Rhodotorula, Rhodotorula , Rhizomonas, Rhodobium, Rhodoplanes, Rhodopseudomonas, Rhodobacter, Sporobolomyces, Spridobolus, Saitoella, Schizosaccharomyces, Sphingomonas, Sporotrichum, Sympodiomycopsis, Sterigmatosporidium, Traporille genera, Tilletia, Tolyposporium, Tilletiposis, Ustilago, Udenlomyce, Xanthophilomyces, Xanthobacter, Paecilomyces, Acremonium, Hyhomonus, Rhizobium, and the like.
본 발명의 다른 일 양상은 상기 재조합 미생물을 포름알데히드 존재하에서 배양하는 단계를 포함하는 2-케토-4-하이드록시뷰트레이트를 생산하는 방법을 제공한다. Another aspect of the present invention provides a method for producing 2-keto-4-hydroxybutate comprising the step of culturing the recombinant microorganism in the presence of formaldehyde.
전술한 바와 같이 상기 재조합 미생물은 상기 알돌라아제 변이체의 아미노산 서열 또는 서열번호 1 내지 3중 어느 하나의 아미노산 서열을 암호화하는 폴리뉴클레오티드를 포함하기 때문에 배양 시 상기 알돌라아제 변이체의 아미노산 또는 서열번호 1 내지 3중 어느 하나의 아미노산, 알돌라아제를 발현할 수 있고, 상기 알돌라아제는 포름알데히드와 미생물 내에서 생성된 피루브산을 알돌 축합반응시켜 2-케토-4-하이드록시뷰트레이트를 생성할 수 있다. As described above, since the recombinant microorganism includes a polynucleotide encoding the amino acid sequence of the aldolase variant or the amino acid sequence of any one of SEQ ID NOs: 1 to 3, the amino acid or SEQ ID NO: 1 of the aldolase variant in culture Any one of amino acids to 3, aldolase can be expressed, and the aldolase can produce 2-keto-4-hydroxybutate by aldol condensation reaction of formaldehyde and pyruvic acid produced in microorganisms. there is.
이하 하나 이상의 구체예를 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, one or more specific examples will be described in more detail through examples. However, these examples are for illustrative purposes of one or more embodiments, and the scope of the present invention is not limited to these examples.
실시예 1: 알돌라아제의 선정Example 1: Selection of aldolase
현재까지 알려져있는 피루베이트 알돌라아제 중 활성이 가장 좋은 것으로 보고된 효소는 Escherichia coli K12 유래의 2-keto-3-deoxy-L-rhamnonate aldolase(YfaU)이다. 상기 효소와 신규로 발굴된 효소군의 비교를 통하여 가장 활성이 높은 피루베이트 알돌라아제를 선별하고 분자진화를 통해 개량하여 효소 활성 및 기질 친화도가 증가된 효소를 확보하였다.Among the known pyruvate aldolases, the enzyme reported to have the best activity is 2-keto-3-deoxy-L-rhamnonate aldolase (YfaU) derived from Escherichia coli K12 . Through the comparison of the enzyme and the newly discovered enzyme group, the most active pyruvate aldolase was selected and improved through molecular evolution to secure an enzyme with increased enzyme activity and substrate affinity.
구체적으로, Escherichia coli K12 유래의 피루베이트 알돌라아제 서열을 바탕으로 서열을 검색하였고, 필수 효소인 알돌라아제의 후보 효소군을 sequence mining을 통하여 서열을 확보하였다. 그 결과 Achromobacter xylosoxidans, Deinococcus radiodurans R1, Pseudomonas aeruginosa PAO1 유래의 3개의 피루베이트 알돌라아제를 선정하였다.Specifically, the sequence was searched based on the pyruvate aldolase sequence derived from Escherichia coli K12, and the sequence of the candidate enzyme group of aldolase, an essential enzyme, was obtained through sequence mining. As a result, three pyruvate aldolases derived from Achromobacter xylosoxidans , Deinococcus radiodurans R1 and Pseudomonas aeruginosa PAO1 were selected.
이들 알돌라아제 후보군 유전자들을 T7 프로모터 기반 및 Maltose binding site, TEV cleavage site, His tag이 포함된 pET28a 벡터에 클로닝하였다. 클로닝된 각각의 유전자를 C2566 대장균(NEB)에 형질 전환하여, 37℃에서 16시간 배양한 후 단일 콜로니를 선별하였다. 단일 콜로니를 10㎖ tube에 50㎍/㎖ 앰피실린이 함유된 LB에 접종하여 37℃에서 4시간 이상 배양하고 OD600 가 0.6일 떄 0.1mM IPTG를 첨가하였다. 1시간동안 배양한 후 20℃ 배양기에서 150rpm으로 20시간 배양하였다. 그리고, 배양액에서 세포를 원심분리기를 이용하여 회수한 후 sonicator로 cell을 파쇄하고 상등액만을 선별하여 FPLC 및 His tag affinity 크로마토그래피를 이용하여 정제하여 알돌라아제를 확보하였다 (서열번호 1 내지 3).These aldolase candidate genes were cloned into pET28a vector containing T7 promoter-based, Maltose binding site, TEV cleavage site, and His tag. Each cloned gene was transformed into C2566 Escherichia coli (NEB), and a single colony was selected after culturing at 37° C. for 16 hours. A single colony was inoculated into LB containing 50 μg/ml ampicillin in a 10 ml tube, incubated at 37° C. for more than 4 hours, and when OD 600 was 0.6, 0.1 mM IPTG was added. After incubation for 1 hour, it was incubated for 20 hours at 150 rpm in an incubator at 20°C. Then, after recovering the cells from the culture medium using a centrifuge, the cells were disrupted with a sonicator, only the supernatant was selected and purified using FPLC and His tag affinity chromatography to obtain aldolase (SEQ ID NOs: 1 to 3).
실시예 2: 본 발명의 알돌라아제의 활성 평가Example 2: Evaluation of the activity of aldolase of the present invention
실시예 1에서 확보된 알돌라아제의 활성을 평가하였다. In Example 1, the activity of the secured aldolase was evaluated.
2-1 서열번호 1, 2, 3 의 아미노산 서열을 갖는 단백질의 활성 확인2-1 Confirmation of activity of a protein having the amino acid sequence of SEQ ID NO: 1, 2, 3
구체적으로, 상기 실시예 [1]에서 정제 및 분리한 서열번호 1,2,3의 아미노산 서열을 갖는 단백질 0.05 ㎎/㎖, 100mM 피루베이트, 100mM 포름알데히드 과 1mM의 CoCl2가 포함된 50mM의 PIPES 완충용액(pH 7.0)에 첨가하고, 37℃에서 10분 동안 반응시킨 다음, -80℃에서 상기 반응을 종료시킨 다음, 반응이 종료된 완충 용액에서 2-케토-4-하이드록시뷰트레이트의 생성량을 측정하였다.Specifically, 50 mM PIPES containing 0.05 mg/ml of protein having the amino acid sequence of SEQ ID NOs: 1, 2, and 3 purified and isolated in Example [1], 100 mM pyruvate, 100 mM formaldehyde, and 1 mM CoCl 2 It was added to a buffer solution (pH 7.0), reacted at 37° C. for 10 minutes, and the reaction was terminated at -80° C., and the amount of 2-keto-4-hydroxybutate produced in the buffer solution where the reaction was completed was measured.
