WO2022080346A1 - Novel nitrogen-containing cyclic compound and application thereof - Google Patents

Novel nitrogen-containing cyclic compound and application thereof Download PDF

Info

Publication number
WO2022080346A1
WO2022080346A1 PCT/JP2021/037662 JP2021037662W WO2022080346A1 WO 2022080346 A1 WO2022080346 A1 WO 2022080346A1 JP 2021037662 W JP2021037662 W JP 2021037662W WO 2022080346 A1 WO2022080346 A1 WO 2022080346A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
nmr
substituted
general formula
Prior art date
Application number
PCT/JP2021/037662
Other languages
French (fr)
Japanese (ja)
Inventor
真一 川口
忠志 辻田
Original Assignee
国立大学法人佐賀大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人佐賀大学 filed Critical 国立大学法人佐賀大学
Publication of WO2022080346A1 publication Critical patent/WO2022080346A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • A61K31/515Barbituric acids; Derivatives thereof, e.g. sodium pentobarbital
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond

Definitions

  • the present invention relates to a novel nitrogen-containing cyclic compound, and more particularly to a nitrogen-containing cyclic compound that can be used as a research reagent, a drug, or the like, and its use.
  • the nitrogen-containing cyclic compound is regarded as an important compound in the fields of pharmaceuticals and pesticides, and is widely used in various applications such as pharmaceuticals and plant disease control agents.
  • a pyrazoline derivative as a nitrogen-containing cyclic compound has high utility value in a wide range, many researchers are working on its novel synthesis.
  • certain pyrazoline derivatives have been confirmed to have anticonvulsant activity (see Non-Patent Document 1).
  • the 2,3-diaryl-pyrazolidine derivative which is one of the pyrazoline derivatives, has been confirmed to have an inhibitory activity against an enzyme that decomposes a neuropeptide / neurotensin (see Patent Document 1).
  • hypoxia inducible factor (HIF) activator (hereinafter referred to as HIF activator) has been revealed by Dr. William Kaelin, who won the 2019 Nobel Prize in Physiology or Medicine. Has been attracting attention due to its useful properties.
  • hypoxia-inducible factor is a protein that is expressed when cells or tissues fall into a hypoxic state, and has a function of promoting angiogenesis and eliminating the hypoxic state. Furthermore, hypoxia-inducing factor (HIF) is a "master transcription factor" that promotes transcription of many genes such as erythrocyte-producing hormone and vascular endothelial growth factor, and plays an important role in eliminating hypoxia.
  • hypoxia-inducible factor is hydroxylated by the action of iron atoms in prolyl-hydroxylase (PHD), followed by ubiquitin by the von Hippel-Lindau (VHL) protein. It undergoes chemical modification and is degraded by the proteasome.
  • hypoxia-inducible factor is negatively controlled because it is always decomposed and its abundance is kept low under normal conditions.
  • hypoxia-inducible factor HIF
  • PBD prolyl hydroxylase
  • hypoxia in peripheral tissues that is, ischemia
  • lifestyle-related diseases such as kidney disease, chronic kidney disease, ischemic disease, hypertension, diabetes, and arteriosclerosis.
  • HIF activators has been considered as a treatment for such ischemia-related diseases, and clinical trials are actually progressing.
  • a compound having a 2-oxoglutarate (2-OG: 2-oxoglutarate) skeleton (2-OG analog compound) is used as a main component. Since the 2-OG-like compound coordinates with the active center of prolyl hydroxylase (PHD) and acts as a cofactor, it acts to inactivate prolyl hydroxylase (PHD) by its competitive inhibitory action. It is a mechanism.
  • HIF activators include dimethyloxaloylglycine (DMOG: Dimethyloxaloylglycine) and IOX2 (N-[[1,2-dihydro-4-hydroxy-2-oxo-1-(phenylmethyl)). -3-quinolyl] carbonyl] glycine) and the like, all of which are 2-OG analogs having a 2-oxoglutaric acid (2-OG) skeleton.
  • DMOG Dimethyloxaloylglycine
  • IOX2 N-[[1,2-dihydro-4-hydroxy-2-oxo-1-(phenylmethyl)
  • -3-quinolyl] carbonyl] glycine 2-OG analogs having a 2-oxoglutaric acid (2-OG) skeleton.
  • roxadustat (FG-4592) jointly developed by Fibrogen and Astellas Pharma can be mentioned (see Non-Patent Document 2).
  • Vadadustat (MT-6548) developed by Mitsubishi Tanabe Pharma / Akebia (see Patent Document 2) and Enarodustat (JTZ-951) developed by Japan Tobacco / Torii Pharmaceutical (non-JTZ-951).
  • Daprodustat (GSK-1278863) developed by GlaxoSmithKline (see Patent Document 3), and the like.
  • a 2-OG analog compound having a 2-oxoglutaric acid (2-OG) skeleton is used.
  • the pyrazoline derivative which is a conventional nitrogen-containing cyclic compound exemplified in Non-Patent Document 1 and Patent Document 1
  • the pyrazoline derivative is an expensive compound because its synthetic reaction is complicated, and for example, a drug in the pharmaceutical field can be used. It cannot be said that it is fully utilized for various purposes including.
  • An object of the present invention is to provide a novel nitrogen-containing cyclic compound that can be used in a wide range of applications such as research reagents and drugs and can be synthesized at low cost by a simple reaction step.
  • One of its uses is to provide an inexpensive and highly safe composition that exerts an inhibitory action on prolyl hydroxylase (PHD) and exhibits HIF activation ability.
  • PLD prolyl hydroxylase
  • the present inventors have found a novel nitrogen-containing cyclic compound. Furthermore, they have found that the compound can be prepared by an extremely simple reaction step, and have completed the present invention.
  • a nitrogen-containing cyclic compound represented by the following general formula (I), general formula (II), or general formula (III) or a salt thereof is provided as a solution to the above-mentioned problems.
  • R 1 is an aryl group having a monocyclic structure, a fused ring structure, or a polycyclic structure having an aromatic ring number of 1 to 2 consisting of a substituted or unsubstituted 5-membered ring or 6-membered ring, or a substituted or unsubstituted ring.
  • R 2 is a hydrogen atom or a substituted or unsubstituted alkyl group
  • R 3 is an independently substituted or unsubstituted linear or cyclic alkyl group, respectively.
  • the combinations of (R 1 , R 2 , R 3 ) are (phenyl group, methyl group, hydrogen atom), (phenyl group, methyl group, methyl group), and (phenyl group, ethyl group, respectively. Ethyl group) except when it is.)
  • a pharmaceutical composition containing the nitrogen-containing cyclic compound represented by the general formula (I), the general formula (II), or the general formula (III) or a salt thereof is also provided.
  • R 1 is an aryl group having a monocyclic structure, a fused ring structure, or a polycyclic structure having an aromatic ring number of 1 to 2 consisting of a substituted or unsubstituted 5-membered ring or 6-membered ring, or a substituted or unsubstituted ring.
  • R 2 is a hydrogen atom or a substituted or unsubstituted alkyl group
  • R 3 is an independently substituted or unsubstituted linear or cyclic alkyl group.
  • the NMR chart of the compound 5a which concerns on the Example of this invention is shown.
  • the NMR chart of the compound 5a'according to the Example of this invention is shown.
  • the NMR chart of the compound 5a "according to the Example of this invention is shown.
  • the measurement results of the HIF transcription activity of the compounds 5c and 5e according to the examples of the present invention are shown.
  • the measurement result of the HIF transcription activity of the compound 5f, 5g which concerns on the Example of this invention is shown.
  • the measurement results of the HIF transcription activity of the compounds 5b and 5k according to the examples of the present invention are shown.
  • the measurement results of the HIF transcription activity of the compounds 5j and 5i according to the examples of the present invention are shown.
  • the measurement results of the HIF transcription activity of the compounds 5ab and 5ac according to the examples of the present invention are shown.
  • the measurement result of the HIF transcription activity of the compound 5fb which concerns on the Example of this invention is shown.
  • the measurement results of the HIF transcription activity of the compounds 5a, 5a'according to the examples of the present invention are shown.
  • the results of the HIF-stabilized cell-cell comparison between the compound 5a according to the embodiment of the present invention and the conventional HIF inhibitor are shown.
  • the nitrogen-containing cyclic compound of the present invention or a salt thereof is represented by the following general formula (I), general formula (II), or general formula (III).
  • R 1 is an aryl group having a monocyclic structure, a fused ring structure, or a polycyclic structure having an aromatic ring number of 1 to 2 consisting of a substituted or unsubstituted 5-membered ring or 6-membered ring, or a substituted or unsubstituted ring.
  • R 3 is an independently substituted or unsubstituted linear or cyclic alkyl group.
  • the combination of (R 1 , R 2 , R 3 ) is , (Phenyl group, methyl group, hydrogen atom), (phenyl group, methyl group, methyl group), and (phenyl group, ethyl group, ethyl group), respectively.)
  • each of the above general formulas (I), general formula (II), or general formula (III) represents a tautomer of the same compound (keto-enol tautomer, enamine-imine tautomer) for convenience. It represents a nitrogen-containing cyclic compound synthesized separately as an independent pyrazoline derivative or a pyrazoline derivative.
  • the above-mentioned “salt” is the biological and pharmaceutical effect of the free acid or free base of the nitrogen-containing cyclic compound represented by the above general formula (I), general formula (II), or general formula (III).
  • the salt derived from the base include salts containing cations of alkali metal or alkaline earth metal, and examples thereof include sodium salt, potassium salt, lithium salt, cesium salt, calcium salt, magnesium salt and the like.
  • the nitrogen-containing cyclic compound according to the present invention can be in salt form, more preferably a salt containing an alkaline earth metal, for example, a sodium salt, a potassium salt, a lithium salt, or a cesium salt because of its ease of handling.
  • the sodium salt form is preferable because of the ease of use.
  • the nitrogen-containing cyclic compound according to the present invention contains a carbon atom serving as an asymmetric center, an optically pure enantiomer, a mixed enantiomer such as a racemate, an optically pure diastereomer, and the like thereof. It can also exist in the form of a mixed mixed diastereomer, a racemate composed of diastereomers, or the like.
  • R 1 is preferably an aryl group having a monocyclic structure, a fused ring structure, or a polycyclic structure having an aromatic ring number of 1 to 2 consisting of a substituted or unsubstituted 6-membered ring, or a substituted or unsubstituted cyclic alkyl group.
  • the monocyclic structure and the fused ring structure having an aromatic ring number of 1 to 2 composed of a substituted or unsubstituted 6-membered ring include, for example, (1) an unsubstituted phenyl group, a naphthyl group, a biphenyl group, and a thienyl group.
  • 3-methoxyphenyl group 4-methoxyphenyl group, 2,3-dimethoxyphenyl group, 2,4-dimethoxyphenyl group, 2,5-dimethoxyphenyl group, 2,6-dimethoxyphenyl group, 3,4-dimethoxyphenyl Group, 3,5-dimethoxyphenyl group, 3,6-dimethoxyphenyl group, 2,3,4-trimethoxyphenyl group, 2,3,5-trimethoxyphenyl group, 2,3,6-trimethoxyphenyl group , 2,4,5-Trimethoxyphenyl group, 2,4,6-trimethoxyphenyl group, 3,4,5-to Limethoxyphenyl group, 2-ethoxyphenyl group, propoxyphenyl group, 2-methoxy-1-naphthyl group, 3-methoxy-1-naphthyl group, 4-methoxy-1-naphthyl group, 5-methoxy-1-naphthyl group,
  • R 1 also includes those in which a plurality of types of the substituents mentioned above are substituted at a plurality of substitutable positions of the aryl group. For example, it is substituted with a methoxy group and a halogen atom such as 2-chloro-3-methoxyphenyl group, 2-chloro-4-methoxyphenyl group, 2-chloro-5-methoxyphenyl group, 2-chloro-6-methoxyphenyl group and the like. Examples thereof include, but are not limited to, aryl groups.
  • this R 1 is composed of an aryl group containing one or two substituted or unsubstituted benzene rings or naphthalene rings, or a substituted or unsubstituted cyclic alkyl group having 3 to 10 carbon atoms. ..
  • R 1 is composed of a substituted or unsubstituted aryl group, for example, an aryl group which may be substituted with an alkyl group, an alkoxy group or a halogen atom can be mentioned, and the monocyclic structure includes a phenyl group.
  • the fused ring structure is preferably a naphthyl group, and the polycyclic structure is preferably a biphenyl group or a phenoxybenzyl group, more preferably R 1 is composed of one or two benzene rings, and more preferably. It is composed of a substituted or unsubstituted phenyl group or a biphenyl group, and is composed of, for example, a phenyl group or a biphenyl group.
  • R 1 is composed of a substituted or unsubstituted cyclic alkyl group having 3 to 10 carbon atoms, it is not particularly limited, but for example, a cyclohexyl group, a 4-ethylcyclohexyl group, a 4-propylcyclohexyl group, 4, 4-Dimethylcyclohexyl group, 2,6-dimethylcyclohexyl group, 3,5-dimethylcyclohexyl group, cyclohexylmethyl group, cyclopropyl group, 2,3-dimethylcyclopropyl group, cyclobutyl group, cyclopentyl group, 2,5- Examples thereof include a dimethylcyclopentyl group, a 3-ethylcyclopentyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, a cyclodecanyl group, etc.
  • the cyclic compound has less angular distortion of the bond angle and is excellent in chemical stability.
  • a 5-membered ring compound to an 8-membered ring compound are suitable, and examples thereof include a substituted or unsubstituted cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group, and a 6-membered ring compound and a 6-membered ring compound because they have less angular distortion.
  • a 7-membered ring compound is suitable, and examples thereof include a substituted or unsubstituted cyclohexyl group and a cycloheptyl group, and among these, a cyclohexyl group is mentioned, for example.
  • R 2 is preferably a substituted or unsubstituted alkyl group, preferably a linear or branched methyl group in which R 2 is a linear or branched lower alkyl group having 1 to 10 carbon atoms.
  • R 2 is a linear or branched lower alkyl group having 1 to 10 carbon atoms.
  • examples thereof include an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group and a decyl group.
  • a lower alkyl group having 1 to 5 carbon atoms which has a relatively low carbon number, is suitable because of its ease of handling.
  • Group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, isohexyl group, 1,1-dimethylbutyl group, 2,2-dimethylbutyl group, 3,3 -Dimethylbutyl group and the like can be mentioned, and examples thereof include a methyl group, an ethyl group, a propyl group and an isopropyl group.
  • R 2 is not limited to these, and for example, in the case of an application in which it is desired to contain a longer chain functional group, a lower alkyl group having 6 to 10 carbon atoms is also suitable depending on various applications. For example, a linear or branched nonyl group can be preferably used.
  • R 3 is a substituted or unsubstituted linear or cyclic alkyl group, preferably composed of a linear or cyclic alkyl group having 1 to 6 carbon atoms, and is more preferable as the linear alkyl group.
  • R 3 is preferably a cyclic alkyl group having 3 to 10 carbon atoms as the cyclic alkyl group, and is not particularly limited, but for example, a cyclohexyl group, a 4-ethylcyclohexyl group, a 4-propylcyclohexyl group, 4 , 4-Dimethylcyclohexyl group, 2,6-dimethylcyclohexyl group, 3,5-dimethylcyclohexyl group, cyclohexylmethyl group, cyclopropyl group, 2,3-dimethylcyclopropyl group, cyclobutyl group, cyclopentyl group, 2,5 -Dimethylcyclopentyl group, 3-ethylcyclopentyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecanyl group, etc., among which the cyclic compound has less angular distortion of the bond angle
  • a 5-membered ring compound to an 8-membered ring compound is suitable, and examples thereof include a substituted or unsubstituted cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group, and the 6-membered ring compound has further less angular distortion.
  • a 7-membered ring compound are suitable, and examples thereof include a substituted or unsubstituted cyclohexyl group and a cycloheptyl group, and among these, a cyclohexyl group is mentioned, for example.
  • the pyrazolidine derivative or a salt thereof as the nitrogen-containing cyclic compound of the present invention represented by the general formula (I) can be produced by using a three-step reaction represented by the following reaction formula (A).
  • reaction formula (A-1) of the first step or lower first, compound 2 having a pyrimidine skeleton containing R 3 is added to compound 1 in which R 1 is added to an aldehyde group under a piperidine catalyst.
  • Compound 3 is obtained by heating and undergoing an aldol condensation reaction.
  • a known method can be used for this aldol condensation reaction (for example, Gorovoy, A. et al. Synth. Commun. 2014, 44, 1296-1300.).
  • reaction formula (A-2) hydrazine monohydrate is added to the obtained compound 3 and refluxed under ethanol to obtain compound 4 having a pyrazolidine skeleton.
  • the reflux time is not particularly limited, but may be 1 hour to several hours, for example, 1 hour.
  • Known methods can be used for this pyrazolidine formation reaction (eg, Abdel Latif, N. et al. Bioorg. Chem. 2016, 67, 116.).
  • the obtained compound 4 is heated in the presence of a carbonate ester (acid anhydride) containing R 2 and a carboxylic acid containing R 2 to alkanoyl.
  • the pyrazolidine derivative 5 according to the present invention can be obtained by subjecting it to an acylation reaction, and production has been confirmed by this reaction (see Examples described later).
  • the heating temperature is not particularly limited, but can be 100 ° C to 200 ° C, for example, 125 ° C.
  • the heating time is not particularly limited, but can be 1 hour to 10 hours, for example, 2 hours.
  • a known method can be used for this alkanoylation (acyllation) reaction.
  • the nitrogen-containing cyclic compound of the present invention or a salt thereof can also be produced by using the reaction represented by the following reaction formula (B) for the general formula (II), and is actually produced by this reaction. Production has been confirmed in (see Examples below).
  • the heating performed in the third step of the general formula (I) is in the presence of the carboxylic acid containing R 2 and the carbonic acid ester containing R 2 , instead of the third step of the general formula (II). Then, heating is carried out in the same manner in the presence of the carboxylic acid containing R 2 .
  • the nitrogen-containing cyclic compound of the present invention or a salt thereof can also be produced by using the reaction represented by the following reaction formula (C) for the general formula (III), and is actually produced by this reaction. Production has been confirmed in (see Examples below).
  • the nitrogen-containing cyclic compound of the present invention is an extremely simple three-step reaction (1) to (3) for any of the general formulas (I), (II) and (III) as a pyrazoline derivative, a pyrazoline derivative or a salt thereof. ) Can be obtained.
  • the nitrogen-containing cyclic compound according to the present invention can be obtained as a separate and independent compound represented by the above general formula (I), general formula (II), or general formula (III). That is, each of the above general formulas (I), general formula (II), or general formula (III) represents a tautomer of the same compound (keto-enol tautomer, enamine-imine tautomer) for convenience. It represents a compound synthesized separately as an independent pyrazoline derivative or a pyrazoline derivative (see Examples below).
  • M + represents a cation of an alkali metal or an alkaline earth metal.
  • the salt derived from the base can be a sodium salt, a potassium salt, a lithium salt, a cesium salt, a calcium salt, a magnesium salt or the like.
  • the nitrogen-containing cyclic compound according to the present invention can be in salt form, more preferably a salt containing an alkaline earth metal, for example, a sodium salt, a potassium salt, a lithium salt, or a cesium salt because of its ease of handling.
  • the sodium salt form is preferable because of the ease of use.
  • the novel nitrogen-containing cyclic compound or a salt thereof according to the present invention can be synthesized as a pyrazoline derivative or a pyrazoline derivative or a salt thereof by a simple three-step reaction step, and can be produced at a lower cost than before. can.
  • the novel nitrogen-containing cyclic compound or salt thereof thus obtained has a wide range of uses.
  • a composition containing a novel nitrogen-containing cyclic compound represented by the following general formula (I), general formula (II), or general formula (III) and a salt thereof can be mentioned.
  • R 1 is composed of a monocyclic structure, a fused ring structure, or a polycyclic structure having an aromatic ring number of 1 to 2 consisting of a substituted or unsubstituted 5-membered ring or a 6-membered ring
  • R 2 is a hydrogen atom or a substituted ring.
  • R 3 is an independently substituted or unsubstituted linear or cyclic alkyl group.
  • the nitrogen-containing cyclic compound represented by the general formula (I), the general formula (II), or the general formula (III) contained in the present composition as described above, the biological of the free acid or the free base thereof. And it is possible to form a salt form that retains its pharmaceutical effect.
  • M + represents a cation of an alkali metal or an alkaline earth metal.
  • the salt derived from the base for example, sodium salt, potassium salt, lithium salt, cesium salt, calcium salt, magnesium salt and the like can be used.
  • the nitrogen-containing cyclic compound according to the present invention can be in salt form, more preferably a salt containing an alkaline earth metal, for example, a sodium salt, a potassium salt, a lithium salt, or a cesium salt because of its ease of handling.
  • the sodium salt form is preferable because of the ease of use.
  • composition according to the present invention contains the above-mentioned novel nitrogen-containing cyclic compound or a salt thereof, and can be used for various purposes.
  • HIF hypoxia-inducing factor
  • the present inventors have also found that the above-mentioned composition according to the present invention surprisingly exhibits an excellent ability to inhibit the activity of proline hydroxylase (PHD).
  • PLD proline hydroxylase
  • This ability to inhibit the activity of proline hydroxylase (PHD) makes it possible to activate hypoxia-inducible factor (HIF), and a HIF activator having a new basic structure will be realized.
  • HIF hypoxia-inducible factor
  • composition according to the present invention has certainly been confirmed to be more active than conventional HIF activators as exhibiting the active action of hypoxia-inducible factor (HIF) (see Examples below). ..
  • R 1 is composed of one or two phenyl groups and / or R 2 is composed of a lower alkyl group having 1 to 5 carbon atoms. It is preferably composed and / or composed of a linear or cyclic alkyl group having 1 to 6 carbon atoms in R3.
  • R 1 is preferably an aryl group having a monocyclic structure, a fused ring structure, or a polycyclic structure having 1 to 2 aromatic rings composed of substituted or unsubstituted 6-membered rings, for example.
  • aryl groups such as unsubstituted phenyl group, naphthyl group, biphenyl group, thienyl group, pyridine group, anthranyl group; (2) trill group, 2-methylphenyl group, 3-methylphenyl group, 4-methyl Phenyl group, 2,3-dimethylphenyl group, 2,4-dimethylphenyl group, 2,5-dimethylphenyl group, 2,6-dimethylphenyl group, 3,4-dimethylphenyl group, 3,5-dimethylphenyl group , 3,6-dimethylphenyl group, 2,3,4-trimethylphenyl group, 2,3,5-trimethylphenyl group, 2,3,6-trimethylphenyl group, 2,4,5
  • R 1 is more preferably composed of a phenyl group or a biphenyl group from the viewpoint that it can exhibit excellent efficacy as a composition.
  • R 1 can also be composed of a substituted or unsubstituted linear or cyclic alkyl group, in which case R 1 is preferably a linear chain having 1 to 6 carbon atoms. Alternatively, it is composed of a cyclic alkyl group, and the linear alkyl group is more preferably composed of a lower alkyl group having 1 to 5 carbon atoms, and more preferably composed of a lower alkyl group having 1 to 3 carbon atoms. It is composed and includes, for example, a methyl group, an ethyl group, and a propyl group.
  • R 3 is preferably a cyclic alkyl group having 3 to 10 carbon atoms as the cyclic alkyl group, and is not particularly limited, but for example, a cyclohexyl group, a 4-ethylcyclohexyl group, a 4-propylcyclohexyl group, 4 , 4-Dimethylcyclohexyl group, 2,6-dimethylcyclohexyl group, 3,5-dimethylcyclohexyl group, cyclohexylmethyl group, cyclopropyl group, 2,3-dimethylcyclopropyl group, cyclobutyl group, cyclopentyl group, 2,5 -Includes dimethylcyclopentyl group, 3-ethylcyclopentyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecanyl group, etc., and cyclohexyl group is preferable from the viewpoint
  • R 2 is preferably a substituted or unsubstituted alkyl group, preferably composed of a lower alkyl group having 1 to 5 carbon atoms, and more preferably 1 to 3 carbon atoms. It is composed of a lower alkyl group of the above, and examples thereof include a methyl group, an ethyl group, and a propyl group.
  • R 3 is preferably a substituted or unsubstituted linear or cyclic alkyl group, and the linear alkyl group is preferably composed of a lower alkyl group having 1 to 5 carbon atoms. It is more preferably composed of a lower alkyl group having 1 to 3 carbon atoms, and examples thereof include a methyl group, an ethyl group and a propyl group.
  • R 3 is preferably a cyclic alkyl group having 3 to 10 carbon atoms as the cyclic alkyl group, and is not particularly limited, but for example, a cyclohexyl group, a 4-ethylcyclohexyl group, a 4-propylcyclohexyl group, 4 , 4-Dimethylcyclohexyl group, 2,6-dimethylcyclohexyl group, 3,5-dimethylcyclohexyl group, cyclohexylmethyl group, cyclopropyl group, 2,3-dimethylcyclopropyl group, cyclobutyl group, cyclopentyl group, 2,5 -Includes dimethylcyclopentyl group, 3-ethylcyclopentyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecanyl group and the like.
  • R 3 is a linear alkyl group having a small molecular weight such as a methyl group, an ethyl group, or a propyl group, or a cyclopropyl group, a cyclopentyl group, or a cyclohexyl group because it can exhibit excellent effects as a composition. It is preferably a cyclic alkyl group having a molecular weight of about the same, and more preferably a methyl group, an ethyl group, a propyl group, or a cyclohexyl group, for example.
  • composition according to the present invention is not particularly limited, but can be used as a drug, a quasi drug, or a reagent.
  • composition according to the present invention When used as a drug or a quasi-drug (that is, as a quasi-drug), it causes various human or animal diseases by the action of inhibiting the proline hydroxylase activity as described above. It can be used as a treatable drug (therapeutic drug).
  • kidney disease examples include kidney disease, chronic kidney disease, ischemic disease, hypertension, diabetes, and arteriosclerosis, and examples thereof include drugs for improving ischemic symptoms due to chronic kidney disease (chronic nephritis). ..
  • the composition according to the present invention is a small molecule compound, it can be orally administered, and can be used, for example, as a hypoxia-inducing factor (HIF) activator for oral administration.
  • the hypoxia-inducible factor (HIF) activator for oral administration according to the present invention can reduce the burden on the patient because it can avoid invasion such as subcutaneous injection.
  • HIF for oral administration for the treatment of kidney disease. It can be used as an activator.
  • HIF for oral administration for the treatment of kidney disease.
  • the activator makes it possible to reduce the burden on the patient.
  • the composition according to the present invention is used.
  • the structure is completely different from that of conventional HIF activators, and the mechanism of action of HIF activity is also completely different, because it is understood from its structural formula as a compound that is not based on the 2-oxoglutaric acid (2-OG) skeleton. Therefore, when the composition according to the present invention is used as a HIF activator, it becomes a novel HIF activator that has never existed in the past.
  • composition according to the present invention is synthesized by the simple reaction of the above three steps, and can be produced at a lower cost than the conventional HIF activator using a 2-OG analog. Furthermore, it has been confirmed that the composition according to the present invention has higher HIF activity selectivity than conventional HIF activators (see Examples described later).
  • composition according to the present invention can contain the above nitrogen-containing cyclic compound or a salt thereof at an arbitrary concentration depending on the purpose.
  • concentration can be freely designed according to the age and weight of the patient, the type and degree of the disease, and the route of administration.
  • composition according to the present invention can be introduced with various functional groups due to its chemical structure, it is also possible to improve the water solubility or to make it fat-soluble in terms of its solvent characteristics. Due to this property of the composition according to the present invention, the action / administration route can be freely changed and easily controlled.
  • composition according to the present invention exhibits an excellent activity of hypoxia-inducible factor (HIF), it can also be used as a research reagent (that is, as a reagent composition).
  • HIF hypoxia-inducible factor
  • hypoxia-inducible factor HIF
  • the active action of this hypoxia-inducible factor is highly topical and is being researched by many researchers all over the world, and there is a high need for it as a research reagent, and a cheaper and simpler research reagent is desired. It's being rare.
  • the composition according to the present invention can be provided as an excellent research reagent satisfying such needs.
  • intermediate enone ((E) -5-(3- (2-chloro-3-methoxyphenyl) acryloyl) -6-hydroxy-1,3-dimethylpyrimidine- 2,4 (1H, 3H) -dione) is obtained in a yield of 85%.
  • the structure was determined by 1 H NMR.
  • Compound 5a has a completely different shape of the multiplet (multiplex line) in the region of 4.0 to 5.5 ppm indicating H of the 5-membered ring from the compound 5a and compound 5a'of the above-mentioned examples. In the vicinity of 4.6 ppm. OH-derived singlet (single line) was observed.
  • Example 25 The HRE luciferase assay system (Tsujita, T .; Kawaguchi, Si .; Dan, T .; Baird, L .; Miyata, T .; Yamamoto, M., Hypoxia-Sensitive Reporter System for High) previously developed by the present inventors. -Throughput Screening. Tohoku J. Exp. Med. 2015, 235 (2), 151-159) was used to measure whether the compounds of each of the above examples show HIF-activated signals and HIF activity. The chemical ability (HIF transcription activity ability) was measured.
  • HIF activation ability HIF transcription activity ability
  • DMOG dimethyloxaloylglycine
  • the HRE luciferase assay system is a SK-N-BE (2) -C cell (SKN: HER-NLuc) that stably introduces a structure that expresses nano-Luc (Promega) under the regulation of the transcriptional regulatory region of HIF.
  • SKN: HRE-N Luc was seeded on a 384-well plate (Corning) at 7.0 ⁇ 10 3 cell / well and precultured at 37 ° C for 16 hours at 5% CO 2 . The next day, the cells were replaced with a medium containing various drugs serially diluted from 100 ⁇ M, and cultured for 24 hours.
  • luciferase activity based on the HIF transcription activity was determined as the relative activity of various drugs when 1% DMSO stimulation was set to 1.
  • SKN HRE-N Luc was seeded on a 384-well plate (Corning) at 7.0 ⁇ 10 3 cell / well and precultured at 37 ° C for 16 hours at 5% CO 2 . The next day, the cells were replaced with a medium containing various drugs serially diluted from 100 ⁇ M, and cultured for 24 hours. After stimulation, 1/10 of the medium was added with Cell Counting Kit-8 (manufactured by Dojin Kagaku Kenkyusho), and the color reaction was carried out in the incubator for 30 minutes to 1 hour.
  • Cell Counting Kit-8 manufactured by Dojin Kagaku Kenkyusho
  • the absorbance at 450 nm was measured with a multimode microplate reader (SpectraMax i3x, manufactured by Molecular Devices) for measuring absorbance, fluorescence, and emission spectra. Finally, the survival rate for each stimulus was calculated when the cells treated with 1% DMSO were 100%.
  • the obtained results are shown in FIGS. 4 to 9 and summarized in the following table.
  • the 5-fold activity ratio in the table indicates the ratio of (5-fold activity concentration of commercially available roxadustat (FG-4592, Astellas Pharma / Fibrogen)) / (5-fold activity concentration of each compound). ..
  • the HIF transcription activity in the table is as follows. + Compound 5a (standard) or higher ++ 5 times activity ratio 1 or more +++ 5 times activity ratio 10 or more
  • cytotoxicity some weak cytotoxicity was observed in compound 5i, but the value of this cytotoxicity is about 100 times that of LC 50 , which is about 24 ⁇ M, compared to the active action region of 0.3 ⁇ M or more. Since there is a difference, it is a fairly weak cytotoxicity, and a certain level of safety has been confirmed. No cytotoxicity was detected for the compounds according to each of the other examples, and high safety was confirmed.
  • Example 1 The compound 5a of Example 1 was immunocombined with the commercially available roxadustat (FG-4592, manufactured by Astellas Pharma / Fibrogen) and dimethyloxaloylglycine (DMOG) known as a conventional HIF activator.
  • FIG. 11 shows the results of comparison between HIF-stabilized cells using a blot (immunoblot; IB) (also known as Western Blotting (WB)).
  • IB immunoblot
  • WB Western Blotting
  • the protein separated by electrophoresis was transferred to a hydrophobic membrane, and the band was detected from the antibody reaction to detect the target proteins HIF-1 ⁇ , HIF-2 ⁇ , and ⁇ -tubulin. From the obtained results, it was confirmed that the compound 5a of Example 1 showed superior stability to the commercially available roxadustat and the known HIF activator (DMOG).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Diabetes (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Urology & Nephrology (AREA)
  • Epidemiology (AREA)
  • Vascular Medicine (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

