WO2022080504A1 - Determination device, learning device, determination method, learning method, and control program - Google Patents

Determination device, learning device, determination method, learning method, and control program Download PDF

Info

Publication number
WO2022080504A1
WO2022080504A1 PCT/JP2021/038423 JP2021038423W WO2022080504A1 WO 2022080504 A1 WO2022080504 A1 WO 2022080504A1 JP 2021038423 W JP2021038423 W JP 2021038423W WO 2022080504 A1 WO2022080504 A1 WO 2022080504A1
Authority
WO
WIPO (PCT)
Prior art keywords
grains
determination
image
concentration
grain
Prior art date
Application number
PCT/JP2021/038423
Other languages
French (fr)
Japanese (ja)
Inventor
めぐみ 吉田
宏樹 藤岡
哲也 山田
Original Assignee
国立研究開発法人農業・食品産業技術総合研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人農業・食品産業技術総合研究機構 filed Critical 国立研究開発法人農業・食品産業技術総合研究機構
Priority to JP2022557520A priority Critical patent/JPWO2022080504A1/ja
Publication of WO2022080504A1 publication Critical patent/WO2022080504A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present invention relates to a determination device, a learning device, a determination method, a learning method, and a control program.
  • mycotoxins such as Fusarium head blight were infected or propagated, and part or all of the harvest was contaminated with mycotoxins. Things may get mixed in.
  • Patent Document 1 discloses a color sorter that sorts red mold wheat by irradiating raw wheat with near-infrared light. Further, Patent Document 2 discloses a method of classifying the level of contamination in a cereal grain by performing multivariate data analysis on the diffused light absorption spectrum of the cereal grain.
  • the inventor of the present application has decided to attempt image discrimination by machine learning using a data set of image data and mold poison concentration data for each grain of Fusarium head blight-infected barley grains whose appearance symptoms are generally not clear. As a result, contrary to expectations, it was shown that it is possible to distinguish between highly contaminated mycotoxins and non-contaminated grains at a level to be removed from the harvest. After that, it was shown that it is possible to distinguish between highly contaminated mycotoxins and uncontaminated or low-concentrated mycotoxins under other analysis conditions, and the findings of the present invention were obtained.
  • One aspect of the present invention is to improve the efficiency and accuracy in determination of mycotoxin concentration or degree of contamination of cereals such as wheat and other granular agricultural products, and selection and removal of mycotoxins contaminated grains based on the determination. do.
  • the determination device includes an acquisition unit that acquires an image containing one or more grains of the granular agricultural product, and a mycotoxin in the grains of the granular agricultural product to which the image is input.
  • an acquisition unit that acquires an image containing one or more grains of the granular agricultural product, and a mycotoxin in the grains of the granular agricultural product to which the image is input.
  • a trained machine learning model that outputs the judgment result regarding the concentration or the degree of contamination for each grain, (1) each grain or the whole of one or more grains of the granular agricultural product is equal to or more than a predetermined reference value or a predetermined value.
  • the learning device includes an image containing one or more grains of the granular agricultural product, and concentration information indicating the mycotoxin concentration or the degree of contamination of each grain of the granular agricultural product.
  • a machine learning model in which an image containing one or more grains of a granular agricultural product is input and a judgment result regarding the mycotoxin concentration or the degree of contamination in the grains of the granular agricultural product is output for each grain. It is provided with a learning unit for learning by using the set of the image and the density information acquired by the acquisition unit as teacher data.
  • the determination method includes an acquisition step of acquiring an image containing one or more grains of the granular agricultural product, and a mycotoxin in the grains of the granular agricultural product to which the image is input.
  • a trained machine learning model that outputs the judgment result regarding the concentration or the degree of contamination for each grain, (1) each grain or the whole of one or more grains of the granular agricultural product is equal to or more than a predetermined reference value or a predetermined value. It includes a determination step of determining whether or not the product is contaminated with mycotoxins in the concentration range, or (2) determining the concentration or degree of mycotoxins of one or more individual grains or the entire grain of the granular agricultural product.
  • the learning method includes an image containing one or more grains of the granular agricultural product, and concentration information indicating the mycotoxin concentration or the degree of contamination of each grain of the granular agricultural product.
  • the acquisition step is to acquire the machine learning model in which an image containing one or more grains of the granular agricultural product is input and the judgment result regarding the mycotoxin concentration or the degree of contamination in the grains of the granular agricultural product is output for each grain. It includes a learning step in which a set of the image and density information acquired in the step is used as teacher data for learning.
  • the present invention it is possible to improve the efficiency and accuracy in determining the mycotoxin concentration or the degree of contamination of cereals such as wheat and other granular agricultural products, and selecting and removing contaminated grains based on the determination.
  • FIG. 1 It is a functional block diagram of the determination device (learning device) which concerns on embodiment of this invention. It is a figure which shows an example of the image of the grain unit of the harvested wheat. It is a flowchart which shows the flow of the determination processing example which concerns on embodiment of this invention. It is a flowchart which shows the flow of the learning processing example which concerns on embodiment of this invention. It is a figure which shows the information about the sample of wheat used in Example 1 and the like. It is a figure which shows the number of images for every contamination density
  • FIG. 1 shows the sample of wheat used in Example 1 and the like.
  • FIG. It is
  • FIG. It is a figure which shows the result of the determination process which concerns on Example 3.
  • FIG. It is a figure which shows the result of the determination process which concerns on Example 4.
  • FIG. It is a figure which shows the result of the determination process which concerns on Example 4.
  • FIG. It is a figure which shows the result of the determination process which concerns on Example 4.
  • FIG. It is a figure which shows the information about the barley sample used as the teacher data and the test data set of Example 5.
  • the grain to be processed contained in the image is DON (deoxynivalenol), NIV (nivalenol), or the like, which is equal to or higher than a predetermined reference value or in a predetermined concentration range from a certain concentration to a certain concentration.
  • a determination device capable of determining whether or not it is contaminated with mycotoxins will be described.
  • the subject will be described as being wheat as an example, but the subject is not limited to this, and as will be described later, the processing target of the determination device (learning device) may be other cereals such as corn. , Other various granular agricultural products may be used.
  • the determination device (learning device) 1 according to the present embodiment will be described. Further, in the following description, the names are not distinguished even when the determination device 1 functions as a learning device.
  • FIG. 1 is a functional block diagram of the determination device 1 according to the present embodiment.
  • the determination device 1 includes a control unit 10, a storage unit 20, an action unit 22, an imaging unit 24, a measurement unit 26, an input unit 28, and a display unit 30.
  • the control unit 10 is a control device that controls the entire determination device 1, and also functions as an acquisition unit 12, a determination unit 14, and a learning unit 16.
  • the acquisition unit 12 acquires an image containing one or more grains of the harvested wheat and concentration information indicating the mycotoxin concentration or the degree of contamination of each grain of the wheat.
  • mycotoxin concentration (mycotoxin concentration)" referred to here is the weight of the target mycotoxin contained in the target individual grain or the entire target grain (individual grain or multiple grains) in the entire target grain (individual grain or multiple grains). It is a value calculated as a ratio (target mycotoxin weight per unit weight), and the "mycotoxin degree” indicates the degree of mycotoxin contamination that can have a certain range, but includes the above-mentioned "mycotoxin concentration”. In some cases.
  • FIG. 2 shows an example of the above image.
  • the original image in FIG. 2 is an RGB color image, but is shown here in grayscale.
  • the images included in the image group 50 of FIG. 2 show images of uncontaminated grains (barley) not contaminated with mycotoxins, and the images included in the image group 52 are images of mycotoxins contained in the grains (mycotoxins). Images of highly contaminated granules (barley) having a total of DON and NIV, which are trichothecene mycotoxins produced by Fusarium head blight, exceeding 5 ppm ( ⁇ g / g) are shown. Further, in the image groups 50 and 52, the upper 6 images are the images on the front side of the grain, and the lower 6 images are the images on the back side of the grain.
  • the surface having the "grain groove” (also called “abdominal groove”, which is a groove in the vertical direction) of the grain is referred to as the "back side", and the surface without the grain groove is referred to as the "front side”.
  • the grain of wheat such as barley and wheat has a grain groove (belly groove), and the front side and the back side are distinguished due to the structure of the grain, but the grain of corn and rice has no grain groove and is flat. When the grains are arranged on top, the distinction between the front side and the back side does not occur.
  • wheat includes barley (also referred to as oat and oat), rye, and triticale.
  • a bulk sample of wheat As a bulk sample of wheat (here, a set of grain samples is referred to as a bulk sample), an image containing tens to thousands of wheat grains, for example, one grain by the control unit 10.
  • the configuration may be such that each image is divided and processed.
  • the images acquired by the acquisition unit 12 include an image for learning which is teacher data in the learning of the machine learning model, and an image for determination which is a determination target of the mold poison concentration or the degree of contamination of wheat grains in the image. There is an image.
  • the grains of wheat may be simply referred to as "wheat grains", and the grains of cereals and other granular agricultural products may be simply referred to as "cereals" or "grains”.
  • the wheat grain may be barley or bare barley of two-row or six-row barley, wheat or the like. That is, the acquisition unit 12 can acquire, for example, an image containing one or more grains of harvested, peeled or peeled barley.
  • the determination unit 14 uses a trained machine learning model in which an image acquired by the acquisition unit 12 is input and outputs a determination result regarding the mycotoxin concentration or the degree of contamination in the wheat grains contained in the image, and the wheat grains are predetermined. Determine if it is contaminated with mycotoxins above the reference value or within the specified concentration range.
  • the determination result regarding the mycotoxin concentration or the degree of contamination in the wheat grain is, for example, when the wheat grain is classified according to the estimated value of the mycotoxin concentration in the wheat grain or the degree of contamination in each specific range, the wheat grain. May contain information indicating which class a is classified into.
  • the learning unit 16 uses a set of learning images acquired by the acquisition unit 12 and concentration information indicating the mold poison concentration or the degree of contamination of each grain of wheat as teacher data, and one or more grains of the harvested wheat grains. An image containing the above is input, and a machine learning model is trained in which the determination result regarding the mold poison concentration or the degree of contamination in the wheat grain is output for each grain.
  • the determination method executed by the determination unit 14 and the machine learning method executed by the learning unit 16 are not limited to specific methods, and for example, CNN (Convolutional Neural Network), RNN (Recurrent Neural Network), or the like is used. It may be. CNN and RNN are positioned as neural networks and deep learning (methods) among machine learning methods. Moreover, either classification or regression model may be used.
  • the input data may be pre-processed and used for input to the machine learning model.
  • processing for example, when a neural network such as CNN is used, in addition to two-dimensional arrangement or multi-dimensional arrangement of data, various data augmentation (Data Augmentation), brightness, color tone, and Techniques such as adjustment of image quality and angle of an object, object detection for extracting an object area, background removal, and segmentation can be used.
  • Data Augmentation data augmentation
  • brightness brightness
  • color tone color tone
  • Techniques such as adjustment of image quality and angle of an object, object detection for extracting an object area, background removal, and segmentation can be used.
  • a convolution layer for performing a convolution operation is provided as one or more layers (layers) included in the neural network, and a filter operation (multiply-accumulate operation) is performed on the input data input to the layer. It may be configured to be performed. Further, when performing the filter calculation, a process such as padding may be used in combination, or an appropriately set stride width may be adopted.
  • any of the following machine learning methods or a combination thereof may be used.
  • the storage unit 20 is a storage device that stores various types of information, and is, for example, a parameter set that defines the machine learning model described above, and whether or not the wheat grains are contaminated with mycotoxins of a predetermined value or higher or a predetermined concentration range. Stores information and the like indicating a predetermined reference value as a reference. Further, for example,
  • the acting unit 22 is a mechanism for aligning the target wheat grains in a predetermined direction based on the control by the control unit 10.
  • the acting unit 22 can be realized as an arm or a roller that exerts a physical action on the wheat grains that are stationary with respect to the ground plane.
  • the photographing unit 24 is a mechanism as a camera that photographs images such as wheat grains based on the control by the control unit 10. Further, the photographing unit 24 photographs an image of wheat grains in which the acting unit 22 aligns the orientation, and supplies the image to the acquisition unit 12.
  • the photographing unit 24 may operate as an ultraviolet camera or an infrared camera, and may be configured to capture an image of wheat grains in the ultraviolet or infrared region.
  • the determination unit 14 may be configured to make a determination using a machine learning model learned by using an image containing one or a plurality of grains of wheat captured in the ultraviolet or infrared region as teacher data. ..
  • the determination device 1 can perform more suitable determination processing by referring to information in the ultraviolet or infrared region that cannot be perceived by the naked eye. Further, by the action of the action unit 22 and the photographing unit 24, the acquisition unit 12 can acquire an image of the target wheat grain aligned in a predetermined direction.
  • the measuring unit 26 measures the mycotoxin concentration or the degree of contamination of the target wheat grain, estimates it by another method regardless of a chemical analysis method or an immunological method, and supplies the measurement result to the acquisition unit 12.
  • the measurement result means concentration information indicating the mycotoxin concentration or the degree of contamination of wheat grains.
  • the input unit 28 is an interface for performing an operation or inputting information to the determination device 1.
  • a part of the input unit 28 can be realized as a device such as a keyboard or a mouse that accepts an operation on the determination device 1.
  • the display unit 30 is a display panel that displays text, moving images, and the like based on the control of the control unit 10.
  • the display unit 30 may be configured to realize some functions of the input unit 28 as a touch panel.
  • the processing target of the determination device 1 is not limited to wheat, but corn, rice (including paddy, brown rice, milled rice), miscellaneous grains (including buckwheat, dattan buckwheat, peanut, etc.), or Targets other cereals such as beans (including buckwheat) and granular agricultural products such as seeds and fruits of various crops including nuts or peanuts, coffee beans, cacao beans, nutmegs (seed or seeds), peppers, etc.
  • the target granular agricultural product may be either with a shell or after removing the shell, and may be processed by grinding or the like. But it may be.
  • brown barley or refined barley may be used, and in the case of barley, malt, roasted grains for barley tea, round barley, pressed barley, rice grain barley (cut barley) or the like may be used.
  • grains harvested before the optimum harvest time of each target crop may be targeted.
  • various mold poisons other than DON / NIV due to Fusarium head blight and various mold poisons other than red mold including aflatoxin, fumonisin, zearalenone, ochratoxin, T-2 toxin, HT-2 toxin, etc.
  • the configuration may be such that a plurality of items are continuously or simultaneously performed.
  • mycotoxins individual grains or all of the multiple grains may be contaminated with multiple types of mycotoxins at the same time, but if necessary, these multiple mycotoxins may be added up for judgment. good.
  • DON and NIV which are trichothecene-based (of which type B) mycotoxins, are particularly important as mycotoxins caused by Fusarium head blight in wheat, and these mycotoxins are chemically modified derivatives (various acetyls).
  • the body and glycoxin may accumulate in wheat grains at the same time as DON and NIV. If these substances are measured individually in association with DON or NIV in the grains used for teacher data, they may be treated together with individual DON or NIV as necessary (and at that time, of each substance). It may be added up using a converted value that reflects the ratio of the molecular weights of DON and NIV to the molecular weight).
  • the use of the granular agricultural product to be treated is not limited to food and feed, but may be for seeds, industrial use, and the like.
  • secondary sorting (judgment) is performed after removing the target grains such as mycotoxin-contaminated grains to the extent possible by other methods such as color sorting in wheat where the appearance of the mycotoxin-contaminated grains can be distinguished to some extent.
  • the determination according to the present invention may be applied as a method.
  • this judgment can be applied after sorting without images such as grain thickness sorting and specific gravity sorting, or after sorting inappropriate grains such as foreign substances, colored grains, and immature grains by other methods or image-based methods, or.
  • the determination according to the present invention may be applied.
  • target grains under conditions unsuitable for normal judgment such as the water content exceeding the appropriate range, may be detected in advance or simultaneously by the judgment according to the present invention or another method, or the judgment may be corrected. You may.
  • the target is not necessarily limited to grains after harvesting, but for crops such as barley (barley) whose grains to be harvested are exposed at the time of fluffing in the field, for example, smartphones and drones in the field before harvesting.
  • crops such as barley (barley) whose grains to be harvested are exposed at the time of fluffing in the field, for example, smartphones and drones in the field before harvesting.
  • An image taken by a camera mounted on a harvester or the like may be used to make a determination on the target grain contained in the image. In this case, image processing different from that at the time of determination of the object after harvesting, correction of determination, and the like may be performed.
  • the determination device 1 may be configured to be realized by a plurality of independent devices.
  • the device that performs the determination process and the device that performs the learning process may be realized as separate devices, and the devices may be interlocked with each other.
  • the determination device 1 may not be provided with the acting unit 22, and the user may manually perform the processing of the acting unit 22 as needed.
  • the determination device 1 may be configured to be mounted on, for example, a sorting machine for sorting granular agricultural products, or may be configured to be realized as a device different from the sorting machine.
  • the determination device 1 refers to an image of grains of granular agricultural products to be determined (here, an example of wheat, which may be hereinafter referred to as wheat grains), and the wheat grains are equal to or higher than a predetermined reference value.
  • a determination process for determining whether or not mycotoxins are contaminated using a neural network here, a regression model
  • FIG. 3 is a flowchart showing the flow of processing in this example.
  • step S101 the acting unit 22 performs a process of aligning the wheat grains to be determined by the determination device 1 in a predetermined direction.
  • the predetermined orientation may be one or a plurality of orientations.
  • step S102 the photographing unit 24 photographs an image of wheat grains in which the acting unit 22 aligns the directions. Further, the acquisition unit 12 acquires an image taken by the photographing unit 24.
  • step S103 the determination unit 14 determines the orientation (front side, back side, etc.) of the wheat grains contained in the image acquired by the acquisition unit 12 with reference to, for example, the information supplied from the action unit 22, and then determines.
  • the image is input to the trained neural network according to the orientation of the wheat grain.
  • a suitable neural network learned by using images of wheat grains having the same orientation can be used for the determination process.
  • wheat grains such as barley and wheat have grain grooves (belly grooves) that can be clearly confirmed from the outside, and there is a distinction between the front side and the back side due to the structure of the grains.
  • the grain in the image may be affected by whether it is the front side or the back side during learning or judgment.
  • the "direction" of the wheat grain here may include not only the front side and the back side, but also the side surface, the tip side, the base side, and the directions having various angles and directions in which they can be confirmed on the image. I will do it.
  • step S104 the determination unit 14 compares the determination result regarding the mycotoxin concentration of the wheat grain output from the neural network with the predetermined reference value stored in the storage unit 20, and the wheat grain is predetermined. Determine if it is contaminated with mycotoxins above the reference value or within the specified concentration range. Further, in this step S104, the control unit 10 causes the display unit 30 to display information indicating the determination result.
  • the image input by the determination unit 14 to the trained neural network may contain a plurality of wheat grains.
  • the determination regarding the mycotoxin concentration may be performed for each wheat grain, and the determination result may be output.
  • the determination method executed by the determination device 1 relates to the acquisition step of acquiring an image containing one or more grains of the harvested granular agricultural product, and the mycotoxin concentration in the grains of the granular agricultural product to which the image is input.
  • a trained neural network that outputs the determination result for each grain, it is determined whether or not one or more grains of the granular agricultural product are contaminated with mycotoxins above a predetermined reference value or in a predetermined concentration range.
  • the determination unit 14 determines the degree of mycotoxin contamination and estimates the mycotoxin concentration by referring to one or more determination results by itself or the output of a plurality of neural networks. May be. Further, the comprehensive judgment may be performed using the judgment results of a plurality of orientations for each grain, or each based on a plurality of types of images (for example, a multispectral image in the visible light region and an image captured in the infrared region). Comprehensive judgment may be performed using the judgment results of different machine learning models. In addition, the determination unit 14 acquires an image containing tens to thousands of wheat grains as a bulk sample, and uses methods such as object detection, background removal, and segmentation to remove individual grains in the bulk sample.
  • the mold poison concentration or the degree of contamination of each grain is determined.
  • the degree of contamination may be determined or the mold poison concentration of the entire bulk sample may be estimated.
  • the determination unit 14 may determine whether or not one or a plurality of individual grains of the granular agricultural product or the entire bulk sample is contaminated with mycotoxins above a predetermined reference value or in a predetermined concentration range.
  • step S103 the determination unit 14 determines whether the wheat seed (for example, wheat or barley, and if it is barley, whether it is barley or bare barley, or whether it is two-row barley or six-row barley. ) Or, after determining the direction of the barley grains, the image acquired from the acquisition unit 12 may be input to the trained neural network corresponding to each.
  • the wheat seed for example, wheat or barley, and if it is barley, whether it is barley or bare barley, or whether it is two-row barley or six-row barley.
  • the determination unit 14 has an estimated mycotoxin concentration of one or more individual grains of the granular agricultural product contained in the input image, which is equal to or higher than the predetermined reference value, or is equal to or higher than the predetermined reference value. If the probability of being contaminated with mycotoxins is equal to or higher than the set probability threshold, it is determined that the individual grains are contaminated with mycotoxins of the predetermined reference value or higher. May be good.
  • the probability threshold here is a value of what percentage or more the probability that it is estimated to belong to a predetermined classification class when the target grain is determined by the trained machine learning model (in this case, the classification model). For example, the threshold value for classifying into the relevant class is shown.
  • the probability threshold here is, for example, if the probability that the target barley grain is estimated (classified) as a highly contaminated grain having a predetermined reference value or more is 0% or more, the barley grain is concerned. Indicates the threshold value for determining whether is a highly contaminated grain.
  • the determination unit 14 determines whether or not one or a plurality of individual grains of the granular agricultural product are contaminated with mycotoxins above a predetermined reference value using a predetermined determination threshold value.
  • the predetermined reference value and the probability threshold value are examples of the determination threshold value.
  • the determination threshold value may be set by the determination unit 14.
  • an image containing one or more grains of the granular agricultural product is input, and the individual grains of the one or more grains of the granular agricultural product have a predetermined reference value or more. It may be configured to output the probability of being contaminated with mycotoxins.
  • the determination unit 14 may calculate the selection yield corresponding to each of one or more determination threshold values for the set of grains to be determined.
  • the sorting yield is determined by the determination unit 14 that the set of grains to be determined, that is, one or more grains of the granular agricultural product, is not contaminated with mycotoxins of a predetermined reference value or more.
  • the ratio of grains ratio of number of grains or ratio of number of grains images or its weight ratio.
  • the sorting yield (grain number ratio) (%) is calculated by the formula of (1- (the number of grains determined by the determination device to be highly contaminated grains / the number of grains to be determined)) ⁇ 100.
  • the teacher data the grain weight data corresponding to each grain image, or the average grain weight of low-concentration contaminated grains or uncontaminated grains less than a predetermined reference value in the same sample lot of the grain image is used as a reference.
  • each grain weight or low concentration is obtained from each grain image to be determined. It is also possible to estimate the relative grain weight ratio (to contaminated or uncontaminated grains).
  • the sorting yield (weight ratio) (%) is set to (1- (total grain weight (estimated value) of the grain image determined by the judgment device as a highly contaminated grain / judgment target). (Total grain weight (estimated value) of whole grain image)) ⁇ 100 and (1- (Total value of relative grain weight ratio (estimated value) of grain image judged as high-concentration contaminated grain by the judgment device / judgment target It may be calculated (estimated) by a formula of (total value)) ⁇ 100 of the relative grain weight ratio (estimated value) of the whole grain image.
  • the relative grain weight ratio data tends to be smaller than 1 in the mycotoxin-concentrated grains, for example, in wheat, which is generally considered to have a large effect of reducing mycotoxins by specific weight sorting. ..
  • the formula of the sorting yield (grain number ratio) (%) is corrected by using the coefficient A assumed or estimated from the data accumulated so far, and the sorting yield (weight ratio) (%) is obtained.
  • (1- (Number of grains determined by the determination device to be highly contaminated grains ⁇ A / Number of grains to be determined)) ⁇ 100 can also be estimated.
  • the sorting yield is used by using the weight data of each grain directly measured.
  • Weight ratio (%) is more accurate with the formula of (1- (total actual weight of grains judged by the judgment device to be highly contaminated grains / total actual weight of grains to be judged)) ⁇ 100. It can also be calculated as a value.
  • Such a value of the sorting yield (grain number ratio or weight ratio) can be used as a judgment material when determining a judgment threshold value to be used for determining high-concentration contaminated grains, for example. It should be noted that the sorting yield based on the grain number ratio is easier to calculate than the sorting yield based on the weight ratio, but in general, it directly indicates how much the yield remains as the weight ratio after grain sorting. It is considered that the sorting yield based on the weight ratio is often more important when examining the judgment threshold value in the actual grain sorting scene.
  • the determination unit 14 is based on an estimation model developed using teacher data or the like accumulated for improving the determination performance of the determination device, from a set of grains to be determined for the granular agricultural product. , Mycotoxin reduction rate or the degree of mycotoxin concentration or degree of contamination of the entire set of remaining grains when grains judged to be contaminated with mycotoxins above a predetermined standard value are removed using a predetermined judgment threshold value. May be estimated for each of one or more of the determination thresholds or selection yields.
  • FIG. 4 is a flowchart showing the flow of processing in this example.
  • step S201 the acting unit 22 performs a process of aligning the wheat grains in a predetermined direction.
  • the predetermined orientation may be one or a plurality of orientations.
  • step S202 the photographing unit 24 photographs an image of wheat grains in which the acting unit 22 aligns the directions. Further, the acquisition unit 12 acquires an image taken by the photographing unit 24. After that, the process of returning to step S201, aligning the same wheat grains in different directions, and then taking an image again in this step may be performed as many times as necessary.
  • step S203 the measuring unit 26 measures or estimates the mycotoxin concentration or the degree of contamination of the wheat grains used in the learning process. Further, the acquisition unit 12 acquires the value of the mycotoxin concentration or the degree of contamination as the concentration information.
  • step S204 the learning unit 16 determines the orientation (front side, back side, etc.) of the wheat grains contained in the image acquired by the acquisition unit 12 by the user via, for example, information supplied from the action unit 22 or the input unit 28.
  • the set of the image and the density information of the wheat grains acquired by the acquisition unit 12 is used as teacher data in the neural network corresponding to the orientation of the wheat grains.
  • To train the neural network In the above neural network, an image containing one or more grains of harvested wheat is input, and a determination result regarding the mycotoxin concentration or the degree of contamination in the grains of the wheat is output for each grain.
  • the image input by the learning unit 16 to the neural network may contain a plurality of wheat grains.
  • information such as coordinates indicating the position of each wheat grain in the image may be input to the neural network.
  • the learning device As described above, it is a learning method executed by the learning device (judgment device) 1, and is an image containing one or more grains of the harvested granular agricultural product and a concentration indicating the mold poison concentration or the degree of contamination of each grain of the granular agricultural product.
  • a neural network in which an acquisition step for acquiring information and an image containing one or more grains of harvested granular agricultural products are input, and judgment results regarding the fungal poison concentration or the degree of contamination in the grains of the granular agricultural products are output for each grain.
  • An example of a learning method including a learning step in which a set of the image and density information acquired in the acquisition step is used as teacher data for learning has been described.
  • step S204 the learning unit 16 determines the direction of wheat seeds (for example, wheat or barley, and in the case of barley, whether it is barley or bare barley, two-row barley or six-row barley) and wheat grains (for example, wheat or barley.
  • the front side, the back side, etc.) are discriminated by referring to the information indicating the barley type, etc. input by the user, for example, via the input unit 28, and then the image acquired from the acquisition unit 12 is applied to the neural network corresponding to each. May be configured to input.
  • the learning unit 16 may perform preprocessing such as clipping or resizing the image acquired by the acquisition unit 12. Further, the learning unit 16 performs data segmentation such as inversion, enlargement, reduction, and translation of the image acquired from the acquisition unit 12, and adjusts the brightness, color tone, image quality, angle of the object, and the like.
  • the target area may be extracted by object detection, background removal, segmentation, or the like. Further, the extraction of the target region is not necessarily limited to the entire grain, and only a part of the grain that should be noted may be extracted.
  • the learning unit 16 may use only images of grains corresponding to one or a plurality of specific classes as teacher data when grains of wheat or the like are classified according to the degree of contamination for each specific range.
  • the learning unit 16 includes an image containing grains of the first class in which the mycotoxin concentration or the degree of contamination is equal to or higher than a predetermined reference value, and the mycotoxin concentration or the degree of contamination is equal to or less than a predetermined threshold set to be less than the reference value. (For example, 70% or less of the standard value, half or less of the standard value, or one-fifth or one-tenth or less of the standard value, etc.) or non-contaminated grains of second-class granular agricultural products.
  • the containing image is input to the machine learning model, and the machine learning model is used, for example, as a result of determining whether or not the grains contained in the input image are grains contaminated with mycotoxins having a predetermined reference value or more. It may be configured to be trained to be output as a probability value.
  • predetermined reference value and predetermined threshold value are not limited to specific values and may be changed.
  • a predetermined reference value may be 5 ppm and a predetermined threshold value may be 0.5 ppm.
  • the present invention can be applied to, for example, an actual mold poison-contaminated sample (grains having various degrees of contamination from uncontaminated to high-concentration contamination).
  • acceptable low-concentration contaminated particles can be distinguished from high-concentration contaminated particles and left in the sample. It is considered that the weight ratio to the sample or the number of grains ratio) does not need to be lowered more than necessary.
  • the threshold of the fungal poison concentration when classifying the high-concentration side class and the low-concentration contaminated to non-contaminated side class is set to the high concentration side (predetermined here). (Reference value) and the low concentration side, respectively, and when using the machine learning model after learning for discrimination (grain selection), adjust the probability threshold when determining whether or not it is a high concentration contaminated grain. It is considered that the balance between the mold poison reduction effect by removing high-concentration contaminated grains and the sorting yield (these are usually in a trade-off relationship) can be adjusted.
  • the determination unit 14 may determine the mycotoxin concentration or the degree of contamination using the above probability threshold value that can be adjusted by input to the input unit 28 by the user or the like.
  • the primary sorting is performed when the determination according to the present invention is applied as the secondary sorting method after performing the primary sorting by color sorting or the like. It is also possible to perform more efficient selection by using a machine learning model trained with a threshold setting different from that in the case where it is not performed. Further, it is also possible to apply the technique of the present invention by setting a threshold value according to each stage to all of the selection of a plurality of stages such as the primary selection and the secondary selection, and perform efficient selection. It is also possible to perform sorting by such a multi-step machine learning model continuously at the time of one sorting.
  • the control block (particularly, the acquisition unit 12, the determination unit 14, and the learning unit 16) of the determination device (learning device) 1 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like. , May be realized by software.
  • the determination device 1 includes a computer that executes a program instruction, which is software that realizes each function.
  • the computer includes, for example, one or more processors and a computer-readable recording medium that stores the program. Then, in the computer, the processor reads the program from the recording medium and executes the program, thereby achieving the object of the present invention.
  • a processor for example, a CPU (Central Processing Unit) can be used.
  • the recording medium a “non-temporary tangible medium”, for example, a ROM (Read Only Memory) or the like, a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • a RAM RandomAccessMemory
  • the program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program. It should be noted that one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the above program is embodied by electronic transmission.
  • FIG. 5 shows information about the wheat samples used in this example and subsequent examples.
  • the “target grain thickness fraction” indicates the range of the thickness of each target grain.
  • the “sample series” indicates the lot number in the corresponding "variety”, and is a sample obtained under different conditions. All varieties are domestically cultivated varieties, and the distinction between varieties is indicated by alphabets (3 varieties of wheat and 2 varieties of barley).
  • the "Fusarium head blight infection condition” is either a “natural infection” in which wheat grains are naturally infected with Fusarium head blight, or a source of infection is sprayed on the field to artificially “promote” the infection of Fusarium head blight. It shows whether it is an infection.
  • the "mycotoxin concentration of the fraction” indicates the mycotoxin concentration per unit amount in the entire sample fraction of the sampling source of the wheat grain sample of the corresponding "sample series”.
  • the items shown on the right side of the "mycotoxin concentration in the fraction” indicate the number of wheat grains at each contamination concentration.
  • the mycotoxin concentration is the total value of DON and NIV measured by ELISA.
  • FIG. 6 is an image used as a data set in this example and subsequent examples, and shows the number of images for each contamination concentration of wheat grains shown in FIG. As shown in FIGS. 5 and 6, for each grain of FIG. 5, 1 to 3 images correspond to each of the front side and the back side of the wheat grain. All the images are images taken by a general digital camera.
  • FIG. 6 shows, for example, that a total of 149 images of the front side of each contamination concentration and 148 images of the back side of each contamination concentration were prepared for the image of wheat of variety A, and the image of barley exceeding 5 ppm was prepared on the front side of each sample series. It shows that a total of 39 images of the above and 39 images of the back side were prepared.
  • a part of the image of wheat grains of each contamination concentration is separated from the image used for learning as a test data set which is a test image (an image derived from different wheat grains for learning and testing).
  • the data is amplified by flipping left and right in the class with a small number of images so that the number of images is almost the same between the classification classes or within about 1: 2, and the other class is appropriately imaged. The number was reduced and used.
  • each image data classified into high-concentration contaminated grains of barley exceeding 5 ppm and N.D., that is, uncontaminated grains of about 0 ppm, and the degree of contamination of each barley are taught.
  • AlexNet a neural network using AlexNet.
  • Nijo barley was used as the barley, but the same treatment can be applied to other barley and other granular agricultural products such as grains. Is.
  • the teacher data was divided into learning data and verification data at 8: 2, and the image for learning was subjected to position movement and left-right inversion data augmentation.
  • FIG. 7 shows a screen displaying the learning process.
  • the “loss” corresponds to the value of the loss function in learning, and converges to a value close to 0 by repeating the learning.
  • the "learning rate” in FIG. 7 means how much each value of the parameter set defining the neural network is adjusted in one learning.
  • the verification accuracy by the verification data at the time of learning was 92%, and the test data.
  • the test accuracy of the set (highly contaminated grain image and non-contaminated grain image separated from the learning image in advance) is 87% (27/31). ), And the ratio (correct answer rate) that could be estimated with high accuracy as a high-concentration contaminated grain with a probability of 90% or more in the test image of the high-concentration contaminated grain exceeding 5 ppm was 61% (11/18).
  • the verification accuracy is 97%
  • the test accuracy is 84% (26/31)
  • the correct answer rate in the above judgment result of the highly concentrated contaminated particles is 67% (12/18). It became.
  • the degree as teacher data we trained a neural network using AlexNet in the same way. At that time, the learning of the data divided into mini-batch for each epoch was repeated 16 times, and the learning was performed up to the number of epochs of 40.
  • the verification accuracy is 90%, and it is either a high-concentration contaminated grain or a low-concentration contaminated grain in the test data set (high-concentration contaminated grain image and low-concentration contaminated grain image separately separated from the learning image in advance).
  • the ratio of high-concentration contaminated particles with a high probability of being highly contaminated with a probability of 90% or more among the test images of highly contaminated particles with an alternative test accuracy of 86% (38/44) or more than 5 ppm (correct answer rate). was 72% (13/18).
  • barley which is more difficult to distinguish mycotoxin-contaminated grains by appearance, can be classified as high-concentration contaminated grains and non-contaminated grains or (acceptable level) low-concentration grains with an accuracy of 80% or more. It was confirmed that it is possible to distinguish between.
  • Example 2 A second embodiment of the present disclosure will be described below.
  • a neural network using AlexNet was trained a sufficient number of times.
  • test data set including images of contaminated grains outside the extreme two classes of fungal poison concentration range used for learning, assuming an actual mold poison contamination sample
  • barley exceeding 5 ppm high concentration contaminated grains
  • FIG. 56 shows the test result of determining whether or not the above test data set is “high-concentration contaminated particles”.
  • “high” corresponds to high-concentration contaminated grains exceeding 5 ppm
  • “Not” corresponds to other wheat grains.
  • “true” means whether or not the particles are actually highly contaminated particles
  • “estimation” means the judgment result by the judgment device.
  • the probability threshold for determining high-concentration contaminated particles was set to 50%.
  • the correct answer is 8 images
  • the false detection is 2 images
  • 10 images were misjudgments that were overlooked, and 41 images were correct answers.
  • the test accuracy became 80%. This result shows that out of 18 highly contaminated grain images, when an attempt was made to sort and remove (images of) highly contaminated grains with this determination device for a test data set containing images of grains of various degrees of contamination.
  • the explanatory diagram 58 shows the determination result when the same learning and determination are performed using Xception as a neural network.
  • the correct answer is 8 images
  • the false detection is 3 images
  • the wrong judgment was 10 images
  • the correct answer was 40 images.
  • the test accuracy was 79%.
  • 2 out of 3 images of false detection in this result were images of contaminated particles having a slightly high concentration (1 to 5 ppm).
  • the explanatory diagram 60 shows the determination result when the same learning and determination are performed using VGG16 as a neural network.
  • the correct answer is 8 images
  • the false detection is 9 images
  • the wrong judgment was 10 images
  • the correct answer was 34 images.
  • the test accuracy was 69%.
  • the explanatory diagram 62 shows the determination result when the same learning and determination are performed using ResNet50 as a neural network.
  • the correct answer is 16 images
  • the false detection is 16 images
  • the determination device determines that the barleycorn is non-low-concentration contaminated grains.
  • 2 images were misjudged and 27 images were correct. As a result, the test accuracy was 70%.
  • Example 3 A third embodiment of the present disclosure will be described below.
  • the image data shown in FIG. 6 about 176 images each classified into high-concentration contaminated grains of wheat exceeding 5 ppm and non-to low-concentrated contaminated grains of wheat of less than 0.5 ppm.
  • a neural network using AlexNet was trained a sufficient number of times.
  • test data set including images of contaminated grains outside the extreme two classes of fungal poison concentration range used for learning, assuming an actual mold poison contamination sample
  • wheat exceeding 5 ppm high concentration contaminated grains.
  • FIG. 64 shows the test results of determining whether or not the test data set is “high-concentration contaminated particles”.
  • the probability threshold value for determining the high-concentration contaminated grains was set to 50% as in Example 2 for barley.
  • the correct answer is 19 images
  • the false detection is 21 images
  • the test accuracy was 75%.
  • 16 images were contaminated particles having a slightly high concentration of 1 to 5 ppm.
  • the explanatory diagram 66 shows the determination result when the same learning and determination are performed using Xception as a neural network. Further, in the determination shown in the explanatory diagram 66, the probability threshold value for determining the high-concentration contaminated particles was set to 50%. As a result, among the images of wheat grains judged to be highly contaminated grains by the judgment device, the correct answer is 21 images, the false detection is 25 images, and among the images of wheat grains judged to be other than that, the wrong judgment is made. There were 2 images and 54 correct answers. As a result, the test accuracy was 74%. Of the 25 images of the above false detection, 17 images were contaminated particles having a slightly high concentration of 1 to 5 ppm.
  • FIG. 68 shows a determination result when the probability threshold value for determining a high-concentration contaminated grain is set to 97% instead of 50% when learning and determination are performed using AlexNet as a neural network. ing.
  • the correct answer is 16 images
  • the false detection is 8 images
  • the images of wheat grains determined to be other than that, the wrong judgment is made. was 7 images and the correct answer was 71 images.
  • the test accuracy was 85%.
  • all of the eight images of the above false detection were contaminated particles having a slightly high concentration of 1 to 5 ppm.
  • FIG. 70 shows a judgment result when the probability threshold value for judging as a highly concentrated contaminated grain is set to 85% instead of 50% when learning and judgment are performed using Xception as a neural network. ing.
  • the correct answer is 15 images
  • the false detection is 5 images
  • was 8 images and the correct answer was 74 images.
  • the test accuracy was 87%.
  • 4 images were contaminated particles having a slightly high concentration of 1 to 5 ppm.
  • the accuracy of the determination could be improved by adjusting the probability threshold value for determining the high-concentration contaminated grains.
  • Example 4 A fourth embodiment of the present disclosure will be described below.
  • a configuration using a neural network according to the orientation of the barley grains in the image input to the determination device will be described.
  • the same teacher data and test data set as in Example 2 were used as described later.
  • the probability threshold for determining high-concentration contaminated particles was set to 50%.
  • FIG. 72 shows test data of the front side image of barley when the neural network using AlexNet is trained a sufficient number of times by mixing the front side image and the back side image of barley which are teacher data. The judgment result when used as a set is shown. Explanatory The test accuracy of the determination shown in FIG. 72 was 82%. In addition, one image of erroneous detection in the explanatory diagram 72 was a contaminated particle having a slightly high concentration of 1 to 5 ppm. Further, FIG. 76 shows the determination result when the image of the back side of the barley is used as a test data set in the above case. Explanatory The test accuracy of the determination shown in FIG. 76 was 79%.
  • FIG. 74 shows the determination result when the front side image of barley is used as a test data set when the neural network using AlexNet is trained a sufficient number of times using only the front side image of barley as teacher data. Shows. Explanatory The test accuracy of the determination shown in FIG. 74 was 82%.
  • FIG. 78 shows the determination result when the image of the back side of the barley is used as the test data set when the neural network using AlexNet is trained a sufficient number of times using only the image of the back side of the barley as the teacher data. Shows. Explanatory The test accuracy of the determination shown in FIG. 78 was 65%.
  • FIG. 80 of FIG. 11 shows the image of the front side of the barley when the neural network using Xception is trained a sufficient number of times by mixing the image of the front side and the image of the back side of the barley which are the teacher data. The judgment result when used as a test data set is shown. The test accuracy of the determination shown in the explanatory diagram 80 was 74%. Further, FIG. 84 shows the determination result when the image of the back side of the barley is used as a test data set in the above case. The test accuracy of the determination shown in the explanatory diagram 84 was 83%.
  • FIG. 82 shows the determination result when the front side image of barley is used as a test data set when the neural network using Xception is trained a sufficient number of times using only the front side image of barley as teacher data. Shows. Explanatory The test accuracy of the determination shown in FIG. 82 was 63%.
  • FIG. 86 shows the determination result when the image of the back side of barley is used as a test data set when the neural network using Xception is trained a sufficient number of times using only the image of the back side of barley as teacher data. Shows.
  • the test accuracy of the determination shown in the explanatory diagram 86 was 79%.
  • three images were contaminated particles having a slightly high concentration of 1 to 5 ppm.
  • FIG. 88 of FIG. 12 shows a case where the front side image and the back side image of barley, which are the teacher data, are mixed and the neural network using AlexNet and the neural network using Xception are trained a sufficient number of times.
  • the image on the front side of barley is judged using a neural network using AlexNet, and the image on the back side is judged using a neural network using Xception.
  • the explanatory view 88 corresponds to the total of the determination result shown in the explanatory view 72 and the determination result shown in the explanatory view 84. Explanatory The test accuracy of the determination shown in FIG. 88 was 82%.
  • one image of false detection in this result was an image of contaminated particles having a slightly high concentration of 1 to 5 ppm.
  • the explanatory diagram 90 a neural network using AlexNet is trained a sufficient number of times using only the image on the front side of barley as training data, and a neural network using Xception using only the image on the back side of barley as training data is sufficient.
  • the judgment result when the front side image of barley is judged using the neural network using AlexNet and the back side image is judged using the neural network using Xception. Shows.
  • the explanatory diagram 90 corresponds to the total of the determination result shown in the explanatory diagram 74 and the determination result shown in the explanatory diagram 86.
  • the test accuracy of the determination shown in the explanatory diagram 90 was 80%.
  • 3 out of 4 images of false detection in this result were images of contaminated particles having a slightly high concentration of 1 to 5 ppm.
  • Explanatory FIG. 92 and Explanatory FIG. 94 are diagrams used for comparison with the determination result shown in Explanatory FIG. 88.
  • Explanatory FIG. 92 shows a test data set of the front and back images of barley when the neural network using AlexNet is trained a sufficient number of times by mixing the front side image and the back side image of barley which are teacher data. The judgment result when used as is shown.
  • the explanatory view 92 corresponds to the total of the determination result shown in the explanatory view 72 and the determination result shown in the explanatory view 76, and the explanatory view 56.
  • the test accuracy of the determination shown in FIG. 92 was 80%.
  • Explanatory FIG. 94 shows a test data set of the front and back images of barley when the neural network using Xception is trained a sufficient number of times by mixing the front side image and the back side image of barley which are teacher data. The judgment result when used as is shown. Further, the explanatory view 94 corresponds to the total of the determination result shown in the explanatory view 80 and the determination result shown in the explanatory view 84, and the explanatory view 58. Explanatory The test accuracy of the determination shown in FIG. 94 was 79%.
  • Example 5 A fifth embodiment of the present disclosure will be described below.
  • cross-validation is performed on the barley of the sample series including a part of the sample series used in Example 1 by using the judgment device according to the above-mentioned judgment device 1 in the above embodiment.
  • the results of the results will be explained.
  • FIG. 13 shows information about the barley sample used as the teacher data and test data set of this example.
  • sample series number indicates a number for distinguishing each sample. Although some of the items are different between FIGS. 13 and 5, the barley of the sample series numbers 1 to 3 in FIG. 13 corresponds to the barley of the sample series T1, T2, and U01 of FIG. 5, respectively.
  • sample series "cultivar”, “Fusarium head blight infection condition”, and "grain thickness” have the same meaning as each item in FIG. Further, the meaning of the item indicating the number of wheat grains of each contamination concentration for each of the four columns from the “total number of sample grains” is the same as in FIG. 5, but in FIG. 13, the contamination concentration is different from that in FIG. Is distinguished.
  • the “mycotoxin source concentration estimated from the data for each grain” indicates the mycotoxin concentration of the entire sample series calculated back from the mycotoxin concentration measured for each grain of barley contained in the sample series.
  • the “shooting digital camera model” indicates the model of the digital camera used for imaging the barley of each sample series number.
  • the images of barley of sample series numbers 4 and 5 are images taken by a digital camera Y of the same model.
  • the number of images on the front and back indicates the number of images on the front side and the back side of the barley grains used in the learning of this embodiment.
  • the image for learning was subjected to data augmentation such as position movement, left-right inversion, enlargement / reduction, and color tone change.
  • the concentration of mycotoxins was measured for the barley of sample series numbers 4 to 6 under different conditions from the barley of sample series numbers 1 to 3.
  • Mycotoxins were measured by ELISA for barley of sample series numbers 1 to 3, and mycotoxins were measured by LC-MS / MS for barley of sample series numbers 4 to 6.
  • the mycotoxin concentration (DON + NIV) is converted into DON by converting DON-3-glucoside, which is a glycoside of DON, which may be measured separately from DON. Calculated.
  • the class with a small number of images amplifies the data by flipping left and right so that the number of images is almost the same between the classification classes in each sample series, or within about 1: 2, and the other class is appropriate.
  • the number of images was reduced and used.
  • images of barley less than 0.5 ppm were used without reduction.
  • FIG. 14 and 15 show the learning process when cross-validation is performed using the images of barley of the sample series 1 to 6 of FIG.
  • a neural network using AlexNet was trained by learning data and verification data which are teacher data.
  • graphs 101 to 106 show the accuracy at the time of learning and at the time of verification, respectively.
  • Graphs 111 to 116 correspond to the values of the loss function at the time of learning and at the time of verification.
  • the horizontal axis of each graph is the number of epochs.
  • the description such as “23456train_1val” indicates the combination of the sample series in the cross-validation, and corresponds to the “learning_validation data set” in FIG. 16 and the like described later.
  • “23456train_1val” in FIG. 14 indicates that the learning was performed using the images of the sample series numbers 2 to 6 as training data and the images of the sample series number 1 as verification data.
  • “13456 train_2val” indicates that the learning was performed using the images of the sample series numbers 1 and 3 to 6 as training data and the images of the sample series number 2 as verification data.
  • other combinations of sample series in cross-validation will be described in the same manner.
  • FIG. 16 shows the results of the cross-validation shown in FIGS. 14 and 15. The details will be described later, but the accuracy, precision, recall, F1 value, etc. corresponding to each combination of the sample series are listed by rounding the values.
  • TP True Positive
  • FP False Positive
  • FP False Positive
  • FN False Negative
  • TN True Negative
  • “Accuracy” indicates the ratio at which the determination device could correctly determine whether or not the target is a highly concentrated contaminated grain.
  • the value of “accuracy” is obtained by the formula (TP + TN) / (TP + FP + FN + TN).
  • the “adaptation rate” indicates the ratio of the images that were actually high-concentration contaminated grains to the images that the determination device determined that the target was high-concentration contaminated grains.
  • the value of the "compliance rate” is obtained by the formula (TP) / (TP + FP).
  • the “reproducibility” indicates the ratio of the images that are actually high-concentration contaminated particles to the image that the determination device can determine as high-concentration contaminated particles.
  • the value of "recall rate” is obtained by the formula (TP) / (TP + FN).
  • the "F1 value” is a value indicating a harmonic mean of the precision rate and the recall rate.
  • the "F1 value” is obtained by the formula (2 x conformance rate x recall rate) / (compliance rate + recall rate).
  • FIGS. 17 and 18 show determination results and the like when an image as a test data set is given as an input to the trained neural network trained in the above-mentioned cross-validation.
  • a test data set all grains in each sample series, namely high-concentration contaminated grains of barley above 5 ppm, medium-concentration contaminated grains of 0.5-5 ppm, and non-low of barley less than 0.5 ppm.
  • Two classes of whether or not the particles were highly contaminated were classified using one front and one back of the image of the highly contaminated particles.
  • “number of test images” indicates the number of images of barley used in the test data set.
  • the barley sample series number used for the image of the test data set here is the same as the barley sample series number used for the verification data.
  • an image of barley of sample series number 1 is input as a test data set in the trained neural network corresponding to the row in which the "training_verification data set" is "23456train_1val".
  • the test data set includes one front side image and one back side image of each barleycorn. That is, for example, the number of test images 108 corresponds to 54 grains of barley.
  • data augmentation such as position movement and left-right inversion is not performed. Further, some items such as the "number of test images” are also described in FIG.
  • the "mycotoxin concentration estimated from the data for each grain” is calculated back from the mycotoxin concentration measured for each grain of barley in the sample series used for the verification and test data set, and is calculated for the entire sample series. It shows the concentration of mycotoxins. This value is calculated directly from the data of the grains (44 to 60 grains) of each sample series, and is the mold poison concentration (Fig. 5 and Fig. 6) of the sample fraction of each sampling source of these samples. Does not always match due to sampling error.
  • the "probability threshold for determining a high-concentration grain” is, if the probability that the target grain image is estimated to be a high-concentration contaminated grain is 0% or more, whether the grain image is determined to be a high-concentration contaminated grain.
  • the determination device contaminates the grain image with a high concentration when it is estimated that the target grain image is a highly contaminated grain with a probability of 50% or more.
  • Judged as a grain “Number of high-concentration grain determination images” indicates the number of images determined by the determination device to be images of high-concentration contaminated grains.
  • “Concentration after sorting and removal” is the mold of the entire remaining grain image when the image determined to be highly contaminated grains is excluded from the images (test data set) of all grains of the sample series used for the verification data. It shows the poison concentration.
  • the "sorting yield” corresponds to the entire grain image before sorting, which corresponds to the entire remaining grain image when the determination device removes the grain image determined to be highly contaminated grains.
  • the ratio (weight ratio) to the grain weight is shown.
  • the "mycotoxin reduction rate” is the grain image with the original mycotoxin concentration when the grain image determined to be highly contaminated grains is excluded from the entire grain image (test data set) of the sample series used for the verification data. It shows what percentage of the total was reduced.
  • the "average when the sorting yield is about 80%" in the last row shows the average value of each item when the sorting yield of about 80% shown in the underlined portion is used. In the results shown in FIG. 17, although there are differences depending on the combination of the cross-validation data sets, the effect of reducing the mycotoxin concentration by about 50% on average was confirmed when the sorting yield was set to about 80%.
  • FIG. 18 shows the mold for each grain of the grain image determined to be highly contaminated grains in the test data set of the sample series used for the verification data and the remaining grain images excluding the grain image of the highly contaminated grains. Includes an item for the significance test of poison concentration.
  • “average concentration of high-concentration determined grains per grain” is the average value of the mycotoxin concentration of each grain of the grain image determined to be highly contaminated grains in the test data set of the sample series used for the verification data.
  • Average concentration per grain after removal of high-concentration judgment grains is the mold of each grain of the remaining grain images excluding the grain images judged to be highly contaminated grains in the test data set of the sample series used for the verification data. It shows the average value of the poison concentration.
  • mycotoxins may be accumulated even in wheat grains having a healthy appearance or unclear damage, and mycotoxins-contaminated wheat samples containing such contaminated grains may also accumulate mycotoxins. It is expected that the mycotoxin reduction effect by grain sorting can be improved by using the determination device according to this embodiment. It is considered that the judgment performance of the judgment device will be improved by increasing the learning data, examining the wavelength range and the like constituting the image, and examining and improving the machine learning model.
  • FIG. 19 shows the relationship between the probability threshold for determining high-concentration contaminated particles and the sorting yield for the test data set of the combination of the above-mentioned sample series.
  • the sorting yield is a value in terms of the number of grains (images) here, but in a barley sample having a certain grain thickness, this value can be considered as an approximate value of the sorting yield in terms of weight ratio. can.
  • the 80% sorting yield line described with reference to FIGS. 17 and 18 is shown.
  • the barley of the sample series No. 2 and the barley of the sample series No. 3 which are the test data sets have a probability threshold value of 0.5 (50). Even in the case of (corresponding to%), it indicates that the sorting yield is 80% or more.
  • the probability threshold value may be 0.8 (80%) or more. You will need it.
  • the relationship between the above-mentioned probability threshold value and the sorting yield (grain (image) number ratio or weight ratio) can be calculated or estimated by the determination device with reference to the barley grain image of each sample series.
  • the sorting yield (ratio of grain (image) number) (%) is (1- (the number of images determined by the determination device to be an image of highly contaminated grains / the number of images of barleycorn in the target sample series). )) Calculated by the formula of ⁇ 100.
  • teacher data the relative grain weight data corresponding to each grain image, or the average grain weight of low-concentration contaminated grains or uncontaminated grains less than a predetermined reference value in the same sample lot of the grain image is used as a reference.
  • the sorting yield (weight ratio) (%) is set to (1- (total grain weight (estimated value) of each image determined by the determination device as highly contaminated grains / target). Total of grain weights (estimated values) of all images of barleycorn in the sample series) x 100 and (1- (total of relative grain weight ratios (estimated values) of each image judged by the judgment device as highly contaminated grains) Value / Total value of relative grain weight ratio (estimated value) of all images of barleycorn of the target sample series)) may be calculated (estimated) by the formula of 100.
  • the sorting yield based on the grain (image) number ratio and the sorting yield based on the weight ratio can be treated as approximate values to each other.
  • the probability threshold and the sorting yield estimated to be high-concentration contaminated grains by referring to the image of a certain amount of grains extracted from the barley sample lot to be sorted and removed in advance by this determination device.
  • the probability threshold to be used for determining highly concentrated contaminated grains in the barley sample lot should be determined using the corresponding sorting yield value as a criterion. Can be done.
  • the estimated model is based on the mycotoxin concentration before sorting contaminated grains and the data of the mycotoxin concentration after sorting to which a predetermined probability threshold and sorting yield are applied. It can be used for the development and improvement of.
  • various incidental information of each sample for example, information on the type of target crop (for example, barley, Nijo barley, six-row barley, bare barley, etc.), varieties, various cultivation conditions (cultivation area, weather conditions, dominant bacterial species, etc.) Information (data) such as information and control conditions) can also be used for the development and improvement of the estimation model.
  • Example 5 a neural network classification model is used as the determination device, but when a regression model is used, the “probability threshold”, which is the determination threshold for mycotoxins with high concentration of mycotoxins, in this example is It can be replaced with "estimated mycotoxin concentration”. It is also possible to use other appropriate determination thresholds depending on the type of machine learning model used in the determination device. It should be noted that a machine learning model in which there is no judgment threshold for determining whether or not the particles are highly contaminated with mycotoxins is not assumed.
  • the reference value as "mycotoxins highly contaminated grains" that is, the lower limit of the mycotoxins concentration or the degree of contamination of the mycotoxins highly contaminated grains used in the teacher data of the model ( For example, 5 ppm) can be considered to be the determination threshold in the model.
  • the reference value of "mycotoxin high-concentration contaminated particles” can be regarded as the determination threshold value as it is.
  • Judgment device (learning device) 10
  • Control unit 12
  • Acquisition unit 14
  • Judgment unit 16
  • Learning unit 20
  • Storage unit 22
  • Action unit 24
  • Imaging unit 26 Measurement unit

Abstract

A determination device (1) according to an embodiment of the present invention comprises: an acquisition unit (12) that acquires an image including one or more grains of a granular agricultural product; and a determination unit (14) to which the image is input and that, using a learned machine learning model in which a determination result regarding the mycotoxin concentration or the degree of contamination in the grains of the granular agricultural product is output for each grain, determines whether individual grains or all of the one or more grains of the granular agricultural product are contaminated with a mycotoxin to a degree equal to or greater than a predetermined reference value or in a predetermined concentration range, or determines the mycotoxin concentration or the contamination degree of the individual grains or of all of the one or more grains of the granular agricultural product.

