WO2022080366A1 - Separation membrane element production method and separation membrane element - Google Patents

Separation membrane element production method and separation membrane element Download PDF

Info

Publication number
WO2022080366A1
WO2022080366A1 PCT/JP2021/037730 JP2021037730W WO2022080366A1 WO 2022080366 A1 WO2022080366 A1 WO 2022080366A1 JP 2021037730 W JP2021037730 W JP 2021037730W WO 2022080366 A1 WO2022080366 A1 WO 2022080366A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
flow path
layer
path member
membrane element
Prior art date
Application number
PCT/JP2021/037730
Other languages
French (fr)
Japanese (ja)
Inventor
正憲 北野
和輝 池下
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2022080366A1 publication Critical patent/WO2022080366A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/101Spiral winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor

Definitions

  • the present invention relates to a method for manufacturing a separation membrane element and a separation membrane element.
  • the separation membrane element generally has a structure in which a laminate in which a separation membrane, a supply-side flow path member, a transmission-side flow path member, and the like are laminated is wound around a hollow tube.
  • the laminated body is formed by forming a leaf in which a supply-side flow path member is sandwiched between the separation membranes folded in half, and laminating a plurality of separation membrane units in which the leaf and the transmission-side flow path member are overlapped.
  • Patent Document 1 Japanese Patent No. 3570831
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2010-82575
  • a plurality of laminated separation membrane units are laminated so as to be displaced at a predetermined pitch in the winding direction of the laminated body.
  • the leaf contained in the separation membrane unit is formed by folding the separation membrane in half, swelling is likely to occur at the fold portion of the separation membrane.
  • the thickness of the region where the fold portion of the leaf is arranged is increased in the portion where the separation membrane units are laminated, and the laminated separation membrane unit is warped. Will occur.
  • the separation membrane unit is further laminated in such a warped state, the stacking position of the leaf and the transmission side flow path member included in the separation membrane unit is displaced, and the separation membrane unit is accurately performed at the predetermined pitch. It becomes difficult to stack.
  • the separation membrane units are not laminated with high accuracy, the cross section of the portion where the laminated body is wound around the hollow tube does not become a perfect circle, and the shape becomes eccentric and the appearance tends to deteriorate.
  • the present invention provides the following method for manufacturing a separation membrane element and a separation membrane element.
  • a method for manufacturing a separation membrane element including a perforated hollow tube and a laminated body, in which at least a part of the laminated body is wound around the hollow tube.
  • the laminated body is A plurality of separation membrane units including a leaf having a first flow path member interposed between the two-folded separation membranes and at least a part of layers constituting the second flow path member laminated on the leaf are laminated.
  • the separation membrane units are laminated so that the position of the fold portion of the separation membrane is displaced in the winding direction of the laminate.
  • the manufacturing method includes a step of laminating the separation membrane unit.
  • the laminating step when N is an integer of 2 or more, the first region including at least a part of the fold portion of the separation membrane contained in the separation membrane unit of the (N-1) layer was pressed.
  • a method for manufacturing a separation membrane element comprising a first step of laminating the separation membrane unit of the Nth layer on the separation membrane unit of the (N-1) layer in the state. [2] The method for manufacturing a separation membrane element according to [1], wherein the pressing of the first region is performed so that the maximum distance between the surfaces of the separation membranes facing each other in the first region is less than 5 mm.
  • the laminating step further includes a second step of laminating the (N + 1) th layer separation membrane unit on the Nth layer separation membrane unit laminated in the first step.
  • the separation membrane unit of the (N + 1) layer is pressed in a state where the second region including at least a part of the fold portion of the separation membrane included in the separation membrane unit of the Nth layer is pressed.
  • [4] The method for manufacturing a separation membrane element according to [3], wherein the second step is performed while maintaining the state of pressing the first region in the first step.
  • the laminating step further includes a third step of laminating the (N + 2) layer separation membrane unit on the (N + 1) th layer separation membrane unit laminated in the second step.
  • the separation membrane of the (N + 2) layer is pressed while the third region including at least a part of the fold portion of the separation membrane included in the separation membrane unit of the (N + 1) layer is pressed.
  • the method for manufacturing a separation membrane element according to [3] or [4], wherein the units are laminated.
  • the pressing of the first region is performed by pressing the first pressing member.
  • the laminating step further includes a step of releasing the pressing of the first region by the first pressing member.
  • One of the first flow path member and the second flow path member is a supply-side flow path member for forming a flow path through which the raw material fluid flows, and the other is a permeation fluid that has passed through the separation membrane.
  • the first flow path member is the supply side flow path member.
  • the method for manufacturing a separation membrane element according to [10], wherein the second flow path member is the permeation side flow path member.
  • a separation membrane element including a perforated hollow tube and a laminated body, wherein at least a part of the laminated body is wound around the hollow tube.
  • the laminated body is A plurality of separation membrane units including a leaf having a first flow path member interposed between the two-folded separation membranes and at least a part of layers constituting the second flow path member laminated on the leaf are laminated. ,and, The separation membrane units are laminated so that the position of the fold portion of the separation membrane is displaced in the winding direction of the laminate.
  • the separation membrane is It has a porous layer and a gel layer provided on the porous layer, and After folding the separation membrane in half so that a load of 1 N / cm 2 is applied to the entire crease, the maximum distance between the opposing surfaces of the separation membrane when the load is removed is 10 mm or more. can be,
  • the separation membrane element is The winding direction distance between the positions of the fold portions of the separation membrane included in the two adjacent leaves via the second flow path member in the stacking direction of the laminated body is defined as WR.
  • One of the first flow path member and the second flow path member is a supply side flow path member for forming a flow path through which the raw material fluid flows, and the other side allows the permeation fluid that has passed through the separation membrane to flow.
  • the first flow path member is the supply side flow path member.
  • the separation membrane element according to [15], wherein the second flow path member is the permeation side flow path member.
  • the separation membrane unit can be satisfactorily laminated, and the separation membrane element having a good shape of a portion where the laminate is wound around a hollow tube can be manufactured. ..
  • the separation membrane element of the present embodiment may be a separation membrane element having a structure in which at least a part of the laminated body is wound around a hollow tube. Specifically, it is a plate and frame type in which at least a part of the laminated body (for example, only one round) is wound around the outer circumference of the hollow tube, and the remaining laminated body is suspended from the hollow tube. It can also be applied to the separation membrane element.
  • FIG. 1 and 2 are schematic perspective views showing a spiral type separation membrane element with a partially developed portion.
  • FIG. 3 is a schematic cross-sectional view showing an example of a laminated body included in a spiral type separation membrane element.
  • the spiral type separation membrane elements 1a and 1b manufactured by the manufacturing method of the present embodiment (hereinafter, both may be collectively referred to as "separation membrane element 1") are referred to. It can be used to separate a specific fluid component from a raw material fluid containing at least a specific fluid component.
  • the raw material fluid may be a gas or a liquid.
  • the separation membrane element 1 is preferably a gas separation membrane element, and preferably allows a specific gas component to selectively permeate from the raw material gas.
  • the specific gas component that the separation membrane contained in the gas separation membrane element selectively permeates is preferably an acid gas.
  • the acid gas examples include carbon dioxide (CO 2 ), hydrogen sulfide (H 2 S), sulfur oxide (SO x ), nitrogen oxide (NO x ) and the like.
  • the specific gas component is preferably carbon dioxide or hydrogen sulfide, more preferably carbon dioxide.
  • the separation membrane element 1 includes a perforated hollow tube 5 and a laminated body 7 (FIG. 3), and the entire length of the laminated body 7 is wound around the hollow tube 5. It is a thing.
  • the separation membrane element 1 is preferably cylindrical.
  • the laminated body 7 has a leaf 6 having a supply-side flow path member 3 (first flow path member) interposed between the separated membranes 10 folded in half, and a permeation layer 6 laminated on the leaf 6.
  • a plurality of separation membrane units 9 including at least a part of the layers constituting the side flow path member 4 (second flow path member) are laminated.
  • the separation membrane unit 9 is laminated so that the position of the fold portion of the separation membrane 10 shifts in the winding direction of the laminate 7 (direction of the double arrow in FIG. 3), for example, at pitch P0. ing.
  • the laminated body 7 as shown in FIG.
  • each of the separation membrane units 9 has a structure in which all the layers constituting the transmission side flow path member 4 are provided on the leaf 6.
  • the laminated body 7 is wound around the hollow tube 5.
  • the laminate when the permeation side flow path member 4 has a multilayer structure in which two or more layers are laminated, the laminate may be in the form of the laminate 7 shown in FIG. 3, and the laminate 7 shown in FIG. 3 may be used.
  • each of the separation membrane units 9 has a structure in which all the layers constituting the transmission side flow path member 4 are provided on the leaf 6.
  • the separation membrane unit 9 other than the uppermost layer has a structure in which all the layers constituting the transmission side flow path member 4 are provided on the leaf 6, and the separation membrane unit 9 of the uppermost layer is on the leaf 6.
  • the uppermost layer of the laminated body 7 described above is the leaf 6, or a plurality of layers constituting the transmission side flow path member 4. Regardless of whether it is a part of the layers, all or a part of the layers constituting the transmission side flow path member 4 arranged at the lowermost side of the laminated body 7 can form the outermost layer.
  • the pitch P0 in the laminated body 7 can be set to a preset value for laminating the leaves 6, and is based on the outer peripheral length C of the hollow tube 5 and the number n of the leaves 6 included in the laminated body 7. Can be set.
  • the pitch P0 is, for example, C / n.
  • the pitch P0 is a flow path member on the transmission side in the stacking direction of the laminated body 7 in a state before the laminated body 7 is wound around the hollow tube 5 (a state in which the separation membrane units 9 are stacked flat as shown in FIG. 3). It is the distance between the tip portions (the portions that become the vertices of the fold portions) of the fold portions of the separation membranes 10 of the two adjacent leaves 6 via 4.
  • the distance between the tip portions of the fold portion is a direction orthogonal to the stacking direction (horizontal direction) of the laminated body 7, and is a distance in a direction orthogonal to the straight line formed by the tip portion of the fold portion.
  • the separation membrane element 1 further has a sealing portion for preventing mixing of the raw material fluid flowing through the supply side flow path member 3 and the permeation fluid flowing through the permeation side flow path member 4.
  • the separation membrane element 1 is fixed with an outer peripheral tape, a telescope prevention plate 55 shown in FIG. 2, or the like in order to prevent the winding body 7 wound around the hollow tube 5 from being unwound or unwound. It may be provided with a member.
  • the separation membrane element 1 may have an outer wrap (reinforcing layer) on the outermost circumference of the wound body in order to secure the strength against the load due to the internal pressure and the external pressure applied to the separation membrane element.
  • the separation membrane element may be a leaf having a transmission side flow path member 4 interposed between the separation membranes 10 folded in half, and a supply side flow path member 3 provided on the leaf.
  • FIG. 4 is a schematic diagram for explaining an example of a manufacturing process of a spiral type separation membrane element.
  • FIG. 5 is a schematic diagram for explaining a state in which a separation membrane unit having a bulge is laminated on a fold portion of the separation membrane.
  • the permeation side flow path member 4 has a single-layer structure will be described, but as described above, the permeation side flow path member 4 may have a multi-layer structure.
  • the method for manufacturing the separation membrane element 1 includes a step of laminating the separation membrane unit 9.
  • the step of laminating the separation membrane unit 9 may be a step of laminating a structure in which the leaf 6 and the permeation side flow path member 4 are integrated in advance, and is a step of laminating the leaf 6 and the permeation side flow path member 4 in order. May be good.
  • the first step of laminating includes at least a part of the fold portion of the separation membrane 10a included in the separation membrane unit 9a of the (N-1) layer.
  • the first step of laminating the separation film unit 9b of the Nth layer on the separation film unit 9a of the (N-1) layer while pressing the region is included.
  • the leaf 6, the separation membrane 10, the supply side flow path member 3, and the transmission side flow path member 4 included in the separation membrane unit 9. The same alphabet is attached to the sign of the corresponding number.
  • the laminating step may be a step of repeating the first step.
  • the laminating step is a second step of laminating the (N + 1) th layer separation membrane unit 9c on the Nth layer separation membrane unit 9b as shown in FIG. 4 (c).
  • a third step of laminating the (N + 2) layer separation film unit 9d on the (N + 1) layer separation film unit 9c is included. May be good.
  • the step of laminating may further include a step of laminating the leaf 6 (FIG. 3) constituting the uppermost surface of the laminated body 7 on the unit group in which a plurality of separation membrane units 9 are laminated.
  • N is an integer of 2 or more, and is an integer of (n-1) or less when the number of leaves 6 included in the laminated body 7 shown in FIG. 3 is n.
  • the layer constituting the uppermost surface of the laminated body 7 is usually a leaf 6, the number n of the leaves 6 included in the laminated body 7 shown in FIG. 3 and the number of the separation membrane units 9 match.
  • the number of separation membrane units 9 included in the laminated body 7 is (n-1).
  • the permeation side flow path member 4 has a multi-layer structure, and at least a part of the layers constituting the permeation side flow path member 4 is laminated on the upper surface of the leaf 6 located at the uppermost layer.
  • N is an integer less than or equal to n.
  • n is an integer and may be selected according to the separation performance of the separation membrane element 1 and / or the size of the hollow tube 5 (outer peripheral length C) and the like. Although n is not particularly limited, it may be, for example, 5 or more, 8 or more, 10 or more, or 30 or less, and 20 or less.
  • the spiral type separation membrane element described later can be suitably manufactured.
  • each step of the laminating step will be described in detail.
  • the N layer is placed on the separation membrane unit 9a of the (N-1) layer so as to be displaced by the pitch P0 (FIG. 3) in the winding direction of the laminated body 7 (direction of the double arrow in FIG. 4).
  • the eye separation membrane unit 9b is laminated.
  • the first region including at least a part of the fold portion of the separation membrane 10a included in the separation membrane unit 9a of the (N-1) layer is formed.
  • the N-th layer separation membrane unit 9b can be laminated in a state where the swelling of the fold portion of the separation membrane 10a is suppressed.
  • the leaf 6 of the separation membrane unit 9 includes the separation membrane 10 folded in half, swelling is likely to occur at the fold portion of the separation membrane 10. Due to this bulge, in the separation membrane unit 9, the thickness of the separation membrane 10 on the fold portion side becomes large, and when the separation membrane unit 9 is placed on a horizontal plane, the vicinity of the region where the crease portion is located is warped. It is easy to become. In particular, when a unit group in which a plurality of separation membrane units 9 are laminated is formed, as shown in the left side portion in FIG. 5, the warp of the region where the crease portion is located tends to be large. When the next separation membrane unit 9 is laminated on the separation membrane unit 9 or the unit group in which the warp occurs, it becomes difficult to accurately stack the separation membrane unit 9 at a preset pitch P0.
  • the N-1th layer separation membrane unit 9b is included in the (N-1) th layer separation membrane unit 9a before laminating the Nth layer separation membrane unit 9b.
  • the first region including at least a part of the fold portion of the separation membrane 10a is pressed.
  • swelling and warpage generated in the separation membrane unit 9a of the (N-1) layer are suppressed, the separation membrane unit 9a or the unit group is brought closer to a flat state, and the fold portion is the shaft of the hollow tube 5. It is possible to approach a state parallel to the direction.
  • the separation membrane unit 9b of the Nth layer can be accurately laminated on the separation membrane unit 9a of the (N-1) layer at an appropriate pitch P0. Therefore, since the separation membrane 10 can be laminated without significantly deviating from the preset pitch P0, the cross-sectional shape of the wound body in which the laminated body 7 is wound around the hollow tube 5 can be made close to a perfect circle. , The separation membrane element 1 having a good appearance shape can be obtained. Further, it can be expected to suppress the deterioration of the separation performance of the separation membrane element 1.
  • the separation membrane units 9 can be accurately laminated at an appropriate pitch P0 without making strong creases.
  • the separation membrane 10 has a porous layer and a gel layer provided on the porous layer as described later, if the separation membrane 10 is strongly creased, the gel in the gel layer may be biased or the like. Therefore, it is difficult to make strong creases.
  • the production method of the present embodiment can also be suitably used when the separation membrane 10 that cannot strongly crease is used.
  • the first region is not particularly limited as long as it contains at least a part of the fold portion of the separation membrane 10a included in the separation membrane unit 9a of the (N-1) layer, and is 10% or more of the fold portion. It is preferable to include a range, 20% or more may be contained, and 30% or more may be contained.
  • the first region may include the entire fold portion (100%).
  • the first region may be provided at the central portion of the fold portion in the extending direction, or may be provided so as to include the end portion of the fold portion in the extending direction.
  • the first region may be only one region such as the central portion in the extending direction of the fold portion, or two or more regions separated from each other such as both ends in the extending direction of the fold portion. It may be included.
  • the pressing of the first region is preferably performed by pressing the first pressing member 31 as shown in FIG.
  • the first pressing member 31 is not particularly limited as long as it can press the first region.
  • the first pressing member 31 may support a pressing portion having a flat pressing surface with a rod-shaped support portion, and may support the pressing portion having a curved pressing surface in a rod-like shape. It may be supported by a portion, or a roll may be used as the first pressing member and the surface of the roll may be used as the pressing portion.
  • the shape of the pressing surface is sharp like a needle, the separation membrane 10 (especially the gel layer if it has a gel layer) may be damaged. Therefore, the separation membrane 10 may be made into a shape that is not easily damaged.
  • the range of the first region described above is set so that the separation membrane 10 is not damaged by pressing.
  • the pressing of the first region is preferably performed so that the maximum distance between the surfaces of the separation films 10a facing each other in the first region is less than 5 mm, and may be 4 mm or less, or may be 3 mm or less. Further, it may be 0 mm or 0.5 mm or more.
  • the separation membrane units 9 can be laminated with high accuracy at an appropriate pitch P0. Further, even when the separation membrane 10 that cannot strongly crease is used, the separation membrane unit 9 can be laminated with high accuracy at an appropriate pitch P0.
  • the surface of the separation membrane 10a means the inner surface of the separation membrane 10a folded in half.
  • the maximum distance between the surfaces is the distance of the portion of the distance along the stacking direction of the laminated body 7 between the inner surfaces of the separation film 10a within the range of the first region, where the distance is the largest. To say.
  • the separation film unit 9c of the (N + 1) layer is laminated on the separation film unit 9b of the Nth layer laminated in the first step so as to be displaced by the pitch P0 in the winding direction of the laminated body 7.
  • the state in which the first region is pressed in the first step is released, or the state in which the first region is pressed in the first step is maintained, and the Nth layer separation membrane unit 9b is further formed.
  • the second region including at least a part of the fold portion of the separation membrane 10b contained in the above is pressed.
  • the separation membrane unit 9c of the (N + 1) layer can be laminated in a state where the swelling of the fold portion of the separation membranes 10a and 10b is suppressed.
  • the warp of the region where the crease portion is located tends to be large (FIG. 5). Therefore, even when forming a unit group in which three or more layers of the separation membrane unit 9 are laminated as in the second step, the separation membrane unit of the Nth layer is formed before the separation membrane unit 9c of the (N + 1) th layer is laminated. The second region of the separation membrane 10b included in 9b is pressed. As a result, the swelling and warpage generated in the separation membrane units 9a and 9b of the (N-1) layer and the Nth layer are suppressed, the unit group is brought closer to a flat state, and the fold portion is made of the hollow tube 5.
  • the separation membrane unit 9c of the (N + 1) th layer can be accurately laminated on the separation membrane unit 9b of the Nth layer at an appropriate pitch P0. Therefore, since the separation membrane 10 can be laminated without significantly deviating from the preset pitch P0, the cross-sectional shape of the wound body in which the laminated body 7 is wound around the hollow tube 5 can be made close to a perfect circle. .. Further, it can be expected to suppress the deterioration of the separation performance of the separation membrane element 1.
  • N before laminating the separation membrane unit 9c of the (N + 1) layer while maintaining the pressing of the first region in the first step. It is preferable to press the second region of the separation membrane 10b included in the separation membrane unit 9b of the layer.
  • the swelling and warpage generated in the separation membrane units 9a and 9b of the (N-1) layer and the Nth layer are further suppressed, the unit group is brought closer to a flat state, and the fold portion is inside. It is possible to bring the empty tube 5 closer to a state parallel to the axial direction.
  • the second region is not particularly limited as long as it includes at least a part of the fold portion of the separation membrane 10b included in the separation membrane unit 9b of the Nth layer.
  • the form described as the preferred form of the first region can be mentioned.
  • the pressing of the second region may be performed by the first pressing member 31 that pressed the first region, or may be performed by the second pressing member 32 that is different from the first pressing member 31.
  • the first pressing member 31 that has pressed the first region is moved to press the second region. You may.
  • the second pressing member 32 is not particularly limited as long as it can press the second region.
  • the form described as a preferable form of the first pressing member 31 can be mentioned.
  • a recess that engages with a surface opposite to the pressing surface of the other pressing member may be provided on the pressing surface side of one pressing member so as not to interfere with each other.
  • the pressing of the second region is preferably performed so that the maximum distance between the surfaces of the separation membranes 10b facing each other in the second region is less than 5 mm.
  • the preferred range of the maximum distance is the same as the range described in Pressing the first region.
  • the step of laminating is a third step of laminating the separation film unit 9d of the (N + 2) layer on the separation film unit 9c of the (N + 1) layer so as to be displaced by the pitch P0 in the winding direction of the laminated body 7. May include.
  • the step of laminating may further include a step of releasing the pressing of the first region by the first pressing member 31. The release step is preferably performed after the second step.
  • the first pressing member after the step of releasing the pressed state of the second region in the second step or while maintaining the pressed state of the second region in the second step. 31 presses the third region including at least a part of the fold portion of the separation membrane 10c contained in the separation membrane unit 9c of the (N + 1) layer.
  • the separation membrane unit 9d of the (N + 2) layer is laminated on the separation membrane unit 9c of the (N + 1) layer.
  • the separation membrane unit 9d of the (N + 2) layer can be laminated in a state where the swelling of the fold portion of the separation membranes 10b and 10c is suppressed.
  • the first pressing member 31 may press the third region by moving from the pressing position of the first region to the pressing position of the third region after the release step. Therefore, the step of releasing may include a step of moving the first pressing member 31 from the position of pressing the first region to the position of pressing the third region. As shown in FIG. 4, it is preferable to press the separation membrane 10c via the transmission side flow path member 4c included in the separation membrane unit 9c.
  • the warp of the region where the crease portion is located tends to be large (FIG. 5). Therefore, even when forming a unit group in which four or more separation membrane units 9 are laminated as in the third step, the (N + 1) th layer is separated before the (N + 2) th separation membrane unit 9d is laminated. The third region of the separation membrane 10c included in the membrane unit 9c is pressed. As a result, in particular, the swelling and warpage that occur in the separation membrane units 9b and 9c of the Nth layer and the (N + 1) layer are suppressed, the unit group is brought closer to a flat state, and the fold portion is the shaft of the hollow tube 5.
  • the separation membrane unit 9d of the (N + 2) layer can be accurately laminated on the separation membrane unit 9c of the (N + 1) layer at an appropriate pitch P0. Therefore, since the separation membrane 10 can be laminated without significantly deviating from the preset pitch P0, the cross-sectional shape of the wound body in which the laminated body 7 is wound around the hollow tube 5 can be made close to a perfect circle. .. Further, it can be expected to suppress the deterioration of the separation performance of the separation membrane element 1.
  • the third step before laminating the separation membrane unit 9d of the (N + 2) layer while maintaining the pressing of the second region in the second step, ( It is preferable to press the third region of the separation membrane 10c included in the separation membrane unit 9c of the N + 1) layer.
  • the pressing of the third region may be performed by the first pressing member 31 moved from the pressing position of the first region.
  • the third region of the separation membrane unit 9c of the (N + 1) layer was pressed, and in the first step, the first region of the separation membrane unit 9a of the (N-1) layer was pressed. It may be done by the pressing member 31. According to this, since it can be performed by one first pressing member 31 for pressing the first region and the third region, it is not necessary to prepare a member for pressing each of the first region and the third region. , The number of parts of the device for manufacturing the laminated body 7 can be reduced. Alternatively, the pressing member (first pressing member 31 or second pressing member 32) that pressed the second region of the N-th layer separation membrane unit 9b in the second step is moved to press the third region. Alternatively, the third region may be pressed by a pressing member different from these.
  • the third region is not particularly limited as long as it includes at least a part of the fold portion of the separation membrane 10c included in the separation membrane unit 9c of the (N + 1) layer.
  • the preferred form of the third region can be the same as the form described as the preferred form of the first region.
  • the pressing of the third region is preferably performed so that the maximum distance between the surfaces of the separation membranes 10c facing each other in the third region is less than 5 mm.
  • the preferred range of the maximum distance is the same as the range described in Pressing the first region.
  • the laminating step may be one in which the first set, which is a set of the first step to the third step, is performed once, or two or more times.
  • the laminating step after performing the first set, one or more steps of the first step to the third step may be performed one or more times.
  • the step of laminating is repeated the third step after the first set.
  • the separation membrane units 9 can be accurately laminated at an appropriate pitch P0 in a state where the unit group in which a plurality of separation membrane units 9 are laminated is brought close to a flat state. Further, by pressing the second region by the second pressing member 32, the first pressing member 31 and the second pressing member 32 are moved along with the stacking of the separation membrane units 9, and the fold portion of the separation membrane 10 is formed. A plurality of separation membrane units 9 can be laminated while pressing.
  • the step of laminating constitutes the uppermost surface of the laminated body 7 after laminating all the separation membrane units 9 included in the laminated body 7.
  • the step of laminating the leaves 6 to be formed may be included.
  • the step of laminating the leaves 6 may be performed after the third step.
  • the step of laminating the leaf 6 on the uppermost surface has been described in the third step except that the leaf 6 is laminated instead of laminating the separation membrane unit 9d of the (N + 2) layer described in the third step. It can be done by the procedure.
  • the method for manufacturing the separation membrane element 1 includes a step of forming the laminate 7 through the above-mentioned step of laminating the separation membrane unit, and then winding the laminate 7 around the hollow tube 5 to form the wound body. Can be done.
  • the step of forming the wound body for example, as shown in FIG. 3, one end of the transmission side flow path member 4 located in the outermost layer (lowermost side) of the laminated body 7 is fixed to the outer periphery of the hollow tube 5.
  • the hollow tube 5 may be rotated and the laminated body 7 may be wound around the hollow tube 5.
  • the hollow tube 5 is preferably provided at the end of the laminated body 7 on the side where the fold portion of the separation membrane 10 is located.
  • the uppermost surface of the laminated body 7 is the leaf 6, but by winding the laminated body 7 around the hollow tube 5, the uppermost surface leaf 6 of the laminated body 7 becomes the outermost surface of the laminated body 7. It is in contact with the positioned transmission side flow path member 4.
  • the separation membrane element 1 can have a sealing portion for preventing mixing of the raw material fluid flowing through the supply side flow path member 3 and the permeation fluid flowing through the permeation side flow path member 4. Therefore, the method for manufacturing the separation membrane element 1 may include a step of forming a sealing portion.
  • the step of forming the sealing portion includes, for example, a step of providing a sealing material on the surface of the leaf 6 when laminating the leaf 6 and the permeation side flow path member 4, and a step of curing the sealing material. be able to.
  • the step of curing the encapsulating material is preferably performed after the step of forming the wound body.
  • the sealing material is provided on the peripheral edge of the surface of the leaf 6 and / or the permeation side flow path member 4 so that the fold portion side of the separation membrane 10 opens (so-called envelope shape). Just do it.
  • the sealing material may be provided so that the fold portion side of the separation membrane 10 opens at the peripheral edge of the surface of the separation membrane unit 9 on the leaf 6 side and / or the surface on the transmission side flow path member 4 side.
  • the sealing material can be provided on the surface by coating, transfer or the like.
  • the sealing material is infiltrated into the permeation side flow path member 4 interposed between the leaves 6 while winding the laminated body 7 around the hollow tube 5. Or spread the encapsulating material between the opposing leaves 6 via the permeation side flow path member 4.
  • a step of curing the sealing material is performed.
  • the curing method may be selected according to the type of the encapsulating material.
  • the thermosetting resin may be cured by heating or the like, and the encapsulating material is heat-sealed.
  • a sex adhesive In the case of a sex adhesive, it may be cooled after being heated or the like.
  • an active energy ray-curable resin When used as the encapsulating material, it may be cured by irradiation with active energy rays, and when the encapsulating material is a material containing water or a solvent, water or the solvent is removed. You just have to dry it.
  • the method for manufacturing the separation membrane element of the present embodiment may be the method for manufacturing the plate & frame type separation membrane element.
  • the plate & frame type separation membrane element a part of the laminated body is wound around a hollow tube, and the remaining part is suspended from the hollow tube.
  • the laminated body is wound around the outer circumference of the hollow tube for one round, and the remaining portion is not wound. Therefore, even in the method for manufacturing the plate & frame type separation membrane element, when the separation membrane units are laminated, the pressing of the first region, the second region, or the third region is performed in the same manner as the method described above. It can be carried out. According to this, it is possible to manufacture a separation membrane element having a good shape at a portion where the laminated body is wound around a hollow tube.
  • the spiral type separation membrane element 1 of the present embodiment includes the perforated hollow tube 5 and the laminated body 7, and the laminated body 7 is wound around the hollow tube 5.
  • the shape of the separation membrane element 1 and the fluid components separated by the separation membrane element 1 are as described above.
  • the description of the laminated body 7 is as described above.
  • a plurality of separation membrane units 9 are laminated, and the separation membrane units 9 are laminated so that the position of the fold portion of the separation membrane 10 shifts in the winding direction of the laminate 7.
  • the separation membrane 10 has a porous layer and a gel layer provided on the porous layer, and the separation membrane 10 is applied with a load of 1 N / cm 2 to the entire fold.
  • the maximum distance between the opposing surfaces of the separation membrane 10 when this load is removed after folding in half is 10 mm or more.
  • the separation membrane element 1 is The winding direction distance between the positions of the folds of the separation membrane 10 included in the two leaves 6 adjacent to each other via the transmission side flow path member 4 in the stacking direction of the laminated body 7 is defined as WR.
  • the value (C / n) obtained by dividing the outer peripheral length C of the hollow tube 5 by the number n of the leaves 6 contained in the laminated body 7 is defined as the pitch P
  • the standard deviation of the deviation amount of the distance WR from the pitch P is 0.4 or less.
  • the layer constituting the uppermost surface of the laminated body 7 is at least a part of the layer constituting the permeation side flow path member 4 on the leaf 6 or the leaf 6, and is the outermost surface (lowermost) of the laminated body 7.
  • the side) is at least a part of the layers constituting the transmission side flow path member 4.
  • the laminated body 7 has two or more separation membrane units 9 between the leaf 6 on the uppermost surface and at least a part of the layers constituting the transmission side flow path member 4 on the outermost surface.
  • the porous layer included in the separation membrane 10 functions as a support layer or a protective layer for the gel layer.
  • the gel layer functions as a separation functional layer for selectively permeating a specific fluid component.
  • the separation membrane 10 may have porous layers on both sides of the gel layer.
  • Folding the separation membrane 10 in half with a load of 1 N / cm 2 means folding back the separation membrane 10 stacked on a horizontal plane and applying a load of 1 N / cm 2 to the entire crease portion.
  • the method of applying the load is as described in Examples described later, and the members whose surfaces to which the load is applied are flat surfaces made of metal are arranged so that the planes face each other to form a crease in the separation membrane 10. This is done by applying a load to the entire portion for 5 seconds.
  • the maximum distance between the opposing surfaces of the separation membrane 10 when the load is removed is 10 mm or more, may be 12 mm or more, may be 15 mm or more, and is usually 60 mm or less, 40 mm or less. It may be present, and may be 20 mm or less.
  • the facing surface of the separation membrane 10 refers to the inner surface of the separation membrane 10 folded in half.
  • the maximum distance between the opposing surfaces of the separation membrane 10 is the distance between the surfaces of the two-folded separation membrane 10 placed on the horizontal plane in the direction orthogonal to the horizontal plane. The distance of the part that grows.
  • the distance WR is the distance between the positions of the fold portions of the separation membrane 10 included in each of the two leaves 6 adjacent to each other via the transmission side flow path member 4 in the stacking direction of the laminated body 7. , The distance along the winding direction of the laminated body 7.
  • the distance WR can be measured in a state where the laminated body wound around the hollow tube 5 in the separation membrane element 1 is unfolded, and is considered to be the above distance in the laminated body 7 wound around the hollow tube 5. Can be done.
  • Distance WR refers to the maximum value of the distance between the creases measured for the entire crease.
  • the distance WR is measured for each of the two leaves 6 included in the laminated body 7 and adjacent to each other via the transmission side flow path member 4 in the laminated body direction.
  • the pitch P is a value (C / n) obtained by dividing the outer peripheral length C of the hollow tube 5 by the number n of the leaves 6 contained in the laminated body 7.
  • the amount of deviation of the distance WR from the pitch P can be regarded as the difference between the preset pitch P and the actual pitch when the laminated body 7 is wound around the hollow tube 5. The amount of deviation is calculated for each of the distance WRs measured for each of the two adjacent leaves 6 described above.
  • the standard deviation of the deviation amount is 0.4 or less, preferably 0.3 or less, more preferably 0.25 or less, and may be 0.2 or less. It is considered that the smaller the standard deviation of the deviation amount, the smaller the difference between the preset pitch P and the actual pitch when the laminated body 7 is wound around the hollow tube 5.
  • the separation membrane element 1 having the above-mentioned separation membrane and having a standard deviation of the deviation amount within the above range, the distance WR is from the pitch P even in the wound body in which the laminate 7 is wound around the hollow tube 5. It is considered that the state is not significantly deviated. Therefore, the cross-sectional shape of the wound body can be made close to a perfect circle, and the separation membrane element 1 having a good external shape can be obtained. Further, it can be expected to suppress the deterioration of the separation performance of the separation membrane element 1.
  • the separation membrane 10 contains a gel layer, and it is difficult to form strong creases when the separation membrane 10 is folded in half. Even in the separation membrane element 1 provided with such a separation membrane 10, a good winding shape can be obtained by keeping the standard deviation of the deviation amount within the above range.
  • the method for manufacturing the above-mentioned separation membrane element 1 is not particularly limited, and examples thereof include the above-mentioned method for manufacturing the separation membrane element 1.
  • the supply-side flow path member 3 provided in the separation membrane element 1 covers at least the end portion of the end portion of the separation membrane element 1 which is arranged so as to face the fold portion of the separation membrane 10 folded in half. 1 A cover portion may be provided.
  • the first cover portion is preferably provided so as to wrap the end portion of the supply-side flow path member 3.
  • the first cover portion may be a tape having an adhesive layer provided on the film, or may be formed by coating with a resin coating or the like.
  • the material constituting the supply-side flow path member 3 has high rigidity, if the end portion of the supply-side flow path member 3 comes into contact with the separation membrane 10, damage such as piercing or damaging the separation membrane 10 occurs. Sometimes.
  • the separation membrane 10 is damaged even when the separation membrane 10 and the end portion of the supply side flow path member 3 come into contact with each other. Can be suppressed.
  • Examples of the first cover section include those described in International Publication No. 2018/186109.
  • the separation membrane element 1 may further have the above-mentioned sealing portion, and may be provided with an outer peripheral tape, a telescope prevention plate 55, and an outer wrap. Further, as described above, the separation membrane element is a leaf in which the transmission side flow path member 4 is interposed between the separation membranes 10 folded in half, and the supply side flow path member 3 is provided on the leaf. You may. When the permeation side flow path member 4 is interposed between the two-folded separation membrane 10, it is preferable to provide the permeation side flow path member 4 with the above-mentioned first cover portion.
  • the separation membrane element of the present embodiment may be a plate & frame type separation membrane element as described above.
  • the plate & frame type separation membrane element a part of the laminated body is wound around a hollow tube, and the remaining part is suspended from the hollow tube.
  • the laminated body is wound around the outer circumference of the hollow tube for one round, and the remaining portion is not wound. Therefore, even in the plate & frame type separation membrane element, the separation membrane has a porous layer and a gel layer provided on the porous layer, and the separation membrane is loaded with a load of 1 N / cm 2 over the entire fold.
  • the maximum distance between the opposing surfaces of the separation membrane 10 when this load is removed is 10 mm or more, and the separation membrane element has a deviation of the distance WR from the pitch P.