상기 생성된 2-케토-4-하이드록시뷰트레이트는 o-benzylhydroxylamine hydrochloride로 전처리한 후 HPLC를 통해 분석하였다. 상기 전처리 과정은 21㎎의 BnONH2(o-benzylhydroxylamine hydrochloride)와 660㎕의 피리딘, 900㎕의 메탄올 그리고 40㎕의 증류수 혼합액에 녹여 BnONH2 용액을 만들고, 15㎕의 분석할 샘플을 BnONH2 용액 80㎕에 넣어 상온에서 2시간동안 반응시켰다. 그 후 13000rpm에서 10분간 원심분리하고 상등액을 추출하여 0.2㎛ 필터로 필터링한 뒤 HPLC를 통해 성분을 분석하였다.The produced 2-keto-4-hydroxybutate was pretreated with o -benzylhydroxylamine hydrochloride and then analyzed by HPLC. The pretreatment process is to make a BnONH 2 solution by dissolving 21 mg of BnONH 2 ( o -benzylhydroxylamine hydrochloride), 660 μl of pyridine, 900 μl of methanol, and 40 μl of distilled water to make a BnONH 2 solution, and 15 μl of the sample to be analyzed is BnONH 2 solution 80 It was put in μl and reacted at room temperature for 2 hours. Then, centrifuged at 13000 rpm for 10 minutes, the supernatant was extracted, filtered with a 0.2 μm filter, and components were analyzed through HPLC.
상기와 같이 준비된 전처리된 샘플 50㎕을, VWD(Variable wavelength detector), 215nm와 역상 C18 컬럼(Gemini® 5 μm C18 110 Å, LC Column 250 x 4.6 mm 컬럼)(Phenomenex)이 장착된 고압 액체 크로마토그래피에 주입하여, 2-케토-4-하이드록시뷰트레이트의 생성량을 측정하였다. 상기와 같은 고압 액체 크로마토그래피를 수행함에 이용된 이동상은 0.1% trifluoroacetic acid (이동상 A)과 0.095% TFA가 포함된 acetonitrile과 H₂O를 4:1의 비율로 혼합한 것 (이동상 B)으로 구성되고, 1㎖/분의 유속으로 30분 동안 흘려주었는데, 이동상 B의 농도를 10%~100%로 올려주었다. 50 μl of the pretreated sample prepared as above was subjected to high pressure liquid chromatography equipped with a variable wavelength detector (VWD), 215 nm and a reversed-phase C18 column (Gemini® 5 μm C18 110 Å, LC Column 250 x 4.6 mm column) (Phenomenex). The amount of 2-keto-4-hydroxybutate produced was measured. The mobile phase used to perform the high-pressure liquid chromatography as described above consists of a mixture of acetonitrile containing 0.1% trifluoroacetic acid (mobile phase A) and 0.095% TFA and H₂O in a ratio of 4:1 (mobile phase B), It was flowed for 30 minutes at a flow rate of 1 ml/min, and the concentration of mobile phase B was increased to 10% to 100%.
그 결과, 상기와 같이 반응이 종료된 완충 용액에서는 2-케토-4-하이드록시뷰트레이트이 모두 검출되었고, 위 반응 결과 생성된 결과로부터 상기 실시예 1에서 정제 및 분리한 서열번호 1,2,3의 아미노산 서열을 갖는 단백질이 피루베이트와 포름알데히드로터 2-케토-4-하이드록시뷰트레이트를 생성하는, 2-케토-4-하이드록시뷰트레이트의 생성 효소로서의 활성을 가짐을 확인하였다.As a result, all 2-keto-4-hydroxybutrate was detected in the buffer solution in which the reaction was completed as described above, and SEQ ID NOs 1,2,3 purified and separated in Example 1 from the results generated as a result of the above reaction It was confirmed that a protein having an amino acid sequence of
2-2. 온도 및 pH에 따른 활성평가2-2. Activity evaluation according to temperature and hH
상기 서열번호 1, 2, 3 의 아미노산 서열을 갖는 단백질의 효소 활성에 온도가 미치는 영향을 확인하기 위하여, 상기 실시예 [1]에서 정제 및 분리하여, 50mM PIPES pH7.0, 1mM CoCl₂에 들어있는 서열번호 1, 2, 3 의 아미노산 서열을 갖는 단백질 0.05 ㎎/㎖, 100mM 피루베이트, 100mM 포름알데히드를 섞어서, 각각 20,25,30,35,40,45,50 그리고 55℃에서 10분동안 반응시켰다. 그리고 상기 실시예 [2-1] 에서와 같은 방법으로, 상기와 같이 반응이 종료된 완충 용액에서 2-케토-4-하이드록시뷰트레이트의 생성량을 측정하여 그 상대값을 비교하였다. 그 결과, 도1, 도3, 도5에서 확인되는 바와 같이 AxADL와 DrADL은 50℃에서, PaADL은 45℃에서 가장 높은 활성을 나타내는 것을 확인하였다.In order to confirm the effect of temperature on the enzymatic activity of the protein having the amino acid sequence of SEQ ID NOs: 1, 2, 3, purified and separated in Example [1], 50mM PIPES pH7.0, 1mM CoCl₂ The protein having the amino acid sequence of SEQ ID NOs: 1, 2, 3 was mixed with 0.05 mg/ml, 100 mM pyruvate, and 100 mM formaldehyde, and reacted at 20, 25, 30, 35, 40, 45, 50 and 55 ° C for 10 minutes, respectively. made it And, in the same manner as in Example [2-1], the amount of 2-keto-4-hydroxybutate produced in the buffer solution where the reaction was completed as described above was measured and the relative values were compared. As a result, it was confirmed that AxADL and DrADL showed the highest activity at 50°C and PaADL at 45°C, as shown in FIGS. 1, 3, and 5 .
상기 서열번호 1, 2, 3 의 아미노산 서열을 갖는 단백질의 효소 활성에 pH가 미치는 영향을 확인하기 위하여, 상기 실시예 [1]에서 정제 및 분리한 서열번호 1, 2, 3의 아미노산 서열을 갖는 단백질 0.05㎎/㎖, 100mM 피루베이트, 100mM 포름알데히드 및 1mM CoCl₂와 함께, 각각 pH 6.5 내지 7.5의 PIPES완충용액, pH 7.5 내지 8.5의 EPPS 완충 용액 및 pH 8.5 내지 10의 CHES 완충 용액에 각각 첨가하여, pH 6.5 내지 10의 범위에서 각각 반응시켰다. 그리고 상기 실시예 [2-1] 에서와 같은 방법으로, 상기와 같이 반응이 종료된 완충 용액에서 2-케토-4-하이드록시뷰트레이트의 생성량을 측정하여 그 상대값을 비교하였다. 그 결과, 도2, 도4, 도6에서 확인되는 바와 같이 AxADL는 pH9.0에서, DrADL와 PaADL은 pH8.5에서 가장 높은 활성을 나타내는 것을 확인하였다. In order to confirm the effect of pH on the enzymatic activity of the protein having the amino acid sequence of SEQ ID NOs: 1, 2, and 3, having the amino acid sequences of SEQ ID NOs: 1, 2, and 3 purified and separated in Example [1] Protein 0.05mg/ml, 100mM pyruvate, 100mM formaldehyde and 1mM CoCl₂ together with PIPES buffer at pH 6.5 to 7.5, EPPS buffer at pH 7.5 to 8.5 and CHES buffer at pH 8.5 to 10, respectively , were reacted in the range of pH 6.5 to 10, respectively. And, in the same manner as in Example [2-1], the amount of 2-keto-4-hydroxybutate produced in the buffer solution where the reaction was completed as described above was measured and the relative values were compared. As a result, it was confirmed that AxADL showed the highest activity at pH 9.0, and DrADL and PaADL at pH 8.5, as shown in FIGS. 2, 4, and 6 .
2-3. 금속염종류 및 농도에 따른 활성평가2-3. Activity evaluation according to metal salt type  and concentration
실시예 1의 알돌라아제에 대한 금속 이온에 따른 활성 영향을 확인하였다.The effect of metal ions on aldolase in Example 1 was confirmed.