Description

判定装置、学習装置、判定方法、学習方法及び制御プログラムJudgment device, learning device, judgment method, learning method and control program
 本発明は、判定装置、学習装置、判定方法、学習方法及び制御プログラムに関する。 The present invention relates to a determination device, a learning device, a determination method, a learning method, and a control program.
 麦類等の穀類やその他農作物の生育期間中あるいは収穫後貯蔵期間中において、赤かび病菌等のかび毒産生菌が感染または増殖することにより、収穫物の一部または全体にかび毒に汚染したものが混入する場合がある。 During the growing period or post-harvest storage period of cereals such as wheat and other crops, mycotoxins such as Fusarium head blight were infected or propagated, and part or all of the harvest was contaminated with mycotoxins. Things may get mixed in.
 麦類等の穀類の赤かび病によるかび毒汚染を防ぐには、基本的に、圃場での栽培段階で適切な管理(適期の薬剤散布等)を行うことにより、赤かび病菌の感染自体を極力防ぎ、かび毒を蓄積させないようにすることが重要であるが、その年の気象条件の影響などもあり、必ずしも防ぎきれない場合もある。 In order to prevent mycotoxins from contaminating cereals such as wheat due to Fusarium head blight, basically, by performing appropriate management (spraying chemicals at the appropriate time, etc.) at the cultivation stage in the field, the infection of Fusarium head blight itself can be prevented. It is important to prevent it as much as possible and prevent the accumulation of mycotoxins, but it may not always be possible to prevent it due to the influence of the weather conditions of the year.
 特許文献1では、原料小麦に近赤外光を照射することによって赤かび小麦を選別する色彩選別機が開示されている。また、特許文献2では、穀物粒の散光吸収スペクトルに対して多変量データ分析を実施することによって、穀物粒における汚染のレベルを分類する方法が開示されている。 Patent Document 1 discloses a color sorter that sorts red mold wheat by irradiating raw wheat with near-infrared light. Further, Patent Document 2 discloses a method of classifying the level of contamination in a cereal grain by performing multivariate data analysis on the diffused light absorption spectrum of the cereal grain.
日本国公開特許公報「特開2005-28302号公報」Japanese Patent Publication "Japanese Patent Laid-Open No. 2005-28302" 日本国公表特許公報「特表2019-510968号公報」Japanese Patent Gazette "Special Table 2019-510968 Gazette"
 従来、特に大麦では、赤かび病によるかび毒汚染粒の外観症状が明瞭でなく、また粒厚選別の効果はある程度あるものの、その効果は必ずしも高くなく、収穫後のかび毒低減のための効果の高い選別法が無い状況となっていた。また小麦においては、かび毒汚染粒は、白色化・萎縮等の症状が現れることが多く、収穫後の粒厚選別、比重選別や色彩選別がかび毒低減にある程度有効であるが、外観上の明瞭な症状を伴わずにかび毒を蓄積する場合もあり、そのような粒を選別する方法がなかった。また、収穫された穀類等各種作物のかび毒濃度あるいは汚染度合を調べる際、一般に行われている化学分析法やELISA等の免疫学的手法ではサンプルを粉砕して分析に供する必要があり、コスト・時間がかかるため、非破壊で簡易にかび毒濃度あるいは汚染度合を推定する手法が求められている。 Conventionally, especially in barley, the appearance symptoms of mycotoxins contaminated by Fusarium head blight are not clear, and although the effect of grain thickness selection is to some extent, the effect is not necessarily high, and the effect for reducing mycotoxins after harvesting. There was no high selection method. In wheat, mycotoxin-contaminated grains often show symptoms such as whitening and atrophy, and post-harvest grain thickness sorting, specific gravity sorting, and color sorting are effective in reducing mycotoxins to some extent, but in appearance. Mycotoxins may accumulate without overt symptoms, and there was no way to sort out such grains. In addition, when investigating the mycotoxin concentration or the degree of contamination of various crops such as harvested grains, it is necessary to crush the sample and use it for analysis by the commonly used chemical analysis method or immunological method such as ELISA, which is costly. -Since it takes time, a non-destructive and simple method for estimating the concentration of mycotoxins or the degree of contamination is required.
 本願発明者は、外観症状が概して明瞭でない赤かび病感染大麦穀粒の一粒ごとの画像データとかび毒濃度データのデータセットを用いた機械学習による画像判別を試みることとした。その結果、予想に反し、収穫物から除去すべきレベルのかび毒高濃度汚染粒と非汚染粒との画像判別が可能であることが示された。その後さらに他の解析条件においても、かび毒高濃度汚染粒と、非汚染粒や低濃度汚染粒との判別が可能であることが示され、本発明の知見を得た。 The inventor of the present application has decided to attempt image discrimination by machine learning using a data set of image data and mold poison concentration data for each grain of Fusarium head blight-infected barley grains whose appearance symptoms are generally not clear. As a result, contrary to expectations, it was shown that it is possible to distinguish between highly contaminated mycotoxins and non-contaminated grains at a level to be removed from the harvest. After that, it was shown that it is possible to distinguish between highly contaminated mycotoxins and uncontaminated or low-concentrated mycotoxins under other analysis conditions, and the findings of the present invention were obtained.
 本発明の一態様は、麦類等の穀類やその他の粒状農産物を対象としたかび毒濃度あるいは汚染度合に関する判定やそれに基づくかび毒汚染粒の選別除去における効率及び精度を向上させることを目的とする。 One aspect of the present invention is to improve the efficiency and accuracy in determination of mycotoxin concentration or degree of contamination of cereals such as wheat and other granular agricultural products, and selection and removal of mycotoxins contaminated grains based on the determination. do.
 上記の課題を解決するために、本発明の一態様に係る判定装置は、粒状農産物の1又は複数粒を含む画像を取得する取得部と、前記画像が入力され上記粒状農産物の粒におけるかび毒濃度あるいは汚染度合に関する判定結果を、粒毎にそれぞれ出力する学習済み機械学習モデルを用いて、(1)当該粒状農産物の1又は複数粒の個々の粒または全体が所定の基準値以上または所定の濃度範囲のかび毒に汚染されているか否かを判定、又は(2)当該粒状農産物の1又は複数粒の個々の粒または全体のかび毒かび毒濃度あるいは汚染度合を判定する判定部と、を備える。 In order to solve the above problems, the determination device according to one aspect of the present invention includes an acquisition unit that acquires an image containing one or more grains of the granular agricultural product, and a mycotoxin in the grains of the granular agricultural product to which the image is input. Using a trained machine learning model that outputs the judgment result regarding the concentration or the degree of contamination for each grain, (1) each grain or the whole of one or more grains of the granular agricultural product is equal to or more than a predetermined reference value or a predetermined value. A determination unit for determining whether or not the product is contaminated with mycotoxins in the concentration range, or (2) determining the concentration or degree of mycotoxins in one or more individual grains or the entire grain of the granular agricultural product. Be prepared.
 上記の課題を解決するために、本発明の一態様に係る学習装置は、粒状農産物の1又は複数粒を含む画像と、当該粒状農産物の粒毎のかび毒濃度あるいは汚染度合を示す濃度情報とを取得する取得部と、粒状農産物の1又は複数粒を含む画像が入力され当該粒状農産物の粒におけるかび毒かび毒濃度あるいは汚染度合に関する判定結果を、粒毎にそれぞれ出力する機械学習モデルを、前記取得部が取得した前記画像及び濃度情報の組を教師データとして用いて学習させる学習部を備える。 In order to solve the above problems, the learning device according to one aspect of the present invention includes an image containing one or more grains of the granular agricultural product, and concentration information indicating the mycotoxin concentration or the degree of contamination of each grain of the granular agricultural product. A machine learning model in which an image containing one or more grains of a granular agricultural product is input and a judgment result regarding the mycotoxin concentration or the degree of contamination in the grains of the granular agricultural product is output for each grain. It is provided with a learning unit for learning by using the set of the image and the density information acquired by the acquisition unit as teacher data.
 上記の課題を解決するために、本発明の一態様に係る判定方法は、粒状農産物の1又は複数粒を含む画像を取得する取得ステップと、前記画像が入力され上記粒状農産物の粒におけるかび毒濃度あるいは汚染度合に関する判定結果を、粒毎にそれぞれ出力する学習済み機械学習モデルを用いて、(1)当該粒状農産物の1又は複数粒の個々の粒または全体が所定の基準値以上または所定の濃度範囲のかび毒に汚染されているか否かを判定、又は(2)当該粒状農産物の1又は複数粒の個々の粒または全体のかび毒濃度あるいは汚染度合を判定する判定ステップと、を含む。 In order to solve the above problems, the determination method according to one aspect of the present invention includes an acquisition step of acquiring an image containing one or more grains of the granular agricultural product, and a mycotoxin in the grains of the granular agricultural product to which the image is input. Using a trained machine learning model that outputs the judgment result regarding the concentration or the degree of contamination for each grain, (1) each grain or the whole of one or more grains of the granular agricultural product is equal to or more than a predetermined reference value or a predetermined value. It includes a determination step of determining whether or not the product is contaminated with mycotoxins in the concentration range, or (2) determining the concentration or degree of mycotoxins of one or more individual grains or the entire grain of the granular agricultural product.
 上記の課題を解決するために、本発明の一態様に係る学習方法は、粒状農産物の1又は複数粒を含む画像と、当該粒状農産物の粒毎のかび毒濃度あるいは汚染度合を示す濃度情報とを取得する取得ステップと、粒状農産物の1又は複数粒を含む画像が入力され当該粒状農産物の粒におけるかび毒濃度あるいは汚染度合に関する判定結果を、粒毎にそれぞれ出力する機械学習モデルを、前記取得ステップにおいて取得した前記画像及び濃度情報の組を教師データとして用いて学習させる学習ステップとを含む。 In order to solve the above problems, the learning method according to one aspect of the present invention includes an image containing one or more grains of the granular agricultural product, and concentration information indicating the mycotoxin concentration or the degree of contamination of each grain of the granular agricultural product. The acquisition step is to acquire the machine learning model in which an image containing one or more grains of the granular agricultural product is input and the judgment result regarding the mycotoxin concentration or the degree of contamination in the grains of the granular agricultural product is output for each grain. It includes a learning step in which a set of the image and density information acquired in the step is used as teacher data for learning.
 本発明の一態様によれば、麦類等の穀類やその他の粒状農産物を対象としたかび毒濃度あるいは汚染度合に関する判定やそれに基づく汚染粒の選別除去における効率及び精度を向上させることができる。 According to one aspect of the present invention, it is possible to improve the efficiency and accuracy in determining the mycotoxin concentration or the degree of contamination of cereals such as wheat and other granular agricultural products, and selecting and removing contaminated grains based on the determination.
本発明の実施形態に係る判定装置(学習装置)の機能ブロック図である。It is a functional block diagram of the determination device (learning device) which concerns on embodiment of this invention. 収穫された麦類の粒単位の画像の一例を示す図である。It is a figure which shows an example of the image of the grain unit of the harvested wheat. 本発明の実施形態に係る判定処理例の流れを示すフローチャートである。It is a flowchart which shows the flow of the determination processing example which concerns on embodiment of this invention. 本発明の実施形態に係る学習処理例の流れを示すフローチャートである。It is a flowchart which shows the flow of the learning processing example which concerns on embodiment of this invention. 実施例1等において用いた麦類のサンプルに関する情報を示す図である。It is a figure which shows the information about the sample of wheat used in Example 1 and the like. 図5に示す麦粒の汚染濃度毎の画像の枚数を示す図である。It is a figure which shows the number of images for every contamination density | concentration of the wheat grain shown in FIG. ニューラルネットワークの学習過程を表示する画面を示す図である。It is a figure which shows the screen which displays the learning process of a neural network. 実施例2に係る判定処理の結果を示す図である。It is a figure which shows the result of the determination process which concerns on Example 2. FIG. 実施例3に係る判定処理の結果を示す図である。It is a figure which shows the result of the determination process which concerns on Example 3. FIG. 実施例4に係る判定処理の結果を示す図である。It is a figure which shows the result of the determination process which concerns on Example 4. FIG. 実施例4に係る判定処理の結果を示す図である。It is a figure which shows the result of the determination process which concerns on Example 4. FIG. 実施例4に係る判定処理の結果を示す図である。It is a figure which shows the result of the determination process which concerns on Example 4. FIG. 実施例5の教師データ及びテストデータセットとして用いた大麦のサンプルに関する情報を示す図である。It is a figure which shows the information about the barley sample used as the teacher data and the test data set of Example 5. 各試料シリーズの大麦の画像を用いて交差検証を行った場合における学習の過程を示す図である。It is a figure which shows the learning process in the case of performing cross-validation using the image of barley of each sample series. 各試料シリーズの大麦の画像を用いて交差検証を行った場合における学習の過程を示す図である。It is a figure which shows the learning process in the case of performing cross-validation using the image of barley of each sample series. 実施例5に係る交差検証の結果を示す図である。It is a figure which shows the result of the cross-validation which concerns on Example 5. 交差検証において学習させた学習済みニューラルネットワークに対して、テストデータセットとなる画像を入力として与えたときの判定結果等を示す図である。It is a figure which shows the judgment result and the like when the image which becomes the test data set is given as the input to the trained neural network trained in cross-validation. 交差検証において学習させた学習済みニューラルネットワークに対して、テストデータセットとなる画像を入力として与えたときの判定結果等を示す図である。It is a figure which shows the judgment result and the like when the image which becomes the test data set is given as the input to the trained neural network trained in cross-validation. 実施例5の交差検証における各試料シリーズの組合せのテストデータセットについて、高濃度汚染粒と判定する確率閾値と選別歩留との関係を示す図である。It is a figure which shows the relationship between the probability threshold value which determines to be a highly contaminated grain and the selection yield for the test data set of the combination of each sample series in the cross-validation of Example 5. FIG.
 〔実施形態〕
 以下、本発明の一実施形態について、詳細に説明する。本実施形態においては、画像に含まれる処理対象の粒が、所定の基準値以上、又は或る濃度から或る濃度までの所定の濃度範囲のDON(デオキシニバレノール)、或いはNIV(ニバレノール)等のかび毒に汚染されているか否かの判定等が可能な判定装置について説明する。以下、一例として対象が麦類であるものとして説明するが、これに限定されず、後述するように判定装置(学習装置)の処理対象は、トウモロコシ等の他の穀類等であってもよいし、その他の各種粒状農産物であってもよい。
[Embodiment]
Hereinafter, one embodiment of the present invention will be described in detail. In the present embodiment, the grain to be processed contained in the image is DON (deoxynivalenol), NIV (nivalenol), or the like, which is equal to or higher than a predetermined reference value or in a predetermined concentration range from a certain concentration to a certain concentration. A determination device capable of determining whether or not it is contaminated with mycotoxins will be described. Hereinafter, the subject will be described as being wheat as an example, but the subject is not limited to this, and as will be described later, the processing target of the determination device (learning device) may be other cereals such as corn. , Other various granular agricultural products may be used.
 〔1.判定装置(学習装置)の構成例〕
 本実施形態に係る判定装置(学習装置)1について説明する。また、以下の説明においては、判定装置1が学習装置として機能する場合においても呼称を区別しない。
[1. Configuration example of judgment device (learning device)]
The determination device (learning device) 1 according to the present embodiment will be described. Further, in the following description, the names are not distinguished even when the determination device 1 functions as a learning device.
 図1は、本実施形態に係る判定装置1の機能ブロック図である。図1に示すように、判定装置1は、制御部10、記憶部20、作用部22、撮影部24、測定部26、入力部28及び表示部30を備えている。 FIG. 1 is a functional block diagram of the determination device 1 according to the present embodiment. As shown in FIG. 1, the determination device 1 includes a control unit 10, a storage unit 20, an action unit 22, an imaging unit 24, a measurement unit 26, an input unit 28, and a display unit 30.
 制御部10は、判定装置1全体を統括する制御装置であって、取得部12、判定部14及び学習部16としても機能する。 The control unit 10 is a control device that controls the entire determination device 1, and also functions as an acquisition unit 12, a determination unit 14, and a learning unit 16.
 取得部12は、収穫された麦類の1又は複数粒を含む画像、及び麦類の粒毎のかび毒濃度あるいは汚染度合を示す濃度情報を取得する。 The acquisition unit 12 acquires an image containing one or more grains of the harvested wheat and concentration information indicating the mycotoxin concentration or the degree of contamination of each grain of the wheat.
 また、ここでいう「かび毒濃度(かび毒汚染濃度)」は、対象とする個々の粒あるいは複数粒全体に含まれる対象かび毒の、対象粒(個々の粒あるいは複数粒)全体に占める重量比(単位重量あたりの対象かび毒重量)として算出される値であり、「かび毒汚染度合」は、ある程度の幅を持ちうるかび毒汚染の程度を表すが、前記「かび毒濃度」を含んでいう場合もあることとする。 In addition, the "mycotoxin concentration (mycotoxin concentration)" referred to here is the weight of the target mycotoxin contained in the target individual grain or the entire target grain (individual grain or multiple grains) in the entire target grain (individual grain or multiple grains). It is a value calculated as a ratio (target mycotoxin weight per unit weight), and the "mycotoxin degree" indicates the degree of mycotoxin contamination that can have a certain range, but includes the above-mentioned "mycotoxin concentration". In some cases.
 図2は、上記画像の一例を示している。図2の元の画像はRGBカラー画像であるが、ここではグレースケール化して示している。図2の画像群50に含まれる画像は、かび毒に汚染されていない非汚染粒(大麦)の画像をそれぞれ示しており、画像群52に含まれる画像は、粒中に含まれるかび毒(赤かび病菌が産生するトリコテセン系かび毒であるDONとNIVの合計)が5ppm(μg/g)を超える高濃度汚染粒(大麦)の画像をそれぞれ示している。また画像群50と52において、それぞれ上段6枚が粒の表側の画像、下段6枚が粒の裏側の画像である。なおここでは、粒の「粒溝」(「腹溝」ともいう、縦方向に一本入った溝)がある面を「裏側」、粒溝がない面を「表側」とする。なお大麦・小麦等の麦類の穀粒には粒溝(腹溝)があり、粒の構造上、表側・裏側の区別が生じるが、トウモロコシやイネの穀粒には粒溝がなく、平面上に粒を並べた際に、ここでいう表側・裏側の区別が生じない。なお、麦類には、大麦・小麦のほか、エンバク(オートムギ、オーツ麦ともいう)、ライムギ、ライコムギ等が含まれる。 FIG. 2 shows an example of the above image. The original image in FIG. 2 is an RGB color image, but is shown here in grayscale. The images included in the image group 50 of FIG. 2 show images of uncontaminated grains (barley) not contaminated with mycotoxins, and the images included in the image group 52 are images of mycotoxins contained in the grains (mycotoxins). Images of highly contaminated granules (barley) having a total of DON and NIV, which are trichothecene mycotoxins produced by Fusarium head blight, exceeding 5 ppm (μg / g) are shown. Further, in the image groups 50 and 52, the upper 6 images are the images on the front side of the grain, and the lower 6 images are the images on the back side of the grain. Here, the surface having the "grain groove" (also called "abdominal groove", which is a groove in the vertical direction) of the grain is referred to as the "back side", and the surface without the grain groove is referred to as the "front side". In addition, the grain of wheat such as barley and wheat has a grain groove (belly groove), and the front side and the back side are distinguished due to the structure of the grain, but the grain of corn and rice has no grain groove and is flat. When the grains are arranged on top, the distinction between the front side and the back side does not occur. In addition to barley and wheat, wheat includes barley (also referred to as oat and oat), rye, and triticale.
 なお、麦類のバルクサンプル(ここではひとまとまりの量の粒サンプルのことをバルクサンプルという)として、数十粒~数千粒程度の麦粒を含む画像を、例えば制御部10が、一粒毎の画像に分割して処理する構成であってもよい。また、取得部12が取得する画像には、機械学習モデルの学習における教師データとなる学習用の画像と、画像内の麦類の粒のかび毒濃度あるいは汚染度合の判定対象となる判定用の画像とがある。また、本開示においては、麦類の粒のことを単に「麦粒」と呼称し、穀類およびその他の粒状農産物の粒のことを単に「穀粒」あるいは「粒」と呼称することもある。また、麦粒は、二条若しくは六条大麦の皮麦若しくは裸麦、又は小麦等で有り得る。つまり取得部12は、例えば収穫された、皮が付いた又は皮が剥かれた大麦の1又は複数粒を含む画像を取得し得る。 As a bulk sample of wheat (here, a set of grain samples is referred to as a bulk sample), an image containing tens to thousands of wheat grains, for example, one grain by the control unit 10. The configuration may be such that each image is divided and processed. Further, the images acquired by the acquisition unit 12 include an image for learning which is teacher data in the learning of the machine learning model, and an image for determination which is a determination target of the mold poison concentration or the degree of contamination of wheat grains in the image. There is an image. Further, in the present disclosure, the grains of wheat may be simply referred to as "wheat grains", and the grains of cereals and other granular agricultural products may be simply referred to as "cereals" or "grains". Further, the wheat grain may be barley or bare barley of two-row or six-row barley, wheat or the like. That is, the acquisition unit 12 can acquire, for example, an image containing one or more grains of harvested, peeled or peeled barley.
 判定部14は、取得部12が取得した画像が入力され当該画像に含まれる麦粒におけるかび毒濃度あるいは汚染度合に関する判定結果を出力する学習済み機械学習モデルを用いて、当該麦粒が所定の基準値以上または所定の濃度範囲のかび毒に汚染されているか否かを判定する。ここで、麦粒におけるかび毒濃度あるいは汚染度合に関する判定結果とは、例えば当該麦粒におけるかび毒濃度の推定値、又は特定範囲毎の汚染度合によって麦粒がクラス分けされる場合において、麦粒が何れのクラスに分類されるかを示す情報を含み得る。 The determination unit 14 uses a trained machine learning model in which an image acquired by the acquisition unit 12 is input and outputs a determination result regarding the mycotoxin concentration or the degree of contamination in the wheat grains contained in the image, and the wheat grains are predetermined. Determine if it is contaminated with mycotoxins above the reference value or within the specified concentration range. Here, the determination result regarding the mycotoxin concentration or the degree of contamination in the wheat grain is, for example, when the wheat grain is classified according to the estimated value of the mycotoxin concentration in the wheat grain or the degree of contamination in each specific range, the wheat grain. May contain information indicating which class a is classified into.
 学習部16は、取得部12が取得した学習用の画像、及び麦類の粒毎のかび毒濃度あるいは汚染度合を示す濃度情報の組を教師データとして、収穫された麦粒の1又は複数粒を含む画像が入力され当該麦粒におけるかび毒濃度あるいは汚染度合に関する判定結果を、粒毎にそれぞれ出力する機械学習モデルを学習させる。なお、判定部14が実行する判定手法、及び学習部16が実行する機械学習手法は、特定の手法に限定されず、例えばCNN(Convolutional Neural Network)やRNN(Recurrent Neural Network)等を用いたものであってもよい。なおCNNおよびRNNは、機械学習手法のうち、ニューラルネットワーク、さらには深層学習(手法)として位置づけられる。また分類、回帰のいずれのモデルを用いてもよい。機械学習モデルへのインプット用に入力データを予め加工して用いてもよい。このような加工には、例えばCNN等のニューラルネットワークを用いる場合、データの2次元的配列化、または多次元的配列化に加え、各種データオーギュメンテーション(Data Augmentation)や、明るさ・色調・画質・対象物の角度等の調整、対象領域の抽出のための物体検出、背景除去、セグメンテーション等の手法を用いることができる。 The learning unit 16 uses a set of learning images acquired by the acquisition unit 12 and concentration information indicating the mold poison concentration or the degree of contamination of each grain of wheat as teacher data, and one or more grains of the harvested wheat grains. An image containing the above is input, and a machine learning model is trained in which the determination result regarding the mold poison concentration or the degree of contamination in the wheat grain is output for each grain. The determination method executed by the determination unit 14 and the machine learning method executed by the learning unit 16 are not limited to specific methods, and for example, CNN (Convolutional Neural Network), RNN (Recurrent Neural Network), or the like is used. It may be. CNN and RNN are positioned as neural networks and deep learning (methods) among machine learning methods. Moreover, either classification or regression model may be used. The input data may be pre-processed and used for input to the machine learning model. For such processing, for example, when a neural network such as CNN is used, in addition to two-dimensional arrangement or multi-dimensional arrangement of data, various data augmentation (Data Augmentation), brightness, color tone, and Techniques such as adjustment of image quality and angle of an object, object detection for extracting an object area, background removal, and segmentation can be used.
 また、CNNを用いる場合、ニューラルネットワークに含まれる1又は複数の層(レイヤ)として、畳み込み演算を行う畳み込み層を設け、当該層に入力される入力データに対してフィルタ演算(積和演算)を行う構成としてもよい。またフィルタ演算を行う際には、パディング等の処理を併用したり、適宜設定されたストライド幅を採用したりしてもよい。 When CNN is used, a convolution layer for performing a convolution operation is provided as one or more layers (layers) included in the neural network, and a filter operation (multiply-accumulate operation) is performed on the input data input to the layer. It may be configured to be performed. Further, when performing the filter calculation, a process such as padding may be used in combination, or an appropriately set stride width may be adopted.
 その他、例えば以下のような機械学習的手法の何れかまたはそれらの組み合わせを用いる構成としてもよい。 In addition, for example, any of the following machine learning methods or a combination thereof may be used.
 ・サポートベクターマシン(SVM: Support Vector Machine)
 ・決定木(Decision tree)
 ・ランダムフォレスト(Random Forest)
 ・K近傍法(KNN:K Nearest Neighbors)
 ・線形判別分析(LDA: Linear Discriminant Analysis)
 ・二次判別分析(QDA:Quadratic Discriminant Analysis)
 ・部分最小二乗判別分析(PLSDA: Partial Least Squares Discriminant Analysis)
 ・単純ベイズ(Naive Bayes)
 ・主成分分析(PCA: Principal Component Analysis)
 ・回帰分析(Regression Analysis)
 ・アンサンブル学習(Ensemble Learning)
 ・クラスタリング(Clustering)
 ・帰納論理プログラミング(ILP: Inductive Logic Programming)
 ・遺伝的アルゴリズム(GP: Genetic Programming)
 ・ベイジアンネットワーク(BN: Bayesian Network)
 ・多層パーセプトロン(MLP: Multilayer perceptron)
 ・オートエンコーダ(Autoencoder)
 ・トランスフォーマー(Transformer)
 記憶部20は、各種情報を記憶する記憶装置であって、例えば上述した機械学習モデルを規定するパラメータセット、及び麦粒が所定以上または所定の濃度範囲のかび毒に汚染されているか否かの基準となる所定の基準値を示す情報等を格納する。また、例えば記憶部20は、取得部12が取得した撮影画像を少なくとも一時的に格納する。
・ Support Vector Machine (SVM)
・ Decision tree
・ Random Forest
・ K-Nearest Neighbors (KNN)
・ Linear Discriminant Analysis (LDA)
・ Secondary discriminant analysis (QDA: Quadratic Discriminant Analysis)
・ Partial Least Squares Discriminant Analysis (PLSDA)
・ Simple Bayes (Naive Bayes)
・ Principal Component Analysis (PCA)
・ Regression Analysis
・ Ensemble Learning
・ Clustering
・ Inductive Logic Programming (ILP)
・ Genetic Programming (GP)
・ Bayesian Network (BN)
・ Multilayer perceptron (MLP)
・ Autoencoder
・ Transformer
The storage unit 20 is a storage device that stores various types of information, and is, for example, a parameter set that defines the machine learning model described above, and whether or not the wheat grains are contaminated with mycotoxins of a predetermined value or higher or a predetermined concentration range. Stores information and the like indicating a predetermined reference value as a reference. Further, for example, the storage unit 20 stores the captured image acquired by the acquisition unit 12 at least temporarily.
 作用部22は、制御部10による制御に基づいて、対象となる麦粒を所定の向きに揃える機構である。例えば作用部22は、接地面に対して静止した麦粒に対して物理的な作用を加えるアームやローラーとして実現され得る。 The acting unit 22 is a mechanism for aligning the target wheat grains in a predetermined direction based on the control by the control unit 10. For example, the acting unit 22 can be realized as an arm or a roller that exerts a physical action on the wheat grains that are stationary with respect to the ground plane.
