WO2022080592A1 - Ai-based active optical line management system - Google Patents

Ai-based active optical line management system Download PDF

Info

Publication number
WO2022080592A1
WO2022080592A1 PCT/KR2020/019258 KR2020019258W WO2022080592A1 WO 2022080592 A1 WO2022080592 A1 WO 2022080592A1 KR 2020019258 W KR2020019258 W KR 2020019258W WO 2022080592 A1 WO2022080592 A1 WO 2022080592A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical fiber
cable
data
terminal
Prior art date
Application number
PCT/KR2020/019258
Other languages
French (fr)
Korean (ko)
Inventor
김원영
강창호
Original Assignee
(주)파이버폭스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)파이버폭스 filed Critical (주)파이버폭스
Publication of WO2022080592A1 publication Critical patent/WO2022080592A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems

Definitions

  • the present invention relates to an optical path management system, and more particularly, by preventing optical path errors and losses, and automatically securing the most up-to-date data on the optical line, and the optimization solution for optical fiber search and management when working with the optical line. It is about an AI-based active optical fiber management system to provide an optimization solution for the design of the work line and a solution for the occurrence of line errors.
  • optical cables are widely used in high-speed communication networks because they have lower loss and higher bandwidth than copper wires.
  • optical cables have a problem in that reliability is somewhat weak compared to copper wires due to low mechanical properties. That is, the optical cable is easier to cut compared to the copper wire, and there is a problem in that communication is impossible when it is bent at a certain angle or more. Therefore, when a failure occurs in an optical cable, operators who have built an optical communication network quickly identify the failure point in order to restore the optical line and put manpower to the failure point.
  • the optical measuring device transmits OTDR (OPTICAL TIME DOMAIL FDFLECTOMETER) pulses to a plurality of optical termination devices connected to the distribution device, and analyzes a plurality of OTDR pulses that are reflected from the plurality of optical termination devices and return in sequence, Analyze for abnormalities.
  • OTDR OPTICAL TIME DOMAIL FDFLECTOMETER
  • 12 optical cables are divided into a total of 12 units as one unit and managed, and the 12 optical cables have different colors for easy identification.
  • An object of the present invention to solve the above problems is to attach an RFID tag to each unit of the optical cable to facilitate the operation, measure the data lost when measuring the optical fiber, and then accumulate the data by sending the server to the flow rate of the lost data. It is converted into low-volume data after being converted into low-volume data, and when a late worker recognizes an RFID tag when working with an optical line, real-time data about the optical path can be checked on-site.
  • the purpose of this is to provide an AI-based active optical fiber management system that provides a blueprint of the optical fiber and provides a solution for reducing work time and solving problems when a problem arises in the construction of an optical fiber.
  • the AI-based active optical path management system of the present invention for achieving the above object includes an optical path to which an RFID tag is attached; an optical fiber collimator for identifying a specific optical fiber from among the optical fiber cables; a splicer for connecting the optical cable of the optical path and another cable, and comprising a display unit, a sensor unit, and a communication unit; an optical power meter including a short-distance communication unit capable of measuring optical power at the final RN of the cable fused by the splicer and transmitting the measured data; A terminal capable of communicating with the optical fiber, optical fiber collator, fusion splicer, and optical power meter; and a central server that stores all data authorized from the terminal and stores GIS data and optical fiber data; Configurable including can
  • the terminal automatically generates a line number based on AI using the connected cable and the optical fiber data and GIS data of the central server and provides it to the user; Providing a user with a fusion environment with a low loss value based on AI in order to lower the loss value during fusion with a fusion splicer; recognizing the RFID tag attached to each optical cable unit to check optical path information; measuring the optical power value of each of the optical cables to be fused with an optical fiber collator, reconfirming whether the optical cable is oblique, transmitting the signal to a terminal, and providing an output; transmitting a loss value generated while splicing the optical cable to be spliced with a splicer to a terminal, and storing the loss value as accumulated data in a central server; Based on the automatically generated sequence number, all fusions are completed, measuring the optical power value with an optical power meter at the final RN, transmitting the input optical power value to the terminal, and outputting and providing the optical power value;