  • the standard deviation of the quantity can be 0.4 or less. According to this, the shape of the portion where the laminated body of the separation membrane element is wound around the hollow tube can be improved.
  • the separation membrane element can be used in the separation membrane module.
  • the separation membrane module has one or more separation membrane elements.
  • the separation membrane module is for discharging the raw material fluid supply port for supplying the raw material fluid to the separation membrane 10 (the portion communicating with the supply port 51 shown in FIGS. 1 and 2) and the permeation fluid that has passed through the separation membrane 10.
  • a permeation fluid discharge port (a portion communicating with the first discharge port 52 shown in FIGS. 1 and 2) and a non-permeation fluid discharge port for discharging the raw material fluid that did not permeate the separation membrane 10 (FIGS. 1 and 2).
  • the raw material fluid supply port, the permeation fluid discharge port, and the non-permeation fluid discharge port may be provided in a container (hereinafter, may be referred to as “housing”) for accommodating the separation membrane element.
  • the housing can form a space for enclosing the raw material fluid flowing in the separation membrane module, and includes, for example, a tubular member such as stainless steel and a closing member for closing both ends of the tubular member in the axial direction. May have.
  • the housing may have an arbitrary cylindrical shape such as a cylinder or a square cylinder, but the separation membrane element is usually cylindrical, and therefore, it is preferably cylindrical.
  • a partition may be provided to prevent mixing of the raw material fluid supplied to the supply port 51 and the impermeable fluid that has not penetrated the separation membrane 10 provided in the separation membrane element. can.
  • the raw material fluid supplied to each separation membrane element may be supplied in parallel or in series.
  • supplying the raw material fluid in parallel means that at least the raw material fluid is distributed and introduced into a plurality of separation membrane elements
  • supplying the raw material fluid in series means that at least the raw material fluid is discharged from the separation membrane element in the previous stage.
  • the separation device can include at least one separation membrane module.
  • the arrangement and number of separation membrane modules provided in the separation device can be selected according to the required processing amount, the recovery rate of a specific fluid component, the size of the place where the separation device is installed, and the like.
  • the separation device includes a supply-side space and a permeation-side space separated from each other by the separation film 10, a supply-side inlet for supplying a raw material fluid containing at least a specific fluid from the supply unit to the supply-side space, and a separation film 10.
  • FIG. 6 and 7 are schematic cross-sectional views showing an example of a separation membrane
  • FIG. 8 is a schematic cross-sectional view showing an example of a leaf using the separation membrane shown in FIG. 7.
  • the separation membrane described below is used in the separation membrane element and its manufacturing method described above, but it can also be used in a separation membrane element other than the above and its manufacturing method.
  • the separation membrane 10 is not particularly limited as long as it is a known one capable of selectively permeating a specific fluid component from the raw material fluid.
  • the separation membrane is preferably a gas separation membrane.
  • the separation membranes 10 and 10'(hereinafter, both are collectively referred to as "separation membrane 10") are the first porous layer 11 (porous layer) and the gel layer 15 provided on the first porous layer 11. It is preferable to have a second porous layer 12 (porous layer) on the side opposite to the first porous layer 11 of the gel layer. Further, as shown in FIGS.
  • the separation membrane 10 may have a third porous layer 13 on the side opposite to the gel layer 15 of the first porous layer 11, and the second porous layer 12 may have a third porous layer 13.
  • the fourth porous layer 14 may be provided on the opposite side of the gel layer 15.
  • the separation membrane 10 including the first porous layer 11 and the gel layer 15 can be produced, for example, by applying a coating liquid containing a composition for forming the gel layer 15 onto the first porous layer 11. ..
  • the coating liquid can contain a composition (hydrophilic resin, alkali metal compound, amino acid, etc., which will be described later) contained in the gel layer and a medium.
  • the medium include a protonic polar solvent such as water, methanol, ethanol, 1-propanol, 2-propanol and other alcohols; a non-polar solvent such as toluene, xylene and hexane; and a ketone such as acetone, methyl ethyl ketone and methyl isobutyl ketone.
  • N-Methylpyrrolidone N, N-dimethylacetamide, N, N-dimethylformamide and other aprotic polar solvents; and the like.
  • One type of medium may be used alone, or two or more types may be used in combination as long as they are compatible with each other.
  • a medium containing at least one selected from the group consisting of alcohols such as water, methanol, ethanol, 1-propanol and 2-propanol is preferable, and a medium containing water is more preferable.
  • slot die coating spin coating method
  • bar coating die coating method
  • blade coating air knife coating
  • gravure coating method roll coating coating
  • spray coating dip coating
  • dip coating etc.
  • examples include a comma roll method, a kiss coat method, screen printing, and inkjet printing.
  • the gel layer 15 can be formed by removing the medium from the film of the coating liquid formed by applying the coating liquid on the first porous layer 11.
  • Examples of the method for removing the medium include a method for evaporating and removing the medium from the film of the coating liquid by heating or the like.
  • the second porous layer 12 may be laminated on the membrane of the coating liquid before removing the medium or after removing a part of the medium.
  • the separation membrane 10 may have a gel layer 15 at the position of the fold portion when folded in half to form the leaf 6, as in the separation membrane 10'shown in FIGS. 7 and 8.
  • the gel layer 15 may not be present at the fold portion.
  • the separation membrane 10'in which the gel layer 15 does not exist at the fold portion will be described.
  • the separation membrane 10'in which the gel layer 15 is not present at the fold portion has at least the third porous layer 13, the first porous layer 11 and the gel layer 15 in this order.
  • the separation membrane 10' may have the second porous layer 12 on the side opposite to the first porous layer 11 of the gel layer 15, and may be the same as the gel layer 15 of the second porous layer 12. May have a fourth porous layer 14 on the opposite side.
  • the separation membrane 10' In the separation membrane 10', at least a non-separable functional region 18 in which the gel layer 15 and the first porous layer 11 do not exist is formed in the region including the crease portion when the separation membrane 10'is folded in half.
  • the separation membrane 10' has a second porous layer 12
  • the separation membrane 10' has a fourth porous layer 14
  • the fourth porous layer 14 may be present in the non-separable functional region 18.
  • the size of the non-separable functional region 18 is not particularly limited as long as it is a region including a crease portion when the separation membrane 10'is folded in half.
  • the non-separable functional region 18 is located in two directions orthogonal to the extending direction of the fold portion from the fold position of the separation film 10', preferably in a range of 2 mm or more (the length of the non-separable functional region 18 in the extending direction). Is in the range of 4 mm), more preferably in the range of 4 mm or more (the length of the non-separable functional region 18 in the extending direction is in the range of 8 mm), and further preferably in the range of 5 mm or more (non-separable).
  • the length of the functional region 18 in the extending direction is 10 mm or less), and usually 15 mm or less (the length of the non-separable functional region 18 in the extending direction is 30 mm).
  • a filler 19 is provided in the non-separation functional region 18 in order to prevent the raw material fluid from flowing out from the non-separation functional region 18.
  • the filler 19 include a resin material and the like.
  • the resin material include those exemplified as the material used for the sealing material described later, and an adhesive is preferable.
  • At least a part of the filler 19 provided in the non-separable functional region 18 has penetrated into the layers existing in the non-separable functional region 18 (first porous layer 11, third porous layer 13, fourth porous layer 14, etc.). May exist in.
  • the separation membrane 10' has a second cover portion 36 so as to cover at least the area where the non-separable functional region 18 is formed on the surface that becomes the outer side when folded in half (FIG. 8).
  • the range covered by the second cover portion 36 may include the entire range in which the non-separable functional region 18 is formed, and includes at least the fold portion of the separation membrane 10'of the non-separable functional region 18. You may.
  • the filler 19 provided in the non-separable functional region 18 seeps out from the layers (first porous layer 11, third porous layer 13, etc.) existing in the non-separable functional region 18. It can be suppressed.
  • Examples of the form of the second cover portion 36 include the form described as the first cover portion which may be provided on the supply side flow path member 3, and more specifically, it is described in International Publication No. 2018/186109. Can be mentioned.
  • a non-separable functional region 18 in which the gel layer 15 does not exist is provided in a region that becomes a fold portion when folded in half, and a filler 19 is provided in the non-separable functional region 18.
  • the separation membrane 10' can form a crease in the region where the gel layer does not exist, and by providing the filler 19 in the non-separable functional region 18, the raw material fluid flows out from the non-separable functional region 18. Can be suppressed. As a result, it is possible to suppress a decrease in separation efficiency due to the separation membrane 10'.
  • the leaf 6' can be formed by interposing the supply side flow path member 3 between the two-folded separation membranes 10'.
  • the supply-side flow path member 3 used for the leaf 6' may have a first cover portion at an end portion arranged so as to face the fold portion of the separation membrane 10'.
  • the end portion of the supply-side flow path member 3 is prevented from damaging the layers such as the filler 19 and the third porous layer existing in the non-separable functional region 18 of the separation membrane 10', and the non-separable function is suppressed. It is possible to suppress the outflow of the raw material fluid from the region 18.
  • a filler 19 is provided so as to fill the inside of the fold portion where the separation membrane 10'is folded in half.
  • the filler 19 may be present between the gel layers 15 facing each other at the fold portion, or may be adhered between the gel layers 15 facing each other by the filler 19.
  • the filler 19 may exist in a state of being infiltrated into the layer constituting the separation membrane 10'located around the non-separable functional region 18 and the supply-side flow path member 3.
  • the separation membrane 10' can be manufactured, for example, by using a raw material laminated sheet in which layers constituting the separation membrane 10'such as the third porous layer 13, the first porous layer 11, and the gel layer 15 are laminated. Specifically, a layer that does not exist in the non-separable functional region 18 such as the gel layer 15 is cut out from the raw material laminated sheet in the region that becomes the crease portion when the separation membrane 10'is folded in half, and the non-separable functional region.
  • a material to be a filler 19 may be provided in 18. When the material to be the filler 19 is a curable resin or the like, the leaf 6'is provided with a separation membrane 10'with a supply-side flow path member 3 interposed therebetween before the material is cured. It can be manufactured by folding and curing the above material.
  • the separation membrane 10'shown in FIG. 7 has a third porous layer 13, a first porous layer 11, a gel layer 15, a second porous layer 12, and a fourth porous layer 14 in this order, and the non-separable functional region 18 is provided.
  • the third porous layer 13 and the fourth porous layer 14 are present, and the first porous layer 11, the gel layer 15, and the second porous layer 12 are not present.
  • the non-separable functional region 18 fills at least a part of the portion where the first porous layer 11, the gel layer 15, and the second porous layer 12 do not exist, and penetrates at least a part of the third porous layer 13.
  • the filler 19 is provided so as to do so.
  • the filler 19 is preferably provided so as to fill the entire portion where the first porous layer 11, the gel layer 15, and the second porous layer 12 do not exist.
  • the separation membrane 10' is a second cover portion arranged so as to cover at least a part of the range in which the non-separable functional region 18 is formed on the surface of the third porous layer 13 opposite to the first porous layer 11. Has 36.
  • the supply side flow path member 3 is interposed between the separated membranes 10'folded in half.
  • the inner surfaces of the opposing separation membranes 10' are adhered to each other by the filler 19 provided at the fold portion, and the folded state of the separation membrane 10'can be fixed.
  • the filler 19 exists in a state of being infiltrated into the layer constituting the separation membrane 10', the permeation side flow path member 4, and the supply side flow path member 3.
  • a first cover portion may be provided at an end portion of the supply-side flow path member 3 facing the crease portion, and in this case, the filler 19 may permeate the first cover portion and supply. It does not have to penetrate the side flow path member 3.
  • the gel layer is used as a separation functional layer for selectively permeating a specific fluid component, and is particularly preferably a separation functional layer for selectively permeating a specific gas component.
  • the gel layer contains a hydrophilic resin, and more preferably contains an alkali metal compound, an amino acid, an aminosulfonic acid, and / or an aminophosphonic acid.
  • the gel layer may further contain a hydration reaction catalyst for improving the reaction rate of the specific gas component and the alkali metal compound, and adjusts the wettability with respect to the first porous layer and / or the second porous layer. It may contain a surfactant for this purpose.
  • the hydrophilic resin is a resin having a hydrophilic group such as a hydroxyl group or an ion exchange group, and contains a crosslinked hydrophilic resin that exhibits high water retention by having a network structure by cross-linking the molecular chains of the hydrophilic resin. Is more preferable.
  • the hydrophilic group may be neutralized by an alkali metal compound or the like contained in the gel layer to form a salt.
  • the polymer forming the hydrophilic resin preferably has, for example, an acrylic acid alkyl ester, a methacrylic acid alkyl ester, a vinyl ester of a fatty acid, or a structural unit derived from a derivative thereof.
  • examples of the polymer exhibiting such hydrophilicity include a polymer obtained by polymerizing a monomer such as acrylic acid, itaconic acid, crotonic acid, methacrylic acid, and vinyl acetate, and specifically, an ion exchange group.
  • Acrylic acid-vinyl alcohol which is a copolymer of polyacrylic acid-based resin having a carboxyl group, polyitaconic acid-based resin, polycrotonic acid-based resin, polymethacrylic acid-based resin, etc., polyvinyl alcohol-based resin having a hydroxyl group, etc.
  • examples thereof include a polymerization system resin, an acrylic acid-methacrylic acid copolymer system resin, an acrylic acid-methyl methacrylate copolymer system resin, and a methacrylic acid-methyl methacrylate copolymer system resin.
  • polyacrylic acid-based resin which is a polymer of acrylic acid
  • polymethacrylic acid-based resin which is a polymer of methacrylic acid
  • polyvinyl alcohol-based resin which is a saponified polymer of vinyl acetate, methyl acrylate and vinyl acetate.
  • Acrylate-vinyl alcohol copolymer resin obtained by saponifying a copolymer acrylic acid-methacrylic acid copolymer resin, which is a copolymer of acrylic acid and methacrylic acid, is more preferable, and polyacrylic acid and acrylate-.
  • Vinyl alcohol copolymer-based resins are even more preferred.
  • the cross-linked hydrophilic resin may be prepared by reacting a polymer having a hydrophilic group with a cross-linking agent, or a monomer as a raw material of the polymer having a hydrophilic group and a cross-linking monomer may be prepared. It may be prepared by copolymerization.
  • the cross-linking agent or cross-linking monomer is not particularly limited, and conventionally known cross-linking agents or cross-linking monomers can be used.
  • cross-linking agent examples include epoxy cross-linking agents, polyhydric glycidyl ethers, polyhydric alcohols, poly-isocyanates, poly-aziridines, haloepoxy compounds, poly-aldehydes, poly-amines, organic metal-based cross-linking agents, metal-based cross-linking agents and the like. Examples thereof include conventionally known cross-linking agents.
  • crosslinkable monomer for example, divinylbenzene, tetraallyloxyethane, diallylamine, diallyl ether, N, N'-methylenebisacrylamide, trimethylolpropanetriallyl ether, pentaerythritol tetraallyl ether and the like are conventionally known.
  • examples include crosslinkable monomers.
  • the cross-linking method include methods such as thermal cross-linking, ultraviolet cross-linking, electron beam cross-linking, radiation cross-linking, and photo-crosslinking, and methods described in JP-A-2003-26809 and JP-A-7-88171. Conventionally known methods can be used.
  • the alkali metal compound can reversibly react with a specific gas component dissolved in the gel layer. Thereby, the selective permeability of a specific gas component in the gel layer can be improved.
  • the alkali metal compound contained in the gel layer may be one kind or two or more kinds.
  • the alkali metal compound can also be in the form of a salt by neutralizing the hydrophilic group of the hydrophilic resin, the carboxy group of the amino acid, the sulfoxyl group of the aminosulfonic acid, or the phosphoxyl group of the aminophosphonic acid.
  • alkali metal compound examples include alkali metal carbonates, alkali metal bicarbonates, alkali metal hydroxides (for example, described in the pamphlet of International Publication No. 2016/0245223) and the like.
  • a compound forming a salt with an acidic compound such as citric acid may be used.
  • Amino acids, aminosulfonic acids, and aminophosphonic acids can improve the water retention of the gel layer. It is considered that amino acids, aminosulfonic acids, and aminophosphonic acids can be used in combination with an alkali metal compound to improve the affinity with a specific gas component that permeates the separation membrane in the gel layer.
  • the carboxy group of amino acids, the sulfoxyl group of aminosulfonic acid, and the phosphoxil group of aminophosphonic acid are neutralized by alkali metal compounds, amines, ammonium compounds, etc. contained in the gel layer to form salts. May be. This makes it possible to improve the selective permeability of a specific gas component in the gel layer.
  • the amino acid, aminosulfonic acid, and aminophosphonic acid contained in the gel layer may be one kind or two or more kinds.
  • the amino acid may have an acidic dissociative group other than the carboxy group.
  • the aminosulfonic acid group may have an acidic dissociative group other than the sulfoxyl group.
  • the aminophosphonic acid group may have an acidic dissociative group other than the phosphoxyl group.
  • These acidic dissociable groups may be neutralized with an alkali metal compound, an amine, an ammonium compound, or the like to form a salt.
  • the acidic dissociable group referred to here is, for example, a phenolic hydroxyl group, a hydroxamic acid group (N-hydroxycarboxylic acid amide), or the like.
  • amino acids, aminosulfonic acid, and aminophosphonic acid are not particularly limited.
  • amino acids, aminosulfonic acids, and aminophosphonic acids include glycine, N, N-dimethylglycine, alanine, serine, proline, taurine, diaminopropionic acid, 2-aminopropionic acid, 2-aminoisobutyric acid, 3, 4-Dihydroxyphenylalanine, sarcosin, 3- (methylamino) propionic acid, N- (2-aminoethyl) glycine, N- (3-aminopropyl) glycine, N- (4-cyanophenyl) glycine, dimethylglycine, horse Uric acid, 4-amino horse uric acid, N- (4-hydroxyphenyl) glycine, hydantonic acid, iminodiacetic acid, iminodipropionic acid, N-isovalerylglycine, phenaceturic acid, N-tig
  • Amino acids, aminosulfonic acids, and aminophosphonic acids include glycine, N, N-dimethylglycine, alanine, serine, proline, taurine, diaminopropionic acid, 2-aminopropionic acid, 2-aminoisobutyric acid, 3,4-dihydroxy. It is preferably at least one selected from the group consisting of phenylalanine, sarcosine, iminodiacetic acid, and salts thereof.
  • An oxoacid compound can be mentioned as a hydration reaction catalyst when a specific gas component is an acid gas.
  • the oxo acid compound is preferably an oxo acid compound of at least one element selected from the group consisting of a group 14 element, a group 15 element, and a group 16 element, and is preferably a tereric acid compound, a selenic acid compound, and a sub. It is more preferable that the compound is at least one selected from the group consisting of the hydric acid compound and the orthosilicic acid compound.
  • the gel layer may contain one or more oxoacid compounds.
  • One of the first porous layer and the second porous layer can be a support layer for supporting the gel layer, and the other can be a protective layer for protecting the gel layer.
  • the first porous layer and the second porous layer can be in direct contact with the gel layer.
  • One of the first porous layer and the second porous layer is a layer to which a coating liquid containing a hydrophilic resin for forming a gel layer is applied, and the other is a layer in which the coating liquid is applied onto one of the porous layers.
  • the coating layer formed by the above can be used as a layer for covering and protecting.
  • the first porous layer and the second porous layer have highly porous gas permeability so as not to cause diffusion resistance of the raw material gas supplied to the gel layer in the separation membrane or a specific gas component contained in the raw material gas.
  • the first porous layer and the second porous layer are each formed of a resin material or an inorganic material.
  • the resin material constituting the first porous layer and the second porous layer include polyolefin resins such as polyethylene (PE) and polypropylene (PP); polytetrafluoroethylene (PTFE), polyvinyl fluoride (PVF), and polyfluor.
  • Fluorine-containing resin such as vinylidene (PVDF); polyester resin such as polyethylene terephthalate (PET) and polyethylene naphthalate; polystyrene (PS), polyethersulfone (PES), polyphenylene sulfide (PPS), polysulfone (PSF), polyacrylonitrile (PAN), polyphenylene oxide (PPO), polyamide (PA), polyimide (PI), polyetherimide (PEI), polyetheretherketone (PEEK), high molecular weight polyester, heat resistant polyamide, aramid, polycarbonate, resins thereof Examples thereof include a mixture of two or more of the materials.
  • PVDF vinylidene
  • polyester resin such as polyethylene terephthalate (PET) and polyethylene naphthalate
  • PS polystyrene
  • PES polyethersulfone
  • PPS polyphenylene sulfide
  • PSF polysulfone
  • PAN polyacrylonitrile
  • PPO poly
  • the first porous layer and the second porous layer may be the same as each other or may be different from each other.
  • the inorganic material constituting the first porous layer and the second porous layer include metal, glass, and ceramics.
  • the first porous layer and the second porous layer are not particularly limited as long as they are porous bodies.
  • the first porous layer and the second porous layer may be independently, for example, a porous body in the form of a sheet such as a porous membrane, a non-woven fabric, a woven fabric, a foam, a mesh, or a net.
  • the first porous layer and the second porous layer are preferably porous films from the viewpoint of being suitably used as a support layer or a protective layer for the gel layer while suppressing the diffusion resistance of a specific gas component.
  • the porous film means a porous resin film. Examples of the porous membrane include a porous membrane obtained by a stretching method, a phase separation method, self-assembly, or crazing.
  • the first porous layer and the second porous layer may be the same porous body or different porous bodies from each other.
  • the third porous layer can be provided on the side opposite to the gel layer side of the first porous layer.
  • the third porous layer can be used as a reinforcing layer for reinforcing the function of the first porous layer 11 as a support layer or a protective layer.
  • the fourth porous layer can be provided on the side opposite to the gel layer side of the second porous layer.
  • the fourth porous layer can be used as a reinforcing layer for reinforcing the function of the second porous layer as a protective layer or a support layer.
  • the third porous layer and / or the fourth porous layer it is possible to additionally impart strength that can withstand the pressure load applied to the separation membrane when a specific gas component in the raw material gas is selectively permeated. can.
  • the third porous layer and the fourth porous layer are independently formed of a resin material or an inorganic material.
  • the resin material or the inorganic material constituting the third porous layer and the fourth porous layer include those described as the resin material or the inorganic material for forming the first porous layer and the second porous layer.
  • the third porous layer and the fourth porous layer may be independently in the form of a porous membrane, a non-woven fabric, a woven fabric, a foam, a net, or the like, and are preferably non-woven fabrics.
  • the non-woven fabric include spunbond non-woven fabric, melt blow non-woven fabric, air-laid non-woven fabric, spunlace non-woven fabric, and card non-woven fabric.
  • the hollow tube 5 is a conduit for collecting the permeated gas that has passed through the separation membrane 10 and discharging it from the spiral type separation membrane element 1.
  • the hollow tube 5 preferably has heat resistance that can withstand the operating temperature conditions of the separation device provided with the separation membrane element 1.
  • the hollow tube 5 is preferably a material having mechanical strength that can withstand the winding of the laminated body 7 wound around the hollow tube 5. As shown in FIGS. 1 and 2, the hollow tube 5 has a plurality of spaces in which the permeation gas flow path space formed by the permeation side flow path member 4 and the hollow space inside the hollow tube 5 are communicated with each other on the outer peripheral surface thereof. Has a hole 50 of.
  • the supply-side flow path member 3 and the permeation-side flow path member 4 promote turbulence (surface renewal of the film surface) of the permeation fluid that has permeated the raw material fluid and the separation film 10, and the permeation of the permeation fluid in the raw material fluid is permeated. It is preferable to have a function of increasing the speed and a function of minimizing the pressure loss of the supplied raw material fluid and the permeation fluid that has passed through the separation membrane 10.
  • the supply side flow path member 3 and the permeation side flow path member 4 have a function as a spacer for forming a flow path of the raw material fluid and the permeation fluid, and a function of causing turbulence in the raw material fluid and the permeation fluid. Therefore, a mesh-like (net-like, mesh-like, etc.) one is preferably used. Since the flow path of the fluid changes depending on the shape of the mesh, the shape of the unit cell of the mesh is preferably selected from, for example, a square, a rectangle, a rhombus, a parallelogram, and the like, depending on the purpose.
  • the material of the supply side flow path member 3 and the transmission side flow path member 4 is not particularly limited, but a material having heat resistance that can withstand the operating temperature conditions of the separation device provided with the separation membrane element 1 is preferable.
  • the supply-side flow path member 3 and the transmission-side flow path member 4 may independently have a single-layer structure or a multi-layer structure.
  • the supply-side flow path member 3 and the transmission-side flow path member 4 having a multi-layer structure preferably have a structure in which one or more types of mesh-like layers are laminated, and the laminated mesh-like layers have different mesh structures from each other. You may have.
  • the film used as the base material of the tape is a polyolefin resin such as polyethylene (PE) or polypropylene (PP); polytetrafluoroethylene (PTFE), polyfluoride.
  • Fluorine-containing resins such as vinyl (PVF) and polyvinylidene fluoride (PVDF); to polystyrene (PS), polyethersulfone (PES), polyphenylene sulfide (PPS), polyetheretherketone (PEEK), polyimide (PI), polycyclo Examples thereof include xylenedimethylene terephthalate (PCT).
  • the pressure-sensitive adhesive layer of the tape can be formed by using a known pressure-sensitive adhesive.
  • the resin forming the resin coating includes, for example, an epoxy resin, a vinyl chloride copolymer resin, a vinyl chloride-vinyl acetate copolymer resin, and vinyl chloride.
  • -Vinilidene chloride copolymer resin vinyl chloride-acrylonitrile copolymer resin, butadiene-acrylonitrile copolymer resin, polyamide resin, polyvinyl butyral resin, polyester resin, cellulose derivative (nitrocellulose, etc.) resin, styrene- Examples thereof include butadiene copolymer resin, various synthetic rubber resins, phenol resin, urea resin, melamine resin, phenoxy resin, silicone resin, ureaformamide resin and the like.
  • a known or commercially available adhesive may be used as the resin forming the resin coating.
  • the sealing portion is provided to prevent mixing of the raw material fluid and the permeated fluid.
  • the spiral type separation membrane element 1 can be formed by, for example, permeating the sealing material into the permeation side flow path member 4 and the separation membrane 10 or the supply side flow path member 3 and the separation membrane 10 and hardening. can.
  • a material generally used as an adhesive can be used as the sealing material.
  • the adhesive include a thermosetting adhesive, a thermosetting adhesive, an active energy ray-curable adhesive and the like.
  • Examples of the resin contained in the sealing material used for the sealing portion include epoxy-based resin, urethane-based resin, silicone-based resin, vinyl chloride copolymer resin, vinyl chloride-vinyl acetate copolymer resin, and vinyl chloride-.
  • Vinylidene chloride copolymer resin vinyl chloride-acrylonitrile copolymer resin, butadiene-acrylonitrile copolymer resin, polyamide resin, polyvinyl butyral resin, polyester resin, cellulose derivative (nitrocellulose etc.) resin, styrene-butadiene Examples thereof include copolymerization type resin, various synthetic rubber type (epolymer type) resins, phenol type resin, urea type resin, melamine type resin, phenoxy type resin, ureaformamide type resin and the like.
  • the sealing material is preferably an epoxy-based resin (resin for an epoxy-based adhesive).
  • Example 1 (Preparation of separation membrane (1)) 188 parts by mass of water as a medium, 4 parts by mass of crosslinked polyacrylic acid ("Acpec HV-501" manufactured by Sumitomo Seika Chemical Co., Ltd.) and non-crosslinked polyacrylic acid acid ("Acpana AP-40F” manufactured by Sumitomo Seika Chemical Co., Ltd.) as a hydrophilic resin. , 40% Na saponification) 0.8 parts by mass was charged with 10.5 parts by mass of cesium hydroxide monohydrate as a neutralizing agent, and the neutralization reaction was carried out with stirring.
  • Hydrophobic PTFE porous membrane as the first porous layer (“Poaflon HP-010-50” manufactured by Sumitomo Electric Fine Polymer Co., Ltd., film thickness 50 ⁇ m, average pore size 0.1 ⁇ m) and PPS non-woven fabric (Hirose) as the third porous layer.
  • a laminated sheet in which "PS0080" manufactured by Paper Manufacturing Co., Ltd. was laminated was prepared. After applying the coating liquid obtained above to the hydrophobic PTFE porous membrane side of this laminated sheet, the hydrophobic PTFE porous membrane (same as above) as the second porous layer is layered on it, and the hydrophobic PTFE after coating is applied.
  • the porous membrane was dried at a temperature of about 120 ° C. for about 5 minutes to prepare a sheet raw material for a separation membrane having a layer structure of a third porous layer / first porous layer / gel layer / second porous layer.
  • a two-component mixed epoxy adhesive (viscosity 45,000 cP, manufactured by Alemco Products) was applied to the peripheral edge of the second porous layer at a supply amount of 0.045 g / mm.
  • the cut piece and the fourth porous layer (Hirose Paper Co., Ltd. “PS0080S” (PPS non-woven fabric)) having a size of 1050 mm in width ⁇ 1575 mm in length are bonded to each other via the applied adhesive to form a separation membrane. (1) was produced.
  • the separation membrane (1) After spreading the separation membrane (1) on a horizontal plane, the separation membrane (1) was folded back in half. Prepare a member whose surface to which the load is applied is a metal flat surface, face each other on the flat surfaces of the member, and sandwich the entire portion of the separation membrane (1) to be a folded fold, and 1 N / cm 2 . The load was applied for 5 seconds. After that, the distance between the opposite inner surfaces of the separation membrane (1) (distance in the direction orthogonal to the horizontal plane) was measured with a caliper, and the maximum distance among the above distances was determined and found to be 17 mm (Table). 1).
  • a supply-side flow path member (SUS wire mesh, 50 ⁇ 50 mesh, width 1050 mm ⁇ length 813 mm) is placed on the fourth porous layer of the separation membrane (1), and the supply-side flow path member is sandwiched between them.
  • the membrane (1) was folded in half to obtain a leaf (1).
  • a two-component mixed epoxy adhesive (viscosity) as a sealing material on one surface of the leaf (1) at a supply amount of 0.045 g / mm to the three edge portions excluding the edge located at the crease portion. 45000 cP, manufactured by Alemco Products Co., Ltd.) was applied.
  • the leaf (1) and the transmission side flow path member (SUS wire mesh, 50 ⁇ 50 mesh / 100 ⁇ 100 mesh / 50 ⁇ 50 mesh multi-layer structure) having a size of 1050 mm in width ⁇ 813 mm in length.
  • the leaf (1) and the transmission side flow path member (SUS wire mesh, 50 ⁇ 50 mesh / 100 ⁇ 100 mesh / 50 ⁇ 50 mesh multi-layer structure) having a size of 1050 mm in width ⁇ 813 mm in length.
  • the same operation was repeated to prepare 20 separation membrane units.
  • a plurality of lead spacers (SUS wire mesh, 50 ⁇ 50 mesh, width 1050 mm ⁇ length 1194 mm) as a transmission side flow path member forming the outermost layer of the laminated body at one end in the length direction and on the outer peripheral surface along the width direction.
  • a hollow tube (made of SUS, diameter 25.4 mm, length 1260 mm) having a hole in the above was fixed with an adhesive tape.
  • the portion where the separation membrane unit was not arranged on the lead spacer was wound around a hollow tube, and the outer diameter was 50.8 mm.
  • the lead spacer is placed on the horizontal plane so that the transmission side flow path member side of the first layer separation membrane unit is exposed (so that the lead spacer and the leaf of the separation membrane unit face each other).
  • the separation membrane unit was placed on top.
  • the first layer is separated so that the fold portion of the separation membrane is located on the hollow tube side on the lead spacer and the tip portion of the fold portion is parallel to the axial direction of the hollow tube.
  • a membrane unit was placed.
  • the first region including the vicinity of the center of the fold portion of the separation membrane (1) included in the separation membrane unit of the first layer on the lead spacer was pressed by the first pressing member.
  • the first pressing member pressed the fold portion of the separation membrane (1) via the transmission side flow path member included in the separation membrane unit of the first layer.
  • the first pressing member has a pressing surface having a flat surface and a rectangular pressing surface having a rectangular shape supported by a rod-shaped support portion, and the pressing surface is parallel to the extending direction of the fold portion.
  • the length in the direction is 300 mm, and the length in the direction orthogonal to the extending direction is 100 mm.
  • the pressing by the first pressing member was performed so that the maximum distance between the surfaces of the separation membrane (1) was 2 mm in the first region pressed by the first pressing member (Table 1). This maximum distance was measured with a caliper.
  • the second layer separation membrane is placed on the first layer separation membrane unit so that the transmission side flow path member of the second layer separation membrane unit is exposed while the pressure of the first region is maintained by the first pressing member.
  • the units were stacked.
  • the position of the tip portion of the fold portion of the separation membrane (1) is in the direction orthogonal to the fold portion, and the position of the separation membrane unit of the first layer is higher than that of the separation membrane (1).
  • the distance between the tip portions of the fold portions of the separation membrane (1) in the first and second layer separation membrane units was set to 9.4 mm.
  • the second region including the vicinity of the center of the fold portion of the separation membrane (1) of the second layer separation membrane unit was pressed.
  • the second region was set at a position where it did not interfere with the first pressing member.
  • the second pressing member pressed the fold portion of the separation membrane (1) via the transmission side flow path member included in the second layer separation membrane unit.
  • As the second pressing member a member having the same structure as the first pressing member was used. The pressing by the second pressing member was performed so that the maximum distance between the surfaces of the separation membrane (1) in the separation membrane unit of the second layer was 2 mm in the second region.
  • the second layer is such that the transmission side flow path member of the third layer separation membrane unit is exposed while the pressing of the first region by the first pressing member and the pressing of the second region by the second pressing member are maintained.
  • the third layer of the separation membrane unit was laminated on the separation membrane unit of the eye. The lamination of the third-layer separation membrane unit on the second-layer separation membrane unit was performed so as to have the same relationship as the lamination of the second-layer separation membrane unit on the first-layer separation membrane unit.
  • the pressing of the first region by the first pressing member was released while the pressing of the second region by the second pressing member was maintained.
  • the first pressing member was moved to press the third region including the vicinity of the center of the fold portion of the separation membrane (1) of the third layer separation membrane unit.
  • the third region was set at a position where it did not interfere with the second pressing member.
  • the first pressing member pressed the fold portion of the separation membrane (1) via the transmission side flow path member included in the third layer separation membrane unit.
  • the pressing by the first pressing member was performed in the same manner as the pressing performed in the first region.
  • the three layers are exposed so that the transmission side flow path member of the fourth layer separation membrane unit is exposed.
  • the fourth layer of the separation membrane unit was laminated on the separation membrane unit of the eye.
  • the stacking of the fourth layer separation membrane unit on the third layer separation membrane unit was performed so as to have the same relationship as the stacking of the second layer separation membrane unit on the first layer separation membrane unit.
  • the operation described in the operation of laminating the fourth layer separation membrane unit was repeated, and 20 separation membrane units were laminated.
  • the leaves were laminated so as to form the uppermost surface of the laminated body in the same manner except that the leaves were laminated instead of the separation membrane unit, and a laminated body with a hollow tube was obtained.
  • the hollow tube of the laminated body with the hollow tube was set on the winding chuck of the separation membrane element manufacturing apparatus, the hollow tube was rotated, and the laminated body was wound around the outer peripheral surface of the hollow tube.
  • a polyimide tape was spirally wound around the outer peripheral surface of the wound body, and an adhesive or the like as a sealing material was cured to obtain a separation membrane element.
  • the separation membrane element In the separation membrane element, the laminated body wound around the hollow tube is developed, and the two leaves 6 adjacent to each other via the permeation side flow path member 4 in the laminating direction of the laminated body 7 are separated contained in each leaf 6.
  • the distance WR between the folds of the membrane (1) was measured.
  • Distance WR was measured between two adjacent reefs 6, respectively.
  • Example 1 A separation membrane element was obtained in the same manner as in Example 1 except that the first pressing member and the second pressing member did not press the laminate.
  • the standard deviation of the deviation amount of the distance WR from the pitch P was determined in the same manner as in Example 1 and found to be 1 (Table 1).
  • Example 2 (Preparation of Separation Membrane (2)) A sheet raw material was prepared in the same procedure as in the preparation of the separation membrane (1), and cut pieces were obtained. Next, the first porous layer is such that the third porous layer remains in a range of 5 mm (a range in which the total length is 10 mm) from the center of the cut piece in the length direction toward the length direction (two directions). , The gel layer, and the second porous layer were cut out and removed to form a non-separable functional region. An aqueous surfactant solution was applied to the peripheral edge of the second porous layer and the non-separable functional region and allowed to air dry for 1 hour or more.
  • a polypropylene adhesive tape was attached so as to cover the non-separable functional region on the outer surface of the third porous layer, which becomes the outside when folded in half.
  • a two-component mixed epoxy adhesive (viscosity 45,000 cP, manufactured by Alemco Products Co., Ltd.) was applied to the peripheral edge of the second porous layer and the non-separable functional region.
  • the cut piece and the fourth porous layer (Hirose Paper Co., Ltd. “PS0080S” (PPS non-woven fabric)) having a size of 1050 mm in width ⁇ 1575 mm in length are bonded to each other via the applied adhesive to form a separation membrane. (2) was produced.
  • the separation membrane (2) After spreading the separation membrane (2) on a horizontal plane, the separation membrane (2) is folded back in half in the non-separation functional region, and the procedure described in Example 1 is performed to cover the entire folded portion. After applying a load of 1 N / cm 2 , the distance between the opposing inner surfaces of the separation membrane (2) (distance in the direction orthogonal to the horizontal plane) was measured, and the maximum distance among the above distances was determined. , 17 mm (Table 1).
  • a supply-side flow path member (SUS wire mesh, 50 ⁇ 50 mesh, width 1050 mm ⁇ length 813 mm) is placed on the fourth porous layer of the separation membrane (2) so as to sandwich the supply-side flow path member.
  • the separation membrane (2) was folded in half so that the fold portion was located in the non-separable functional region to obtain a leaf (2).
  • 20 separation membrane units were prepared by the procedure described in Example 1.
  • the laminated body and the separation membrane element were prepared by the same procedure as in Example 1 except that the separation membrane unit prepared by using the leaf (2) was used.
  • the separation membrane element In the separation membrane element, the laminated body wound around the hollow tube is developed, and the two leaves 6 adjacent to each other via the permeation side flow path member 4 in the laminating direction of the laminated body 7 are separated contained in each leaf 6.
  • the distance WR between the folds of the membrane (2) was measured.
  • Distance WR was measured between two adjacent reefs 6, respectively.
  • 1,1a, 1b Separation membrane element 3,3a, 3b, 3c, 3d Supply side flow path member (first flow path member, second flow path member), 4, 4a, 4b, 4c, 4d Permeation side flow path Members (1st flow path member, 2nd flow path member), 5 hollow pipes, 6, 6'leaf, 7 laminates, 9, 9a, 9b, 9c, 9d separation membrane unit, 10, 10a, 10b, 10c , 10d, 10'separation membrane, 11 first porous layer (porous layer), 12 second porous layer (porous layer), 13 third porous layer, 14 fourth porous layer, 15 gel layer, 18 non-separable functional region, 19 Filler, 31 1st pressing member, 32 2nd pressing member, 36 2nd cover part, 50 holes, 51 supply port, 52 1st discharge port, 53 2nd discharge port, 55 telescope prevention plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