 撮影部24は、制御部10による制御に基づいて、麦粒等の画像を撮影するカメラとしての機構である。また、撮影部24は、作用部22が向きを揃えた麦粒の画像を撮影し、取得部12に供給する。なお、撮影部24は、紫外線カメラ又は赤外線カメラとして動作し、紫外又は赤外領域で麦粒の画像を撮影する構成であってもよい。また、判定部14は、紫外又は赤外領域で撮像された麦類の1又は複数粒を含む画像を教師データとして用いて学習された機械学習モデルを用いて判定を行う構成であってもよい。これにより、判定装置1は、肉眼で知覚できない紫外又は赤外領域の情報を参照することによって、より好適な判定処理を行うことができる。また、作用部22及び撮影部24の作用によって、対象となる麦粒について、所定の向きに揃えられた画像を取得部12が取得できる。 The photographing unit 24 is a mechanism as a camera that photographs images such as wheat grains based on the control by the control unit 10. Further, the photographing unit 24 photographs an image of wheat grains in which the acting unit 22 aligns the orientation, and supplies the image to the acquisition unit 12. The photographing unit 24 may operate as an ultraviolet camera or an infrared camera, and may be configured to capture an image of wheat grains in the ultraviolet or infrared region. Further, the determination unit 14 may be configured to make a determination using a machine learning model learned by using an image containing one or a plurality of grains of wheat captured in the ultraviolet or infrared region as teacher data. .. As a result, the determination device 1 can perform more suitable determination processing by referring to information in the ultraviolet or infrared region that cannot be perceived by the naked eye. Further, by the action of the action unit 22 and the photographing unit 24, the acquisition unit 12 can acquire an image of the target wheat grain aligned in a predetermined direction.
 測定部26は、対象となる麦粒のかび毒濃度あるいは汚染度合を測定あるいは化学的分析手法や免疫学的手法によらずその他の手法により推定し、測定結果を取得部12に供給する。前記測定結果は、麦粒のかび毒濃度あるいは汚染度合を示す濃度情報を意味する。なお、化学的分析手法や免疫学的手法によらない対象粒のかび毒汚染度合の推定手法として、例えば小麦では、対象試料がかび毒汚染している場合、その中に含まれる高濃度汚染粒をある程度肉眼でも判定可能である場合があることから、可能な範囲において、肉眼や色彩選別等で対象粒のかび毒汚染度合の推定を行う場合が想定される。その他、例えば、対象粒におけるかび毒産生菌の感染量の定量によりかび毒汚染度合を推定する場合等が考えられる。 The measuring unit 26 measures the mycotoxin concentration or the degree of contamination of the target wheat grain, estimates it by another method regardless of a chemical analysis method or an immunological method, and supplies the measurement result to the acquisition unit 12. The measurement result means concentration information indicating the mycotoxin concentration or the degree of contamination of wheat grains. As a method for estimating the degree of mycotoxin contamination of the target grain without using a chemical analysis method or an immunological method, for example, in wheat, when the target sample is contaminated with mycotoxin, the highly concentrated contaminated particles contained therein Since it may be possible to determine with the naked eye to some extent, it is assumed that the degree of mycotoxin contamination of the target grain is estimated by the naked eye or color selection to the extent possible. In addition, for example, the degree of mycotoxin contamination may be estimated by quantifying the amount of mycotoxin-producing bacteria in the target grain.
 入力部28は、判定装置1に対する操作又は情報の入力を行うためのインターフェースである。入力部28の一部は、判定装置1への操作を受け付けるキーボードやマウス等のデバイスとして実現され得る。 The input unit 28 is an interface for performing an operation or inputting information to the determination device 1. A part of the input unit 28 can be realized as a device such as a keyboard or a mouse that accepts an operation on the determination device 1.
 表示部30は、制御部10の制御に基づいて、テキスト又は動画像等を表示する表示パネルである。なお、表示部30が、タッチパネルとして入力部28の一部の機能を実現する構成であってもよい。 The display unit 30 is a display panel that displays text, moving images, and the like based on the control of the control unit 10. The display unit 30 may be configured to realize some functions of the input unit 28 as a touch panel.
 なお別の態様として、判定装置1の処理対象は、麦類であることに限定されずトウモロコシ、イネ(籾、玄米、精米を含む)、雑穀類(ソバ、ダッタンソバ、ハトムギ等を含む)、若しくは豆類(ダイズ等を含む)等のその他の穀類や、ナッツ類、又はラッカセイ、コーヒー豆、カカオ豆、ナツメグ(種子または仁)、ペッパー類を含む、各種作物の種子・果実等の粒状農産物を対象として同様の処理を実行可能であってもよいし、また対象の粒状農産物は、殻のあるものは殻付き・殻除去後のいずれであってもよく、また、研削等の加工を行ったものでもよい。例えば麦類では、玄麦でも精麦でもよく、また大麦の場合は、麦芽、麦茶用焙煎粒、丸麦、押麦、又は米粒麦(切断麦)等であってもよい。また、各対象作物の収穫適期前に収穫した粒を対象としてもよい。また、赤かび病によるDON・NIV以外のかび毒や赤かび病以外による各種かび毒汚染(アフラトキシン、フモニシン、ゼアラレノン、オクラトキシン、T-2トキシン、HT-2トキシン等を含む)、あるいはかび毒以外(残留農薬、ヒ素や、カドミウム等の有害性重金属を含む)の汚染や病気(有害微生物等の肉眼識別困難な潜在感染を含む)、その他の品質上の不良形質についての判定を、それぞれ単独で、あるいは、複数項目を連続して、または同時に行う構成であってもよい。またかび毒汚染の場合において、個々の粒あるいは複数粒全体が、同時に複数種類のかび毒に汚染していることがあるが、必要に応じてそれら複数のかび毒を合算して判定してもよい。また例えば、麦類赤かび病によるかび毒として、トリコテセン系(うちタイプBに属する)のかび毒であるDONとNIVが特に重要であるが、これらかび毒が化学修飾を受けた誘導体(各種アセチル体や配糖体)がDONやNIVと同時に麦粒に蓄積していることがある。教師データに用いる粒においてこうした物質がDONやNIVに付随して個別に測定される場合、必要に応じて単独のDONやNIVとそれぞれ合算して扱ってもよい(またその際に、各物質の分子量に占めるDONやNIVの分子量の比率を反映した換算値を用いて合算してもよい)。また処理対象の粒状農産物の用途は、食用・飼料用に限らず、種子用や工業用等であってもよい。また、かび毒高濃度汚染粒の外観上の区別がある程度可能な小麦における色彩選別等、他の方法により、かび毒汚染粒等の対象粒を可能な範囲で除去した後に、二次選別(判定)法として本発明による判定を適用してもよい。また、粒厚選別や比重選別等、画像によらない選別の後に本判定を適用したり、異物や着色粒、未熟粒等の不適切粒を他の方法や画像に基づく方法で選別後、あるいは同時に、本発明による判定を適用したりしてもよい。また、不良形質の判定とは反対に、品質上の各種「良」形質の判定に適用することも可能である。その他、例えば、水分含量が適正範囲を超えている等、通常の判定に適さない条件の対象粒を、本発明による判定あるいは他の手法により事前あるいは同時に検出したり、判定の補正を行ったりしてもよい。 As another aspect, the processing target of the determination device 1 is not limited to wheat, but corn, rice (including paddy, brown rice, milled rice), miscellaneous grains (including buckwheat, dattan buckwheat, peanut, etc.), or Targets other cereals such as beans (including buckwheat) and granular agricultural products such as seeds and fruits of various crops including nuts or peanuts, coffee beans, cacao beans, nutmegs (seed or seeds), peppers, etc. The same treatment may be carried out, and the target granular agricultural product may be either with a shell or after removing the shell, and may be processed by grinding or the like. But it may be. For example, in the case of wheat, brown barley or refined barley may be used, and in the case of barley, malt, roasted grains for barley tea, round barley, pressed barley, rice grain barley (cut barley) or the like may be used. In addition, grains harvested before the optimum harvest time of each target crop may be targeted. In addition, various mold poisons other than DON / NIV due to Fusarium head blight and various mold poisons other than red mold (including aflatoxin, fumonisin, zearalenone, ochratoxin, T-2 toxin, HT-2 toxin, etc.), or mold poisons. Other than (including residual pesticides, arsenic, harmful heavy metals such as cadmium), diseases (including latent infections that are difficult to distinguish with the naked eye such as harmful microorganisms), and other poor quality traits are judged independently. Alternatively, the configuration may be such that a plurality of items are continuously or simultaneously performed. In the case of mycotoxins, individual grains or all of the multiple grains may be contaminated with multiple types of mycotoxins at the same time, but if necessary, these multiple mycotoxins may be added up for judgment. good. For example, DON and NIV, which are trichothecene-based (of which type B) mycotoxins, are particularly important as mycotoxins caused by Fusarium head blight in wheat, and these mycotoxins are chemically modified derivatives (various acetyls). The body and glycoxin) may accumulate in wheat grains at the same time as DON and NIV. If these substances are measured individually in association with DON or NIV in the grains used for teacher data, they may be treated together with individual DON or NIV as necessary (and at that time, of each substance). It may be added up using a converted value that reflects the ratio of the molecular weights of DON and NIV to the molecular weight). Further, the use of the granular agricultural product to be treated is not limited to food and feed, but may be for seeds, industrial use, and the like. In addition, after removing the target grains such as mycotoxin-contaminated grains to the extent possible by other methods such as color sorting in wheat where the appearance of the mycotoxin-contaminated grains can be distinguished to some extent, secondary sorting (judgment) is performed. ) The determination according to the present invention may be applied as a method. In addition, this judgment can be applied after sorting without images such as grain thickness sorting and specific gravity sorting, or after sorting inappropriate grains such as foreign substances, colored grains, and immature grains by other methods or image-based methods, or. At the same time, the determination according to the present invention may be applied. It can also be applied to the determination of various "good" traits in terms of quality, as opposed to the determination of bad traits. In addition, for example, target grains under conditions unsuitable for normal judgment, such as the water content exceeding the appropriate range, may be detected in advance or simultaneously by the judgment according to the present invention or another method, or the judgment may be corrected. You may.
 また、対象は必ずしも収穫後の穀類等に限らず、大麦(皮麦)等、収穫物となる粒が圃場の立毛時に露出している作物については、収穫前の圃場で、例えば、スマホやドローン、収穫機等に搭載されたカメラで撮影した画像を用いて、画像内に含まれる対象粒に対して判定を行ってもよい。この場合、収穫後の対象物の判定時とは異なる画像処理や、判定の補正等を行ってもよい。 In addition, the target is not necessarily limited to grains after harvesting, but for crops such as barley (barley) whose grains to be harvested are exposed at the time of fluffing in the field, for example, smartphones and drones in the field before harvesting. , An image taken by a camera mounted on a harvester or the like may be used to make a determination on the target grain contained in the image. In this case, image processing different from that at the time of determination of the object after harvesting, correction of determination, and the like may be performed.
 また、判定装置1における撮影部24や測定部26等の一部の機能が、別の装置上において実現される構成であってもよい。換言すれば、判定装置1は、複数の独立した装置によって実現される構成であってもよい。例えば判定処理を行う装置と学習処理を行う装置とが別々の装置として実現され、各装置が連動する構成であってもよい。また、別の態様として、判定装置1が作用部22を備えず、必要に応じて作用部22の処理をユーザが手動で行う構成であってもよい。判定装置1は、例えば粒状農産物の選別を行う選別機に搭載される構成であってもよいし、当該選別機とは別の装置として実現される構成であってもよい。 Further, some functions of the photographing unit 24, the measuring unit 26, etc. in the determination device 1 may be realized on another device. In other words, the determination device 1 may be configured to be realized by a plurality of independent devices. For example, the device that performs the determination process and the device that performs the learning process may be realized as separate devices, and the devices may be interlocked with each other. Further, as another aspect, the determination device 1 may not be provided with the acting unit 22, and the user may manually perform the processing of the acting unit 22 as needed. The determination device 1 may be configured to be mounted on, for example, a sorting machine for sorting granular agricultural products, or may be configured to be realized as a device different from the sorting machine.
 〔2.判定処理例〕
 続いて、判定装置1が、判定対象となる粒状農産物の粒(ここでは麦類の例とし、以下麦粒と呼称することもある)の画像を参照して、麦粒が所定の基準値以上のかび毒に汚染されているか否かを、機械学習モデルとしてニューラルネットワーク(ここでは回帰モデル)を用いて判定する判定処理の一例について説明する。図3は、本例における処理の流れを示すフローチャートである。
[2. Judgment processing example]
Subsequently, the determination device 1 refers to an image of grains of granular agricultural products to be determined (here, an example of wheat, which may be hereinafter referred to as wheat grains), and the wheat grains are equal to or higher than a predetermined reference value. An example of a determination process for determining whether or not mycotoxins are contaminated using a neural network (here, a regression model) as a machine learning model will be described. FIG. 3 is a flowchart showing the flow of processing in this example.
 ステップS101において、作用部22は、判定装置1の判定対象となる麦粒を所定の向きに揃える処理を行う。前記所定の向きは、1又は複数の向きのうち、何れかの向きであってもよい。 In step S101, the acting unit 22 performs a process of aligning the wheat grains to be determined by the determination device 1 in a predetermined direction. The predetermined orientation may be one or a plurality of orientations.
 ステップS102において、撮影部24は、作用部22が向きを揃えた麦粒の画像を撮影する。また、取得部12は、撮影部24が撮影した画像を取得する。 In step S102, the photographing unit 24 photographs an image of wheat grains in which the acting unit 22 aligns the directions. Further, the acquisition unit 12 acquires an image taken by the photographing unit 24.
 ステップS103において、判定部14は、取得部12が取得した画像に含まれる麦粒の向き(表側・裏側等)を例えば作用部22から供給される情報を参照して判別した上で、又は判定部14自身が当該画像を参照して判別した上で、当該麦粒の向きに応じた学習済みニューラルネットワークに、当該画像を入力する。これにより、例えば同じ向きの麦粒の画像を用いて学習された、好適なニューラルネットワークを判定処理に用いることができる。前述のとおり、トウモロコシやイネと異なり、大麦・小麦等の麦類の穀粒には、外観上明らかに確認できる粒溝(腹溝)があり、粒の構造上、表側・裏側の区別が存在するため、学習や判定の際に、画像中の粒が表側か裏側かによる影響が生じうると考えられる。なおここでいう麦粒の「向き」には、表側・裏側だけでなく、側面や先端部側・基部側、あるいはそれらを画像上で確認可能な様々な角度・方向を持った向きを含みうることとする。 In step S103, the determination unit 14 determines the orientation (front side, back side, etc.) of the wheat grains contained in the image acquired by the acquisition unit 12 with reference to, for example, the information supplied from the action unit 22, and then determines. After the unit 14 itself makes a determination with reference to the image, the image is input to the trained neural network according to the orientation of the wheat grain. Thereby, for example, a suitable neural network learned by using images of wheat grains having the same orientation can be used for the determination process. As mentioned above, unlike corn and rice, wheat grains such as barley and wheat have grain grooves (belly grooves) that can be clearly confirmed from the outside, and there is a distinction between the front side and the back side due to the structure of the grains. Therefore, it is considered that the grain in the image may be affected by whether it is the front side or the back side during learning or judgment. The "direction" of the wheat grain here may include not only the front side and the back side, but also the side surface, the tip side, the base side, and the directions having various angles and directions in which they can be confirmed on the image. I will do it.
 ステップS104において、判定部14は、ニューラルネットワークから出力された、麦粒のかび毒濃度に関する判定結果と、記憶部20に格納された所定の基準値とを比較して、当該麦粒が所定の基準値以上または所定の濃度範囲のかび毒に汚染されているか否かを判定する。また、本ステップS104において、制御部10は、上記判定結果を示す情報を表示部30に表示させる。 In step S104, the determination unit 14 compares the determination result regarding the mycotoxin concentration of the wheat grain output from the neural network with the predetermined reference value stored in the storage unit 20, and the wheat grain is predetermined. Determine if it is contaminated with mycotoxins above the reference value or within the specified concentration range. Further, in this step S104, the control unit 10 causes the display unit 30 to display information indicating the determination result.
 なお、判定部14が学習済みニューラルネットワークに入力する画像には、複数粒の麦粒が含まれていてもよい。この場合、学習済みニューラルネットワークにおいては、麦粒毎にかび毒濃度に関する判定、及び判定結果の出力が行われてもよい。 Note that the image input by the determination unit 14 to the trained neural network may contain a plurality of wheat grains. In this case, in the trained neural network, the determination regarding the mycotoxin concentration may be performed for each wheat grain, and the determination result may be output.
 以上、判定装置1によって実行される判定方法であって、収穫された粒状農産物の1又は複数粒を含む画像を取得する取得ステップと、前記画像が入力され上記粒状農産物の粒におけるかび毒濃度に関する判定結果を、粒毎にそれぞれ出力する学習済みニューラルネットワークを用いて、当該粒状農産物の1又は複数粒が所定の基準値以上または所定の濃度範囲のかび毒に汚染されているか否かを判定する判定ステップとを含む判定方法の一例について説明した。 As described above, the determination method executed by the determination device 1 relates to the acquisition step of acquiring an image containing one or more grains of the harvested granular agricultural product, and the mycotoxin concentration in the grains of the granular agricultural product to which the image is input. Using a trained neural network that outputs the determination result for each grain, it is determined whether or not one or more grains of the granular agricultural product are contaminated with mycotoxins above a predetermined reference value or in a predetermined concentration range. An example of a determination method including a determination step has been described.
 また、以降の処理として、例えば判定部14は、自身による1又は複数の判定結果、又は複数のニューラルネットワークの出力を参照して、かび毒の汚染度合の判定や、かび毒濃度の推定を行ってもよい。また、粒毎に複数の向きの判定結果を用いて総合判定を行ってもよいし、複数種類の画像(例えば、可視光領域のマルチスペクトル画像と赤外領域で撮像した画像等)に基づくそれぞれ異なる機械学習モデルによる判定結果を用いて総合判定を行ってもよい。また、判定部14は、バルクサンプルとして数十粒~数千粒程度の麦粒を含む画像を取得し、物体検出(object detection)、背景除去、セグメンテーション等の手法によりバルクサンプル中の個々の粒を抽出あるいは検出して、各粒のかび毒濃度あるいは汚染度合の判定を行い、例えば各汚染度合に判定される粒の占める割合をそれぞれ算出することにより、高濃度汚染粒混入割合やバルクサンプル全体の汚染度合を判定あるいはバルクサンプル全体のかび毒濃度を推定してもよい。また、判定部14は、粒状農産物の1又は複数粒の個々の粒またはバルクサンプル全体が所定の基準値以上または所定の濃度範囲のかび毒に汚染されているか否かを判定してもよい。 Further, as a subsequent process, for example, the determination unit 14 determines the degree of mycotoxin contamination and estimates the mycotoxin concentration by referring to one or more determination results by itself or the output of a plurality of neural networks. May be. Further, the comprehensive judgment may be performed using the judgment results of a plurality of orientations for each grain, or each based on a plurality of types of images (for example, a multispectral image in the visible light region and an image captured in the infrared region). Comprehensive judgment may be performed using the judgment results of different machine learning models. In addition, the determination unit 14 acquires an image containing tens to thousands of wheat grains as a bulk sample, and uses methods such as object detection, background removal, and segmentation to remove individual grains in the bulk sample. Is extracted or detected, and the mold poison concentration or the degree of contamination of each grain is determined. The degree of contamination may be determined or the mold poison concentration of the entire bulk sample may be estimated. Further, the determination unit 14 may determine whether or not one or a plurality of individual grains of the granular agricultural product or the entire bulk sample is contaminated with mycotoxins above a predetermined reference value or in a predetermined concentration range.
 なお、ステップS103において、判定部14は、麦粒の麦種(例えば小麦か大麦か、また大麦であれば、皮麦であるか裸麦であるかや、二条大麦であるか六条大麦であるか)や、麦粒の向きを判別した上で、それぞれに応じた学習済みニューラルネットワークに、取得部12から取得した画像を入力する構成であってもよい。 In step S103, the determination unit 14 determines whether the wheat seed (for example, wheat or barley, and if it is barley, whether it is barley or bare barley, or whether it is two-row barley or six-row barley. ) Or, after determining the direction of the barley grains, the image acquired from the acquisition unit 12 may be input to the trained neural network corresponding to each.
 本例の構成によれば、例えば肉眼で判定を行うよりも、麦類を対象としたかび毒濃度あるいは汚染度合に関する判定における効率及び精度を向上させることが可能となる。 According to the configuration of this example, it is possible to improve the efficiency and accuracy of the determination regarding the mycotoxin concentration or the degree of contamination of wheat, for example, as compared with the determination with the naked eye.
 <判定処理に係る変形例>
 判定部14は、入力された画像に含まれる粒状農産物の1又は複数粒の個々の粒について、推定されるかび毒濃度が前記所定の基準値以上であるか、または、所定の基準値以上のかび毒に汚染されていると推定される確率が、設定された確率閾値以上であれば、当該個々の粒が前記所定の基準値以上のかび毒に汚染されていると判定する構成であってもよい。ここでいう確率閾値とは、学習済み機械学習モデル(この場合は分類モデル)で対象粒の判定を行った際に、所定の分類クラスに属すると推定される確率が何%以上の値であれば、当該クラスに分類するかの閾値を示している。より具体的には、ここでの確率閾値とは、例えば対象となる大麦粒が所定の基準値以上の高濃度汚染粒と推定(分類)される確率が何%以上であれば、当該大麦粒が高濃度汚染粒であると判定されるかの閾値を示している。
<Modification example related to judgment processing>
The determination unit 14 has an estimated mycotoxin concentration of one or more individual grains of the granular agricultural product contained in the input image, which is equal to or higher than the predetermined reference value, or is equal to or higher than the predetermined reference value. If the probability of being contaminated with mycotoxins is equal to or higher than the set probability threshold, it is determined that the individual grains are contaminated with mycotoxins of the predetermined reference value or higher. May be good. The probability threshold here is a value of what percentage or more the probability that it is estimated to belong to a predetermined classification class when the target grain is determined by the trained machine learning model (in this case, the classification model). For example, the threshold value for classifying into the relevant class is shown. More specifically, the probability threshold here is, for example, if the probability that the target barley grain is estimated (classified) as a highly contaminated grain having a predetermined reference value or more is 0% or more, the barley grain is concerned. Indicates the threshold value for determining whether is a highly contaminated grain.
 広義には、判定部14は、粒状農産物の1又は複数粒の個々の粒について、所定の判定閾値を用いて所定の基準値以上のかび毒に汚染されているか否かを判定する。ここで、前記所定の基準値及び確率閾値は、前記判定閾値の一例である。判定閾値は、判定部14が設定してもよい。 In a broad sense, the determination unit 14 determines whether or not one or a plurality of individual grains of the granular agricultural product are contaminated with mycotoxins above a predetermined reference value using a predetermined determination threshold value. Here, the predetermined reference value and the probability threshold value are examples of the determination threshold value. The determination threshold value may be set by the determination unit 14.
 また、前記の構成においてニューラルネットワーク等の機械学習モデルは、粒状農産物の1又は複数粒を含む画像が入力されて、当該粒状農産物の1又は複数粒の個々の粒について、所定の基準値以上のかび毒に汚染されている確率を出力する構成であってもよい。 Further, in the machine learning model such as a neural network in the above configuration, an image containing one or more grains of the granular agricultural product is input, and the individual grains of the one or more grains of the granular agricultural product have a predetermined reference value or more. It may be configured to output the probability of being contaminated with mycotoxins.
 また、判定部14は、判定の対象となる粒の集合について、1通り以上の判定閾値の各々に対応する選別歩留を算出してもよい。ここで、選別歩留とは、判定の対象となる粒の集合、即ち粒状農産物の1又は複数粒のうち、所定の基準値以上のかび毒に汚染されていないと判定部14によって判定される粒の割合(粒数比あるいは粒画像数比)またはその重量比である。 Further, the determination unit 14 may calculate the selection yield corresponding to each of one or more determination threshold values for the set of grains to be determined. Here, the sorting yield is determined by the determination unit 14 that the set of grains to be determined, that is, one or more grains of the granular agricultural product, is not contaminated with mycotoxins of a predetermined reference value or more. The ratio of grains (ratio of number of grains or ratio of number of grains images) or its weight ratio.
 例えば、選別歩留(粒数比)(%)は(1-(判定装置が高濃度汚染粒であると判定した粒数/判定対象の粒数))×100の式によって算出される。また、例えば、教師データとして、個々の粒画像と対応する粒重データ、あるいは当該粒画像の同一試料ロットにおける所定の基準値未満の低濃度汚染粒あるいは非汚染粒の平均粒重を基準としたときの(個々の粒の)相対粒重比のデータを、各粒画像との組として学習させることにより、判定対象の個々の粒画像からそれぞれの粒重あるいは(所定の基準値未満の低濃度汚染粒あるいは非汚染粒に対する)相対粒重比を推定する事も可能となる。このことから、その推定値を用いて、選別歩留(重量比)(%)を、(1-(判定装置が高濃度汚染粒と判定した粒画像の粒重(推定値)合計/判定対象の全粒画像の粒重(推定値)合計))×100や、(1-(判定装置が高濃度汚染粒と判定した粒画像の相対粒重比(推定値)の合計値/判定対象の全粒画像の相対粒重比(推定値)の合計値))×100の式等によって算出(推定)してもよい。ここで、前記相対粒重比のデータは、例えば一般に比重選別のかび毒低減効果が大きいとされる小麦では、かび毒高濃度汚染粒においてこの値が1より小さくなる傾向があると想定される。 For example, the sorting yield (grain number ratio) (%) is calculated by the formula of (1- (the number of grains determined by the determination device to be highly contaminated grains / the number of grains to be determined)) × 100. Further, for example, as the teacher data, the grain weight data corresponding to each grain image, or the average grain weight of low-concentration contaminated grains or uncontaminated grains less than a predetermined reference value in the same sample lot of the grain image is used as a reference. By learning the data of the relative grain weight ratio (of individual grains) at that time as a set with each grain image, each grain weight or low concentration (less than a predetermined reference value) is obtained from each grain image to be determined. It is also possible to estimate the relative grain weight ratio (to contaminated or uncontaminated grains). From this, using the estimated value, the sorting yield (weight ratio) (%) is set to (1- (total grain weight (estimated value) of the grain image determined by the judgment device as a highly contaminated grain / judgment target). (Total grain weight (estimated value) of whole grain image)) × 100 and (1- (Total value of relative grain weight ratio (estimated value) of grain image judged as high-concentration contaminated grain by the judgment device / judgment target It may be calculated (estimated) by a formula of (total value)) × 100 of the relative grain weight ratio (estimated value) of the whole grain image. Here, it is assumed that the relative grain weight ratio data tends to be smaller than 1 in the mycotoxin-concentrated grains, for example, in wheat, which is generally considered to have a large effect of reducing mycotoxins by specific weight sorting. ..
 あるいは、例えば、それまでに蓄積されたデータから想定あるいは推定される係数Aを用いて選別歩留(粒数比)(%)の式を補正し、選別歩留(重量比)(%)を、(1-(判定装置が高濃度汚染粒であると判定した粒数×A/判定対象の粒数))×100の式で推定することも可能である。また、判定対象の個々の粒の画像を取得する前か後に、直接各粒の重量を測定する機構を判定装置1に備えることにより、直接測定した各粒の重量データを用いて、選別歩留(重量比)(%)を、(1-(判定装置が高濃度汚染粒であると判定した粒の実重量合計/判定対象の粒の実重量合計))×100の式で、より正確な値として算出することも可能である。こうした選別歩留(粒数比または重量比)の値は、例えば、高濃度汚染粒の判定に用いるべき判定閾値を決定する際の判断材料とすることができる。なお、粒数比での選別歩留のほうが重量比での選別歩留に対し算出が容易であるが、一般的には、粒選別後に重量比として収量がどれくらい残るかを直接的に示す、重量比による選別歩留のほうが、実際の粒選別の場面で判定閾値を検討する際に、より重視される場合が少なくないと考えられる。 Alternatively, for example, the formula of the sorting yield (grain number ratio) (%) is corrected by using the coefficient A assumed or estimated from the data accumulated so far, and the sorting yield (weight ratio) (%) is obtained. , (1- (Number of grains determined by the determination device to be highly contaminated grains × A / Number of grains to be determined)) × 100 can also be estimated. Further, by providing the determination device 1 with a mechanism for directly measuring the weight of each grain before or after acquiring the image of each grain to be determined, the sorting yield is used by using the weight data of each grain directly measured. (Weight ratio) (%) is more accurate with the formula of (1- (total actual weight of grains judged by the judgment device to be highly contaminated grains / total actual weight of grains to be judged)) × 100. It can also be calculated as a value. Such a value of the sorting yield (grain number ratio or weight ratio) can be used as a judgment material when determining a judgment threshold value to be used for determining high-concentration contaminated grains, for example. It should be noted that the sorting yield based on the grain number ratio is easier to calculate than the sorting yield based on the weight ratio, but in general, it directly indicates how much the yield remains as the weight ratio after grain sorting. It is considered that the sorting yield based on the weight ratio is often more important when examining the judgment threshold value in the actual grain sorting scene.