  • step of outputting a fusion environment with a low loss value based on AI to lower the loss value during fusion with the fusion machine and providing it to the user short-distance communication of the terminal at each fusion point including the base station cable and the fusion point Checking the tag information in the unit of the optical cable of the optical fiber through and confirming the optical cable to be fused; It may further include the step of inputting the corrected information to the tag with a terminal after the operation, and storing the data in the central server.
  • the present invention facilitates the work by attaching a short-distance communicator to the optical cable and the optical fiber unit, and the field worker converts the data lost after measuring the optical fiber to the flow rate and then saves the data to the server, so that the later worker works with the optical fiber
  • it has the effect of eliminating the inefficiency of the work that can be consumed while repeating the same work for this purpose, and shortening the work time by automatically drawing the line diagram using the optical fiber data and GIS data.
  • FIG. 1 is a block diagram of an AI-based active optical fiber management system according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of an AI-based active optical path management system according to an embodiment of the present invention.
  • FIG. 1 is a block diagram of an AI-based active optical path management system according to an embodiment of the present invention
  • FIG. 2 is a flowchart of an AI-based active optical path management system according to an embodiment of the present invention.
  • the AI-based active optical path management system is an optical fiber line 200, an optical fiber collator ( 300), a splicer 400 for connecting the optical cable of the optical line 200 with other cables, an optical power meter 500 for measuring the optical power of the cable fused with the splicer 400, and the optical path 200 ), the optical fiber collator 300, the splicer 400, the optical power meter 500 and the terminal 10 capable of communicating and the data authorized from the terminal are all stored, and GIS data and optical line data are stored and It is configured to include a central server (100).
  • the optical fiber 200 has an RFID tag attached to each of the 12 optical cables to enable short-distance communication, and the 12 optical cables are bundled into one unit, and the unit is generally composed of 12, 6 It may also consist of dogs.
  • the optical fiber collator 300 includes a communication unit capable of short-distance communication, and transmits data input during optical measurement to the terminal 10 using short-distance communication.
  • the fusion splicer 400 is provided with a communication unit capable of short-distance communication, and can transmit data input during fusion to the terminal 10 using short-distance communication.
  • a communication unit capable of short-distance communication
  • it has a display unit that can check the degree of loss of the optical cable that occurs during fusion, and includes a sensor unit that collects field data such as a temperature sensor, humidity sensor, barometric pressure sensor, and touch sensor in the fusion machine.
  • the optical power meter 500 includes a short-range communication unit capable of transmitting data, and transmits the input optical power value to the terminal 10 using wireless communication.
  • the terminal 10 can recognize the RFID tag of the optical cable of the optical path 200, collect data such as the state, location, and connection relationship of the optical cable before operation, and input the changed data into the RFID tag after operation, The changed data is transmitted to the central server 100 .
  • data authorized by the optical fiber collator 300 , data authorized by the splicer 400 , and data authorized by the optical power meter 500 are transmitted to the central server 100 .
  • the central server can manage the work contents of the optical fiber in real time.
  • the terminal 10 uses the connected cable and the optical fiber data and GIS data of the central server 100 to automatically generate a line number based on AI and provide it to the user (S11).
  • a fusion environment with a low loss value is outputted based on AI and provided to the user.
  • the tag information in the optical cable unit of the optical path 200 is checked through the short-distance communication of the terminal 10, and the optical cable to be fused is checked.
  • the optical power value of each of the optical cables to be fused is measured with the optical fiber collator 300 to recheck whether or not the wire is oblique, and transmitted to the terminal 10 and output is provided.
  • the loss value generated while the optical cable to be spliced is spliced with the splicer 400 is transmitted to the terminal, and the loss value is used as accumulated data and stored in the central server (S12).
  • the tag information in the optical cable unit of each fused optical cable is changed, the tag information is corrected with the changed data through short-distance communication of the terminal, and the modified data is transmitted to the central server.
  • the solution method is characterized by using the accumulated data in which the solutions for the accumulated defects are input.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