In this separation membrane element, at least a portion of a laminate is wound around a hollow tube. The laminate is obtained by stacking a plurality of separation membrane units each comprising: a leaf having a first channel member interposed between two folds of a separation membrane; and at least a portion of layers of a second channel member that is to be stacked on the leaf. The respective separation membrane units are stacked on one another such that the positions of the folding portions of the respective separation membranes are not in alignment in the winding direction of the laminate. A production method for this separation membrane element comprises a step for stacking separation membrane units. The stacking step further comprises a first step for stacking a N-th tier separation membrane unit on a (N-1)-th tier separation membrane unit while a first region that includes at least a portion of the folding line of the separation membrane in the (N-1)-th tier separation membrane unit is being pressed.

Description

分離膜エレメントの製造方法及び分離膜エレメントSeparation membrane element manufacturing method and separation membrane element
 本発明は、分離膜エレメントの製造方法及び分離膜エレメントに関する。 The present invention relates to a method for manufacturing a separation membrane element and a separation membrane element.
 液体や気体等の原料流体から特定の流体成分を分離するために、分離膜エレメントを用いることが知られている。分離膜エレメントは、一般的に、分離膜、供給側流路部材、及び透過側流路部材等を積層した積層体を中空管に巻回した構造を有する。積層体は、二つ折りにした分離膜の間に供給側流路部材を挟み込んだリーフを形成し、上記リーフと透過側流路部材とを重ねた分離膜ユニットを複数積層して形成されることがある(例えば、特許第3570831号公報(特許文献1)、特開2010-82575号公報(特許文献2)等)。このような積層体では、複数積層された分離膜ユニットが、上記積層体の巻回方向に所定のピッチでずれるように積層される。 It is known to use a separation membrane element to separate a specific fluid component from a raw material fluid such as a liquid or gas. The separation membrane element generally has a structure in which a laminate in which a separation membrane, a supply-side flow path member, a transmission-side flow path member, and the like are laminated is wound around a hollow tube. The laminated body is formed by forming a leaf in which a supply-side flow path member is sandwiched between the separation membranes folded in half, and laminating a plurality of separation membrane units in which the leaf and the transmission-side flow path member are overlapped. (For example, Japanese Patent No. 3570831 (Patent Document 1), Japanese Patent Application Laid-Open No. 2010-82575 (Patent Document 2), etc.). In such a laminated body, a plurality of laminated separation membrane units are laminated so as to be displaced at a predetermined pitch in the winding direction of the laminated body.
特許第3570831号公報Japanese Patent No. 3570831 特開2010-82575号公報Japanese Unexamined Patent Publication No. 2010-82575
 分離膜ユニットに含まれるリーフは、分離膜を二つ折りにして形成されているため、分離膜の折目部分に膨らみが発生しやすい。リーフに膨らみが生じた状態で分離膜ユニットを複数積層すると、分離膜ユニットが積層された部分のうち、リーフの折目部分が配置された領域の厚みが大きくなり、積層した分離膜ユニットに反りが生じてしまう。このような反りが生じた状態で分離膜ユニットの積層をさらに行うと、分離膜ユニットに含まれるリーフや透過側流路部材の積層位置にズレが生じ、上記所定のピッチで精度良く分離膜ユニットを積層することが困難となる。分離膜ユニットが精度良く積層されないと、積層体を中空管に巻回した部分の断面が真円形にならず、偏心した形状となって外観が低下しやすい。 Since the leaf contained in the separation membrane unit is formed by folding the separation membrane in half, swelling is likely to occur at the fold portion of the separation membrane. When a plurality of separation membrane units are laminated in a state where the leaf is bulged, the thickness of the region where the fold portion of the leaf is arranged is increased in the portion where the separation membrane units are laminated, and the laminated separation membrane unit is warped. Will occur. If the separation membrane unit is further laminated in such a warped state, the stacking position of the leaf and the transmission side flow path member included in the separation membrane unit is displaced, and the separation membrane unit is accurately performed at the predetermined pitch. It becomes difficult to stack. If the separation membrane units are not laminated with high accuracy, the cross section of the portion where the laminated body is wound around the hollow tube does not become a perfect circle, and the shape becomes eccentric and the appearance tends to deteriorate.
 本発明は、分離膜ユニットを良好に積層することができ、積層体を中空管に巻き取った部分の形状が良好な分離膜エレメントの製造方法及び分離膜エレメントの提供を目的とする。 It is an object of the present invention to provide a method for manufacturing a separation membrane element and a separation membrane element in which the separation membrane unit can be satisfactorily laminated and the shape of the portion where the laminate is wound around a hollow tube is good.
 本発明は、以下の分離膜エレメントの製造方法及び分離膜エレメントを提供する。
 〔1〕 有孔の中空管と積層体とを含み、前記中空管に前記積層体の少なくとも一部が巻回された分離膜エレメントの製造方法であって、
 前記積層体は、
  二つ折りした分離膜の間に第1流路部材を介在させたリーフと、前記リーフに積層される第2流路部材を構成する少なくとも一部の層とを含む分離膜ユニットが、複数積層され、且つ、
  前記分離膜の折目部分の位置が前記積層体の巻回方向にずれるように、前記分離膜ユニットが積層されたものであり、
 前記製造方法は、前記分離膜ユニットを積層する工程を含み、
 前記積層する工程は、Nを2以上の整数とする場合に、(N-1)層目の分離膜ユニットに含まれる前記分離膜の折目部分の少なくとも一部を含む第1領域を押圧した状態で、前記(N-1)層目の分離膜ユニット上にN層目の分離膜ユニットを積層する第1工程を含む、分離膜エレメントの製造方法。
 〔2〕 前記第1領域の押圧は、前記第1領域において対向する前記分離膜の表面の間の最大距離が5mm未満となるように行う、〔1〕に記載の分離膜エレメントの製造方法。
 〔3〕 前記積層する工程は、さらに、前記第1工程で積層した前記N層目の分離膜ユニット上に、(N+1)層目の分離膜ユニットを積層する第2工程を含み、
 前記第2工程は、前記N層目の分離膜ユニットに含まれる前記分離膜の折目部分の少なくとも一部を含む第2領域を押圧した状態で、前記(N+1)層目の分離膜ユニットを積層する、〔1〕又は〔2〕に記載の分離膜エレメントの製造方法。
 〔4〕 前記第2工程を、前記第1工程における前記第1領域を押圧した状態を維持しながら行う、〔3〕に記載の分離膜エレメントの製造方法。
 〔5〕 前記積層する工程は、さらに、前記第2工程で積層した前記(N+1)層目の分離膜ユニット上に、(N+2)層目の分離膜ユニットを積層する第3工程と、を含み、
 前記第3工程は、前記(N+1)層目の分離膜ユニットに含まれる前記分離膜の折目部分の少なくとも一部を含む第3領域を押圧した状態で、前記(N+2)層目の分離膜ユニットを積層する、〔3〕又は〔4〕に記載の分離膜エレメントの製造方法。
 〔6〕 前記第3工程を、前記第2工程における前記第2領域を押圧した状態を維持しながら行う、〔5〕に記載の分離膜エレメントの製造方法。
 〔7〕 前記第1領域の押圧は、第1押圧部材を押し当てることによって行い、
 前記積層する工程は、さらに、前記第1押圧部材による前記第1領域の押圧を解除する工程を含み、
 前記第3工程を、前記解除する工程後の前記第1押圧部材が、前記第3領域を押圧した状態で行う、〔5〕又は〔6〕に記載の分離膜エレメントの製造方法。
 〔8〕 前記第2領域の押圧は、第2押圧部材を押し当てることによって行う、〔7〕に記載の分離膜エレメントの製造方法。
 〔9〕 前記分離膜エレメントは、前記積層体の全長が前記中空管に巻回されたスパイラル型の分離膜エレメントである、〔1〕~〔8〕のいずれかに記載の分離膜エレメントの製造方法。
 〔10〕 前記第1流路部材及び第2流路部材は、一方が原料流体が流れる流路を形成するための供給側流路部材であり、他方が前記分離膜を透過した透過流体が流れる流路を形成するための透過側流路部材である、〔1〕~〔9〕のいずれかに記載の分離膜エレメントの製造方法。
 〔11〕 前記第1流路部材は、前記供給側流路部材であり、
 前記第2流路部材は、前記透過側流路部材である、〔10〕に記載の分離膜エレメントの製造方法。
 〔12〕 前記分離膜は、多孔層と前記多孔層上に設けられたゲル層とを有する、〔1〕~〔11〕のいずれかに記載の分離膜エレメントの製造方法。
 〔13〕 有孔の中空管と積層体とを含み、前記中空管に前記積層体の少なくとも一部が巻回された分離膜エレメントであって、
 前記積層体は、
  二つ折りした分離膜の間に第1流路部材を介在させたリーフと、前記リーフに積層される第2流路部材を構成する少なくとも一部の層とを含む分離膜ユニットが、複数積層され、且つ、
  前記分離膜の折目部分の位置が前記積層体の巻回方向にずれるように、前記分離膜ユニットが積層されたものであり、
 前記分離膜は、
  多孔層と前記多孔層上に設けられたゲル層とを有し、且つ、
  前記分離膜を、1N/cmの荷重が折目全体に付与されるように二つ折りにした後、前記荷重を除去したときの前記分離膜の対向する表面の間の最大距離が10mm以上であり、
 前記分離膜エレメントは、
  前記積層体の積層方向に前記第2流路部材を介して隣合う2つの前記リーフに含まれる前記分離膜の折目部分の位置の間の巻回方向の距離をWRとし、
  前記中空管の外周長Cを前記積層体に含まれる前記リーフの数nで除した値(C/n)をピッチPとするとき、
 前記ピッチPからの前記距離WRのズレ量の標準偏差が0.4以下である、分離膜エレメント。
 〔14〕 前記分離膜エレメントは、前記積層体の全長が前記中空管に巻回されたスパイラル型の分離膜エレメントである、〔13〕に記載の分離膜エレメント。
 〔15〕 前記第1流路部材及び第2流路部材は、一方が原料流体が流れる流路を形成するための供給側流路部材であり、他方が前記分離膜を透過した透過流体が流れる流路を形成するための透過側流路部材である、〔13〕又は〔14〕に記載の分離膜エレメント。
 〔16〕 前記第1流路部材は、前記供給側流路部材であり、
 前記第2流路部材は、前記透過側流路部材である、〔15〕に記載の分離膜エレメント。
The present invention provides the following method for manufacturing a separation membrane element and a separation membrane element.
[1] A method for manufacturing a separation membrane element including a perforated hollow tube and a laminated body, in which at least a part of the laminated body is wound around the hollow tube.
The laminated body is
A plurality of separation membrane units including a leaf having a first flow path member interposed between the two-folded separation membranes and at least a part of layers constituting the second flow path member laminated on the leaf are laminated. ,and,
The separation membrane units are laminated so that the position of the fold portion of the separation membrane is displaced in the winding direction of the laminate.
The manufacturing method includes a step of laminating the separation membrane unit.
In the laminating step, when N is an integer of 2 or more, the first region including at least a part of the fold portion of the separation membrane contained in the separation membrane unit of the (N-1) layer was pressed. A method for manufacturing a separation membrane element, comprising a first step of laminating the separation membrane unit of the Nth layer on the separation membrane unit of the (N-1) layer in the state.
[2] The method for manufacturing a separation membrane element according to [1], wherein the pressing of the first region is performed so that the maximum distance between the surfaces of the separation membranes facing each other in the first region is less than 5 mm.
[3] The laminating step further includes a second step of laminating the (N + 1) th layer separation membrane unit on the Nth layer separation membrane unit laminated in the first step.
In the second step, the separation membrane unit of the (N + 1) layer is pressed in a state where the second region including at least a part of the fold portion of the separation membrane included in the separation membrane unit of the Nth layer is pressed. The method for manufacturing a separation membrane element according to [1] or [2], which is laminated.
[4] The method for manufacturing a separation membrane element according to [3], wherein the second step is performed while maintaining the state of pressing the first region in the first step.
[5] The laminating step further includes a third step of laminating the (N + 2) layer separation membrane unit on the (N + 1) th layer separation membrane unit laminated in the second step. ,
In the third step, the separation membrane of the (N + 2) layer is pressed while the third region including at least a part of the fold portion of the separation membrane included in the separation membrane unit of the (N + 1) layer is pressed. The method for manufacturing a separation membrane element according to [3] or [4], wherein the units are laminated.
[6] The method for manufacturing a separation membrane element according to [5], wherein the third step is performed while maintaining a state in which the second region is pressed in the second step.
[7] The pressing of the first region is performed by pressing the first pressing member.
The laminating step further includes a step of releasing the pressing of the first region by the first pressing member.
The method for manufacturing a separation membrane element according to [5] or [6], wherein the third step is performed in a state where the first pressing member after the release step presses the third region.
[8] The method for manufacturing a separation membrane element according to [7], wherein the pressing of the second region is performed by pressing the second pressing member.
[9] The separation membrane element according to any one of [1] to [8], wherein the separation membrane element is a spiral type separation membrane element in which the entire length of the laminated body is wound around the hollow tube. Production method.
[10] One of the first flow path member and the second flow path member is a supply-side flow path member for forming a flow path through which the raw material fluid flows, and the other is a permeation fluid that has passed through the separation membrane. The method for manufacturing a separation membrane element according to any one of [1] to [9], which is a permeation side flow path member for forming a flow path.
[11] The first flow path member is the supply side flow path member.
The method for manufacturing a separation membrane element according to [10], wherein the second flow path member is the permeation side flow path member.
[12] The method for producing a separation membrane element according to any one of [1] to [11], wherein the separation membrane has a porous layer and a gel layer provided on the porous layer.
[13] A separation membrane element including a perforated hollow tube and a laminated body, wherein at least a part of the laminated body is wound around the hollow tube.
The laminated body is
A plurality of separation membrane units including a leaf having a first flow path member interposed between the two-folded separation membranes and at least a part of layers constituting the second flow path member laminated on the leaf are laminated. ,and,
The separation membrane units are laminated so that the position of the fold portion of the separation membrane is displaced in the winding direction of the laminate.
The separation membrane is
It has a porous layer and a gel layer provided on the porous layer, and
After folding the separation membrane in half so that a load of 1 N / cm 2 is applied to the entire crease, the maximum distance between the opposing surfaces of the separation membrane when the load is removed is 10 mm or more. can be,
The separation membrane element is
The winding direction distance between the positions of the fold portions of the separation membrane included in the two adjacent leaves via the second flow path member in the stacking direction of the laminated body is defined as WR.
When the value (C / n) obtained by dividing the outer peripheral length C of the hollow tube by the number n of the leaves contained in the laminated body is defined as the pitch P,
A separation membrane element having a standard deviation of 0.4 or less for the amount of deviation of the distance WR from the pitch P.
[14] The separation membrane element according to [13], wherein the separation membrane element is a spiral type separation membrane element in which the entire length of the laminated body is wound around the hollow tube.
[15] One of the first flow path member and the second flow path member is a supply side flow path member for forming a flow path through which the raw material fluid flows, and the other side allows the permeation fluid that has passed through the separation membrane to flow. The separation membrane element according to [13] or [14], which is a permeation side flow path member for forming a flow path.
[16] The first flow path member is the supply side flow path member.
The separation membrane element according to [15], wherein the second flow path member is the permeation side flow path member.
 本発明の分離膜エレメントの製造方法によれば、分離膜ユニットを良好に積層することができ、積層体を中空管に巻き取った部分の形状が良好な分離膜エレメントを製造することができる。 According to the method for manufacturing a separation membrane element of the present invention, the separation membrane unit can be satisfactorily laminated, and the separation membrane element having a good shape of a portion where the laminate is wound around a hollow tube can be manufactured. ..
スパイラル型の分離膜エレメントを示す、一部展開部分を設けた概略の斜視図である。It is a schematic perspective view which provided the partially developed part which shows the spiral type separation membrane element. テレスコープ防止板を設けたスパイラル型の分離膜エレメントを示す、一部展開部分を設けた概略の斜視図である。It is a schematic perspective view which provided the partially developed part which shows the spiral type separation membrane element which provided the telescope prevention plate. スパイラル型の分離膜エレメントに含まれる積層体の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the laminated body included in the spiral type separation membrane element. スパイラル型の分離膜エレメントの製造工程の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of the manufacturing process of a spiral type separation membrane element. 分離膜の折目部分に膨らみのある分離膜ユニットを積層した状態を説明するための模式図である。It is a schematic diagram for demonstrating the state in which the separation membrane unit with a bulge is laminated on the fold portion of the separation membrane. 分離膜の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a separation membrane. 分離膜の他の一例を示す概略断面図である。It is the schematic sectional drawing which shows the other example of the separation membrane. 図7に示す分離膜を用いたリーフの一例を示す概略断面図である。It is a schematic cross-sectional view which shows an example of the leaf using the separation membrane shown in FIG. 7.
 以下、本発明の実施形態について図面を参照しながら説明する。以下のすべての図面は、本発明の理解を助けるために示すものであり、図面に示される各構成要素のサイズや形状は、実際の構成要素のサイズや形状とは必ずしも一致しない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. All of the following drawings are provided to aid understanding of the present invention, and the size and shape of each component shown in the drawings may not necessarily match the size and shape of the actual component.
 以下では、主にスパイラル型の分離膜エレメントを例に挙げて説明するが、本実施形態の分離膜エレメント及びその製造方法は、スパイラル型の分離膜エレメント及びその製造方法に限定されるものではない。本実施形態の分離膜エレメントは、中空管に積層体の少なくとも一部が巻回された構造を有する分離膜エレメントであってもよい。具体的には、中空管の外周に積層体の少なくとも一部(例えば1周分だけ)を巻回し、残りの部分の積層体を中空管に吊り下げた状態としたプレート&フレーム型の分離膜エレメントにも適用することもできる。 Hereinafter, the spiral type separation membrane element will be mainly described as an example, but the separation membrane element and the manufacturing method thereof of the present embodiment are not limited to the spiral type separation membrane element and the manufacturing method thereof. .. The separation membrane element of the present embodiment may be a separation membrane element having a structure in which at least a part of the laminated body is wound around a hollow tube. Specifically, it is a plate and frame type in which at least a part of the laminated body (for example, only one round) is wound around the outer circumference of the hollow tube, and the remaining laminated body is suspended from the hollow tube. It can also be applied to the separation membrane element.
 <スパイラル型の分離膜エレメントの製造方法>
 図1及び図2は、スパイラル型の分離膜エレメントを示す、一部展開部分を設けた概略の斜視図である。図3は、スパイラル型の分離膜エレメントに含まれる積層体の一例を示す概略断面図である。
<Manufacturing method of spiral type separation membrane element>
1 and 2 are schematic perspective views showing a spiral type separation membrane element with a partially developed portion. FIG. 3 is a schematic cross-sectional view showing an example of a laminated body included in a spiral type separation membrane element.
 図1及び図2に示すように、本実施形態の製造方法によって製造されるスパイラル型の分離膜エレメント1a,1b(以下、両者をまとめて「分離膜エレメント1」ということがある。)は、少なくとも特定の流体成分を含む原料流体から、特定の流体成分を分離するために用いることができる。原料流体は、ガスであってもよく、液体であってもよい。分離膜エレメント1は好ましくはガス分離膜エレメントであり、原料ガスから特定のガス成分を選択的に透過させるものであることが好ましい。ガス分離膜エレメントに含まれる分離膜が選択的に透過させる特定のガス成分は、酸性ガスであることが好ましい。酸性ガスとしては、二酸化炭素(CO)、硫化水素(HS)、硫黄酸化物(SO)、窒素酸化物(NO)等が挙げられる。特定のガス成分は、二酸化炭素又は硫化水素であることが好ましく、二酸化炭素であることがより好ましい。 As shown in FIGS. 1 and 2, the spiral type separation membrane elements 1a and 1b manufactured by the manufacturing method of the present embodiment (hereinafter, both may be collectively referred to as "separation membrane element 1") are referred to. It can be used to separate a specific fluid component from a raw material fluid containing at least a specific fluid component. The raw material fluid may be a gas or a liquid. The separation membrane element 1 is preferably a gas separation membrane element, and preferably allows a specific gas component to selectively permeate from the raw material gas. The specific gas component that the separation membrane contained in the gas separation membrane element selectively permeates is preferably an acid gas. Examples of the acid gas include carbon dioxide (CO 2 ), hydrogen sulfide (H 2 S), sulfur oxide (SO x ), nitrogen oxide (NO x ) and the like. The specific gas component is preferably carbon dioxide or hydrogen sulfide, more preferably carbon dioxide.
 分離膜エレメント1は、図1及び図2に示すように、有孔の中空管5と積層体7(図3)とを含み、中空管5に積層体7の全長が巻回されたものである。分離膜エレメント1は、円筒状であることが好ましい。 As shown in FIGS. 1 and 2, the separation membrane element 1 includes a perforated hollow tube 5 and a laminated body 7 (FIG. 3), and the entire length of the laminated body 7 is wound around the hollow tube 5. It is a thing. The separation membrane element 1 is preferably cylindrical.
 積層体7は、図3に示すように、二つ折りした分離膜10の間に供給側流路部材3(第1流路部材)を介在させたリーフ6と、リーフ6に積層される、透過側流路部材4(第2流路部材)を構成する少なくとも一部の層とを含む分離膜ユニット9が、複数積層されている。積層体7は、分離膜10の折目部分の位置が、積層体7の巻回方向(図3中の両矢印の方向)に、例えばピッチP0でずれるように、分離膜ユニット9が積層されている。積層体7では通常、図3に示すように、最外層(最も下側)が透過側流路部材4であり、最上面がリーフ6であるため、最外層の透過側流路部材4及び最上面のリーフ6は、図3に示す積層体7の状態では分離膜ユニット9を構成しない。図3に示す積層体7では、分離膜ユニット9はいずれも、リーフ6上に透過側流路部材4を構成する全ての層が設けられた構造を有する。分離膜エレメント1では、この積層体7が中空管5に巻回されている。 As shown in FIG. 3, the laminated body 7 has a leaf 6 having a supply-side flow path member 3 (first flow path member) interposed between the separated membranes 10 folded in half, and a permeation layer 6 laminated on the leaf 6. A plurality of separation membrane units 9 including at least a part of the layers constituting the side flow path member 4 (second flow path member) are laminated. In the laminated body 7, the separation membrane unit 9 is laminated so that the position of the fold portion of the separation membrane 10 shifts in the winding direction of the laminate 7 (direction of the double arrow in FIG. 3), for example, at pitch P0. ing. In the laminated body 7, as shown in FIG. 3, since the outermost layer (lowermost side) is the transmission side flow path member 4 and the uppermost surface is the leaf 6, the outermost layer is the transmission side flow path member 4 and the outermost layer. The leaf 6 on the upper surface does not form the separation membrane unit 9 in the state of the laminated body 7 shown in FIG. In the laminated body 7 shown in FIG. 3, each of the separation membrane units 9 has a structure in which all the layers constituting the transmission side flow path member 4 are provided on the leaf 6. In the separation membrane element 1, the laminated body 7 is wound around the hollow tube 5.
 後述するように透過側流路部材4が2以上の層を積層した多層構造である場合、積層体は、図3に示す積層体7の形態であってもよく、図3に示す積層体7の形態とは異なり、最上層のリーフ6上に透過側流路部材4を構成する少なくとも一部の層を含んでいてもよい。すなわち、透過側流路部材4を構成するすべての層を最も下側に配置すれば、積層体は図3に示す積層体7の形態となる。この場合、分離膜ユニット9はいずれも、リーフ6上に透過側流路部材4を構成する全ての層が設けられた構造を有する。一方、透過側流路部材4を構成する複数の層のうちの一部の層のみを最も下側に配置した場合には、透過側流路部材4を構成する複数の層のうちの残りの層を、最上層のリーフ6上に配置することができるため、積層体は図3に示す積層体7の形態は異なる形態となる。この場合、最上層以外の分離膜ユニット9は、リーフ6上に透過側流路部材4を構成する全ての層が設けられた構造を有し、最上層の分離膜ユニット9は、リーフ6上に透過側流路部材4を構成する少なくとも一部の層を含む構造を有する。なお、中空管5に積層体を巻回した状態では、上記で説明した積層体7における最上面の層が、リーフ6であるか、又は、透過側流路部材4を構成する複数の層のうちの一部の層であるかにかかわらず、積層体7の最も下側に配置された透過側流路部材4を構成する層の全て又は一部が最外層を構成することができる。 As will be described later, when the permeation side flow path member 4 has a multilayer structure in which two or more layers are laminated, the laminate may be in the form of the laminate 7 shown in FIG. 3, and the laminate 7 shown in FIG. 3 may be used. On the uppermost leaf 6, at least a part of the layers constituting the permeation side flow path member 4 may be included. That is, if all the layers constituting the permeation side flow path member 4 are arranged on the lowest side, the laminated body will be in the form of the laminated body 7 shown in FIG. In this case, each of the separation membrane units 9 has a structure in which all the layers constituting the transmission side flow path member 4 are provided on the leaf 6. On the other hand, when only a part of the layers constituting the permeation side flow path member 4 is arranged on the lowermost side, the remaining layers among the plurality of layers constituting the permeation side flow path member 4 are arranged. Since the layer can be arranged on the leaf 6 of the uppermost layer, the laminated body has a different form of the laminated body 7 shown in FIG. In this case, the separation membrane unit 9 other than the uppermost layer has a structure in which all the layers constituting the transmission side flow path member 4 are provided on the leaf 6, and the separation membrane unit 9 of the uppermost layer is on the leaf 6. Has a structure including at least a part of the layers constituting the permeation side flow path member 4. In the state where the laminated body is wound around the hollow tube 5, the uppermost layer of the laminated body 7 described above is the leaf 6, or a plurality of layers constituting the transmission side flow path member 4. Regardless of whether it is a part of the layers, all or a part of the layers constituting the transmission side flow path member 4 arranged at the lowermost side of the laminated body 7 can form the outermost layer.
 積層体7におけるピッチP0は、リーフ6を積層するために予め設定された設定値とすることができ、中空管5の外周長Cと積層体7に含まれるリーフ6の数nに基づいて設定することができる。ピッチP0は例えばC/nである。ピッチP0は、積層体7を中空管5に巻回する前の状態(図3に示すように分離膜ユニット9を平積みした状態)において、積層体7の積層方向に透過側流路部材4を介して隣合う2つのリーフ6の分離膜10の折目部分の先端部分(折目部分の頂点となる部分)どうしの距離である。折目部分の先端部分どうしの距離は、積層体7の積層方向に直交する方向(水平方向)であって、折目部分の先端部分が構成する直線に直交する方向の距離である。 The pitch P0 in the laminated body 7 can be set to a preset value for laminating the leaves 6, and is based on the outer peripheral length C of the hollow tube 5 and the number n of the leaves 6 included in the laminated body 7. Can be set. The pitch P0 is, for example, C / n. The pitch P0 is a flow path member on the transmission side in the stacking direction of the laminated body 7 in a state before the laminated body 7 is wound around the hollow tube 5 (a state in which the separation membrane units 9 are stacked flat as shown in FIG. 3). It is the distance between the tip portions (the portions that become the vertices of the fold portions) of the fold portions of the separation membranes 10 of the two adjacent leaves 6 via 4. The distance between the tip portions of the fold portion is a direction orthogonal to the stacking direction (horizontal direction) of the laminated body 7, and is a distance in a direction orthogonal to the straight line formed by the tip portion of the fold portion.
 分離膜エレメント1は、さらに、供給側流路部材3を流れる原料流体と、透過側流路部材4を流れる透過流体との混合を防止するための封止部を有することが好ましい。分離膜エレメント1は、中空管5に積層体7が巻回された巻回体の巻戻しや巻崩れを防止するために、外周テープや、図2に示すテレスコープ防止板55等の固定部材を備えていてもよい。分離膜エレメント1は、分離膜エレメントにかかる内圧及び外圧による負荷に対する強度を確保するために、巻回体の最外周にアウターラップ(補強層)を有していてもよい。 It is preferable that the separation membrane element 1 further has a sealing portion for preventing mixing of the raw material fluid flowing through the supply side flow path member 3 and the permeation fluid flowing through the permeation side flow path member 4. The separation membrane element 1 is fixed with an outer peripheral tape, a telescope prevention plate 55 shown in FIG. 2, or the like in order to prevent the winding body 7 wound around the hollow tube 5 from being unwound or unwound. It may be provided with a member. The separation membrane element 1 may have an outer wrap (reinforcing layer) on the outermost circumference of the wound body in order to secure the strength against the load due to the internal pressure and the external pressure applied to the separation membrane element.
 本実施形態では、分離膜エレメント1として、二つ折りした分離膜10の間に供給側流路部材3を介在させたリーフ6と、リーフ6上に透過側流路部材4を設ける場合について説明するが、これに限定されない。分離膜エレメントは、二つ折りした分離膜10の間に透過側流路部材4を介在させたリーフと、このリーフ上に供給側流路部材3を設けたものであってもよい。 In the present embodiment, a case where the leaf 6 in which the supply side flow path member 3 is interposed between the separation membranes 10 folded in half and the transmission side flow path member 4 are provided on the leaf 6 as the separation film element 1 will be described. However, it is not limited to this. The separation membrane element may be a leaf having a transmission side flow path member 4 interposed between the separation membranes 10 folded in half, and a supply side flow path member 3 provided on the leaf.
 図4は、スパイラル型の分離膜エレメントの製造工程の一例を説明するための模式図である。図5は、分離膜の折目部分に膨らみのある分離膜ユニットを積層した状態を説明するための模式図である。以下では、透過側流路部材4が単層構造である場合について説明するが、上記したように透過側流路部材4は多層構造を有するものであってもよい。 FIG. 4 is a schematic diagram for explaining an example of a manufacturing process of a spiral type separation membrane element. FIG. 5 is a schematic diagram for explaining a state in which a separation membrane unit having a bulge is laminated on a fold portion of the separation membrane. Hereinafter, the case where the permeation side flow path member 4 has a single-layer structure will be described, but as described above, the permeation side flow path member 4 may have a multi-layer structure.
 分離膜エレメント1の製造方法は、分離膜ユニット9を積層する工程を含む。分離膜ユニット9を積層する工程は、リーフ6及び透過側流路部材4を予め一体化した構造体を積層してもよく、リーフ6及び透過側流路部材4を順に積層する工程であってもよい。 The method for manufacturing the separation membrane element 1 includes a step of laminating the separation membrane unit 9. The step of laminating the separation membrane unit 9 may be a step of laminating a structure in which the leaf 6 and the permeation side flow path member 4 are integrated in advance, and is a step of laminating the leaf 6 and the permeation side flow path member 4 in order. May be good.
 積層する工程は、図4の(a)及び(b)に示すように、(N-1)層目の分離膜ユニット9aに含まれる分離膜10aの折目部分の少なくとも一部を含む第1領域を押圧した状態で、(N-1)層目の分離膜ユニット9a上にN層目の分離膜ユニット9bを積層する第1工程を含む。なお、上記のように特定の層の分離膜ユニット9、並びに、当該分離膜ユニット9に含まれるリーフ6、分離膜10、供給側流路部材3、及び透過側流路部材4に対しては、該当する数字の符号に同じアルファベットを付している。 As shown in FIGS. 4A and 4B, the first step of laminating includes at least a part of the fold portion of the separation membrane 10a included in the separation membrane unit 9a of the (N-1) layer. The first step of laminating the separation film unit 9b of the Nth layer on the separation film unit 9a of the (N-1) layer while pressing the region is included. As described above, for the separation membrane unit 9 of the specific layer, the leaf 6, the separation membrane 10, the supply side flow path member 3, and the transmission side flow path member 4 included in the separation membrane unit 9. , The same alphabet is attached to the sign of the corresponding number.
 積層する工程は、第1工程を繰り返し行う工程であってもよい。積層する工程は、第1工程に加えてさらに、図4の(c)に示すように、N層目の分離膜ユニット9b上に(N+1)層目の分離膜ユニット9cを積層する第2工程を含んでいてもよく、図4の(d)に示すように、(N+1)層目の分離膜ユニット9c上に(N+2)層目の分離膜ユニット9dを積層する第3工程を含んでいてもよい。積層する工程はさらに、分離膜ユニット9を複数積層したユニット群上に、積層体7の最上面を構成するリーフ6(図3)を積層する工程を含んでいてもよい。 The laminating step may be a step of repeating the first step. In addition to the first step, the laminating step is a second step of laminating the (N + 1) th layer separation membrane unit 9c on the Nth layer separation membrane unit 9b as shown in FIG. 4 (c). As shown in (d) of FIG. 4, a third step of laminating the (N + 2) layer separation film unit 9d on the (N + 1) layer separation film unit 9c is included. May be good. The step of laminating may further include a step of laminating the leaf 6 (FIG. 3) constituting the uppermost surface of the laminated body 7 on the unit group in which a plurality of separation membrane units 9 are laminated.
 ここで、Nは2以上の整数であり、図3に示す積層体7に含まれるリーフ6の数をnとしたとき(n-1)以下の整数である。なお、上記のとおり、積層体7の最上面を構成する層は通常リーフ6であるため、図3に示す積層体7に含まれるリーフ6の数nと分離膜ユニット9の数とは一致せず、積層体7に含まれる分離膜ユニット9の数は(n-1)となる。ただし、上記したように、透過側流路部材4が多層構造を有し、透過側流路部材4を構成する少なくとも一部の層が、最上層に位置するリーフ6の上面に積層されている場合は、Nはn以下の整数となる。nは整数であり、分離膜エレメント1の分離性能及び/又は中空管5の大きさ(外周長C)等に応じて選択すればよい。nは、特に限定されないが、例えば5以上であり、8以上であってもよく、10以上であってもよく、また、例えば30以下であり、20以下であってもよい。 Here, N is an integer of 2 or more, and is an integer of (n-1) or less when the number of leaves 6 included in the laminated body 7 shown in FIG. 3 is n. As described above, since the layer constituting the uppermost surface of the laminated body 7 is usually a leaf 6, the number n of the leaves 6 included in the laminated body 7 shown in FIG. 3 and the number of the separation membrane units 9 match. However, the number of separation membrane units 9 included in the laminated body 7 is (n-1). However, as described above, the permeation side flow path member 4 has a multi-layer structure, and at least a part of the layers constituting the permeation side flow path member 4 is laminated on the upper surface of the leaf 6 located at the uppermost layer. In that case, N is an integer less than or equal to n. n is an integer and may be selected according to the separation performance of the separation membrane element 1 and / or the size of the hollow tube 5 (outer peripheral length C) and the like. Although n is not particularly limited, it may be, for example, 5 or more, 8 or more, 10 or more, or 30 or less, and 20 or less.
 本実施形態の分離膜エレメント1の製造方法によれば、後述するスパイラル型の分離膜エレメントを好適に製造することができる。以下、積層する工程の各工程について詳述する。 According to the method for manufacturing the separation membrane element 1 of the present embodiment, the spiral type separation membrane element described later can be suitably manufactured. Hereinafter, each step of the laminating step will be described in detail.
 (第1工程)
 第1工程では、(N-1)層目の分離膜ユニット9a上に、積層体7の巻回方向(図4中の両矢印の方向)にピッチP0(図3)でずれるようにN層目の分離膜ユニット9bを積層する。このとき、図4の(a)及び(b)に示すように、(N-1)層目の分離膜ユニット9aに含まれる分離膜10aの折目部分の少なくとも一部を含む第1領域を押圧することにより、分離膜10aの折目部分の膨らみを抑制した状態で、N層目の分離膜ユニット9bを積層することができる。第1領域の押圧は、分離膜ユニット9aに含まれる透過側流路部材4aを介して分離膜10aを押圧することが好ましい。
(First step)
In the first step, the N layer is placed on the separation membrane unit 9a of the (N-1) layer so as to be displaced by the pitch P0 (FIG. 3) in the winding direction of the laminated body 7 (direction of the double arrow in FIG. 4). The eye separation membrane unit 9b is laminated. At this time, as shown in FIGS. 4A and 4B, the first region including at least a part of the fold portion of the separation membrane 10a included in the separation membrane unit 9a of the (N-1) layer is formed. By pressing, the N-th layer separation membrane unit 9b can be laminated in a state where the swelling of the fold portion of the separation membrane 10a is suppressed. For pressing the first region, it is preferable to press the separation membrane 10a via the transmission side flow path member 4a included in the separation membrane unit 9a.
 分離膜ユニット9のリーフ6は、二つ折りした分離膜10を含むため、分離膜10の折目部分に膨らみが生じやすい。この膨らみにより、分離膜ユニット9では、分離膜10の折目部分側の厚みが大きくなり、水平面に分離膜ユニット9を載置した場合に折目部分が位置する領域の近傍が反り上がった状態になりやすい。特に、分離膜ユニット9を複数積層したユニット群を形成した場合には、図5中の左側部分に示すように、折目部分が位置する領域の反りが大きくなりやすい。この反りが発生した分離膜ユニット9又はユニット群上に、次の分離膜ユニット9を積層すると、予め設定されたピッチP0で精度良く分離膜ユニット9を積層することが難しくなる。 Since the leaf 6 of the separation membrane unit 9 includes the separation membrane 10 folded in half, swelling is likely to occur at the fold portion of the separation membrane 10. Due to this bulge, in the separation membrane unit 9, the thickness of the separation membrane 10 on the fold portion side becomes large, and when the separation membrane unit 9 is placed on a horizontal plane, the vicinity of the region where the crease portion is located is warped. It is easy to become. In particular, when a unit group in which a plurality of separation membrane units 9 are laminated is formed, as shown in the left side portion in FIG. 5, the warp of the region where the crease portion is located tends to be large. When the next separation membrane unit 9 is laminated on the separation membrane unit 9 or the unit group in which the warp occurs, it becomes difficult to accurately stack the separation membrane unit 9 at a preset pitch P0.
 そこで、本実施形態では図4の(a)及び(b)に示すように、N層目の分離膜ユニット9bを積層する前に、(N-1)層目の分離膜ユニット9aに含まれる分離膜10aの折目部分の少なくとも一部を含む第1領域を押圧している。これにより、(N-1)層目の分離膜ユニット9aに発生する膨らみや反りを抑制し、分離膜ユニット9a又はユニット群を平坦な状態に近付けたり、折目部分を中空管5の軸方向に対して平行な状態に近付けたりすることができる。そのため、(N-1)層目の分離膜ユニット9a上に、適切なピッチP0で精度良くN層目の分離膜ユニット9bを積層することができる。したがって、予め設定されたピッチP0から大きくずれることなく分離膜10を積層することができるため、中空管5に積層体7を巻回した巻回体の断面形状を真円形に近付けることができ、外観形状が良好な分離膜エレメント1を得ることができる。また、分離膜エレメント1の分離性能の低下を抑制することも期待できる。 Therefore, in the present embodiment, as shown in FIGS. 4A and 4B, the N-1th layer separation membrane unit 9b is included in the (N-1) th layer separation membrane unit 9a before laminating the Nth layer separation membrane unit 9b. The first region including at least a part of the fold portion of the separation membrane 10a is pressed. As a result, swelling and warpage generated in the separation membrane unit 9a of the (N-1) layer are suppressed, the separation membrane unit 9a or the unit group is brought closer to a flat state, and the fold portion is the shaft of the hollow tube 5. It is possible to approach a state parallel to the direction. Therefore, the separation membrane unit 9b of the Nth layer can be accurately laminated on the separation membrane unit 9a of the (N-1) layer at an appropriate pitch P0. Therefore, since the separation membrane 10 can be laminated without significantly deviating from the preset pitch P0, the cross-sectional shape of the wound body in which the laminated body 7 is wound around the hollow tube 5 can be made close to a perfect circle. , The separation membrane element 1 having a good appearance shape can be obtained. Further, it can be expected to suppress the deterioration of the separation performance of the separation membrane element 1.
 本実施形態の製造方法では、例えば、分離膜10を二つ折りにしたときに折目を強く付与しなくても、適切なピッチP0で精度良く分離膜ユニット9を積層することができる。特に、後述するように分離膜10が多孔層と多孔層上に設けられたゲル層とを有する場合には、分離膜10に折目を強く付与するとゲル層中のゲルに偏り等が生じる虞があるため、強い折目を付与しにくい。本実施形態の製造方法は、折目を強く付与できない分離膜10を用いた場合にも好適に用いることができる。 In the manufacturing method of the present embodiment, for example, when the separation membrane 10 is folded in half, the separation membrane units 9 can be accurately laminated at an appropriate pitch P0 without making strong creases. In particular, when the separation membrane 10 has a porous layer and a gel layer provided on the porous layer as described later, if the separation membrane 10 is strongly creased, the gel in the gel layer may be biased or the like. Therefore, it is difficult to make strong creases. The production method of the present embodiment can also be suitably used when the separation membrane 10 that cannot strongly crease is used.