 また、判定部14は、後述するように、判定装置の判定性能の改良等のために蓄積した教師データ等を用いて開発した推定モデルにより、前記粒状農産物の判定の対象となる粒の集合から、所定の判定閾値を用いて所定の基準値以上のかび毒に汚染されていると判定される粒を取り除いた場合における、かび毒低減率または残りの粒の集合全体のかび毒濃度あるいは汚染度合を、1通り以上の前記判定閾値または選別歩留の各々に対して推定してもよい。 Further, as will be described later, the determination unit 14 is based on an estimation model developed using teacher data or the like accumulated for improving the determination performance of the determination device, from a set of grains to be determined for the granular agricultural product. , Mycotoxin reduction rate or the degree of mycotoxin concentration or degree of contamination of the entire set of remaining grains when grains judged to be contaminated with mycotoxins above a predetermined standard value are removed using a predetermined judgment threshold value. May be estimated for each of one or more of the determination thresholds or selection yields.
 〔3.学習処理例〕
 続いて、判定装置1が教師データを用いて機械学習モデルとしてニューラルネットワークを学習させる学習処理の一例について、麦類を対象とした場合を例に挙げて説明する。図4は、本例における処理の流れを示すフローチャートである。
[3. Learning process example]
Next, an example of a learning process in which the determination device 1 learns a neural network as a machine learning model using teacher data will be described by taking the case of wheat as an example. FIG. 4 is a flowchart showing the flow of processing in this example.
 ステップS201において、作用部22は、当該麦粒を所定の向きに揃える処理を行う。前記所定の向きは、1又は複数の向きのうち、何れかの向きであってもよい。 In step S201, the acting unit 22 performs a process of aligning the wheat grains in a predetermined direction. The predetermined orientation may be one or a plurality of orientations.
 ステップS202において、撮影部24は、作用部22が向きを揃えた麦粒の画像を撮影する。また、取得部12は、撮影部24が撮影した画像を取得する。なおこの後、ステップS201に戻り、同じ麦粒について別の向きに揃えた後に、再度本ステップにおいて画像撮影する処理を、必要なだけ行ってもよい。 In step S202, the photographing unit 24 photographs an image of wheat grains in which the acting unit 22 aligns the directions. Further, the acquisition unit 12 acquires an image taken by the photographing unit 24. After that, the process of returning to step S201, aligning the same wheat grains in different directions, and then taking an image again in this step may be performed as many times as necessary.
 ステップS203において、測定部26は、学習処理に用いる麦粒のかび毒濃度あるいは汚染度合を測定又は推定する。また、取得部12は、濃度情報として、当該かび毒濃度あるいは汚染度合の値を取得する。 In step S203, the measuring unit 26 measures or estimates the mycotoxin concentration or the degree of contamination of the wheat grains used in the learning process. Further, the acquisition unit 12 acquires the value of the mycotoxin concentration or the degree of contamination as the concentration information.
 ステップS204において、学習部16は、取得部12が取得した画像に含まれる麦粒の向き(表側・裏側等)を、例えば作用部22から供給される情報、又は入力部28を介してユーザによって入力された、麦粒の向きを示す情報を参照して判別した上で、当該麦粒の向きに応じたニューラルネットワークに、取得部12が取得した麦粒の画像及び濃度情報の組を教師データとして入力し、当該ニューラルネットワークを学習させる。上記ニューラルネットワークは、収穫された麦類の1又は複数粒を含む画像が入力され当該麦類の粒におけるかび毒濃度あるいは汚染度合に関する判定結果を、粒毎にそれぞれ出力するものである。 In step S204, the learning unit 16 determines the orientation (front side, back side, etc.) of the wheat grains contained in the image acquired by the acquisition unit 12 by the user via, for example, information supplied from the action unit 22 or the input unit 28. After making a determination with reference to the input information indicating the orientation of the wheat grains, the set of the image and the density information of the wheat grains acquired by the acquisition unit 12 is used as teacher data in the neural network corresponding to the orientation of the wheat grains. To train the neural network. In the above neural network, an image containing one or more grains of harvested wheat is input, and a determination result regarding the mycotoxin concentration or the degree of contamination in the grains of the wheat is output for each grain.
 なお、学習部16がニューラルネットワークに入力する画像には、複数粒の麦粒が含まれていてもよい。この場合、ニューラルネットワークには、麦粒の画像および各麦粒の濃度情報に加え、各麦粒の画像内における位置を示す座標等の情報がそれぞれ入力されてもよい。 The image input by the learning unit 16 to the neural network may contain a plurality of wheat grains. In this case, in addition to the wheat grain image and the density information of each wheat grain, information such as coordinates indicating the position of each wheat grain in the image may be input to the neural network.
 以上、学習装置(判定装置)1によって実行される学習方法であって、収穫された粒状農産物の1又は複数粒を含む画像と、当該粒状農産物の粒毎のかび毒濃度あるいは汚染度合を示す濃度情報とを取得する取得ステップと、収穫された粒状農産物の1又は複数粒を含む画像が入力され当該粒状農産物の粒におけるかび毒濃度あるいは汚染度合に関する判定結果を、粒毎にそれぞれ出力するニューラルネットワークを、前記取得ステップにおいて取得した前記画像及び濃度情報の組を教師データとして用いて学習させる学習ステップとを含む学習方法の一例について説明した。 As described above, it is a learning method executed by the learning device (judgment device) 1, and is an image containing one or more grains of the harvested granular agricultural product and a concentration indicating the mold poison concentration or the degree of contamination of each grain of the granular agricultural product. A neural network in which an acquisition step for acquiring information and an image containing one or more grains of harvested granular agricultural products are input, and judgment results regarding the fungal poison concentration or the degree of contamination in the grains of the granular agricultural products are output for each grain. An example of a learning method including a learning step in which a set of the image and density information acquired in the acquisition step is used as teacher data for learning has been described.
 なお、ステップS204において、学習部16は、麦種(例えば小麦か大麦か、また大麦であれば、皮麦であるか裸麦であるかや、二条大麦か六条大麦か)や麦粒の向き(表側・裏側等)を、例えば入力部28を介してユーザによって入力された、麦種等を示す情報を参照して判別した上で、それぞれに応じたニューラルネットワークに、取得部12から取得した画像を入力する構成であってもよい。 In step S204, the learning unit 16 determines the direction of wheat seeds (for example, wheat or barley, and in the case of barley, whether it is barley or bare barley, two-row barley or six-row barley) and wheat grains (for example, wheat or barley. The front side, the back side, etc.) are discriminated by referring to the information indicating the barley type, etc. input by the user, for example, via the input unit 28, and then the image acquired from the acquisition unit 12 is applied to the neural network corresponding to each. May be configured to input.
 また、ステップS204において、学習部16は、取得部12が取得した画像に対して切り抜き又はサイズ変更等の前処理を行ってもよい。また、学習部16は、取得部12から取得した画像について、例えば反転、拡大、縮小、平行移動等のデータオーギュメンテーションを行ったり、明るさ・色調・画質・対象物の角度等の調整や、対象領域の抽出を、物体検出、背景除去、セグメンテーション等により行ったりして用いてもよい。また対象領域の抽出は、必ずしも粒全体に限らず、粒のうち注目すべき一部領域のみ抽出してもよい。 Further, in step S204, the learning unit 16 may perform preprocessing such as clipping or resizing the image acquired by the acquisition unit 12. Further, the learning unit 16 performs data segmentation such as inversion, enlargement, reduction, and translation of the image acquired from the acquisition unit 12, and adjusts the brightness, color tone, image quality, angle of the object, and the like. , The target area may be extracted by object detection, background removal, segmentation, or the like. Further, the extraction of the target region is not necessarily limited to the entire grain, and only a part of the grain that should be noted may be extracted.
 本例の構成によれば、麦類を対象としたかび毒濃度あるいは汚染度合に関する判定における効率及び精度を向上させるためのニューラルネットワークを学習させることができる。 According to the configuration of this example, it is possible to learn a neural network for improving the efficiency and accuracy in determining the mycotoxin concentration or the degree of contamination of wheat.
 なお、学習部16は、麦類等の粒が特定範囲毎の汚染度合によってクラス分けされる場合において、1又は複数の特定のクラスに対応する粒の画像のみを教師データとして用いてもよい。例えば学習部16は、かび毒濃度あるいは汚染度合が所定の基準値以上である第1のクラスの粒を含む画像と、かび毒濃度あるいは汚染度合が前記基準値未満に設定された所定の閾値以下(例えば、基準値の70%以下、基準値の半分以下或いは基準値の5分の1以下や10分の1以下等)であるか又は非汚染である第2のクラスの粒状農産物の粒を含む画像とを機械学習モデルに入力し、前記機械学習モデルを、入力画像に含まれる粒が、前記所定の基準値以上のかび毒に汚染された粒であるか否かの判定結果を例えばその確率値として出力するように学習させる構成であってもよい。 Note that the learning unit 16 may use only images of grains corresponding to one or a plurality of specific classes as teacher data when grains of wheat or the like are classified according to the degree of contamination for each specific range. For example, the learning unit 16 includes an image containing grains of the first class in which the mycotoxin concentration or the degree of contamination is equal to or higher than a predetermined reference value, and the mycotoxin concentration or the degree of contamination is equal to or less than a predetermined threshold set to be less than the reference value. (For example, 70% or less of the standard value, half or less of the standard value, or one-fifth or one-tenth or less of the standard value, etc.) or non-contaminated grains of second-class granular agricultural products. The containing image is input to the machine learning model, and the machine learning model is used, for example, as a result of determining whether or not the grains contained in the input image are grains contaminated with mycotoxins having a predetermined reference value or more. It may be configured to be trained to be output as a probability value.
 また、上述した所定の基準値及び所定の閾値は、特定の値に限定されず変更可能であってもよい。例えば所定の基準値を5ppmとし、所定の閾値を0.5ppmとしてもよい。 Further, the above-mentioned predetermined reference value and predetermined threshold value are not limited to specific values and may be changed. For example, a predetermined reference value may be 5 ppm and a predetermined threshold value may be 0.5 ppm.
 このとき、基準値以上のかび毒に汚染された粒と、大きく汚染度合が異なる粒とを学習に用いることにより、例えば機械学習モデルを規定するパラメータセットの値を好適に収束させ、機械学習モデルの出力値の精度を向上させることができる。また、非汚染粒だけでなく、所定の閾値以下の低濃度汚染粒も学習に用いることにより、本発明を例えば実際のかび毒汚染試料(非汚染~高濃度汚染のさまざまな汚染度合の粒を含みうる)からの高濃度汚染粒除去に適用する際、許容レベルの低濃度汚染粒を高濃度汚染粒と区別し試料中に残すことができ、選別歩留(粒選別処理後試料の選別前試料に対する重量比あるいは粒数比)を必要以上に下げずに済むと考えられる。 At this time, by using grains contaminated with mold poison above the reference value and grains having a significantly different degree of contamination for learning, for example, the values of the parameter set that defines the machine learning model are suitably converged, and the machine learning model is used. The accuracy of the output value of can be improved. In addition, by using not only non-contaminated particles but also low-concentration contaminated particles below a predetermined threshold for learning, the present invention can be applied to, for example, an actual mold poison-contaminated sample (grains having various degrees of contamination from uncontaminated to high-concentration contamination). When applied to the removal of high-concentration contaminated particles from (possible), acceptable low-concentration contaminated particles can be distinguished from high-concentration contaminated particles and left in the sample. It is considered that the weight ratio to the sample or the number of grains ratio) does not need to be lowered more than necessary.
 このような2クラス分類の学習の際に用いる教師データとして、高濃度汚染側クラスと低濃度汚染~非汚染側クラスをクラス分けする際のかび毒濃度の閾値を高濃度側(ここでいう所定の基準値)と低濃度側でそれぞれ調整したり、学習後の機械学習モデルを判別(粒選別)に用いる際に、高濃度汚染粒であるか否かの判定の際の確率閾値を調整したりすることにより、高濃度汚染粒除去によるかび毒低減効果と選別歩留のバランス(これらは通常トレードオフの関係となる)を調整可能と考えられる。判定装置1の構成の一例として、判定部14は、ユーザによる入力部28への入力等によって調整可能な上記確率閾値を用いてかび毒濃度あるいは汚染度合に関する判定を行ってもよい。 As teacher data used when learning such two-class classification, the threshold of the fungal poison concentration when classifying the high-concentration side class and the low-concentration contaminated to non-contaminated side class is set to the high concentration side (predetermined here). (Reference value) and the low concentration side, respectively, and when using the machine learning model after learning for discrimination (grain selection), adjust the probability threshold when determining whether or not it is a high concentration contaminated grain. It is considered that the balance between the mold poison reduction effect by removing high-concentration contaminated grains and the sorting yield (these are usually in a trade-off relationship) can be adjusted. As an example of the configuration of the determination device 1, the determination unit 14 may determine the mycotoxin concentration or the degree of contamination using the above probability threshold value that can be adjusted by input to the input unit 28 by the user or the like.
 また、例えばかび毒高濃度汚染粒の外観上の区別がある程度可能な小麦において、色彩選別等により一次選別を行った後に、二次選別法として本発明による判定を適用する場合に、一次選別を行わない場合とは異なる閾値設定で学習させた機械学習モデルを用いることで、より効率的な選別を行うことも可能である。また、一次選別、二次選別といった複数段階の選別すべてに、それぞれの段階に応じた閾値設定による本発明技術を適用し、効率的な選別を行うことも可能である。またこうした複数段階の機械学習モデルによる選別を、一度の選別時に連続して行うことも可能である。 Further, for example, in wheat in which the appearance of highly contaminated particles of mycotoxins can be distinguished to some extent, the primary sorting is performed when the determination according to the present invention is applied as the secondary sorting method after performing the primary sorting by color sorting or the like. It is also possible to perform more efficient selection by using a machine learning model trained with a threshold setting different from that in the case where it is not performed. Further, it is also possible to apply the technique of the present invention by setting a threshold value according to each stage to all of the selection of a plurality of stages such as the primary selection and the secondary selection, and perform efficient selection. It is also possible to perform sorting by such a multi-step machine learning model continuously at the time of one sorting.
 〔ソフトウェアによる実現例〕
 判定装置(学習装置)1の制御ブロック(特に取得部12、判定部14および学習部16)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
[Example of implementation by software]
The control block (particularly, the acquisition unit 12, the determination unit 14, and the learning unit 16) of the determination device (learning device) 1 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like. , May be realized by software.
 後者の場合、判定装置1は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば1つ以上のプロセッサを備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the determination device 1 includes a computer that executes a program instruction, which is software that realizes each function. The computer includes, for example, one or more processors and a computer-readable recording medium that stores the program. Then, in the computer, the processor reads the program from the recording medium and executes the program, thereby achieving the object of the present invention. As the processor, for example, a CPU (Central Processing Unit) can be used. As the recording medium, a “non-temporary tangible medium”, for example, a ROM (Read Only Memory) or the like, a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. Further, a RAM (RandomAccessMemory) for expanding the above program may be further provided. Further, the program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program. It should be noted that one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the above program is embodied by electronic transmission.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.
 〔実施例1〕
 本開示の一実施例について以下に説明する。図5は、本実施例及び以降の実施例において用いた麦類のサンプルに関する情報を示している。図5において「対象粒厚分画」とは、対象となる各麦粒の厚みの範囲を示している。また「試料シリーズ」とは、対応する「品種」におけるロットナンバーを示しており、それぞれ異なる条件で得られた試料である。品種はいずれも国内の栽培品種で、品種の区別をアルファベットで示している(小麦3品種、大麦2品種)。
[Example 1]
An embodiment of the present disclosure will be described below. FIG. 5 shows information about the wheat samples used in this example and subsequent examples. In FIG. 5, the “target grain thickness fraction” indicates the range of the thickness of each target grain. Further, the "sample series" indicates the lot number in the corresponding "variety", and is a sample obtained under different conditions. All varieties are domestically cultivated varieties, and the distinction between varieties is indicated by alphabets (3 varieties of wheat and 2 varieties of barley).
 また「赤かび病感染条件」とは、麦粒が自然に赤かび病に感染した「自然感染」であるか、圃場に接種源を散布して人為的に赤かび病に「感染促進」させたものであるかを示している。また「分画のかび毒濃度」とは、対応する「試料シリーズ」の麦粒サンプルのサンプリング元の試料分画全体における単位量あたりのかび毒濃度を示している。また「分画のかび毒濃度」よりも右側に図示する項目は、各汚染濃度の麦粒の数をそれぞれ示している。なお、ここではかび毒濃度はELISAで測定したDONとNIVとの合計値とする。 The "Fusarium head blight infection condition" is either a "natural infection" in which wheat grains are naturally infected with Fusarium head blight, or a source of infection is sprayed on the field to artificially "promote" the infection of Fusarium head blight. It shows whether it is an infection. Further, the "mycotoxin concentration of the fraction" indicates the mycotoxin concentration per unit amount in the entire sample fraction of the sampling source of the wheat grain sample of the corresponding "sample series". The items shown on the right side of the "mycotoxin concentration in the fraction" indicate the number of wheat grains at each contamination concentration. Here, the mycotoxin concentration is the total value of DON and NIV measured by ELISA.
 また、図6は、本実施例及び以降の実施例においてデータセットとして用いた画像であって、図5に示す麦粒の汚染濃度毎の画像の枚数を示している。図5及び図6に示すように、図5の各麦粒に対し、麦粒の表側と裏側とについてそれぞれ1~3枚の画像が対応する。なお画像はいずれも一般的なデジタルカメラによる撮影画像である。 Further, FIG. 6 is an image used as a data set in this example and subsequent examples, and shows the number of images for each contamination concentration of wheat grains shown in FIG. As shown in FIGS. 5 and 6, for each grain of FIG. 5, 1 to 3 images correspond to each of the front side and the back side of the wheat grain. All the images are images taken by a general digital camera.
 図6は、例えば品種Aの小麦の画像について、各汚染濃度の表側の画像を計149枚、裏側の画像を計148枚用意したこと、及び5ppmを超える大麦の画像について、各試料シリーズの表側の画像を計39枚、裏側の画像を計39枚用意したこと等を示している。なお、あらかじめ各汚染濃度の麦粒の画像の一部をテスト用画像であるテストデータセットとして学習に用いる画像とは別に分けておき(学習用とテスト用でそれぞれ異なる麦粒に由来する画像とする)、また学習の際は、分類クラス間で画像数がほぼ同じ、あるいは1:2程度以内になるよう、画像数の少ないクラスは左右反転によりデータ増幅するとともに、もう一方のクラスは適宜画像数を削減して用いた。 FIG. 6 shows, for example, that a total of 149 images of the front side of each contamination concentration and 148 images of the back side of each contamination concentration were prepared for the image of wheat of variety A, and the image of barley exceeding 5 ppm was prepared on the front side of each sample series. It shows that a total of 39 images of the above and 39 images of the back side were prepared. In addition, a part of the image of wheat grains of each contamination concentration is separated from the image used for learning as a test data set which is a test image (an image derived from different wheat grains for learning and testing). In addition, during learning, the data is amplified by flipping left and right in the class with a small number of images so that the number of images is almost the same between the classification classes or within about 1: 2, and the other class is appropriately imaged. The number was reduced and used.
 上記実施形態において上述した判定装置1に準ずる判定装置において、5ppmを超える大麦の高濃度汚染粒とN.D.即ち約0ppmの非汚染粒とでクラス分けした各画像データ、及び各大麦の汚染度合を教師データとして、AlexNetを用いたニューラルネットワークを学習させた。本実施例及び後述の実施例においては、大麦として二条皮麦を用いたが、これに限定されず、その他の大麦、更にはその他の穀物等の粒状農産物に対しても同様の処理が適用可能である。なお学習の際、教師データは8:2で学習データと検証データとに分割され、学習用の画像は位置移動および左右反転のデータオーギュメンテーションが行われた。 In the determination device according to the determination device 1 described above in the above embodiment, each image data classified into high-concentration contaminated grains of barley exceeding 5 ppm and N.D., that is, uncontaminated grains of about 0 ppm, and the degree of contamination of each barley are taught. As data, we trained a neural network using AlexNet. In this example and the examples described later, Nijo barley was used as the barley, but the same treatment can be applied to other barley and other granular agricultural products such as grains. Is. At the time of learning, the teacher data was divided into learning data and verification data at 8: 2, and the image for learning was subjected to position movement and left-right inversion data augmentation.
 図7は、上記学習の過程を表示する画面を示している。図7において「損失」とは、学習における損失関数の値に対応しており、学習を反復することによって0に近い値に収束している。また、図7における「学習率」とは、ニューラルネットワークを規定するパラメータセットの各値を、一度の学習においてどの程度調整するかを意味している。 FIG. 7 shows a screen displaying the learning process. In FIG. 7, the “loss” corresponds to the value of the loss function in learning, and converges to a value close to 0 by repeating the learning. Further, the "learning rate" in FIG. 7 means how much each value of the parameter set defining the neural network is adjusted in one learning.
 図7に示すように、大麦についてエポック毎にミニバッチに分けたデータの学習を16回反復し、エポック数10まで学習を行いテストした結果、学習時の検証データによる検証精度が92%、テストデータセット(あらかじめ学習用画像とは別に分けておいた高濃度汚染粒画像と非汚染粒画像)における高濃度汚染粒か非汚染粒かの二者択一でのテスト精度が87%(27/31)、また5ppmを超える高濃度汚染粒のテスト画像のうち90%以上の確率で高濃度汚染粒であると確度高く推定できた割合(正答率)は61%(11/18)となった。 As shown in FIG. 7, as a result of repeating the learning of the data divided into mini-batch for each epoch 16 times for barley, learning up to the number of epochs and testing, the verification accuracy by the verification data at the time of learning was 92%, and the test data. The test accuracy of the set (highly contaminated grain image and non-contaminated grain image separated from the learning image in advance) is 87% (27/31). ), And the ratio (correct answer rate) that could be estimated with high accuracy as a high-concentration contaminated grain with a probability of 90% or more in the test image of the high-concentration contaminated grain exceeding 5 ppm was 61% (11/18).
 同様に、別途エポック数40まで学習を行った結果、検証精度が97%、テスト精度が84%(26/31)、高濃度汚染粒の上記判定結果における正答率が67%(12/18)となった。 Similarly, as a result of separately learning up to the number of epochs 40, the verification accuracy is 97%, the test accuracy is 84% (26/31), and the correct answer rate in the above judgment result of the highly concentrated contaminated particles is 67% (12/18). It became.
 また、判定装置において、5ppmを超える大麦の高濃度汚染粒と、許容レベルとなる0.05~0.5ppmの大麦(低濃度汚染粒)とでクラス分けした各画像データ、及び各大麦の汚染度合を教師データとして、同様にAlexNetを用いたニューラルネットワークを学習させた。その際、エポック毎にミニバッチに分けたデータの学習を16回反復し、エポック数40まで学習させた。その結果、検証精度が90%、テストデータセット(あらかじめ学習用画像とは別に分けておいた高濃度汚染粒画像と低濃度汚染粒画像)における高濃度汚染粒か低濃度汚染粒かの二者択一でのテスト精度が86%(38/44)、5ppmを超える高濃度汚染粒のテスト画像のうち90%以上の確率で高濃度汚染粒であると確度高く推定できた割合(正答率)は72%(13/18)となった。 In addition, in the determination device, each image data classified into high-concentration contaminated grains of barley exceeding 5 ppm and barley (low-concentration contaminated grains) of 0.05 to 0.5 ppm, which is an allowable level, and contamination of each barley. Using the degree as teacher data, we trained a neural network using AlexNet in the same way. At that time, the learning of the data divided into mini-batch for each epoch was repeated 16 times, and the learning was performed up to the number of epochs of 40. As a result, the verification accuracy is 90%, and it is either a high-concentration contaminated grain or a low-concentration contaminated grain in the test data set (high-concentration contaminated grain image and low-concentration contaminated grain image separately separated from the learning image in advance). The ratio of high-concentration contaminated particles with a high probability of being highly contaminated with a probability of 90% or more among the test images of highly contaminated particles with an alternative test accuracy of 86% (38/44) or more than 5 ppm (correct answer rate). Was 72% (13/18).
 上述したように、外観によるかび毒汚染粒の判別が小麦よりも困難な大麦であっても、80%以上の精度で高濃度汚染粒と非汚染粒あるいは(許容レベルの)低濃度汚染粒との判別が可能なことが確認された。 As mentioned above, even barley, which is more difficult to distinguish mycotoxin-contaminated grains by appearance, can be classified as high-concentration contaminated grains and non-contaminated grains or (acceptable level) low-concentration grains with an accuracy of 80% or more. It was confirmed that it is possible to distinguish between.
 〔実施例2〕
 本開示の第2の実施例について以下に説明する。本実施例においては、図6に示す画像データのうち、5ppmを超える大麦の高濃度汚染粒と0.5ppm未満の大麦の非~低濃度汚染粒とでクラス分けした各画像データ、及び大麦の各粒の汚染度合を教師データとして、AlexNetを用いたニューラルネットワークを十分な回数学習させた。
[Example 2]
A second embodiment of the present disclosure will be described below. In this example, among the image data shown in FIG. 6, each image data classified into high-concentration contaminated grains of barley exceeding 5 ppm and non-to low-concentrated contaminated grains of barley less than 0.5 ppm, and barley. Using the degree of contamination of each grain as training data, a neural network using AlexNet was trained a sufficient number of times.
 また、テストデータセット(実際のかび毒汚染試料を想定し、学習に用いた極端な2クラスのかび毒濃度範囲以外の汚染粒の画像も含む)として、5ppmを超える大麦(高濃度汚染粒)の画像を18枚、1~5ppmの大麦(やや高濃度の汚染粒)の画像を17枚、0.05~1ppmの大麦の画像を12枚、及び非汚染の大麦の画像を14枚の計61枚を使用した。 In addition, as a test data set (including images of contaminated grains outside the extreme two classes of fungal poison concentration range used for learning, assuming an actual mold poison contamination sample), barley exceeding 5 ppm (high concentration contaminated grains). 18 images, 17 images of 1-5 ppm barley (slightly contaminated grains), 12 images of 0.05-1 ppm barley, and 14 images of uncontaminated barley. 61 sheets were used.
 図8の説明図56は、上記のテストデータセットについて、「高濃度汚染粒」であるか否かの判定を行ったテスト結果を示している。また、説明図56及び以降の各図において「高」とは、5ppmを超える高濃度汚染粒に対応し、「Not」とは、それ以外の麦粒であることに対応する。また「真」とは、実際に高濃度汚染粒であるか否かを意味し、「推定」とは、判定装置による判定結果を意味する。なお判定においては、対象となる大麦の粒が50%以上の確率で5ppmを超える高濃度汚染粒であると推定される場合に、当該大麦の粒が高濃度汚染粒であると判定するものとした。換言すると、高濃度汚染粒と判定するための確率閾値を50%に設定した。 Explanation of FIG. 8 FIG. 56 shows the test result of determining whether or not the above test data set is “high-concentration contaminated particles”. Further, in the explanatory diagram 56 and each of the subsequent figures, "high" corresponds to high-concentration contaminated grains exceeding 5 ppm, and "Not" corresponds to other wheat grains. Further, "true" means whether or not the particles are actually highly contaminated particles, and "estimation" means the judgment result by the judgment device. In the judgment, when the target barley grain is estimated to be a highly contaminated grain having a probability of exceeding 5 ppm with a probability of 50% or more, it is determined that the barley grain is a highly contaminated grain. bottom. In other words, the probability threshold for determining high-concentration contaminated particles was set to 50%.