Provided is a novel pyrazoline derivative that can be used as a research reagent, a drug, and the like and can be synthesized at low cost by a simple reaction process. The novel pyrazoline derivative or a salt thereof is represented by General Formula (I), General Formula (II), or General Formula (III). (R1 is a substituted or unsubstituted monocyclic, fused cyclic, or polycyclic aryl group having one or two 5- or 6-membered aromatic ring(s) or a substituted or unsubstituted cyclic alkyl group, R2 is a hydrogen atom or a substituted or unsubstituted alkyl group, and each R3 is independently a substituted or unsubstituted linear or cyclic alkyl group. Here, in the general formula (III), the combination (R1, R2, R3) is not (phenyl group, methyl group, hydrogen atom), (phenyl group, methyl group, methyl group), and (phenyl group, ethyl group, ethyl group).)

Description

新規な含窒素環状化合物及びその用途New nitrogen-containing cyclic compounds and their uses
本発明は、新規な含窒素環状化合物に関し、特に、研究試薬および薬剤等にも利用可能な含窒素環状化合物及びその用途に関する。 The present invention relates to a novel nitrogen-containing cyclic compound, and more particularly to a nitrogen-containing cyclic compound that can be used as a research reagent, a drug, or the like, and its use.
含窒素環状化合物は、医薬分野や農薬分野等で重要な化合物とされており、薬剤や植物病害防除剤等の各種用途で幅広く用いられている。 The nitrogen-containing cyclic compound is regarded as an important compound in the fields of pharmaceuticals and pesticides, and is widely used in various applications such as pharmaceuticals and plant disease control agents.
含窒素環状化合物として例えばピラゾリン誘導体は、広い範囲で高い利用価値を有していることから、多くの研究者がその新規合成に取り組んでいる。例えば、医薬分野において、ある種のピラゾリン誘導体には、抗痙攣作用が確認されている(非特許文献1参照)。
また、例えば、ピラゾリン誘導体の1つである2,3-ジアリール-ピラゾリジン誘導体には、神経ペプチド・ニューロテンシンを分解する酵素に対して阻害活性が確認されている(特許文献1参照)
Since, for example, a pyrazoline derivative as a nitrogen-containing cyclic compound has high utility value in a wide range, many researchers are working on its novel synthesis. For example, in the pharmaceutical field, certain pyrazoline derivatives have been confirmed to have anticonvulsant activity (see Non-Patent Document 1).
Further, for example, the 2,3-diaryl-pyrazolidine derivative, which is one of the pyrazoline derivatives, has been confirmed to have an inhibitory activity against an enzyme that decomposes a neuropeptide / neurotensin (see Patent Document 1).
また、近年、医薬分野においては、低酸素誘導因子(HIF:Hypoxia inducible factor)活性剤(以下、HIF活性剤という)が、2019年のノーベル生理学・医学賞を受賞したウィリアム・ケリン医師によって明らかにされ、その有用な特性から注目を集めている。 In recent years, in the pharmaceutical field, hypoxia inducible factor (HIF) activator (hereinafter referred to as HIF activator) has been revealed by Dr. William Kaelin, who won the 2019 Nobel Prize in Physiology or Medicine. Has been attracting attention due to its useful properties.
この低酸素誘導因子(HIF:Hypoxia inducible factor)とは、細胞や組織が低酸素状態に陥った際に発現し、血管新生を促進して低酸素状態を解消させる働きをもつタンパク質である。さらに低酸素誘導因子(HIF)は、赤血球生産ホルモンや血管内皮増殖因子など、多くの遺伝子の転写を促進する「マスター転写因子」であり、低酸素状態の解消に重要な役割を果たしている。 This hypoxia-inducible factor (HIF) is a protein that is expressed when cells or tissues fall into a hypoxic state, and has a function of promoting angiogenesis and eliminating the hypoxic state. Furthermore, hypoxia-inducing factor (HIF) is a "master transcription factor" that promotes transcription of many genes such as erythrocyte-producing hormone and vascular endothelial growth factor, and plays an important role in eliminating hypoxia.
しかし、低酸素誘導因子(HIF)は、プロリル水酸化酵素(PHD:Prolyl hydroxylase)中の鉄原子の働きにより水酸化され、これに続くフォンヒッペル・リンドウ(VHL:von Hippel-Lindau)タンパク質によるユビキチン化修飾を受けて、プロテアソームにより分解されてしまう。つまり、低酸素誘導因子(HIF)は、通常状態では、常に分解されて存在量は低く保たれることから負に制御されていることになる。 However, hypoxia-inducible factor (HIF) is hydroxylated by the action of iron atoms in prolyl-hydroxylase (PHD), followed by ubiquitin by the von Hippel-Lindau (VHL) protein. It undergoes chemical modification and is degraded by the proteasome. In other words, hypoxia-inducible factor (HIF) is negatively controlled because it is always decomposed and its abundance is kept low under normal conditions.
そこで、プロリル水酸化酵素(PHD)の機能(活性)を阻害することで低酸素誘導因子(HIF)を活性化できれば、低酸素状態に対する組織の抵抗力を高められると考えられる。 Therefore, if hypoxia-inducible factor (HIF) can be activated by inhibiting the function (activity) of prolyl hydroxylase (PHD), it is considered that the resistance of the tissue to the hypoxic state can be enhanced.
腎臓病、慢性腎疾患、虚血性疾患、高血圧、糖尿病、および動脈硬化などの生活習慣病の素因として抹消組織中での低酸素状態、すなわち虚血に関連すると注目されている。そのような虚血関連疾患の治療として、HIF活性剤の利用が考えられており、実際に臨床試験が進みつつある。 It has been noted that hypoxia in peripheral tissues, that is, ischemia, is a predisposing factor for lifestyle-related diseases such as kidney disease, chronic kidney disease, ischemic disease, hypertension, diabetes, and arteriosclerosis. The use of HIF activators has been considered as a treatment for such ischemia-related diseases, and clinical trials are actually progressing.
特に慢性腎疾患の現在の治療では輸血やエリスロポエチンタンパク質の静脈注射が適用されるが、患者の経済的負担や通院頻度の増加によるQOL低下に影響することから、より負担の軽い経口治療薬が求められているところである。 In particular, blood transfusions and intravenous injections of erythropoietin protein are applied in the current treatment of chronic renal diseases, but since it affects the financial burden on patients and the decrease in QOL due to the increased frequency of hospital visits, a lighter oral therapeutic drug is required. It is being done.
慢性腎疾患の治療薬としてのHIF活性剤としては、2-オキソグルタル酸(2-OG:2-oxoglutarate)骨格を有する化合物(2-OG類似化合物)が主成分として用いられている。2-OG類似化合物は、プロリル水酸化酵素(PHD)の活性中心部に配位し補因子として作用することから、その競合阻害作用によってプロリル水酸化酵素(PHD)を不活性化しようとする作用メカニズムである。 As a HIF activator as a therapeutic agent for chronic kidney disease, a compound having a 2-oxoglutarate (2-OG: 2-oxoglutarate) skeleton (2-OG analog compound) is used as a main component. Since the 2-OG-like compound coordinates with the active center of prolyl hydroxylase (PHD) and acts as a cofactor, it acts to inactivate prolyl hydroxylase (PHD) by its competitive inhibitory action. It is a mechanism.
従来からHIF活性剤として知られている化合物としては、ジメチルオキサロイルグリシン(DMOG:Dimethyloxaloylglycine)やIOX2(N-[[1,2-ジヒドロ-4-ヒドロキシ-2-オキソ-1-(フェニルメチル)-3-キノリル]カルボニル]グリシン)等が挙げられ、いずれも2-オキソグルタル酸(2-OG)骨格を有する2-OG類似化合物である。 Compounds conventionally known as HIF activators include dimethyloxaloylglycine (DMOG: Dimethyloxaloylglycine) and IOX2 (N-[[1,2-dihydro-4-hydroxy-2-oxo-1-(phenylmethyl)). -3-quinolyl] carbonyl] glycine) and the like, all of which are 2-OG analogs having a 2-oxoglutaric acid (2-OG) skeleton.
さらに現在開発が進んでいるHIF活性剤としては、例えば、フィブロジェン社とアステラス製薬が共同開発したロキサデュスタット(FG-4592)が挙げられる(非特許文献2参照)。そのほかにも、田辺三菱製薬/アケビア(Akebia)社が開発するバダデュスタット(MT-6548)(特許文献2参照)、日本たばこ産業/鳥居薬品が開発するエナロデュスタット(JTZ-951)(非特許文献3参照)、グラクソ・スミスクライン が開発するダプロデュスタット(GSK-1278863)(特許文献3参照)などが挙げられる。いずれも、2-オキソグルタル酸(2-OG)骨格を有する2-OG類似化合物が使用されている Further, as a HIF activator currently under development, for example, roxadustat (FG-4592) jointly developed by Fibrogen and Astellas Pharma can be mentioned (see Non-Patent Document 2). In addition, Vadadustat (MT-6548) developed by Mitsubishi Tanabe Pharma / Akebia (see Patent Document 2) and Enarodustat (JTZ-951) developed by Japan Tobacco / Torii Pharmaceutical (non-JTZ-951). (See Patent Document 3), Daprodustat (GSK-1278863) developed by GlaxoSmithKline (see Patent Document 3), and the like. In each case, a 2-OG analog compound having a 2-oxoglutaric acid (2-OG) skeleton is used.
国際公開WO2003/078400号公報International Publication WO2003 / 078400 Gazette 米国特許公開第20040254215号公報U.S. Patent Publication No. 20040254215 国際公開WO2007/150011号公報International Publication WO 2007/150011
しかし、非特許文献1や特許文献1等に例示される従来の含窒素環状化合物であるピラゾリン誘導体は、その合成反応が複雑なために高価な化合物となっており、例えば、医薬分野における薬剤をはじめ各種用途で十分に活用されているとは言えない。 However, the pyrazoline derivative, which is a conventional nitrogen-containing cyclic compound exemplified in Non-Patent Document 1 and Patent Document 1, is an expensive compound because its synthetic reaction is complicated, and for example, a drug in the pharmaceutical field can be used. It cannot be said that it is fully utilized for various purposes including.
また、上述の従来のHIF活性剤も高価な薬剤となっている。これは、従来のHIF活性剤の主成分である2-OG類似化合物の合成反応が複雑なことも一因であり、安価な薬剤や試薬が望まれているが、現在のところ、そのような薬剤や試薬は見当たらない。 In addition, the above-mentioned conventional HIF activator is also an expensive drug. This is partly due to the complexity of the synthetic reaction of 2-OG analogs, which are the main components of conventional HIF activators, and inexpensive drugs and reagents are desired. I can't find any drugs or reagents.
  本発明の目的は、研究試薬および薬剤等の広い用途に利用でき、簡便な反応工程により低コストで合成可能な新規な含窒素環状化合物を提供することにある。その用途の一つとして、プロリル水酸化酵素(PHD)の阻害作用を発揮して、HIF活性化能を奏する安価で安全性の高い組成物を提供することにある。例えば、経口用の慢性腎疾患治療薬としても利用可能な組成物を提供することにある。 An object of the present invention is to provide a novel nitrogen-containing cyclic compound that can be used in a wide range of applications such as research reagents and drugs and can be synthesized at low cost by a simple reaction step. One of its uses is to provide an inexpensive and highly safe composition that exerts an inhibitory action on prolyl hydroxylase (PHD) and exhibits HIF activation ability. For example, it is an object of the present invention to provide a composition that can also be used as an oral therapeutic agent for chronic kidney disease.
本発明者らは、医薬にも応用できる新規な化合物について鋭意研究を重ねた結果、新規な含窒素環状化合物を見出した。さらに当該化合物が極めて簡便な反応工程で調製可能であることを見出し、本発明を完成させるに至った。 As a result of diligent research on a novel compound that can be applied to pharmaceuticals, the present inventors have found a novel nitrogen-containing cyclic compound. Furthermore, they have found that the compound can be prepared by an extremely simple reaction step, and have completed the present invention.
  かくして、本発明に従えば、上記課題を解決するものとして、下記の一般式(I)、一般式(II)、若しくは一般式(III)で表される含窒素環状化合物又はその塩が提供される。(ただし、Rは、置換又は非置換の5員環又は6員環からなる芳香環数1~2の単環構造、縮合環構造、若しくは多環構造のアリール基、又は、置換若しくは非置換の環状アルキル基であり、Rは水素原子又は置換若しくは非置換のアルキル基であり、Rはそれぞれ独立して置換又は非置換の直鎖又は環状アルキル基である。但し、一般式(III)において、(R、R、R)の組み合わせが、各々、(フェニル基、メチル基、水素原子)、(フェニル基、メチル基、メチル基)、および、(フェニル基、エチル基、エチル基)である場合を除く。) Thus, according to the present invention, a nitrogen-containing cyclic compound represented by the following general formula (I), general formula (II), or general formula (III) or a salt thereof is provided as a solution to the above-mentioned problems. To. (However, R 1 is an aryl group having a monocyclic structure, a fused ring structure, or a polycyclic structure having an aromatic ring number of 1 to 2 consisting of a substituted or unsubstituted 5-membered ring or 6-membered ring, or a substituted or unsubstituted ring. R 2 is a hydrogen atom or a substituted or unsubstituted alkyl group, and R 3 is an independently substituted or unsubstituted linear or cyclic alkyl group, respectively. However, the general formula (III). In), the combinations of (R 1 , R 2 , R 3 ) are (phenyl group, methyl group, hydrogen atom), (phenyl group, methyl group, methyl group), and (phenyl group, ethyl group, respectively. Ethyl group) except when it is.)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
さらに、本発明に従えば、上記一般式(I)、一般式(II)、若しくは一般式(III)で表される含窒素環状化合物又はその塩を含む医薬組成物も提供される。(ただし、Rは、置換又は非置換の5員環又は6員環からなる芳香環数1~2の単環構造、縮合環構造、若しくは多環構造のアリール基、又は、置換若しくは非置換の環状アルキル基であり、Rは水素原子又は置換若しくは非置換のアルキル基であり、Rはそれぞれ独立して置換又は非置換の直鎖又は環状アルキル基である。) Further, according to the present invention, a pharmaceutical composition containing the nitrogen-containing cyclic compound represented by the general formula (I), the general formula (II), or the general formula (III) or a salt thereof is also provided. (However, R 1 is an aryl group having a monocyclic structure, a fused ring structure, or a polycyclic structure having an aromatic ring number of 1 to 2 consisting of a substituted or unsubstituted 5-membered ring or 6-membered ring, or a substituted or unsubstituted ring. R 2 is a hydrogen atom or a substituted or unsubstituted alkyl group, and R 3 is an independently substituted or unsubstituted linear or cyclic alkyl group.)
本発明の実施例に係る化合物5aのNMRチャートを示す。The NMR chart of the compound 5a which concerns on the Example of this invention is shown. 本発明の実施例に係る化合物5a’のNMRチャートを示す。The NMR chart of the compound 5a'according to the Example of this invention is shown. 本発明の実施例に係る化合物5a”のNMRチャートを示す。The NMR chart of the compound 5a "according to the Example of this invention is shown. 本発明の実施例に係る化合物5c,5eのHIF転写活性能の測定結果を示す。The measurement results of the HIF transcription activity of the compounds 5c and 5e according to the examples of the present invention are shown. 本発明の実施例に係る化合物5f,5gのHIF転写活性能の測定結果を示す。The measurement result of the HIF transcription activity of the compound 5f, 5g which concerns on the Example of this invention is shown. 本発明の実施例に係る化合物5b,5kのHIF転写活性能の測定結果を示す。The measurement results of the HIF transcription activity of the compounds 5b and 5k according to the examples of the present invention are shown. 本発明の実施例に係る化合物5j,5iのHIF転写活性能の測定結果を示す。The measurement results of the HIF transcription activity of the compounds 5j and 5i according to the examples of the present invention are shown. 本発明の実施例に係る化合物5ab,5acのHIF転写活性能の測定結果を示す。The measurement results of the HIF transcription activity of the compounds 5ab and 5ac according to the examples of the present invention are shown. 本発明の実施例に係る化合物5fbのHIF転写活性能の測定結果を示す。The measurement result of the HIF transcription activity of the compound 5fb which concerns on the Example of this invention is shown. 本発明の実施例に係る化合物5a,5a’のHIF転写活性能の測定結果を示す。The measurement results of the HIF transcription activity of the compounds 5a, 5a'according to the examples of the present invention are shown. 本発明の実施例に係る化合物5aと従来のHIF阻害剤とのHIF安定化細胞間比較の結果を示す。The results of the HIF-stabilized cell-cell comparison between the compound 5a according to the embodiment of the present invention and the conventional HIF inhibitor are shown.
  本発明の含窒素環状化合物又はその塩は、以下の一般式(I)、一般式(II)、若しくは一般式(III)で表される。(ただし、Rは、置換又は非置換の5員環又は6員環からなる芳香環数1~2の単環構造、縮合環構造、若しくは多環構造のアリール基、又は、置換若しくは非置換の環状アルキル基であり、Rはそれぞれ独立して置換又は非置換の直鎖又は環状アルキル基である。但し、一般式(III)において、(R、R、R)の組み合わせが、各々、(フェニル基、メチル基、水素原子)、(フェニル基、メチル基、メチル基)、および、(フェニル基、エチル基、エチル基)である場合を除く。) The nitrogen-containing cyclic compound of the present invention or a salt thereof is represented by the following general formula (I), general formula (II), or general formula (III). (However, R 1 is an aryl group having a monocyclic structure, a fused ring structure, or a polycyclic structure having an aromatic ring number of 1 to 2 consisting of a substituted or unsubstituted 5-membered ring or 6-membered ring, or a substituted or unsubstituted ring. R 3 is an independently substituted or unsubstituted linear or cyclic alkyl group. However, in the general formula (III), the combination of (R 1 , R 2 , R 3 ) is , (Phenyl group, methyl group, hydrogen atom), (phenyl group, methyl group, methyl group), and (phenyl group, ethyl group, ethyl group), respectively.)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
本発明者らは、本発明に係る含窒素環状化合物又はその塩を、上記の一般式(I)、一般式(II)、若しくは一般式(III)で表される各々別個独立した化合物としてのピラゾリン誘導体もしくはピラゾリジン誘導体の合成に成功して本発明を導き出している。すなわち、上記の一般式(I)、一般式(II)、若しくは一般式(III)の各々は、同一化合物の互変異体(ケト・エノール互変異体、エナミン・イミン互変異体)を便宜上表しているのではなく、独立したピラゾリン誘導体もしくはピラゾリジン誘導体として各々別個に合成された含窒素環状化合物を表している。 The present inventors use the nitrogen-containing cyclic compound or a salt thereof according to the present invention as separate and independent compounds represented by the above general formula (I), general formula (II), or general formula (III). We have succeeded in synthesizing a pyrazoline derivative or a pyrazoline derivative to derive the present invention. That is, each of the above general formulas (I), general formula (II), or general formula (III) represents a tautomer of the same compound (keto-enol tautomer, enamine-imine tautomer) for convenience. It represents a nitrogen-containing cyclic compound synthesized separately as an independent pyrazoline derivative or a pyrazoline derivative.
上記「その塩」とは、上記の一般式(I)、一般式(II)、若しくは一般式(III)で表される含窒素環状化合物の遊離酸又は遊離塩基の生物学的及び薬学的効果を保持した塩を指す。例えば、塩基から誘導された塩として、アルカリ金属またはアルカリ土類金属のカチオンを含む塩が挙げられ、例えば、ナトリウム塩、カリウム塩、リチウム塩、セシウム塩、カルシウム塩、マグネシウム塩などとすることができる。本発明に係る含窒素環状化合物は、取り扱いの容易性から、塩形態、より好ましくはアルカリ土類金属を含む塩、例えば、ナトリウム塩、カリウム塩、リチウム塩、セシウム塩とすることができ、取り扱いの容易さから、ナトリウム塩形態であることが好ましい。 The above-mentioned "salt" is the biological and pharmaceutical effect of the free acid or free base of the nitrogen-containing cyclic compound represented by the above general formula (I), general formula (II), or general formula (III). Refers to the salt that holds. For example, examples of the salt derived from the base include salts containing cations of alkali metal or alkaline earth metal, and examples thereof include sodium salt, potassium salt, lithium salt, cesium salt, calcium salt, magnesium salt and the like. can. The nitrogen-containing cyclic compound according to the present invention can be in salt form, more preferably a salt containing an alkaline earth metal, for example, a sodium salt, a potassium salt, a lithium salt, or a cesium salt because of its ease of handling. The sodium salt form is preferable because of the ease of use.
本発明に係る含窒素環状化合物は、不斉中心となる炭素原子を含有するため、光学的に純粋なエナンチオマーや、例えばラセミ体のような混合エナンチオマー、光学的に純粋なジアステレオマー、やその混合された混合ジアステレオマー、ジアステレオマーからなるラセミ体等の形態として存在することも可能である。 Since the nitrogen-containing cyclic compound according to the present invention contains a carbon atom serving as an asymmetric center, an optically pure enantiomer, a mixed enantiomer such as a racemate, an optically pure diastereomer, and the like thereof. It can also exist in the form of a mixed mixed diastereomer, a racemate composed of diastereomers, or the like.
Rは、好ましくは置換又は非置換の6員環からなる芳香環数1~2の単環構造、縮合環構造、若しくは多環構造のアリール基、又は、置換若しくは非置換の環状アルキル基であり、このうち置換又は非置換の6員環からなる芳香環数1~2の単環構造、縮合環構造としては、例えば、(1)非置換のフェニル基、ナフチル基、ビフェニル基、チエニル基、ピリジン基、アンスラニル基等のアリール基;(2)トリル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2,3-ジメチルフェニル基、2,4-ジメチルフェニル基、2,5-ジメチルフェニル基、2,6-ジメチルフェニル基、3,4-ジメチルフェニル基、3,5-ジメチルフェニル基、3,6-ジメチルフェニル基、2,3,4-トリメチルフェニル基、2,3,5-トリメチルフェニル基、2,3,6-トリメチルフェニル基、2,4,5-トリメチルフェニル基、2,4,6-トリメチルフェニル基、3,4,5-トリメチルフェニル基、2-エチルフェニル基、プロピルフェニル基、ブチルフェニル基、ヘキシルフェニル基、シクロヘキシルフェニル基、オクチルフェニル基、2-メチル-1-ナフチル基、3-メチル-1-ナフチル基、4-メチル-1-ナフチル基、5-メチル-1-ナフチル基、6-メチル-1-ナフチル基、7-メチル-1-ナフチル基、8-メチル-1-ナフチル基、1-メチル-2-ナフチル基、3-メチル-2-ナフチル基、4-メチル-2-ナフチル基5-メチル-2-ナフチル基、6-メチル-2-ナフチル基、7-メチル-2-ナフチル基、8-メチル-2-ナフチル基、2-エチル-1-ナフチル基等の低級アルキル基により置換されたアリール基;(3)トリフルオロメチルフェニル基、トリフルオロエチルフェニル基等の低級ハロアルキル基が置換したアリール基;(4)3-メトキシフェニル基、4-メトキシフェニル基、2,3-ジメトキシフェニル基、2,4-ジメトキシフェニル基、2,5-ジメトキシフェニル基、2,6-ジメトキシフェニル基、3,4-ジメトキシフェニル基、3,5-ジメトキシフェニル基、3,6-ジメトキシフェニル基、2,3,4-トリメトキシフェニル基、2,3,5-トリメトキシフェニル基、2,3,6-トリメトキシフェニル基、2,4,5-トリメトキシフェニル基、2,4,6-トリメトキシフェニル基、3,4,5-トリメトキシフェニル基、2-エトキシフェニル基、プロポキシフェニル基、2-メトキシ-1-ナフチル基、3-メトキシ-1-ナフチル基、4-メトキシ-1-ナフチル基、5-メトキシ-1-ナフチル基、6-メトキシ-1-ナフチル基、7-メトキシ-1-ナフチル基、8-メトキシ-1-ナフチル基、1-メトキシ-2-ナフチル基、3-メトキシ-2-ナフチル基、4-メトキシ-2-ナフチル基、5-メトキシ-2-ナフチル基、6-メトキシ-2-ナフチル基、7-メトキシ-2-ナフチル基、8-メトキシ-2-ナフチル基、2-エトキシ-1-ナフチル基等の低級アルコキシ基により置換されたアリール基;(5)フェノキシベンジル基等のフェノキシ基により置換されたアリール基;(6)フェノール基、ナフトール基、クレゾール基等の水酸基により置換されたアリール基;(7)クロロフェニル基、ジクロロフェニル基、トリクロロフェニル基、フルオロフェニル基、ジフルオロフェニル基、トリフルオロフェニル基、テトラフルオロフェニル基、ペンタフルオロフェニル基、ブロモフェニル基、ジブロモフェニル基、ヨードフェニル基等のハロゲン原子により置換されたアリール基等が挙げられるが、これらに限定されるものではない。 R 1 is preferably an aryl group having a monocyclic structure, a fused ring structure, or a polycyclic structure having an aromatic ring number of 1 to 2 consisting of a substituted or unsubstituted 6-membered ring, or a substituted or unsubstituted cyclic alkyl group. Among them, the monocyclic structure and the fused ring structure having an aromatic ring number of 1 to 2 composed of a substituted or unsubstituted 6-membered ring include, for example, (1) an unsubstituted phenyl group, a naphthyl group, a biphenyl group, and a thienyl group. , Pyridine group, aryl group such as anthranyl group; (2) Trill group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2,3-dimethylphenyl group, 2,4-dimethylphenyl group , 2,5-dimethylphenyl group, 2,6-dimethylphenyl group, 3,4-dimethylphenyl group, 3,5-dimethylphenyl group, 3,6-dimethylphenyl group, 2,3,4-trimethylphenyl group , 2,3,5-trimethylphenyl group, 2,3,6-trimethylphenyl group, 2,4,5-trimethylphenyl group, 2,4,6-trimethylphenyl group, 3,4,5-trimethylphenyl group , 2-Ethylphenyl group, propylphenyl group, butylphenyl group, hexylphenyl group, cyclohexylphenyl group, octylphenyl group, 2-methyl-1-naphthyl group, 3-methyl-1-naphthyl group, 4-methyl-1 -Naphenyl group, 5-methyl-1-naphthyl group, 6-methyl-1-naphthyl group, 7-methyl-1-naphthyl group, 8-methyl-1-naphthyl group, 1-methyl-2-naphthyl group, 3 -Methyl-2-naphthyl group, 4-methyl-2-naphthyl group 5-methyl-2-naphthyl group, 6-methyl-2-naphthyl group, 7-methyl-2-naphthyl group, 8-methyl-2-naphthyl group An aryl group substituted with a lower alkyl group such as a group or a 2-ethyl-1-naphthyl group; (3) an aryl group substituted with a lower haloalkyl group such as a trifluoromethylphenyl group or a trifluoroethylphenyl group; (4). 3-methoxyphenyl group, 4-methoxyphenyl group, 2,3-dimethoxyphenyl group, 2,4-dimethoxyphenyl group, 2,5-dimethoxyphenyl group, 2,6-dimethoxyphenyl group, 3,4-dimethoxyphenyl Group, 3,5-dimethoxyphenyl group, 3,6-dimethoxyphenyl group, 2,3,4-trimethoxyphenyl group, 2,3,5-trimethoxyphenyl group, 2,3,6-trimethoxyphenyl group , 2,4,5-Trimethoxyphenyl group, 2,4,6-trimethoxyphenyl group, 3,4,5-to Limethoxyphenyl group, 2-ethoxyphenyl group, propoxyphenyl group, 2-methoxy-1-naphthyl group, 3-methoxy-1-naphthyl group, 4-methoxy-1-naphthyl group, 5-methoxy-1-naphthyl group , 6-methoxy-1-naphthyl group, 7-methoxy-1-naphthyl group, 8-methoxy-1-naphthyl group, 1-methoxy-2-naphthyl group, 3-methoxy-2-naphthyl group, 4-methoxy- 2-naphthyl group, 5-methoxy-2-naphthyl group, 6-methoxy-2-naphthyl group, 7-methoxy-2-naphthyl group, 8-methoxy-2-naphthyl group, 2-ethoxy-1-naphthyl group, etc. An aryl group substituted with a lower alkoxy group of; (5) an aryl group substituted with a phenoxy group such as a phenoxybenzyl group; (6) an aryl group substituted with a hydroxyl group such as a phenol group, a naphthol group, or a cresol group; 7) Halogen atoms such as chlorophenyl group, dichlorophenyl group, trichlorophenyl group, fluorophenyl group, difluorophenyl group, trifluorophenyl group, tetrafluorophenyl group, pentafluorophenyl group, bromophenyl group, dibromophenyl group and iodophenyl group. Examples thereof include, but are not limited to, an aryl group substituted with.
また、Rとしては、上記で挙げた置換基の複数種類が、上記アリール基の置換可能な複数の位置に置換されたものも含まれる。例えば、2-クロロー3ーメトキシフェニル基、2-クロロー4ーメトキシフェニル基、2-クロロー5ーメトキシフェニル基、2-クロロー6ーメトキシフェニル基等のように、メトキシ基及びハロゲン原子で置換されたアリール基等が挙げられるが、これらに限定されるものではない。 Further, R 1 also includes those in which a plurality of types of the substituents mentioned above are substituted at a plurality of substitutable positions of the aryl group. For example, it is substituted with a methoxy group and a halogen atom such as 2-chloro-3-methoxyphenyl group, 2-chloro-4-methoxyphenyl group, 2-chloro-5-methoxyphenyl group, 2-chloro-6-methoxyphenyl group and the like. Examples thereof include, but are not limited to, aryl groups.
このRは、より好ましくは、Rが置換又は非置換の1若しくは2つのベンゼン環又はナフタレン環を含むアリール基、又は置換若しくは非置換の炭素数3~10の環状アルキル基から構成される。Rは、置換又は非置換のアリール基から構成される場合には、例えば、アルキル基、アルコキシ基またはハロゲン原子で置換されていてもよいアリール基が挙げられ、単環構造としてはフェニル基、縮合環構造としてはナフチル基、多環構造としてはビフェニル基若しくはフェノキシベンジル基が好ましく、さらに好ましくは、Rは、1又は2つのベンゼン環を含んで構成されるものであり、より好ましくは、置換又は非置換のフェニル基又はビフェニル基から構成され、例えば、フェニル基又はビフェニル基から構成される。 More preferably, this R 1 is composed of an aryl group containing one or two substituted or unsubstituted benzene rings or naphthalene rings, or a substituted or unsubstituted cyclic alkyl group having 3 to 10 carbon atoms. .. When R 1 is composed of a substituted or unsubstituted aryl group, for example, an aryl group which may be substituted with an alkyl group, an alkoxy group or a halogen atom can be mentioned, and the monocyclic structure includes a phenyl group. The fused ring structure is preferably a naphthyl group, and the polycyclic structure is preferably a biphenyl group or a phenoxybenzyl group, more preferably R 1 is composed of one or two benzene rings, and more preferably. It is composed of a substituted or unsubstituted phenyl group or a biphenyl group, and is composed of, for example, a phenyl group or a biphenyl group.
Rは、置換若しくは非置換の炭素数3~10の環状アルキル基から構成される場合には、特に限定されないが、例えば、シクロヘキシル基、4-エチルシクロヘキシル基、4-プロピルシクロヘキシル基、4,4-ジメチルシクロヘキシル基、2,6-ジメチルシクロヘキシル基、3,5-ジメチルシクロヘキシル基、シクロへキシルメチル基、シクロプロピル基、2,3-ジメチルシクロプロピル基、シクロブチル基、シクロペンチル基、2,5-ジメチルシクロペンチル基、3-エチルシクロペンチル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデカニル基、等が挙げられ、このうち環状化合物の結合角の角歪みが少なく化学的安定性に優れる点から、5員環化合物~8員環化合物が好適であり、例えば、置換若しくは非置換のシクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基が挙げられ、さらに角歪みが少ないことから6員環化合物や7員環化合物が好適であり、例えば、置換若しくは非置換のシクロヘキシル基、シクロヘプチル基が挙げられ、このうち例えば、シクロヘキシル基が挙げられる。 When R 1 is composed of a substituted or unsubstituted cyclic alkyl group having 3 to 10 carbon atoms, it is not particularly limited, but for example, a cyclohexyl group, a 4-ethylcyclohexyl group, a 4-propylcyclohexyl group, 4, 4-Dimethylcyclohexyl group, 2,6-dimethylcyclohexyl group, 3,5-dimethylcyclohexyl group, cyclohexylmethyl group, cyclopropyl group, 2,3-dimethylcyclopropyl group, cyclobutyl group, cyclopentyl group, 2,5- Examples thereof include a dimethylcyclopentyl group, a 3-ethylcyclopentyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, a cyclodecanyl group, etc. Among them, the cyclic compound has less angular distortion of the bond angle and is excellent in chemical stability. A 5-membered ring compound to an 8-membered ring compound are suitable, and examples thereof include a substituted or unsubstituted cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group, and a 6-membered ring compound and a 6-membered ring compound because they have less angular distortion. A 7-membered ring compound is suitable, and examples thereof include a substituted or unsubstituted cyclohexyl group and a cycloheptyl group, and among these, a cyclohexyl group is mentioned, for example.
Rは、好ましくは、置換若しくは非置換のアルキル基であり、好ましくは、Rが炭素数1~10の直鎖又は分岐鎖の低級アルキル基である、直鎖又は分岐鎖のメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基が挙げられる。このうち、比較的炭素数が低い炭素数1~5の低級アルキル基が取り扱いの容易さから好適であり、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、イソヘキシル基、1,1-ジメチルブチル基、2,2-ジメチルブチル基、3,3-ジメチルブチル基等が挙げられ、このうち、例えば、メチル基、エチル基、プロピル基、イソプロピル基が挙げられる。また、Rは、これらに限定されず、例えば、より長鎖の官能基を含むことが望まれる用途の場合には、炭素数6~10の低級アルキル基も、各種の用途に応じて好適に用いることができ、例えば、直鎖又は分岐鎖のノニル基を好適に用いることができる。 R 2 is preferably a substituted or unsubstituted alkyl group, preferably a linear or branched methyl group in which R 2 is a linear or branched lower alkyl group having 1 to 10 carbon atoms. Examples thereof include an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group and a decyl group. Of these, a lower alkyl group having 1 to 5 carbon atoms, which has a relatively low carbon number, is suitable because of its ease of handling. For example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, or isobutyl. Group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, isohexyl group, 1,1-dimethylbutyl group, 2,2-dimethylbutyl group, 3,3 -Dimethylbutyl group and the like can be mentioned, and examples thereof include a methyl group, an ethyl group, a propyl group and an isopropyl group. Further, R 2 is not limited to these, and for example, in the case of an application in which it is desired to contain a longer chain functional group, a lower alkyl group having 6 to 10 carbon atoms is also suitable depending on various applications. For example, a linear or branched nonyl group can be preferably used.
Rは、置換又は非置換の直鎖又は環状アルキル基であり、好ましくは、炭素数1~6の直鎖又は環状アルキル基から構成されるものであり、直鎖アルキル基としては、より好ましくは、炭素数1~5の低級アルキル基から構成され、より好ましくは、炭素数1~3の低級アルキル基から構成され、例えば、メチル基、エチル基、プロピル基が挙げられる。また、Rは、環状アルキル基としては、好ましくは、炭素数3~10の環状アルキル基であり、特に限定されないが、例えば、シクロヘキシル基、4-エチルシクロヘキシル基、4-プロピルシクロヘキシル基、4,4-ジメチルシクロヘキシル基、2,6-ジメチルシクロヘキシル基、3,5-ジメチルシクロヘキシル基、シクロへキシルメチル基、シクロプロピル基、2,3-ジメチルシクロプロピル基、シクロブチル基、シクロペンチル基、2,5-ジメチルシクロペンチル基、3-エチルシクロペンチル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデカニル基、等が挙げられ、このうち環状化合物の結合角の角歪みが少なく化学的安定性に優れる点から、5員環化合物~8員環化合物が好適であり、例えば、置換若しくは非置換のシクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基が挙げられ、角歪みがさらに少ないことから6員環化合物や7員環化合物が好適であり、例えば、置換若しくは非置換のシクロヘキシル基、シクロヘプチル基が挙げられ、このうち例えば、シクロヘキシル基が挙げられる。 R 3 is a substituted or unsubstituted linear or cyclic alkyl group, preferably composed of a linear or cyclic alkyl group having 1 to 6 carbon atoms, and is more preferable as the linear alkyl group. Is composed of a lower alkyl group having 1 to 5 carbon atoms, more preferably composed of a lower alkyl group having 1 to 3 carbon atoms, and examples thereof include a methyl group, an ethyl group, and a propyl group. Further, R 3 is preferably a cyclic alkyl group having 3 to 10 carbon atoms as the cyclic alkyl group, and is not particularly limited, but for example, a cyclohexyl group, a 4-ethylcyclohexyl group, a 4-propylcyclohexyl group, 4 , 4-Dimethylcyclohexyl group, 2,6-dimethylcyclohexyl group, 3,5-dimethylcyclohexyl group, cyclohexylmethyl group, cyclopropyl group, 2,3-dimethylcyclopropyl group, cyclobutyl group, cyclopentyl group, 2,5 -Dimethylcyclopentyl group, 3-ethylcyclopentyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecanyl group, etc., among which the cyclic compound has less angular distortion of the bond angle and is excellent in chemical stability. A 5-membered ring compound to an 8-membered ring compound is suitable, and examples thereof include a substituted or unsubstituted cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group, and the 6-membered ring compound has further less angular distortion. And a 7-membered ring compound are suitable, and examples thereof include a substituted or unsubstituted cyclohexyl group and a cycloheptyl group, and among these, a cyclohexyl group is mentioned, for example.
  一般式(I)で表される本発明の含窒素環状化合物としてのピラゾリジン誘導体又はその塩は、次の反応式(A)で表される3段階の反応を用いて、製造することができる。 The pyrazolidine derivative or a salt thereof as the nitrogen-containing cyclic compound of the present invention represented by the general formula (I) can be produced by using a three-step reaction represented by the following reaction formula (A).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
この3段階の反応(1)~(3)について、以下、反応工程をより詳細に説明する。一般式(II)および(III)の反応工程についても以下と同様である。 The reaction steps of these three-step reactions (1) to (3) will be described in more detail below. The same applies to the reaction steps of the general formulas (II) and (III) as follows.
(1)1段階目
以下の反応式(A-1)に示すように、先ず、アルデヒド基にR1が付加した化合物1に、Rを含むピリミジン骨格を有する化合物2を、ピペリジン触媒下で加熱してアルドール縮合反応により化合物3を得る。このアルドール縮合反応については、公知の手法を用いることが可能である(例えば、Gorovoy, A. et al. Synth. Commun. 2014, 44, 1296-1300.)
(1) As shown in the reaction formula (A-1) of the first step or lower, first, compound 2 having a pyrimidine skeleton containing R 3 is added to compound 1 in which R 1 is added to an aldehyde group under a piperidine catalyst. Compound 3 is obtained by heating and undergoing an aldol condensation reaction. A known method can be used for this aldol condensation reaction (for example, Gorovoy, A. et al. Synth. Commun. 2014, 44, 1296-1300.).
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000006
 