상기 서열번호 1,2,3의 아미노산 서열을 갖는 단백질의 효소의 활성에 금속 양이온의 종류가 미치는 영향을 확인하기 위하여, 상기 실시예 [1]에서 정제 및 분리한 서열번호 1,2,3의 아미노산 서열을 갖는 단백질 0.05 ㎎/㎖, 100mM 피루베이트, 100mM 포름알데히드가 포함된 AxADL는 pH9.0에서, DrADL와 PaADL은 pH8.5 완충용액에 1mM의 EDTA 또는 1mM 금속 양이온(MgCl₂, CaCl₂, MnCl₂, NiCl₂, CoCl₂, CuCl₂ 그리고 ZnCl₂)과 함께 첨가하여 각각 AxADL와 DrADL은 50℃에서, PaADL은 45℃에서 10분 동안 반응시켰다. 그리고 상기 실시예 [2-1] 에서와 같은 방법으로, 상기와 같이 반응이 종료된 완충 용액에서 2-케토-4-하이드록시뷰트레이트의 생성량를 측정하여 그 상대값을 비교하였다. 그 결과, 도7, 도9, 그리고 도 11에서 확인되는 바와 같이 본 발명의 알돌라아제들이 1mM MgCl₂에서 가장 높은 활성을 나타내었다. 이를 바탕으로 금속염의 최적화 농도를 찾기 위해 효소 혼합물에 첨가되는 금속염을 0, 0.5, 1.0, 2.5, 5.0, 그리고 10mM의 MgCl₂로 변경하여 실험한 결과, 도8, 도10, 도12에서 나타나듯이 AxADL은 5mM에서, DrADL와 PaADL은 1mM에서 활성이 포화되는 것을 확인하였다. In order to confirm the effect of the type of metal cation on the activity of the enzyme of the protein having the amino acid sequence of SEQ ID NOs: 1,2,3, the purified and separated SEQ ID NOs: 1,2,3 in Example [1] AxADL containing amino acid sequence protein 0.05 mg/ml, 100mM pyruvate and 100mM formaldehyde at pH9.0, DrADL and PaADL at pH8.5 buffer solution with 1mM EDTA or 1mM metal cations (MgCl₂, CaCl₂, MnCl₂ , NiCl₂, CoCl₂, CuCl₂ and ZnCl₂) were added, and AxADL and DrADL were reacted at 50℃ and PaADL at 45℃ for 10 minutes, respectively. And, in the same manner as in Example [2-1], the amount of 2-keto-4-hydroxybutate produced in the buffer solution where the reaction was completed as described above was measured and the relative values were compared. As a result, as shown in FIGS. 7, 9, and 11 , the aldolases of the present invention exhibited the highest activity in 1 mM MgCl₂. Based on this, in order to find the optimal concentration of the metal salt, the metal salt added to the enzyme mixture was changed to 0, 0.5, 1.0, 2.5, 5.0, and 10 mM MgCl₂ as a result of the experiment, as shown in FIGS. 8, 10, and 12, AxADL At 5 mM silver, it was confirmed that DrADL and PaADL were saturated with activity at 1 mM.
2-4. 알돌라아제 농도에 따른 활성평가 2-4. Activity evaluation according to aldolase concentration
상기 서열번호 3의 아미노산 서열을 갖는 단백질의 효소 활성에 효소의 농도가 미치는 영향을 확인하였다. 구체적으로, 상기 실시예 [1]에서 정제 및 분리하여, 50mM EPPS pH 8.5, 1mM MgCl2, 100mM 피루베이트, 100mM 포름알데히드에 들어있는 서열번호 3의 아미노산 서열을 갖는 단백질을 0.01, 0.05, 0.1, 0.5, 1.0, 2.5 그리고 5.0 ㎎/㎖ 섞어서, 각각 45℃에서 10분동안 반응시켰다. 그리고 상기 실시예 2 에서와 같은 방법으로, 상기와 같이 반응이 종료된 완충 용액에서 2-케토-4-하이드록시뷰트레이트의 생성량을 측정하여 비교하였다.The effect of the concentration of the enzyme on the enzyme activity of the protein having the amino acid sequence of SEQ ID NO: 3 was confirmed. Specifically, the protein having the amino acid sequence of SEQ ID NO: 3 contained in 50 mM EPPS pH 8.5, 1 mM MgCl 2 , 100 mM pyruvate and 100 mM formaldehyde was purified and separated in Example [1], 0.01, 0.05, 0.1, 0.5, 1.0, 2.5 and 5.0 mg/ml were mixed and reacted at 45°C for 10 minutes, respectively. And in the same manner as in Example 2, the amount of 2-keto-4-hydroxybutate produced in the buffer solution where the reaction was completed as described above was measured and compared.
그 결과, 도 13에서 확인되는 바와 같이 같이 0.1 ㎎/㎖의 효소 농도에서 활성이 포화됨을 확인하였다.As a result, as shown in FIG. 13 , it was confirmed that the activity was saturated at an enzyme concentration of 0.1 mg/ml.
2-5. 기질 농도에 따른 활성평가 2-5. Activity evaluation according to substrate concentration
상기 서열번호 3의 아미노산 서열을 갖는 단백질의 효소 활성에 포름알데히드가 미치는 영향을 확인하였다. 구체적으로 상기 실시예 [1]에서 정제 및 분리한 서열번호 3의 아미노산 서열을 갖는 단백질 0.1 ㎎/㎖, 100 mM 피루베이트 및 1 mM MgCl₂를 50 mM EPPS pH 8.5 완충용액에 섞고, 20, 40, 60, 80, 100, 150, 200, 300 그리고 400mM 포름알데히드를 각각 첨가하여 반응시켰다. 그리고 상기 실시예 [2-1] 에서와 같은 방법으로, 상기와 같이 반응이 종료된 완충 용액에서 2-케토-4-하이드록시뷰트레이트의 생성량을 측정하여 비교하였다.The effect of formaldehyde on the enzymatic activity of the protein having the amino acid sequence of SEQ ID NO: 3 was confirmed. Specifically, 0.1 mg/ml of the protein having the amino acid sequence of SEQ ID NO: 3 purified and isolated in Example [1], 100 mM pyruvate, and 1 mM MgCl₂ were mixed in 50 mM EPPS pH 8.5 buffer, 20, 40, 60, 80, 100, 150, 200, 300 and 400 mM formaldehyde were added and reacted, respectively. And in the same manner as in Example [2-1], the amount of 2-keto-4-hydroxybutate produced in the buffer solution where the reaction was completed as described above was measured and compared.
그 결과, 도 14에서 확인되는 바와 같이 150mM 포름알데히드에서 가장 높은 활성을 나타내었고, 그 이상의 포름알데히드 농도에서는 효소 활성이 억제되는 것을 확인하였다. As a result, as shown in FIG. 14 , it was confirmed that the highest activity was exhibited at 150 mM formaldehyde, and enzyme activity was inhibited at a higher formaldehyde concentration.
또한, 상기 서열번호 3의 아미노산 서열을 갖는 단백질의 효소 활성에 피루베이트가 미치는 영향을 확인하였다. 구체적으로, 상기 실시예 [1]에서 정제 및 분리한 서열번호 3의 아미노산 서열을 갖는 단백질 0.1 ㎎/㎖, 150 mM 포름알데히드 및 1 mM MgCl₂를 50 mM EPPS pH 8.5 완충용액에 섞고 20, 40, 60, 80, 100, 150, 200 그리고 300mM 피루베이트를 각각 첨가하여 반응시켰다. 그리고 상기 실시예 [2-1] 에서와 같은 방법으로, 상기와 같이 반응이 종료된 완충 용액에서 2-케토-4-하이드록시뷰트레이트의 생성량을 측정하여 비교하였다.In addition, the effect of pyruvate on the enzymatic activity of the protein having the amino acid sequence of SEQ ID NO: 3 was confirmed. Specifically, 0.1 mg/ml of the protein having the amino acid sequence of SEQ ID NO: 3 purified and isolated in Example [1], 150 mM formaldehyde, and 1 mM MgCl₂ were mixed in 50 mM EPPS pH 8.5 buffer, 20, 40, 60, 80, 100, 150, 200 and 300 mM pyruvate were added and reacted, respectively. And in the same manner as in Example [2-1], the amount of 2-keto-4-hydroxybutate produced in the buffer solution where the reaction was completed as described above was measured and compared.