 説明図56に示すように、判定装置が高濃度汚染粒であると判定した大麦粒の画像のうち、正答が8画像、誤検出が2画像であり、それ以外と判定された大麦粒の画像のうち、見逃しとなる誤判断が10画像、正答が41画像であった。これにより、テスト精度(正答数の割合)は80%となった。この結果は、様々な汚染度合の粒の画像を含むテストデータセットに対して本判定装置で高濃度汚染粒(の画像)を選別除去しようとした場合に、18の高濃度汚染粒画像のうち8画像を選別除去することができ、また汚染度合が5ppm未満の粒の画像は、43のうち41を除去せず残すことができたことを意味する。なお誤検出が2画像あったが、これらはいずれもやや高濃度(1~5ppm)の汚染粒の画像であり、これらも除去されて差支えない粒であった。 As shown in the explanatory diagram 56, among the images of the barley grains determined by the determination device to be highly contaminated grains, the correct answer is 8 images, the false detection is 2 images, and the images of the barley grains determined to be other than that. Of these, 10 images were misjudgments that were overlooked, and 41 images were correct answers. As a result, the test accuracy (ratio of the number of correct answers) became 80%. This result shows that out of 18 highly contaminated grain images, when an attempt was made to sort and remove (images of) highly contaminated grains with this determination device for a test data set containing images of grains of various degrees of contamination. Eight images could be sorted and removed, and images of grains with a degree of contamination of less than 5 ppm mean that 41 of 43 could be left unremoved. There were two images of false detection, but these were images of contaminated particles with a slightly high concentration (1 to 5 ppm), and these were also particles that could be removed.
 また、説明図58は、Xceptionをニューラルネットワークとして用いて、同様の学習及び判定を行った場合における判定結果を示している。上記の場合において、判定装置が高濃度汚染粒であると判定した大麦粒の画像のうち、正答が8画像、誤検出が3画像であり、それ以外と判定された大麦粒の画像のうち、誤判断が10画像、正答が40画像であった。これにより、テスト精度は79%となった。なお、本結果における誤検出の3画像中2画像は、やや高濃度(1~5ppm)の汚染粒の画像であった。 Further, the explanatory diagram 58 shows the determination result when the same learning and determination are performed using Xception as a neural network. In the above case, among the images of the barleycorn determined by the determination device to be highly contaminated grains, the correct answer is 8 images, the false detection is 3 images, and among the images of the barleycorn determined to be other than that, among the images of the barleycorn. The wrong judgment was 10 images, and the correct answer was 40 images. As a result, the test accuracy was 79%. In addition, 2 out of 3 images of false detection in this result were images of contaminated particles having a slightly high concentration (1 to 5 ppm).
 また、説明図60は、VGG16をニューラルネットワークとして用いて、同様の学習及び判定を行った場合における判定結果を示している。上記の場合において、判定装置が高濃度汚染粒であると判定した大麦粒の画像のうち、正答が8画像、誤検出が9画像であり、それ以外と判定された大麦粒の画像のうち、誤判断が10画像、正答が34画像であった。これにより、テスト精度は69%となった。 Further, the explanatory diagram 60 shows the determination result when the same learning and determination are performed using VGG16 as a neural network. In the above case, among the images of the barley grains determined by the determination device to be highly contaminated grains, the correct answer is 8 images, the false detection is 9 images, and among the images of the barley grains determined to be other than that, among the images of the barley grains. The wrong judgment was 10 images, and the correct answer was 34 images. As a result, the test accuracy was 69%.
 また、説明図62は、ResNet50をニューラルネットワークとして用いて、同様の学習及び判定を行った場合における判定結果を示している。上記の場合において、判定装置が高濃度汚染粒であると判定した大麦粒の画像のうち、正答が16画像、誤検出が16画像であり、判定装置が非~低濃度汚染粒であると判定した大麦粒の画像のうち、誤判断が2画像、正答が27画像であった。これにより、テスト精度は70%となった。 Further, the explanatory diagram 62 shows the determination result when the same learning and determination are performed using ResNet50 as a neural network. In the above case, among the images of barley grains determined by the determination device to be high-concentration contaminated grains, the correct answer is 16 images, the false detection is 16 images, and the determination device determines that the barleycorn is non-low-concentration contaminated grains. Of the images of the barleycorns that were made, 2 images were misjudged and 27 images were correct. As a result, the test accuracy was 70%.
 以上、図8に対応する本実施例では、AlexNet、Xception、VGG16、ResNet50のいずれを用いても、大麦の5ppmを超える高濃度汚染粒と0.5ppm未満の非~低濃度汚染粒の画像分類における学習結果は収束し、様々なかび毒汚染濃度の粒の画像を含むテストデータセットでの高濃度汚染粒の判定におけるテスト精度が69~80%となったが、AlexNet或いはXceptionを用いた場合に比較的高いテスト精度が得られた。 As described above, in this embodiment corresponding to FIG. 8, when any of AlexNet, Xception, VGG16, and ResNet50 is used, image classification of high-concentration contaminated grains exceeding 5 ppm and non-low-concentration contaminated grains of less than 0.5 ppm of barley is used. The learning results in were converged, and the test accuracy in determining high-concentration contaminated grains in the test data set containing images of grains with various mold poison contamination concentrations was 69-80%, but when AlexNet or Xception was used. A relatively high test accuracy was obtained.
 〔実施例3〕
 本開示の第3の実施例について以下に説明する。本実施例においては、図6に示す画像データのうち、5ppmを超える小麦の高濃度汚染粒と0.5ppm未満の小麦の非~低濃度汚染粒とでクラス分けしたそれぞれ約176枚の各画像データ、及び小麦の各粒の汚染度合を教師データとして、AlexNetを用いたニューラルネットワークを十分な回数学習させた。
[Example 3]
A third embodiment of the present disclosure will be described below. In this example, among the image data shown in FIG. 6, about 176 images each classified into high-concentration contaminated grains of wheat exceeding 5 ppm and non-to low-concentrated contaminated grains of wheat of less than 0.5 ppm. Using the data and the degree of contamination of each grain of wheat as training data, a neural network using AlexNet was trained a sufficient number of times.
 また、テストデータセット(実際のかび毒汚染試料を想定し、学習に用いた極端な2クラスのかび毒濃度範囲以外の汚染粒の画像も含む)として、5ppmを超える小麦(高濃度汚染粒)の画像を23枚、1~5ppmの小麦(やや高濃度の汚染粒)の画像を29枚、0.05~1ppmの小麦の画像を24枚、及び非汚染の小麦の画像を26枚の計102枚を使用した。 In addition, as a test data set (including images of contaminated grains outside the extreme two classes of fungal poison concentration range used for learning, assuming an actual mold poison contamination sample), wheat exceeding 5 ppm (high concentration contaminated grains). 23 images, 29 images of 1-5 ppm wheat (slightly contaminated grains), 24 images of 0.05-1 ppm wheat, and 26 images of uncontaminated wheat. 102 sheets were used.
 図9の説明図64は、上記テストデータセットについて、「高濃度汚染粒」であるか否かの判定を行ったテスト結果を示している。ただし、説明図64に示す判定においては、大麦を対象とする実施例2と同様に、高濃度汚染粒と判定するための確率閾値を50%に設定した。結果、判定装置が高濃度汚染粒であると判定した小麦粒の画像のうち、正答が19画像、誤検出が21画像であり、それ以外と判定された小麦粒の画像のうち、誤判断が4画像、正答が58画像であった。これにより、テスト精度は75%となった。なお、上記誤検出の21画像のうち16画像は、1~5ppmのやや高濃度の汚染粒であった。 Explanation of FIG. 9 FIG. 64 shows the test results of determining whether or not the test data set is “high-concentration contaminated particles”. However, in the determination shown in the explanatory diagram 64, the probability threshold value for determining the high-concentration contaminated grains was set to 50% as in Example 2 for barley. As a result, among the images of wheat grains judged to be highly contaminated grains by the judgment device, the correct answer is 19 images, the false detection is 21 images, and among the images of the wheat grains judged to be other than that, the wrong judgment is made. There were 4 images and 58 correct answers. As a result, the test accuracy was 75%. Of the 21 images of the above false detection, 16 images were contaminated particles having a slightly high concentration of 1 to 5 ppm.
 また、説明図66は、Xceptionをニューラルネットワークとして用いて、同様の学習及び判定を行った場合における判定結果を示している。また、説明図66に示す判定においても高濃度汚染粒と判定するための確率閾値を50%に設定した。結果、判定装置が高濃度汚染粒であると判定した小麦粒の画像のうち、正答が21画像、誤検出が25画像であり、それ以外と判定された小麦粒の画像のうち、誤判断が2画像、正答が54画像であった。これにより、テスト精度は74%となった。なお、上記誤検出の25画像のうち17画像は、1~5ppmのやや高濃度の汚染粒であった。 Further, the explanatory diagram 66 shows the determination result when the same learning and determination are performed using Xception as a neural network. Further, in the determination shown in the explanatory diagram 66, the probability threshold value for determining the high-concentration contaminated particles was set to 50%. As a result, among the images of wheat grains judged to be highly contaminated grains by the judgment device, the correct answer is 21 images, the false detection is 25 images, and among the images of wheat grains judged to be other than that, the wrong judgment is made. There were 2 images and 54 correct answers. As a result, the test accuracy was 74%. Of the 25 images of the above false detection, 17 images were contaminated particles having a slightly high concentration of 1 to 5 ppm.
 また、説明図68は、AlexNetをニューラルネットワークとして用いて学習及び判定を行った場合に、高濃度汚染粒と判定するための確率閾値を50%ではなく97%に設定した場合の判定結果を示している。この場合、判定装置が高濃度汚染粒であると判定した小麦粒の画像のうち、正答が16画像、誤検出が8画像であり、それ以外と判定された小麦粒の画像のうち、誤判断が7画像、正答が71画像であった。これにより、テスト精度は85%となった。なお、上記誤検出の8画像の全ては、1~5ppmのやや高濃度の汚染粒であった。 Further, FIG. 68 shows a determination result when the probability threshold value for determining a high-concentration contaminated grain is set to 97% instead of 50% when learning and determination are performed using AlexNet as a neural network. ing. In this case, among the images of wheat grains determined by the determination device to be highly contaminated grains, the correct answer is 16 images, the false detection is 8 images, and among the images of wheat grains determined to be other than that, the wrong judgment is made. Was 7 images and the correct answer was 71 images. As a result, the test accuracy was 85%. In addition, all of the eight images of the above false detection were contaminated particles having a slightly high concentration of 1 to 5 ppm.
 また、説明図70は、Xceptionをニューラルネットワークとして用いて学習及び判定を行った場合に、高濃度汚染粒と判定するための確率閾値を50%ではなく85%に設定した場合の判定結果を示している。この場合、判定装置が高濃度汚染粒であると判定した小麦粒の画像のうち、正答が15画像、誤検出が5画像であり、それ以外と判定された小麦粒の画像のうち、誤判断が8画像、正答が74画像であった。これにより、テスト精度は87%となった。なお、上記誤検出の5画像のうち4画像は、1~5ppmのやや高濃度の汚染粒であった。 Further, FIG. 70 shows a judgment result when the probability threshold value for judging as a highly concentrated contaminated grain is set to 85% instead of 50% when learning and judgment are performed using Xception as a neural network. ing. In this case, among the images of wheat grains determined by the determination device to be highly contaminated grains, the correct answer is 15 images, the false detection is 5 images, and among the images of wheat grains determined to be other than that, the wrong judgment is made. Was 8 images and the correct answer was 74 images. As a result, the test accuracy was 87%. Of the 5 images of the above false detection, 4 images were contaminated particles having a slightly high concentration of 1 to 5 ppm.
 すなわち本実施例(小麦)においては、高濃度汚染粒と判定するための確率閾値の調整により、判定の精度を高めることができた。 That is, in this example (wheat), the accuracy of the determination could be improved by adjusting the probability threshold value for determining the high-concentration contaminated grains.
 〔実施例4〕
 本開示の第4の実施例について以下に説明する。本実施例においては、判定装置に対して入力される画像内の大麦の粒の向きに応じたニューラルネットワークを用いた構成について説明する。本実施例においては、実施例2と同様の教師データ及びテストデータセットを後述するように使用した。また、高濃度汚染粒と判定するための確率閾値は50%とした。
[Example 4]
A fourth embodiment of the present disclosure will be described below. In this embodiment, a configuration using a neural network according to the orientation of the barley grains in the image input to the determination device will be described. In this example, the same teacher data and test data set as in Example 2 were used as described later. In addition, the probability threshold for determining high-concentration contaminated particles was set to 50%.
 図10の説明図72は、教師データである大麦の表側の画像と裏側の画像とを混在させてAlexNetを用いたニューラルネットワークを十分な回数学習させた場合において、大麦の表側の画像をテストデータセットとして用いたときの判定結果を示している。説明図72に示す判定のテスト精度は、82%であった。なお、説明図72における誤検出の1画像は、1~5ppmのやや高濃度の汚染粒であった。また、説明図76は、上記の場合において、大麦の裏側の画像をテストデータセットとして用いたときの判定結果を示している。説明図76に示す判定のテスト精度は、79%であった。 Explanation of FIG. 10 FIG. 72 shows test data of the front side image of barley when the neural network using AlexNet is trained a sufficient number of times by mixing the front side image and the back side image of barley which are teacher data. The judgment result when used as a set is shown. Explanatory The test accuracy of the determination shown in FIG. 72 was 82%. In addition, one image of erroneous detection in the explanatory diagram 72 was a contaminated particle having a slightly high concentration of 1 to 5 ppm. Further, FIG. 76 shows the determination result when the image of the back side of the barley is used as a test data set in the above case. Explanatory The test accuracy of the determination shown in FIG. 76 was 79%.
 また、説明図74は、大麦の表側の画像のみを教師データとしてAlexNetを用いたニューラルネットワークを十分な回数学習させた場合において、大麦の表側の画像をテストデータセットとして用いたときの判定結果を示している。説明図74に示す判定のテスト精度は、82%であった。 Further, FIG. 74 shows the determination result when the front side image of barley is used as a test data set when the neural network using AlexNet is trained a sufficient number of times using only the front side image of barley as teacher data. Shows. Explanatory The test accuracy of the determination shown in FIG. 74 was 82%.
 また、説明図78は、大麦の裏側の画像のみを教師データとしてAlexNetを用いたニューラルネットワークを十分な回数学習させた場合において、大麦の裏側の画像をテストデータセットとして用いたときの判定結果を示している。説明図78に示す判定のテスト精度は、65%であった。 Further, FIG. 78 shows the determination result when the image of the back side of the barley is used as the test data set when the neural network using AlexNet is trained a sufficient number of times using only the image of the back side of the barley as the teacher data. Shows. Explanatory The test accuracy of the determination shown in FIG. 78 was 65%.
 以上、図10のAlexNetで学習を行った場合の結果において、教師データに大麦の表側の画像と裏側の画像とを混在させた場合と、表側・裏側の画像のみをそれぞれ教師データに用いた場合のいずれも、表側の画像におけるテスト精度が裏側の画像におけるテスト精度よりも高かった。 As described above, in the results of learning with AlexNet in FIG. 10, when the front side image and the back side image of barley are mixed in the teacher data, and when only the front side and back side images are used for the teacher data, respectively. In each case, the test accuracy in the front image was higher than the test accuracy in the back image.
 また、図11の説明図80は、教師データである大麦の表側の画像と裏側の画像とを混在させてXceptionを用いたニューラルネットワークを十分な回数学習させた場合において、大麦の表側の画像をテストデータセットとして用いたときの判定結果を示している。説明図80に示す判定のテスト精度は、74%であった。また、説明図84は、上記の場合において、大麦の裏側の画像をテストデータセットとして用いたときの判定結果を示している。説明図84に示す判定のテスト精度は、83%であった。 Further, FIG. 80 of FIG. 11 shows the image of the front side of the barley when the neural network using Xception is trained a sufficient number of times by mixing the image of the front side and the image of the back side of the barley which are the teacher data. The judgment result when used as a test data set is shown. The test accuracy of the determination shown in the explanatory diagram 80 was 74%. Further, FIG. 84 shows the determination result when the image of the back side of the barley is used as a test data set in the above case. The test accuracy of the determination shown in the explanatory diagram 84 was 83%.
 また、説明図82は、大麦の表側の画像のみを教師データとしてXceptionを用いたニューラルネットワークを十分な回数学習させた場合において、大麦の表側の画像をテストデータセットとして用いたときの判定結果を示している。説明図82に示す判定のテスト精度は、63%であった。 Further, FIG. 82 shows the determination result when the front side image of barley is used as a test data set when the neural network using Xception is trained a sufficient number of times using only the front side image of barley as teacher data. Shows. Explanatory The test accuracy of the determination shown in FIG. 82 was 63%.
 また、説明図86は、大麦の裏側の画像のみを教師データとしてXceptionを用いたニューラルネットワークを十分な回数学習させた場合において、大麦の裏側の画像をテストデータセットとして用いたときの判定結果を示している。説明図86に示す判定のテスト精度は、79%であった。なお、説明図86における誤検出の4画像のうち3画像は、1~5ppmのやや高濃度の汚染粒であった。 Further, FIG. 86 shows the determination result when the image of the back side of barley is used as a test data set when the neural network using Xception is trained a sufficient number of times using only the image of the back side of barley as teacher data. Shows. The test accuracy of the determination shown in the explanatory diagram 86 was 79%. Of the four images of false detection in the explanatory diagram 86, three images were contaminated particles having a slightly high concentration of 1 to 5 ppm.
 以上、図11のXceptionで学習を行った場合の結果において、教師データに大麦の表側の画像と裏側の画像とを混在させた場合と、表側・裏側の画像のみをそれぞれ教師データに用いた場合のいずれも、裏側の画像におけるテスト精度が表側の画像におけるテスト精度よりも高く、図10のAlexNetで学習を行った場合の結果とは逆となった。すなわち、麦粒の表側と裏側でそれぞれ好適なニューラルネットワークを用いて判定を行うことで、判定精度を高められることが示唆された。 As described above, in the results of learning with Xception in FIG. 11, when the front side image and the back side image of barley are mixed in the teacher data, and when only the front side and back side images are used for the teacher data, respectively. In each case, the test accuracy in the image on the back side was higher than the test accuracy in the image on the front side, which was the opposite of the result when learning was performed with AlexNet in FIG. That is, it was suggested that the judgment accuracy can be improved by making a judgment using a suitable neural network on the front side and the back side of the wheat grain.
 また、図12の説明図88は、教師データである大麦の表側の画像と裏側の画像とを混在させてAlexNetを用いたニューラルネットワーク及びXceptionを用いたニューラルネットワークを十分な回数学習させた場合において、大麦の表側の画像についてはAlexNetを用いたニューラルネットワークを用いた判定を行い、裏側の画像についてはXceptionを用いたニューラルネットワークを用いた判定を行ったときの判定結果を示している。また、説明図88は、説明図72に示す判定結果と説明図84に示す判定結果との合計に対応する。説明図88に示す判定のテスト精度は、82%であった。なお、本結果における誤検出の1画像は、1~5ppmのやや高濃度の汚染粒の画像であった。 Further, FIG. 88 of FIG. 12 shows a case where the front side image and the back side image of barley, which are the teacher data, are mixed and the neural network using AlexNet and the neural network using Xception are trained a sufficient number of times. The image on the front side of barley is judged using a neural network using AlexNet, and the image on the back side is judged using a neural network using Xception. Further, the explanatory view 88 corresponds to the total of the determination result shown in the explanatory view 72 and the determination result shown in the explanatory view 84. Explanatory The test accuracy of the determination shown in FIG. 88 was 82%. In addition, one image of false detection in this result was an image of contaminated particles having a slightly high concentration of 1 to 5 ppm.
 また、説明図90は、大麦の表側の画像のみを教師データとしてAlexNetを用いたニューラルネットワークを十分な回数学習させ、且つ大麦の裏側の画像のみを教師データとしてXceptionを用いたニューラルネットワークを十分な回数学習させた場合において、大麦の表側の画像についてはAlexNetを用いたニューラルネットワークを用いた判定を行い、裏側の画像についてはXceptionを用いたニューラルネットワークを用いた判定を行ったときの判定結果を示している。また、説明図90は、説明図74に示す判定結果と説明図86に示す判定結果との合計に対応する。説明図90に示す判定のテスト精度は、80%であった。なお、本結果における誤検出の4画像中3画像は、1~5ppmのやや高濃度の汚染粒の画像であった。 Further, in the explanatory diagram 90, a neural network using AlexNet is trained a sufficient number of times using only the image on the front side of barley as training data, and a neural network using Xception using only the image on the back side of barley as training data is sufficient. In the case of training the number of times, the judgment result when the front side image of barley is judged using the neural network using AlexNet and the back side image is judged using the neural network using Xception. Shows. Further, the explanatory diagram 90 corresponds to the total of the determination result shown in the explanatory diagram 74 and the determination result shown in the explanatory diagram 86. The test accuracy of the determination shown in the explanatory diagram 90 was 80%. In addition, 3 out of 4 images of false detection in this result were images of contaminated particles having a slightly high concentration of 1 to 5 ppm.
 また、説明図92及び説明図94は、説明図88に示す判定結果との対照に用いられる図である。説明図92は、教師データである大麦の表側の画像と裏側の画像とを混在させてAlexNetを用いたニューラルネットワークを十分な回数学習させた場合において、大麦の表側及び裏側の画像をテストデータセットとして用いたときの判定結果を示している。また、説明図92は、説明図72に示す判定結果と説明図76に示す判定結果との合計、及び説明図56に対応する。説明図92に示す判定のテスト精度は、80%であった。 Further, Explanatory FIG. 92 and Explanatory FIG. 94 are diagrams used for comparison with the determination result shown in Explanatory FIG. 88. Explanatory FIG. 92 shows a test data set of the front and back images of barley when the neural network using AlexNet is trained a sufficient number of times by mixing the front side image and the back side image of barley which are teacher data. The judgment result when used as is shown. Further, the explanatory view 92 corresponds to the total of the determination result shown in the explanatory view 72 and the determination result shown in the explanatory view 76, and the explanatory view 56. Explanatory The test accuracy of the determination shown in FIG. 92 was 80%.
 説明図94は、教師データである大麦の表側の画像と裏側の画像とを混在させてXceptionを用いたニューラルネットワークを十分な回数学習させた場合において、大麦の表側及び裏側の画像をテストデータセットとして用いたときの判定結果を示している。また、説明図94は、説明図80に示す判定結果と説明図84に示す判定結果との合計、及び説明図58に対応する。説明図94に示す判定のテスト精度は、79%であった。 Explanatory FIG. 94 shows a test data set of the front and back images of barley when the neural network using Xception is trained a sufficient number of times by mixing the front side image and the back side image of barley which are teacher data. The judgment result when used as is shown. Further, the explanatory view 94 corresponds to the total of the determination result shown in the explanatory view 80 and the determination result shown in the explanatory view 84, and the explanatory view 58. Explanatory The test accuracy of the determination shown in FIG. 94 was 79%.
 以上、図12で示す結果においては、学習およびテストに供した画像(試料)数が少ないことにより明瞭な結果とはならなかったと考えられるものの、大麦の表側と裏側の画像でそれぞれ異なるネットワークで判定を行った場合のテスト精度(80~82%)は、表側と裏側で区別しなかった場合のテスト精度(79~80%)に比べて向上傾向が見られた。 As mentioned above, it is considered that the results shown in FIG. 12 did not give clear results due to the small number of images (samples) used for learning and testing, but the images on the front side and the back side of barley were judged by different networks. The test accuracy (80 to 82%) when the above was performed showed an improvement tendency as compared with the test accuracy (79 to 80%) when the front side and the back side were not distinguished.
 〔実施例5〕
 本開示の第5の実施例について以下に説明する。本実施例においては、実施例1で用いた試料シリーズの一部を含む試料シリーズの大麦を対象として、上記実施形態において上述した判定装置1に準ずる判定装置を用いて交差検証(クロスバリデーション)を行った結果について説明する。図13は、本実施例の教師データ及びテストデータセットとして用いた大麦のサンプルに関する情報を示している。
[Example 5]
A fifth embodiment of the present disclosure will be described below. In this embodiment, cross-validation is performed on the barley of the sample series including a part of the sample series used in Example 1 by using the judgment device according to the above-mentioned judgment device 1 in the above embodiment. The results of the results will be explained. FIG. 13 shows information about the barley sample used as the teacher data and test data set of this example.
 図13において「試料シリーズ番号」は、各試料を区別するための番号を示している。図13と図5とでは、項目の一部が異なるが、図13の試料シリーズ番号1~3の大麦は、図5の試料シリーズT1、T2、U01の大麦にそれぞれ対応する。 In FIG. 13, the "sample series number" indicates a number for distinguishing each sample. Although some of the items are different between FIGS. 13 and 5, the barley of the sample series numbers 1 to 3 in FIG. 13 corresponds to the barley of the sample series T1, T2, and U01 of FIG. 5, respectively.
 図13において「試料シリーズ」「品種」「赤かび病感染条件」「粒厚」は、図5の各項目とそれぞれ同じ意味合いである。また、「サンプル全粒数」から4列分の各汚染濃度の麦粒の数を示す項目の意味合いについても図5と同様であるが、図13においては、図5とは異なる閾値によって汚染濃度を区別している。 In FIG. 13, "sample series", "cultivar", "Fusarium head blight infection condition", and "grain thickness" have the same meaning as each item in FIG. Further, the meaning of the item indicating the number of wheat grains of each contamination concentration for each of the four columns from the "total number of sample grains" is the same as in FIG. 5, but in FIG. 13, the contamination concentration is different from that in FIG. Is distinguished.
 図13において「1粒毎データから推定されるかび毒元濃度」とは、試料シリーズに含まれる大麦の粒毎に測定されたかび毒濃度から逆算された、試料シリーズ全体のかび毒濃度を示している。また、「撮影デジカメ機種」とは、各試料シリーズ番号の大麦の撮像に用いたデジタルカメラの機種を示している。例えば試料シリーズ番号4及び5の大麦の画像は、同一機種のデジタルカメラYで撮像された画像である。また、「表・裏の各画像枚数」は、本実施例の学習において用いた大麦の粒の表側及び裏側それぞれの画像の枚数を示している。なお学習の際、学習用の画像は位置移動、左右反転、拡大・縮小、色調変更等のデータオーギュメンテーションが行われた。 In FIG. 13, the “mycotoxin source concentration estimated from the data for each grain” indicates the mycotoxin concentration of the entire sample series calculated back from the mycotoxin concentration measured for each grain of barley contained in the sample series. ing. Further, the "shooting digital camera model" indicates the model of the digital camera used for imaging the barley of each sample series number. For example, the images of barley of sample series numbers 4 and 5 are images taken by a digital camera Y of the same model. Further, "the number of images on the front and back" indicates the number of images on the front side and the back side of the barley grains used in the learning of this embodiment. At the time of learning, the image for learning was subjected to data augmentation such as position movement, left-right inversion, enlargement / reduction, and color tone change.
 なお、試料シリーズ番号4~6の大麦は、試料シリーズ番号1~3の大麦と異なる条件によってかび毒濃度の測定を行った。試料シリーズ番号1~3の大麦においては、ELISAによってかび毒の測定を行い、試料シリーズ番号4~6の大麦においては、LC-MS/MSによってかび毒の測定を行った。また、試料シリーズ番号4~6の大麦においては、DONと区別して測定されることもある、DONの配糖体であるDON-3-グルコシドを、DONに換算してかび毒濃度(DON+NIV)を算出した。 The concentration of mycotoxins was measured for the barley of sample series numbers 4 to 6 under different conditions from the barley of sample series numbers 1 to 3. Mycotoxins were measured by ELISA for barley of sample series numbers 1 to 3, and mycotoxins were measured by LC-MS / MS for barley of sample series numbers 4 to 6. Further, in the barley of sample series numbers 4 to 6, the mycotoxin concentration (DON + NIV) is converted into DON by converting DON-3-glucoside, which is a glycoside of DON, which may be measured separately from DON. Calculated.