An AI-based active optical line management system of the present invention comprises: an optical line to which an RFID tag is attached; an optical fiber core collator for identifying a specific optical fiber in an optical fiber cable in the optical line; a fusing device configured to include a display part, a sensor part, and a communication part and connect an optical cable of the optical line to another cable; an optical power meter including a short-distance communication part capable of measuring optical power at a final RN of a cable fused by the fusing device and transmitting measured data; a terminal capable of communicating with the optical line, the optical fiber core collator, the fusing device, and the optical power meter; and a central server storing all data approved from the terminal and storing GIS data and optical line data.

Description

AI기반 능동형 광선로 관리 시스템AI-based active optical fiber management system
본 발명은 광선로 관리 시스템에 관한 것으로, 더욱 상세하게는 광선로 오류와 손실을 방지하고, 광선로 작업시 광심선 탐색 및 관리에 대한 최적화 솔루션, 그리고 선로에 대한 가장 최신 데이터를 자동으로 확보하여 작업 선번도 설계에 대한 최적화 솔루션 제공, 선로 오류발생에 대한 솔루션을 제공하기 위한 AI기반 능동형 광선로 관리 시스템에 관한 것이다.The present invention relates to an optical path management system, and more particularly, by preventing optical path errors and losses, and automatically securing the most up-to-date data on the optical line, and the optimization solution for optical fiber search and management when working with the optical line. It is about an AI-based active optical fiber management system to provide an optimization solution for the design of the work line and a solution for the occurrence of line errors.
일반적으로 광 케이블은 구리선 대비 낮은 손실, 높은 대역폭을 가지고 있어 초고속 통신망에 널리 애용되고 있다. 그런데 광 케이블은 구리선과 대비하여 낮은 기계적 특성으로 인해 신뢰성이 다소 취약한 문제가 있다. 즉, 광 케이블은 구리선과 비교하여 절단되기 쉬우며 일정 각도 이상으로 꺾이는 경우 통신이 불가능한 문제가 있다. 따라서, 광 통신망을 구축한 사업자들은 광 케이블에 장애가 발생한 경우, 광선로의 복구를 위하여 신속하게 장애 발생한 지점을 확인하고 이 장애 지점으로 인력을 투입한다. In general, optical cables are widely used in high-speed communication networks because they have lower loss and higher bandwidth than copper wires. However, optical cables have a problem in that reliability is somewhat weak compared to copper wires due to low mechanical properties. That is, the optical cable is easier to cut compared to the copper wire, and there is a problem in that communication is impossible when it is bent at a certain angle or more. Therefore, when a failure occurs in an optical cable, operators who have built an optical communication network quickly identify the failure point in order to restore the optical line and put manpower to the failure point.
또한 함체의 광선로 작업에 필요한 인입 케이블과 인출 케이블을 찾아 연결하는 작업 중, 144개의 광선로에서 적합한 케이블을 찾아 연결하는데 많은 시간이 소요되고 있다. In addition, it takes a lot of time to find and connect suitable cables from 144 optical lines during the work of finding and connecting the incoming and outgoing cables required for the optical fiber work of the enclosure.
한편 광 계측기를 통해 광선로의 장애 여부를 확인하는 기술이 개시되었다. 구체적으로 광 계측기는OTDR(OPTICAL TIME DOMAIL FDFLECTOMETER)펄스를 분배장치에 연결된 복수의 광종단 장치로 송출하고, 상기 복수의 광종단 장치로부터 반사되어 순차되어 되돌아오는 복수의 OTDR 펄스를 분석하여 각 선로의 이상 유무를 분석한다.On the other hand, a technique for checking whether the optical path is faulty through an optical meter has been disclosed. Specifically, the optical measuring device transmits OTDR (OPTICAL TIME DOMAIL FDFLECTOMETER) pulses to a plurality of optical termination devices connected to the distribution device, and analyzes a plurality of OTDR pulses that are reflected from the plurality of optical termination devices and return in sequence, Analyze for abnormalities.
또한 12개의 광케이블을 하나의 유닛으로 총 12개의 유닛으로 나누어 관리하고 있으며, 12개의 광케이블은 각각 색상이 달라 식별하기 편리하게 구성되어 있다.In addition, 12 optical cables are divided into a total of 12 units as one unit and managed, and the 12 optical cables have different colors for easy identification.
하지만 이는 작업자가 광케이블 하나하나 대조해봐야 하고, 그로 인해 작업 소요시간이 오래 걸린다는 문제점이 발생한다.However, there is a problem that the operator has to check each optical cable one by one, and it takes a long time to work.