(2段階目)
次に、以下の反応式(A-2)に示すように、得られた化合物3に、ヒドラジン一水和物を加え、エタノール下で還流させてピラゾリジン骨格を有する化合物4を得る。還流の時間は特に限定されないが、1時間~数時間とすることができ、例えば、1時間とすることができる。このピラゾリジン形成反応については、公知の手法を用いることが可能である(例えば、Abdel Latif, N. et al. Bioorg. Chem. 2016, 67, 116.)。
(2nd stage)
Next, as shown in the following reaction formula (A-2), hydrazine monohydrate is added to the obtained compound 3 and refluxed under ethanol to obtain compound 4 having a pyrazolidine skeleton. The reflux time is not particularly limited, but may be 1 hour to several hours, for example, 1 hour. Known methods can be used for this pyrazolidine formation reaction (eg, Abdel Latif, N. et al. Bioorg. Chem. 2016, 67, 116.).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(3段階目)
次に、以下の反応式(A-3)に示すように、得られた化合物4に、Rを含む炭酸エステル(酸無水物)とRを含むカルボン酸の存在下で加熱してアルカノイル化(アシル化)反応させて、本発明に係るピラゾリジン誘導体5を得ることができ、実際にこの反応によって製造が確認されている(後述の実施例参照)。この加熱温度は、特に限定されないが、100℃~200℃とすることができ、例えば、125℃とすることができる。この加熱の時間は、特に限定されないが、1時間~10時間とすることができ、例えば、2時間とすることができる。このアルカノイル化(アシル化)反応については、公知の手法を用いることが可能である。
(3rd stage)
Next, as shown in the following reaction formula (A-3), the obtained compound 4 is heated in the presence of a carbonate ester (acid anhydride) containing R 2 and a carboxylic acid containing R 2 to alkanoyl. The pyrazolidine derivative 5 according to the present invention can be obtained by subjecting it to an acylation reaction, and production has been confirmed by this reaction (see Examples described later). The heating temperature is not particularly limited, but can be 100 ° C to 200 ° C, for example, 125 ° C. The heating time is not particularly limited, but can be 1 hour to 10 hours, for example, 2 hours. A known method can be used for this alkanoylation (acyllation) reaction.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
また、本発明の含窒素環状化合物又はその塩は、一般式(II)についても同様に、以下の反応式(B)で表される反応を用いて、製造することができ、この反応によって実際に製造が確認されている(後述の実施例参照) Further, the nitrogen-containing cyclic compound of the present invention or a salt thereof can also be produced by using the reaction represented by the following reaction formula (B) for the general formula (II), and is actually produced by this reaction. Production has been confirmed in (see Examples below).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
すなわち、上記一般式(I)の3段階目に行う加熱が、Rを含むカルボン酸とRを含む炭酸エステルの存在下であることに替えて、上記一般式(II)の3段階目では、Rを含むカルボン酸の存在下として同様に加熱を行う。 That is, the heating performed in the third step of the general formula (I) is in the presence of the carboxylic acid containing R 2 and the carbonic acid ester containing R 2 , instead of the third step of the general formula (II). Then, heating is carried out in the same manner in the presence of the carboxylic acid containing R 2 .
また、本発明の含窒素環状化合物又はその塩は、一般式(III)についても同様に、以下の反応式(C)で表される反応を用いて、製造することができ、この反応によって実際に製造が確認されている(後述の実施例参照) Further, the nitrogen-containing cyclic compound of the present invention or a salt thereof can also be produced by using the reaction represented by the following reaction formula (C) for the general formula (III), and is actually produced by this reaction. Production has been confirmed in (see Examples below).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
すなわち、一般式(III)に対する反応式(C)の3段階目の反応では、上記一般式(I)に対する上記反応式(A-3)においてRを含むカルボン酸とRを含む炭酸エステルの存在下で加熱することに替えて、Rを含むカルボン酸の存在下で加熱するものである。 That is, in the third-step reaction of the reaction formula (C) to the general formula (III), the carboxylic acid containing R 2 and the carbonic acid ester containing R 2 in the above reaction formula (A-3) to the general formula (I). Instead of heating in the presence of, it is heated in the presence of a carboxylic acid containing R 2 .
本発明の含窒素環状化合物は、ピラゾリン誘導体もしくはピラゾリジン誘導体又はその塩として、一般式(I)、(II)および(III)のいずれについても、極めて簡素な3段階の反応(1)~(3)によって得ることができる。 The nitrogen-containing cyclic compound of the present invention is an extremely simple three-step reaction (1) to (3) for any of the general formulas (I), (II) and (III) as a pyrazoline derivative, a pyrazoline derivative or a salt thereof. ) Can be obtained.
このように、本発明に係る含窒素環状化合物は、上記の一般式(I)、一般式(II)、若しくは一般式(III)で表される各々別個独立した化合物として得られる。すなわち、上記の一般式(I)、一般式(II)、若しくは一般式(III)の各々は、同一化合物の互変異体(ケト・エノール互変異体、エナミン・イミン互変異体)を便宜上表しているのではなく、独立したピラゾリン誘導体もしくはピラゾリジン誘導体として各々別個に合成された化合物を表している(後述の実施例参照)。 As described above, the nitrogen-containing cyclic compound according to the present invention can be obtained as a separate and independent compound represented by the above general formula (I), general formula (II), or general formula (III). That is, each of the above general formulas (I), general formula (II), or general formula (III) represents a tautomer of the same compound (keto-enol tautomer, enamine-imine tautomer) for convenience. It represents a compound synthesized separately as an independent pyrazoline derivative or a pyrazoline derivative (see Examples below).
このように得られた一般式(I)、一般式(II)、若しくは一般式(III)で表される含窒素環状化合物については、その遊離酸又は遊離塩基の生物学的及び薬学的効果を保持した塩形態を形成することが可能である。その塩の一例として、以下が挙げられる。 With respect to the nitrogen-containing cyclic compound represented by the general formula (I), the general formula (II), or the general formula (III) thus obtained, the biological and pharmaceutical effects of the free acid or the free base can be obtained. It is possible to form a retained salt form. The following is an example of the salt.
Figure JPOXMLDOC01-appb-C000011
(但し、Mは、アルカリ金属またはアルカリ土類金属のカチオンを表す。)
Figure JPOXMLDOC01-appb-C000011
(However, M + represents a cation of an alkali metal or an alkaline earth metal.)
このように、塩基から誘導された塩として、ナトリウム塩、カリウム塩、リチウム塩、セシウム塩、カルシウム塩、マグネシウム塩などとすることができる。本発明に係る含窒素環状化合物は、取り扱いの容易性から、塩形態、より好ましくはアルカリ土類金属を含む塩、例えば、ナトリウム塩、カリウム塩、リチウム塩、セシウム塩とすることができ、取り扱いの容易さから、ナトリウム塩形態であることが好ましい。 As described above, the salt derived from the base can be a sodium salt, a potassium salt, a lithium salt, a cesium salt, a calcium salt, a magnesium salt or the like. The nitrogen-containing cyclic compound according to the present invention can be in salt form, more preferably a salt containing an alkaline earth metal, for example, a sodium salt, a potassium salt, a lithium salt, or a cesium salt because of its ease of handling. The sodium salt form is preferable because of the ease of use.
上述のように、本発明に係る新規な含窒素環状化合物又はその塩は、ピラゾリン誘導体もしくはピラゾリジン誘導体又はその塩として、簡素な3段階の反応工程によって合成可能であり、従来よりも低コストで製造できる。 As described above, the novel nitrogen-containing cyclic compound or a salt thereof according to the present invention can be synthesized as a pyrazoline derivative or a pyrazoline derivative or a salt thereof by a simple three-step reaction step, and can be produced at a lower cost than before. can.
このようにして得られた新規の含窒素環状化合物又はその塩の用途は多岐にわたる。 The novel nitrogen-containing cyclic compound or salt thereof thus obtained has a wide range of uses.
例えば、その一例として、上述した以下一般式(I)、一般式(II)、若しくは一般式(III)で表された新規の含窒素環状化合物およびその塩を含有する組成物が挙げられる。(ただし、Rは、置換又は非置換の5員環又は6員環からなる芳香環数1~2の単環構造、縮合環構造、又は多環構造からなり、Rは水素原子又は置換若しくは非置換のアルキル基であり、Rはそれぞれ独立して置換又は非置換の直鎖又は環状アルキル基である。) For example, as an example thereof, a composition containing a novel nitrogen-containing cyclic compound represented by the following general formula (I), general formula (II), or general formula (III) and a salt thereof can be mentioned. (However, R 1 is composed of a monocyclic structure, a fused ring structure, or a polycyclic structure having an aromatic ring number of 1 to 2 consisting of a substituted or unsubstituted 5-membered ring or a 6-membered ring, and R 2 is a hydrogen atom or a substituted ring. Alternatively, it is an unsubstituted alkyl group, and R 3 is an independently substituted or unsubstituted linear or cyclic alkyl group.)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
本組成物に含まれる一般式(I)、一般式(II)、若しくは一般式(III)で表される含窒素環状化合物については、上述したように、その遊離酸又は遊離塩基の生物学的及び薬学的効果を保持した塩形態を形成することが可能である。その塩の一例として、以下が挙げられる。 As for the nitrogen-containing cyclic compound represented by the general formula (I), the general formula (II), or the general formula (III) contained in the present composition, as described above, the biological of the free acid or the free base thereof. And it is possible to form a salt form that retains its pharmaceutical effect. The following is an example of the salt.
Figure JPOXMLDOC01-appb-C000013
(但し、Mは、アルカリ金属またはアルカリ土類金属のカチオンを表す。)
Figure JPOXMLDOC01-appb-C000013
(However, M + represents a cation of an alkali metal or an alkaline earth metal.)
このように、塩基から誘導された塩として、例えば、ナトリウム塩、カリウム塩、リチウム塩、セシウム塩、カルシウム塩、マグネシウム塩などとすることができる。本発明に係る含窒素環状化合物は、取り扱いの容易性から、塩形態、より好ましくはアルカリ土類金属を含む塩、例えば、ナトリウム塩、カリウム塩、リチウム塩、セシウム塩とすることができ、取り扱いの容易さから、ナトリウム塩形態であることが好ましい。 As described above, as the salt derived from the base, for example, sodium salt, potassium salt, lithium salt, cesium salt, calcium salt, magnesium salt and the like can be used. The nitrogen-containing cyclic compound according to the present invention can be in salt form, more preferably a salt containing an alkaline earth metal, for example, a sodium salt, a potassium salt, a lithium salt, or a cesium salt because of its ease of handling. The sodium salt form is preferable because of the ease of use.
本発明に係る組成物は、上述した新規の含窒素環状化合物又はその塩を含有するものであり、様々な用途に用いることが可能である。 The composition according to the present invention contains the above-mentioned novel nitrogen-containing cyclic compound or a salt thereof, and can be used for various purposes.
例えば、医薬分野においては、安価に製造できてプロリル水酸化酵素(PHD)の阻害作用を発揮する組成物があれば、その低酸素誘導因子(HIF)活性化作用によって、従来よりも安価なHIF活性剤及びその試薬の提供も可能となると考えられる。これにより、安価で使い勝手の良い優れた慢性腎疾患治療薬が実現される可能性も秘めているが、従来からそのような優れた組成物は存在していない。 For example, in the pharmaceutical field, if there is a composition that can be produced inexpensively and exerts an inhibitory effect on prolyl hydroxylase (PHD), HIF is cheaper than before due to its hypoxia-inducing factor (HIF) activating effect. It is considered possible to provide an activator and its reagent. This has the potential to realize an excellent therapeutic agent for chronic kidney disease that is inexpensive and easy to use, but such an excellent composition has not existed in the past.
この点に関して、本発明者らは、本発明に係る上記組成物が、驚くべきことに、優れたプロリン水酸化酵素(PHD)の活性阻害能を発揮することも見出している。このプロリン水酸化酵素(PHD)の活性阻害能によって、低酸素誘導因子(HIF)を活性化することが可能となり、新たな基本構造をもつHIF活性剤が実現されるものとなる。 In this regard, the present inventors have also found that the above-mentioned composition according to the present invention surprisingly exhibits an excellent ability to inhibit the activity of proline hydroxylase (PHD). This ability to inhibit the activity of proline hydroxylase (PHD) makes it possible to activate hypoxia-inducible factor (HIF), and a HIF activator having a new basic structure will be realized.
事実として、本発明に係る組成物は、低酸素誘導因子(HIF)の活性作用を示すものとして、従来のHIF活性剤よりも優れた活性が確かに確認されている(後述の実施例参照)。 In fact, the composition according to the present invention has certainly been confirmed to be more active than conventional HIF activators as exhibiting the active action of hypoxia-inducible factor (HIF) (see Examples below). ..
このような用途への適合性を考慮すれば、より好適には、R1が1又は2つのフェニル基から構成されるか、及び/又は、R2が炭素数1~5の低級アルキル基から構成されるか、及び/又はRが炭素数1~6の直鎖又は環状アルキル基から構成されるものが好ましい。 Considering the suitability for such applications, more preferably, R 1 is composed of one or two phenyl groups and / or R 2 is composed of a lower alkyl group having 1 to 5 carbon atoms. It is preferably composed and / or composed of a linear or cyclic alkyl group having 1 to 6 carbon atoms in R3.
Rとしては、上述した通りではあるが、好ましくは置換又は非置換の6員環からなる芳香環数1~2の単環構造、縮合環構造、又は多環構造のアリール基であり、例えば、(1)非置換のフェニル基、ナフチル基、ビフェニル基、チエニル基、ピリジン基、アンスラニル基等のアリール基;(2)トリル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2,3-ジメチルフェニル基、2,4-ジメチルフェニル基、2,5-ジメチルフェニル基、2,6-ジメチルフェニル基、3,4-ジメチルフェニル基、3,5-ジメチルフェニル基、3,6-ジメチルフェニル基、2,3,4-トリメチルフェニル基、2,3,5-トリメチルフェニル基、2,3,6-トリメチルフェニル基、2,4,5-トリメチルフェニル基、2,4,6-トリメチルフェニル基、3,4,5-トリメチルフェニル基、2-エチルフェニル基、プロピルフェニル基、ブチルフェニル基、ヘキシルフェニル基、シクロヘキシルフェニル基、オクチルフェニル基、2-メチル-1-ナフチル基、3-メチル-1-ナフチル基、4-メチル-1-ナフチル基、5-メチル-1-ナフチル基、6-メチル-1-ナフチル基、7-メチル-1-ナフチル基、8-メチル-1-ナフチル基、1-メチル-2-ナフチル基、3-メチル-2-ナフチル基、4-メチル-2-ナフチル基、5-メチル-2-ナフチル基、6-メチル-2-ナフチル基、7-メチル-2-ナフチル基、8-メチル-2-ナフチル基、2-エチル-1-ナフチル基等の低級アルキル基により置換されたアリール基;(3)トリフルオロメチルフェニル基、トリフルオロエチルフェニル基等の低級ハロアルキル基が置換したアリール基;(4)3-メトキシフェニル基、4-メトキシフェニル基、2,3-ジメトキシフェニル基、2,4-ジメトキシフェニル基、2,5-ジメトキシフェニル基、2,6-ジメトキシフェニル基、3,4-ジメトキシフェニル基、3,5-ジメトキシフェニル基、3,6-ジメトキシフェニル基、2,3,4-トリメトキシフェニル基、2,3,5-トリメトキシフェニル基、2,3,6-トリメトキシフェニル基、2,4,5-トリメトキシフェニル基、2,4,6-トリメトキシフェニル基、3,4,5-トリメトキシフェニル基、2-エトキシフェニル基、プロポキシフェニル基、2-メトキシ-1-ナフチル基、3-メトキシ-1-ナフチル基、4-メトキシ-1-ナフチル基、5-メトキシ-1-ナフチル基、6-メトキシ-1-ナフチル基、7-メトキシ-1-ナフチル基、8-メトキシ-1-ナフチル基、1-メトキシ-2-ナフチル基、3-メトキシ-2-ナフチル基、4-メトキシ-2-ナフチル基、5-メトキシ-2-ナフチル基、6-メトキシ-2-ナフチル基、7-メトキシ-2-ナフチル基、8-メトキシ-2-ナフチル基、2-エトキシ-1-ナフチル基等の低級アルコキシ基により置換されたアリール基;(5)フェノキシベンジル基等のフェノキシ基により置換されたアリール基;(6)フェノール基、ナフトール基、クレゾール基等の水酸基により置換されたアリール基;(7)クロロフェニル基、ジクロロフェニル基、トリクロロフェニル基、フルオロフェニル基、ジフルオロフェニル基、トリフルオロフェニル基、テトラフルオロフェニル基、ペンタフルオロフェニル基、ブロモフェニル基、ジブロモフェニル基、ヨードフェニル基等のハロゲン原子により置換されたアリール基等が挙げられ、より好ましくは、アルキル基、アルコキシ基またはハロゲン原子で置換されていてもよいアリール基であり、単環構造としてはフェニル基、縮合環構造としてはナフチル基、多環構造としてはビフェニル基若しくはフェノキシベンジル基がより好ましい。 As described above, R 1 is preferably an aryl group having a monocyclic structure, a fused ring structure, or a polycyclic structure having 1 to 2 aromatic rings composed of substituted or unsubstituted 6-membered rings, for example. , (1) aryl groups such as unsubstituted phenyl group, naphthyl group, biphenyl group, thienyl group, pyridine group, anthranyl group; (2) trill group, 2-methylphenyl group, 3-methylphenyl group, 4-methyl Phenyl group, 2,3-dimethylphenyl group, 2,4-dimethylphenyl group, 2,5-dimethylphenyl group, 2,6-dimethylphenyl group, 3,4-dimethylphenyl group, 3,5-dimethylphenyl group , 3,6-dimethylphenyl group, 2,3,4-trimethylphenyl group, 2,3,5-trimethylphenyl group, 2,3,6-trimethylphenyl group, 2,4,5-trimethylphenyl group, 2 , 4,6-trimethylphenyl group, 3,4,5-trimethylphenyl group, 2-ethylphenyl group, propylphenyl group, butylphenyl group, hexylphenyl group, cyclohexylphenyl group, octylphenyl group, 2-methyl-1 -Naphenyl group, 3-methyl-1-naphthyl group, 4-methyl-1-naphthyl group, 5-methyl-1-naphthyl group, 6-methyl-1-naphthyl group, 7-methyl-1-naphthyl group, 8 -Methyl-1-naphthyl group, 1-methyl-2-naphthyl group, 3-methyl-2-naphthyl group, 4-methyl-2-naphthyl group, 5-methyl-2-naphthyl group, 6-methyl-2- An aryl group substituted with a lower alkyl group such as a naphthyl group, 7-methyl-2-naphthyl group, 8-methyl-2-naphthyl group, 2-ethyl-1-naphthyl group; (3) trifluoromethylphenyl group, An aryl group substituted with a lower haloalkyl group such as a trifluoroethylphenyl group; (4) 3-methoxyphenyl group, 4-methoxyphenyl group, 2,3-dimethoxyphenyl group, 2,4-dimethoxyphenyl group, 2,5 -Dimethoxyphenyl group, 2,6-dimethoxyphenyl group, 3,4-dimethoxyphenyl group, 3,5-dimethoxyphenyl group, 3,6-dimethoxyphenyl group, 2,3,4-trimethoxyphenyl group, 2, 3,5-Trimethoxyphenyl group, 2,3,6-trimethoxyphenyl group, 2,4,5-trimethoxyphenyl group, 2,4,6-trimethoxyphenyl group, 3,4,5-trimethoxy Phenyl group, 2-ethoxyphenyl group, propoxyphenyl group, 2-methoxy-1-naphthyl group, 3-Methone-1-naphthyl group, 4-methoxy-1-naphthyl group, 5-methoxy-1-naphthyl group, 6-methoxy-1-naphthyl group, 7-methoxy-1-naphthyl group, 8-methoxy-1 -Naphenyl group, 1-methoxy-2-naphthyl group, 3-methoxy-2-naphthyl group, 4-methoxy-2-naphthyl group, 5-methoxy-2-naphthyl group, 6-methoxy-2-naphthyl group, 7 Aryl groups substituted with lower alkoxy groups such as -methoxy-2-naphthyl group, 8-methoxy-2-naphthyl group, 2-ethoxy-1-naphthyl group; (5) substituted with phenoxy groups such as phenoxybenzyl group. Aryl group; (6) Aryl group substituted with hydroxyl group such as phenol group, naphthol group, cresol group; (7) Chlorophenyl group, dichlorophenyl group, trichlorophenyl group, fluorophenyl group, difluorophenyl group, trifluorophenyl group , Tetrafluorophenyl group, pentafluorophenyl group, bromophenyl group, dibromophenyl group, aryl group substituted with halogen atom such as iodophenyl group, and the like, more preferably alkyl group, alkoxy group or halogen atom. It is an aryl group that may be substituted, and more preferably a phenyl group as a monocyclic structure, a naphthyl group as a condensed ring structure, and a biphenyl group or a phenoxybenzyl group as a polycyclic structure.
さらに組成物として優れた効能を発揮し得る点から、さらに好ましくは、Rは、フェニル基又はビフェニル基からなることが好ましい。 Further, R 1 is more preferably composed of a phenyl group or a biphenyl group from the viewpoint that it can exhibit excellent efficacy as a composition.
この他にも、Rとしては、置換又は非置換の直鎖又は環状アルキル基から構成することも可能であり、この場合には、Rは、好ましくは、炭素数1~6の直鎖又は環状アルキル基から構成されるものであり、直鎖アルキル基としては、より好ましくは、炭素数1~5の低級アルキル基から構成され、より好ましくは、炭素数1~3の低級アルキル基から構成され、例えば、メチル基、エチル基、プロピル基が挙げられる。また、Rは、環状アルキル基としては、好ましくは、炭素数3~10の環状アルキル基であり、特に限定されないが、例えば、シクロヘキシル基、4-エチルシクロヘキシル基、4-プロピルシクロヘキシル基、4,4-ジメチルシクロヘキシル基、2,6-ジメチルシクロヘキシル基、3,5-ジメチルシクロヘキシル基、シクロへキシルメチル基、シクロプロピル基、2,3-ジメチルシクロプロピル基、シクロブチル基、シクロペンチル基、2,5-ジメチルシクロペンチル基、3-エチルシクロペンチル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデカニル基、等が挙げられ、取り扱いの容易さから、シクロヘキシル基が好ましい。 In addition to this, R 1 can also be composed of a substituted or unsubstituted linear or cyclic alkyl group, in which case R 1 is preferably a linear chain having 1 to 6 carbon atoms. Alternatively, it is composed of a cyclic alkyl group, and the linear alkyl group is more preferably composed of a lower alkyl group having 1 to 5 carbon atoms, and more preferably composed of a lower alkyl group having 1 to 3 carbon atoms. It is composed and includes, for example, a methyl group, an ethyl group, and a propyl group. Further, R 3 is preferably a cyclic alkyl group having 3 to 10 carbon atoms as the cyclic alkyl group, and is not particularly limited, but for example, a cyclohexyl group, a 4-ethylcyclohexyl group, a 4-propylcyclohexyl group, 4 , 4-Dimethylcyclohexyl group, 2,6-dimethylcyclohexyl group, 3,5-dimethylcyclohexyl group, cyclohexylmethyl group, cyclopropyl group, 2,3-dimethylcyclopropyl group, cyclobutyl group, cyclopentyl group, 2,5 -Includes dimethylcyclopentyl group, 3-ethylcyclopentyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecanyl group, etc., and cyclohexyl group is preferable from the viewpoint of ease of handling.
Rについても、上述した通りではあるが、好ましくは、置換若しくは非置換のアルキル基であり、好ましくは、炭素数1~5の低級アルキル基から構成され、より好ましくは、炭素数1~3の低級アルキル基から構成され、例えば、メチル基、エチル基、プロピル基が挙げられる。 As described above, R 2 is preferably a substituted or unsubstituted alkyl group, preferably composed of a lower alkyl group having 1 to 5 carbon atoms, and more preferably 1 to 3 carbon atoms. It is composed of a lower alkyl group of the above, and examples thereof include a methyl group, an ethyl group, and a propyl group.
Rについても、上述した通りではあるが、好ましくは、置換又は非置換の直鎖又は環状アルキル基であり、直鎖アルキル基としては、好ましくは、炭素数1~5の低級アルキル基から構成され、より好ましくは、炭素数1~3の低級アルキル基から構成され、例えば、メチル基、エチル基、プロピル基が挙げられる。また、Rは、環状アルキル基としては、好ましくは、炭素数3~10の環状アルキル基であり、特に限定されないが、例えば、シクロヘキシル基、4-エチルシクロヘキシル基、4-プロピルシクロヘキシル基、4,4-ジメチルシクロヘキシル基、2,6-ジメチルシクロヘキシル基、3,5-ジメチルシクロヘキシル基、シクロへキシルメチル基、シクロプロピル基、2,3-ジメチルシクロプロピル基、シクロブチル基、シクロペンチル基、2,5-ジメチルシクロペンチル基、3-エチルシクロペンチル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデカニル基、等が挙げられる。 As described above, R 3 is preferably a substituted or unsubstituted linear or cyclic alkyl group, and the linear alkyl group is preferably composed of a lower alkyl group having 1 to 5 carbon atoms. It is more preferably composed of a lower alkyl group having 1 to 3 carbon atoms, and examples thereof include a methyl group, an ethyl group and a propyl group. Further, R 3 is preferably a cyclic alkyl group having 3 to 10 carbon atoms as the cyclic alkyl group, and is not particularly limited, but for example, a cyclohexyl group, a 4-ethylcyclohexyl group, a 4-propylcyclohexyl group, 4 , 4-Dimethylcyclohexyl group, 2,6-dimethylcyclohexyl group, 3,5-dimethylcyclohexyl group, cyclohexylmethyl group, cyclopropyl group, 2,3-dimethylcyclopropyl group, cyclobutyl group, cyclopentyl group, 2,5 -Includes dimethylcyclopentyl group, 3-ethylcyclopentyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecanyl group and the like.
Rは、組成物として優れた効能を発揮し得る点から、メチル基、エチル基、もしくはプロピル基程度の分子量の小さな直鎖アルキル基であるか、またはシクロプロピル基、シクロペンチル基、もしくはシクロヘキシル基程度の分子量の大きさの環状アルキル基であることが好ましく、例えば、メチル基、エチル基、プロピル基、またはシクロヘキシル基であることがより好ましい。 R 3 is a linear alkyl group having a small molecular weight such as a methyl group, an ethyl group, or a propyl group, or a cyclopropyl group, a cyclopentyl group, or a cyclohexyl group because it can exhibit excellent effects as a composition. It is preferably a cyclic alkyl group having a molecular weight of about the same, and more preferably a methyl group, an ethyl group, a propyl group, or a cyclohexyl group, for example.
 本発明に係る組成物の態様としては、特に限定されないが、医薬品、医薬部外品、又は試薬として利用することができる。 The aspect of the composition according to the present invention is not particularly limited, but can be used as a drug, a quasi drug, or a reagent.
本発明に係る組成物は、医薬品又は医薬部外品として(すなわち医薬組成物として)使用する場合には、上述したようにプロリン水酸化酵素活性を阻害する作用によって、ヒトまたは動物の各種疾病を治療可能な薬剤(治療薬)として使用することができる。 When the composition according to the present invention is used as a drug or a quasi-drug (that is, as a quasi-drug), it causes various human or animal diseases by the action of inhibiting the proline hydroxylase activity as described above. It can be used as a treatable drug (therapeutic drug).
このような疾病としては、例えば、腎臓病、慢性腎疾患、虚血性疾患、高血圧、糖尿病、および動脈硬化などが挙げられ、例えば、慢性腎疾患(慢性腎炎)による虚血症状改善薬が挙げられる。 Examples of such diseases include kidney disease, chronic kidney disease, ischemic disease, hypertension, diabetes, and arteriosclerosis, and examples thereof include drugs for improving ischemic symptoms due to chronic kidney disease (chronic nephritis). ..
また、本発明に係る組成物は、低分子化合物であることから、経口投与可能であり、例えば、経口投与用低酸素誘導因子(HIF)活性剤として利用することが可能である。この本発明に係る経口投与用低酸素誘導因子(HIF)活性剤は、皮下注射等の侵襲を回避できることから、患者の負担を軽減することができ、例えば、腎臓病治療用の経口投与用HIF活性剤として利用することが可能である。また最近ではパッチ等で持続的に痛みを軽減した皮下注射経路も開発されてはいるものの依然として一定の患者負担があり、いずれにしても、本発明に係る経口投与用低酸素誘導因子(HIF)活性剤によって、患者の負担を軽減することが可能となる。 Further, since the composition according to the present invention is a small molecule compound, it can be orally administered, and can be used, for example, as a hypoxia-inducing factor (HIF) activator for oral administration. The hypoxia-inducible factor (HIF) activator for oral administration according to the present invention can reduce the burden on the patient because it can avoid invasion such as subcutaneous injection. For example, HIF for oral administration for the treatment of kidney disease. It can be used as an activator. Recently, although a subcutaneous injection route that continuously reduces pain with a patch or the like has been developed, there is still a certain burden on the patient, and in any case, the hypoxia-inducing factor (HIF) for oral administration according to the present invention. The activator makes it possible to reduce the burden on the patient.
この点、従来のHIF活性剤では、上述したように、2-オキソグルタル酸(2-OG)骨格を有する化合物(2-OG類似化合物)が一般に使用されているが、本発明に係る組成物は、その構造式から2-オキソグルタル酸(2-OG)骨格に基づかない化合物と解される点から、従来のHIF活性剤とは構造が全く異なるものでありHIF活性の作用メカニズムも全く異なるものであることから、本発明に係る組成物をHIF活性剤として利用した際には、従来には無い新規なHIF活性剤となる。また、本発明に係る組成物は、上述の3段階の簡素な反応によって合成され、2-OG類似化合物を用いた従来のHIF活性剤より安価に製造可能となる。さらに、本発明に係る組成物は、従来のHIF活性剤よりもHIF活性の選択性が高いことが確認されている(後述の実施例参照)。 In this regard, in the conventional HIF activator, as described above, a compound having a 2-oxoglutaric acid (2-OG) skeleton (2-OG-like compound) is generally used, but the composition according to the present invention is used. The structure is completely different from that of conventional HIF activators, and the mechanism of action of HIF activity is also completely different, because it is understood from its structural formula as a compound that is not based on the 2-oxoglutaric acid (2-OG) skeleton. Therefore, when the composition according to the present invention is used as a HIF activator, it becomes a novel HIF activator that has never existed in the past. In addition, the composition according to the present invention is synthesized by the simple reaction of the above three steps, and can be produced at a lower cost than the conventional HIF activator using a 2-OG analog. Furthermore, it has been confirmed that the composition according to the present invention has higher HIF activity selectivity than conventional HIF activators (see Examples described later).
本発明に係る組成物は、上記含窒素環状化合物又はその塩を目的に応じて任意の濃度で含有することができる。また、その濃度は、患者の年齢及び体重、疾病の種類や程度、並びに投与の経路に応じて自由に設計可能である。 The composition according to the present invention can contain the above nitrogen-containing cyclic compound or a salt thereof at an arbitrary concentration depending on the purpose. In addition, the concentration can be freely designed according to the age and weight of the patient, the type and degree of the disease, and the route of administration.
また、本発明に係る組成物は、その化学構造から、各種の官能基の導入が可能であることから、その溶媒特性に関して、水溶性を高めたり、脂溶性にふることも可能である。本発明に係る組成物のこの特性により、作用・投与経路を自在に変更させて容易に制御することが可能となる。 Further, since the composition according to the present invention can be introduced with various functional groups due to its chemical structure, it is also possible to improve the water solubility or to make it fat-soluble in terms of its solvent characteristics. Due to this property of the composition according to the present invention, the action / administration route can be freely changed and easily controlled.
本発明に係る組成物は、優れた低酸素誘導因子(HIF)の活性作用を示すことから、研究試薬として(すなわち試薬組成物として)利用することも可能である。 Since the composition according to the present invention exhibits an excellent activity of hypoxia-inducible factor (HIF), it can also be used as a research reagent (that is, as a reagent composition).
この低酸素誘導因子(HIF)の活性作用については、話題性が高く世界中の多くの研究者によって研究が続けられており、研究試薬としてのニーズも高く、より安価で簡便な研究試薬が望まれているところである。本発明に係る組成物は、そのようなニーズを満たす優れた研究試薬として提供可能である。 The active action of this hypoxia-inducible factor (HIF) is highly topical and is being researched by many researchers all over the world, and there is a high need for it as a research reagent, and a cheaper and simpler research reagent is desired. It's being rare. The composition according to the present invention can be provided as an excellent research reagent satisfying such needs.
(実施例)
以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。
なお分析は下記装置で実施した。
1H-NMR、13C-NMR:Varian製 NMR 400 MHz system
ゲル浸透クロマトグラフィー(GPC):日本分析工業社製 LaboACE LC-5060
(Example)
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
The analysis was carried out with the following equipment.
1 H-NMR, 13 C-NMR: Varian NMR 400 MHz system
Gel Permeation Chromatography (GPC): LaboACE LC-5060 manufactured by Nippon Analytical Industry Co., Ltd.
ピラゾリン誘導体の製造
(実施例1)
5-(1-アセチル-5-フェニルピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5a)の調製
Production of Pyrazoline Derivative (Example 1)
Preparation of 5- (1-Acetyl-5-Phenylpyrazolidine-3-iriden) -1,3-dimethylbarbituric acid (Compound 5a)
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
上記一般式(A)に従って、以下の合成反応を行った(R=CH、R=CH、R=CH)。 The following synthetic reaction was carried out according to the above general formula (A) (R 1 = C 6 H 5 , R 2 = CH 3 , R 3 = CH 3 ).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
還流管を取り付けた25 mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、4等量のベンズアルデヒド(ナカライテスク社製)、 5-アセチル-1,3-ジメチルバルビツール酸(東京化成工業製)5mmolを加え攪拌した。170度に加温したのち、ピぺリジン(ナカライテスク社製)を2滴滴下した。7分後反応を加熱を停止し、冷やすことで白色個体が得られた。エタノールで濾過を行い、濾物は真空乾燥することでエノン(6-hydroxy-1,3-dimethyl-5-[(2E)-3-phenylprop-2-enoyl]-1,2,3,4-tetrahydropyrimidine-2,4-dione)が84%の収率で得られた。 After frame-drying a 25 mL two-necked flask equipped with a reflux tube in an argon atmosphere, 4 equal volumes of benzaldehyde (manufactured by Nacalai Tesque) and 5-acetyl-1,3-dimethylbarbituric acid (Tokyo Chemical Industry) (Industrial) 5 mmol was added and stirred. After heating to 170 degrees, 2 drops of piperidine (manufactured by Nacalai Tesque) were dropped. After 7 minutes, the reaction was stopped heating and cooled to obtain a white solid. Filter with ethanol and vacuum dry the filter to enone (6-hydroxy-1,3-dimethyl-5-[(2E) -3-phenylprop-2-enoyl] -1,2,3,4- (Tetrahydropyrimidine-2,4-dione) was obtained in 84% yield.
先に合成した中間体エノン化合物6-hydroxy-1,3-dimethyl-5-[(2E)-3-phenylprop-2-enoyl]-1,2,3,4-tetrahydropyrimidine-2,4-dione)1mmol、2 eqヒドラジン一水和物(ナカライテスク社製)、エタノールを加え攪拌した。反応終了後、エタノールで濾過を行い、濾物は真空乾燥して化合物4を得た。構造は1H NMR及び13C NMR により決定した。 The previously synthesized intermediate enone compound 6-hydroxy-1,3-dimethyl-5-[(2E) -3-phenylprop-2-enoyl] -1,2,3,4-tetrahydropyrimidine-2,4-dione) 1 mmol, 2 eq hydrazine monohydrate (manufactured by Nacalai Tesque) and ethanol were added and stirred. After completion of the reaction, filtration was carried out with ethanol, and the filtrate was vacuum dried to obtain compound 4. The structure was determined by 1 H NMR and 13 C NMR.
次に、25 mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、0.3 mmolの化合物4、酢酸(ナカライテスク社製)0.5 mL、無水酢酸(東京化成製)0.5mLを加え125oCで2時間攪拌した。反応終了後はトルエンを加えてエバポレーターで濃縮し、真空乾燥した。その後ゲル浸透クロマトグラフィー(GPC)によって分離し、純粋な化合物5として5-(1-アセチル-5-フェニルピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5a)を白色固体(収率80%)を得た。構造は1H NMRと13C NMRによりTMSをそれぞれ0ppm基準として決定した。
5-(1-acetyl-5-phenylpyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid (5a):white solid; 1HNMR (400 MHz, CDCl3)δ1.94 (s, 3H), 3.27 (s, 3H), 3.37 (s, 3H), 3.99 (dd, J = 2.5, 19.5 Hz, 1H), 4.3 (dd, J = 10.9, 19.5 Hz, 1H), 5.4 (d, J = 8.16 Hz, 1H), 7.2 (d, J = 7.2 Hz, 2H), 7.31-7.47 (m, 3H), 13.19 (br, 1H); 13C NMR(100 MHz, CDCl3)δ20.6, 27.7, 45.1, 58.6, 86.3, 125.0, 129.0, 129.7, 139.3, 151.6, 157.7, 162.1, 163.6, 164.3.
Next, frame dry a 25 mL two-necked flask under an argon atmosphere, and then add 0.3 mmol of compound 4, acetic acid (manufactured by Nacalai Tesque) 0.5 mL, and acetic anhydride (manufactured by Tokyo Kasei) 0.5 mL, 125 o . Stir in C for 2 hours. After completion of the reaction, toluene was added, the mixture was concentrated on an evaporator, and the mixture was vacuum dried. It is then separated by gel permeation chromatography (GPC) and whitened as pure compound 5 5- (1-acetyl-5-phenylpyrazolidine-3-ylidene) -1,3-dimethylbarbituric acid (compound 5a). A solid (yield 80%) was obtained. The structure was determined by 1 H NMR and 13 C NMR with TMS as the 0 ppm standard, respectively.
5- (1-acetyl-5-phenylpyrazolidin-3-ylidene) -1,3-dimethylbarbituric acid (5a): white solid; 1 HNMR (400 MHz, CDCl 3 ) δ1.94 (s, 3H), 3.27 (s) , 3H), 3.37 (s, 3H), 3.99 (dd, J = 2.5, 19.5 Hz, 1H), 4.3 (dd, J = 10.9, 19.5 Hz, 1H), 5.4 (d, J = 8.16 Hz, 1H) , 7.2 (d, J = 7.2 Hz, 2H), 7.31-7.47 (m, 3H), 13.19 (br, 1H); 13 C NMR (100 MHz, CDCl 3 ) δ 20.6, 27.7, 45.1, 58.6, 86.3 , 125.0, 129.0, 129.7, 139.3, 151.6, 157.7, 162.1, 163.6, 164.3.
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000016
 