 また、本実施例では、6種類中5種類の試料シリーズ由来のデータで学習し、独立した残り1種類の試料シリーズ由来のデータで検証とテストを行う6分割交差検証を行うこととし、学習データ及び検証データとして、5ppmを超える大麦の高濃度汚染粒の画像、及び0.5ppm未満の大麦の非~低濃度汚染粒の画像を用いて2クラス分類の学習を行った。ただし後述するように、テストデータセットとしては、本技術の実際の利用場面を想定し、前記高濃度汚染粒及び非~低濃度汚染粒の大麦の画像だけでなく、0.5~5ppmの中濃度汚染粒の大麦の画像も用いた。また学習の際は、各試料シリーズにおける分類クラス間で画像数がほぼ同じ、あるいは1:2程度以内になるよう、画像数の少ないクラスは左右反転によりデータ増幅するとともに、もう一方のクラスは適宜画像数を削減して用いた。ただし、検証データにおいては、0.5ppm未満の大麦の画像を削減せずに用いた。 Further, in this embodiment, it is decided to perform 6-fold cross-validation in which learning is performed using data derived from 5 types of sample series out of 6 types, and verification and testing are performed using data derived from the remaining 1 type of independent sample series. And as verification data, two-class classification was learned using images of high-concentration contaminated grains of barley exceeding 5 ppm and images of non-to low-concentration contaminated grains of barley less than 0.5 ppm. However, as will be described later, as the test data set, assuming the actual use situation of this technology, not only the images of the barley of the high-concentration contaminated grains and the non-low-concentration contaminated grains, but also in 0.5 to 5 ppm. Images of barley with concentration-contaminated grains were also used. Also, during learning, the class with a small number of images amplifies the data by flipping left and right so that the number of images is almost the same between the classification classes in each sample series, or within about 1: 2, and the other class is appropriate. The number of images was reduced and used. However, in the verification data, images of barley less than 0.5 ppm were used without reduction.
 図14及び図15は、図13の試料シリーズ1~6の大麦の画像を用いて交差検証を行った場合における学習の過程を示している。当該交差検証においては、教師データである学習データ及び検証データによって、AlexNetを用いたニューラルネットワークを学習させた。 14 and 15 show the learning process when cross-validation is performed using the images of barley of the sample series 1 to 6 of FIG. In the cross-validation, a neural network using AlexNet was trained by learning data and verification data which are teacher data.
 図14及び図15において、グラフ101~106は、学習時と検証時の各々における精度を示している。グラフ111~116は、学習時と検証時の各々における損失関数の値に対応する。各グラフの横軸はエポック数である。 In FIGS. 14 and 15, graphs 101 to 106 show the accuracy at the time of learning and at the time of verification, respectively. Graphs 111 to 116 correspond to the values of the loss function at the time of learning and at the time of verification. The horizontal axis of each graph is the number of epochs.
 また、図14及び図15において「23456train_1val」等の記載は、交差検証における試料シリーズの組合せを示しており、後述する図16等の「学習_検証データセット」に対応する。例えば図14の「23456train_1val」は、試料シリーズ番号2~6の画像を学習データとして用いて、試料シリーズ番号1の画像を検証データとして用いて学習を行ったことを示している。また「13456train_2val」とは、試料シリーズ番号1及び3~6の画像を学習データとして用いて、試料シリーズ番号2の画像を検証データとして用いて学習を行ったことを示している。また、交差検証における試料シリーズの他の組合せについても同様に説明される。 Further, in FIGS. 14 and 15, the description such as “23456train_1val” indicates the combination of the sample series in the cross-validation, and corresponds to the “learning_validation data set” in FIG. 16 and the like described later. For example, “23456train_1val” in FIG. 14 indicates that the learning was performed using the images of the sample series numbers 2 to 6 as training data and the images of the sample series number 1 as verification data. Further, "13456 train_2val" indicates that the learning was performed using the images of the sample series numbers 1 and 3 to 6 as training data and the images of the sample series number 2 as verification data. Also, other combinations of sample series in cross-validation will be described in the same manner.
 図16は、図14及び図15に示す前記交差検証の結果を示している。詳細は後述するが、試料シリーズの組合せの各々に対応する精度、適合率、再現率及びF1値等を、値を丸めて一覧にした。図16において「TP」(True Positive)は、実際に高濃度汚染粒である大麦の画像に対して、判定装置が高濃度汚染粒と判定した画像の枚数を示している。「FP」(False Positive)は、実際には高濃度汚染粒ではない大麦の画像に対して、判定装置が高濃度汚染粒と判定した画像の枚数を示している。「FN」(False Negative)は、実際には高濃度汚染粒である大麦の画像に対して、判定装置が高濃度汚染粒ではないと判定した画像の枚数を示している。「TN」(True Negative)は、実際に高濃度汚染粒ではない大麦の画像に対して、判定装置が高濃度汚染粒ではないと判定した画像の枚数を示している。TP及びTNの値は、大きい程望ましく、FP及びFNの値は、小さい程望ましい。 FIG. 16 shows the results of the cross-validation shown in FIGS. 14 and 15. The details will be described later, but the accuracy, precision, recall, F1 value, etc. corresponding to each combination of the sample series are listed by rounding the values. In FIG. 16, “TP” (True Positive) indicates the number of images determined to be highly contaminated particles by the determination device with respect to the image of barley which is actually a highly contaminated grain. "FP" (False Positive) indicates the number of images determined by the determination device to be highly contaminated grains with respect to the image of barley which is not actually a highly contaminated grain. "FN" (False Negative) indicates the number of images determined by the determination device to be not high-concentration contaminated grains with respect to the image of barley which is actually a high-concentration contaminated grain. "TN" (True Negative) indicates the number of images determined by the determination device to be not highly contaminated grains with respect to the image of barley that is not actually highly contaminated grains. The larger the value of TP and TN is, the more desirable it is, and the smaller the value of FP and FN is, the more desirable it is.
 「精度」は、対象が高濃度汚染粒であるか否かを、判定装置が正しく判定できた割合を示している。「精度」の値は、(TP+TN)/(TP+FP+FN+TN)の式によって求められる。「適合率」は、対象が高濃度汚染粒であると判定装置が判定した画像のうち、実際に高濃度汚染粒であった画像の割合を示している。「適合率」の値は、(TP)/(TP+FP)の式によって求められる。「再現率」は、実際に高濃度汚染粒である画像のうち、判定装置が高濃度汚染粒と判定できた画像の割合を示している。「再現率」の値は、(TP)/(TP+FN)の式によって求められる。「F1値」は、適合率と再現率との調和平均を示す値である。「F1値」は、(2×適合率×再現率)/(適合率+再現率)の式によって求められる。 "Accuracy" indicates the ratio at which the determination device could correctly determine whether or not the target is a highly concentrated contaminated grain. The value of "accuracy" is obtained by the formula (TP + TN) / (TP + FP + FN + TN). The "adaptation rate" indicates the ratio of the images that were actually high-concentration contaminated grains to the images that the determination device determined that the target was high-concentration contaminated grains. The value of the "compliance rate" is obtained by the formula (TP) / (TP + FP). The "reproducibility" indicates the ratio of the images that are actually high-concentration contaminated particles to the image that the determination device can determine as high-concentration contaminated particles. The value of "recall rate" is obtained by the formula (TP) / (TP + FN). The "F1 value" is a value indicating a harmonic mean of the precision rate and the recall rate. The "F1 value" is obtained by the formula (2 x conformance rate x recall rate) / (compliance rate + recall rate).
 図17及び図18は、前述の交差検証において学習させた学習済みニューラルネットワークに対して、テストデータセットとなる画像を入力として与えたときの判定結果等を示している。ここでは、テストデータセットとして、各試料シリーズの全ての粒、すなわち、5ppmを超える大麦の高濃度汚染粒、0.5~5ppmの中濃度汚染粒、及び0.5ppm未満の大麦の非~低濃度汚染粒の画像の表・裏各1枚ずつを用いて、前記高濃度汚染粒であるか否かの2クラス分類を行った。 FIGS. 17 and 18 show determination results and the like when an image as a test data set is given as an input to the trained neural network trained in the above-mentioned cross-validation. Here, as a test data set, all grains in each sample series, namely high-concentration contaminated grains of barley above 5 ppm, medium-concentration contaminated grains of 0.5-5 ppm, and non-low of barley less than 0.5 ppm. Two classes of whether or not the particles were highly contaminated were classified using one front and one back of the image of the highly contaminated particles.
 図17において「テスト画像数」は、テストデータセットに用いた大麦の画像枚数を示している。また、ここでテストデータセットの画像に用いた大麦の試料シリーズ番号は、検証データに用いた大麦の試料シリーズ番号と同じである。例えば「学習_検証データセット」が「23456train_1val」である行に対応する学習済みニューラルネットワークには、試料シリーズ番号1の大麦の画像がテストデータセットとして入力されている。また、前記テストデータセットには、各大麦粒の表側の画像と裏側の画像とが1枚ずつ含まれる。即ち、例えばテスト画像数108は、54粒の大麦に対応する。また、テストデータセットの画像においては、位置移動および左右反転等のデータオーギュメンテーションは行われていない。また、この「テスト画像数」等の一部の項目については、図18にも記載している。 In FIG. 17, “number of test images” indicates the number of images of barley used in the test data set. Further, the barley sample series number used for the image of the test data set here is the same as the barley sample series number used for the verification data. For example, an image of barley of sample series number 1 is input as a test data set in the trained neural network corresponding to the row in which the "training_verification data set" is "23456train_1val". In addition, the test data set includes one front side image and one back side image of each barleycorn. That is, for example, the number of test images 108 corresponds to 54 grains of barley. Further, in the image of the test data set, data augmentation such as position movement and left-right inversion is not performed. Further, some items such as the "number of test images" are also described in FIG.
 また、「1粒毎データから推定されるかび毒元濃度」は、検証およびテストデータセットに用いた試料シリーズの大麦の粒毎に測定されたかび毒濃度から逆算された、当該試料シリーズ全体のかび毒濃度を示している。なお本数値は、各試料シリーズの粒(44~60粒)のデータから直接算出されたものであり、これら試料のそれぞれのサンプリング元の試料分画のかび毒濃度(図5及び図6)とは、サンプリング誤差により必ずしも一致しない。「高濃度粒と判定する確率閾値」は、対象となる粒画像が高濃度汚染粒と推定される確率が何%以上であれば、当該粒画像が高濃度汚染粒であると判定されるかの閾値を示している。例えば前記確率閾値の値が0.5である場合、判定装置は、対象となる粒画像が50%以上の確率で高濃度汚染粒であると推定される場合に、当該粒画像を高濃度汚染粒であるものと判定する。「高濃度粒判定画像数」は、判定装置が高濃度汚染粒の画像であると判定した画像枚数を示している。「選別除去後濃度」は、検証データに用いた試料シリーズの全ての粒の画像(テストデータセット)から、高濃度汚染粒と判定された画像を除いた場合における残りの前記粒画像全体のかび毒濃度を示している。「選別歩留」は、ここでは、判定装置が高濃度汚染粒であると判定した粒画像を除去したときの残りの粒画像全体に対応する粒重量の、選別前の粒画像全体に対応する粒重量に対する比率(重量比)を示している。「かび毒低減率」は、検証データに用いた試料シリーズの粒画像全体(テストデータセット)から、高濃度汚染粒と判定された粒画像を除いた場合において、かび毒濃度が元の粒画像全体から何%低減したかを示している。また、最終行の「選別歩留8割程度とした場合の平均」は、下線部に示す約80%の選別歩留を用いた場合における各項目の平均値を示している。図17に示す結果においては、交差検証のデータセットの組み合わせによって差異はあるものの、選別歩留を約80%とした場合、平均して5割程度のかび毒濃度の低減効果が確認された。 In addition, the "mycotoxin concentration estimated from the data for each grain" is calculated back from the mycotoxin concentration measured for each grain of barley in the sample series used for the verification and test data set, and is calculated for the entire sample series. It shows the concentration of mycotoxins. This value is calculated directly from the data of the grains (44 to 60 grains) of each sample series, and is the mold poison concentration (Fig. 5 and Fig. 6) of the sample fraction of each sampling source of these samples. Does not always match due to sampling error. The "probability threshold for determining a high-concentration grain" is, if the probability that the target grain image is estimated to be a high-concentration contaminated grain is 0% or more, whether the grain image is determined to be a high-concentration contaminated grain. Indicates the threshold value of. For example, when the value of the probability threshold is 0.5, the determination device contaminates the grain image with a high concentration when it is estimated that the target grain image is a highly contaminated grain with a probability of 50% or more. Judged as a grain. "Number of high-concentration grain determination images" indicates the number of images determined by the determination device to be images of high-concentration contaminated grains. "Concentration after sorting and removal" is the mold of the entire remaining grain image when the image determined to be highly contaminated grains is excluded from the images (test data set) of all grains of the sample series used for the verification data. It shows the poison concentration. Here, the "sorting yield" corresponds to the entire grain image before sorting, which corresponds to the entire remaining grain image when the determination device removes the grain image determined to be highly contaminated grains. The ratio (weight ratio) to the grain weight is shown. The "mycotoxin reduction rate" is the grain image with the original mycotoxin concentration when the grain image determined to be highly contaminated grains is excluded from the entire grain image (test data set) of the sample series used for the verification data. It shows what percentage of the total was reduced. Further, the "average when the sorting yield is about 80%" in the last row shows the average value of each item when the sorting yield of about 80% shown in the underlined portion is used. In the results shown in FIG. 17, although there are differences depending on the combination of the cross-validation data sets, the effect of reducing the mycotoxin concentration by about 50% on average was confirmed when the sorting yield was set to about 80%.
 図18は、検証データに用いた試料シリーズのテストデータセットにおいて、高濃度汚染粒と判定された粒画像と、当該高濃度汚染粒の粒画像を除いた残りの粒画像の、粒毎のかび毒濃度の有意差検定についての項目を含んでいる。図18において「高濃度判定粒の粒毎平均濃度」は、検証データに用いた試料シリーズのテストデータセットにおいて、高濃度汚染粒と判定された粒画像の粒毎のかび毒濃度の平均値を示している。「高濃度判定粒除去後の粒毎平均濃度」は、検証データに用いた試料シリーズのテストデータセットにおいて、高濃度汚染粒と判定された粒画像を除いた残りの粒画像の粒毎のかび毒濃度の平均値を示している。「有意差検定」における「***」は、有意水準が0.1%で有意差があることを示しており、「**」は、有意水準が1%で有意差があることを示している。また「*」は、有意水準が5%で有意差があることを示しており「ns」は、有意水準5%で有意差が無いことを示している。 FIG. 18 shows the mold for each grain of the grain image determined to be highly contaminated grains in the test data set of the sample series used for the verification data and the remaining grain images excluding the grain image of the highly contaminated grains. Includes an item for the significance test of poison concentration. In FIG. 18, “average concentration of high-concentration determined grains per grain” is the average value of the mycotoxin concentration of each grain of the grain image determined to be highly contaminated grains in the test data set of the sample series used for the verification data. Shows. "Average concentration per grain after removal of high-concentration judgment grains" is the mold of each grain of the remaining grain images excluding the grain images judged to be highly contaminated grains in the test data set of the sample series used for the verification data. It shows the average value of the poison concentration. "***" in the "significance test" indicates that there is a significant difference at the significance level of 0.1%, and "**" indicates that there is a significant difference at the significance level of 1%. ing. Further, "*" indicates that there is a significant difference at the significance level of 5%, and "ns" indicates that there is no significant difference at the significance level of 5%.
 大麦ではこれまで、粒厚選別・比重選別以外に、収穫後のかび毒低減に有効とされる選別手法がなかったが、本実施例の判定装置によれば、粒厚選別後(ここでは2.6mm以上)のかび毒汚染大麦試料から、肉眼での判別が困難な高濃度汚染粒を取り除き、かび毒濃度を低減させることが示唆されている。以上、本実施例では、教師データに用いた試料の粒数が比較的少ない条件、且つ一般的なデジタルカメラで撮影した画像を用いているにもかかわらず、学習用データとは独立した試料由来の、様々な汚染度合の粒の画像を含むテストデータセットを用いた粒選別効果の検証において、想像以上の効果が得られた。本実施例では大麦を対象としたが、外観が健全、あるいは被害が不明瞭な小麦粒においてもかび毒が蓄積される場合があり、このような汚染粒が含まれるかび毒汚染小麦試料においても、本実施例に準じた判定装置を用いることによって粒選別によるかび毒低減効果を改善できる可能性が見込まれる。なお判定装置の判定性能については、学習データを増やすことや、画像を構成する波長域等の検討、機械学習モデルの検討・改良により、向上すると考えられる。 In barley, there has been no sorting method effective for reducing mycotoxins after harvesting other than grain thickness sorting and specific gravity sorting, but according to the determination device of this embodiment, after grain thickness sorting (here, 2.6). It has been suggested that high-concentration contaminated grains that are difficult to distinguish with the naked eye are removed from barley samples contaminated with mycotoxins (mm or more) to reduce the concentration of mycotoxins. As described above, in this embodiment, the sample is derived from the sample independent of the training data even though the number of grains of the sample used for the teacher data is relatively small and the image taken by a general digital camera is used. In the verification of the grain sorting effect using a test data set containing images of grains of various degrees of contamination, the effect beyond imagination was obtained. In this example, barley was targeted, but mycotoxins may be accumulated even in wheat grains having a healthy appearance or unclear damage, and mycotoxins-contaminated wheat samples containing such contaminated grains may also accumulate mycotoxins. It is expected that the mycotoxin reduction effect by grain sorting can be improved by using the determination device according to this embodiment. It is considered that the judgment performance of the judgment device will be improved by increasing the learning data, examining the wavelength range and the like constituting the image, and examining and improving the machine learning model.
 また、図19は、上述した各試料シリーズの組合せのテストデータセットについて、高濃度汚染粒と判定する確率閾値と選別歩留との関係を示している。前記選別歩留は、ここでは粒(画像)数比での値であるが、粒厚を一定程度そろえた大麦試料においては、この値を重量比での選別歩留の近似値として考えることができる。図19においては、図17及び図18を参照して説明した、80%の選別歩留のラインを明示している。 Further, FIG. 19 shows the relationship between the probability threshold for determining high-concentration contaminated particles and the sorting yield for the test data set of the combination of the above-mentioned sample series. The sorting yield is a value in terms of the number of grains (images) here, but in a barley sample having a certain grain thickness, this value can be considered as an approximate value of the sorting yield in terms of weight ratio. can. In FIG. 19, the 80% sorting yield line described with reference to FIGS. 17 and 18 is shown.
 また、図19は、例えば「13456train_2val」と「12456train_3val」の試料シリーズの組合せにおいてそれぞれテストデータセットとなる試料シリーズ番号2の大麦と試料シリーズ番号3の大麦とが、確率閾値を0.5(50%に相当)とした場合であっても、選別歩留が80%以上であることを示している。一方で、例えば試料シリーズ番号4の大麦と、試料シリーズ番号6の大麦とにおいては、選別歩留を80%以上とするためには、確率閾値を0.8(80%)以上とすることが必要となる。 Further, in FIG. 19, for example, in the combination of the sample series of "13456train_2val" and "12456train_3val", the barley of the sample series No. 2 and the barley of the sample series No. 3 which are the test data sets have a probability threshold value of 0.5 (50). Even in the case of (corresponding to%), it indicates that the sorting yield is 80% or more. On the other hand, for example, in the barley of sample series No. 4 and the barley of sample series No. 6, in order to make the sorting yield 80% or more, the probability threshold value may be 0.8 (80%) or more. You will need it.
 また、前述の確率閾値と選別歩留(粒(画像)数比または重量比)との関係は、判定装置が、各試料シリーズの大麦の粒画像を参照して算出または推定することができる。一例として、選別歩留(粒(画像)数比)(%)は(1-(判定装置が高濃度汚染粒の画像であると判定した画像枚数/対象となる試料シリーズの大麦粒の画像枚数))×100の式によって算出される。また、教師データとして個々の粒画像と対応する粒重データ、あるいは当該粒画像の同一試料ロットにおける所定の基準値未満の低濃度汚染粒あるいは非汚染粒の平均粒重を基準としたときの相対粒重比のデータを、各粒画像との組として学習させることにより、処理対象の個々の粒画像からそれぞれの粒重あるいは相対粒重比を推定する事も可能となる。このことから、その推定値を用いて、選別歩留(重量比)(%)を、(1-(判定装置が高濃度汚染粒と判定した各画像の粒重(推定値)合計/対象となる試料シリーズの大麦粒の全画像の粒重(推定値)合計))×100や、(1-(判定装置が高濃度汚染粒と判定した各画像の相対粒重比(推定値)の合計値/対象となる試料シリーズの大麦粒の全画像の相対粒重比(推定値)の合計値))×100の式によって算出(推定)してもよい。または、前述のように、所定の条件において、粒(画像)数比での選別歩留と重量比での選別歩留を、それぞれ互いの近似値として扱うことも可能である。 Further, the relationship between the above-mentioned probability threshold value and the sorting yield (grain (image) number ratio or weight ratio) can be calculated or estimated by the determination device with reference to the barley grain image of each sample series. As an example, the sorting yield (ratio of grain (image) number) (%) is (1- (the number of images determined by the determination device to be an image of highly contaminated grains / the number of images of barleycorn in the target sample series). )) Calculated by the formula of × 100. In addition, as teacher data, the relative grain weight data corresponding to each grain image, or the average grain weight of low-concentration contaminated grains or uncontaminated grains less than a predetermined reference value in the same sample lot of the grain image is used as a reference. By learning the grain weight ratio data as a set with each grain image, it is possible to estimate each grain weight or relative grain weight ratio from each grain image to be processed. From this, using the estimated value, the sorting yield (weight ratio) (%) is set to (1- (total grain weight (estimated value) of each image determined by the determination device as highly contaminated grains / target). Total of grain weights (estimated values) of all images of barleycorn in the sample series) x 100 and (1- (total of relative grain weight ratios (estimated values) of each image judged by the judgment device as highly contaminated grains) Value / Total value of relative grain weight ratio (estimated value) of all images of barleycorn of the target sample series)) may be calculated (estimated) by the formula of 100. Alternatively, as described above, under predetermined conditions, the sorting yield based on the grain (image) number ratio and the sorting yield based on the weight ratio can be treated as approximate values to each other.
 これにより、例えば、本判定装置で、事前に汚染粒選別除去の対象とする大麦試料ロットから抽出した一定量の粒の画像を参照して、高濃度汚染粒と推定する確率閾値と選別歩留(粒数比または重量比)との関係の情報を得ることにより、当該大麦試料ロットの高濃度汚染粒の判定に用いるべき確率閾値を、対応する選別歩留の値を判断材料として決定することができる。 Thereby, for example, the probability threshold and the sorting yield estimated to be high-concentration contaminated grains by referring to the image of a certain amount of grains extracted from the barley sample lot to be sorted and removed in advance by this determination device. By obtaining information on the relationship with (grain ratio or weight ratio), the probability threshold to be used for determining highly concentrated contaminated grains in the barley sample lot should be determined using the corresponding sorting yield value as a criterion. Can be done.
 なおこのとき、必要に応じて、表側・裏側といった粒の向きに応じて確率閾値と選別歩留との関係の情報をそれぞれ別々に得て、粒の向きに応じて異なる確率閾値を高濃度汚染粒の判定に用いてもよい。 At this time, if necessary, information on the relationship between the probability threshold and the sorting yield is obtained separately according to the orientation of the grains such as the front side and the back side, and different probability thresholds are contaminated at high concentration according to the orientation of the grains. It may be used for grain determination.
 また、様々な条件で得られた各種試料シリーズの粒毎の画像およびかび毒濃度等のデータが蓄積されることによって、それらを学習に用いることで判定装置の判定性能の改良が進むとともに、図19に示すような、様々な試料シリーズに対応する確率閾値と選別歩留との関係のデータや、それぞれに対応するかび毒低減率、高濃度汚染粒除去後のかび毒濃度のデータも更新されつつ蓄積される。それらデータを用いた推定モデルの開発により、新たに判定対象とする大麦試料について、当該試料ロットから抽出した一定量の粒の画像を判定装置で参照することにより(このときにその試料ロットにおける当該判定装置での確率閾値と選別歩留との関係の情報が得られる)、当該試料ロットの元のかび毒濃度あるいは汚染度合のほか、選択される確率閾値および選別歩留に対応するかび毒低減率や、高濃度汚染粒除去後のかび毒濃度あるいは汚染度合の推定が可能となる。これら情報は、当該大麦試料ロットの高濃度汚染粒の判定に用いるべき確率閾値や選別歩留の決定の際の判断材料とできる。なお当該推定モデルの開発においては、例えば、一般化線形モデル、ベイズ推定、機械学習等の手法が利用可能である。また、必ずしも粒毎のかび毒データがそろっていない試料でも、汚染粒選別前のかび毒濃度と所定の確率閾値や選別歩留を適用した選別後のかび毒濃度のデータ等を、当該推定モデルの開発・改良に活用することが可能である。また、各試料の各種付帯情報、例えば、対象作物の種類に関する情報(例えば大麦でも、そのうち二条大麦、六条大麦、裸麦等)や品種、各種栽培条件(栽培地、気象条件、優占する菌種情報、防除条件等)の情報(データ)も、当該推定モデルの開発・改良に活用可能である。 In addition, by accumulating data such as grain-by-grain images and mycotoxins concentration of various sample series obtained under various conditions, the judgment performance of the judgment device will be improved by using them for learning, and the figure will be shown. The data on the relationship between the probability threshold and the sorting yield corresponding to various sample series as shown in 19, the corresponding mycotoxin reduction rate, and the data on the mycotoxin concentration after removal of high-concentration contaminated particles are also updated. While accumulating. By developing an estimation model using these data, the image of a certain amount of grains extracted from the sample lot for the barley sample to be newly judged can be referred to by the judgment device (at this time, the relevant sample lot). Information on the relationship between the probability threshold and the sorting yield in the determination device), the original mycotoxin concentration or degree of contamination of the sample lot, as well as the selected probability threshold and the mycotoxin reduction corresponding to the sorting yield. It is possible to estimate the rate, mycotoxin concentration or degree of contamination after removal of high-concentration contaminated particles. This information can be used as a judgment material when determining the probability threshold value and the sorting yield to be used for determining the highly concentrated contaminated grains of the barley sample lot. In the development of the estimation model, for example, methods such as a generalized linear model, Bayesian estimation, and machine learning can be used. In addition, even for samples for which the mycotoxin data for each grain is not always available, the estimated model is based on the mycotoxin concentration before sorting contaminated grains and the data of the mycotoxin concentration after sorting to which a predetermined probability threshold and sorting yield are applied. It can be used for the development and improvement of. In addition, various incidental information of each sample, for example, information on the type of target crop (for example, barley, Nijo barley, six-row barley, bare barley, etc.), varieties, various cultivation conditions (cultivation area, weather conditions, dominant bacterial species, etc.) Information (data) such as information and control conditions) can also be used for the development and improvement of the estimation model.
 なお、実施例5においては、判定装置にニューラルネットワークの分類モデルを用いているが、回帰モデルを用いた場合、本実施例におけるかび毒高濃度汚染粒の判定閾値である「確率閾値」は、「推定されるかび毒濃度」に置き換えて考えることができる。また、判定装置に用いる機械学習モデルの種類に応じて、他の適当な判定閾値を用いることも可能である。なお、かび毒高濃度汚染粒であるか否かの判定を行う際の判定閾値が存在しない機械学習モデルは想定されず、例えば個々の粒の判定結果を一意に(二者択一の結果のみ)返す分類モデルにおいては、「かび毒高濃度汚染粒」とする基準値、すなわち、そのモデルの教師データに用いたかび毒高濃度汚染粒のかび毒濃度あるいは汚染度合の下限値とする閾値(たとえば5ppm)が、そのモデルにおける判定閾値であると考えることができる。このように、多くの場合、「かび毒高濃度汚染粒」とする基準値を、そのまま判定閾値と見なすことができる。 In Example 5, a neural network classification model is used as the determination device, but when a regression model is used, the “probability threshold”, which is the determination threshold for mycotoxins with high concentration of mycotoxins, in this example is It can be replaced with "estimated mycotoxin concentration". It is also possible to use other appropriate determination thresholds depending on the type of machine learning model used in the determination device. It should be noted that a machine learning model in which there is no judgment threshold for determining whether or not the particles are highly contaminated with mycotoxins is not assumed. ) In the classification model to be returned, the reference value as "mycotoxins highly contaminated grains", that is, the lower limit of the mycotoxins concentration or the degree of contamination of the mycotoxins highly contaminated grains used in the teacher data of the model ( For example, 5 ppm) can be considered to be the determination threshold in the model. As described above, in many cases, the reference value of "mycotoxin high-concentration contaminated particles" can be regarded as the determination threshold value as it is.
1 判定装置(学習装置)
10 制御部
12 取得部
14 判定部
16 学習部
20 記憶部
22 作用部
24 撮影部
26 測定部
1 Judgment device (learning device)
10 Control unit 12 Acquisition unit 14 Judgment unit 16 Learning unit 20 Storage unit 22 Action unit 24 Imaging unit 26 Measurement unit