그 결과, 도 15에서 확인되는 바와 같이 150mM 피루베이트에서 활성이 포화됨을 확인하였다.As a result, as shown in FIG. 15 , it was confirmed that the activity was saturated in 150 mM pyruvate.
2-6. 반응 시간에 따른 활성평가2-6. Activity evaluation according to the reaction time
상기 서열번호 3의 아미노산 서열을 갖는 효소의 활성에 효소 반응 시간이 미치는 영향을 확인하였다. 구체적으로, 상기 실시예 [1]에서 정제 및 분리한 서열번호 3의 아미노산 서열을 갖는 단백질 0.1 ㎎/㎖, 1 mM MgCl, 150 mM 피루베이트, 150 mM 포름알데히드가 포함된 50 mM EPPS pH8.5 완충액을 45℃에서 0, 10, 30, 60, 90, 120, 150 그리고 180분 동안 반응시켰다. 그리고 상기 실시예 [2-1] 에서와 같은 방법으로, 완충 용액에서 2-케토-4-하이드록시뷰트레이트의 생성량을 측정하여 그 상대값을 비교하였다.The effect of the enzyme reaction time on the activity of the enzyme having the amino acid sequence of SEQ ID NO: 3 was confirmed. Specifically, 50 mM EPPS pH8.5 containing 0.1 mg/ml of the protein having the amino acid sequence of SEQ ID NO: 3 purified and isolated in Example [1], 1 mM MgCl, 150 mM pyruvate, and 150 mM formaldehyde The buffer was reacted at 45° C. for 0, 10, 30, 60, 90, 120, 150 and 180 minutes. And in the same manner as in Example [2-1], the production amount of 2-keto-4-hydroxybutate in the buffer solution was measured and the relative values were compared.
그 결과, 도 16에서 확인되는 바와 같이 본 발명의 야생형 알돌라아제가 60분, L241A 돌연변이체가 20분만에 활성이 포화되는 것을 확인하였다.As a result, as shown in FIG. 16 , it was confirmed that the activity of the wild-type aldolase of the present invention was saturated in 60 minutes and the L241A mutant in 20 minutes.
실시예 3: 본 발명의 알돌라아제의 활성비교Example 3: Comparison of activity of aldolase of the present invention
상기 서열번호 1,2,3의 아미노산 서열을 갖는 단백질의 효소의 활성의 기존에 피루베이트와 포름알데히드로부터 2-케토-4-하이드록시뷰트레이트가 생성된다고 보고되어 있던 E.coli 유래의 YfaU와 활성을 비교해보았다.YfaU derived from E. coli , which has previously been reported to produce 2-keto-4-hydroxybutate from pyruvate and formaldehyde, and activity was compared.
각각의 활성은 도 18의 테이블에 제시한대로 최적조건에서 진행하였다. 그리고 상기 실시예 2-1 에서와 같은 방법으로, 상기와 같이 반응이 종료된 완충 용액에서 2-케토-4-하이드록시뷰트레이트의 생성량을 측정하여 그 상대값을 비교하였다. Each activity was performed under optimal conditions as shown in the table of FIG. 18 . Then, in the same manner as in Example 2-1, the amount of 2-keto-4-hydroxybutate produced in the buffer solution where the reaction was completed as described above was measured, and the relative values were compared.
그 결과, 도 17 및 18에서 확인되는 바와 같이 YfaU의 활성에 비해 PaADL는 약 2배, AxADL은 약 9배, DrADL은 약 31배 활성이 높고 (도 17 참고), 2-케토-4-하이드록시뷰트레이트의 생산량 또한 종래 YfaU에 비하여 본 발명의 AxADL, PaADL 및 DrADL의 생산량이 우수한 것을 확인하였다. As a result, as shown in FIGS. 17 and 18 , compared to the activity of YfaU, PaADL is about 2 times higher, AxADL is about 9 times, and DrADL is about 31 times higher (see FIG. 17 ), 2-keto-4-hydr It was also confirmed that the production of hydroxybutrate was superior to that of the conventional YfaU, AxADL, PaADL, and DrADL of the present invention.
실시예 4: 본 발명의 알돌라아제 변이체 활성 확인Example 4: Confirmation of aldolase and mutant activity of the present invention
전술한 본 발명의 알돌라아제의 활성을 확인한 결과 Deinococcus radiodurans R1의 알돌라아제가 우수한 활성을 가지는 것을 알 수 있었다.As a result of confirming the activity of the aldolase of the present invention as described above, it was found that the aldolase of Deinococcus radiodurans R1 had excellent activity.
4-1. 점돌연변이의 선정4-1. Selection of point mutations
상기 서열번호 2 및 3의 아미노산 서열을 갖는 단백질을 확보하였고, 결정구조의 활성부위에서 기질인 피루베이트와 20 Å 거리에서 상호작용하는 잔기들을 선별하였다 (표 1 및 표 2 참조). 서열번호 2 및 3의 아미노산 서열을 갖는 단백질에서 선별된 잔기들을 치환하기 위해 서열번호 2 및 3의 염기 서열을 기초로, 다음 [표 1]과 [표 2]와 같이 서열번호 4 내지 109의 프라이머를 각각 설계하였다.Proteins having the amino acid sequences of SEQ ID NOs: 2 and 3 were obtained, and residues interacting with the substrate pyruvate at a distance of 20 Å in the active site of the crystal structure were selected (see Tables 1 and 2). Based on the nucleotide sequences of SEQ ID NOs: 2 and 3 to replace selected residues in the protein having the amino acid sequence of SEQ ID NOs: 2 and 3, primers of SEQ ID NOs: 4 to 109 as shown in Table 1 and Table 2 were designed respectively.