또한, 광케이블을 찾아서 연결하더라도 최종적으로 설치할 장소까지 선번도를 수기로 작성해야 하는 문제점이 발생하며, 이로 인해 오류가 발생하는 문제점 또한 발생한다.In addition, even if an optical cable is found and connected, there is a problem in that the serial number has to be manually drawn up to the final installation place, which also causes an error.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 광케이블 각각의 유닛에 RFID Tag를 부착하여 작업을 용이하게 하고, 광심선 계측시 유실되는 데이터를 계측 후 서버전송으로 데이터를 축적하여 손실 데이터를 유량화 한 후 저량 데이터화하며, 후발 작업자가 광선로 작업시 RFID Tag를 인식하여 광선로에 대한 실시간 데이터를 현장에서 확인 가능하고, 실시간 광선로데이터와 GIS데이터를 활용하여 자동으로 선번도 설계 시 상황 따른 적합한 최적의 선번도를 제공하고, 광선로의 구축 및 문제가 발생하였을 시, 작업시간 단축 및 문제해결 솔루션을 제공하는 AI기반 능동형 광선로 관리 시스템을 제공하는 데 있다.An object of the present invention to solve the above problems is to attach an RFID tag to each unit of the optical cable to facilitate the operation, measure the data lost when measuring the optical fiber, and then accumulate the data by sending the server to the flow rate of the lost data. It is converted into low-volume data after being converted into low-volume data, and when a late worker recognizes an RFID tag when working with an optical line, real-time data about the optical path can be checked on-site. The purpose of this is to provide an AI-based active optical fiber management system that provides a blueprint of the optical fiber and provides a solution for reducing work time and solving problems when a problem arises in the construction of an optical fiber.
상기 목적을 달성하기 위한 본 발명의 AI기반 능동형 광선로 관리 시스템은 RFID Tag가 부착되어 있는 광선로; 상기 광선로 중 광섬유 케이블 중에서 특정의 광섬유를 식별하는 광심선대조기; 상기 광선로의 광케이블과 다른 케이블을 연결시키며, 디스플레이부, 센서부, 통신부를 포함하여 구성하는 융착기; 상기 융착기로 융착시킨 케이블의 최종 RN에서 광 전력을 측정하고 측정된 데이터를 전송할 수 있는 근거리통신부를 포함하는 광파워미터; 상기 광선로, 광심선대조기, 융착기, 광파워미터와 통신이 가능한 단말기;및 상기 단말기로부터 인가받은 데이터를 모두 저장하고 있으며, GIS데이터 및광선로 데이터를 저장하고 있는 중앙서버;를 포함하여 구성할 수 있다.The AI-based active optical path management system of the present invention for achieving the above object includes an optical path to which an RFID tag is attached; an optical fiber collimator for identifying a specific optical fiber from among the optical fiber cables; a splicer for connecting the optical cable of the optical path and another cable, and comprising a display unit, a sensor unit, and a communication unit; an optical power meter including a short-distance communication unit capable of measuring optical power at the final RN of the cable fused by the splicer and transmitting the measured data; A terminal capable of communicating with the optical fiber, optical fiber collator, fusion splicer, and optical power meter; and a central server that stores all data authorized from the terminal and stores GIS data and optical fiber data; Configurable including can
또한, 먼저 단말기는 연결된 케이블과 중앙서버의 광선로데이터와 GIS데이터를 이용하여 AI를 기반으로 선번도를 자동으로 생성하여 사용자에게 제공하는 단계; 융착기로 융착 시 손실도 값을 낮게 하기 위하여 AI를 기반으로 손실도 값이 낮은 융착환경을 출력하여 사용자에게 제공하는 단계; 상기 각각의 광케이블 유닛에 부착된 RFID Tag를 인식하여 광선로 정보를 확인하는 단계; 상기 각각의 융착할 광케이블을 광심선대조기로 광전력 값을 측정하여 사선 여부를 재확인하며 단말기로 전송하고 출력을 제공하는 단계; 상기 융착할 광케이블을 융착기로 융착하면서 발생한 손실도 값을 단말기로 전송하고, 손실값을 누적데이터로 활용하여 중앙서버에 저장하는 단계; 상기 자동으로 생성된 선번도를 바탕으로 모든 융착이 끝나 최종 RN에서 광파워미터로 광전력 값을 측정하여 입력된 광전력값을 단말기로 전송하고 출력하여 제공하는 단계; 각각의 광케이블의 정보를 단말기로 전송받고, 광선로에 결함이 생겼을 시 AI기반으로 해결방법을 사용자에게 제공하고, 이때 해결방법은 누적된 결함에 대한 해결책을 입력한 누적데이터를 이용하는 단계;를 포함할 수 있다.In addition, first, the terminal automatically generates a line number based on AI using the connected cable and the optical fiber data and GIS data of the central server and provides it to the user; Providing a user with a fusion environment with a low loss value based on AI in order to lower the loss value during fusion with a fusion splicer; recognizing the RFID tag attached to each optical cable unit to check optical path information; measuring the optical power value of each of the optical cables to be fused with an optical fiber collator, reconfirming whether the optical cable is oblique, transmitting the signal to a terminal, and providing an output; transmitting a loss value generated while splicing the optical cable to be spliced with a splicer to a terminal, and storing the loss value as accumulated data in a central server; Based on the automatically generated sequence number, all fusions are completed, measuring the optical power value with an optical power meter at the final RN, transmitting the input optical power value to the terminal, and outputting and providing the optical power value; The information of each optical cable is transmitted to the terminal, and when a defect occurs in the optical line, an AI-based solution is provided to the user, and the solution is to use the accumulated data inputting the solution for the accumulated defect; can
상기 융착기로 융착 시 손실도 값을 낮게 하기 위하여 AI를 기반으로 손실도 값이 낮은 융착환경을 출력하여 사용자에게 제공하는 단계에서, 기지국 케이블과 융착지점을 포함한 각각의 융착지점에서 단말기의 근거리통신을 통해 광선로의 광케이블의 유닛에 있는 Tag 정보를 확인하고 융착할 광케이블을 확인하는 단계; 작업 후 수정된 정보를 단말기로 Tag에 입력하고, 그 데이터를 중앙서버에 저장하는 단계를 더 포함할 수 있다.In the step of outputting a fusion environment with a low loss value based on AI to lower the loss value during fusion with the fusion machine and providing it to the user, short-distance communication of the terminal at each fusion point including the base station cable and the fusion point Checking the tag information in the unit of the optical cable of the optical fiber through and confirming the optical cable to be fused; It may further include the step of inputting the corrected information to the tag with a terminal after the operation, and storing the data in the central server.