Claims (15)

  1.  粒状農産物の1又は複数粒を含む画像を取得する取得部と、
     前記画像が入力され上記粒状農産物の粒におけるかび毒濃度あるいは汚染度合に関する判定結果を、粒毎にそれぞれ出力する学習済み機械学習モデルを用いて、(1)当該粒状農産物の1又は複数粒の個々の粒または全体が所定の基準値以上または所定の濃度範囲のかび毒に汚染されているか否かを判定、又は(2)当該粒状農産物の1又は複数粒の個々の粒または全体のかび毒濃度あるいは汚染度合を判定する判定部と、
    を備えることを特徴とする判定装置。
    An acquisition unit that acquires an image containing one or more grains of granular agricultural products,
    Using a trained machine learning model in which the image is input and the determination result regarding the mycotoxin concentration or the degree of contamination in the grains of the granular agricultural product is output for each grain, (1) one or more grains of the granular agricultural product are individually output. Determine if the grain or whole of the crop is contaminated with mycotoxins above a predetermined reference value or in a predetermined concentration range, or (2) the mycotoxin concentration of one or more individual grains or the whole of the granular agricultural product. Alternatively, a judgment unit that determines the degree of contamination and
    A determination device characterized by comprising.
  2.  前記取得部は、紫外又は赤外領域で撮像された粒状農産物の1又は複数粒を含む画像を取得し、
     前記判定部は、当該画像が入力される機械学習モデルであって、紫外又は赤外領域で撮像された粒状農産物の1又は複数粒を含む画像を教師データとして用いて学習された機械学習モデルを用いて判定を行う
    ことを特徴とする請求項1に記載の判定装置。
    The acquisition unit acquires an image containing one or more grains of granular agricultural products imaged in the ultraviolet or infrared region.
    The determination unit is a machine learning model into which the image is input, and is a machine learning model learned by using an image containing one or more grains of granular agricultural products captured in the ultraviolet or infrared region as teacher data. The determination device according to claim 1, wherein the determination is performed using the determination device.
  3.  前記取得部は、大麦の1又は複数粒を含む画像を取得することを特徴とする請求項1又は2に記載の判定装置。 The determination device according to claim 1 or 2, wherein the acquisition unit acquires an image containing one or more grains of barley.
  4.  前記判定部は、
      前記画像に含まれる粒状農産物の粒の向きを判別したうえで、
      前記画像に含まれる粒状農産物の粒の向きに応じた学習済み機械学習モデルを用いて前記判定を行う
    ことを特徴とする請求項1から3までの何れか1項に記載の判定装置。
    The determination unit
    After determining the orientation of the grains of the granular agricultural products contained in the image,
    The determination device according to any one of claims 1 to 3, wherein the determination is performed using a trained machine learning model according to the orientation of the grains of the granular agricultural product contained in the image.
  5.  前記取得部は、収穫された粒状農産物の1又は複数粒を含む画像を取得し、
     対象となる粒状農産物の粒を所定の向きに揃える作用部と、
     前記作用部が向きを揃えた粒状農産物の粒の画像を撮影し、前記取得部に供給する撮影部と
    を更に備えることを特徴とする請求項1から4までの何れか1項に記載の判定装置。
    The acquisition unit acquires an image containing one or more grains of the harvested granular agricultural product.
    An action part that aligns the grains of the target granular agricultural products in a predetermined direction,
    The determination according to any one of claims 1 to 4, wherein the action unit captures an image of grains of granular agricultural products in which the directions are aligned, and further comprises an imaging unit that supplies the acquisition unit. Device.
  6.  前記判定部は、
      入力された画像に含まれる前記粒状農産物の1又は複数粒の個々の粒について、所定の判定閾値を用いて所定の基準値以上のかび毒に汚染されているか否かを判定し、
      当該判定の対象となる粒の集合のうち、前記所定の基準値以上のかび毒に汚染されていないと判定される粒の数の割合である選別歩留を、1通り以上の前記判定閾値の各々に対して算出又は推定する機能を更に有する
    ことを特徴とする請求項1から5までの何れか1項に記載の判定装置。
    The determination unit
    It is determined whether or not each of the individual grains of the granular agricultural product contained in the input image is contaminated with mycotoxins above a predetermined reference value using a predetermined determination threshold value.
    The selection yield, which is the ratio of the number of grains determined not to be contaminated with mycotoxins above the predetermined reference value, among the set of grains subject to the determination, is set to one or more of the determination thresholds. The determination device according to any one of claims 1 to 5, further comprising a function of calculating or estimating for each.
  7.  前記判定部は、
      入力された画像に含まれる前記粒状農産物の1又は複数粒の個々の粒について、所定の判定閾値を用いて所定の基準値以上のかび毒に汚染されているか否かを判定し、
      当該判定の対象となる粒の集合のうち、前記所定の基準値以上のかび毒に汚染されていないと判定される粒の重量の割合である選別歩留を、1通り以上の前記判定閾値の各々に対して算出又は推定する機能を更に有する
    ことを特徴とする請求項1から5までの何れか1項に記載の判定装置。
    The determination unit
    It is determined whether or not each of the individual grains of the granular agricultural product contained in the input image is contaminated with mycotoxins above a predetermined reference value using a predetermined determination threshold value.
    Among the set of grains to be determined, the selection yield, which is the ratio of the weight of the grains determined not to be contaminated with mycotoxins above the predetermined reference value, is set to one or more of the determination thresholds. The determination device according to any one of claims 1 to 5, further comprising a function of calculating or estimating for each.
  8.  前記判定部は、
      入力された画像に含まれる前記粒状農産物の1又は複数粒の個々の粒について、所定の判定閾値を用いて所定の基準値以上のかび毒に汚染されているか否かを判定し、
      当該判定の対象となる粒の集合から、前記所定の基準値以上のかび毒に汚染されていると判定される粒を取り除いた場合における、かび毒低減率または残りの粒の集合全体のかび毒濃度あるいは汚染度合を、1通り以上の前記判定閾値または選別歩留の各々に対して推定する機能を更に有する
    ことを特徴とする請求項1から7までの何れか1項に記載の判定装置。
    The determination unit
    It is determined whether or not each of the individual grains of the granular agricultural product contained in the input image is contaminated with mycotoxins above a predetermined reference value using a predetermined determination threshold value.
    When the grains determined to be contaminated with mycotoxins above the predetermined reference value are removed from the set of grains to be determined, the mycotoxin reduction rate or the total set of remaining grains is mycotoxin. The determination device according to any one of claims 1 to 7, further comprising a function of estimating a concentration or a degree of contamination for each of one or more of the determination thresholds or selection yields.
  9.  粒状農産物の1又は複数粒を含む画像と、当該粒状農産物の粒毎のかび毒濃度あるいは汚染度合を示す濃度情報とを取得する取得部と、
     粒状農産物の1又は複数粒を含む画像が入力され当該粒状農産物の粒におけるかび毒濃度あるいは汚染度合に関する判定結果を、粒毎にそれぞれ出力する機械学習モデルを、前記取得部が取得した前記画像及び濃度情報の組を教師データとして用いて学習させる学習部を備える
    ことを特徴とする学習装置。
    An acquisition unit that acquires an image containing one or more grains of the granular agricultural product and concentration information indicating the mycotoxin concentration or the degree of contamination of each grain of the granular agricultural product.
    The image and the machine learning model acquired by the acquisition unit are obtained by inputting an image containing one or more grains of the granular agricultural product and outputting the determination result regarding the mold poison concentration or the degree of contamination in the grains of the granular agricultural product for each grain. A learning device including a learning unit for learning using a set of concentration information as teacher data.
  10.  粒状農産物の粒のかび毒濃度あるいは汚染度合を測定又は推定し、結果を前記取得部に供給する測定部を更に備えることを特徴とする請求項9に記載の学習装置。 The learning device according to claim 9, further comprising a measuring unit that measures or estimates the mycotoxin concentration or the degree of contamination of the grains of the granular agricultural product and supplies the result to the acquisition unit.
  11.  前記学習部は、
      かび毒濃度あるいは汚染度合が所定の基準値以上である第1のクラスの粒状農産物の粒を含む画像と、かび毒濃度あるいは汚染度合が前記基準値未満に設定された所定の閾値以下であるか又は非汚染である第2のクラスの粒状農産物の粒を含む画像とを前記機械学習モデルに入力し、
      前記機械学習モデルを、入力画像に含まれる粒状農産物の粒が、前記所定の基準値以上のかび毒に汚染された粒であるか否かの判定結果をその確率値として出力するように学習させる
    ことを特徴とする請求項9又は10に記載の学習装置。
    The learning unit
    An image containing grains of first-class granular agricultural products whose mycotoxin concentration or degree of contamination is equal to or higher than a predetermined standard value, and whether the mycotoxin concentration or degree of contamination is equal to or less than a predetermined threshold set below the predetermined standard value. Alternatively, an image containing grains of a second class of granular agricultural product that is non-contaminated is input to the machine learning model.
    The machine learning model is trained to output a determination result as a probability value of whether or not the grain of the granular agricultural product contained in the input image is a grain contaminated with mycotoxins having a predetermined reference value or more. The learning device according to claim 9 or 10.
  12.  粒状農産物の1又は複数粒を含む画像を取得する取得ステップと、
     前記画像が入力され上記粒状農産物の粒におけるかび毒濃度あるいは汚染度合に関する判定結果を、粒毎にそれぞれ出力する学習済み機械学習モデルを用いて、(1)当該粒状農産物の1又は複数粒の個々の粒または全体が所定の基準値以上または所定の濃度範囲のかび毒に汚染されているか否かを判定、又は(2)当該粒状農産物の1又は複数粒の個々の粒または全体のかび毒濃度あるいは汚染度合を判定する判定ステップと、
    を含むことを特徴とする判定方法。
    The acquisition step of acquiring an image containing one or more grains of granular agricultural products,
    Using a trained machine learning model in which the image is input and the determination result regarding the mycotoxin concentration or the degree of contamination in the grains of the granular agricultural product is output for each grain, (1) one or more grains of the granular agricultural product are individually output. Determine if the grain or whole of the crop is contaminated with mycotoxins above a predetermined reference value or in a predetermined concentration range, or (2) the mycotoxin concentration of one or more individual grains or the whole of the granular agricultural product. Alternatively, a determination step for determining the degree of contamination and
    A determination method characterized by including.
  13.  粒状農産物の1又は複数粒を含む画像と、当該粒状農産物の粒毎のかび毒濃度あるいは汚染度合を示す濃度情報とを取得する取得ステップと、
     粒状農産物の1又は複数粒を含む画像が入力され当該粒状農産物の粒におけるかび毒濃度あるいは汚染度合に関する判定結果を、粒毎にそれぞれ出力する機械学習モデルを、前記取得ステップにおいて取得した前記画像及び濃度情報の組を教師データとして用いて学習させる学習ステップと
    を含むことを特徴とする学習方法。
    An acquisition step for acquiring an image containing one or more grains of the granular agricultural product and concentration information indicating the mycotoxin concentration or the degree of contamination of each grain of the granular agricultural product.
    A machine learning model in which an image containing one or more grains of a granular agricultural product is input and a determination result regarding the mold poison concentration or the degree of contamination in the grains of the granular agricultural product is output for each grain is obtained with the image and the image acquired in the acquisition step. A learning method including a learning step in which a set of density information is used as teacher data for learning.
  14.  請求項1に記載の判定装置としてコンピュータを機能させるための制御プログラムであって、前記取得部および前記判定部としてコンピュータを機能させるための制御プログラム。 The control program for operating the computer as the determination device according to claim 1, and the control program for operating the computer as the acquisition unit and the determination unit.
  15.  請求項9に記載の学習装置としてコンピュータを機能させるための制御プログラムであって、前記取得部および前記学習部としてコンピュータを機能させるための制御プログラム。 The control program for operating the computer as the learning device according to claim 9, and the control program for operating the computer as the acquisition unit and the learning unit.
PCT/JP2021/038423 2020-10-16 2021-10-18 Determination device, learning device, determination method, learning method, and control program WO2022080504A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022557520A JPWO2022080504A1 (en) 2020-10-16 2021-10-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-174658 2020-10-16
JP2020174658 2020-10-16