(実施例2)
1,3-ジメチル-5-(5-フェニル-1-プロパノイルピラゾリジン-3-イリデン)バルビツール酸(化合物5ab)の調製(一般式(A):R=CH、R=CH、R=CH)
(Example 2)
Preparation of 1,3-dimethyl-5- (5-phenyl-1-propanoylpyrazolidine-3-ylidene) barbituric acid (Compound 5ab) (general formula (A): R 1 = C 6 H 5 , R 2 = CH 3 , R 3 = CH 3 )
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
25 mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、0.3 mmolの化合物4、プロピオン酸(ナカライ製) 0.5 mL, 無水プロピオン酸(東京化成製)0.5 mLを加え125oCで2時間攪拌した。反応終了後はトルエンを加えてエバポレーターで濃縮し、真空乾燥した。その後ゲル浸透クロマトグラフィー(GPC)によって分離し、純粋な化合物5として1,3-ジメチル-5-(5-フェニル-1-プロパノイルピラゾリジン-3-イリデン)バルビツール酸(化合物5ab)を白色固体(収率80%)を得た。構造は1H NMRと13C NMRによりTMSをそれぞれ0ppm基準として決定した。 After frame-drying a 25 mL two-necked flask under an argon atmosphere, add 0.3 mmol of compound 4, 0.5 mL of propionic acid (manufactured by Nakarai), and 0.5 mL of propionic anhydride (manufactured by Tokyo Kasei), and add 2 at 125 o C. Stirred for hours. After completion of the reaction, toluene was added, the mixture was concentrated on an evaporator, and the mixture was vacuum dried. It is then separated by gel permeation chromatography (GPC) and given as pure compound 5 1,3-dimethyl-5- (5-phenyl-1-propanoylpyrazolidine-3-iriden) barbituric acid (compound 5ab). A white solid (yield 80%) was obtained. The structure was determined by 1 H NMR and 13 C NMR with TMS as the 0 ppm standard, respectively.
1,3-dimethyl-5-(5-phenyl-1-propanoylpyrazolidin-3-ylidene)barbituric acid (5ab): white solid; 1H NMR (400 MHz, CDCl3)δ1.02-1.08 (m, 3H), 1.95-2.11 (m, 1H), 2.15-2.38 (m, 1H), 3.27 (s, 3H), 3.37 (s, 3H), 3.99 (d, J = 19.1 Hz, 1H), 4.29 (dd, J = 11.0, 18.6 Hz, 1H), 5.40 (d, J = 8.6 Hz, 1H), 7.23 (d, J = 7.1 Hz, 2H), 7.31-7.48 (m, 3H), 13.70 (br, 1H); 13C NMR (100 MHz, CDCl3)δ8.5, 26.3, 27.7(2C), 45.1, 58.2, 86.3, 125.0, 129.0, 129.7, 139.5, 151.6, 157.5, 162.2, 164.3, 167.2. 1,3-dimethyl-5- (5-phenyl-1-propanoylpyrazolidin-3-ylidene) barbituric acid (5ab): white solid; 1 H NMR (400 MHz, CDCl 3 ) δ1.02-1.08 (m, 3H) , 1.95-2.11 (m, 1H), 2.15-2.38 (m, 1H), 3.27 (s, 3H), 3.37 (s, 3H), 3.99 (d, J = 19.1 Hz, 1H), 4.29 (dd, J) = 11.0, 18.6 Hz, 1H), 5.40 (d, J = 8.6 Hz, 1H), 7.23 (d, J = 7.1 Hz, 2H), 7.31-7.48 (m, 3H), 13.70 (br, 1H); 13 C NMR (100 MHz, CDCl 3 ) δ8.5, 26.3, 27.7 (2C), 45.1, 58.2, 86.3, 125.0, 129.0, 129.7, 139.5, 151.6, 157.5, 162.2, 164.3, 167.2.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(実施例3)
5-(1-n-ブタノイル-5-フェニルピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5ac)の調製 (一般式(A):R=CH、R=CHCHCH、R=CH)
(Example 3)
Preparation of 5- (1-n-butanoyl-5-phenylpyrazolidine-3-iriden) -1,3-dimethylbarbituric acid (Compound 5ac) (general formula (A): R 1 = C 6 H 5 , R 2 = CH 2 CH 2 CH 3 , R 3 = CH 3 )
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
25 mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、0.3 mmolの化合物4、酪酸(ナカライ製) 0.5 mL, 無水酪酸(東京化成製)0.5 mLを加え125oCで2時間攪拌した。反応終了後はトルエンを加えてエバポレーターで濃縮し、真空乾燥した。その後ゲル浸透クロマトグラフィー(GPC)(日本分析工業社製 LaboACE LC-5060)によって分離し、純粋な化合物5として5-(1-n-ブタノイル-5-フェニルピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5ac)を白色固体(収率86%)として得た。構造は1H NMRと13C NMRによりTMSをそれぞれ0ppm基準として決定した。 After frame-drying a 25 mL two-necked flask under an argon atmosphere, add 0.3 mmol of compound 4, butyric acid (manufactured by Nakarai) 0.5 mL, and anhydrous butyric acid (manufactured by Tokyo Kasei) 0.5 mL, and stir at 125 o C for 2 hours. bottom. After completion of the reaction, toluene was added, the mixture was concentrated on an evaporator, and the mixture was vacuum dried. Then, it was separated by gel permeation chromatography (GPC) (LaboACE LC-5060 manufactured by Nippon Analytical Industry Co., Ltd.) and 5- (1-n-butanoyl-5-phenylpyrazolidine-3-ylidene) -1 as pure compound 5. , 3-Dimethylbarbituric acid (Compound 5ac) was obtained as a white solid (yield 86%). The structure was determined by 1H NMR and 13C NMR with TMS as the 0ppm standard, respectively.
5-(1-n-butanoyl-5-phenylpyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid (5ac): white solid; 1H NMR (400 MHz, CDCl3)δ0.80 (s, 3H), 1.41-1.73 (m, 2H), 1.89-2.08 (m, 1H), 2.10-2.28 (m, 1H), 3.27 (s, 3H), 3.36 (s, 3H), 4.0 (d, J = 19.0 Hz, 1H), 4.29 (dd, J = 10.9, 19.2 Hz, 1H), 5.41 (d, J = 9.2 Hz, 1H), 7.23 (d, J = 7.0 Hz, 2H), 7.30-7.45 (m, 3H), 02 (br, 1H); 13C NMR (100 MHz, CDCl3)δ13.6, 17.9, 27.7, 34.7, 45.1, 58.2, 86.3, 125.0, 129.0, 129.7, 139.6, 151.6, 157.6, 162.2, 164.3, 166.5. 5- (1-n-butanoyl-5-phenylpyrazolidin-3-ylidene) -1,3-dimethylbarbituric acid (5ac): white solid; 1 H NMR (400 MHz, CDCl 3 ) δ0.80 (s, 3H), 1.41-1.73 (m, 2H), 1.89-2.08 (m, 1H), 2.10-2.28 (m, 1H), 3.27 (s, 3H), 3.36 (s, 3H), 4.0 (d, J = 19.0 Hz, 1H), 4.29 (dd, J = 10.9, 19.2 Hz, 1H), 5.41 (d, J = 9.2 Hz, 1H), 7.23 (d, J = 7.0 Hz, 2H), 7.30-7.45 (m, 3H), 02 (br, 1H); 13 C NMR (100 MHz, CDCl 3 ) δ13.6, 17.9, 27.7, 34.7, 45.1, 58.2, 86.3, 125.0, 129.0, 129.7, 139.6, 151.6, 157.6, 162.2, 164.3, 166.5 ..
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000020
 
(実施例4)
5-(1-アセチル-5-(4-フルオロフェニル)ピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5b)の調製(一般式(A):R=CHF、R=CHCHCH、R=CH)
(Example 4)
Preparation of 5- (1-Acetyl-5- (4-Fluorophenyl) Pyrazolidine-3-Ilidene) -1,3-dimethylbarbituric acid (Compound 5b) (general formula (A): R 1 = C 6 H 4 F, R 2 = CH 2 CH 2 CH 3 , R 3 = CH 3 )
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
還流管を取り付けた25 mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、4等量の4-フルオロベンズアルデヒド (アルドリッチシグマ製)、 5-アセチル-1,3-ジメチルバルビツール酸 (東京化成工業製)5mmolを加え攪拌した。180度に加温したのち、ピぺリジン(ナカライ製)を2滴滴下した。7分後反応を加熱を停止し、冷やすことで白色個体が得られる。エタノールで濾過を行い、濾物は真空乾燥することでエノン5‐[(2E)‐3‐(4‐fluorophenyl)prop‐2‐enoyl]‐6‐hydroxy‐1,3‐dimethyl‐2‐methylidene‐1,2,3,4‐tetrahydropyrimidin‐4‐oneが35%の収率で得られる。25 mL容の二口フラスコに合成した中間体エノン化合物5‐[(2E)‐3‐(4‐fluorophenyl)prop‐2‐enoyl]‐6‐hydroxy‐1,3‐dimethyl‐2‐methylidene‐1,2,3,4‐tetrahydropyrimidin‐4‐one 1mmol、2 eqヒドラジン一水和物(ナカライ製)、エタノールを加え攪拌した。反応終了後、エタノールで濾過を行い、濾物は真空乾燥して化合物4b(5-(5-(4-fluorophenyl)pyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid)を79%の収率で得た。構造は1H NMR及び13C NMR(Varian NMR 400 MHz system )により決定した。 A 25 mL two-necked flask equipped with a reflux tube was frame-dried in an argon atmosphere, and then 4 equal volumes of 4-fluorobenzaldehyde (manufactured by Aldrich Sigma) and 5-acetyl-1,3-dimethylbarbituric acid (manufactured by Aldrich Sigma). Tokyo Chemical Industry Co., Ltd.) 5 mmol was added and stirred. After heating to 180 degrees, 2 drops of piperidine (manufactured by Nakarai) were dropped. After 7 minutes, the reaction is stopped heating and cooled to obtain a white solid. Filtrate with ethanol and vacuum dry the filter to enone 5-[(2E) -3- (4-fluorophenyl) prop-2-enoyl] -6-hydroxy-1,3-dimethyl-2-methylidene- 1,2,3,4-tetrahydropyrimidin-4-one is obtained in 35% yield. Intermediate Enon compound 5-[(2E) -3- (4-fluorophenyl) prop-2-enoyl] -6-hydroxy-1,3-dimethyl-2-methylidene-1 synthesized in a 25 mL two-necked flask , 2,3,4-tetrahydropyrimidin-4-one 1 mmol, 2 eq hydrazine monohydrate (manufactured by Nakarai), and ethanol were added and stirred. After completion of the reaction, the mixture was filtered through ethanol, and the filtrate was vacuum dried to obtain compound 4b (5- (5- (4-fluorophenyl) pyrazolidin-3-ylidene) -1,3-dimethylbarbituric acid) in a yield of 79%. I got it in. The structure was determined by 1 H NMR and 13 C NMR (Varian NMR 400 MHz system).
5-(5-(4-fluorophenyl)pyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid (4b): white solid; 1H NMR (400 MHz, CDCl3)δ3.29 (s, 3H), 3.32 (s, 3H) 3.67-3.77 (m, 1H), 4.10 (dd, J = 18.5, 9.1 Hz, 1H), 4.85 (ddd, J = 7.8, 7.8, 7.8 Hz, 1H), 5.22 (d, J =7.3 Hz, 1H), 7.06 (t, J = 8.6 Hz, 2H), 7.31-7.39 (m, 2H), 12.01 (s, 1H); 13C NMR (100 MHz, CDCl3)δ27.6, 27.8, 43.1, 58.8, 86.3, 115.9 (d, JC-F = 21.5 Hz), 128.0 (d, JC-F = 8.1Hz) 135.1 (d, JC-F = 3.18 Hz), 151.8, 162.3, 162.5 (d, JC-F = 245.8 Hz), 164.9, 165.8. 5- (5- (4-fluorophenyl) pyrazolidin-3-ylidene) -1,3-dimethylbarbituric acid (4b): white solid; 1 H NMR (400 MHz, CDCl 3 ) δ3.29 (s, 3H), 3.32 (s, 3H) 3.67-3.77 (m, 1H), 4.10 (dd, J = 18.5, 9.1 Hz, 1H), 4.85 (ddd, J = 7.8, 7.8, 7.8 Hz, 1H), 5.22 (d, J = 7.3 Hz, 1H), 7.06 (t, J = 8.6 Hz, 2H), 7.31-7.39 (m, 2H), 12.01 (s, 1H); 13 C NMR (100 MHz, CDCl 3 ) δ 27.6, 27.8, 43.1, 58.8, 86.3, 115.9 (d, J CF = 21.5 Hz), 128.0 (d, J CF = 8.1 Hz) 135.1 (d, J CF = 3.18 Hz), 151.8, 162.3, 162.5 (d, J CF = 245.8) Hz), 164.9, 165.8.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
5bの合成 
25 mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、0.3 mmolの化合物4b、酢酸(ナカライ製) 0.5 mL, 無水酢酸(東京化成製)0.5 mLを加え125oCで2時間攪拌した。反応終了後はトルエンを加えてエバポレーターで濃縮し、真空乾燥した。その後ゲル浸透クロマトグラフィー(GPC)(日本分析工業社製 LaboACE LC-5060)によって分離し、純粋な化合物として5-(1-アセチル-5-(4-フルオロフェニル)ピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5b)を白色固体(収率79%)として得た。構造は1H NMRと13C NMRによりTMSをそれぞれ0ppm基準として決定した。
5b composition
After frame-drying a 25 mL two-necked flask under an argon atmosphere, add 0.3 mmol of compound 4b, 0.5 mL of acetic acid (manufactured by Nakarai), and 0.5 mL of acetic anhydride (manufactured by Tokyo Kasei), and stir at 125 o C for 2 hours. bottom. After completion of the reaction, toluene was added, the mixture was concentrated on an evaporator, and the mixture was vacuum dried. It is then separated by gel permeation chromatography (GPC) (LaboACE LC-5060, manufactured by Nippon Analytical Industry Co., Ltd.) and as a pure compound 5- (1-acetyl-5- (4-fluorophenyl) pyrazolidine-3-ylidene) -1. , 3-Dimethylbarbituric acid (Compound 5b) was obtained as a white solid (yield 79%). The structure was determined by 1 H NMR and 13 C NMR with TMS as the 0 ppm standard, respectively.
5-(1-acetyl-5-(4-fluorophenyl)pyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid (5b): white solid; 1H NMR (400 MHz, CDCl3)δ1.94 (s, 3H), 3.27 (s, 3H), 3.36 (s, 3H), 3.96 (d, J = 19.2 Hz, 1H), 4.31 (dd, J = 10.9, 19.4 Hz, 1H), 5.39 (d, J = 8.8 Hz, 1H), 7.12 (t, J = 7.5 Hz, 2H), 7.24 (m, 2H), 13.7 (br, 1H); 13C NMR (100 MHz, CDCl3)δ20.6, 27.7, 45.1, 58.0, 86.4, 116.8 (d, JC-F = 21.5 Hz), 127.0 (d, JC-F = 8.0 Hz), 135.2, 151.6, 157.5, 162.1, 162.7 (d, JC-F = 247.9 Hz) 163.5, 164.3. 5- (1-acetyl-5- (4-fluorophenyl) pyrazolidin-3-ylidene) -1,3-dimethylbarbituric acid (5b): white solid; 1 H NMR (400 MHz, CDCl 3 ) δ1.94 (s, 3H), 3.27 (s, 3H), 3.36 (s, 3H), 3.96 (d, J = 19.2 Hz, 1H), 4.31 (dd, J = 10.9, 19.4 Hz, 1H), 5.39 (d, J = 8.8) Hz, 1H), 7.12 (t, J = 7.5 Hz, 2H), 7.24 (m, 2H), 13.7 (br, 1H); 13 C NMR (100 MHz, CDCl 3 ) δ 20.6, 27.7, 45.1, 58.0 , 86.4, 116.8 (d, J CF = 21.5 Hz), 127.0 (d, J CF = 8.0 Hz), 135.2, 151.6, 157.5, 162.1, 162.7 (d, J CF = 247.9 Hz) 163.5, 164.3.
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000023
 