이러한 특징에 따르면, 본 발명은 광케이블과 광선로유닛에 근거리 통신기를 부착하여 작업을 용이하게 하고, 현장 작업자가 광심선 계측 후 손실되는 데이터를 유량화한 후 서버에 저량화 하여 후발 작업자가 광선로 작업을 위하여 같은 작업을 반복적으로 하면서 소비될 수 있는 작업의 비효율을 일소하며, 광선로데이터와 GIS데이터를 활용하여 자동으로 선번도를 그려 작업의 시간을 단축시키는 효과가 있다. According to this feature, the present invention facilitates the work by attaching a short-distance communicator to the optical cable and the optical fiber unit, and the field worker converts the data lost after measuring the optical fiber to the flow rate and then saves the data to the server, so that the later worker works with the optical fiber For this purpose, it has the effect of eliminating the inefficiency of the work that can be consumed while repeating the same work for this purpose, and shortening the work time by automatically drawing the line diagram using the optical fiber data and GIS data.
또한, 광선로 구축과 광선로에 결함이 발생했을 시, 해결하기 위한 솔루션을 제공하여 작업시간의 단축과 비용절감의 효과가 있다.In addition, when a defect occurs in the construction of an optical path, it provides a solution to solve it, thereby reducing work time and reducing costs.
도 1은 본 발명의 일 실시예에 따른 AI기반 능동형 광선로 관리 시스템의 구성도이다. 1 is a block diagram of an AI-based active optical fiber management system according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 AI기반 능동형 광선로 관리 시스템의 순서도이다. 2 is a flowchart of an AI-based active optical path management system according to an embodiment of the present invention.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, with reference to the accompanying drawings, the embodiments of the present invention will be described in detail so that those of ordinary skill in the art to which the present invention pertains can easily implement them. However, the present invention may be embodied in several different forms and is not limited to the embodiments described herein. And in order to clearly explain the present invention in the drawings, parts irrelevant to the description are omitted, and similar reference numerals are attached to similar parts throughout the specification.
그러면 첨부한 도면을 참고로 하여 본 발명의 일 실시예에 따른 AI기반 능동형 광선로 관리 시스템을 설명한다.Then, an AI-based active optical path management system according to an embodiment of the present invention will be described with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 AI기반 능동형 광선로 관리 시스템의 구성도이고, 도 2는 본 발명의 일 실시예에 따른 AI기반 능동형 광선로 관리 시스템의 순서도이다. 1 is a block diagram of an AI-based active optical path management system according to an embodiment of the present invention, and FIG. 2 is a flowchart of an AI-based active optical path management system according to an embodiment of the present invention.
도 1과 2를 참조하면, 본 발명의 일 실시예에 따른 AI기반 능동형 광선로 관리 시스템은 광선로(200), 상기 광선로(200)중 광섬유 케이블 중에서 특정의 광섬유를 식별하는 광심선대조기(300), 상기 광선로(200)의 광케이블과 다른 케이블을 연결시키기 위한 융착기(400), 상기 융착기(400)기로 융착시킨 케이블의 광 전력을 측정하는 광파워미터(500) 및 상기 광선로(200), 광심선대조기(300), 융착기(400), 광파워미터(500)와 통신이 가능한 단말기(10) 및 상기 단말기로부터 인가받은 데이터를 모두 저장하고 있으며, GIS데이터 및광선로 데이터를 저장하고 있는 중앙서버(100)를 포함하여 구성하고 있다.1 and 2, the AI-based active optical path management system according to an embodiment of the present invention is an optical fiber line 200, an optical fiber collator ( 300), a splicer 400 for connecting the optical cable of the optical line 200 with other cables, an optical power meter 500 for measuring the optical power of the cable fused with the splicer 400, and the optical path 200 ), the optical fiber collator 300, the splicer 400, the optical power meter 500 and the terminal 10 capable of communicating and the data authorized from the terminal are all stored, and GIS data and optical line data are stored and It is configured to include a central server (100).
상기 광선로(200)는 12개의 광케이블에 근거리 통신이 가능하기 위하여 각각 RFID Tag가 부착되어 있으며, 12개의 광케이플을 하나의 유닛으로 묶여 있으며, 그 유닛은 일반적으로 12개로 구성되어 있으며, 6개로 구성되기도 한다.The optical fiber 200 has an RFID tag attached to each of the 12 optical cables to enable short-distance communication, and the 12 optical cables are bundled into one unit, and the unit is generally composed of 12, 6 It may also consist of dogs.
상기 광심선대조기(300)는 근거리 통신이 가능한 통신부를 구비하고 있으며 광계측시 입력된 데이터를 근거리 통신을 이용하여 단말기(10)로 전송한다.The optical fiber collator 300 includes a communication unit capable of short-distance communication, and transmits data input during optical measurement to the terminal 10 using short-distance communication.
상기 융착기(400)는 근거리통신이 가능한 통신부를 구비하고 있으며 융착시 입력된 데이터를 근거리통신을 이용하여 단말기(10)로 전송할 수 있다. 또한 융착시 발생하는 광케이블의 손실도를 확인할 수 있는 디스플레이부를 구비하고 있고, 융착기 내 온도센서, 습도센서, 기압센서, 터치센서 등 현장데이터를 수집하는 센서부를 포함하고 있다.The fusion splicer 400 is provided with a communication unit capable of short-distance communication, and can transmit data input during fusion to the terminal 10 using short-distance communication. In addition, it has a display unit that can check the degree of loss of the optical cable that occurs during fusion, and includes a sensor unit that collects field data such as a temperature sensor, humidity sensor, barometric pressure sensor, and touch sensor in the fusion machine.