Publications (1)

Publication Number Publication Date
WO2022080504A1 true WO2022080504A1 (en) 2022-04-21

Family

ID=81209275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038423 WO2022080504A1 (en) 2020-10-16 2021-10-18 Determination device, learning device, determination method, learning method, and control program

Country Status (2)

Country Link
JP (1) JPWO2022080504A1 (en)
WO (1) WO2022080504A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08338809A (en) * 1995-06-14 1996-12-24 Iseki & Co Ltd Apparatus for analyzing quality of grain
US5973286A (en) * 1996-12-30 1999-10-26 Council Of Agriculture Executive Yuan Grain sorting method and a device thereof
WO2015186708A1 (en) * 2014-06-05 2015-12-10 株式会社サタケ Method for creating grade discrimination standard in granular object appearance grade discrimination device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08338809A (en) * 1995-06-14 1996-12-24 Iseki & Co Ltd Apparatus for analyzing quality of grain
US5973286A (en) * 1996-12-30 1999-10-26 Council Of Agriculture Executive Yuan Grain sorting method and a device thereof
WO2015186708A1 (en) * 2014-06-05 2015-12-10 株式会社サタケ Method for creating grade discrimination standard in granular object appearance grade discrimination device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JAILLAIS B., ROUMET P., PINSON-GADAIS L., BERTRAND D.: "Detection of Fusarium head blight contamination in wheat kernels by multivariate imaging", FOOD CONTROL, BUTTERWORTH, LONDON, GB, vol. 54, 1 August 2015 (2015-08-01), GB , pages 250 - 258, XP055921922, ISSN: 0956-7135, DOI: 10.1016/j.foodcont.2015.01.048 *
QIU RUICHENG, YANG CE, MOGHIMI ALI, ZHANG MAN, STEFFENSON BRIAN J., HIRSCH CORY D.: "Detection of Fusarium Head Blight in Wheat Using a Deep Neural Network and Color Imaging", REMOTE SENSING, vol. 11, no. 22, pages 2658, XP055921919, DOI: 10.3390/rs11222658 *
ZHONGZHI HAN; LIMIAO DENG: "Aflatoxin contaminated degree detection by hyperspectral data using band index", FOOD AND CHEMICAL TOXICOLOGY, PERGAMON, GB, vol. 137, 25 January 2020 (2020-01-25), GB , XP086054078, ISSN: 0278-6915, DOI: 10.1016/j.fct.2020.111159 *

Also Published As

Publication number Publication date
JPWO2022080504A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
TU et al. Selection for high quality pepper seeds by machine vision and classifiers
Vithu et al. Machine vision system for food grain quality evaluation: A review
Kurtulmuş et al. Classification of pepper seeds using machine vision based on neural network
Tallada et al. Detection of fungus-infected corn kernels using near-infrared reflectance spectroscopy and color imaging
Fornal et al. Detection of granary weevil Sitophilus granarius (L.) eggs and internal stages in wheat grain using soft X-ray and image analysis
Barbedo et al. Deoxynivalenol screening in wheat kernels using hyperspectral imaging
Luo et al. Comparison of statistical and neural network methods for classifying cereal grains using machine vision
OuYang et al. An automatic method for identifying different variety of rice seeds using machine vision technology
Kavdir et al. Apple sorting using artificial neural networks and spectral imaging
Saccon et al. Assessment of Fusarium and deoxynivalenol using optical methods
Mishra et al. Research advancements in optical imaging and spectroscopic techniques for nondestructive detection of mold infection and mycotoxins in cereal grains and nuts
Sankaran et al. Image-based rapid phenotyping of chickpeas seed size
Jia et al. Detection of mycotoxins and toxigenic fungi in cereal grains using vibrational spectroscopic techniques: A review
Shahin et al. Lentil type identification using machine vision
Tan et al. Identification of soybean seed varieties based on hyperspectral image
Femenias et al. Hyperspectral imaging for the classification of individual cereal kernels according to fungal and mycotoxins contamination: A review
Çetin Machine learning for varietal binary classification of soybean (Glycine max (L.) Merrill) seeds based on shape and size attributes
Armstrong et al. Detection of chalk in single kernels of long‐grain milled rice using imaging and visible/near‐infrared instruments
Aznan et al. Rice seed varieties identification based on extracted colour features using image processing and artificial neural network (ANN)
WO2022080504A1 (en) Determination device, learning device, determination method, learning method, and control program
McDonald et al. Discriminant analysis of defective and non-defective field pea (Pisum sativum L.) into broad market grades based on digital image features
McDonald et al. A review of the opportunities for spectral‐based technologies in post‐harvest testing of pulse grains
JPWO2022080504A5 (en)
Mladenov et al. Quality assessment of grain samples using color image analysis
WO2023200006A1 (en) Determination device, determination method, and control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880239

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022557520

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21880239

Country of ref document: EP

Kind code of ref document: A1