DrADL 돌연변이DrADL mutation 서열번호SEQ ID NO: 프라이머 쌍primer pair 서열 (5'->3')sequence (5'->3')
Trp28AlaTrp28Ala 44 정방향 프라이머forward primer gcagatcggtctggcgctgggtctggcg gcagatcggtctggcgctgggtctggcg
Trp28AlaTrp28Ala 55 역방향 프라이머reverse primer cgccagacccagcgccagaccgatctgc cgccagacccagcgccagaccgatctgc
Asp51AlaAsp51Ala 66 정방향 프라이머forward primer tggctgctgatcgccggtgaacacgcg tggctgctgatcgccggtgaacacgcg
Asp51AlaAsp51Ala 77 역방향 프라이머reverse primer cgcgtgttcaccggcgatcagcagcca cgcgtgttcaccggcgatcagcagcca
Arg79AlaArg79Ala 88 정방향 프라이머forward primer GGTTGCGCCGGTTGTTGCTCCGCCGGTTGG GGTTGCGCCGGTTGTTGCTCCGCCGGTTGG
Arg79AlaArg79Ala 99 역방향 프라이머reverse primer CCAACCGGCGGAGCAACAACCGGCGCAACC CCAACCGGCGGAGCAACAACCGGCGCAACC
Val127AlaVal127Ala 1010 정방향 프라이머forward primer CGTGGTGCTGGTTCT CGTGGTGCTGGTTCT
Val127AlaVal127Ala 1111 역방향 프라이머reverse primer GATACCCTGCGGCGG GATACCCTGCGGCGG
Leu131AlaLeu131Ala 1212 정방향 프라이머forward primer CGTGCGTCTCGTTGG CGTGCGTCTCGTTGG
Leu131AlaLeu131Ala 1313 역방향 프라이머reverse primer CGCCGCCGCAGAACCAAC CGCCGCCGCAGAACCAAC
Asn138AlaAsn138Ala 1414 정방향 프라이머forward primer CGTTGGGCCGCGGTTCCG CGTTGGGCCGCGGTTCCG
Asn138AlaAsn138Ala 1515 역방향 프라이머reverse primer AGACGCACGCGCCAG AGACGCACGCGCCAG
Pro182AlaPro182Ala 1616 정방향 프라이머forward primer acggtgttttcatcggtgcggcggacc acggtgttttcatcggtgcggcggacc
Pro182AlaPro182Ala 1717 역방향 프라이머reverse primer ggtccgccgcaccgatgaaaacaccgt ggtccgccgcaccgatgaaaacaccgt
Pro195AlaPro195Ala 1818 정방향 프라이머forward primer GTCACCTGGGTCACGCGGGTCACCCGGACG GTCACCTGGGTCACGCGGGTCACCCGGACG
Pro195AlaPro195Ala 1919 역방향 프라이머reverse primer CGTCCGGGTGACCCGCGTGACCCAGGTGAC CGTCCGGGTGACCCGCGTGACCCAGGTGAC
Pro195SerPro195Ser 2020 정방향 프라이머forward primer cacctgggtcactcgggtcacccgGA cacctgggtcactcgggtcacccgGA
Pro195SerPro195Ser 2121 역방향 프라이머reverse primer Tccgggtgacccgagtgacccaggtg Tccgggtgacccgagtgacccaggtg
Pro195ValPro195Val 2222 정방향 프라이머forward primer tcacctgggtcacgtgggtcacccggac tcacctgggtcacgtgggtcacccggac
Pro195ValPro195Val 2323 역방향 프라이머reverse primer gtccgggtgacccacgtgacccaggtga gtccgggtgacccacgtgacccaggtga
Pro195GluPro195Glu 2424 정방향 프라이머forward primer tcacctgggtcacgagggtcacccggac tcacctgggtcacgagggtcacccggac
Pro195GluPro195Glu 2525 역방향 프라이머reverse primer gtccgggtgaccctcgtgacccaggtga gtccgggtgaccctcgtgacccaggtga
Pro195GlnPro195Gln 2626 정방향 프라이머forward primer cctgggtcaccagggtcacccggAC cctgggtcaccagggtcacccggAC
Pro195GlnPro195Gln 2727 역방향 프라이머reverse primer GTccgggtgaccctggtgacccagg GTccgggtgaccctggtgacccagg
Pro195ArgPro195Arg 2828 정방향 프라이머forward primer GTccgggtgaccccggtgacccagg GTccgggtgaccccggtgacccagg
Pro195ArgPro195Arg 2929 역방향 프라이머reverse primer cctgggtcaccggggtcacccggAC cctgggtcaccggggtcacccggAC
Gly196AlaGly196Ala 3030 정방향 프라이머forward primer CACCCGGCTCACCCGGACGTTG CACCCGGCTCACCCGGACGTTG
Gly196AlaGly196Ala 3131 역방향 프라이머reverse primer CAACGTCCGGGTGAGCCGGGTG CAACGTCCGGGTGAGCCGGGTG
Gly196LeuGly196Leu 3232 정방향 프라이머forward primer cctgggtcacccgctacacccggacgttg cctgggtcacccgctacacccggacgttg
Gly196LeuGly196Leu 3333 역방향 프라이머reverse primer caacgtccgggtgtagcgggtgacccagg caacgtccgggtgtagcgggtgacccagg
Gly196ValGly196Val 3434 정방향 프라이머forward primer cctgggtcacccggttcacccggacgttg cctgggtcacccggttcacccggacgttg
Gly196ValGly196Val 3535 역방향 프라이머reverse primer caacgtccgggtgaaccgggtgacccagg caacgtccgggtgaaccgggtgacccagg
Gly196GluGly196Glu 3636 정방향 프라이머forward primer cctgggtcacccggagcacccggacgttg cctgggtcacccggagcacccggacgttg
Gly196GluGly196Glu 3737 역방향 프라이머reverse primer caacgtccgggtgctccgggtgacccagg caacgtccgggtgctccgggtgacccagg
Gly196GlnGly196Gln 3838 정방향 프라이머forward primer cctgggtcacccgcagcacccggacgttg cctgggtcacccgcagcacccggacgttg
Gly196GlnGly196Gln 3939 역방향 프라이머reverse primer caacgtccgggtgctgcgggtgacccagg caacgtccgggtgctgcgggtgacccagg
Gly196LysGly196Lys 4040 정방향 프라이머forward primer cctgggtcacccgaagcacccggacgttg cctgggtcacccgaagcacccggacgttg
Gly196LysGly196Lys 4141 역방향 프라이머reverse primer caacgtccgggtgcttcgggtgacccagg caacgtccgggtgcttcgggtgacccagg
Leu221AlaLeu221Ala 4242 정방향 프라이머forward primer GGTATCGCGTCTGCGGAC GGTATCGCGTCTGCGGAC
Leu221AlaLeu221Ala 4343 역방향 프라이머reverse primer CGCCGCTTTACCCGC CGCCCGCTTTACCCGC
Ser222AlaSer222Ala 4444 정방향 프라이머forward primer ggcgggtatcctggctgcggacgaacg ggcgggtatcctggctgcggacgaacg
Ser222AlaSer222Ala 4545 역방향 프라이머reverse primer cgttcgtccgcagccaggatacccgcc cgttcgtccgcagccaggatacccgcc
Ala223GlnAla223Gln 4646 정방향 프라이머forward primer AGCGGCGGGTATCCTGTCTCAGGACGAACGT AGCGGCGGGTATCCTGTCTCAGGACGAACGT
Ala223GlnAla223Gln 4747 역방향 프라이머reverse primer acgttcgtcctgagacaggatacccgccgct acgttcgtcctgagacaggatacccgccgct
Asp224AlaAsp224Ala 4848 정방향 프라이머forward primer GCGGCCGAACGTCTG GCGGCCGAACGTCTG
Asp224AlaAsp224Ala 4949 역방향 프라이머reverse primer AGACAGGATACCCGC AGACAGGATAACCCGC
Glu225AlaGlu225Ala 5050 정방향 프라이머forward primer GCGGACGCACGTCTG GCGGACGCACGTCTG
Glu225AlaGlu225Ala 5151 역방향 프라이머reverse primer AGACAGGATACCCGC AGACAGGATAACCCGC
Arg226AlaArg226Ala 5252 정방향 프라이머forward primer atcctgtctgcggacgaagctctggcgcgt atcctgtctgcggacgaagctctggcgcgt
Arg226AlaArg226Ala 5353 역방향 프라이머reverse primer acgcgccagagcttcgtccgcagacaggat acgcgccagagcttcgtccgcagacaggat
Leu227AlaLeu227Ala 5454 정방향 프라이머forward primer TGCGGACGAACGTGCGGCGCGTCACTACCT TGCGGACGAACGTGCGGCGCGTCACTACCT