(実施例5)
5-(1-アセチル-5-(4-フルオロフェニル)ピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5c)の調製(一般式(A):R=CHCl、R=CH、R=CH)
(Example 5)
Preparation of 5- (1-Acetyl-5- (4-Fluorophenyl) Pyrazolidine-3-Ilidene) -1,3-dimethylbarbituric acid (Compound 5c) (general formula (A): R 1 = C 6 H 4 Cl, R 2 = CH 3 , R 3 = CH 3 )
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
還流管を取り付けた25 mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、4等量の4-クロロベンズアルデヒド (東京化成工業製)、 5-アセチル-1,3-ジメチルバルビツール酸 (東京化成工業製)2.5 mmolを加え攪拌した。180度に加温したのち、ピぺリジン(ナカライ製)を2滴滴下した。7分後反応を加熱を停止し、冷やすことで白色個体が得られる。エタノールで濾過を行い、濾物は真空乾燥することでエノン5‐[(2E)‐3‐(4‐chlorophenyl)prop‐2‐enoyl]‐6‐hydroxy‐1,3‐dimethyl‐2‐methylidene‐1,2,3,4‐tetrahydropyrimidin‐4‐oneが52%の収率で得られる。25 mL容の二口フラスコに合成した中間体エノン化合物5‐[(2E)‐3‐(4‐chlorophenyl)prop‐2‐enoyl]‐6‐hydroxy‐1,3‐dimethyl‐2‐methylidene‐1,2,3,4‐tetrahydropyrimidin‐4‐one 1mmol、2 eqヒドラジン一水和物(ナカライ製)、エタノールを加え攪拌した。反応終了後、エタノールで濾過を行い、濾物は真空乾燥して化合物4c(5-(5-(4-chlorophenyl)pyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid)を80%の収率で得た。構造は1H NMR及び13C NMR(Varian NMR 400 MHz system )により決定した。 After frame-drying a 25 mL two-necked flask equipped with a reflux tube in an argon atmosphere, 4 equal volumes of 4-chlorobenzaldehyde (manufactured by Tokyo Chemical Industry Co., Ltd.) and 5-acetyl-1,3-dimethylbarbituric acid (Manufactured by Tokyo Chemical Industry Co., Ltd.) 2.5 mmol was added and stirred. After heating to 180 degrees, 2 drops of piperidine (manufactured by Nakarai) were dropped. After 7 minutes, the reaction is stopped heating and cooled to obtain a white solid. Filtrate with ethanol and vacuum dry the filter to enone 5-[(2E) -3- (4-chlorophenyl) prop-2-enoyl] -6-hydroxy-1,3-dimethyl-2-methylidene- 1,2,3,4-tetrahydropyrimidin-4-one is obtained in 52% yield. Intermediate Enon compound 5-[(2E) -3- (4-chlorophenyl) prop-2-enoyl] -6-hydroxy-1,3-dimethyl-2-methylidene-1 synthesized in a 25 mL two-necked flask , 2,3,4-tetrahydropyrimidin-4-one 1 mmol, 2 eq hydrazine monohydrate (manufactured by Nakarai), and ethanol were added and stirred. After completion of the reaction, filtration is performed with ethanol, and the filtrate is vacuum dried to obtain compound 4c (5- (5- (4-chlorophenyl) pyrazolidin-3-ylidene) -1,3-dimethylbarbituric acid) in a yield of 80%. I got it in. The structure was determined by 1 H NMR and 13 C NMR (Varian NMR 400 MHz system).
5-(5-(4-chlorophenyl)pyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid (4c): white solid; 1H NMR (400 MHz, CDCl3)δ3.30 (s, 3H), 3.34 (s, 3H), 3.75 (dd, J = 6.5, 18.7 Hz, 1H), 4.10(dd, J = 8.9, 18.7 Hz, 1H), 4.81-4.91 (m, 1H), 5.06 (d, J = 6.6 Hz, 1H), 7.29-7.39 (m, 4H), 12.00 (s, 1H); 13C NMR(100 MHz, CDCl3)δ27.6, 27.7, 43.0, 58.7, 86.4, 111.6, 127.6, 129.2, 134.2, 137.8, 151.8, 156.4, 162.2, 165.0, 166.1. 5- (5- (4-chlorophenyl) pyrazolidin-3-ylidene) -1,3-dimethylbarbituric acid (4c): white solid; 1 H NMR (400 MHz, CDCl 3 ) δ3.30 (s, 3H), 3.34 (s, 3H), 3.75 (dd, J = 6.5, 18.7 Hz, 1H), 4.10 (dd, J = 8.9, 18.7 Hz, 1H), 4.81-4.91 (m, 1H), 5.06 (d, J = 6.6) Hz, 1H), 7.29-7.39 (m, 4H), 12.00 (s, 1H); 13 C NMR (100 MHz, CDCl 3 ) δ 27.6, 27.7, 43.0, 58.7, 86.4, 111.6, 127.6, 129.2, 134.2 , 137.8, 151.8, 156.4, 162.2, 165.0, 166.1.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
5cの合成 25 mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、0.3 mmolの化合物4c、酢酸(ナカライ製) 0.5 mL, 無水酢酸(東京化成製)0.5 mLを加え125oCで2時間攪拌した。反応終了後はトルエンを加えてエバポレーターで濃縮し、真空乾燥した。その後ゲル浸透クロマトグラフィー(GPC)(日本分析工業社製 LaboACE LC-5060)によって分離し、純粋な化合物として5-(1-アセチル-5-(4-クロロフェニル)ピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5c)を白色固体(収率98%)として得た。構造は1H NMRと13C NMRによりTMSをそれぞれ0ppm基準として決定した。 Synthesis of 5c A 25 mL two-necked flask was frame-dried under an argon atmosphere, then 0.3 mmol of compound 4c, acetic acid (manufactured by Nakarai) 0.5 mL, and acetic anhydride (manufactured by Tokyo Kasei) 0.5 mL were added at 125 o C. Stirred for 2 hours. After completion of the reaction, toluene was added, the mixture was concentrated on an evaporator, and the mixture was vacuum dried. After that, it was separated by gel permeation chromatography (GPC) (LaboACE LC-5060 manufactured by Nippon Analytical Industry Co., Ltd.), and 5- (1-acetyl-5- (4-chlorophenyl) pyrazolidine-3-ylidene) -1, as a pure compound. 3-Dimethylbarbituric acid (Compound 5c) was obtained as a white solid (yield 98%). The structure was determined by 1 H NMR and 13 C NMR with TMS as the 0 ppm standard, respectively.
5-(1-acetyl-5-(4-chlorophenyl)pyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid (5c): white solid; 1H NMR (400 MHz, CDCl3)δ1.94 (s, 3H), 3.25 (s, 3H), 3.34(s, 3H), 3.93 (d, J = 19.0 Hz, 1H), 4.33 (dd, J = 10.8, 19.4 Hz, 1H), 5.41 (d, J = 8.5 Hz, 1H), 7.23 (d, J = 7.8 Hz, 2H), 7.40 (d, J = 7.5 Hz, 2H) 13.63 (br, 1H); 13C NMR(100 MHz, CDCl3)δ20.6, 27.7, 45.0, 58.0, 86.3, 126.6, 129.9, 135.0, 137.8, 151.5, 157.5, 162.0, 163.6, 164.3. 5- (1-acetyl-5- (4-chlorophenyl) pyrazolidin-3-ylidene) -1,3-dimethylbarbituric acid (5c): white solid; 1 H NMR (400 MHz, CDCl 3 ) δ1.94 (s, 3H), 3.25 (s, 3H), 3.34 (s, 3H), 3.93 (d, J = 19.0 Hz, 1H), 4.33 (dd, J = 10.8, 19.4 Hz, 1H), 5.41 (d, J = 8.5) Hz, 1H), 7.23 (d, J = 7.8 Hz, 2H), 7.40 (d, J = 7.5 Hz, 2H) 13.63 (br, 1H); 13 C NMR (100 MHz, CDCl 3 ) δ 20.6, 27.7 , 45.0, 58.0, 86.3, 126.6, 129.9, 135.0, 137.8, 151.5, 157.5, 162.0, 163.6, 164.3.
Figure JPOXMLDOC01-appb-C000026
 