 上記第1領域は、(N-1)層目の分離膜ユニット9aに含まれる分離膜10aの折目部分の少なくとも一部を含んでいれば特に限定されず、折目部分の10%以上の範囲を含むことが好ましく、20%以上を含んでいてもよく、30%以上を含んでいてもよい。第1領域は、折目部分全体を(100%)含むものであってもよい。第1領域は、折目部分の延在方向の中央部分に設けられてもよいし、折目部分の延在方向の端部を含むように設けられてもよい。第1領域は、折目部分の延在方向の中央部分のように1つの領域のみであってもよく、折目部分の延在方向の両端部のように互いに離間した2つ以上の領域を含むものであってもよい。 The first region is not particularly limited as long as it contains at least a part of the fold portion of the separation membrane 10a included in the separation membrane unit 9a of the (N-1) layer, and is 10% or more of the fold portion. It is preferable to include a range, 20% or more may be contained, and 30% or more may be contained. The first region may include the entire fold portion (100%). The first region may be provided at the central portion of the fold portion in the extending direction, or may be provided so as to include the end portion of the fold portion in the extending direction. The first region may be only one region such as the central portion in the extending direction of the fold portion, or two or more regions separated from each other such as both ends in the extending direction of the fold portion. It may be included.
 上記第1領域の押圧は、図4に示すように第1押圧部材31を押し当てることによって行うことが好ましい。第1押圧部材31は、第1領域を押圧することができるものであれば特に限定されない。第1押圧部材31は、例えば図4に示すように、押圧面が平面である押圧部を棒状の支持部で支持したものであってもよく、押圧面が曲面である押圧部を棒状の支持部で支持したものであってもよく、第1押圧部材としてロールを用い、ロール表面を押圧部とするものであってもよい。押圧面の形状は、針状のように鋭い形状とすると分離膜10(ゲル層を有する場合は、特にゲル層)を損傷する虞があるため、分離膜10を損傷しにくい形状とすることが好ましく、上記した第1領域の範囲は、押圧により分離膜10を損傷することのないように設定することが好ましい。 The pressing of the first region is preferably performed by pressing the first pressing member 31 as shown in FIG. The first pressing member 31 is not particularly limited as long as it can press the first region. As shown in FIG. 4, for example, the first pressing member 31 may support a pressing portion having a flat pressing surface with a rod-shaped support portion, and may support the pressing portion having a curved pressing surface in a rod-like shape. It may be supported by a portion, or a roll may be used as the first pressing member and the surface of the roll may be used as the pressing portion. If the shape of the pressing surface is sharp like a needle, the separation membrane 10 (especially the gel layer if it has a gel layer) may be damaged. Therefore, the separation membrane 10 may be made into a shape that is not easily damaged. Preferably, the range of the first region described above is set so that the separation membrane 10 is not damaged by pressing.
 第1領域の押圧は、第1領域において対向する分離膜10aの表面の間の最大距離が5mm未満となるように行うことが好ましく、4mm以下であってもよく、3mm以下であってもよく、また、0mmであってもよく、0.5mm以上であってもよい。最大距離が上記の範囲内であることにより、適切なピッチP0で精度良く分離膜ユニット9を積層することができる。また、折目を強く付与できない分離膜10を用いた場合にも、適切なピッチP0で精度良く分離膜ユニット9を積層することができる。分離膜10aの表面とは、二つ折りした分離膜10aの内側の表面をいう。表面の間の最大距離とは、第1領域の範囲内において、分離膜10aの内側の表面どうしの間の積層体7の積層方向に沿った距離のうち、当該距離が最も大きくなる部分の距離をいう。 The pressing of the first region is preferably performed so that the maximum distance between the surfaces of the separation films 10a facing each other in the first region is less than 5 mm, and may be 4 mm or less, or may be 3 mm or less. Further, it may be 0 mm or 0.5 mm or more. When the maximum distance is within the above range, the separation membrane units 9 can be laminated with high accuracy at an appropriate pitch P0. Further, even when the separation membrane 10 that cannot strongly crease is used, the separation membrane unit 9 can be laminated with high accuracy at an appropriate pitch P0. The surface of the separation membrane 10a means the inner surface of the separation membrane 10a folded in half. The maximum distance between the surfaces is the distance of the portion of the distance along the stacking direction of the laminated body 7 between the inner surfaces of the separation film 10a within the range of the first region, where the distance is the largest. To say.
 (第2工程)
 第2工程では、第1工程で積層したN層目の分離膜ユニット9b上に、積層体7の巻回方向にピッチP0でずれるように(N+1)層目の分離膜ユニット9cを積層する。第2工程では、第1工程での第1領域を押圧した状態を解除して、又は、第1工程での第1領域を押圧した状態を維持しながら、さらにN層目の分離膜ユニット9bに含まれる分離膜10bの折目部分の少なくとも一部を含む第2領域を押圧する。第2領域の押圧は、分離膜ユニット9bに含まれる透過側流路部材4bを介して分離膜10bを押圧することが好ましい。これにより、分離膜10a,10bの折目部分の膨らみを抑制した状態で、(N+1)層目の分離膜ユニット9cを積層することができる。
(Second step)
In the second step, the separation film unit 9c of the (N + 1) layer is laminated on the separation film unit 9b of the Nth layer laminated in the first step so as to be displaced by the pitch P0 in the winding direction of the laminated body 7. In the second step, the state in which the first region is pressed in the first step is released, or the state in which the first region is pressed in the first step is maintained, and the Nth layer separation membrane unit 9b is further formed. The second region including at least a part of the fold portion of the separation membrane 10b contained in the above is pressed. For pressing the second region, it is preferable to press the separation membrane 10b via the transmission side flow path member 4b included in the separation membrane unit 9b. As a result, the separation membrane unit 9c of the (N + 1) layer can be laminated in a state where the swelling of the fold portion of the separation membranes 10a and 10b is suppressed.
 上記したように分離膜ユニット9を複数積層したユニット群では、折目部分が位置する領域の反りが大きくなりやすい(図5)。そのため、第2工程のように分離膜ユニット9を3層以上積層したユニット群を形成する場合にも、(N+1)層目の分離膜ユニット9cを積層する前に、N層目の分離膜ユニット9bに含まれる分離膜10bの第2領域を押圧している。これにより、(N-1)層目及びN層目の分離膜ユニット9a,9bに発生する膨らみや反りを抑制し、ユニット群を平坦な状態に近付けたり、折目部分を中空管5の軸方向に対して平行な状態に近付けたりすることができる。そのため、N層目の分離膜ユニット9b上に、適切なピッチP0で精度良く(N+1)層目の分離膜ユニット9cを積層することができる。したがって、予め設定されたピッチP0から大きくずれることなく分離膜10を積層することができるため、中空管5に積層体7を巻回した巻回体の断面形状を真円形に近付けることができる。また、分離膜エレメント1の分離性能の低下を抑制することも期待できる。 In the unit group in which a plurality of separation membrane units 9 are laminated as described above, the warp of the region where the crease portion is located tends to be large (FIG. 5). Therefore, even when forming a unit group in which three or more layers of the separation membrane unit 9 are laminated as in the second step, the separation membrane unit of the Nth layer is formed before the separation membrane unit 9c of the (N + 1) th layer is laminated. The second region of the separation membrane 10b included in 9b is pressed. As a result, the swelling and warpage generated in the separation membrane units 9a and 9b of the (N-1) layer and the Nth layer are suppressed, the unit group is brought closer to a flat state, and the fold portion is made of the hollow tube 5. It can be made closer to a state parallel to the axial direction. Therefore, the separation membrane unit 9c of the (N + 1) th layer can be accurately laminated on the separation membrane unit 9b of the Nth layer at an appropriate pitch P0. Therefore, since the separation membrane 10 can be laminated without significantly deviating from the preset pitch P0, the cross-sectional shape of the wound body in which the laminated body 7 is wound around the hollow tube 5 can be made close to a perfect circle. .. Further, it can be expected to suppress the deterioration of the separation performance of the separation membrane element 1.
 特に第2工程では、図4の(c)に示すように、第1工程での第1領域の押圧を維持した状態で、(N+1)層目の分離膜ユニット9cを積層する前に、N層目の分離膜ユニット9bに含まれる分離膜10bの第2領域を押圧することが好ましい。これにより、(N-1)層目及びN層目の分離膜ユニット9a,9bに発生する膨らみや反りをより一層抑制し、ユニット群をより一層平坦な状態に近付けたり、折目部分を中空管5の軸方向に対してより一層平行な状態に近付けたりすることができる。 In particular, in the second step, as shown in FIG. 4 (c), N before laminating the separation membrane unit 9c of the (N + 1) layer while maintaining the pressing of the first region in the first step. It is preferable to press the second region of the separation membrane 10b included in the separation membrane unit 9b of the layer. As a result, the swelling and warpage generated in the separation membrane units 9a and 9b of the (N-1) layer and the Nth layer are further suppressed, the unit group is brought closer to a flat state, and the fold portion is inside. It is possible to bring the empty tube 5 closer to a state parallel to the axial direction.
 第2領域は、N層目の分離膜ユニット9bに含まれる分離膜10bの折目部分の少なくとも一部を含んでいれば特に限定されない。第2領域の好ましい形態は、第1領域の好ましい形態として説明した形態を挙げることができる。 The second region is not particularly limited as long as it includes at least a part of the fold portion of the separation membrane 10b included in the separation membrane unit 9b of the Nth layer. As the preferred form of the second region, the form described as the preferred form of the first region can be mentioned.
 第2領域の押圧は、第1領域を押圧した第1押圧部材31によって行ってもよく、第1押圧部材31とは異なる第2押圧部材32によって行ってもよい。第1工程での第1領域を押圧した状態を解除して第2領域を押圧する場合、第1領域を押圧していた第1押圧部材31を移動させて、第2領域を押圧するようにしてもよい。第1工程での第1領域の押圧を維持した状態で、第2領域の押圧を行う場合には、図4に示すように第2押圧部材32を押し当てることによって行うことが好ましい。第2押圧部材32は、第2領域を押圧することができるものであれば特に限定されない。第2押圧部材32の好ましい形態は、第1押圧部材31の好ましい形態として説明した形態を挙げることができる。第1押圧部材31により第1領域を押圧した状態で、第2押圧部材32により第2領域を押圧する場合には、第1押圧部材31の押圧面と第2押圧部材32の押圧面とが干渉しないように、一方の押圧部材の押圧面の側に、他方の押圧部材の押圧面とは反対側の面と係合する凹部を設けてもよい。 The pressing of the second region may be performed by the first pressing member 31 that pressed the first region, or may be performed by the second pressing member 32 that is different from the first pressing member 31. When the state in which the first region is pressed in the first step is released and the second region is pressed, the first pressing member 31 that has pressed the first region is moved to press the second region. You may. When pressing the second region while maintaining the pressing of the first region in the first step, it is preferable to press the second pressing member 32 as shown in FIG. The second pressing member 32 is not particularly limited as long as it can press the second region. As a preferable form of the second pressing member 32, the form described as a preferable form of the first pressing member 31 can be mentioned. When the second region is pressed by the second pressing member 32 while the first region is pressed by the first pressing member 31, the pressing surface of the first pressing member 31 and the pressing surface of the second pressing member 32 come into contact with each other. A recess that engages with a surface opposite to the pressing surface of the other pressing member may be provided on the pressing surface side of one pressing member so as not to interfere with each other.
 第2領域の押圧は、第1領域の押圧と同様に、第2領域において対向する分離膜10bの表面の間の最大距離が5mm未満となるように行うことが好ましい。最大距離の好ましい範囲は、第1領域の押圧で説明した範囲と同じである。 Similar to the pressing of the first region, the pressing of the second region is preferably performed so that the maximum distance between the surfaces of the separation membranes 10b facing each other in the second region is less than 5 mm. The preferred range of the maximum distance is the same as the range described in Pressing the first region.
 (第3工程)
 積層する工程は、さらに、(N+1)層目の分離膜ユニット9c上に、積層体7の巻回方向にピッチP0でずれるように(N+2)層目の分離膜ユニット9dを積層する第3工程を含んでいてもよい。積層する工程は、さらに、第1押圧部材31による第1領域の押圧を解除する工程を含んでいてもよい。解除する工程は、第2工程の後に行うことが好ましい。
(Third step)
The step of laminating is a third step of laminating the separation film unit 9d of the (N + 2) layer on the separation film unit 9c of the (N + 1) layer so as to be displaced by the pitch P0 in the winding direction of the laminated body 7. May include. The step of laminating may further include a step of releasing the pressing of the first region by the first pressing member 31. The release step is preferably performed after the second step.
 第3工程では、第2工程での第2領域を押圧した状態を解除して、又は、第2工程での第2領域を押圧した状態を維持しながら、解除する工程後の第1押圧部材31が、(N+1)層目の分離膜ユニット9cに含まれる分離膜10cの折目部分の少なくとも一部を含む第3領域を押圧している。この状態で、(N+1)層目の分離膜ユニット9c上に(N+2)層目の分離膜ユニット9dを積層する。これにより、分離膜10b,10cの折目部分の膨らみを抑制した状態で、(N+2)層目の分離膜ユニット9dを積層することができる。 In the third step, the first pressing member after the step of releasing the pressed state of the second region in the second step or while maintaining the pressed state of the second region in the second step. 31 presses the third region including at least a part of the fold portion of the separation membrane 10c contained in the separation membrane unit 9c of the (N + 1) layer. In this state, the separation membrane unit 9d of the (N + 2) layer is laminated on the separation membrane unit 9c of the (N + 1) layer. As a result, the separation membrane unit 9d of the (N + 2) layer can be laminated in a state where the swelling of the fold portion of the separation membranes 10b and 10c is suppressed.
 第1押圧部材31は、解除する工程の後、第1領域の押圧位置から第3領域の押圧位置に移動することにより、第3領域を押圧してもよい。そのため、解除する工程は、第1押圧部材31が、第1領域を押圧する位置から第3領域を押圧する位置に移動する工程を含んでいてもよい。第3領域の押圧は、図4に示すように、分離膜ユニット9cに含まれる透過側流路部材4cを介して分離膜10cを押圧することが好ましい。 The first pressing member 31 may press the third region by moving from the pressing position of the first region to the pressing position of the third region after the release step. Therefore, the step of releasing may include a step of moving the first pressing member 31 from the position of pressing the first region to the position of pressing the third region. As shown in FIG. 4, it is preferable to press the separation membrane 10c via the transmission side flow path member 4c included in the separation membrane unit 9c.
 上記したように分離膜ユニット9を複数積層したユニット群では、折目部分が位置する領域の反りが大きくなりやすい(図5)。そのため、第3工程のように分離膜ユニット9を4層以上積層したユニット群を形成する場合にも、(N+2)層目の分離膜ユニット9dを積層する前に、(N+1)層目の分離膜ユニット9cに含まれる分離膜10cの第3領域を押圧している。これにより、特にN層目及び(N+1)層目の分離膜ユニット9b,9cに発生する膨らみや反りを抑制し、ユニット群を平坦な状態に近付けたり、折目部分を中空管5の軸方向に対して平行な状態に近付けたりすることができる。そのため、(N+1)層目の分離膜ユニット9c上に、適切なピッチP0で精度良く(N+2)層目の分離膜ユニット9dを積層することができる。したがって、予め設定されたピッチP0から大きくずれることなく分離膜10を積層することができるため、中空管5に積層体7を巻回した巻回体の断面形状を真円形に近付けることができる。また、分離膜エレメント1の分離性能の低下を抑制することも期待できる。 In the unit group in which a plurality of separation membrane units 9 are laminated as described above, the warp of the region where the crease portion is located tends to be large (FIG. 5). Therefore, even when forming a unit group in which four or more separation membrane units 9 are laminated as in the third step, the (N + 1) th layer is separated before the (N + 2) th separation membrane unit 9d is laminated. The third region of the separation membrane 10c included in the membrane unit 9c is pressed. As a result, in particular, the swelling and warpage that occur in the separation membrane units 9b and 9c of the Nth layer and the (N + 1) layer are suppressed, the unit group is brought closer to a flat state, and the fold portion is the shaft of the hollow tube 5. It is possible to approach a state parallel to the direction. Therefore, the separation membrane unit 9d of the (N + 2) layer can be accurately laminated on the separation membrane unit 9c of the (N + 1) layer at an appropriate pitch P0. Therefore, since the separation membrane 10 can be laminated without significantly deviating from the preset pitch P0, the cross-sectional shape of the wound body in which the laminated body 7 is wound around the hollow tube 5 can be made close to a perfect circle. .. Further, it can be expected to suppress the deterioration of the separation performance of the separation membrane element 1.
 特に第3工程では、図4の(d)に示すように、第2工程での第2領域の押圧を維持した状態で、(N+2)層目の分離膜ユニット9dを積層する前に、(N+1)層目の分離膜ユニット9cに含まれる分離膜10cの第3領域を押圧することが好ましい。第3領域の押圧は、第1領域の押圧位置から移動した第1押圧部材31によって行ってもよい。これにより、特にN層目及び(N+1)層目の分離膜ユニット9b,9cに発生する膨らみや反りをより一層抑制し、ユニット群をより一層平坦な状態に近付けたり、折目部分を中空管5の軸方向に対してより一層平行な状態に近付けたりすることができる。 In particular, in the third step, as shown in FIG. 4D, before laminating the separation membrane unit 9d of the (N + 2) layer while maintaining the pressing of the second region in the second step, ( It is preferable to press the third region of the separation membrane 10c included in the separation membrane unit 9c of the N + 1) layer. The pressing of the third region may be performed by the first pressing member 31 moved from the pressing position of the first region. As a result, the swelling and warpage that occur in the separation membrane units 9b and 9c of the Nth layer and the (N + 1) layer are further suppressed, the unit group is brought closer to a flat state, and the fold portion is hollow. It is possible to bring the tube 5 closer to a state parallel to the axial direction.
 第3工程では、(N+1)層目の分離膜ユニット9cの第3領域の押圧を、第1工程で(N-1)層目の分離膜ユニット9aの第1領域の押圧を行った第1押圧部材31で行ってもよい。これによれば、第1領域及び第3領域を押圧するための1つの第1押圧部材31によって行うことができるため、第1領域及び第3領域のそれぞれを押圧する部材を用意する必要がなく、積層体7を製造するための装置の部品点数を低減することができる。あるいは、第2工程でN層目の分離膜ユニット9bの第2領域の押圧を行った押圧部材(第1押圧部材31又は第2押圧部材32)を移動させて、第3領域の押圧を行ってもよく、これらとは異なる押圧部材で第3領域を押圧してもよい。 In the third step, the third region of the separation membrane unit 9c of the (N + 1) layer was pressed, and in the first step, the first region of the separation membrane unit 9a of the (N-1) layer was pressed. It may be done by the pressing member 31. According to this, since it can be performed by one first pressing member 31 for pressing the first region and the third region, it is not necessary to prepare a member for pressing each of the first region and the third region. , The number of parts of the device for manufacturing the laminated body 7 can be reduced. Alternatively, the pressing member (first pressing member 31 or second pressing member 32) that pressed the second region of the N-th layer separation membrane unit 9b in the second step is moved to press the third region. Alternatively, the third region may be pressed by a pressing member different from these.
 第3領域は、(N+1)層目の分離膜ユニット9cに含まれる分離膜10cの折目部分の少なくとも一部を含んでいれば特に限定されない。第3領域の好ましい形態は、第1領域の好ましい形態として説明した形態と同様とすることができる。 The third region is not particularly limited as long as it includes at least a part of the fold portion of the separation membrane 10c included in the separation membrane unit 9c of the (N + 1) layer. The preferred form of the third region can be the same as the form described as the preferred form of the first region.
 第3領域の押圧は、第1領域の押圧と同様に、第3領域において対向する分離膜10cの表面の間の最大距離が5mm未満となるように行うことが好ましい。最大距離の好ましい範囲は、第1領域の押圧で説明した範囲と同じである。 Similar to the pressing of the first region, the pressing of the third region is preferably performed so that the maximum distance between the surfaces of the separation membranes 10c facing each other in the third region is less than 5 mm. The preferred range of the maximum distance is the same as the range described in Pressing the first region.
 積層する工程は、第1工程~第3工程を一組とした第1セットを、1回行うものであってもよく2回以上行うものであってもよい。積層工程は、第1セットを行った後、第1工程~第3工程のうちの1つ以上の工程を1回以上行ってもよい。 The laminating step may be one in which the first set, which is a set of the first step to the third step, is performed once, or two or more times. In the laminating step, after performing the first set, one or more steps of the first step to the third step may be performed one or more times.
 積層する工程は、第1セット後に第3工程を繰り返し行うことが好ましい。これにより、分離膜ユニット9を複数積層したユニット群を平坦な状態に近付けた状態で、適切なピッチP0で精度よく分離膜ユニット9を積層することができる。また、第2領域の押圧を第2押圧部材32によって行うことにより、分離膜ユニット9の積層に伴って第1押圧部材31及び第2押圧部材32を移動させて分離膜10の折目部分を押圧しながら、分離膜ユニット9を複数積層することができる。 It is preferable that the step of laminating is repeated the third step after the first set. As a result, the separation membrane units 9 can be accurately laminated at an appropriate pitch P0 in a state where the unit group in which a plurality of separation membrane units 9 are laminated is brought close to a flat state. Further, by pressing the second region by the second pressing member 32, the first pressing member 31 and the second pressing member 32 are moved along with the stacking of the separation membrane units 9, and the fold portion of the separation membrane 10 is formed. A plurality of separation membrane units 9 can be laminated while pressing.
 (最上面のリーフを積層する工程)
 図3に示す積層体7の最上面を構成する層がリーフ6である場合、積層する工程は、積層体7に含まれる分離膜ユニット9を全て積層した後に、積層体7の最上面を構成するリーフ6を積層する工程を含んでいてもよい。リーフ6を積層する工程は、第3工程の後に行ってもよい。リーフ6を積層する工程を行うことにより、積層体7を形成することができる。積層体7の最上面を構成する層が分離膜ユニット9である場合には、本工程は通常行わない。
(Process of laminating the top leaf)
When the layer constituting the uppermost surface of the laminated body 7 shown in FIG. 3 is a leaf 6, the step of laminating constitutes the uppermost surface of the laminated body 7 after laminating all the separation membrane units 9 included in the laminated body 7. The step of laminating the leaves 6 to be formed may be included. The step of laminating the leaves 6 may be performed after the third step. By performing the step of laminating the leaves 6, the laminated body 7 can be formed. When the layer constituting the uppermost surface of the laminated body 7 is the separation membrane unit 9, this step is not normally performed.
 最上面のリーフ6を積層する工程は、第3工程で説明した(N+2)層目の分離膜ユニット9dを積層することに代えて、リーフ6を積層すること以外は、第3工程で説明した手順で行うことができる。 The step of laminating the leaf 6 on the uppermost surface has been described in the third step except that the leaf 6 is laminated instead of laminating the separation membrane unit 9d of the (N + 2) layer described in the third step. It can be done by the procedure.
 (その他の工程)
 分離膜エレメント1の製造方法は、上記した分離膜ユニットを積層する工程を経て積層体7を形成した後に、中空管5に積層体7を巻回して巻回体を形成する工程を含むことができる。巻回体を形成する工程は、例えば、図3に示すように、積層体7の最外層(最も下側)に位置する透過側流路部材4の一端を中空管5の外周に固定し、中空管5を回転させて、中空管5の周囲に積層体7を巻回すればよい。中空管5は、図3に示すように、積層体7の、分離膜10の折目部分が位置する側の端部に設けることが好ましい。上記したように積層体7の最上面はリーフ6であるが、積層体7を中空管5に巻回することにより、積層体7の最上面のリーフ6は、積層体7の最外面に位置する透過側流路部材4に接した状態となる。
(Other processes)
The method for manufacturing the separation membrane element 1 includes a step of forming the laminate 7 through the above-mentioned step of laminating the separation membrane unit, and then winding the laminate 7 around the hollow tube 5 to form the wound body. Can be done. In the step of forming the wound body, for example, as shown in FIG. 3, one end of the transmission side flow path member 4 located in the outermost layer (lowermost side) of the laminated body 7 is fixed to the outer periphery of the hollow tube 5. , The hollow tube 5 may be rotated and the laminated body 7 may be wound around the hollow tube 5. As shown in FIG. 3, the hollow tube 5 is preferably provided at the end of the laminated body 7 on the side where the fold portion of the separation membrane 10 is located. As described above, the uppermost surface of the laminated body 7 is the leaf 6, but by winding the laminated body 7 around the hollow tube 5, the uppermost surface leaf 6 of the laminated body 7 becomes the outermost surface of the laminated body 7. It is in contact with the positioned transmission side flow path member 4.
 分離膜エレメント1は、供給側流路部材3を流れる原料流体と、透過側流路部材4を流れる透過流体との混合を防止するための封止部を有することができる。そのため、分離膜エレメント1の製造方法は、封止部を形成する工程を含んでいてもよい。封止部を形成する工程は、例えば、リーフ6及び透過側流路部材4を積層する際に、リーフ6の表面に封止材料を設ける工程と、封止材料を硬化する工程と、を含むことができる。封止材料を硬化する工程は、巻回体を形成する工程の後に行うことが好ましい。 The separation membrane element 1 can have a sealing portion for preventing mixing of the raw material fluid flowing through the supply side flow path member 3 and the permeation fluid flowing through the permeation side flow path member 4. Therefore, the method for manufacturing the separation membrane element 1 may include a step of forming a sealing portion. The step of forming the sealing portion includes, for example, a step of providing a sealing material on the surface of the leaf 6 when laminating the leaf 6 and the permeation side flow path member 4, and a step of curing the sealing material. be able to. The step of curing the encapsulating material is preferably performed after the step of forming the wound body.
 封止材料を設ける工程は、例えば、リーフ6及び/又は透過側流路部材4の表面の周縁に、分離膜10の折目部分側が開口するように(いわゆるエンベロープ状に)封止材料を設ければよい。封止材料は、分離膜ユニット9のリーフ6側の表面及び/又は透過側流路部材4側の表面の周縁に、分離膜10の折目部分側が開口するように設けてもよい。封止材料は、塗布や転写等によって上記表面に設けることができる。 In the step of providing the sealing material, for example, the sealing material is provided on the peripheral edge of the surface of the leaf 6 and / or the permeation side flow path member 4 so that the fold portion side of the separation membrane 10 opens (so-called envelope shape). Just do it. The sealing material may be provided so that the fold portion side of the separation membrane 10 opens at the peripheral edge of the surface of the separation membrane unit 9 on the leaf 6 side and / or the surface on the transmission side flow path member 4 side. The sealing material can be provided on the surface by coating, transfer or the like.
 上記のように封止材料を設けて積層体7を形成した後、積層体7を中空管5に巻回しながら、リーフ6の間に介在する透過側流路部材4に封止材料を浸透させたり、透過側流路部材4を介して対向するリーフ6の間で封止材料を押し広げる。その後、封止材料を硬化する工程を行う。封止材料を硬化する工程は、封止材料の種類に応じて硬化方法を選択すればよい。封止材料の硬化方法としては、例えば、封止材料として熱硬化性樹脂を用いている場合には、加熱等を行って熱硬化性樹脂を硬化させればよく、封止材料が熱融着性接着剤である場合には、加熱等を行った後に冷却すればよい。封止材料として活性エネルギー線硬化性樹脂を用いている場合は、活性エネルギー線照射により硬化を行えばよく、封止材料が水や溶剤を含む材料である場合には、水や溶媒を除去するための乾燥を行えばよい。 After forming the laminated body 7 by providing the sealing material as described above, the sealing material is infiltrated into the permeation side flow path member 4 interposed between the leaves 6 while winding the laminated body 7 around the hollow tube 5. Or spread the encapsulating material between the opposing leaves 6 via the permeation side flow path member 4. After that, a step of curing the sealing material is performed. In the step of curing the encapsulating material, the curing method may be selected according to the type of the encapsulating material. As a method for curing the encapsulating material, for example, when a thermosetting resin is used as the encapsulating material, the thermosetting resin may be cured by heating or the like, and the encapsulating material is heat-sealed. In the case of a sex adhesive, it may be cooled after being heated or the like. When an active energy ray-curable resin is used as the encapsulating material, it may be cured by irradiation with active energy rays, and when the encapsulating material is a material containing water or a solvent, water or the solvent is removed. You just have to dry it.
 上記ではスパイラル型の分離膜エレメントの製造方法について説明したが、上記したように本実施形態の分離膜エレメントの製造方法は、プレート&フレーム型の分離膜エレメントの製造方法であってもよい。プレート&フレーム型の分離膜エレメントは、中空管に積層体の一部を巻回し、残りの部分が中空管から吊り下がった状態となっている。例えば、プレート&フレーム型の分離膜エレメントでは、中空管の外周に1周分だけ積層体を巻回し、残りの部分は巻回していない状態となっている。そのため、プレート&フレーム型の分離膜エレメントの製造方法においても、分離膜ユニットを積層する場合には、上記で説明した方法と同様に、第1領域、第2領域、又は第3領域の押圧を行うことができる。これによれば、積層体を中空管に巻き取った部分の形状が良好な分離膜エレメントを製造することができる。 Although the method for manufacturing the spiral type separation membrane element has been described above, as described above, the method for manufacturing the separation membrane element of the present embodiment may be the method for manufacturing the plate & frame type separation membrane element. In the plate & frame type separation membrane element, a part of the laminated body is wound around a hollow tube, and the remaining part is suspended from the hollow tube. For example, in the plate & frame type separation membrane element, the laminated body is wound around the outer circumference of the hollow tube for one round, and the remaining portion is not wound. Therefore, even in the method for manufacturing the plate & frame type separation membrane element, when the separation membrane units are laminated, the pressing of the first region, the second region, or the third region is performed in the same manner as the method described above. It can be carried out. According to this, it is possible to manufacture a separation membrane element having a good shape at a portion where the laminated body is wound around a hollow tube.
 <スパイラル型の分離膜エレメント>
 本実施形態のスパイラル型の分離膜エレメント1は、上記したように、有孔の中空管5と積層体7とを含み、中空管5に積層体7が巻回されたものである。分離膜エレメント1の形状及び分離膜エレメント1によって分離する流体成分については、上記したとおりである。また、積層体7の説明については上記したとおりである。積層体7では、複数の分離膜ユニット9が積層されており、分離膜10の折目部分の位置が積層体7の巻回方向にずれるように、分離膜ユニット9が積層されている。
<Spiral type separation membrane element>
As described above, the spiral type separation membrane element 1 of the present embodiment includes the perforated hollow tube 5 and the laminated body 7, and the laminated body 7 is wound around the hollow tube 5. The shape of the separation membrane element 1 and the fluid components separated by the separation membrane element 1 are as described above. Further, the description of the laminated body 7 is as described above. In the laminated body 7, a plurality of separation membrane units 9 are laminated, and the separation membrane units 9 are laminated so that the position of the fold portion of the separation membrane 10 shifts in the winding direction of the laminate 7.
 分離膜エレメント1において、分離膜10は、多孔層と多孔層上に設けられたゲル層とを有し、且つ、分離膜10を、1N/cmの荷重が折目全体に付与されるように二つ折りにした後、この荷重を除去したときの分離膜10の対向する表面の間の最大距離が10mm以上である。 In the separation membrane element 1, the separation membrane 10 has a porous layer and a gel layer provided on the porous layer, and the separation membrane 10 is applied with a load of 1 N / cm 2 to the entire fold. The maximum distance between the opposing surfaces of the separation membrane 10 when this load is removed after folding in half is 10 mm or more.
 分離膜エレメント1は、
  積層体7の積層方向に透過側流路部材4を介して隣合う2つのリーフ6に含まれる分離膜10の折目部分の位置の間の巻回方向の距離をWRとし、
  中空管5の外周長Cを積層体7に含まれるリーフ6の数nで除した値(C/n)をピッチPとするとき、
 ピッチPからの距離WRのズレ量の標準偏差が0.4以下である。
The separation membrane element 1 is
The winding direction distance between the positions of the folds of the separation membrane 10 included in the two leaves 6 adjacent to each other via the transmission side flow path member 4 in the stacking direction of the laminated body 7 is defined as WR.
When the value (C / n) obtained by dividing the outer peripheral length C of the hollow tube 5 by the number n of the leaves 6 contained in the laminated body 7 is defined as the pitch P,
The standard deviation of the deviation amount of the distance WR from the pitch P is 0.4 or less.
 上記したように、積層体7の最上面を構成する層は、リーフ6又はリーフ6上に透過側流路部材4を構成する少なくとも一部の層であり、積層体7の最外面(最も下側)は透過側流路部材4を構成する少なくとも一部の層である。積層体7は、最上面のリーフ6と最外面の透過側流路部材4を構成する少なくとも一部の層との間に分離膜ユニット9を2以上有することが好ましい。 As described above, the layer constituting the uppermost surface of the laminated body 7 is at least a part of the layer constituting the permeation side flow path member 4 on the leaf 6 or the leaf 6, and is the outermost surface (lowermost) of the laminated body 7. The side) is at least a part of the layers constituting the transmission side flow path member 4. It is preferable that the laminated body 7 has two or more separation membrane units 9 between the leaf 6 on the uppermost surface and at least a part of the layers constituting the transmission side flow path member 4 on the outermost surface.
 分離膜10が備える多孔層は、ゲル層の支持層又は保護層として機能する。ゲル層は、特定の流体成分を選択的に透過させるための分離機能層として機能する。後述するように、分離膜10はゲル層の両面に多孔層を有していてもよい。 The porous layer included in the separation membrane 10 functions as a support layer or a protective layer for the gel layer. The gel layer functions as a separation functional layer for selectively permeating a specific fluid component. As will be described later, the separation membrane 10 may have porous layers on both sides of the gel layer.
 分離膜10を1N/cmの荷重で二つ折りにするとは、水平面上に積置した分離膜10を折り返し、折目となる部分全体に1N/cmの荷重を付与することをいう。荷重の付与方法は後述する実施例に記載のとおりであり、荷重を付与する面が金属製の平面である部材を、当該平面どうしが対向するように配置し、分離膜10の折目となる部分全体に荷重を5秒間付与することによって行う。 Folding the separation membrane 10 in half with a load of 1 N / cm 2 means folding back the separation membrane 10 stacked on a horizontal plane and applying a load of 1 N / cm 2 to the entire crease portion. The method of applying the load is as described in Examples described later, and the members whose surfaces to which the load is applied are flat surfaces made of metal are arranged so that the planes face each other to form a crease in the separation membrane 10. This is done by applying a load to the entire portion for 5 seconds.
 荷重を除去したときの分離膜10の対向する表面の間の最大距離は、10mm以上であり、12mm以上であってもよく、15mm以上であってもよく、通常60mm以下であり、40mm以下であってもよく、20mm以下であってもよい。分離膜10の対向する表面とは、二つ折りした分離膜10の内側の表面をいう。分離膜10の対向する表面の間の最大距離とは、水平面上に載置された二つ折りした分離膜10の、水平面に直交する方向における上記表面どうしの間の距離のうち、当該距離が最も大きくなる部分の距離をいう。 The maximum distance between the opposing surfaces of the separation membrane 10 when the load is removed is 10 mm or more, may be 12 mm or more, may be 15 mm or more, and is usually 60 mm or less, 40 mm or less. It may be present, and may be 20 mm or less. The facing surface of the separation membrane 10 refers to the inner surface of the separation membrane 10 folded in half. The maximum distance between the opposing surfaces of the separation membrane 10 is the distance between the surfaces of the two-folded separation membrane 10 placed on the horizontal plane in the direction orthogonal to the horizontal plane. The distance of the part that grows.
 距離WRは、積層体7の積層方向に透過側流路部材4を介して隣合う2つのリーフ6について、各リーフ6に含まれる分離膜10の折目部分の位置の間の距離であって、積層体7の巻回方向に沿った距離である。距離WRは、分離膜エレメント1において中空管5に巻回されている積層体を展開した状態で測定することができ、中空管5に巻回された積層体7における上記距離と考えることができる。距離WRは、1つの折目部分全体について測定した折目部分どうしの間の距離のうちの最大値をいう。距離WRは、積層体7に含まれ、且つ、その積層方向に透過側流路部材4を介して互いに隣合う2つのリーフ6のそれぞれについて測定する。 The distance WR is the distance between the positions of the fold portions of the separation membrane 10 included in each of the two leaves 6 adjacent to each other via the transmission side flow path member 4 in the stacking direction of the laminated body 7. , The distance along the winding direction of the laminated body 7. The distance WR can be measured in a state where the laminated body wound around the hollow tube 5 in the separation membrane element 1 is unfolded, and is considered to be the above distance in the laminated body 7 wound around the hollow tube 5. Can be done. Distance WR refers to the maximum value of the distance between the creases measured for the entire crease. The distance WR is measured for each of the two leaves 6 included in the laminated body 7 and adjacent to each other via the transmission side flow path member 4 in the laminated body direction.
 ピッチPは、中空管5の外周長Cを、積層体7に含まれるリーフ6の数nで除した値(C/n)である。このようにピッチPを設定することにより、積層体7に含まれる全ての分離膜10の一部(折目部分近傍)が中空管5の外周に接するように、積層体7を中空管5に巻回することができる。 The pitch P is a value (C / n) obtained by dividing the outer peripheral length C of the hollow tube 5 by the number n of the leaves 6 contained in the laminated body 7. By setting the pitch P in this way, the laminated body 7 is made into a hollow tube so that a part of all the separation membranes 10 included in the laminated body 7 (near the fold portion) is in contact with the outer periphery of the hollow tube 5. It can be wound around 5.
 ピッチPからの距離WRのズレ量は、予め設定されたピッチPと、積層体7が中空管5に巻回された状態における実際のピッチとの差とみなすことができる。ズレ量は、上記した隣合う2つのリーフ6のそれぞれについて測定した距離WRのそれぞれに対して算出する。 The amount of deviation of the distance WR from the pitch P can be regarded as the difference between the preset pitch P and the actual pitch when the laminated body 7 is wound around the hollow tube 5. The amount of deviation is calculated for each of the distance WRs measured for each of the two adjacent leaves 6 described above.
 ズレ量の標準偏差は、距離WRとピッチP(ただし、P=C/n(Cは中空管5の外周長を表し、Pは積層体7に含まれるリーフ6の数を表す。))とするとき、下記に示す式(I)によって算出することができる。
  ズレ量の標準偏差={Σ[(WR/P)-1]/n}0.5  (I)
The standard deviation of the deviation amount is the distance WR and the pitch P (where P = C / n (C represents the outer peripheral length of the hollow tube 5 and P represents the number of leaves 6 contained in the laminated body 7)). Then, it can be calculated by the formula (I) shown below.
Standard deviation of deviation amount = {Σ [(WR / P) -1] 2 / n} 0.5 (I)
 ズレ量の標準偏差は、0.4以下であり、0.3以下であることが好ましく、0.25以下であることがより好ましく、0.2以下であってもよい。ズレ量の標準偏差が小さいほど、予め設定されたピッチPと、積層体7が中空管5に巻回された状態における実際のピッチとの差が小さいと考えられる。 The standard deviation of the deviation amount is 0.4 or less, preferably 0.3 or less, more preferably 0.25 or less, and may be 0.2 or less. It is considered that the smaller the standard deviation of the deviation amount, the smaller the difference between the preset pitch P and the actual pitch when the laminated body 7 is wound around the hollow tube 5.
 上記した分離膜を備え、ズレ量の標準偏差が上記範囲内にある分離膜エレメント1によれば、積層体7を中空管5に巻回した巻回体においても、距離WRがピッチPから大きくずれていない状態になっていると考えられる。そのため、巻回体の断面形状を真円形に近付けることができ、外観形状が良好な分離膜エレメント1を得ることができる。また、分離膜エレメント1の分離性能の低下を抑制することも期待できる。 According to the separation membrane element 1 having the above-mentioned separation membrane and having a standard deviation of the deviation amount within the above range, the distance WR is from the pitch P even in the wound body in which the laminate 7 is wound around the hollow tube 5. It is considered that the state is not significantly deviated. Therefore, the cross-sectional shape of the wound body can be made close to a perfect circle, and the separation membrane element 1 having a good external shape can be obtained. Further, it can be expected to suppress the deterioration of the separation performance of the separation membrane element 1.
 特に、分離膜エレメント1では、分離膜10がゲル層を含んでおり、分離膜10を二つ折りした場合に強い折目を形成しにくい。このような分離膜10を備えた分離膜エレメント1においても、ズレ量の標準偏差が上記範囲内であることにより、良好な巻回形状とすることができる。 In particular, in the separation membrane element 1, the separation membrane 10 contains a gel layer, and it is difficult to form strong creases when the separation membrane 10 is folded in half. Even in the separation membrane element 1 provided with such a separation membrane 10, a good winding shape can be obtained by keeping the standard deviation of the deviation amount within the above range.
 上記の分離膜エレメント1を製造する方法は特に限定されないが、例えば上記した分離膜エレメント1の製造方法が挙げられる。 The method for manufacturing the above-mentioned separation membrane element 1 is not particularly limited, and examples thereof include the above-mentioned method for manufacturing the separation membrane element 1.