상기 광파워미터(500)는 데이터를 전송할 수 있는 근거리통신부를 포함하여 구성하고 있으며, 입력된 광전력 값을 무선통신을 이용하여 단말기(10)로 전달한다.The optical power meter 500 includes a short-range communication unit capable of transmitting data, and transmits the input optical power value to the terminal 10 using wireless communication.
상기 단말기(10)는 상기 광선로(200)의 광케이블의 RFID Tag를 인식하여 작업 전 광케이블을 상태, 위치, 연결관계 등의 데이터를 수집하고, 작업 후 변경된 데이터를 RFID Tag에 입력할 수 있으며, 변경된 데이터를 상기 중앙서버(100)로 전송한다. 또한 광심선대조기(300)에서 인가받은 데이터와 융착기(400)에서 인가받은 데이터와 광파워미터(500)에서 인가받은 데이터를 중앙서버(100)로 전송한다.The terminal 10 can recognize the RFID tag of the optical cable of the optical path 200, collect data such as the state, location, and connection relationship of the optical cable before operation, and input the changed data into the RFID tag after operation, The changed data is transmitted to the central server 100 . In addition, data authorized by the optical fiber collator 300 , data authorized by the splicer 400 , and data authorized by the optical power meter 500 are transmitted to the central server 100 .
이를 통해 중앙서버에서는 광선로 작업내용을 실시간으로 관리가 가능하다.Through this, the central server can manage the work contents of the optical fiber in real time.
다음은 도 2를 참조하여 AI기반 능동형 광선로 관리 시스템의 시스템 순서에 관하여 상세하게 설명한다.The following will be described in detail with respect to the system sequence of the AI-based active optical fiber management system with reference to FIG.
먼저 단말기(10)는 연결된 케이블과 중앙서버(100)의 광선로데이터와 GIS데이터를 이용하여 AI를 기반으로 선번도를 자동으로 생성하여 사용자에게 제공한다(S11).First, the terminal 10 uses the connected cable and the optical fiber data and GIS data of the central server 100 to automatically generate a line number based on AI and provide it to the user (S11).
이때, 융착기(400)로 융착 시 손실도 값을 낮게 하기 위하여 AI를 기반으로 손실도 값이 낮은 융착환경을 출력하여 사용자에게 제공한다.At this time, in order to lower the loss value during welding with the fusion splicer 400, a fusion environment with a low loss value is outputted based on AI and provided to the user.
먼저 기지국 케이블과 융착지점을 포함한 각각의 융착지점에서 단말기(10)의 근거리통신을 통해 광선로(200)의 광케이블의 유닛에 있는 Tag 정보를 확인하고 융착할 광케이블을 확인한다.First, at each fusion point including the base station cable and the fusion point, the tag information in the optical cable unit of the optical path 200 is checked through the short-distance communication of the terminal 10, and the optical cable to be fused is checked.
이때, 근거리통신은 RFID와 NFC를 사용하는 것이 바람직하여 이에 한정하지 않는다. In this case, since it is preferable to use RFID and NFC for short-distance communication, it is not limited thereto.
상기 각각의 융착할 광케이블을 광심선대조기(300)로 광전력 값을 측정하여 사선 여부를 재확인하며 단말기(10)로 전송하고 출력을 제공한다.The optical power value of each of the optical cables to be fused is measured with the optical fiber collator 300 to recheck whether or not the wire is oblique, and transmitted to the terminal 10 and output is provided.
이때 융착할 광케이블을 융착기(400)로 융착하면서 발생한 손실도 값을 단말기로 전송하고, 손실값을 누적데이터로 활용하여 중앙서버에 저장해둔다(S12).At this time, the loss value generated while the optical cable to be spliced is spliced with the splicer 400 is transmitted to the terminal, and the loss value is used as accumulated data and stored in the central server (S12).
이때 각각의 융착된 광케이블은 광선로의 광케이블 유닛에 있는 Tag 정보가변경될 경우 단말기의 근거리 통신을 통해 변경된 데이터로 Tag 정보를 수정하고, 수정된 데이터를 중앙서버로 전송한다.At this time, when the tag information in the optical cable unit of each fused optical cable is changed, the tag information is corrected with the changed data through short-distance communication of the terminal, and the modified data is transmitted to the central server.
상기 자동으로 생성된 선번도를 바탕으로 모든 융착이 끝나 최종 RN(Remote Node)에서 광파워미터(500)로 광전력 값을 측정하여 입력된 광전력값을 단말기(10)로 전송하고 출력하여 제공한다(S13).Based on the automatically generated line number, all fusions are completed and the optical power value is measured with the optical power meter 500 at the final RN (Remote Node), and the input optical power value is transmitted to the terminal 10 and outputted. do (S13).
마지막으로 각각의 광케이블의 정보를 단말기(10)로 전송받고, 광선로(200)에 결함이 생겼을 시 AI기반으로 해결방법을 사용자에게 제공한다(S14). 이때 해결방법은 누적된 결함에 대한 해결책을 입력한 누적데이터를 이용하는 것을 특징으로 한다. Finally, information of each optical cable is transmitted to the terminal 10, and when a defect occurs in the optical path 200, an AI-based solution is provided to the user (S14). In this case, the solution method is characterized by using the accumulated data in which the solutions for the accumulated defects are input.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto. is within the scope of the right.