Figure JPOXMLDOC01-appb-C000026
 
(実施例6)
5-(1-アセチル-5-(4-メチルフェニル)ピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5e)の調製(一般式(A):R=CHCH、R=CH、R=CH)
(Example 6)
Preparation of 5- (1-Acetyl-5- (4-Methylphenyl) Pyrazolidine-3-Ilidene) -1,3-dimethylbarbituric acid (Compound 5e) (general formula (A): R 1 = C 6 H 4 CH 3 , R 2 = CH 3 , R 3 = CH 3 )
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
還流管を取り付けた25 mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、4等量の4-メチルベンズアルデヒド (東京化成工業製)、 5-アセチル-1,3-ジメチルバルビツール酸 (東京化成工業製)2.5 mmolを加え攪拌した。180度に加温したのち、ピぺリジン(ナカライ製)を2滴滴下した。7分後反応を加熱を停止し、冷やすことで白色個体が得られた。エタノールで濾過を行い、濾物は真空乾燥することでエノン5‐[(2E)‐3‐(4‐methylphenyl)prop‐2‐enoyl]‐6‐hydroxy‐1,3‐dimethyl‐2‐methylidene‐1,2,3,4‐tetrahydropyrimidin‐4‐oneが85%の収率で得られた。25 mL容の二口フラスコに合成した中間体エノン化合物5‐[(2E)‐3‐(4‐methylphenyl)prop‐2‐enoyl]‐6‐hydroxy‐1,3‐dimethyl‐2‐methylidene‐1,2,3,4‐tetrahydropyrimidin‐4‐one 0.5mmol、2 eqヒドラジン一水和物(ナカライ製)、エタノールを加え攪拌した。反応終了後、エタノールで濾過を行い、濾物は真空乾燥して化合物4e(5-(5-(4-methylphenyl)pyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid)を82%の収率で得
た。構造は1H NMR及び13C NMR(Varian NMR 400 MHz system )により決定した。
After frame-drying a 25 mL two-necked flask equipped with a reflux tube in an argon atmosphere, 4 equal volumes of 4-methylbenzaldehyde (manufactured by Tokyo Chemical Industry Co., Ltd.) and 5-acetyl-1,3-dimethylbarbituric acid (Manufactured by Tokyo Chemical Industry) 2.5 mmol was added and stirred. After heating to 180 degrees, 2 drops of piperidine (manufactured by Nakarai) were dropped. After 7 minutes, the reaction was stopped from heating and cooled to obtain a white solid. Filter with ethanol and vacuum dry the filter to enone 5-[(2E) -3- (4-methylphenyl) prop-2-enoyl] -6-hydroxy-1,3-dimethyl-2-methylidene- 1,2,3,4-tetrahydropyrimidin-4-one was obtained in 85% yield. Intermediate Enon compound 5-[(2E) -3- (4-methylphenyl) prop-2-enoyl] -6-hydroxy-1,3-dimethyl-2-methylidene-1 synthesized in a 25 mL two-necked flask , 2,3,4-tetrahydropyrimidin-4-one 0.5 mmol, 2 eq hydrazine monohydrate (manufactured by Nakarai), and ethanol were added and stirred. After completion of the reaction, filtration was performed with ethanol, and the filtrate was vacuum dried to obtain compound 4e (5- (5- (4-methylphenyl) pyrazolidin-3-ylidene) -1,3-dimethylbarbituric acid) in a yield of 82%. I got it in. The structure was determined by 1 H NMR and 13 C NMR (Varian NMR 400 MHz system).
1,3-dimethyl-5-(5-(4-methylphenyl)pyrazolidin-3-ylidene)barbituric acid (4e): white solid; 1H NMR (400 MHz, CDCl3)δ2.34 (s, 3H), 3.29 (s, 3H), 3.32 (s, 3H), 3.87-3.77 (m, 1H), 4.09 (dd, J = 9.1, 18.9 Hz, 1H), 4.81 (ddd, J =8.0, 8.1, 8.1 Hz, 1H), 5.09 (d, J = 7.4 Hz, 1H), 7.17 (d, J = 7.9 Hz, 2H), 7.24 (d, J = 7.9 Hz, 2H), 11.00 (s, 1H) ; 13C NMR (100 MHz, CDCl3)δ21.1, 27.6, 27.7, 42.8, 59.5, 86.2, 126.2, 129.7, 136.0, 138.3, 151.9, 162.3, 165.0, 166.2. 1,3-dimethyl-5- (5- (4-methylphenyl) pyrazolidin-3-ylidene) barbituric acid (4e): white solid; 1 H NMR (400 MHz, CDCl 3 ) δ2.34 (s, 3H), 3.29 (s, 3H), 3.32 (s, 3H), 3.87-3.77 (m, 1H), 4.09 (dd, J = 9.1, 18.9 Hz, 1H), 4.81 (ddd, J = 8.0, 8.1, 8.1 Hz, 1H), 5.09 (d, J = 7.4 Hz, 1H), 7.17 (d, J = 7.9 Hz, 2H), 7.24 (d, J = 7.9 Hz, 2H), 11.00 (s, 1H); 13 C NMR ( 100 MHz, CDCl 3 ) δ 21.1, 27.6, 27.7, 42.8, 59.5, 86.2, 126.2, 129.7, 136.0, 138.3, 151.9, 162.3, 165.0, 166.2.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
5eの合成 
25 mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、0.3 mmolの化合物4e、酢酸(ナカライ製) 0.5 mL, 無水酢酸(東京化成製)0.5 mLを加え125oCで2時間攪拌した。反応終了後はトルエンを加えてエバポレーターで濃縮し、真空乾燥した。その後ゲル浸透クロマトグラフィー(GPC)(日本分析工業社製 LaboACE LC-5060)によって分離し、純粋な化合物として5-(1-アセチル-5-(4-メチルフェニル)ピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5e)を白色固体(収率87%)として得た。構造は1H NMRと13C NMRによりTMSをそれぞれ0ppm基準として決定した。
5e composition
After frame-drying a 25 mL two-necked flask under an argon atmosphere, add 0.3 mmol of compound 4e, 0.5 mL of acetic acid (manufactured by Nakarai), and 0.5 mL of acetic anhydride (manufactured by Tokyo Kasei), and stir at 125 o C for 2 hours. bottom. After completion of the reaction, toluene was added, the mixture was concentrated on an evaporator, and the mixture was vacuum dried. It is then separated by gel permeation chromatography (GPC) (LaboACE LC-5060, manufactured by Nippon Analytical Industry Co., Ltd.) and as a pure compound 5- (1-acetyl-5- (4-methylphenyl) pyrazolidine-3-ylidene) -1. , 3-Dimethylbarbituric acid (Compound 5e) was obtained as a white solid (yield 87%). The structure was determined by 1 H NMR and 13 C NMR with TMS as the 0 ppm standard, respectively.
5-(1-acetyl-5-(4-methylphenyl)pyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid (5e): white solid; 1H NMR (400 MHz, CDCl3)δ1.93 (s, 3H), 2.35 (s, 3H), 3.26 (s,3H), 3.35 (s, 3H), 3.95 (dd, J = 3.1, 19.5 Hz, 1H), 4.31 (dd, J = 10.8, 19.5, 1H), 5.37 (d, J = 7.8 Hz, 1H), 7.13 (d, J = 7.9 Hz, 2H), 7.21 (d, J =7.7Hz, 2H), 13.66 (br, 1H); 13C NMR (100 MHz, CDCl3)δ20.7, 21.2, 27.7, 45.2, 58.6, 86.3, 125.1, 130.3, 136.4, 139.0, 151.6, 157.8, 162.1, 163.7, 164.4. 5- (1-acetyl-5- (4-methylphenyl) pyrazolidin-3-ylidene) -1,3-dimethylbarbituric acid (5e): white solid; 1 H NMR (400 MHz, CDCl 3 ) δ1.93 (s, 3H), 2.35 (s, 3H), 3.26 (s, 3H), 3.35 (s, 3H), 3.95 (dd, J = 3.1, 19.5 Hz, 1H), 4.31 (dd, J = 10.8, 19.5, 1H) , 5.37 (d, J = 7.8 Hz, 1H), 7.13 (d, J = 7.9 Hz, 2H), 7.21 (d, J = 7.7 Hz, 2H), 13.66 (br, 1H); 13 C NMR (100 MHz) , CDCl 3 ) δ 20.7, 21.2, 27.7, 45.2, 58.6, 86.3, 125.1, 130.3, 136.4, 139.0, 151.6, 157.8, 162.1, 163.7, 164.4.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(実施例7)
5-(1-アセチル-5-([1,1’-ビフェニル] -4-イル)ピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5f)の調製(一般式(A):R=CHCH、R=CH、R=CH)
(Example 7)
Preparation of 5- (1-Acetyl-5- ([1,1'-biphenyl] -4-yl) pyrazolidine-3-ylidene) -1,3-dimethylbarbituric acid (Compound 5f) (general formula (A)) : R 1 = C 6 H 4 C 6 H 5 , R 2 = CH 3 , R 3 = CH 3 )
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
還流管を取り付けた25 mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、4等量の4-フェニルベンズアルデヒド (東京化成工業製)、 5-アセチル-1,3-ジメチルバルビツール酸 (東京化成工業製)5 mmolを加え攪拌した。180度に加温したのち、ピぺリジン(ナカライ製)を2滴滴下した。7分後反応を加熱を停止し、冷やすことで白色個体が得られた。エタノールで濾過を行い、濾物は真空乾燥することでエノン5‐[(2E)‐3‐(4-biphenyl)prop‐2‐enoyl]‐6‐hydroxy‐1,3‐dimethyl‐2‐methylidene‐1,2,3,4‐tetrahydropyrimidin‐4‐oneが49%の収率で得られた。25 mL容の二口フラスコに合成した中間体エノン化合物5‐[(2E)‐3‐(4‐biphenyl)prop‐2‐enoyl]‐6‐hydroxy‐1,3‐dimethyl‐2‐methylidene‐1,2,3,4‐tetrahydropyrimidin‐4‐one 0.5mmol、2 eqヒドラジン一水和物(ナカライ製)、エタノールを加え攪拌した。反応終了後、エタノールで濾過を行い、濾物は真空乾燥して化合物4f(5-(5-(4-biphenyl)pyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid)を87%の収率で得た。構造は1H NMR及び13C NMR(Varian NMR 400 MHz system )により決定した。 After frame-drying a 25 mL two-necked flask equipped with a reflux tube in an argon atmosphere, 4 equal volumes of 4-phenylbenzaldehyde (manufactured by Tokyo Chemical Industry Co., Ltd.) and 5-acetyl-1,3-dimethylbarbituric acid (Made by Tokyo Chemical Industry) 5 mmol was added and stirred. After heating to 180 degrees, 2 drops of piperidine (manufactured by Nakarai) were dropped. After 7 minutes, the reaction was stopped from heating and cooled to obtain a white solid. Filtrate with ethanol and vacuum dry the filter to enone 5-[(2E) -3- (4-biphenyl) prop-2-enoyl] -6-hydroxy-1,3-dimethyl-2-methylidene- 1,2,3,4-tetrahydropyrimidin-4-one was obtained in 49% yield. Intermediate Enon compound 5-[(2E) -3- (4-biphenyl) prop-2-enoyl] -6-hydroxy-1,3-dimethyl-2-methylidene-1 synthesized in a 25 mL two-necked flask , 2,3,4-tetrahydropyrimidin-4-one 0.5 mmol, 2 eq hydrazine monohydrate (manufactured by Nakarai), and ethanol were added and stirred. After completion of the reaction, filtration was performed with ethanol, and the filtrate was vacuum dried to obtain compound 4f (5- (5- (4-biphenyl) pyrazolidin-3-ylidene) -1,3-dimethylbarbituric acid) in a yield of 87%. I got it in. The structure was determined by 1 H NMR and 13 C NMR (Varian NMR 400 MHz system).
5-(5-([1,1’-biphenyl]-4-yl)pyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid (4f): white solid; 1H NMR (400 MHz, CDCl3)δ3.29 (s, 3H), 3.33 (s, 3H), 3.79 (dd, J = 7.6, 18.9 Hz, 1H), 4.12 (dd, J = 9.2, 18.9 Hz, 1H), 4.88 (ddd, J = 7.9, 7.9, 8.3 Hz, 1H), 5.13(d, J = 7.5 Hz, 1H), 7.35 (t, J = 7.3 Hz, 1H), 7.40-7.47 (m, 4H), 7.53-7.82 (m, 4H), 12.02 (s, 1H); 13C NMR (100 MHz, CDCl3)δ27.6, 27.7, 42.9, 59.3, 86.3, 126.7, 127.0, 127.6, 127.7, 128.8, 138.1, 140.2, 141.3, 151.8, 162.2, 165.0, 166.1. 5- (5-([1,1'-biphenyl] -4-yl) pyrazolidin-3-ylidene) -1,3-dimethylbarbituric acid (4f): white solid; 1 H NMR (400 MHz, CDCl 3 ) δ3 .29 (s, 3H), 3.33 (s, 3H), 3.79 (dd, J = 7.6, 18.9 Hz, 1H), 4.12 (dd, J = 9.2, 18.9 Hz, 1H), 4.88 (ddd, J = 7.9) , 7.9, 8.3 Hz, 1H), 5.13 (d, J = 7.5 Hz, 1H), 7.35 (t, J = 7.3 Hz, 1H), 7.40-7.47 (m, 4H), 7.53-7.82 (m, 4H) , 12.02 (s, 1H); 13 C NMR (100 MHz, CDCl 3 ) δ 27.6, 27.7, 42.9, 59.3, 86.3, 126.7, 127.0, 127.6, 127.7, 128.8, 138.1, 140.2, 141.3, 151.8, 162.2, 165.0, 166.1.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
5fの合成 
25mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、0.3 mmolの化合物4f、酢酸(ナカライ製) 0.5 mL, 無水酢酸(東京化成製)0.5 mLを加え125oCで2時間攪拌した。反応終了後はトルエンを加えてエバポレーターで濃縮し、真空乾燥した。その後ゲル浸透クロマトグラフィー(GPC)(日本分析工業社製 LaboACE LC-5060)によって分離し、純粋な化合物として5-(1-アセチル-5-([1,1’-ビフェニル] -4-イル)ピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5f)を白色固体(収率96%)として得た。構造は1H NMRと13C NMRによりTMSをそれぞれ0ppm基準として決定した。
5f composition
A 25 mL two-necked flask was frame-dried under an argon atmosphere, 0.3 mmol of compound 4f, 0.5 mL of acetic acid (manufactured by Nakarai), and 0.5 mL of acetic anhydride (manufactured by Tokyo Kasei) were added, and the mixture was stirred at 125 o C for 2 hours. .. After completion of the reaction, toluene was added, the mixture was concentrated on an evaporator, and the mixture was vacuum dried. It is then separated by gel permeation chromatography (GPC) (LaboACE LC-5060, manufactured by Nippon Analytical Industry Co., Ltd.) and separated as a pure compound 5- (1-acetyl-5- ([1,1'-biphenyl] -4-yl)). Pyrazolidine-3-ylidene) -1,3-dimethylbarbituric acid (Compound 5f) was obtained as a white solid (yield 96%). The structure was determined by 1 H NMR and 13 C NMR with TMS as the 0 ppm standard, respectively.
5-(1-acetyl-5-([1,1’-biphenyl]-4-yl)pyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid (5f): white solid; 1H NMR (400 MHz, CDCl3)δ1.99 (s, 3H), 3.26 (s, 3H), 3.35 (s, 3H), 4.02 (dd, J = 1.9, 19.2 Hz, 1H), 4,34 (dd, J = 10.9, 19.4 Hz, 1H), 5.45 (d, J = 8.3 Hz, 1H), 7.29-7.40 (m, 3H), 7.45 (t, J = 7.5 Hz, 2H), 7.56 (d, J = 7.5 Hz, 2H), 7.62 (d, J = 7.7 Hz, 2H), 13.68 (br, 1H); 13C NMR (100 MHz, CDCl3)δ20.7, 27.7, 45.1, 58.4, 86.3, 125.5, 127.0, 127.8, 128.3, 128.9, 138.1, 139.8, 142.0, 151.5, 157.7, 162.1, 163.7, 164.3. 5- (1-acetyl-5-([1,1'-biphenyl] -4-yl) pyrazolidin-3-ylidene) -1,3-dimethylbarbituric acid (5f): white solid; 1 H NMR (400 MHz, CDCl 3 ) δ1.99 (s, 3H), 3.26 (s, 3H), 3.35 (s, 3H), 4.02 (dd, J = 1.9, 19.2 Hz, 1H), 4,34 (dd, J = 10.9, 19.4 Hz, 1H), 5.45 (d, J = 8.3 Hz, 1H), 7.29-7.40 (m, 3H), 7.45 (t, J = 7.5 Hz, 2H), 7.56 (d, J = 7.5 Hz, 2H) , 7.62 (d, J = 7.7 Hz, 2H), 13.68 (br, 1H); 13 C NMR (100 MHz, CDCl 3 ) δ20.7, 27.7, 45.1, 58.4, 86.3, 125.5, 127.0, 127.8, 128.3, 128.9, 138.1, 139.8, 142.0, 151.5, 157.7, 162.1, 163.7, 164.3.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
(実施例8)
5-(5-([1,1’-ビフェニル] -4-イル)-1-プロパノイルピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5fb)の調製(一般式(A):R=CHCH、R=CHCH、R=CH)
(Example 8)
Preparation of 5- (5-([1,1'-biphenyl] -4-yl) -1-propanoylpyrazolidine-3-ylidene) -1,3-dimethylbarbituric acid (compound 5fb) (general formula) (A): R 1 = C 6 H 4 C 6 H 5 , R 2 = CH 2 CH 3 , R 3 = CH 3 )
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
5-(5-([1,1’-biphenyl]-4-yl)-1-propanoylpyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid (5fb): white solid; 1H NMR (400 MHz, CDCl3)δ1.09 (s, 3H), 2.00-2.19 (m, 1H), 2.20-2.40 (m, 1H), 3.27 (s, 3H), 3.37 (s, 3H), 4.02 (d, J = 19.1 Hz, 1H), 4.20-4.40 (m, 1H), 5.45 (d, J = 7.4 Hz, 1H), 7.30 (d, J = 8.1 Hz, 2H), 7.37 (t, J = 7.2 Hz, 1H), 7.45 (t, J = 7.5 Hz, 2H), 7.56 (d, J = 7.5 Hz, 2H), 7.61 (d, J = 7.8 Hz, 2H), 13.65 (br, 1H); 13C NMR (100 MHz, CDCl3)δ8.6, 26.4, 26.4, 27.7, 45.1, 58.0, 86.4, 125.5, 127.0, 127.8, 128.3, 128.9, 138.4, 139.9, 141.9, 151.6, 157.6, 162.1, 164.3, 167.3. 5- (5-([1,1'-biphenyl] -4-yl) -1-propanoylpyrazolidin-3-ylidene) -1,3-dimethylbarbituric acid (5fb): white solid; 1 H NMR (400 MHz, CDCl 3 ) δ1.09 (s, 3H), 2.00-2.19 (m, 1H), 2.20-2.40 (m, 1H), 3.27 (s, 3H), 3.37 (s, 3H), 4.02 (d, J = 19.1) Hz, 1H), 4.20-4.40 (m, 1H), 5.45 (d, J = 7.4 Hz, 1H), 7.30 (d, J = 8.1 Hz, 2H), 7.37 (t, J = 7.2 Hz, 1H), 7.45 (t, J = 7.5 Hz, 2H), 7.56 (d, J = 7.5 Hz, 2H), 7.61 (d, J = 7.8 Hz, 2H), 13.65 (br, 1H); 13 C NMR (100 MHz, 100 MHz, CDCl 3 ) δ8.6, 26.4, 26.4, 27.7, 45.1, 58.0, 86.4, 125.5, 127.0, 127.8, 128.3, 128.9, 138.4, 139.9, 141.9, 151.6, 157.6, 162.1, 164.3, 167.3.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
(実施例9)
5-(1-アセチル-5-(4-メトキシフェニル)ピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5g)の調製(一般式(A):R=CHOCH、R=CH、R=CH)
(Example 9)
Preparation of 5- (1-Acetyl-5- (4-Methoxyphenyl) Pyrazolidine-3-Ilidene) -1,3-dimethylbarbituric acid (Compound 5g) (general formula (A): R 1 = C 6 H 4 OCH 3 , R 2 = CH 3 , R 3 = CH 3 )
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
還流管を取り付けた25mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、4等量の4-メトキシベンズアルデヒド(東京化成工業製)、5-アセチル-1,3-ジメチルバルビツール酸(東京化成工業製)5mmolを加え攪拌した。180度に加温したのち、ピぺリジン(ナカライ製)を2滴滴下した。7分後反応を加熱を停止し、冷やすことで白色個体が得られた。エタノールで濾過を行い、濾物は真空乾燥することでエノン5‐[(2E)‐3‐(4-methoxyphenyl)prop‐2‐enoyl]‐6‐hydroxy‐1,3‐dimethyl‐2‐methylidene‐1,2,3,4‐tetrahydropyrimidin‐4‐oneが89%の収率で得られた。25 mL容の二口フラスコに合成した中間体エノン化合物5‐[(2E)‐3‐(4‐methoxyphenyl)prop‐2‐enoyl]‐6‐hydroxy‐1,3‐dimethyl‐2‐methylidene‐1,2,3,4‐tetrahydropyrimidin‐4‐one 0.5mmol、2 eqヒドラジン一水和物(ナカライ製)、エタノールを加え攪拌した。反応終了後、エタノールで濾過を行い、濾物は真空乾燥して化合物4g(5-(5-(4- methoxyphenyl)pyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid)を78%の収率で得た。構造は1H NMR及び13C NMR(Varian NMR 400 MHz system )により決定した。 After frame-drying a 25 mL two-necked flask equipped with a reflux tube in an argon atmosphere, 4 equal volumes of 4-methoxybenzaldehyde (manufactured by Tokyo Chemical Industry) and 5-acetyl-1,3-dimethylbarbituric acid (manufactured by Tokyo Chemical Industry Co., Ltd.) (Made by Tokyo Chemical Industry) 5 mmol was added and stirred. After heating to 180 degrees, 2 drops of piperidine (manufactured by Nakarai) were dropped. After 7 minutes, the reaction was stopped from heating and cooled to obtain a white solid. Filtrate with ethanol and vacuum dry the filter to enone 5-[(2E) -3- (4-methoxyphenyl) prop-2-enoyl] -6-hydroxy-1,3-dimethyl-2-methylidene- 1,2,3,4-tetrahydropyrimidin-4-one was obtained in 89% yield. Intermediate Enon compound 5-[(2E) -3- (4-methoxyphenyl) prop-2-enoyl] -6-hydroxy-1,3-dimethyl-2-methylidene-1 synthesized in a 25 mL two-necked flask , 2,3,4-tetrahydropyrimidin-4-one 0.5 mmol, 2 eq hydrazine monohydrate (manufactured by Nakarai), and ethanol were added and stirred. After completion of the reaction, the mixture was filtered through ethanol, and the filtrate was vacuum dried to obtain 4 g of the compound (5- (5- (4-methoxyphenyl) pyrazolidin-3-ylidene) -1,3-dimethylbarbituric acid) in a yield of 78%. I got it in. The structure was determined by 1 H NMR and 13 C NMR (Varian NMR 400 MHz system).
5-(5-(4-methoxyphenyl)pyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid (4g): white solid; 1H NMR (400 MHz, CDCl3)δ3.29 (s, 3H), 3.32 (s, 3H), 3.71 (dd, J = 7.9, 18.8 Hz, 1H), 3.80 (s, 3H), 4.08 (dd, J = 8.9, 18.8 Hz, 1H), 4.80 (d, J = 7.9 Hz, 1H), 6.89 (d, J = 7.8 Hz, 2H), 7.28 (d, J = 7.6 Hz, 2H), 11.98 (s, 1H) ; 13C NMR (100 MHz, CDCl3)δ27.7, 27.8, 42.8, 55.5, 59.4, 86.3, 114.5, 127.7, 131.0, 152.0, 159.7, 162.4, 165.1, 166.4. 5- (5- (4-methoxyphenyl) pyrazolidin-3-ylidene) -1,3-dimethylbarbituric acid (4g): white solid; 1 H NMR (400 MHz, CDCl 3 ) δ3.29 (s, 3H), 3.32 (s, 3H), 3.71 (dd, J = 7.9, 18.8 Hz, 1H), 3.80 (s, 3H), 4.08 (dd, J = 8.9, 18.8 Hz, 1H), 4.80 (d, J = 7.9 Hz, 1H), 6.89 (d, J = 7.8 Hz, 2H), 7.28 (d, J = 7.6 Hz, 2H), 11.98 (s, 1H); 13 C NMR (100 MHz, CDCl 3 ) δ 27.7, 27.8, 42.8, 55.5, 59.4, 86.3, 114.5, 127.7, 131.0, 152.0, 159.7, 162.4, 165.1, 166.4.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
5gの合成 
25mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、0.3mmolの化合物4g、酢酸(ナカライ製)0.5mL,無水酢酸(東京化成製)0.5mLを加え125oCで2時間攪拌した。反応終了後はトルエンを加えてエバポレーターで濃縮し、真空乾燥した。その後ゲル浸透クロマトグラフィー(GPC)(日本分析工業社製 LaboACELC-5060)によって分離し、純粋な化合物として5-(1-アセチル-5-(4-メトキシフェニル)ピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物59)を白色固体(収率78%)として得た。構造は1HNMRと13CNMRによりTMSをそれぞれ0ppm基準として決定した。
5g synthesis
After frame-drying a 25 mL two-necked flask under an argon atmosphere, 4 g of a 0.3 mmol compound, 0.5 mL of acetic acid (manufactured by Nakarai) and 0.5 mL of acetic anhydride (manufactured by Tokyo Kasei) were added, and the mixture was stirred at 125 o C for 2 hours. .. After completion of the reaction, toluene was added, the mixture was concentrated on an evaporator, and the mixture was vacuum dried. After that, it was separated by gel permeation chromatography (GPC) (LaboACE LC-5060 manufactured by Nippon Analytical Industry Co., Ltd.), and 5- (1-acetyl-5- (4-methoxyphenyl) pyrazolidine-3-ylidene) -1, as a pure compound. 3-Dimethylbarbituric acid (Compound 59) was obtained as a white solid (yield 78%). The structure was determined by 1 H NMR and 13 C NMR with TMS as the 0 ppm standard, respectively.
5-(1-acetyl-5-(4-methoxyphenyl)pyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid (5g): white solid; 1H NMR (400 MHz, CDCl3)δ1.93 (s, 3H), 3.26 (s, 3H), 3.35 (s, 3H), 3.81 (s, 3H), 3.95 (dd, J = 2.6, 19.5 Hz, 1H), 4.29 (dd, J = 10.8, 19.5 Hz, 1H), 5.35 (d, J = 8.0 Hz, 1H), 6.92 (d, J = 8.1 Hz, 2H), 7.17 (d, J = 8.3 Hz, 2H), 13.64 (br, 1H); 13C NMR (100 MHz, CDCl3)δ20.6, 21.5, 27.7, 45.2, 55.4, 58.3, 86.2, 115.0, 125.3, 126.5, 128.2, 129.0, 131.2, 151.6, 157.7, 159.9, 162.1, 163.7, 164.3. 5- (1-acetyl-5- (4-methoxyphenyl) pyrazolidin-3-ylidene) -1,3-dimethylbarbituric acid (5g): white solid; 1 H NMR (400 MHz, CDCl 3 ) δ1.93 (s, 3H), 3.26 (s, 3H), 3.35 (s, 3H), 3.81 (s, 3H), 3.95 (dd, J = 2.6, 19.5 Hz, 1H), 4.29 (dd, J = 10.8, 19.5 Hz, 1H) ), 5.35 (d, J = 8.0 Hz, 1H), 6.92 (d, J = 8.1 Hz, 2H), 7.17 (d, J = 8.3 Hz, 2H), 13.64 (br, 1H); 13 C NMR (100) MHz, CDCl 3 ) δ 20.6, 21.5, 27.7, 45.2, 55.4, 58.3, 86.2, 115.0, 125.3, 126.5, 128.2, 129.0, 131.2, 151.6, 157.7, 159.9, 162.1, 163.7, 164.3.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
(実施例10)
5-(1-アセチル-5-フェニルピラゾリジン-3-イリデン)-1,3-ジシクロヘキシルバルビツール酸(化合物5i)の調製(一般式(A):R=CH、R=CH、R=CH(c-Hex))
(Example 10)
Preparation of 5- (1-Acetyl-5-Phenylpyrazolidine-3-iriden) -1,3-dicyclohexylbarbituric acid (Compound 5i) (general formula (A): R 1 = C 6 H 5 , R 2 = CH 3 , R 3 = C 6 H 5 (c-Hex))
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