 分離膜エレメント1に設けられた供給側流路部材3は、その端部のうち少なくとも、二つ折りした分離膜10の折目部分に対向して配置される端部に、当該端部を覆う第1カバー部を備えていてもよい。第1カバー部は、供給側流路部材3の端部を包み込むように設けられることが好ましい。第1カバー部は、フィルム上に粘着剤層を設けたテープであってもよく、樹脂コーティング等による被覆によって形成してもよい。例えば、供給側流路部材3を構成する素材の剛性が高い場合等には、供給側流路部材3の端部が分離膜10と接触すると、分離膜10を突き刺す、傷つける等の損傷を生じることがある。そのため、供給側流路部材3の端部に第1カバー部が設けられていることにより、分離膜10と供給側流路部材3の端部とが接触した場合にも、分離膜10を損傷することを抑制することができる。第1カバー部としては、国際公開第2018/186109号に記載のものが挙げられる。 The supply-side flow path member 3 provided in the separation membrane element 1 covers at least the end portion of the end portion of the separation membrane element 1 which is arranged so as to face the fold portion of the separation membrane 10 folded in half. 1 A cover portion may be provided. The first cover portion is preferably provided so as to wrap the end portion of the supply-side flow path member 3. The first cover portion may be a tape having an adhesive layer provided on the film, or may be formed by coating with a resin coating or the like. For example, when the material constituting the supply-side flow path member 3 has high rigidity, if the end portion of the supply-side flow path member 3 comes into contact with the separation membrane 10, damage such as piercing or damaging the separation membrane 10 occurs. Sometimes. Therefore, since the first cover portion is provided at the end portion of the supply side flow path member 3, the separation membrane 10 is damaged even when the separation membrane 10 and the end portion of the supply side flow path member 3 come into contact with each other. Can be suppressed. Examples of the first cover section include those described in International Publication No. 2018/186109.
 分離膜エレメント1は、さらに、上記した封止部を有していてもよく、外周テープ、テレスコープ防止板55、アウターラップを備えていてもよい。また、上記したように、分離膜エレメントは、二つ折りした分離膜10の間に透過側流路部材4を介在させたリーフと、このリーフ上に供給側流路部材3を設けたものであってもよい。二つ折りした分離膜10の間に透過側流路部材4を介在する場合には、透過側流路部材4に上記した第1カバー部を設けることが好ましい。 The separation membrane element 1 may further have the above-mentioned sealing portion, and may be provided with an outer peripheral tape, a telescope prevention plate 55, and an outer wrap. Further, as described above, the separation membrane element is a leaf in which the transmission side flow path member 4 is interposed between the separation membranes 10 folded in half, and the supply side flow path member 3 is provided on the leaf. You may. When the permeation side flow path member 4 is interposed between the two-folded separation membrane 10, it is preferable to provide the permeation side flow path member 4 with the above-mentioned first cover portion.
 上記ではスパイラル型の分離膜エレメントについて説明したが、上記したように本実施形態の分離膜エレメントは、プレート&フレーム型の分離膜エレメントであってもよい。プレート&フレーム型の分離膜エレメントは、中空管に積層体の一部を巻回し、残りの部分が中空管から吊り下がった状態となっている。例えば、プレート&フレーム型の分離膜エレメントでは、中空管の外周に1周分だけ積層体を巻回し、残りの部分は巻回していない状態となっている。そのため、プレート&フレーム型の分離膜エレメントにおいても、分離膜は、多孔層と多孔層上に設けられたゲル層とを有し、且つ、分離膜を、1N/cmの荷重が折目全体に付与されるように二つ折りにした後、この荷重を除去したときの分離膜10の対向する表面の間の最大距離が10mm以上とし、分離膜エレメントは、上記ピッチPからの距離WRのズレ量の標準偏差が0.4以下とすることができる。これによれば、分離膜エレメントの積層体を中空管に巻き取った部分の形状を良好なものとすることができる。 Although the spiral type separation membrane element has been described above, the separation membrane element of the present embodiment may be a plate & frame type separation membrane element as described above. In the plate & frame type separation membrane element, a part of the laminated body is wound around a hollow tube, and the remaining part is suspended from the hollow tube. For example, in the plate & frame type separation membrane element, the laminated body is wound around the outer circumference of the hollow tube for one round, and the remaining portion is not wound. Therefore, even in the plate & frame type separation membrane element, the separation membrane has a porous layer and a gel layer provided on the porous layer, and the separation membrane is loaded with a load of 1 N / cm 2 over the entire fold. After folding in half so as to be applied to, the maximum distance between the opposing surfaces of the separation membrane 10 when this load is removed is 10 mm or more, and the separation membrane element has a deviation of the distance WR from the pitch P. The standard deviation of the quantity can be 0.4 or less. According to this, the shape of the portion where the laminated body of the separation membrane element is wound around the hollow tube can be improved.
 <分離膜モジュール>
 分離膜エレメントは、分離膜モジュールに用いることができる。分離膜モジュールは、分離膜エレメントを1基以上有する。分離膜モジュールは、分離膜10に原料流体を供給するための原料流体供給口(図1及び図2に示す供給口51と連通する部分)、分離膜10を透過した透過流体を排出するための透過流体排出口(図1及び図2に示す第1排出口52と連通する部分)、及び分離膜10を透過しなかった原料流体を排出するための非透過流体排出口(図1及び図2に示す第2排出口53と連通する部分)を備えている。上記の原料流体供給口、透過流体排出口及び非透過流体排出口は、分離膜エレメントを収納する容器(以下、「ハウジング」ということがある。)に設けられてもよい。
<Separation membrane module>
The separation membrane element can be used in the separation membrane module. The separation membrane module has one or more separation membrane elements. The separation membrane module is for discharging the raw material fluid supply port for supplying the raw material fluid to the separation membrane 10 (the portion communicating with the supply port 51 shown in FIGS. 1 and 2) and the permeation fluid that has passed through the separation membrane 10. A permeation fluid discharge port (a portion communicating with the first discharge port 52 shown in FIGS. 1 and 2) and a non-permeation fluid discharge port for discharging the raw material fluid that did not permeate the separation membrane 10 (FIGS. 1 and 2). A portion that communicates with the second discharge port 53 shown in the above). The raw material fluid supply port, the permeation fluid discharge port, and the non-permeation fluid discharge port may be provided in a container (hereinafter, may be referred to as “housing”) for accommodating the separation membrane element.
 ハウジングは、分離膜モジュール内を流通する原料流体を封入するための空間を形成することができ、例えばステンレス等の筒状部材と、この筒状部材の軸方向両端を閉塞するための閉塞部材とを有していてもよい。ハウジングは、円筒状、角筒状等の任意の筒状形状であってもよいが、分離膜エレメントは通常、円筒状であることから、円筒状であることが好ましい。また、ハウジングの内部には、供給口51に供給される原料流体と、分離膜エレメントに備えられた分離膜10を透過しなかった非透過流体との混合を防止するための仕切りを設けることができる。 The housing can form a space for enclosing the raw material fluid flowing in the separation membrane module, and includes, for example, a tubular member such as stainless steel and a closing member for closing both ends of the tubular member in the axial direction. May have. The housing may have an arbitrary cylindrical shape such as a cylinder or a square cylinder, but the separation membrane element is usually cylindrical, and therefore, it is preferably cylindrical. Further, inside the housing, a partition may be provided to prevent mixing of the raw material fluid supplied to the supply port 51 and the impermeable fluid that has not penetrated the separation membrane 10 provided in the separation membrane element. can.
 ハウジング内に2以上の分離膜エレメントを配置する場合、各分離膜エレメントに供給される原料流体は、並列に供給されてもよく、直列に供給されてもよい。ここで、原料流体を並列に供給するとは、少なくとも原料流体を分配して複数の分離膜エレメントに導入することをいい、原料流体を直列に供給するとは、少なくとも前段の分離膜エレメントから排出された透過流体及び/又は非透過流体を、後段の分離膜エレメントに導入することをいう。 When two or more separation membrane elements are arranged in the housing, the raw material fluid supplied to each separation membrane element may be supplied in parallel or in series. Here, supplying the raw material fluid in parallel means that at least the raw material fluid is distributed and introduced into a plurality of separation membrane elements, and supplying the raw material fluid in series means that at least the raw material fluid is discharged from the separation membrane element in the previous stage. Introducing a permeable fluid and / or a non-permeable fluid into the separation membrane element in the subsequent stage.
 <分離装置>
 分離装置は、分離膜モジュールを少なくとも1つ備えることができる。分離装置に備えられる分離膜モジュールの配列及び個数は、要求される処理量、特定の流体成分の回収率、分離装置を設置する場所の大きさ等に応じて選択することができる。
<Separator>
The separation device can include at least one separation membrane module. The arrangement and number of separation membrane modules provided in the separation device can be selected according to the required processing amount, the recovery rate of a specific fluid component, the size of the place where the separation device is installed, and the like.
 分離装置は、分離膜10によって互いに隔てられた供給側空間及び透過側空間と、特定の流体を少なくとも含む原料流体を、供給部から供給側空間に供給するための供給側入口と、分離膜10を透過した特定のガスを含む透過ガスを透過側空間から排出するための透過側出口と、分離膜10を透過しなかった原料ガスを供給側空間から排出するための非透過側出口と、を備えていてもよい。 The separation device includes a supply-side space and a permeation-side space separated from each other by the separation film 10, a supply-side inlet for supplying a raw material fluid containing at least a specific fluid from the supply unit to the supply-side space, and a separation film 10. A permeation side outlet for discharging the permeated gas containing a specific gas that has permeated through the space from the permeation side space, and a non-permeation side outlet for discharging the raw material gas that did not permeate the separation film 10 from the supply side space. You may be prepared.
 以下、分離膜エレメント1をなす各部材等について説明する。
 (分離膜)
 図6及び図7は、分離膜の一例を示す概略断面図であり、図8は、図7に示す分離膜を用いたリーフの一例を示す概略断面図である。なお、以下で説明する分離膜は、上記で説明した分離膜エレメント及びその製造方法で用いるものであるが、上記以外の分離膜エレメント及びその製造方法で用いることもできるものである。
Hereinafter, each member and the like forming the separation membrane element 1 will be described.
(Separation membrane)
6 and 7 are schematic cross-sectional views showing an example of a separation membrane, and FIG. 8 is a schematic cross-sectional view showing an example of a leaf using the separation membrane shown in FIG. 7. The separation membrane described below is used in the separation membrane element and its manufacturing method described above, but it can also be used in a separation membrane element other than the above and its manufacturing method.
 分離膜10は、原料流体から特定の流体成分を選択的に透過させることができる公知のものであれば特に限定されない。分離膜はガス分離膜であることが好ましい。分離膜10,10’(以下、両者をまとめて「分離膜10」ということがある。)は、第1多孔層11(多孔層)と、第1多孔層11上に設けられたゲル層15とを有することが好ましく、ゲル層の第1多孔層11とは反対側に第2多孔層12(多孔層)を有していてもよい。また、分離膜10は、図6及び図7に示すように、第1多孔層11のゲル層15とは反対側に第3多孔層13を有していてもよく、第2多孔層12のゲル層15とは反対側に第4多孔層14を有していてもよい。 The separation membrane 10 is not particularly limited as long as it is a known one capable of selectively permeating a specific fluid component from the raw material fluid. The separation membrane is preferably a gas separation membrane. The separation membranes 10 and 10'(hereinafter, both are collectively referred to as "separation membrane 10") are the first porous layer 11 (porous layer) and the gel layer 15 provided on the first porous layer 11. It is preferable to have a second porous layer 12 (porous layer) on the side opposite to the first porous layer 11 of the gel layer. Further, as shown in FIGS. 6 and 7, the separation membrane 10 may have a third porous layer 13 on the side opposite to the gel layer 15 of the first porous layer 11, and the second porous layer 12 may have a third porous layer 13. The fourth porous layer 14 may be provided on the opposite side of the gel layer 15.
 第1多孔層11及びゲル層15を含む分離膜10は、例えば、ゲル層15を形成するための組成物を含む塗布液を、第1多孔層11上に塗布することによって製造することができる。塗布液は、ゲル層に含まれる組成物(後述する親水性樹脂、アルカリ金属化合物、アミノ酸等)と媒質とを含むことができる。媒質としては、例えば、水、メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコール等のプロトン性極性溶媒;トルエン、キシレン、ヘキサン等の無極性溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン、N-メチルピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等の非プロトン性極性溶媒;等が挙げられる。媒質は、1種類を単独で用いてもよく、相溶する範囲で2種類以上を併用してもよい。これらの中でも、水、メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコールからなる群から選択される少なくとも1つが含まれる媒質が好ましく、水が含まれる媒質がより好ましい。 The separation membrane 10 including the first porous layer 11 and the gel layer 15 can be produced, for example, by applying a coating liquid containing a composition for forming the gel layer 15 onto the first porous layer 11. .. The coating liquid can contain a composition (hydrophilic resin, alkali metal compound, amino acid, etc., which will be described later) contained in the gel layer and a medium. Examples of the medium include a protonic polar solvent such as water, methanol, ethanol, 1-propanol, 2-propanol and other alcohols; a non-polar solvent such as toluene, xylene and hexane; and a ketone such as acetone, methyl ethyl ketone and methyl isobutyl ketone. , N-Methylpyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide and other aprotic polar solvents; and the like. One type of medium may be used alone, or two or more types may be used in combination as long as they are compatible with each other. Among these, a medium containing at least one selected from the group consisting of alcohols such as water, methanol, ethanol, 1-propanol and 2-propanol is preferable, and a medium containing water is more preferable.
 第1多孔層11上に塗布液を塗布する方法としては、スロットダイ塗布、スピンコート法、バー塗布、ダイコート法、ブレード塗布、エアナイフ塗布、グラビアコート法、ロールコーティング塗布、スプレー塗布、ディップ塗布、コンマロール法、キスコート法、スクリーン印刷、インクジェット印刷等が挙げられる。 As a method of applying the coating liquid on the first porous layer 11, slot die coating, spin coating method, bar coating, die coating method, blade coating, air knife coating, gravure coating method, roll coating coating, spray coating, dip coating, etc. Examples include a comma roll method, a kiss coat method, screen printing, and inkjet printing.
 第1多孔層11上に塗布液を塗布して形成された塗布液の膜から、媒質を除去することによってゲル層15を形成することができる。媒質を除去する方法としては、加熱等により塗布液の膜から媒質を蒸発除去させる方法等が挙げられる。分離膜10が第2多孔層12を有する場合は、媒質を除去する前又は媒質の一部を除去した後に、塗布液の膜上に第2多孔層12を積層すればよい。 The gel layer 15 can be formed by removing the medium from the film of the coating liquid formed by applying the coating liquid on the first porous layer 11. Examples of the method for removing the medium include a method for evaporating and removing the medium from the film of the coating liquid by heating or the like. When the separation film 10 has the second porous layer 12, the second porous layer 12 may be laminated on the membrane of the coating liquid before removing the medium or after removing a part of the medium.
 分離膜10は、リーフ6を形成するために二つ折りしたときの折目部分の位置にゲル層15が存在するものであってもよく、図7及び図8に示す分離膜10’のように折目部分にゲル層15が存在していないものであってもよい。以下、折目部分にゲル層15が存在していない分離膜10’について説明する。 The separation membrane 10 may have a gel layer 15 at the position of the fold portion when folded in half to form the leaf 6, as in the separation membrane 10'shown in FIGS. 7 and 8. The gel layer 15 may not be present at the fold portion. Hereinafter, the separation membrane 10'in which the gel layer 15 does not exist at the fold portion will be described.
 (折目部分にゲル層が存在していない分離膜及びそれを備えたリーフ)
 折目部分にゲル層15が存在していない分離膜10’は、少なくとも第3多孔層13、第1多孔層11及びゲル層15をこの順に有する。分離膜10’は、図7に示すように、ゲル層15の第1多孔層11とは反対側に第2多孔層12を有していてもよく、第2多孔層12のゲル層15とは反対側に第4多孔層14を有していてもよい。
(Separation membrane with no gel layer at the crease and leaf with it)
The separation membrane 10'in which the gel layer 15 is not present at the fold portion has at least the third porous layer 13, the first porous layer 11 and the gel layer 15 in this order. As shown in FIG. 7, the separation membrane 10'may have the second porous layer 12 on the side opposite to the first porous layer 11 of the gel layer 15, and may be the same as the gel layer 15 of the second porous layer 12. May have a fourth porous layer 14 on the opposite side.
 分離膜10’は、分離膜10’を二つ折りしたときの折目部分を含む領域には、少なくともゲル層15及び第1多孔層11が存在しない非分離機能領域18が形成されている。分離膜10’が第2多孔層12を有する場合、非分離機能領域18には第2多孔層12が存在しないことが好ましい。分離膜10’が第4多孔層14を有する場合は、非分離機能領域18には第4多孔層14が存在していてもよい。 In the separation membrane 10', at least a non-separable functional region 18 in which the gel layer 15 and the first porous layer 11 do not exist is formed in the region including the crease portion when the separation membrane 10'is folded in half. When the separation membrane 10'has a second porous layer 12, it is preferable that the second porous layer 12 does not exist in the non-separable functional region 18. When the separation membrane 10'has a fourth porous layer 14, the fourth porous layer 14 may be present in the non-separable functional region 18.
 非分離機能領域18は、分離膜10’を二つ折りしたときの折目部分を含む領域であればその大きさは特に限定されない。非分離機能領域18は、分離膜10’の折目位置から折目部分の延在方向に直交する2方向に、好ましくはそれぞれ2mm以上の範囲(非分離機能領域18の延在方向の長さが4mmの範囲)であり、より好ましくはそれぞれ4mm以上の範囲であり(非分離機能領域18の延在方向の長さが8mmの範囲)であり、さらに好ましくはそれぞれ5mm以上であり(非分離機能領域18の延在方向の長さが10mmの範囲)、通常それぞれ15mm以下(非分離機能領域18の延在方向の長さが30mmの範囲)である。 The size of the non-separable functional region 18 is not particularly limited as long as it is a region including a crease portion when the separation membrane 10'is folded in half. The non-separable functional region 18 is located in two directions orthogonal to the extending direction of the fold portion from the fold position of the separation film 10', preferably in a range of 2 mm or more (the length of the non-separable functional region 18 in the extending direction). Is in the range of 4 mm), more preferably in the range of 4 mm or more (the length of the non-separable functional region 18 in the extending direction is in the range of 8 mm), and further preferably in the range of 5 mm or more (non-separable). The length of the functional region 18 in the extending direction is 10 mm or less), and usually 15 mm or less (the length of the non-separable functional region 18 in the extending direction is 30 mm).
 分離膜10’を用いて分離膜エレメントを作製した場合に、非分離機能領域18から原料流体が流出することを抑制するために、非分離機能領域18には充填材19が設けられる。充填材19としては例えば樹脂材料等が挙げられる。樹脂材料としては、後述する封止材料に用いられる材料として例示したものが挙げられ、接着剤であることが好ましい。非分離機能領域18に設けられる充填材19の少なくとも一部は、非分離機能領域18に存在する層(第1多孔層11、第3多孔層13、第4多孔層14等)に浸透した状態で存在していてもよい。 When the separation membrane element is manufactured using the separation membrane 10', a filler 19 is provided in the non-separation functional region 18 in order to prevent the raw material fluid from flowing out from the non-separation functional region 18. Examples of the filler 19 include a resin material and the like. Examples of the resin material include those exemplified as the material used for the sealing material described later, and an adhesive is preferable. At least a part of the filler 19 provided in the non-separable functional region 18 has penetrated into the layers existing in the non-separable functional region 18 (first porous layer 11, third porous layer 13, fourth porous layer 14, etc.). May exist in.
 分離膜10’は、二つ折りしたときに外側になる表面において、非分離機能領域18が形成された範囲を少なくとも被覆するように、第2カバー部36を有する(図8)。第2カバー部36が被覆する範囲は、非分離機能領域18が形成された範囲全体を含んでいてもよく、非分離機能領域18のうち少なくとも分離膜10’の折目部分を含むものであってもよい。第2カバー部36を設けることにより、非分離機能領域18に設けられた充填材19が、非分離機能領域18に存在する層(第1多孔層11、第3多孔層13等)から染み出すことを抑制することができる。第2カバー部36の形態としては、供給側流路部材3に設けてもよい第1カバー部として説明した形態のものが挙げられ、より具体的には国際公開第2018/186109号に記載されたものが挙げられる。 The separation membrane 10'has a second cover portion 36 so as to cover at least the area where the non-separable functional region 18 is formed on the surface that becomes the outer side when folded in half (FIG. 8). The range covered by the second cover portion 36 may include the entire range in which the non-separable functional region 18 is formed, and includes at least the fold portion of the separation membrane 10'of the non-separable functional region 18. You may. By providing the second cover portion 36, the filler 19 provided in the non-separable functional region 18 seeps out from the layers (first porous layer 11, third porous layer 13, etc.) existing in the non-separable functional region 18. It can be suppressed. Examples of the form of the second cover portion 36 include the form described as the first cover portion which may be provided on the supply side flow path member 3, and more specifically, it is described in International Publication No. 2018/186109. Can be mentioned.
 ゲル層15を含む分離膜では、リーフを形成するために分離膜を二つ折りする際に強く折目を形成すると、折目部分においてゲル層に偏りが生じ、ゲル層が存在しない領域が形成される虞がある。ゲル層が存在しない領域では、分離膜に供給された原料流体がそのまま流出しやすくなるため、分離機能が低下しやすい。分離膜10’では、二つ折りしたときに折目部分となる領域にゲル層15が存在しない非分離機能領域18を設け、非分離機能領域18に充填材19を設けている。これにより、分離膜10’をゲル層が存在しない領域に折目を形成することができ、また、非分離機能領域18に充填材19を設けることにより、非分離機能領域18から原料流体が流出することを抑制することができる。その結果、分離膜10’による分離効率の低下を抑制することができる。 In the separation membrane containing the gel layer 15, if strong creases are formed when the separation membrane is folded in half to form a leaf, the gel layer is biased at the folds and a region where the gel layer does not exist is formed. There is a risk of In the region where the gel layer does not exist, the raw material fluid supplied to the separation membrane tends to flow out as it is, so that the separation function tends to deteriorate. In the separation membrane 10', a non-separable functional region 18 in which the gel layer 15 does not exist is provided in a region that becomes a fold portion when folded in half, and a filler 19 is provided in the non-separable functional region 18. As a result, the separation membrane 10'can form a crease in the region where the gel layer does not exist, and by providing the filler 19 in the non-separable functional region 18, the raw material fluid flows out from the non-separable functional region 18. Can be suppressed. As a result, it is possible to suppress a decrease in separation efficiency due to the separation membrane 10'.
 図8に示すように、二つ折りした分離膜10’の間に供給側流路部材3を介在させることにより、リーフ6’を形成することができる。なお、リーフ6’に用いる供給側流路部材3は、分離膜10’の折目部分に対向して配置される端部に、第1カバー部を有していてもよい。これにより、供給側流路部材3の端部が、分離膜10’の特に非分離機能領域18に存在する充填材19や第3多孔層等の層を損傷することを抑制し、非分離機能領域18から原料流体が流出することを抑制することができる。 As shown in FIG. 8, the leaf 6'can be formed by interposing the supply side flow path member 3 between the two-folded separation membranes 10'. The supply-side flow path member 3 used for the leaf 6'may have a first cover portion at an end portion arranged so as to face the fold portion of the separation membrane 10'. As a result, the end portion of the supply-side flow path member 3 is prevented from damaging the layers such as the filler 19 and the third porous layer existing in the non-separable functional region 18 of the separation membrane 10', and the non-separable function is suppressed. It is possible to suppress the outflow of the raw material fluid from the region 18.
 リーフ6’では、分離膜10’を二つ折りした折目部分の内側を充填するように充填材19が設けられている。充填材19は、折目部分で対向するゲル層15の間に存在していてもよく、充填材19によって対向するゲル層15の間が接着されていてもよい。充填材19は、非分離機能領域18の周辺に位置する、分離膜10’を構成する層、及び供給側流路部材3に浸透した状態で存在していてもよい。 In the leaf 6', a filler 19 is provided so as to fill the inside of the fold portion where the separation membrane 10'is folded in half. The filler 19 may be present between the gel layers 15 facing each other at the fold portion, or may be adhered between the gel layers 15 facing each other by the filler 19. The filler 19 may exist in a state of being infiltrated into the layer constituting the separation membrane 10'located around the non-separable functional region 18 and the supply-side flow path member 3.
 分離膜10’は、例えば、第3多孔層13、第1多孔層11、及びゲル層15等の分離膜10’を構成する層が積層された原料積層シートを用いて製造することができる。具体的には、原料積層シートから、分離膜10’を二つ折りしたときに折目部分となる領域において、ゲル層15等の非分離機能領域18には存在しない層を切り出し、非分離機能領域18に充填材19となる材料を設ければよい。リーフ6’は、充填材19となる材料が硬化性樹脂等である場合には、当該材料が硬化する前に、供給側流路部材3を間に介在させた状態で分離膜10’を二つ折りし、上記材料を硬化することによって製造することができる。 The separation membrane 10'can be manufactured, for example, by using a raw material laminated sheet in which layers constituting the separation membrane 10'such as the third porous layer 13, the first porous layer 11, and the gel layer 15 are laminated. Specifically, a layer that does not exist in the non-separable functional region 18 such as the gel layer 15 is cut out from the raw material laminated sheet in the region that becomes the crease portion when the separation membrane 10'is folded in half, and the non-separable functional region. A material to be a filler 19 may be provided in 18. When the material to be the filler 19 is a curable resin or the like, the leaf 6'is provided with a separation membrane 10'with a supply-side flow path member 3 interposed therebetween before the material is cured. It can be manufactured by folding and curing the above material.
 図7に示す分離膜10’では、第3多孔層13、第1多孔層11、ゲル層15、第2多孔層12、及び第4多孔層14をこの順に有し、非分離機能領域18は、第3多孔層13及び第4多孔層14が存在し、第1多孔層11、ゲル層15、及び第2多孔層12が存在していない。非分離機能領域18には、第1多孔層11、ゲル層15、及び第2多孔層12が存在していない部分の少なくとも一部を埋め、且つ、第3多孔層13の少なくとも一部に浸透するように、充填材19が設けられている。充填材19は、第1多孔層11、ゲル層15、及び第2多孔層12が存在していない部分全体を埋めるように設けられることが好ましい。分離膜10’は、第3多孔層13の第1多孔層11とは反対側の表面において、非分離機能領域18が形成された範囲の少なくとも一部を覆うように配置された第2カバー部36を有する。 The separation membrane 10'shown in FIG. 7 has a third porous layer 13, a first porous layer 11, a gel layer 15, a second porous layer 12, and a fourth porous layer 14 in this order, and the non-separable functional region 18 is provided. , The third porous layer 13 and the fourth porous layer 14 are present, and the first porous layer 11, the gel layer 15, and the second porous layer 12 are not present. The non-separable functional region 18 fills at least a part of the portion where the first porous layer 11, the gel layer 15, and the second porous layer 12 do not exist, and penetrates at least a part of the third porous layer 13. The filler 19 is provided so as to do so. The filler 19 is preferably provided so as to fill the entire portion where the first porous layer 11, the gel layer 15, and the second porous layer 12 do not exist. The separation membrane 10'is a second cover portion arranged so as to cover at least a part of the range in which the non-separable functional region 18 is formed on the surface of the third porous layer 13 opposite to the first porous layer 11. Has 36.
 図8に示すリーフ6’は、二つ折りした分離膜10’の間に供給側流路部材3が介在している。リーフ6’では、折目部分に設けられた充填材19によって、対向する分離膜10’の内側表面どうしが接着され、分離膜10’の二つ折りした状態を固定することができる。リーフ6’では、充填材19は、分離膜10’を構成する層、透過側流路部材4、及び供給側流路部材3に浸透した状態で存在している。供給側流路部材3の折目部分に対向する端部には、第1カバー部が設けられていてもよく、この場合、充填材19は第1カバー部に浸透していてもよく、供給側流路部材3に浸透していなくてもよい。 In the leaf 6'shown in FIG. 8, the supply side flow path member 3 is interposed between the separated membranes 10'folded in half. In the leaf 6', the inner surfaces of the opposing separation membranes 10'are adhered to each other by the filler 19 provided at the fold portion, and the folded state of the separation membrane 10'can be fixed. In the leaf 6', the filler 19 exists in a state of being infiltrated into the layer constituting the separation membrane 10', the permeation side flow path member 4, and the supply side flow path member 3. A first cover portion may be provided at an end portion of the supply-side flow path member 3 facing the crease portion, and in this case, the filler 19 may permeate the first cover portion and supply. It does not have to penetrate the side flow path member 3.
 (ゲル層)
 ゲル層は、特定の流体成分を選択的に透過させるための分離機能層として用いられ、特に特定のガス成分を選択的に透過させるための分離機能層であることが好ましい。ゲル層は親水性樹脂を含み、さらに、アルカリ金属化合物、アミノ酸、アミノスルホン酸、及び/又は、アミノホスホン酸を含むことが好ましい。ゲル層は、さらに、特定のガス成分とアルカリ金属化合物との反応速度を向上させるための水和反応触媒を含んでいてもよく、第1多孔層及び/又は第2多孔層に対する濡れ性を調整するための界面活性剤を含んでいてもよい。
(Gel layer)
The gel layer is used as a separation functional layer for selectively permeating a specific fluid component, and is particularly preferably a separation functional layer for selectively permeating a specific gas component. The gel layer contains a hydrophilic resin, and more preferably contains an alkali metal compound, an amino acid, an aminosulfonic acid, and / or an aminophosphonic acid. The gel layer may further contain a hydration reaction catalyst for improving the reaction rate of the specific gas component and the alkali metal compound, and adjusts the wettability with respect to the first porous layer and / or the second porous layer. It may contain a surfactant for this purpose.
 親水性樹脂は、水酸基やイオン交換基等の親水性基を有する樹脂であり、親水性樹脂の分子鎖同士が架橋により網目構造を有することで高い保水性を示す架橋型親水性樹脂を含むことがより好ましい。親水性基は、ゲル層に含まれるアルカリ金属化合物等によって中和されて塩の形態となっていてもよい。 The hydrophilic resin is a resin having a hydrophilic group such as a hydroxyl group or an ion exchange group, and contains a crosslinked hydrophilic resin that exhibits high water retention by having a network structure by cross-linking the molecular chains of the hydrophilic resin. Is more preferable. The hydrophilic group may be neutralized by an alkali metal compound or the like contained in the gel layer to form a salt.
 親水性樹脂を形成する重合体は、例えば、アクリル酸アルキルエステル、メタクリル酸アルキルエステル、脂肪酸のビニルエステル、又はそれらの誘導体に由来する構成単位を有していることが好ましい。このような親水性を示す重合体としては、アクリル酸、イタコン酸、クロトン酸、メタクリル酸、酢酸ビニル等の単量体を重合してなる重合体が挙げられ、具体的には、イオン交換基としてカルボキシル基を有するポリアクリル酸系樹脂、ポリイタコン酸系樹脂、ポリクロトン酸系樹脂、ポリメタクリル酸系樹脂等、水酸基を有するポリビニルアルコール系樹脂等、それらの共重合体であるアクリル酸-ビニルアルコール共重合体系樹脂、アクリル酸-メタクリル酸共重合体系樹脂、アクリル酸-メタクリル酸メチル共重合体系樹脂、メタクリル酸-メタクリル酸メチル共重合体系樹脂等が挙げられる。この中でも、アクリル酸の重合体であるポリアクリル酸系樹脂、メタクリル酸の重合体であるポリメタクリル酸系樹脂、酢酸ビニルの重合体を鹸化したポリビニルアルコール系樹脂、アクリル酸メチルと酢酸ビニルとの共重合体を鹸化したアクリル酸塩-ビニルアルコール共重合体系樹脂、アクリル酸とメタクリル酸との共重合体であるアクリル酸-メタクリル酸共重合体系樹脂がより好ましく、ポリアクリル酸、アクリル酸塩-ビニルアルコール共重合体系樹脂がさらに好ましい。 The polymer forming the hydrophilic resin preferably has, for example, an acrylic acid alkyl ester, a methacrylic acid alkyl ester, a vinyl ester of a fatty acid, or a structural unit derived from a derivative thereof. Examples of the polymer exhibiting such hydrophilicity include a polymer obtained by polymerizing a monomer such as acrylic acid, itaconic acid, crotonic acid, methacrylic acid, and vinyl acetate, and specifically, an ion exchange group. Acrylic acid-vinyl alcohol, which is a copolymer of polyacrylic acid-based resin having a carboxyl group, polyitaconic acid-based resin, polycrotonic acid-based resin, polymethacrylic acid-based resin, etc., polyvinyl alcohol-based resin having a hydroxyl group, etc. Examples thereof include a polymerization system resin, an acrylic acid-methacrylic acid copolymer system resin, an acrylic acid-methyl methacrylate copolymer system resin, and a methacrylic acid-methyl methacrylate copolymer system resin. Among these, polyacrylic acid-based resin which is a polymer of acrylic acid, polymethacrylic acid-based resin which is a polymer of methacrylic acid, polyvinyl alcohol-based resin which is a saponified polymer of vinyl acetate, methyl acrylate and vinyl acetate. Acrylate-vinyl alcohol copolymer resin obtained by saponifying a copolymer, acrylic acid-methacrylic acid copolymer resin, which is a copolymer of acrylic acid and methacrylic acid, is more preferable, and polyacrylic acid and acrylate-. Vinyl alcohol copolymer-based resins are even more preferred.
 架橋型親水性樹脂は、親水性基を有する重合体を架橋剤と反応させて調製してもよいし、親水性基を有する重合体の原料となる単量体と架橋性単量体とを共重合させて調製してもよい。架橋剤又は架橋性単量体としては特に限定されず、従来公知の架橋剤又は架橋性単量体を使用することができる。 The cross-linked hydrophilic resin may be prepared by reacting a polymer having a hydrophilic group with a cross-linking agent, or a monomer as a raw material of the polymer having a hydrophilic group and a cross-linking monomer may be prepared. It may be prepared by copolymerization. The cross-linking agent or cross-linking monomer is not particularly limited, and conventionally known cross-linking agents or cross-linking monomers can be used.
 架橋剤としては、例えば、エポキシ架橋剤、多価グリシジルエーテル、多価アルコール、多価イソシアネート、多価アジリジン、ハロエポキシ化合物、多価アルデヒド、多価アミン、有機金属系架橋剤、金属系架橋剤等の、従来公知の架橋剤が挙げられる。架橋性単量体としては、例えば、ジビニルベンゼン、テトラアリルオキシエタン、ジアリルアミン、ジアリルエーテル、N,N’-メチレンビスアクリルアミド、トリメチロールプロパントリアリルエーテル、ペンタエリスリトールテトラアリルエーテル等の、従来公知の架橋性単量体が挙げられる。架橋方法としては、例えば、熱架橋、紫外線架橋、電子線架橋、放射線架橋、光架橋等の方法や、特開2003-268009号公報、特開平7-88171号公報に記載されている方法等、従来公知の手法を使用することができる。 Examples of the cross-linking agent include epoxy cross-linking agents, polyhydric glycidyl ethers, polyhydric alcohols, poly-isocyanates, poly-aziridines, haloepoxy compounds, poly-aldehydes, poly-amines, organic metal-based cross-linking agents, metal-based cross-linking agents and the like. Examples thereof include conventionally known cross-linking agents. As the crosslinkable monomer, for example, divinylbenzene, tetraallyloxyethane, diallylamine, diallyl ether, N, N'-methylenebisacrylamide, trimethylolpropanetriallyl ether, pentaerythritol tetraallyl ether and the like are conventionally known. Examples include crosslinkable monomers. Examples of the cross-linking method include methods such as thermal cross-linking, ultraviolet cross-linking, electron beam cross-linking, radiation cross-linking, and photo-crosslinking, and methods described in JP-A-2003-26809 and JP-A-7-88171. Conventionally known methods can be used.
 アルカリ金属化合物は、ゲル層内に溶解した特定のガス成分と可逆的に反応することができる。これにより、ゲル層における特定のガス成分の選択透過性を向上できる。ゲル層に含まれるアルカリ金属化合物は、1種であってもよく2種以上であってもよい。アルカリ金属化合物は、親水性樹脂の親水性基、アミノ酸のカルボキシ基、アミノスルホン酸のスルホキシル基、又は、アミノホスホン酸のホスホキシル基を中和して、塩の形態とすることもできる。 The alkali metal compound can reversibly react with a specific gas component dissolved in the gel layer. Thereby, the selective permeability of a specific gas component in the gel layer can be improved. The alkali metal compound contained in the gel layer may be one kind or two or more kinds. The alkali metal compound can also be in the form of a salt by neutralizing the hydrophilic group of the hydrophilic resin, the carboxy group of the amino acid, the sulfoxyl group of the aminosulfonic acid, or the phosphoxyl group of the aminophosphonic acid.
 アルカリ金属化合物としては、アルカリ金属炭酸塩、アルカリ金属重炭酸塩、アルカリ金属水酸化物(例えば、国際公開公報2016/024523号パンフレット等に記載)等が挙げられる。上記以外にも、クエン酸等の酸性化合物と塩を形成している化合物を使用してもよい。 Examples of the alkali metal compound include alkali metal carbonates, alkali metal bicarbonates, alkali metal hydroxides (for example, described in the pamphlet of International Publication No. 2016/0245223) and the like. In addition to the above, a compound forming a salt with an acidic compound such as citric acid may be used.
 アミノ酸、アミノスルホン酸、及び、アミノホスホン酸は、ゲル層の保水性を向上することができる。アミノ酸、アミノスルホン酸、及び、アミノホスホン酸は、アルカリ金属化合物と組み合わせて用いることにより、ゲル層において、分離膜を透過する特定のガス成分との親和性を向上することができると考えられる。アミノ酸が有するカルボキシ基、アミノスルホン酸が有するスルホキシル基、及び、アミノホスホン酸が有するホスホキシル基は、ゲル層に含まれるアルカリ金属化合物、アミン、又はアンモニウム化合物等によって中和されて塩の形態となっていてもよい。これにより、ゲル層における特定のガス成分の選択透過性を向上させることができる。ゲル層に含まれるアミノ酸、アミノスルホン酸、及び、アミノホスホン酸は、1種であってもよく2種以上であってもよい。アミノ酸はカルボキシ基以外の酸性解離性基を有していてもよい。アミノスルホン酸基はスルホキシル基以外の酸性解離性基を有していてもよい。アミノホスホン酸基はホスホキシル基以外の酸性解離性基を有していてもよい。これらの酸性解離性基は、アルカリ金属化合物、アミン、又はアンモニウム化合物等によって中和されて塩の形態となっていてもよい。ここでいう酸性解離性基とは、例えばフェノール性水酸基、ヒドロキサム酸基(N-ヒドロキシカルボン酸アミド)等である。 Amino acids, aminosulfonic acids, and aminophosphonic acids can improve the water retention of the gel layer. It is considered that amino acids, aminosulfonic acids, and aminophosphonic acids can be used in combination with an alkali metal compound to improve the affinity with a specific gas component that permeates the separation membrane in the gel layer. The carboxy group of amino acids, the sulfoxyl group of aminosulfonic acid, and the phosphoxil group of aminophosphonic acid are neutralized by alkali metal compounds, amines, ammonium compounds, etc. contained in the gel layer to form salts. May be. This makes it possible to improve the selective permeability of a specific gas component in the gel layer. The amino acid, aminosulfonic acid, and aminophosphonic acid contained in the gel layer may be one kind or two or more kinds. The amino acid may have an acidic dissociative group other than the carboxy group. The aminosulfonic acid group may have an acidic dissociative group other than the sulfoxyl group. The aminophosphonic acid group may have an acidic dissociative group other than the phosphoxyl group. These acidic dissociable groups may be neutralized with an alkali metal compound, an amine, an ammonium compound, or the like to form a salt. The acidic dissociable group referred to here is, for example, a phenolic hydroxyl group, a hydroxamic acid group (N-hydroxycarboxylic acid amide), or the like.
 アミノ酸、アミノスルホン酸、及び、アミノホスホン酸としては、特に限定されない。アミノ酸、アミノスルホン酸、及び、アミノホスホン酸としては、例えば、グリシン、N,N-ジメチルグリシン、アラニン、セリン、プロリン、タウリン、ジアミノプロピオン酸、2-アミノプロピオン酸、2-アミノイソ酪酸、3,4-ジヒドロキシフェニルアラニン、サルコシン、3-(メチルアミノ)プロピオン酸、N-(2-アミノエチル)グリシン、N-(3-アミノプロピル)グリシン、N-(4-シアノフェニル)グリシン、ジメチルグリシン、馬尿酸、4-アミノ馬尿酸、N-(4-ヒドロキシフェニル)グリシン、ヒダントイン酸、イミノ二酢酸、イミノジプロピオン酸、N-イソバレリルグリシン、フェナセツル酸、N-チグロイルグリシン、アセツル酸、アラニルグリシルグリシン、ベンゾイルグリシルグリシン、エチレンジアミン二酢酸、エチレンジアミン二プロピオン酸、2-アリルグリシン、N-β-アラニルグリシン、N-アセチル-β-アラニン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン、グルタミン酸、ヒスチジン、イソロイシン、ロイシン、リシン、メチオニン、フェニルアラニン、トレオニン、トリプトファン、チロシン、バリン、オルニチン、シトルリン、シスチン、ピペコリン酸、及びこれらの塩からなる群より選択される少なくとも1種であることが好ましい。アミノ酸、アミノスルホン酸、及び、アミノホスホン酸は、グリシン、N,N-ジメチルグリシン、アラニン、セリン、プロリン、タウリン、ジアミノプロピオン酸、2-アミノプロピオン酸、2-アミノイソ酪酸、3,4-ジヒドロキシフェニルアラニン、サルコシン、イミノ二酢酸、及びこれらの塩からなる群より選択される少なくとも1種であることが好ましい。 The amino acid, aminosulfonic acid, and aminophosphonic acid are not particularly limited. Examples of amino acids, aminosulfonic acids, and aminophosphonic acids include glycine, N, N-dimethylglycine, alanine, serine, proline, taurine, diaminopropionic acid, 2-aminopropionic acid, 2-aminoisobutyric acid, 3, 4-Dihydroxyphenylalanine, sarcosin, 3- (methylamino) propionic acid, N- (2-aminoethyl) glycine, N- (3-aminopropyl) glycine, N- (4-cyanophenyl) glycine, dimethylglycine, horse Uric acid, 4-amino horse uric acid, N- (4-hydroxyphenyl) glycine, hydantonic acid, iminodiacetic acid, iminodipropionic acid, N-isovalerylglycine, phenaceturic acid, N-tigroylglycine, acetulic acid, alani Luglycylglycine, benzoylglycylglycine, ethylenediaminediacetic acid, ethylenediaminedipropionic acid, 2-allylglycine, N-β-alanylglycine, N-acetyl-β-alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, It is preferably at least one selected from the group consisting of glutamic acid, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, tyrosine, valine, ornithine, citrulin, cystine, pipecolinic acid, and salts thereof. .. Amino acids, aminosulfonic acids, and aminophosphonic acids include glycine, N, N-dimethylglycine, alanine, serine, proline, taurine, diaminopropionic acid, 2-aminopropionic acid, 2-aminoisobutyric acid, 3,4-dihydroxy. It is preferably at least one selected from the group consisting of phenylalanine, sarcosine, iminodiacetic acid, and salts thereof.