Claims (3)

  1. RFID Tag가 부착되어 있는 광선로; Optical fiber with RFID tag attached;
    상기 광선로 중 광섬유 케이블 중에서 특정의 광섬유를 식별하는 광심선대조기; an optical fiber collimator for identifying a specific optical fiber from among the optical fiber cables;
    상기 광선로의 광케이블과 다른 케이블을 연결시키며, 디스플레이부, 센서부, 통신부를 포함하여 구성하는 융착기; a splicer for connecting the optical cable of the optical path and another cable, and comprising a display unit, a sensor unit, and a communication unit;
    상기 융착기로 융착시킨 케이블의 최종 RN에서 광 전력을 측정하고 측정된 데이터를 전송할 수 있는 근거리통신부를 포함하는 광파워미터;an optical power meter including a short-distance communication unit capable of measuring optical power at the final RN of the cable fused by the splicer and transmitting the measured data;
    상기 광선로, 광심선대조기, 융착기, 광파워미터와 통신이 가능한 단말기;및A terminal capable of communicating with the optical fiber, optical fiber collator, fusion splicer, and optical power meter; and
    상기 단말기로부터 인가받은 데이터를 모두 저장하고 있으며, GIS데이터 및광선로 데이터를 저장하고 있는 중앙서버;를 포함하여 구성하는 것을 특징으로 하는 AI기반 능동형 광선로 관리 시스템.AI-based active optical path management system comprising a; a central server that stores all of the data authorized by the terminal and stores GIS data and optical fiber data.
  2. 먼저 단말기는 연결된 케이블과 중앙서버의 광선로데이터와 GIS데이터를 이용하여 AI를 기반으로 선번도를 자동으로 생성하여 사용자에게 제공하는 단계;First, the terminal automatically generates a line number based on AI using the connected cable and optical fiber data and GIS data of the central server and provides it to the user;
    융착기로 융착 시 손실도 값을 낮게 하기 위하여 AI를 기반으로 손실도 값이 낮은 융착환경을 출력하여 사용자에게 제공하는 단계;Providing a user with a fusion environment with a low loss value based on AI in order to lower the loss value during fusion with a fusion splicer;
    상기 각각의 광케이블 유닛에 부착된 RFID Tag를 인식하여 광선로 정보를 확인하는 단계;recognizing the RFID tag attached to each optical cable unit to check optical path information;
    상기 각각의 융착할 광케이블을 광심선대조기로 광전력 값을 측정하여 사선 여부를 재확인하며 단말기로 전송하고 출력을 제공하는 단계;measuring the optical power value of each of the optical cables to be fused with an optical fiber collator, reconfirming whether the optical cable is oblique, transmitting the signal to a terminal, and providing an output;
    상기 융착할 광케이블을 융착기로 융착하면서 발생한 손실도 값을 단말기로 전송하고, 손실값을 누적데이터로 활용하여 중앙서버에 저장하는 단계;transmitting a loss value generated while splicing the optical cable to be spliced with a splicer to a terminal, and storing the loss value as accumulated data in a central server;
    상기 자동으로 생성된 선번도를 바탕으로 모든 융착이 끝나 최종 RN에서 광파워미터로 광전력 값을 측정하여 입력된 광전력값을 단말기로 전송하고 출력하여 제공하는 단계;Based on the automatically generated sequence number, all fusions are completed, measuring the optical power value with an optical power meter at the final RN, transmitting the input optical power value to the terminal, and outputting and providing the optical power value;
    각각의 광케이블의 정보를 단말기로 전송받고, 광선로에 결함이 생겼을 시 AI기반으로 해결방법을 사용자에게 제공하고, 이때 해결방법은 누적된 결함에 대한 해결책을 입력한 누적데이터를 이용하는 단계;를 포함하여 구성하는 것을 특징으로 하는 AI기반 능동형 광선로 관리 시스템.The information of each optical cable is transmitted to the terminal, and when a defect occurs in the optical line, an AI-based solution is provided to the user, and the solution is to use the accumulated data inputting the solution for the accumulated defect; AI-based active optical fiber management system, characterized in that it comprises.
  3. 상기 융착기로 융착 시 손실도 값을 낮게 하기 위하여 AI를 기반으로 손실도 값이 낮은 융착환경을 출력하여 사용자에게 제공하는 단계에서,In the step of outputting a fusion environment with a low loss value based on AI in order to lower the loss value during fusion with the splicer and providing it to the user,
    기지국 케이블과 융착지점을 포함한 각각의 융착지점에서 단말기의 근거리통신을 통해 광선로의 광케이블의 유닛에 있는 Tag 정보를 확인하고 융착할 광케이블을 확인하는 단계;Checking the tag information in the optical cable unit of the optical fiber through short-distance communication of the terminal at each fusion point including the base station cable and the fusion point and confirming the optical cable to be fused;
    작업 후 수정된 정보를 단말기로 Tag에 입력하고, 그 데이터를 중앙서버에 저장하는 단계를 더 포함하는 것을 특징으로 하는 AI기반 능동형 광선로 관리 시스템.AI-based active optical fiber management system, characterized in that it further comprises the step of inputting the corrected information to the tag after the operation, and storing the data in the central server.
PCT/KR2020/019258 2020-10-12 2020-12-29 Ai-based active optical line management system WO2022080592A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200131324 2020-10-12
KR10-2020-0131324 2020-10-12