Leu227AlaLeu227Ala 5555 역방향 프라이머reverse primer AGGTAGTGACGCGCCGCACGTTCGTCCGCA AGGTAGTGACGCGCCGCACGTTCGTCCGCA
Leu227ValLeu227Val 5656 정방향 프라이머forward primer tgtctgcggacgaacgtgtggcgcgtc tgtctgcggacgaacgtgtggcgcgtc
Leu227ValLeu227Val 5757 역방향 프라이머reverse primer gacgcgccacacgttcgtccgcagaca gacgcgccacacgttcgtccgcagaca
Val243AlaVal243Ala 5858 정방향 프라이머forward primer cgttgcggttggtgctgacaccaccctgc cgttgcggttggtgctgacaccaccctgc
Val243AlaVal243Ala 5959 역방향 프라이머reverse primer gcagggtggtgtcagcaccaaccgcaacg gcagggtggtgtcagcaccaaccgcaacg
Thr246AlaThr246Ala 6060 정방향 프라이머forward primer GACACCGCCCTGCTG GACACCGCCCTGCTG
Thr246AlaThr246Ala 6161 역방향 프라이머reverse primer AACACCAACCGCAAC AACACCAACCGCAAC
Leu247AlaLeu247Ala 6262 정방향 프라이머forward primer TGTTGACACCACCGCGCTGGCGCGTGCGGC TGTTGACACCACCGCGCTGGCCGTGCGGC
Leu247AlaLeu247Ala 6363 역방향 프라이머reverse primer GCCGCACGCGCCAGCGCGGTGGTGTCAACA GCCGCACGCGCCAGCGCGGTGGTGTCAACA
Leu247ValLeu247Val 6464 정방향 프라이머forward primer gttgacaccaccgtgctggcgcgtgCGG gttgacaccaccgtgctggcgcgtgCGG
Leu247ValLeu247Val 6565 역방향 프라이머reverse primer CCGcacgcgccagcacggtggtgtcaac CCGcacgcgccagcacggtggtgtcaac
Arg250AlaArg250Ala 6666 정방향 프라이머forward primer CCCTGCTGGCGGCTGCGGCGCGTACCCTGG CCCTGCTGGCGGCTGCGGCGCGTACCCTGG
Arg250AlaArg250Ala 6767 역방향 프라이머reverse primer CCAGGGTACGCGCCGCAGCCGCCAGCAGGG CCAGGGTACGCGCCGCAGCCGCCAGCAGGG
PaADL 돌연변이PaADL mutation 서열번호SEQ ID NO: 프라이머 쌍primer pair 서열 (5'->3')sequence (5'->3')
Trp22AlaTrp22Ala 6868 정방향 프라이머forward primer gcagatcggtctggcgctgggtctggcggcagatcggtctggcgctgggtctggcg
6969 역방향 프라이머reverse primer cgccagacccagcgccagaccgatctgccgccagacccagcgccagaccgatctgc
Asp45AlaAsp45Ala 7070 정방향 프라이머forward primer ggctgctgctggccggtgaacacgcggctgctgctggccggtgaacacgc
7171 역방향 프라이머reverse primer gcgtgttcaccggccagcagcagccgcgtgttcaccggccagcagcagcc
Arg73AlaArg73Ala 7272 정방향 프라이머forward primer ggtcagccggttatcgctccggttcagggtgggtcagccggttatcgctccggttcagggtg
7373 역방향 프라이머reverse primer caccctgaaccggagcgataaccggctgacccaccctgaaccggagcgataaccggctgacc
Val121AlaVal121Ala 7474 정방향 프라이머forward primer gggtgttcgtggtgctggttctgcgctgggggtgttcgtggtgctggttctgcgctgg
7575 역방향 프라이머reverse primer ccagcgcagaaccagcaccacgaacacccccagcgcagaaccagcaccacgaacaccc
Leu125AlaLeu125Ala 7676 정방향 프라이머forward primer gtgttggttctgcggcggcgcgtgcgtctcgtgttggttctgcggcggcgcgtgcgtctc
7777 역방향 프라이머reverse primer gagacgcacgcgccgccgcagaaccaacacgagacgcacgcgccgccgcagaaccaacac
Asn132AlaAsn132Ala 7878 정방향 프라이머forward primer gcgtgcgtctcgttgggcctctgttgcggaatacgcgtgcgtctcgttgggcctctgttgcggaatac
7979 역방향 프라이머reverse primer gtattccgcaacagaggcccaacgagacgcacgcgtattccgcaacagaggcccaacgagacgcacgc
Pro176AlaPro176Ala 8080 정방향 프라이머forward primer acggtgttttcatcggtgcggcggaccacggtgttttcatcggtgcggcggacc
8181 역방향 프라이머reverse primer ggtccgccgcaccgatgaaaacaccgtggtccgccgcaccgatgaaaacaccgt
Pro189AlaPro189Ala 8282 정방향 프라이머forward primer caccgtggtaacgcgggtcacccggcaccgtggtaacgcgggtcacccgg
8383 역방향 프라이머reverse primer ccgggtgacccgcgttaccacggtgccgggtgacccgcgttaccacggtg
Gly190AlaGly190Ala 8484 정방향 프라이머forward primer cgtggtaacccggctcacccggaagttcgtggtaacccggctcacccggaagtt
8585 역방향 프라이머reverse primer aacttccgggtgagccgggttaccacgaacttccgggtgagccgggttaccacg
Leu215AlaLeu215Ala 8686 정방향 프라이머forward primer aaagcggcgggtatcgcgtctgcggacgaaacaaagcggcgggtatcgcgtctgcggacgaaac
8787 역방향 프라이머reverse primer gtttcgtccgcagacgcgatacccgccgctttgtttcgtccgcagacgcgatacccgccgcttt
Ser216AlaSer216Ala 8888 정방향 프라이머forward primer ggcgggtatcctggctgcggacgaaacggcgggtatcctggctgcggacgaaac
8989 역방향 프라이머reverse primer gtttcgtccgcagccaggatacccgccgtttcgtccgcagccaggatacccgcc
Ala217GlnAla217Gln 9090 정방향 프라이머forward primer gcggcgggtatcctgtctcaggacgaaacccgcggcgggtatcctgtctcaggacgaaaccc
9191 역방향 프라이머reverse primer gggtttcgtcctgagacaggatacccgccgcgggtttcgtcctgagacaggatacccgccgc
Asp218AlaAsp218Ala 9292 정방향 프라이머forward primer atcctgtctgcggccgaaaccctggcgatcctgtctgcggccgaaaccctggcg
9393 역방향 프라이머reverse primer cgccagggtttcggccgcagacaggatcgccagggtttcggccgcagacaggat
Glu219AlaGlu219Ala 9494 정방향 프라이머forward primer tgtctgcggacgcaaccctggcgcgtgtctgcggacgcaaccctggcgcg
9595 역방향 프라이머reverse primer cgcgccagggttgcgtccgcagacacgcgccagggttgcgtccgcagaca
Leu221AlaLeu221Ala 9696 정방향 프라이머forward primer ctgcggacgaaaccgcggcgcgtcgttaccctgcggacgaaaccgcggcgcgtcgttacc
9797 역방향 프라이머reverse primer ggtaacgacgcgccgcggtttcgtccgcagggtaacgacgcgccgcggtttcgtccgcag
Val237AlaVal237Ala 9898 정방향 프라이머forward primer cgttgcggttggtgctgacacctctctgccgttgcggttggtgctgacacctctctgc
9999 역방향 프라이머reverse primer gcagagaggtgtcagcaccaaccgcaacggcagagaggtgtcagcaccaaccgcaacg
Ser240AlaSer240Ala 100100 정방향 프라이머forward primer ggttggtgttgacaccgctctgctgatgcgttcggttggtgttgacaccgctctgctgatgcgttc
101101 역방향 프라이머reverse primer gaacgcatcagcagagcggtgtcaacaccaaccgaacgcatcagcagagcggtgtcaacaccaacc
Leu241AlaLeu241Ala 102102 정방향 프라이머forward primer ggttggtgttgacacctctgcgctgatgcgttctctggttggtgttgacacctctgcgctgatgcgttctct
103103 역방향 프라이머reverse primer agagaacgcatcagcgcagaggtgtcaacaccaaccagagaacgcatcagcgcagaggtgtcaacaccaacc
Leu241ValLeu241Val 104104 정방향 프라이머forward primer cggttggtgttgacacctctgtgctgatgcgtcggttggtgttgacacctctgtgctgatgcgt
105105 역방향 프라이머reverse primer acgcatcagcacagaggtgtcaacaccaaccgacgcatcagcacagaggtgtcaacaccaaccg