 特定のガス成分が酸性ガスである場合の水和反応触媒としては、オキソ酸化合物が挙げられる。オキソ酸化合物としては、14族元素、15族元素、及び16族元素からなる群より選択される少なくとも1つの元素のオキソ酸化合物であることが好ましく、亜テルル酸化合物、亜セレン酸化合物、亜ヒ酸化合物、及びオルトケイ酸化合物からなる群より選択される少なくとも1つであることがさらに好ましい。ゲル層は、オキソ酸化合物を1種又は2種以上含むことができる。 An oxoacid compound can be mentioned as a hydration reaction catalyst when a specific gas component is an acid gas. The oxo acid compound is preferably an oxo acid compound of at least one element selected from the group consisting of a group 14 element, a group 15 element, and a group 16 element, and is preferably a tereric acid compound, a selenic acid compound, and a sub. It is more preferable that the compound is at least one selected from the group consisting of the hydric acid compound and the orthosilicic acid compound. The gel layer may contain one or more oxoacid compounds.
 (第1多孔層及び第2多孔層)
 第1多孔層及び第2多孔層は、一方がゲル層を支持するための支持層であり、他方がゲル層を保護するための保護層であることができる。第1多孔層及び第2多孔層は、ゲル層に直接接していることができる。第1多孔層及び第2多孔層のうちの一方は、ゲル層を形成するための親水性樹脂を含む塗布液が塗布される層であり、他方は、一方の多孔層上に塗布液の塗布によって形成された塗布層を被覆保護する層とすることができる。第1多孔層及び第2多孔層は、分離膜においてゲル層に供給された原料ガス又は原料ガスに含まれる特定のガス成分の拡散抵抗とならないように、ガス透過性の高い多孔性を有する。
(1st porous layer and 2nd porous layer)
One of the first porous layer and the second porous layer can be a support layer for supporting the gel layer, and the other can be a protective layer for protecting the gel layer. The first porous layer and the second porous layer can be in direct contact with the gel layer. One of the first porous layer and the second porous layer is a layer to which a coating liquid containing a hydrophilic resin for forming a gel layer is applied, and the other is a layer in which the coating liquid is applied onto one of the porous layers. The coating layer formed by the above can be used as a layer for covering and protecting. The first porous layer and the second porous layer have highly porous gas permeability so as not to cause diffusion resistance of the raw material gas supplied to the gel layer in the separation membrane or a specific gas component contained in the raw material gas.
 第1多孔層及び第2多孔層は、それぞれ樹脂材料又は無機材料によって形成されていることが好ましい。第1多孔層及び第2多孔層を構成する樹脂材料としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂;ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)、ポリフッ化ビニリデン(PVDF)等のフッ素含有樹脂;ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート等のポリエステル樹脂;ポリスチレン(PS)、ポリエーテルスルホン(PES)、ポリフェニレンサルファイド(PPS)、ポリスルホン(PSF)、ポリアクリロニトリル(PAN)、ポリフェニレンオキシド(PPO)、ポリアミド(PA)、ポリイミド(PI)、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン(PEEK)、高分子量ポリエステル、耐熱性ポリアミド、アラミド、ポリカーボネート、これらの樹脂材料のうちの2種以上の混合物等が挙げられる。これらの中でも、撥水性及び耐熱性の点から、ポリオレフィン系樹脂及びフッ素含有樹脂のうちの少なくとも一方を含むことが好ましく、ポリエチレン、ポリプロピレン、及びポリテトラフルオロエチレンのうちの1種以上を含むことがより好ましい。第1多孔層及び第2多孔層を構成する樹脂材料は互いに同じであってもよく、互いに異なっていてもよい。第1多孔層及び第2多孔層を構成する無機材料としては、金属、ガラス、セラミックス等が挙げられる。 It is preferable that the first porous layer and the second porous layer are each formed of a resin material or an inorganic material. Examples of the resin material constituting the first porous layer and the second porous layer include polyolefin resins such as polyethylene (PE) and polypropylene (PP); polytetrafluoroethylene (PTFE), polyvinyl fluoride (PVF), and polyfluor. Fluorine-containing resin such as vinylidene (PVDF); polyester resin such as polyethylene terephthalate (PET) and polyethylene naphthalate; polystyrene (PS), polyethersulfone (PES), polyphenylene sulfide (PPS), polysulfone (PSF), polyacrylonitrile (PAN), polyphenylene oxide (PPO), polyamide (PA), polyimide (PI), polyetherimide (PEI), polyetheretherketone (PEEK), high molecular weight polyester, heat resistant polyamide, aramid, polycarbonate, resins thereof Examples thereof include a mixture of two or more of the materials. Among these, from the viewpoint of water repellency and heat resistance, it is preferable to contain at least one of a polyolefin resin and a fluorine-containing resin, and one or more of polyethylene, polypropylene, and polytetrafluoroethylene may be contained. More preferred. The resin materials constituting the first porous layer and the second porous layer may be the same as each other or may be different from each other. Examples of the inorganic material constituting the first porous layer and the second porous layer include metal, glass, and ceramics.
 第1多孔層及び第2多孔層は、多孔質体であれば特に限定されない。第1多孔層及び第2多孔層はそれぞれ独立して、例えば、多孔膜、不織布、織布、発泡体、メッシュ、ネット等のシート状の多孔質体であってもよい。第1多孔層及び第2多孔層は、特定のガス成分の拡散抵抗となることを抑制しつつゲル層の支持層又は保護層として好適に用いられるという観点から、多孔膜であることが好ましい。多孔膜とは、多孔性の樹脂フィルムをいう。多孔膜としては、延伸法、相分離法、自己組織化、又はクレージングで得られた多孔膜が挙げられる。第1多孔層及び第2多孔層は、互いに同じ多孔質体であってもよく、互いに異なる多孔質体であってもよい。 The first porous layer and the second porous layer are not particularly limited as long as they are porous bodies. The first porous layer and the second porous layer may be independently, for example, a porous body in the form of a sheet such as a porous membrane, a non-woven fabric, a woven fabric, a foam, a mesh, or a net. The first porous layer and the second porous layer are preferably porous films from the viewpoint of being suitably used as a support layer or a protective layer for the gel layer while suppressing the diffusion resistance of a specific gas component. The porous film means a porous resin film. Examples of the porous membrane include a porous membrane obtained by a stretching method, a phase separation method, self-assembly, or crazing. The first porous layer and the second porous layer may be the same porous body or different porous bodies from each other.
 (第3多孔層及び第4多孔層)
 第3多孔層は、第1多孔層のゲル層側とは反対側に設けることができる。第3多孔層は、第1多孔層11の支持層又は保護層としての機能を補強するための補強層として用いることができる。第4多孔層は、第2多孔層のゲル層側とは反対側に設けることができる。第4多孔層は、第2多孔層の保護層又は支持層としての機能を補強するための補強層として用いることができる。
(Third porous layer and fourth porous layer)
The third porous layer can be provided on the side opposite to the gel layer side of the first porous layer. The third porous layer can be used as a reinforcing layer for reinforcing the function of the first porous layer 11 as a support layer or a protective layer. The fourth porous layer can be provided on the side opposite to the gel layer side of the second porous layer. The fourth porous layer can be used as a reinforcing layer for reinforcing the function of the second porous layer as a protective layer or a support layer.
 第3多孔層及び/又は第4多孔層を設けることにより、原料ガス中の特定のガス成分を選択的に透過させる際に分離膜にかかる圧力負荷に耐え得る強度を追加的に付与することができる。 By providing the third porous layer and / or the fourth porous layer, it is possible to additionally impart strength that can withstand the pressure load applied to the separation membrane when a specific gas component in the raw material gas is selectively permeated. can.
 第3多孔層及び第4多孔層は、それぞれ独立して、樹脂材料又は無機材料によって形成されていることが好ましい。第3多孔層及び第4多孔層を構成する樹脂材料又は無機材料としては、第1多孔層及び第2多孔層を形成するための樹脂材料又は無機材料として説明したものを挙げることができる。 It is preferable that the third porous layer and the fourth porous layer are independently formed of a resin material or an inorganic material. Examples of the resin material or the inorganic material constituting the third porous layer and the fourth porous layer include those described as the resin material or the inorganic material for forming the first porous layer and the second porous layer.
 第3多孔層及び第4多孔層は、それぞれ独立して、多孔膜、不織布、織布、発泡体、ネット等の形態であってもよく、不織布であることが好ましい。不織布としては、例えば、スパンボンド不織布、メルトブロー不織布、エアレイド不織布、スパンレース不織布、カード不織布等が挙げられる。 The third porous layer and the fourth porous layer may be independently in the form of a porous membrane, a non-woven fabric, a woven fabric, a foam, a net, or the like, and are preferably non-woven fabrics. Examples of the non-woven fabric include spunbond non-woven fabric, melt blow non-woven fabric, air-laid non-woven fabric, spunlace non-woven fabric, and card non-woven fabric.
 (中空管)
 中空管5は、分離膜10を透過した透過ガスを収集して、スパイラル型の分離膜エレメント1から排出するための導管である。中空管5は、分離膜エレメント1が設けられる分離装置の使用温度条件に耐え得る耐熱性を有することが好ましい。中空管5は、その周囲に巻回される積層体7の巻き付けに耐え得る機械的強度を有する材料であることが好ましい。中空管5は、図1及び図2に示すように、その外周面に透過側流路部材4で形成される透過ガスの流路空間と中空管5内部の中空空間とを連通させる複数の孔50を有している。
(Hollow tube)
The hollow tube 5 is a conduit for collecting the permeated gas that has passed through the separation membrane 10 and discharging it from the spiral type separation membrane element 1. The hollow tube 5 preferably has heat resistance that can withstand the operating temperature conditions of the separation device provided with the separation membrane element 1. The hollow tube 5 is preferably a material having mechanical strength that can withstand the winding of the laminated body 7 wound around the hollow tube 5. As shown in FIGS. 1 and 2, the hollow tube 5 has a plurality of spaces in which the permeation gas flow path space formed by the permeation side flow path member 4 and the hollow space inside the hollow tube 5 are communicated with each other on the outer peripheral surface thereof. Has a hole 50 of.
 (供給側流路部材及び透過側流路部材)
 供給側流路部材3及び透過側流路部材4は、原料流体及び分離膜10を透過した透過流体の乱流(膜面の表面更新)を促進して、原料流体中の透過流体の膜透過速度を増加させる機能と、供給される原料流体及び分離膜10を透過した透過流体の圧力損失をできるだけ小さくする機能とを有していることが好ましい。供給側流路部材3及び透過側流路部材4は、原料流体及び透過流体の流路を形成するスペーサとしての機能と、原料流体及び透過流体に乱流を生じさせる機能とを備えていることが好ましいことから、網目状(ネット状、メッシュ状等)のものが好適に用いられる。網目の単位格子の形状は、網目の形状により流体の流路が変わることから、目的に応じて、例えば、正方形、長方形、菱形、平行四辺形等の形状から選択されることが好ましい。供給側流路部材3及び透過側流路部材4の材質としては、特に限定されないが、分離膜エレメント1が設けられる分離装置の運転温度条件に耐え得る耐熱性を有する材料が好ましい。供給側流路部材3及び透過側流路部材4は、それぞれ独立して、単層構造であってもよく多層構造であってもよい。多層構造を有する供給側流路部材3及び透過側流路部材4は、1種類以上の網目状の層を積層した構造を有することが好ましく、積層される網目状の層は互いに異なる網目構造を有していてもよい。
(Supply side flow path member and transmission side flow path member)
The supply-side flow path member 3 and the permeation-side flow path member 4 promote turbulence (surface renewal of the film surface) of the permeation fluid that has permeated the raw material fluid and the separation film 10, and the permeation of the permeation fluid in the raw material fluid is permeated. It is preferable to have a function of increasing the speed and a function of minimizing the pressure loss of the supplied raw material fluid and the permeation fluid that has passed through the separation membrane 10. The supply side flow path member 3 and the permeation side flow path member 4 have a function as a spacer for forming a flow path of the raw material fluid and the permeation fluid, and a function of causing turbulence in the raw material fluid and the permeation fluid. Therefore, a mesh-like (net-like, mesh-like, etc.) one is preferably used. Since the flow path of the fluid changes depending on the shape of the mesh, the shape of the unit cell of the mesh is preferably selected from, for example, a square, a rectangle, a rhombus, a parallelogram, and the like, depending on the purpose. The material of the supply side flow path member 3 and the transmission side flow path member 4 is not particularly limited, but a material having heat resistance that can withstand the operating temperature conditions of the separation device provided with the separation membrane element 1 is preferable. The supply-side flow path member 3 and the transmission-side flow path member 4 may independently have a single-layer structure or a multi-layer structure. The supply-side flow path member 3 and the transmission-side flow path member 4 having a multi-layer structure preferably have a structure in which one or more types of mesh-like layers are laminated, and the laminated mesh-like layers have different mesh structures from each other. You may have.
 (第1カバー部及び第2カバー部)
 第1カバー部及び第2カバー部がテープである場合、テープの基材となるフィルムとしては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂;ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)、ポリフッ化ビニリデン(PVDF)等のフッ素含有樹脂;ポリスチレン(PS)、ポリエーテルスルホン(PES)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリイミド(PI)、ポリシクロへキシレンジメチレンテレフタレート(PCT)等が挙げられる。テープの粘着剤層は、公知の粘着剤を用いて形成することができる。
(1st cover part and 2nd cover part)
When the first cover portion and the second cover portion are tapes, the film used as the base material of the tape is a polyolefin resin such as polyethylene (PE) or polypropylene (PP); polytetrafluoroethylene (PTFE), polyfluoride. Fluorine-containing resins such as vinyl (PVF) and polyvinylidene fluoride (PVDF); to polystyrene (PS), polyethersulfone (PES), polyphenylene sulfide (PPS), polyetheretherketone (PEEK), polyimide (PI), polycyclo Examples thereof include xylenedimethylene terephthalate (PCT). The pressure-sensitive adhesive layer of the tape can be formed by using a known pressure-sensitive adhesive.
 第1カバー部及び第2カバー部が樹脂コーティングである場合、樹脂コーティングを形成する樹脂としては、例えば、エポキシ系樹脂、塩化ビニル共重合体系樹脂、塩化ビニル-酢酸ビニル共重合体系樹脂、塩化ビニル-塩化ビニリデン共重合体系樹脂、塩化ビニル-アクリロニトリル共重合体系樹脂、ブタジエン-アクリロニトリル共重合体系樹脂、ポリアミド系樹脂、ポリビニルブチラール系樹脂、ポリエステル系樹脂、セルロース誘導体(ニトロセルロース等)系樹脂、スチレン-ブタジエン共重合体系樹脂、各種の合成ゴム系樹脂、フェノール系樹脂、尿素系樹脂、メラミン系樹脂、フェノキシ系樹脂、シリコーン系樹脂、尿素ホルムアミド系樹脂等が挙げられる。樹脂コーティングを形成する樹脂は、公知の又は市販されている接着剤を用いてもよい。 When the first cover portion and the second cover portion are resin-coated, the resin forming the resin coating includes, for example, an epoxy resin, a vinyl chloride copolymer resin, a vinyl chloride-vinyl acetate copolymer resin, and vinyl chloride. -Vinilidene chloride copolymer resin, vinyl chloride-acrylonitrile copolymer resin, butadiene-acrylonitrile copolymer resin, polyamide resin, polyvinyl butyral resin, polyester resin, cellulose derivative (nitrocellulose, etc.) resin, styrene- Examples thereof include butadiene copolymer resin, various synthetic rubber resins, phenol resin, urea resin, melamine resin, phenoxy resin, silicone resin, ureaformamide resin and the like. As the resin forming the resin coating, a known or commercially available adhesive may be used.
 (封止部)
 封止部は、原料流体と透過流体との混合を防止するために設けられる。スパイラル型の分離膜エレメント1では、例えば透過側流路部材4及び分離膜10、又は、供給側流路部材3及び分離膜10に、封止材料が浸透して硬化することにより形成することができる。封止材料としては、一般に接着剤として用いられる材料を用いることができる。接着剤としては、熱硬化性接着剤、熱融着性接着剤、活性エネルギー線硬化性接着剤等が挙げられる。
(Sealing part)
The sealing portion is provided to prevent mixing of the raw material fluid and the permeated fluid. The spiral type separation membrane element 1 can be formed by, for example, permeating the sealing material into the permeation side flow path member 4 and the separation membrane 10 or the supply side flow path member 3 and the separation membrane 10 and hardening. can. As the sealing material, a material generally used as an adhesive can be used. Examples of the adhesive include a thermosetting adhesive, a thermosetting adhesive, an active energy ray-curable adhesive and the like.
 封止部に用いられる封止材料に含まれる樹脂としては、例えば、エポキシ系樹脂、ウレタン系樹脂、シリコーン系樹脂、塩化ビニル共重合体系樹脂、塩化ビニル-酢酸ビニル共重合体系樹脂、塩化ビニル-塩化ビニリデン共重合体系樹脂、塩化ビニル-アクリロニトリル共重合体系樹脂、ブタジエン-アクリロニトリル共重合体系樹脂、ポリアミド系樹脂、ポリビニルブチラール系樹脂、ポリエステル系樹脂、セルロース誘導体(ニトロセルロース等)系樹脂、スチレン-ブタジエン共重合体系樹脂、各種の合成ゴム系(エラストマー系)樹脂、フェノール系樹脂、尿素系樹脂、メラミン系樹脂、フェノキシ系樹脂、尿素ホルムアミド系樹脂等が挙げられる。これらの中でも、封止材料は、エポキシ系樹脂(エポキシ系接着剤用樹脂)の接着剤であることが好ましい。 Examples of the resin contained in the sealing material used for the sealing portion include epoxy-based resin, urethane-based resin, silicone-based resin, vinyl chloride copolymer resin, vinyl chloride-vinyl acetate copolymer resin, and vinyl chloride-. Vinylidene chloride copolymer resin, vinyl chloride-acrylonitrile copolymer resin, butadiene-acrylonitrile copolymer resin, polyamide resin, polyvinyl butyral resin, polyester resin, cellulose derivative (nitrocellulose etc.) resin, styrene-butadiene Examples thereof include copolymerization type resin, various synthetic rubber type (epolymer type) resins, phenol type resin, urea type resin, melamine type resin, phenoxy type resin, ureaformamide type resin and the like. Among these, the sealing material is preferably an epoxy-based resin (resin for an epoxy-based adhesive).
 以下、実施例及び比較例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these examples.
 〔実施例1〕
 (分離膜(1)の作成)
 媒質として水188質量部を、親水性樹脂として架橋ポリアクリル酸(住友精化社製「アクペックHV-501」)4質量部及び非架橋ポリアクリル酸(住友精化社製「アクパーナAP-40F」、40%Na鹸化)0.8質量部を、中和剤として水酸化セシウム一水和物10.5質量部を仕込み、撹拌しながら中和反応を行った。その後、COと可逆的に反応するキャリアとして炭酸セシウム10質量部を、水和反応触媒として亜テルル酸カリウム1.5質量部を、添加剤として界面活性剤(AGCセイミケミカル社製「サーフロンS-242」)1.2質量部を加えて混合し、塗工液を得た。
[Example 1]
(Preparation of separation membrane (1))
188 parts by mass of water as a medium, 4 parts by mass of crosslinked polyacrylic acid ("Acpec HV-501" manufactured by Sumitomo Seika Chemical Co., Ltd.) and non-crosslinked polyacrylic acid acid ("Acpana AP-40F" manufactured by Sumitomo Seika Chemical Co., Ltd.) as a hydrophilic resin. , 40% Na saponification) 0.8 parts by mass was charged with 10.5 parts by mass of cesium hydroxide monohydrate as a neutralizing agent, and the neutralization reaction was carried out with stirring. Then, 10 parts by mass of cesium carbonate as a carrier that reversibly reacts with CO 2 , 1.5 parts by mass of potassium phosphite as a hydration reaction catalyst, and a surfactant as an additive (“Surflon S” manufactured by AGC Seimi Chemical Co., Ltd. -242 ") 1.2 parts by mass was added and mixed to obtain a coating liquid.
 第1多孔層としての疎水性PTFE多孔膜(住友電工ファインポリマー社製「ポアフロンHP-010-50」、膜厚50μm、平均孔径0.1μm)と、第3多孔層としてのPPS製不織布(廣瀬製紙社製「PS0080」)とが積層された積層シートを用意した。この積層シートの疎水性PTFE多孔膜側に、上記で得た塗工液を塗布した後、その上に第2多孔層としての疎水性PTFE多孔膜(同上)を重ね、塗布後の疎水性PTFE多孔膜を温度120℃程度で5分間程度乾燥させて、第3多孔層/第1多孔層/ゲル層/第2多孔層の層構造を備える分離膜のシート原料を作製した。 Hydrophobic PTFE porous membrane as the first porous layer (“Poaflon HP-010-50” manufactured by Sumitomo Electric Fine Polymer Co., Ltd., film thickness 50 μm, average pore size 0.1 μm) and PPS non-woven fabric (Hirose) as the third porous layer. A laminated sheet in which "PS0080") manufactured by Paper Manufacturing Co., Ltd. was laminated was prepared. After applying the coating liquid obtained above to the hydrophobic PTFE porous membrane side of this laminated sheet, the hydrophobic PTFE porous membrane (same as above) as the second porous layer is layered on it, and the hydrophobic PTFE after coating is applied. The porous membrane was dried at a temperature of about 120 ° C. for about 5 minutes to prepare a sheet raw material for a separation membrane having a layer structure of a third porous layer / first porous layer / gel layer / second porous layer.
 上記で作製したシート原料を繰り出しながら、幅方向に1050mm、長さ方向に1575mmの大きさに切り出して、切出片を得た。界面活性剤(AGCセイミケミカル社製「サーフロン S-242」)と水とを1:10の割合で混合した界面活性剤水溶液をスポンジに含ませ、切出片の第2多孔層の周縁に塗布し、1時間以上自然乾燥した。自然乾燥後、第2多孔層の周縁に、0.045g/mmの供給量で、二液混合型エポキシ系接着剤(粘度45000cP、アレムコ・プロダクツ社製)を塗布した。塗布した接着剤を介して、切出片と、幅1050mm×長さ1575mmのサイズの第4多孔層((廣瀬製紙社製「PS0080S」(PPS製不織布))とを貼合して、分離膜(1)を作製した。 While feeding out the sheet raw material produced above, it was cut into a size of 1050 mm in the width direction and 1575 mm in the length direction to obtain a cut piece. A sponge is impregnated with an aqueous surfactant solution in which a surfactant (“Surflon S-242” manufactured by AGC Seimi Chemical Co., Ltd.) and water are mixed at a ratio of 1:10, and applied to the periphery of the second porous layer of the cut piece. Then, it was naturally dried for 1 hour or more. After air-drying, a two-component mixed epoxy adhesive (viscosity 45,000 cP, manufactured by Alemco Products) was applied to the peripheral edge of the second porous layer at a supply amount of 0.045 g / mm. The cut piece and the fourth porous layer ((Hirose Paper Co., Ltd. “PS0080S” (PPS non-woven fabric)) having a size of 1050 mm in width × 1575 mm in length are bonded to each other via the applied adhesive to form a separation membrane. (1) was produced.
 水平面に分離膜(1)を広げた後、分離膜(1)を二つ折りになるように折返した。荷重を付与する面が金属製の平面である部材を用意し、当該部材の平面どうしを対向させて、分離膜(1)の折返しの折目となる部分全体を挟んで、1N/cmの荷重を5秒間付与した。その後、分離膜(1)の対向する内側の表面の間の距離(水平面に直交する方向の距離)をノギスで測定し、上記距離のうちの最大距離を決定したところ、17mmであった(表1)。 After spreading the separation membrane (1) on a horizontal plane, the separation membrane (1) was folded back in half. Prepare a member whose surface to which the load is applied is a metal flat surface, face each other on the flat surfaces of the member, and sandwich the entire portion of the separation membrane (1) to be a folded fold, and 1 N / cm 2 . The load was applied for 5 seconds. After that, the distance between the opposite inner surfaces of the separation membrane (1) (distance in the direction orthogonal to the horizontal plane) was measured with a caliper, and the maximum distance among the above distances was determined and found to be 17 mm (Table). 1).
 (分離膜ユニットの作製)
 分離膜(1)の第4多孔層上に、供給側流路部材(SUS製金網、50×50mesh、幅1050mm×長さ813mm)を置き、この供給側流路部材を間に挟み込むように分離膜(1)を二つ折りにして、リーフ(1)を得た。リーフ(1)の一方の面に、折目部分に位置する縁を除く3つの縁部分に、0.045g/mmの供給量で、封止材料としての二液混合型エポキシ系接着剤(粘度45000cP、アレムコ・プロダクツ社製)を塗布した。塗布された接着剤を介して、リーフ(1)と、幅1050mm×長さ813mmのサイズの透過側流路部材(SUS製金網、50×50mesh/100×100mesh/50×50meshの多層構造)とを貼合して分離膜ユニットを得た。同様の操作を繰り返して、20枚の分離膜ユニットを作製した。
(Preparation of separation membrane unit)
A supply-side flow path member (SUS wire mesh, 50 × 50 mesh, width 1050 mm × length 813 mm) is placed on the fourth porous layer of the separation membrane (1), and the supply-side flow path member is sandwiched between them. The membrane (1) was folded in half to obtain a leaf (1). A two-component mixed epoxy adhesive (viscosity) as a sealing material on one surface of the leaf (1) at a supply amount of 0.045 g / mm to the three edge portions excluding the edge located at the crease portion. 45000 cP, manufactured by Alemco Products Co., Ltd.) was applied. Through the applied adhesive, the leaf (1) and the transmission side flow path member (SUS wire mesh, 50 × 50 mesh / 100 × 100 mesh / 50 × 50 mesh multi-layer structure) having a size of 1050 mm in width × 813 mm in length. Was bonded to obtain a separation membrane unit. The same operation was repeated to prepare 20 separation membrane units.
 (積層体の作製)
 積層体の最外層をなす透過側流路部材としてのリードスペーサ(SUS製金網、50×50mesh、幅1050mm×長さ1194mm)の長さ方向の一端に、幅方向に沿って、外周面に複数の孔を有する中空管(SUS製、径25.4mm、長さ1260mm)を、粘着テープにより固定した。リードスペーサのうち、リードスペーサ上に分離膜ユニットが配置されていない部分を中空管に巻回したものの外径は50.8mmであった。続いて、水平面に載置したリードスペーサ上に、1層目の分離膜ユニットの透過側流路部材側が露出するように(リードスペーサと分離膜ユニットのリーフとが対向するように)、リードスペーサ上に分離膜ユニットを配置した。このとき、リードスペーサ上に、分離膜の折目部分が中空管側に位置し、且つ、折目部分の先端部分が中空管の軸方向に平行となるように、1層目の分離膜ユニットを配置した。
(Preparation of laminated body)
A plurality of lead spacers (SUS wire mesh, 50 × 50 mesh, width 1050 mm × length 1194 mm) as a transmission side flow path member forming the outermost layer of the laminated body at one end in the length direction and on the outer peripheral surface along the width direction. A hollow tube (made of SUS, diameter 25.4 mm, length 1260 mm) having a hole in the above was fixed with an adhesive tape. Of the lead spacers, the portion where the separation membrane unit was not arranged on the lead spacer was wound around a hollow tube, and the outer diameter was 50.8 mm. Subsequently, the lead spacer is placed on the horizontal plane so that the transmission side flow path member side of the first layer separation membrane unit is exposed (so that the lead spacer and the leaf of the separation membrane unit face each other). The separation membrane unit was placed on top. At this time, the first layer is separated so that the fold portion of the separation membrane is located on the hollow tube side on the lead spacer and the tip portion of the fold portion is parallel to the axial direction of the hollow tube. A membrane unit was placed.
 続いて、リードスペーサ上の1層目の分離膜ユニットに含まれる分離膜(1)の折目部分の中央付近を含む第1領域を、第1押圧部材で押圧した。第1押圧部材は、1層目の分離膜ユニットに含まれる透過側流路部材を介して分離膜(1)の折目部分を押圧した。第1押圧部材は、押圧面が平面であり、押圧面の平面視形状が長方形である押圧部を棒状の支持部で支持したものであり、押圧面は、折目部分の延在方向に平行な方向の長さが300mm、延在方向に直交する方向の長さが100mmである。第1押圧部材による押圧は、第1押圧部材が押圧している第1領域において、分離膜(1)の表面の間の最大距離が2mmとなるように行った(表1)。この最大距離は、ノギスで測定した。 Subsequently, the first region including the vicinity of the center of the fold portion of the separation membrane (1) included in the separation membrane unit of the first layer on the lead spacer was pressed by the first pressing member. The first pressing member pressed the fold portion of the separation membrane (1) via the transmission side flow path member included in the separation membrane unit of the first layer. The first pressing member has a pressing surface having a flat surface and a rectangular pressing surface having a rectangular shape supported by a rod-shaped support portion, and the pressing surface is parallel to the extending direction of the fold portion. The length in the direction is 300 mm, and the length in the direction orthogonal to the extending direction is 100 mm. The pressing by the first pressing member was performed so that the maximum distance between the surfaces of the separation membrane (1) was 2 mm in the first region pressed by the first pressing member (Table 1). This maximum distance was measured with a caliper.
 第1押圧部材による第1領域の押圧を維持した状態で、2層目の分離膜ユニットの透過側流路部材が露出するように、1層目の分離膜ユニット上に2層目の分離膜ユニットを積層した。2層目の分離膜ユニットは、分離膜(1)の折目部分の先端部分の位置が、折目部分と直交する方向であって、1層目の分離膜ユニットの分離膜(1)よりも中空管から離れる方向にオフセットする(ずれる)ように積層した。1層目及び2層目の分離膜ユニットにおける分離膜(1)の折目部分の先端部分の間の距離は9.4mmに設定した。 The second layer separation membrane is placed on the first layer separation membrane unit so that the transmission side flow path member of the second layer separation membrane unit is exposed while the pressure of the first region is maintained by the first pressing member. The units were stacked. In the separation membrane unit of the second layer, the position of the tip portion of the fold portion of the separation membrane (1) is in the direction orthogonal to the fold portion, and the position of the separation membrane unit of the first layer is higher than that of the separation membrane (1). Was also laminated so as to be offset (shifted) in the direction away from the hollow tube. The distance between the tip portions of the fold portions of the separation membrane (1) in the first and second layer separation membrane units was set to 9.4 mm.
 次に、第1押圧部材による第1領域の押圧を維持した状態で、2層目の分離膜ユニットの分離膜(1)の折目部分の中央付近を含む第2領域を押圧した。第2領域は、第1押圧部材と干渉しない位置に設定した。第2押圧部材は、2層目の分離膜ユニットに含まれる透過側流路部材を介して分離膜(1)の折目部分を押圧した。第2押圧部材は、第1押圧部材と同じ構造のものを用いた。第2押圧部材による押圧は、第2領域において2層目の分離膜ユニットにおける分離膜(1)の表面の間の最大距離が2mmとなるように行った。 Next, while maintaining the pressing of the first region by the first pressing member, the second region including the vicinity of the center of the fold portion of the separation membrane (1) of the second layer separation membrane unit was pressed. The second region was set at a position where it did not interfere with the first pressing member. The second pressing member pressed the fold portion of the separation membrane (1) via the transmission side flow path member included in the second layer separation membrane unit. As the second pressing member, a member having the same structure as the first pressing member was used. The pressing by the second pressing member was performed so that the maximum distance between the surfaces of the separation membrane (1) in the separation membrane unit of the second layer was 2 mm in the second region.
 第1押圧部材による第1領域の押圧、及び、第2押圧部材による第2領域の押圧を維持した状態で、3層目の分離膜ユニットの透過側流路部材が露出するように、2層目の分離膜ユニット上に3層目の分離膜ユニットを積層した。2層目の分離膜ユニット上への3層目の分離膜ユニットの積層は、1層目の分離膜ユニット上への2層目の分離膜ユニットの積層と同じ関係になるように行った。 The second layer is such that the transmission side flow path member of the third layer separation membrane unit is exposed while the pressing of the first region by the first pressing member and the pressing of the second region by the second pressing member are maintained. The third layer of the separation membrane unit was laminated on the separation membrane unit of the eye. The lamination of the third-layer separation membrane unit on the second-layer separation membrane unit was performed so as to have the same relationship as the lamination of the second-layer separation membrane unit on the first-layer separation membrane unit.
 続いて、第2押圧部材による第2領域の押圧を維持した状態で、第1押圧部材による第1領域の押圧を解除した。第1押圧部材を移動させて、3層目の分離膜ユニットの分離膜(1)の折目部分の中央付近を含む第3領域を押圧した。第3領域は、第2押圧部材と干渉しない位置に設定した。第1押圧部材は、3層目の分離膜ユニットに含まれる透過側流路部材を介して分離膜(1)の折目部分を押圧した。第1押圧部材による押圧は、第1領域において行った押圧と同様に行った。 Subsequently, the pressing of the first region by the first pressing member was released while the pressing of the second region by the second pressing member was maintained. The first pressing member was moved to press the third region including the vicinity of the center of the fold portion of the separation membrane (1) of the third layer separation membrane unit. The third region was set at a position where it did not interfere with the second pressing member. The first pressing member pressed the fold portion of the separation membrane (1) via the transmission side flow path member included in the third layer separation membrane unit. The pressing by the first pressing member was performed in the same manner as the pressing performed in the first region.
 第2押圧部材による第2領域の押圧、及び、第1押圧部材による第3領域の押圧を維持した状態で、4層目の分離膜ユニットの透過側流路部材が露出するように、3層目の分離膜ユニット上に4層目の分離膜ユニットを積層した。3層目の分離膜ユニット上への4層目の分離膜ユニットの積層は、1層目の分離膜ユニット上への2層目の分離膜ユニットの積層と同じ関係になるように行った。4層目の分離膜ユニットを積層する操作で説明した操作を繰り返し行い、分離膜ユニットが20枚積層した。その後、分離膜ユニットに代えてリーフを積層すること以外は同様にして、積層体の最上面を構成するようにリーフを積層し、中空管付きの積層体を得た。 While maintaining the pressing of the second region by the second pressing member and the pressing of the third region by the first pressing member, the three layers are exposed so that the transmission side flow path member of the fourth layer separation membrane unit is exposed. The fourth layer of the separation membrane unit was laminated on the separation membrane unit of the eye. The stacking of the fourth layer separation membrane unit on the third layer separation membrane unit was performed so as to have the same relationship as the stacking of the second layer separation membrane unit on the first layer separation membrane unit. The operation described in the operation of laminating the fourth layer separation membrane unit was repeated, and 20 separation membrane units were laminated. Then, the leaves were laminated so as to form the uppermost surface of the laminated body in the same manner except that the leaves were laminated instead of the separation membrane unit, and a laminated body with a hollow tube was obtained.
 (分離膜エレメントの作製)
 中空管付きの積層体の中空管を、分離膜エレメントの製造装置の巻付け用チャックにセットし、中空管を回転させて、中空管の外周面に積層体を巻回した。巻回体の外周面にポリイミドテープをらせん状に巻き付け、封止材料である接着剤等を硬化させて分離膜エレメントを得た。
(Preparation of separation membrane element)
The hollow tube of the laminated body with the hollow tube was set on the winding chuck of the separation membrane element manufacturing apparatus, the hollow tube was rotated, and the laminated body was wound around the outer peripheral surface of the hollow tube. A polyimide tape was spirally wound around the outer peripheral surface of the wound body, and an adhesive or the like as a sealing material was cured to obtain a separation membrane element.
 分離膜エレメントにおいて中空管に巻回されている積層体を展開し、積層体7の積層方向に透過側流路部材4を介して隣合う2つのリーフ6について、各リーフ6に含まれる分離膜(1)の折目部分どうしの間の距離WRを測定した。距離WRは、隣合う2つのリーフ6の間でそれぞれ測定した。測定したWRを用いて、上記式(I)に基づいて、ピッチP(P=9.4mm)からの距離WRのズレ量の標準偏差を決定したところ、0.25であった(表1)。 In the separation membrane element, the laminated body wound around the hollow tube is developed, and the two leaves 6 adjacent to each other via the permeation side flow path member 4 in the laminating direction of the laminated body 7 are separated contained in each leaf 6. The distance WR between the folds of the membrane (1) was measured. Distance WR was measured between two adjacent reefs 6, respectively. Using the measured WR, the standard deviation of the deviation amount of the distance WR from the pitch P (P = 9.4 mm) was determined based on the above formula (I), and it was 0.25 (Table 1). ..
 〔比較例1〕
 積層体の作製において、第1押圧部材及び第2押圧部材による押圧を行わなかったこと以外は、実施例1と同様にして分離膜エレメントを得た。得られた分離膜エレメントについて、実施例1と同様にして、ピッチPからの距離WRのズレ量の標準偏差を決定したところ、1であった(表1)。
[Comparative Example 1]
A separation membrane element was obtained in the same manner as in Example 1 except that the first pressing member and the second pressing member did not press the laminate. For the obtained separation membrane element, the standard deviation of the deviation amount of the distance WR from the pitch P was determined in the same manner as in Example 1 and found to be 1 (Table 1).
 〔実施例2〕
 (分離膜(2)の作製)
 分離膜(1)の作製と同様の手順で、シート原料を作製して切出片を得た。次に、切出片の長さ方向の中央から長さ方向(2方向)に向かってそれぞれ5mmの範囲(全長が10mmとなる範囲)において、第3多孔層が残るように、第1多孔層、ゲル層、及び第2多孔層を切出して除去して非分離機能領域を形成した。第2多孔層の周縁及び非分離機能領域に界面活性剤水溶液を塗布して自然乾燥させ、1時間以上自然乾燥した。自然乾燥後、二つ折りしたときに外側になる第3多孔層の外表面の非分離機能領域を被覆するように、ポリプロピレン製粘着テープを貼り付けた。続いて、第2多孔層の周縁及び非分離機能領域に、二液混合型エポキシ系接着剤(粘度45000cP、アレムコ・プロダクツ社製)を塗布した。塗布した接着剤を介して、切出片と、幅1050mm×長さ1575mmのサイズの第4多孔層((廣瀬製紙社製「PS0080S」(PPS製不織布))とを貼合して、分離膜(2)を作製した。
[Example 2]
(Preparation of Separation Membrane (2))
A sheet raw material was prepared in the same procedure as in the preparation of the separation membrane (1), and cut pieces were obtained. Next, the first porous layer is such that the third porous layer remains in a range of 5 mm (a range in which the total length is 10 mm) from the center of the cut piece in the length direction toward the length direction (two directions). , The gel layer, and the second porous layer were cut out and removed to form a non-separable functional region. An aqueous surfactant solution was applied to the peripheral edge of the second porous layer and the non-separable functional region and allowed to air dry for 1 hour or more. After air-drying, a polypropylene adhesive tape was attached so as to cover the non-separable functional region on the outer surface of the third porous layer, which becomes the outside when folded in half. Subsequently, a two-component mixed epoxy adhesive (viscosity 45,000 cP, manufactured by Alemco Products Co., Ltd.) was applied to the peripheral edge of the second porous layer and the non-separable functional region. The cut piece and the fourth porous layer ((Hirose Paper Co., Ltd. “PS0080S” (PPS non-woven fabric)) having a size of 1050 mm in width × 1575 mm in length are bonded to each other via the applied adhesive to form a separation membrane. (2) was produced.
 水平面に分離膜(2)を広げた後、非分離機能領域において分離膜(2)を二つ折りになるように折返し、実施例1で説明した手順で、折返し部分の折目となる部分全体に1N/cmの荷重を付与した後、分離膜(2)の対向する内側の表面の間の距離(水平面に直交する方向の距離)を測定し、上記距離のうちの最大距離を決定したところ、17mmであった(表1)。 After spreading the separation membrane (2) on a horizontal plane, the separation membrane (2) is folded back in half in the non-separation functional region, and the procedure described in Example 1 is performed to cover the entire folded portion. After applying a load of 1 N / cm 2 , the distance between the opposing inner surfaces of the separation membrane (2) (distance in the direction orthogonal to the horizontal plane) was measured, and the maximum distance among the above distances was determined. , 17 mm (Table 1).
 (分離膜ユニットの作製)
 分離膜(2)の第4多孔層上に、供給側流路部材(SUS製金網、50×50mesh、幅1050mm×長さ813mm)を置き、この供給側流路部材を間に挟み込むように、且つ、非分離機能領域に折目部分が位置するように分離膜(2)を二つ折りにして、リーフ(2)を得た。このリーフ(2)を用いて、実施例1で説明した手順で分離膜ユニットを20枚作製した。
(Preparation of separation membrane unit)
A supply-side flow path member (SUS wire mesh, 50 × 50 mesh, width 1050 mm × length 813 mm) is placed on the fourth porous layer of the separation membrane (2) so as to sandwich the supply-side flow path member. The separation membrane (2) was folded in half so that the fold portion was located in the non-separable functional region to obtain a leaf (2). Using this leaf (2), 20 separation membrane units were prepared by the procedure described in Example 1.
 (積層体及び分離膜エレメントの作製)
 リーフ(2)を用いて作製した分離膜ユニットを用いたこと以外は、実施例1と同様の手順で積層体及び分離膜エレメントを作製した。
(Manufacturing of laminated body and separation membrane element)
The laminated body and the separation membrane element were prepared by the same procedure as in Example 1 except that the separation membrane unit prepared by using the leaf (2) was used.
 分離膜エレメントにおいて中空管に巻回されている積層体を展開し、積層体7の積層方向に透過側流路部材4を介して隣合う2つのリーフ6について、各リーフ6に含まれる分離膜(2)の折目部分どうしの間の距離WRを測定した。距離WRは、隣合う2つのリーフ6の間でそれぞれ測定した。測定したWRを用いて、上記式(I)に基づいて、ピッチP(P=9.4mm)からの距離WRのズレ量の標準偏差を決定したところ、0.15であった(表1)。 In the separation membrane element, the laminated body wound around the hollow tube is developed, and the two leaves 6 adjacent to each other via the permeation side flow path member 4 in the laminating direction of the laminated body 7 are separated contained in each leaf 6. The distance WR between the folds of the membrane (2) was measured. Distance WR was measured between two adjacent reefs 6, respectively. Using the measured WR, the standard deviation of the deviation amount of the distance WR from the pitch P (P = 9.4 mm) was determined based on the above formula (I), and it was 0.15 (Table 1). ..
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 1,1a,1b 分離膜エレメント、3,3a,3b,3c,3d 供給側流路部材(第1流路部材、第2流路部材)、4,4a,4b,4c,4d 透過側流路部材(第1流路部材、第2流路部材)、5 中空管、6,6’ リーフ、7 積層体、9,9a,9b,9c,9d 分離膜ユニット、10,10a,10b,10c,10d,10’ 分離膜、11 第1多孔層(多孔層)、12 第2多孔層(多孔層)、13 第3多孔層、14 第4多孔層、15 ゲル層、18 非分離機能領域、19 充填材、31 第1押圧部材、32 第2押圧部材、36 第2カバー部、50 孔、51 供給口、52 第1排出口、53 第2排出口、55 テレスコープ防止板。 1,1a, 1b Separation membrane element, 3,3a, 3b, 3c, 3d Supply side flow path member (first flow path member, second flow path member), 4, 4a, 4b, 4c, 4d Permeation side flow path Members (1st flow path member, 2nd flow path member), 5 hollow pipes, 6, 6'leaf, 7 laminates, 9, 9a, 9b, 9c, 9d separation membrane unit, 10, 10a, 10b, 10c , 10d, 10'separation membrane, 11 first porous layer (porous layer), 12 second porous layer (porous layer), 13 third porous layer, 14 fourth porous layer, 15 gel layer, 18 non-separable functional region, 19 Filler, 31 1st pressing member, 32 2nd pressing member, 36 2nd cover part, 50 holes, 51 supply port, 52 1st discharge port, 53 2nd discharge port, 55 telescope prevention plate.