Publications (1)

Publication Number Publication Date
WO2022080592A1 true WO2022080592A1 (en) 2022-04-21

Family

ID=81208231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/019258 WO2022080592A1 (en) 2020-10-12 2020-12-29 Ai-based active optical line management system

Country Status (1)

Country Link
WO (1) WO2022080592A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116545864A (en) * 2023-07-06 2023-08-04 国网浙江省电力有限公司湖州供电公司 Data processing method and platform suitable for optical cable line management system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058474A (en) * 2004-08-18 2006-03-02 Furukawa Electric Co Ltd:The Optical fiber cutting system, optical fiber fusion splice machine, optical fiber cutting splicing system, optical fiber processing management method, optical fiber holding implement, and optical fiber reinforcement system
JP2012159536A (en) * 2011-01-28 2012-08-23 Chugoku Electric Power Co Inc:The Coated optical fiber fusion system and coated optical fiber fusion method
KR20140070995A (en) * 2012-12-03 2014-06-11 주식회사 씨티네트웍스 Optical Cable Connecting Case Monitoring System and Method
JP2019086461A (en) * 2017-11-09 2019-06-06 日立金属株式会社 Optical cable monitoring system
JP2019159017A (en) * 2018-03-09 2019-09-19 Kddi株式会社 Aligning device of multi-core optical fiber and training data generation device for the same
JP2020020997A (en) * 2018-08-02 2020-02-06 古河電気工業株式会社 Fusion splicing system, fusion splicing machine, and optical fiber category discrimination method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058474A (en) * 2004-08-18 2006-03-02 Furukawa Electric Co Ltd:The Optical fiber cutting system, optical fiber fusion splice machine, optical fiber cutting splicing system, optical fiber processing management method, optical fiber holding implement, and optical fiber reinforcement system
JP2012159536A (en) * 2011-01-28 2012-08-23 Chugoku Electric Power Co Inc:The Coated optical fiber fusion system and coated optical fiber fusion method
KR20140070995A (en) * 2012-12-03 2014-06-11 주식회사 씨티네트웍스 Optical Cable Connecting Case Monitoring System and Method
JP2019086461A (en) * 2017-11-09 2019-06-06 日立金属株式会社 Optical cable monitoring system
JP2019159017A (en) * 2018-03-09 2019-09-19 Kddi株式会社 Aligning device of multi-core optical fiber and training data generation device for the same
JP2020020997A (en) * 2018-08-02 2020-02-06 古河電気工業株式会社 Fusion splicing system, fusion splicing machine, and optical fiber category discrimination method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116545864A (en) * 2023-07-06 2023-08-04 国网浙江省电力有限公司湖州供电公司 Data processing method and platform suitable for optical cable line management system
CN116545864B (en) * 2023-07-06 2023-09-05 国网浙江省电力有限公司湖州供电公司 Data processing method and platform suitable for optical cable line management system

Similar Documents

Publication Publication Date Title
CN101291176B (en) Fault detection method, system and apparatus for optical distributed network
US10931394B2 (en) Optical-fiber link routing look-up method, fault detection method and diagnostic system
US20070103670A1 (en) Fault detection in optical fibers
CN111082859B (en) LoRa technology-based optical cable fault positioning method in power channel
CN111130633B (en) Optical cable fault positioning method in power channel based on NB-IoT technology
CN104579459A (en) Fiber link identification method, equipment and system
EP2472746A1 (en) Method, device and system for detecting the connection state of fiber optic jumper
WO2022080592A1 (en) Ai-based active optical line management system
CN210724803U (en) Optical cable fault positioning system in power channel based on LoRa technology
CN105337656A (en) Optical network connection relation determination method, equipment and system
CN116582180B (en) Task execution method and device of optical fiber wiring robot, electronic equipment and medium
CN213585782U (en) Optical fiber transmission equipment
US11349563B2 (en) Communication monitor method and communication monitor device
CN102611498A (en) Method and device for transmitting optical fiber identity, method and device for receiving optical fiber identity and method and device for detecting optical fibers
CN108768530A (en) A kind of data transfer control system and its method of fiber optical transceiver
KR102566847B1 (en) Ai applied active fiber optic network management system and method thereof
CN111934754A (en) Optical cable on-line monitoring alarm management calling system
Nazarov et al. The device for diagnostics of optical fiber cables
CN105915281A (en) Fiber core information acquisition equipment and method and system
CN112332910B (en) Fault detection method, device and equipment
CN103384166B (en) The fiber port line order tester of Optical Access Network
CN211127810U (en) Power channel in-optical cable fault positioning system based on NB-IoT technology
CN203399116U (en) Optical fiber port line sequence tester of optical fiber access network
EP3834375A1 (en) Systems and methods for automated network cabling integrity monitoring
KR101744331B1 (en) Apparatus for check of remote node in PON

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20957836

Country of ref document: EP

Kind code of ref document: A1