還流管を取り付けた25 mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、4等量のベンズアルデヒド (ナカライ製)、 5-アセチル-1,3-ビズシクロヘキシルバルビツール酸 (文献:Tetrahedron Lett. 2001, 42, 8435に記載の方法により調製)1.5 mmolを加え攪拌した。180度に加温したのち、ピぺリジン(ナカライ製)を2滴滴下した。74分後反応を加熱を停止し、冷やすことで白色個体が得られた。エタノールで濾過を行い、濾物は真空乾燥することでエノン5‐[(2E)‐3‐phenylprop‐2‐enoyl]‐6‐hydroxy‐1,3‐biscyclohexyl‐2‐methylidene‐1,2,3,4‐tetrahydropyrimidin‐4‐oneが55%の収率で得られた。25 mL容の二口フラスコに合成した中間体エノン化合物5‐[(2E)‐3‐phenylprop‐2‐enoyl]‐6‐hydroxy‐1,3‐dimethyl‐2‐methylidene‐1,2,3,4‐tetrahydropyrimidin‐4‐one 0.5mmol、2 eqヒドラジン一水和物(ナカライ製)、エタノールを加え攪拌した。反応終了後、エタノールで濾過を行い、濾物は真空乾燥して化合物4i(5-(5-phenylpyrazolidin-3-ylidene)-1,3-biscyclohexylbarbituric acid)を97%の収率で得た。構造は1H NMR及び13C NMR(Varian NMR 400 MHz system )により決定した。 A 25 mL two-necked flask equipped with a reflux tube was frame-dried in an argon atmosphere, and then 4 equal volumes of benzaldehyde (manufactured by Nakarai) and 5-acetyl-1,3-bizcyclohexylbarbituric acid (Reference: Tetrahedron). (Prepared by the method described in Lett. 2001, 42, 8435) 1.5 mmol was added and stirred. After heating to 180 degrees, 2 drops of piperidine (manufactured by Nakarai) were dropped. After 74 minutes, the reaction was stopped heating and cooled to obtain a white solid. Filter with ethanol and vacuum dry the filter to enone 5-[(2E) -3-phenylprop-2-enoyl] -6-hydroxy-1,3-biscyclohexyl-2-methylidene-1,2,3. , 4-tetrahydropyrimidin-4-one was obtained in 55% yield. Intermediate Enon compound 5-[(2E) -3-phenylprop-2-enoyl] -6-hydroxy-1,3-dimethyl-2-methylidene-1,2,3, synthesized in a 25 mL two-necked flask 4-tetrahydropyrimidin-4-one 0.5 mmol, 2 eq hydrazine monohydrate (manufactured by Nakarai), and ethanol were added and stirred. After completion of the reaction, the mixture was filtered through ethanol, and the filtrate was vacuum dried to give compound 4i (5- (5-phenylpyrazolidin-3-ylidene) -1,3-biscyclohexylbarbituric acid) in a yield of 97%. The structure was determined by 1 H NMR and 13 C NMR (Varian NMR 400 MHz system).
1,3-biscyclohexyl-5-(5-phenylpyrazolidin-3-ylidene)barbituric acid (4i):: green oil; 1H NMR (400 MHz, CDCl3)δ1.12-1.26 (m, 2H), 1.26-1.39 (m, 4H), 1.52-1.66 (m, 6H), 1.72-1.86 (m, 4H), 2.24-2.42 (m, 4H), 3.71 (dd, J = 18.9, 7.6 Hz, 1H), 4.02-4.14 (m, 1H), 4.62-4.75 (m, 2H), 4.81 (ddd, J = 8.0, 8.0, 8.0 Hz, 1H), 4.99 (d, J = 7.6 Hz, 1H), 7.25-7.38 (m, 5H), 12.08 (s, 1H); 13C NMR (100 MHz, CDCl3)δ25.4, 26.6, 29.3, 43.3, 53.8, 59.4, 76.7, 77.1, 77.4, 87.1, 126.3, 128.3, 129.0, 139.4, 151.1, 162.6, 165.4, 166.5. 1,3-biscyclohexyl-5- (5-phenylpyrazolidin-3-ylidene) barbituric acid (4i) :: green oil; 1 H NMR (400 MHz, CDCl 3 ) δ1.12-1.26 (m, 2H), 1.26- 1.39 (m, 4H), 1.52-1.66 (m, 6H), 1.72-1.86 (m, 4H), 2.24-2.42 (m, 4H), 3.71 (dd, J = 18.9, 7.6 Hz, 1H), 4.02- 4.14 (m, 1H), 4.62-4.75 (m, 2H), 4.81 (ddd, J = 8.0, 8.0, 8.0 Hz, 1H), 4.99 (d, J = 7.6 Hz, 1H), 7.25-7.38 (m, 5H), 12.08 (s, 1H); 13 C NMR (100 MHz, CDCl 3 ) δ 25.4, 26.6, 29.3, 43.3, 53.8, 59.4, 76.7, 77.1, 77.4, 87.1, 126.3, 128.3, 129.0, 139.4, 151.1, 162.6, 165.4, 166.5.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
5iの合成 
25mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、0.3mmolの化合物4i、酢酸(ナカライ製)0.5mL,無水酢酸(東京化成製)0.5mLを加え125oCで2時間攪拌した。反応終了後はトルエンを加えてエバポレーターで濃縮し、真空乾燥した。その後ゲル浸透クロマトグラフィー(GPC)(日本分析工業社製 LaboACELC-5060)によって分離し、純粋な化合物として5-(1-アセチル-5-フェニルピラゾリジン-3-イリデン)-1,3-ジシクロヘキシルバルビツール酸(化合物5i)を茶色液体(収率99%)として得た。構造は1HNMRと13CNMRによりTMSをそれぞれ0ppm基準として決定した。
5i composition
A 25 mL two-necked flask was frame-dried under an argon atmosphere, 0.3 mmol of compound 4i, 0.5 mL of acetic acid (manufactured by Nakarai), and 0.5 mL of acetic anhydride (manufactured by Tokyo Kasei) were added, and the mixture was stirred at 125 o C for 2 hours. .. After completion of the reaction, toluene was added, the mixture was concentrated on an evaporator, and the mixture was vacuum dried. It is then separated by gel permeation chromatography (GPC) (LaboACE LC-5060, manufactured by Nippon Analytical Industry Co., Ltd.) and as a pure compound 5- (1-acetyl-5-phenylpyrazolidine-3-iriden) -1,3-dicyclohexyl. Barbituric acid (Compound 5i) was obtained as a brown liquid (yield 99%). The structure was determined by 1 H NMR and 13 C NMR with TMS as the 0 ppm standard, respectively.
5-(1-acetyl-5-phenylpyrazolidin-3-ylidene)-1,3-dicyclohexylbarbituric acid (5i): brown oil; 1H NMR (400 MHz, CDCl3)δ1.10-1.45 (m, 6H), 1.53-1.72 (m, 6H), 1.75-1.90 (m, 4H), 1.94 (s, 3H), 2.20-2.50 (m, 4H), 3.98 (d, J = 17.6 Hz, 1H), 4.28 (dd, J = 19.4, 10.8 Hz, 1H), 4.60-4.84 (m, 2H), 5.37 (d, J = 8.6 Hz, 1H), 7.23 (d, J = 7.2 Hz, 2H), 7.32-7.48 (m, 3H), 13.94 (br, 1H); 13C NMR (100 MHz, CDCl3)δ20.6, 25.3, 26.5, 29.2, 45.4, 53.9, 58.5, 76.8, 77.1, 77.3, 77.4, 87.2, 124.9, 128.9, 129.7, 139.5, 150.9, 157.8, 162.6, 163.4, 164.6. 5- (1-acetyl-5-phenylpyrazolidin-3-ylidene) -1,3-dicyclohexylbarbituric acid (5i): brown oil; 1 H NMR (400 MHz, CDCl 3 ) δ1.10-1.45 (m, 6H), 1.53-1.72 (m, 6H), 1.75-1.90 (m, 4H), 1.94 (s, 3H), 2.20-2.50 (m, 4H), 3.98 (d, J = 17.6 Hz, 1H), 4.28 (dd, J = 19.4, 10.8 Hz, 1H), 4.60-4.84 (m, 2H), 5.37 (d, J = 8.6 Hz, 1H), 7.23 (d, J = 7.2 Hz, 2H), 7.32-7.48 (m, 3H) ), 13.94 (br, 1H); 13 C NMR (100 MHz, CDCl 3 ) δ 20.6, 25.3, 26.5, 29.2, 45.4, 53.9, 58.5, 76.8, 77.1, 77.3, 77.4, 87.2, 124.9, 128.9, 129.7 , 139.5, 150.9, 157.8, 162.6, 163.4, 164.6.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
(実施例11)
5-(1-アセチル-5-ナフチルピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5j)の調製(一般式(A):R=C10H、R=CH、R=CH)
(Example 11)
Preparation of 5- (1-Acetyl-5-naphthylpyrazolidine-3-iriden) -1,3-dimethylbarbituric acid (Compound 5j) (general formula (A): R 1 = C 10 H 8 , R 2 ) = CH 3 , R 3 = CH 3 )
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
還流管を取り付けた25mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、4等量の3-ナフチルアルデヒド(東京化成工業製)、5-アセチル-1,3-ジメチルバルビツール酸(東京化成工業製)2.5mmolを加え攪拌した。180度に加温したのち、ピぺリジン(ナカライ製)を2滴滴下した。7分後反応を加熱を停止し、冷やすことで白色個体が得られた。エタノールで濾過を行い、濾物は真空乾燥することでエノン5‐[(2E)‐3‐naphthylprop‐2‐enoyl]‐6‐hydroxy‐1,3‐dimethyl‐2‐methylidene‐1,2,3,4‐tetrahydropyrimidin‐4‐oneが73%の収率で得られた。25mL容の二口フラスコに合成した中間体エノン化合物5‐[(2E)‐3‐naphthylprop‐2‐enoyl]‐6‐hydroxy‐1,3‐dimethyl‐2‐methylidene‐1,2,3,4‐tetrahydropyrimidin‐4‐one 0.5mmol、2eqヒドラジン一水和物(ナカライ製)、エタノールを加え攪拌した。反応終了後、エタノールで濾過を行い、濾物は真空乾燥して化合物4j( 1,3-dimethyl-5-(5-naphthylpyrazolidin-3-ylidene)barbituricacid)を76%の収率で得た。構造は1HNMR及び13CNMR(Varian NMR400MHzsystem)により決定した。 After frame-drying a 25 mL two-necked flask equipped with a reflux tube in an argon atmosphere, 4 equal volumes of 3-naphthylaldehyde (manufactured by Tokyo Chemical Industry) and 5-acetyl-1,3-dimethylbarbituric acid (manufactured by Tokyo Chemical Industry Co., Ltd.) Tokyo Chemical Industry Co., Ltd.) 2.5 mmol was added and stirred. After heating to 180 degrees, 2 drops of piperidine (manufactured by Nakarai) were dropped. After 7 minutes, the reaction was stopped from heating and cooled to obtain a white solid. Filter with ethanol and vacuum dry the filter to enone 5-[(2E) -3-naphthylprop-2-enoyl] -6-hydroxy-1,3-dimethyl-2-methylidene-1,2,3. , 4-tetrahydropyrimidin-4-one was obtained in 73% yield. Intermediate Enon compound 5-[(2E) -3-naphthylprop-2-enoyl] -6-hydroxy-1,3-dimethyl-2-methylidene-1,2,3,4 synthesized in a 25 mL two-necked flask -Tetrahydropyrimidin-4-one 0.5 mmol, 2eq hydrazine monohydrate (manufactured by Nakarai), and ethanol were added and stirred. After completion of the reaction, the mixture was filtered through ethanol, and the filtrate was vacuum dried to give compound 4j (1,3-dimethylpyrazolidin-3-ylidene) barbituric acid in a yield of 76%. The structure was determined by 1 H NMR and 13 C NMR (Varian NMR 400MHz system).
1,3-dimethyl-5-(5-naphthylpyrazolidin-3-ylidene)barbituric acid (4j): green solid; 1H NMR (400 MHz, CDCl3)δ3.29 (s, 3H), 3.32 (s, 3H), 3.85 (d, J = 18.7 Hz, 1H), 4.18 (d, J = 18.7 Hz, 1H), 5.00 (s, 1H), 5.10 (s, 1H), 7.39-7.54 (m, 3H), 7.75-7.89 (m, 4H), 12.03(s, 1H); 13C NMR (100 MHz, CDCl3)δ27.7, 27.8, 43.0, 60.1, 86.6, 124.0, 125.5, 126.6, 126.8, 127.9, 128.1, 129.3, 133.4, 133.5, 136.6, 152.0, 162.5, 165.3, 166.5. 1,3-dimethyl-5- (5-naphthylpyrazolidin-3-ylidene) barbituric acid (4j): green solid; 1 H NMR (400 MHz, CDCl 3 ) δ3.29 (s, 3H), 3.32 (s, 3H ), 3.85 (d, J = 18.7 Hz, 1H), 4.18 (d, J = 18.7 Hz, 1H), 5.00 (s, 1H), 5.10 (s, 1H), 7.39-7.54 (m, 3H), 7.75 -7.89 (m, 4H), 12.03 (s, 1H); 13 C NMR (100 MHz, CDCl 3 ) δ 27.7, 27.8, 43.0, 60.1, 86.6, 124.0, 125.5, 126.6, 126.8, 127.9, 128.1, 129.3 , 133.4, 133.5, 136.6, 152.0, 162.5, 165.3, 166.5.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
5jの合成 
25mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、0.3mmolの化合物4j、酢酸(ナカライ製)0.5mL,無水酢酸(東京化成製)0.5mLを加え125oCで2時間攪拌した。反応終了後はトルエンを加えてエバポレーターで濃縮し、真空乾燥した。その後ゲル浸透クロマトグラフィー(GPC)(日本分析工業社製 LaboACELC-5060)によって分離し、純粋な化合物として5-(1-アセチル-5-ナフチルピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5j)を白色個体(収率76%)として得た。構造は1HNMRと13CNMRによりTMSをそれぞれ0ppm基準として決定した。
5j composition
A 25 mL two-necked flask was frame-dried under an argon atmosphere, 0.3 mmol of compound 4j, 0.5 mL of acetic acid (manufactured by Nakarai), and 0.5 mL of acetic anhydride (manufactured by Tokyo Kasei) were added, and the mixture was stirred at 125 o C for 2 hours. .. After completion of the reaction, toluene was added, the mixture was concentrated on an evaporator, and the mixture was vacuum dried. It is then separated by gel permeation chromatography (GPC) (LaboACE LC-5060, manufactured by Nippon Analytical Industry Co., Ltd.) and as a pure compound 5- (1-acetyl-5-naphthylpyrazolidine-3-iriden) -1,3-dimethyl. Barbituric acid (Compound 5j) was obtained as a white solid (yield 76%). The structure was determined by 1 H NMR and 13 C NMR with TMS as the 0 ppm standard, respectively.
5-(1-acetyl-5-naphthylpyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid (5j): white solid; 1H NMR (400 MHz, CDCl3)δ1.96 (s, 3H), 3.26 (s, 3H), 3.37 (s,3H), 4.06 (dd, J = 2.7, 19.5 Hz, 1H), 4.38 (dd, J = 10.9, 19.5 Hz), 5.56 (d, J = 8.2 Hz, 1H), 7.33 (dd, J = 1.2, 8.5 Hz, 1H), 7.54 (t, J = 3.6 Hz, 2H), 7.69 (s, 1H), 7.84 (t, J = 8.1 Hz, 2H), 7.91 (d, J =8.5 Hz, 1H), 13.75 (br, 1H); 13C NMR (100 MHz, CDCl3)δ20.7, 27.7, 27.8, 45.0, 58.8, 86.4, 122.2, 124.2, 127.0, 127.2, 127.85, 127.93, 130.3, 133.1, 133.2, 136.3, 151.6, 157.7, 162.1, 163.7, 164.4. 5- (1-acetyl-5-naphthylpyrazolidin-3-ylidene) -1,3-dimethylbarbituric acid (5j): white solid; 1 H NMR (400 MHz, CDCl 3 ) δ1.96 (s, 3H), 3.26 ( s, 3H), 3.37 (s, 3H), 4.06 (dd, J = 2.7, 19.5 Hz, 1H), 4.38 (dd, J = 10.9, 19.5 Hz), 5.56 (d, J = 8.2 Hz, 1H), 7.33 (dd, J = 1.2, 8.5 Hz, 1H), 7.54 (t, J = 3.6 Hz, 2H), 7.69 (s, 1H), 7.84 (t, J = 8.1 Hz, 2H), 7.91 (d, J) = 8.5 Hz, 1H), 13.75 (br, 1H); 13 C NMR (100 MHz, CDCl 3 ) δ 20.7, 27.7, 27.8, 45.0, 58.8, 86.4, 122.2, 124.2, 127.0, 127.2, 127.85, 127.93, 130.3, 133.1, 133.2, 136.3, 151.6, 157.7, 162.1, 163.7, 164.4.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
(実施例12)
5-(1-アセチル-5-4(フェノキシフェニル)ピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5k)の調製(一般式(A):R=CHOCH、R=CH、R=CH)
(Example 12)
Preparation of 5- (1-Acetyl-5-4 (Phenoxyphenyl) Pyrazolidine-3-Ilidene) -1,3-dimethylbarbituric acid (Compound 5k) (general formula (A): R 1 = C 6 H 4 OC 6 H 5 , R 2 = CH 3 , R 3 = CH 3 )
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
還流管を取り付けた25mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、4等量の4-フェノキシベンズアルデヒド(東京化成工業製)、5-アセチル-1,3-ジメチルバルビツール酸(東京化成工業製)2.5mmolを加え攪拌した。180度に加温したのち、ピぺリジン(ナカライ製)を2滴滴下した。7分後反応を加熱を停止し、冷やすことで白色個体が得られた。エタノールで濾過を行い、濾物は真空乾燥することでエノン5‐[(2E)‐3‐(4-phenoxyphenyl)prop‐2‐enoyl]‐6‐hydroxy‐1,3‐dimethyl‐2‐methylidene‐1,2,3,4‐tetrahydropyrimidin‐4‐oneが70%の収率で得られた。25mL容の二口フラスコに合成した中間体エノン化合物5‐[(2E)‐3‐(4-phenoxyphenyl)prop‐2‐enoyl]‐6‐hydroxy‐1,3‐dimethyl‐2‐methylidene‐1,2,3,4‐tetrahydropyrimidin‐4‐one 0.5mmol、2eqヒドラジン一水和物(ナカライ製)、エタノールを加え攪拌した。反応終了後、エタノールで濾過を行い、濾物は真空乾燥して化合物4k(1,3-dimethyl-5-(5-(4-phenoxyphenyl)pyrazolidin-3-ylidene)barbituricacid)を76%の収率で得た。構造は1HNMR及び13CNMR(Varian NMR400MHzsystem)により決定した。 After frame-drying a 25 mL two-necked flask equipped with a reflux tube in an argon atmosphere, 4 equal volumes of 4-phenoxybenzaldehyde (manufactured by Tokyo Chemical Industry) and 5-acetyl-1,3-dimethylbarbituric acid (manufactured by Tokyo Chemical Industry Co., Ltd.) (Made by Tokyo Chemical Industry) 2.5 mmol was added and stirred. After heating to 180 degrees, 2 drops of piperidine (manufactured by Nakarai) were dropped. After 7 minutes, the reaction was stopped from heating and cooled to obtain a white solid. Filtrate with ethanol and vacuum dry the filter to enone 5-[(2E) -3- (4-phenoxyphenyl) prop-2-enoyl] -6-hydroxy-1,3-dimethyl-2-methylidene- 1,2,3,4-tetrahydropyrimidin-4-one was obtained in 70% yield. Intermediate Enon compound 5-[(2E) -3- (4-phenoxyphenyl) prop-2-enoyl] -6-hydroxy-1,3-dimethyl-2-methylidene-1, synthesized in a 25 mL two- necked flask 2,3,4-tetrahydropyrimidin-4-one 0.5 mmol, 2eq hydrazine monohydrate (manufactured by Nakarai), and ethanol were added and stirred. After completion of the reaction, filtration was performed with ethanol, and the filtrate was vacuum dried to obtain compound 4k (1,3-dimethyl-5-(5- (4-phenoxyphenyl) pyrazolidin-3-ylidene) barbituric acid) in a yield of 76%. I got it in. The structure was determined by 1 H NMR and 13 C NMR (Varian NMR 400MHz system).
(1,3-dimethyl-5-(5-(4-phenoxyphenyl)pyrazolidin-3-ylidene)barbituric acid (4k): white solid; 1H NMR (400 MHz, CDCl3)δ3.27 (s, 3H), 3.29 (s, 3H), 3.72 (dd, J = 7.6, 18.8 Hz, 1H), 4.07 (dd, J = 9.1, 18.8), 4.81 (ddd, J = 8.0, 8.0, 8.3 Hz, 1H), 5.09(d, J = 7.5 Hz, 1H), 8.93-7.00 (m, 4H), 7.10 (t, J = 7.4, 1H), 7.28-7.35 (m, 4H), 11.97 (s, 1H); 13C NMR (100 MHz, CDCl3)δ27.7, 27.8, 43.0, 59.2, 86.4, 119.1, 119.2, 123.8, 127.9, 129.9, 133.8, 151.9, 156.8, 157.6, 162.4, 165.0, 166.2. (1,3-dimethyl-5- (5- (4-phenoxyphenyl) pyrazolidin-3-ylidene) barbituric acid (4k): white solid; 1 H NMR (400 MHz, CDCl 3 ) δ3.27 (s, 3H) , 3.29 (s, 3H), 3.72 (dd, J = 7.6, 18.8 Hz, 1H), 4.07 (dd, J = 9.1, 18.8), 4.81 (ddd, J = 8.0, 8.0, 8.3 Hz, 1H), 5.09 (d, J = 7.5 Hz, 1H), 8.93-7.00 (m, 4H), 7.10 (t, J = 7.4, 1H), 7.28-7.35 (m, 4H), 11.97 (s, 1H); 13 C NMR (100 MHz, CDCl 3 ) δ 27.7, 27.8, 43.0, 59.2, 86.4, 119.1, 119.2, 123.8, 127.9, 129.9, 133.8, 151.9, 156.8, 157.6, 162.4, 165.0, 166.2.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
5kの合成 
25mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、0.3mmolの化合物4k、酢酸(ナカライ製)0.5mL,無水酢酸(東京化成製)0.5mLを加え125oCで2時間攪拌した。反応終了後はトルエンを加えてエバポレーターで濃縮し、真空乾燥した。その後ゲル浸透クロマトグラフィー(GPC)(日本分析工業社製 LaboACELC-5060)によって分離し、純粋な化合物として5-(1-アセチル-5-(4-フェノキシフェニル)ピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5k)を白色個体(収率76%)として得た。構造は1HNMRと13CNMRによりTMSをそれぞれ0ppm基準として決定した。
5k composition
After frame-drying a 25 mL two-necked flask in an argon atmosphere, 0.3 mmol of compound 4 k, acetic acid (manufactured by Nakarai) 0.5 mL, and acetic anhydride (manufactured by Tokyo Kasei) 0.5 mL were added, and the mixture was stirred at 125 o C for 2 hours. .. After completion of the reaction, toluene was added, the mixture was concentrated on an evaporator, and the mixture was vacuum dried. After that, it was separated by gel permeation chromatography (GPC) (LaboACE LC-5060 manufactured by Nippon Analytical Industry Co., Ltd.), and as a pure compound, 5- (1-acetyl-5- (4-phenoxyphenyl) pyrazolidine-3-ylidene) -1, 3-Dimethylbarbituric acid (Compound 5k) was obtained as a white solid (yield 76%). The structure was determined by 1 H NMR and 13 C NMR with TMS as the 0 ppm standard, respectively.
5-(1-acetyl-5-4(phenoxyphenyl)pyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid (5k): white solid; 1H NMR (400 MHz, CDCl3)δ1.97 (s, 3H), 3.28 (s, 3H), 3.36 (s, 3H), 3.99 (m, 1H), 4.3 (dd, J = 10.8, 19.5 Hz, 1H), 5.37 (d, J = 8.5, 1H), 7.01 (d, J = 8.0 Hz, 4H), 7.15 (t, J = 7.2 Hz, 1H), 7.20 (d, J = 8.6Hz, 2H), 7.36 (t, J = 7.7 Hz, 2H), 13.64 (br, 1H); 13C NMR (100 MHz, CDCl3)δ20.7, 27.7, 45.2, 58.2, 86.4, 119.4, 124.0, 126.6, 129.9, 133.6, 151.6, 156.2, 157.6, 158.1, 162.2, 163.6, 164.3. 5- (1-acetyl-5-4 (phenoxyphenyl) pyrazolidin-3-ylidene) -1,3-dimethylbarbituric acid (5k): white solid; 1 H NMR (400 MHz, CDCl 3 ) δ1.97 (s, 3H ), 3.28 (s, 3H), 3.36 (s, 3H), 3.99 (m, 1H), 4.3 (dd, J = 10.8, 19.5 Hz, 1H), 5.37 (d, J = 8.5, 1H), 7.01 ( d, J = 8.0 Hz, 4H), 7.15 (t, J = 7.2 Hz, 1H), 7.20 (d, J = 8.6 Hz, 2H), 7.36 (t, J = 7.7 Hz, 2H), 13.64 (br, 1H); 13 C NMR (100 MHz, CDCl 3 ) δ 20.7, 27.7, 45.2, 58.2, 86.4, 119.4, 124.0, 126.6, 129.9, 133.6, 151.6, 156.2, 157.6, 158.1, 162.2, 163.6, 164.3.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
(実施例13)
5-(1-i-ブチロイル-5-フェニルピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5l)の調製 (一般式(A):R=CH、R=CH(CH3)2、R=CH3)
(Example 13)
Preparation of 5- (1-i-butyroyl-5-phenylpyrazolidine-3-ylidene) -1,3-dimethylbarbituric acid (Compound 5l) (general formula (A): R 1 = C 6 H 5 , R 2 = CH (CH 3 ) 2 , R 3 = CH 3 )
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
10 mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、0.3 mmolの化合物4a (5-(5-phenylpyrazolidin-3-ylidene)pyrimidine-1,3-dimethylbarbituric acid)、イソ酪酸(ナカライ製) 0.6 mL, 無水イソ酪酸(東京化成製)0.6 mLを加え125oCで2時間攪拌した。反応終了後はトルエンを加えてエバポレーターで濃縮し、真空乾燥した。その後エタノールで再結晶を行い、濾過することで、純粋な化合物5lとして5-(1- i-ブチロイル-5-フェニルピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5l)を白色固体(収率59%)として得た。構造は1H NMRと13C NMRによりTMSをそれぞれ0ppm基準として決定した。 After frame-drying a 10 mL two-necked flask under an argon atmosphere, 0.3 mmol of compound 4a (5- (5-phenylpyrazolidin-3-ylidene) pyrimidine-1,3-dimethylbarbituric acid) and isobutyric acid (manufactured by Nakarai) ) 0.6 mL and 0.6 mL of anhydrous isobutyric acid (manufactured by Tokyo Kasei) were added, and the mixture was stirred at 125 o C for 2 hours. After completion of the reaction, toluene was added, the mixture was concentrated on an evaporator, and the mixture was vacuum dried. After that, it is recrystallized from ethanol and filtered to form 5l of pure compound 5- (1- i-butyroyl-5-phenylpyrazolidine-3-ylidene) -1,3-dimethylbarbituric acid (compound 5l). ) Was obtained as a white solid (yield 59%). The structure was determined by 1 H NMR and 13 C NMR with TMS as the 0 ppm standard, respectively.
5-(1-i-propyl-5-phenylpyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid (5l): white solid; 1H NMR (400 MHz, CDCl3)δ7.40 (s, 3H), 7.24 (d, J = 6.7 Hz, 2H), 5.48 (s, 1H), 4.26 (s, 1H), 4.01 (d, J = 18.3 Hz, 1H), 3.36 (s, 3H), 3.27 (s, 3H), 2.41 (s, 1H), 1.19 (d, J = 5.6 Hz, 3H), 0.82 (s, 3H) ; 13C NMR (100 MHz, CDCl3) δ 170.9, 164.3, 162.1, 157.7, 151.6, 140.0, 129.6, 128.9, 124.9, 86.4, 58.2, 45.0, 31.7, 27.7, 19.3, 18.5 5- (1-i-propyl-5-phenylpyrazolidin-3-ylidene) -1,3-dimethylbarbituric acid (5l): white solid; 1 H NMR (400 MHz, CDCl 3 ) δ7.40 (s, 3H), 7.24 (d, J = 6.7 Hz, 2H), 5.48 (s, 1H), 4.26 (s, 1H), 4.01 (d, J = 18.3 Hz, 1H), 3.36 (s, 3H), 3.27 (s, 3H) ), 2.41 (s, 1H), 1.19 (d, J = 5.6 Hz, 3H), 0.82 (s, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 170.9, 164.3, 162.1, 157.7, 151.6, 140.0 , 129.6, 128.9, 124.9, 86.4, 58.2, 45.0, 31.7, 27.7, 19.3, 18.5
Figure JPOXMLDOC01-appb-C000048
 