Claims (16)

  1.  有孔の中空管と積層体とを含み、前記中空管に前記積層体の少なくとも一部が巻回された分離膜エレメントの製造方法であって、
     前記積層体は、
      二つ折りした分離膜の間に第1流路部材を介在させたリーフと、前記リーフに積層される第2流路部材を構成する少なくとも一部の層とを含む分離膜ユニットが、複数積層され、且つ、
      前記分離膜の折目部分の位置が前記積層体の巻回方向にずれるように、前記分離膜ユニットが積層されたものであり、
     前記製造方法は、前記分離膜ユニットを積層する工程を含み、
     前記積層する工程は、Nを2以上の整数とする場合に、(N-1)層目の分離膜ユニットに含まれる前記分離膜の折目部分の少なくとも一部を含む第1領域を押圧した状態で、前記(N-1)層目の分離膜ユニット上にN層目の分離膜ユニットを積層する第1工程を含む、分離膜エレメントの製造方法。
    A method for manufacturing a separation membrane element, which includes a perforated hollow tube and a laminated body, and in which at least a part of the laminated body is wound around the hollow tube.
    The laminated body is
    A plurality of separation membrane units including a leaf having a first flow path member interposed between the two-folded separation membranes and at least a part of layers constituting the second flow path member laminated on the leaf are laminated. ,and,
    The separation membrane units are laminated so that the position of the fold portion of the separation membrane is displaced in the winding direction of the laminate.
    The manufacturing method includes a step of laminating the separation membrane unit.
    In the laminating step, when N is an integer of 2 or more, the first region including at least a part of the fold portion of the separation membrane contained in the separation membrane unit of the (N-1) layer was pressed. A method for manufacturing a separation membrane element, comprising a first step of laminating the separation membrane unit of the Nth layer on the separation membrane unit of the (N-1) layer in the state.
  2.  前記第1領域の押圧は、前記第1領域において対向する前記分離膜の表面の間の最大距離が5mm未満となるように行う、請求項1に記載の分離膜エレメントの製造方法。 The method for manufacturing a separation membrane element according to claim 1, wherein the pressing of the first region is performed so that the maximum distance between the surfaces of the separation membranes facing each other in the first region is less than 5 mm.
  3.  前記積層する工程は、さらに、前記第1工程で積層した前記N層目の分離膜ユニット上に、(N+1)層目の分離膜ユニットを積層する第2工程を含み、
     前記第2工程は、前記N層目の分離膜ユニットに含まれる前記分離膜の折目部分の少なくとも一部を含む第2領域を押圧した状態で、前記(N+1)層目の分離膜ユニットを積層する、請求項1又は2に記載の分離膜エレメントの製造方法。
    The laminating step further includes a second step of laminating the (N + 1) th layer separation membrane unit on the Nth layer separation membrane unit laminated in the first step.
    In the second step, the separation membrane unit of the (N + 1) layer is pressed in a state where the second region including at least a part of the fold portion of the separation membrane included in the separation membrane unit of the Nth layer is pressed. The method for manufacturing a separation membrane element according to claim 1 or 2, wherein the separation membrane element is laminated.
  4.  前記第2工程を、前記第1工程における前記第1領域を押圧した状態を維持しながら行う、請求項3に記載の分離膜エレメントの製造方法。 The method for manufacturing a separation membrane element according to claim 3, wherein the second step is performed while maintaining a state in which the first region is pressed in the first step.
  5.  前記積層する工程は、さらに、前記第2工程で積層した前記(N+1)層目の分離膜ユニット上に、(N+2)層目の分離膜ユニットを積層する第3工程と、を含み、
     前記第3工程は、前記(N+1)層目の分離膜ユニットに含まれる前記分離膜の折目部分の少なくとも一部を含む第3領域を押圧した状態で、前記(N+2)層目の分離膜ユニットを積層する、請求項3又は4に記載の分離膜エレメントの製造方法。
    The laminating step further includes a third step of laminating the (N + 2) th layer separation membrane unit on the (N + 1) th layer separation membrane unit laminated in the second step.
    In the third step, the separation membrane of the (N + 2) layer is pressed while the third region including at least a part of the fold portion of the separation membrane included in the separation membrane unit of the (N + 1) layer is pressed. The method for manufacturing a separation membrane element according to claim 3 or 4, wherein the units are laminated.
  6.  前記第3工程を、前記第2工程における前記第2領域を押圧した状態を維持しながら行う、請求項5に記載の分離膜エレメントの製造方法。 The method for manufacturing a separation membrane element according to claim 5, wherein the third step is performed while maintaining a state in which the second region is pressed in the second step.
  7.  前記第1領域の押圧は、第1押圧部材を押し当てることによって行い、
     前記積層する工程は、さらに、前記第1押圧部材による前記第1領域の押圧を解除する工程を含み、
     前記第3工程を、前記解除する工程後の前記第1押圧部材が、前記第3領域を押圧した状態で行う、請求項5又は6に記載の分離膜エレメントの製造方法。
    The pressing of the first region is performed by pressing the first pressing member.
    The laminating step further includes a step of releasing the pressing of the first region by the first pressing member.
    The method for manufacturing a separation membrane element according to claim 5 or 6, wherein the third step is performed in a state where the first pressing member after the release step presses the third region.
  8.  前記第2領域の押圧は、第2押圧部材を押し当てることによって行う、請求項7に記載の分離膜エレメントの製造方法。 The method for manufacturing a separation membrane element according to claim 7, wherein the pressing of the second region is performed by pressing the second pressing member.
  9.  前記分離膜エレメントは、前記積層体の全長が前記中空管に巻回されたスパイラル型の分離膜エレメントである、請求項1~8のいずれか1項に記載の分離膜エレメントの製造方法。 The method for manufacturing a separation membrane element according to any one of claims 1 to 8, wherein the separation membrane element is a spiral type separation membrane element in which the entire length of the laminate is wound around the hollow tube.
  10.  前記第1流路部材及び第2流路部材は、一方が原料流体が流れる流路を形成するための供給側流路部材であり、他方が前記分離膜を透過した透過流体が流れる流路を形成するための透過側流路部材である、請求項1~9のいずれか1項に記載の分離膜エレメントの製造方法。 One of the first flow path member and the second flow path member is a supply-side flow path member for forming a flow path through which the raw material fluid flows, and the other is a flow path through which the permeated fluid that has passed through the separation membrane flows. The method for manufacturing a separation membrane element according to any one of claims 1 to 9, which is a permeation side flow path member for forming.
  11.  前記第1流路部材は、前記供給側流路部材であり、
     前記第2流路部材は、前記透過側流路部材である、請求項10に記載の分離膜エレメントの製造方法。
    The first flow path member is the supply side flow path member, and is
    The method for manufacturing a separation membrane element according to claim 10, wherein the second flow path member is the permeation side flow path member.
  12.  前記分離膜は、多孔層と前記多孔層上に設けられたゲル層とを有する、請求項1~11のいずれか1項に記載の分離膜エレメントの製造方法。 The method for manufacturing a separation membrane element according to any one of claims 1 to 11, wherein the separation membrane has a porous layer and a gel layer provided on the porous layer.
  13.  有孔の中空管と積層体とを含み、前記中空管に前記積層体の少なくとも一部が巻回された分離膜エレメントであって、
     前記積層体は、
      二つ折りした分離膜の間に第1流路部材を介在させたリーフと、前記リーフに積層される第2流路部材を構成する少なくとも一部の層とを含む分離膜ユニットが、複数積層され、且つ、
      前記分離膜の折目部分の位置が前記積層体の巻回方向にずれるように、前記分離膜ユニットが積層されたものであり、
     前記分離膜は、
      多孔層と前記多孔層上に設けられたゲル層とを有し、且つ、
      前記分離膜を、1N/cmの荷重が折目全体に付与されるように二つ折りにした後、前記荷重を除去したときの前記分離膜の対向する表面の間の最大距離が10mm以上であり、
     前記分離膜エレメントは、
      前記積層体の積層方向に前記第2流路部材を介して隣合う2つの前記リーフに含まれる前記分離膜の折目部分の位置の間の巻回方向の距離をWRとし、
      前記中空管の外周長Cを前記積層体に含まれる前記リーフの数nで除した値(C/n)をピッチPとするとき、
     前記ピッチPからの前記距離WRのズレ量の標準偏差が0.4以下である、分離膜エレメント。
    A separation membrane element comprising a perforated hollow tube and a laminate, wherein at least a part of the laminate is wound around the hollow tube.
    The laminated body is
    A plurality of separation membrane units including a leaf having a first flow path member interposed between the two-folded separation membranes and at least a part of layers constituting the second flow path member laminated on the leaf are laminated. ,and,
    The separation membrane units are laminated so that the position of the fold portion of the separation membrane is displaced in the winding direction of the laminate.
    The separation membrane is
    It has a porous layer and a gel layer provided on the porous layer, and
    After folding the separation membrane in half so that a load of 1 N / cm 2 is applied to the entire crease, the maximum distance between the opposing surfaces of the separation membrane when the load is removed is 10 mm or more. can be,
    The separation membrane element is
    The winding direction distance between the positions of the fold portions of the separation membrane included in the two adjacent leaves via the second flow path member in the stacking direction of the laminated body is defined as WR.
    When the value (C / n) obtained by dividing the outer peripheral length C of the hollow tube by the number n of the leaves contained in the laminated body is defined as the pitch P,
    A separation membrane element having a standard deviation of 0.4 or less for the amount of deviation of the distance WR from the pitch P.
  14.  前記分離膜エレメントは、前記積層体の全長が前記中空管に巻回されたスパイラル型の分離膜エレメントである、請求項13に記載の分離膜エレメント。 The separation membrane element according to claim 13, wherein the separation membrane element is a spiral type separation membrane element in which the entire length of the laminated body is wound around the hollow tube.
  15.  前記第1流路部材及び第2流路部材は、一方が原料流体が流れる流路を形成するための供給側流路部材であり、他方が前記分離膜を透過した透過流体が流れる流路を形成するための透過側流路部材である、請求項13又は14に記載の分離膜エレメント。 One of the first flow path member and the second flow path member is a supply-side flow path member for forming a flow path through which the raw material fluid flows, and the other is a flow path through which the permeated fluid that has passed through the separation membrane flows. The separation membrane element according to claim 13 or 14, which is a permeation side flow path member for forming.
  16.  前記第1流路部材は、前記供給側流路部材であり、
     前記第2流路部材は、前記透過側流路部材である、請求項15に記載の分離膜エレメント。
    The first flow path member is the supply side flow path member, and is
    The separation membrane element according to claim 15, wherein the second flow path member is the permeation side flow path member.
PCT/JP2021/037730 2020-10-15 2021-10-12 Separation membrane element production method and separation membrane element WO2022080366A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020173791A JP2022065306A (en) 2020-10-15 2020-10-15 Production method of separation membrane element and separation membrane element
JP2020-173791 2020-10-15