Leu241GlyLeu241Gly 106106 정방향 프라이머forward primer ggttggtgttgacacctctgggctgatgcgttctctggttggtgttgacacctctgggctgatgcgttctct
107107 역방향 프라이머reverse primer agagaacgcatcagcccagaggtgtcaacaccaaccagagaacgcatcagcccagaggtgtcaacaccaacc
Arg244AlaArg244Ala 108108 정방향 프라이머forward primer cacctctctgctgatggcttctctgcgtgaactgcacctctctgctgatggcttctctgcgtgaactg
109109 역방향 프라이머reverse primer cagttcacgcagagaagccatcagcagagaggtgcagtcacgcagagaagccatcagcagagaggtg
㈜마크로젠에 의뢰하여 서열번호 4 내지 109의 염기 서열 프라이머를 합성하였고, 상기 서열번호 2 및 3의 염기서열을 주형으로 하여, 상기 설계된 서열번호 4 내지 109의 프라이머 쌍 각각을 이용한 PCR을 수행하였다. Phusion, STAR max 등 중합효소들을 이용하여 PCR 증폭된 각각의 PCR 산물은 그 자체로 이용하거나 라이게이션/카이네이션 방법으로 염기서열 말단부위를 각각 연결하였고, 염기 서열 분석(sequencing)(㈜마크로젠)을 통해 해당 잔기들이 의도한 아미노산을 암호화하는 염기서열로 정확히 치환되었음을 확인하였다. 해당 염기서열들은 각각 대장균 C2566 균주(Novagen, 미국)에 형질전환 하였고, 이용하기 전에 20% 글리세린 용액을 첨가하여 냉동 보관하였다.The nucleotide sequence primers of SEQ ID NOs: 4 to 109 were synthesized at the request of Macrogen, and PCR was performed using each of the designed primer pairs of SEQ ID NOs: 4 to 109 using the nucleotide sequences of SEQ ID NOs: 2 and 3 as a template. Each PCR product amplified by PCR using polymerases such as Phusion, STAR max, etc. was used by itself or ligation / kynation method was used to connect the end of the nucleotide sequence, and sequencing (Macrogen) was performed. Through this, it was confirmed that the residues were correctly substituted with the nucleotide sequence encoding the intended amino acid. Each of the base sequences was transformed into E. coli C2566 strain (Novagen, USA), and 20% glycerin solution was added and stored frozen before use.
4-2. 알돌라아제 변이체 활성 확인4-2. Aldolase   mutant   activity   confirmation
선정된 점돌연변이를 적용한 알돌라아제 변이체의 활성을 확인하기 위하여, 단일 콜로니를 10㎖ tube에 50㎍/㎖ 앰피실린이 함유된 LB에 접종하여 37℃에서 4시간 이상 배양하고 OD600 가 0.6일 때 0.1mM IPTG를 첨가하였다. 1시간동안 배양한 후 20℃ 배양기에서 150rpm으로 20시간 배양하였다. 배양액에서 세포를 원심분리기를 이용하여 회수한 후 sonicator로 cell을 파쇄하고 상등액만을 선별하여 His tag affinity 크로마토그래피를 이용하여 정제하였다. 정제된 돌연변이 효소들을 BSA assay를 이용하여 농도를 측정하였고, DrADL의 변이체 단백질 0.005 ㎎/㎖ 또는 PaADL 변이체 단백질 0.05 ㎎/㎖ 과 100mM 피루베이트, 100mM 포름알데히드 및 1mM MgCl₂ 와 함께 pH8.5 완충용액에서 50℃ 또는 45℃ 에서 10 분 반응시켰다. 그리고 상기 실시예 [2-1] 에서와 같은 방법으로, 상기와 같이 반응이 종료된 완충 용액에서 2-케토-4-하이드록시뷰트레이트의 생성량을 측정하여 그 상대값을 비교하였다. In order to confirm the activity of the aldolase mutant to which the selected point mutation is applied, a single colony is inoculated into LB containing 50 μg/ml ampicillin in a 10 ml tube and cultured at 37° C. for more than 4 hours and the OD 600 is 0.6 days. When 0.1 mM IPTG was added. After incubation for 1 hour, it was incubated for 20 hours at 150 rpm in an incubator at 20 °C. After recovering the cells from the culture medium using a centrifuge, the cells were disrupted with a sonicator, and only the supernatant was selected and purified using His tag affinity chromatography. The concentrations of the purified mutant enzymes were measured using BSA assay, and 0.005 mg/ml of DrADL variant protein or 0.05 mg/ml PaADL variant protein and 100 mM pyruvate, 100 mM formaldehyde and 1 mM MgCl₂ in pH 8.5 buffer solution. The reaction was carried out at 50°C or 45°C for 10 minutes. Then, in the same manner as in Example [2-1], the amount of 2-keto-4-hydroxybutate produced in the buffer solution where the reaction was completed as described above was measured, and the relative values were compared.
그 결과, 도 19에서 확인되는 바와 같이 서열번호 2로부터 유래한 점돌연변이 변이체들 중 G196A, S222A 그리고 L247V 돌연변이체를 가진 알돌라아제가 야생형 효소에 비해 각각 1.71, 1.33 그리고 1.64 배 높은 활성을 보이는 것을 확인하였다. 또한, 도 20에서 확인되는 바와 같이 서열번호 3으로부터 유래한 점돌연이 변이체들 중 V121A, L241A 그리고 V121A/L241A 돌연변이체를 가진 알돌라아제가 야생형 효소에 비해 약 1.4배 높은 활성을 보이는 것을 확인하였다.As a result, it was found that among the point mutation mutants derived from SEQ ID NO: 2, aldolase having G196A, S222A and L247V mutants showed 1.71, 1.33 and 1.64 times higher activity than the wild-type enzyme, respectively, as shown in Fig. 19. Confirmed. In addition, as shown in FIG. 20 , it was confirmed that aldolase having V121A, L241A, and V121A/L241A mutants among the point mutations derived from SEQ ID NO: 3 showed about 1.4 times higher activity than the wild-type enzyme. .
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, with respect to the present invention, the preferred embodiments have been looked at. Those of ordinary skill in the art to which the present invention pertains will understand that the present invention can be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments are to be considered in an illustrative rather than a restrictive sense. The scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the scope equivalent thereto should be construed as being included in the present invention.

Claims (7)

  1. 서열번호 2의 아미노산 서열에서 P195, G196, S222, L227, L247 및 R250 중 어느 하나의 아미노산이 치환된 알돌라아제 변이체 또는 서열번호 3의 아미노산 서열에서 V121, V237 및 L241 중 어느 하나 이상의 아미노산이 치환된 알돌라아제 변이체. In the amino acid sequence of SEQ ID NO: 2, any one of amino acids P195, G196, S222, L227, L247 and R250 is substituted aldolase variant, or in the amino acid sequence of SEQ ID NO: 3, any one or more amino acids of V121, V237 and L241 are substituted aldolase variants.