Publications (1)

Publication Number Publication Date
WO2022080366A1 true WO2022080366A1 (en) 2022-04-21

Family

ID=81208052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037730 WO2022080366A1 (en) 2020-10-15 2021-10-12 Separation membrane element production method and separation membrane element

Country Status (2)

Country Link
JP (1) JP2022065306A (en)
WO (1) WO2022080366A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10137558A (en) * 1996-11-11 1998-05-26 Nitto Denko Corp Spiral separation membrane element and its production
JP2002102659A (en) * 2000-10-03 2002-04-09 Toray Ind Inc Production apparatus and method for separation membrane element
JP2002143653A (en) * 2000-11-14 2002-05-21 Toray Ind Inc Manufacturing device of separation membrane element
JP2004202382A (en) * 2002-12-25 2004-07-22 Nitto Denko Corp Manufacturing method for spiral type membrane element
JP2020131072A (en) * 2019-02-14 2020-08-31 住友化学株式会社 Manufacturing method of spiral type separation membrane element and its manufacturing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10137558A (en) * 1996-11-11 1998-05-26 Nitto Denko Corp Spiral separation membrane element and its production
JP2002102659A (en) * 2000-10-03 2002-04-09 Toray Ind Inc Production apparatus and method for separation membrane element
JP2002143653A (en) * 2000-11-14 2002-05-21 Toray Ind Inc Manufacturing device of separation membrane element
JP2004202382A (en) * 2002-12-25 2004-07-22 Nitto Denko Corp Manufacturing method for spiral type membrane element
JP2020131072A (en) * 2019-02-14 2020-08-31 住友化学株式会社 Manufacturing method of spiral type separation membrane element and its manufacturing device

Also Published As

Publication number Publication date
JP2022065306A (en) 2022-04-27

Similar Documents

Publication Publication Date Title
KR102306543B1 (en) Spiral gas separation membrane element, gas separation membrane module and gas separation device
JP6741658B2 (en) Spiral type acidic gas separation membrane element, acidic gas separation membrane module, and acidic gas separation device
TWI698274B (en) Spiral acid gas separation membrane element, acid gas separation membrane module, and acid gas separation apparatus
KR102475635B1 (en) Gas separation membrane element, gas separation membrane module and gas separation device
CN110545896B (en) Spiral gas separation membrane element, gas separation membrane module, and gas separation device
WO2015015802A1 (en) Acidic gas separation laminate and acidic gas separation module provided with laminate
WO2015015803A1 (en) Acidic gas separation laminate and acidic gas separation module provided with laminate
WO2019009000A1 (en) Gas separation membrane element, gas separation membrane module and gas separation device
US11590457B2 (en) Method and apparatus for manufacturing spiral-wound type separation membrane element
WO2022080366A1 (en) Separation membrane element production method and separation membrane element
JP7397697B2 (en) Gas separation membrane elements, gas separation membrane modules, and gas separation equipment
WO2022014301A1 (en) Gas separation membrane and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21880104

Country of ref document: EP

Kind code of ref document: A1