  2. 제1항에 있어서,The method of claim 1,
    상기 서열번호 2의 아미노산 서열에서 P195 는 세린 (S) 또는 글루타민 (Q)으로 치환되는 것이고, G196 및 S222 는 알라닌 (A)로 치환되는 것이고, L227 및 L247 은 발린 (V)으로 치환되는 것이며, R250 는 알라닌 (A)로 치환되는 것이고,In the amino acid sequence of SEQ ID NO: 2, P195 is substituted with serine (S) or glutamine (Q), G196 and S222 are substituted with alanine (A), and L227 and L247 are substituted with valine (V), R250 is substituted with alanine (A),
    상기 서열번호 3의 아미노산 서열에서 V121, V237 및 L241은 알라닌 (A)로 치환되는 것인 알돌라아제 변이체.In the amino acid sequence of SEQ ID NO: 3, V121, V237 and L241 are aldolase variants substituted with alanine (A).
  3. 청구항 1의 알돌라아제 변이체 또는 서열번호 1 내지 3중 어느 하나의 알돌라아제를 포함하는 2-케토-4-하이드록시뷰트레이트 (2-keto-4-hydroxybutyrate) 생합성용 조성물. A composition for biosynthesis of 2-keto-4-hydroxybutyrate comprising the aldolase variant of claim 1 or the aldolase of any one of SEQ ID NOs: 1 to 3.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 알돌라아제 변이체 또는 알돌라아제는 포름알데히드와 피루브산을 결합시키는 조성물.The aldolase variant or aldolase is a composition for binding formaldehyde and pyruvic acid.
  5. 제1항의 알돌라아제 변이체 또는 서열번호 1 내지 3 중 어느 하나의 알돌라아제를 암호화하는 폴리뉴클레오티드.The aldolase variant of claim 1 or a polynucleotide encoding the aldolase of any one of SEQ ID NOs: 1 to 3.
  6. 제5항의 폴리뉴클레오티드를 포함하는 포름알데히드 및 피루브산으로부터 2-케토-4-하이드록시뷰트레이트 생성능을 가진 재조합 미생물.A recombinant microorganism having the ability to produce 2-keto-4-hydroxybutate from formaldehyde and pyruvic acid comprising the polynucleotide of claim 5.
  7. 제6항의 재조합 미생물을 포름알데히드 존재하에서 배양하는 단계를 포함하는 2-케토-4-하이드록시뷰트레이트를 생산하는 방법.A method for producing 2-keto-4-hydroxybutate comprising the step of culturing the recombinant microorganism of claim 6 in the presence of formaldehyde.
PCT/KR2021/014224 2020-10-16 2021-10-14 2-keto-4-hydroxybutyrate biosynthetic system WO2022080886A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200134556 2020-10-16
KR10-2020-0134556 2020-10-16
KR10-2021-0131531 2021-10-05
KR1020210131531A KR102404898B1 (en) 2020-10-16 2021-10-05 Biosynthetic system for 2-keto-4-hydroxybutyrate

Publications (1)

Publication Number Publication Date
WO2022080886A1 true WO2022080886A1 (en) 2022-04-21

Family

ID=81208493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014224 WO2022080886A1 (en) 2020-10-16 2021-10-14 2-keto-4-hydroxybutyrate biosynthetic system

Country Status (1)

Country Link
WO (1) WO2022080886A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017198717A1 (en) * 2016-05-18 2017-11-23 Consejo Superior De Investigaciones Científicas Fusion proteins comprising an aldolase enzyme joined to a maltose binding protein

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017198717A1 (en) * 2016-05-18 2017-11-23 Consejo Superior De Investigaciones Científicas Fusion proteins comprising an aldolase enzyme joined to a maltose binding protein

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE Protein 1 June 2019 (2019-06-01), ANONYMOUS : "MULTISPECIES: 4-hydroxy-2-oxoheptanedioate aldolase [Achromobacter]", XP055922080, retrieved from Genbank Database accession no. WP_049073069 *
DATABASE Protein 19 June 2019 (2019-06-19), ANONYMOUS: "4-hydroxy-2-oxoheptanedioate aldolase [Deinococcus radiodurans]", XP055922085, retrieved from Genbank Database accession no. WP_010889550 *
DATABASE Protein 24 January 2019 (2019-01-24), ANONYMOUS: "2,4-dihydroxyhept-2-ene-1,7-dioic acid aldolase [Pseudomonas aeruginosa PAO1]", XP055922093, retrieved from Genbank Database accession no. NP_252817 *
JEONG, Yeon-Ju et al. Biochemical and molecular characterization of pyruvate aldolase. 2021 C1 가스 리파이너리 e-심포지움 (2021 C1 Gas Refinery e-Symposium). July 2021, No. B-035, pp. 1-5. *
WANG CHUANG, REN JIE, ZHOU LIBANG, LI ZHIDONG, CHEN LIN, ZENG AN-PING: "An Aldolase-Catalyzed New Metabolic Pathway for the Assimilation of Formaldehyde and Methanol To Synthesize 2-Keto-4-hydroxybutyrate and 1,3-Propanediol in Escherichia coli", ACS SYNTHETIC BIOLOGY, vol. 8, no. 11, 15 November 2019 (2019-11-15), Washington DC ,USA , pages 2483 - 2493, XP055922096, ISSN: 2161-5063, DOI: 10.1021/acssynbio.9b00102 *

Similar Documents

Publication Publication Date Title
KR101083136B1 (en) Microorganisms for producing l-amino acids and process for producing l-amino acids using them
US8735132B2 (en) Mutations and genetic targets for enhanced L-tyrosine production
US7399624B2 (en) Cephalosporin C acylases
CN107119084B (en) Method for producing L-glufosinate-ammonium by using transaminase and ethylene synthetase
CN111485008A (en) Biological preparation method of cis-5-hydroxy-L-hexahydropicolinic acid
WO2015178586A1 (en) Microorganism having improved intracellular energy level and method for producing l-amino acid using same
JPH0286779A (en) Improved type recombinant dna, transformant containing the same and production of heat-resistant glucose dehydrogenase therewith
WO2022080886A1 (en) 2-keto-4-hydroxybutyrate biosynthetic system
WO2024045796A1 (en) Cyclodextrin glucosyltransferase with improved solvent tolerance and preparation thereof
WO2016127469A1 (en) Engineering bacteria and method for producing beta-alanine
KR102382489B1 (en) Penicillin G acylase
CN113604453B (en) Marine streptomycete phospholipase D mutant and application
KR102404898B1 (en) Biosynthetic system for 2-keto-4-hydroxybutyrate
EP1249494B1 (en) Process for the biological production of l-pipecolic acid
WO2017065529A1 (en) O-acetylhomoserine sulfhydrylase variant and method for producing l-methionine using same
CN116745410A (en) Genetically engineered bacteria capable of producing cytokinins with isoprenoid side chains
WO2023128004A1 (en) Novel promoter variant for constitutive expression and use thereof
US11674161B2 (en) Modified monooxygenases for the manufacture of hydroxylated hydrocarbons
CN113564138B (en) Diaminopimelate dehydrogenase mutant and application thereof
WO2024090883A1 (en) Pyruvate kinase 2 novel variant and method for producing l-aromatic amino acid using same
CN116240193B (en) Choline kinase mutant and application thereof in production of citicoline
WO2013095009A1 (en) Recombinant microorganisms for producing 3-hydroxypropionic acid, and method for producing 3-hydroxypropionic acid using the recombinant microorganisms
CZ279498B6 (en) PROCESS FOR PREPARING S-(+)-2,2-DIMETHYL CYCLOPROPANECARBOXAMIDE BY MEANS OF MICRO-ORGANISMS WHICH ARE TRANSFORMED BY A DNA FRAGMENT-CONTAINING HYBRID PLASMID pCAR6
JPH05317056A (en) Dna coding choline oxidase and its use
WO2024090884A1 (en) Novel phenylalanine:h+ symporter phep variant, and method for producing l-aromatic amino acids using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21880533

Country of ref document: EP

Kind code of ref document: A1