Figure JPOXMLDOC01-appb-C000048
 
(実施例14)
5-(1-n-デカノイル-5-フェニルピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5m)の調製 (一般式(A):R=CH、RnC9H19、R=CH3)
(Example 14)
Preparation of 5- (1-n-decanoyl-5-phenylpyrazolidine-3-ylidene) -1,3-dimethylbarbituric acid (Compound 5m) (general formula (A): R 1 = C 6 H 5 , R 2 = n C 9 H 19 , R 3 = CH 3 )
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
10 mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、0.3 mmolの化合物4a (5-(5-phenylpyrazolidin-3-ylidene)pyrimidine-1,3-dimethylbarbituric acid)、デカン酸(ナカライ製) 0.6 mL、デカン酸無水物(東京化成製)0.6 mLを加え125oCで2時間攪拌した。反応終了後はトルエンを加えてエバポレーターで濃縮し、真空乾燥した。その後ヘキサンで濾過することで、純粋な化合物5mとして5-(1- n-デカノイル-5-フェニルピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5m)を白色固体(収率63%)として得た。構造は1H NMRと13C NMRによりTMSをそれぞれ0ppm基準として決定した。 After frame-drying a 10 mL two-necked flask under an argon atmosphere, 0.3 mmol of compound 4a (5- (5-phenylpyrazolidin-3-ylidene) pyrimidine-1,3-dimethylbarbituric acid) and decanoic acid (manufactured by Nakarai) ) 0.6 mL and 0.6 mL of decanoic acid anhydride (manufactured by Tokyo Kasei) were added, and the mixture was stirred at 125 o C for 2 hours. After completion of the reaction, toluene was added, the mixture was concentrated on an evaporator, and the mixture was vacuum dried. Then, by filtering with hexane, 5- (1- n-decanoyl-5-phenylpyrazolidine-3-ylidene) -1,3-dimethylbarbituric acid (compound 5 m) as a pure compound 5 m is made into a white solid (compound 5 m). The yield was 63%). The structure was determined by 1H NMR and 13C NMR with TMS as the 0ppm standard, respectively.
5-(1-i-decanoyl-5-phenylpyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid (5m): white solid; 1H NMR (400 MHz, CDCl3)δ7.41-7.35 (m, 3H), 7.24-7.22 (m, 2H), 5.39 (d, J = 8.4 Hz, 1H), 4.28 (dd, J = 19.1, 10.5 Hz, 1H), 3.99 (d, J = 18.6 Hz, 1H), 2.17 (s, 1H), 2.01 (s, 1H), 1.52 (d, J = 42.1 Hz, 2H), 1.08-1.32 (13H), 0.87 (t, J = 6.9 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ166.8, 164.3, 162.2, 157.6, 151.6, 139.7, 129.6, 128.9, 125.0, 86.3, 77.4, 77.0, 76.7, 58.3, 45.1, 35.3, 33.9, 31.8, 29.3, 28.8, 27.7, 24.7, 24.4, 22.6, 14.0 5- (1-i-decanoyl-5-phenylpyrazolidin-3-ylidene) -1,3-dimethylbarbituric acid (5m): white solid; 1 H NMR (400 MHz, CDCl 3 ) δ7.41-7.35 (m, 3H ), 7.24-7.22 (m, 2H), 5.39 (d, J = 8.4 Hz, 1H), 4.28 (dd, J = 19.1, 10.5 Hz, 1H), 3.99 (d, J = 18.6 Hz, 1H), 2.17 (s, 1H), 2.01 (s, 1H), 1.52 (d, J = 42.1 Hz, 2H), 1.08-1.32 (13H), 0.87 (t, J = 6.9 Hz, 3H); 13 C NMR (100 MHz) , CDCl 3 ) δ166.8, 164.3, 162.2, 157.6, 151.6, 139.7, 129.6, 128.9, 125.0, 86.3, 77.4, 77.0, 76.7, 58.3, 45.1, 35.3, 33.9, 31.8, 29.3, 28.8, 27.7, 24.7, 24.4, 22.6, 14.0
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
(実施例15)
5-(1-n-ヘキサノイル-5-フェニルピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5n)の調製 (一般式(A):R=CH、RnC5H11、R=CH3)
(Example 15)
Preparation of 5- (1-n-hexanoyl-5-phenylpyrazolidine-3-ylidene) -1,3-dimethylbarbituric acid (Compound 5n) (general formula (A): R 1 = C 6 H 5 , R 2 = n C 5 H 11 , R 3 = CH 3 )
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
10 mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、0.2 mmolの化合物4a (5-(5-phenylpyrazolidin-3-ylidene)pyrimidine-1,3-dimethylbarbituric acid)、ヘキサン酸(ナカライ製) 0.4 mL、ヘキサン酸無水物(東京化成製)0.4 mLを加え125oCで2時間攪拌した。反応終了後はトルエンを加えてエバポレーターで濃縮し、真空乾燥した。その後ヘキサンで濾過することで、純粋な化合物5nとして5-(1- n-ヘキサノイル-5-フェニルピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5n)を白色固体(収率34%)として得た。構造は1H NMRと13C NMRによりTMSをそれぞれ0ppm基準として決定した。 After frame-drying a 10 mL two-necked flask under an argon atmosphere, 0.2 mmol of compound 4a (5- (5-phenylpyrazolidin-3-ylidene) pyrimidine-1,3-dimethylbarbituric acid) and hexane acid (manufactured by Nakarai) ) 0.4 mL and 0.4 mL of hexanoic acid anhydride (manufactured by Tokyo Kasei) were added, and the mixture was stirred at 125 o C for 2 hours. After completion of the reaction, toluene was added, the mixture was concentrated on an evaporator, and the mixture was vacuum dried. Then, by filtering with hexane, 5- (1-n-hexanoyl-5-phenylpyrazolidine-3-ylidene) -1,3-dimethylbarbituric acid (Compound 5n) was added as a pure compound 5n to a white solid (Compound 5n). The yield was 34%). The structure was determined by 1H NMR and 13C NMR with TMS as the 0ppm standard, respectively.
5-(1-i-hexanoyl-5-phenylpyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid (5m): white solid; 1H NMR (400 MHz, CDCl3)δ 7.42-7.35 (m, 3H), 7.24-7.22 (m, 2H), 5.26-5.51 (1H), 4.32-4.24 (m, 1H), 3.99 (d, J = 19.0 Hz, 1H), 3.37 (s, 3H), 3.27 (s, 3H), 2.09 (d, J = 72.4 Hz, 1H), 1.52 (d, J = 41.3 Hz, 2H), 1.15 (s, 4H), 0.82-0.79 (m, 3H); 13C NMR (100 MHz, CDCl3) δ 166.7, 164.3, 162.2, 157.5, 151.6, 139.7, 129.6, 129.0, 125.0, 86.3, 58.3, 45.1, 32.8, 31.2, 27.5, 24.1, 22.2, 13.8 5- (1-i-hexanoyl-5-phenylpyrazolidin-3-ylidene) -1,3-dimethylbarbituric acid (5m): white solid; 1 H NMR (400 MHz, CDCl 3 ) δ 7.42-7.35 (m, 3H) , 7.24-7.22 (m, 2H), 5.26-5.51 (1H), 4.32-4.24 (m, 1H), 3.99 (d, J = 19.0 Hz, 1H), 3.37 (s, 3H), 3.27 (s, 3H) ), 2.09 (d, J = 72.4 Hz, 1H), 1.52 (d, J = 41.3 Hz, 2H), 1.15 (s, 4H), 0.82-0.79 (m, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 166.7, 164.3, 162.2, 157.5, 151.6, 139.7, 129.6, 129.0, 125.0, 86.3, 58.3, 45.1, 32.8, 31.2, 27.5, 24.1, 22.2, 13.8
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
(実施例16)
5-(1-アセチル-5-シクロへキシル)ピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5o)の調製(一般式(A):RcCH11、R=CH、R=CH)
(Example 16)
Preparation of 5- (1-Acetyl-5-Cyclohexyl) Pyrazolidine-3-Ilidene) -1,3-dimethylbarbituric acid (Compound 5o) (general formula (A): R 1 = c C 6 H 11 , R 2 = CH 3 , R 3 = CH 3 )
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
還流管を取り付けた10 mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、4等量のシクロヘキサンカルボアルデヒド(東京化成工業製)、5-アセチル-1,3-ジメチルバルビツール酸 (東京化成工業製)2.5 mmolを加え攪拌した。180度に加温したのち、ピぺリジン(ナカライ製)を3滴滴下した。1時間後、加熱を停止し、冷やすことで黄色個体が得られる。エタノールで濾過を行い、濾物は真空乾燥し、濾液はシリカゲルカラムクロマトグラフィーで単離を行うことで中間体エノン(3o)5‐[(2E)‐3‐(cyclohexyl)prop‐2‐enoyl]‐6‐hydroxy‐1,3‐dimethyl‐2‐methylidene‐1,2,3,4‐tetrahydropyrimidin‐4‐oneが25%の収率で得られる。構造は1H NMRにより確認した。 After frame-drying a 10 mL two-necked flask equipped with a reflux tube in an argon atmosphere, 4 equal volumes of cyclohexanecarbaldehyde (manufactured by Tokyo Chemical Industry Co., Ltd.), 5-acetyl-1,3-dimethylbarbituric acid ( (Made by Tokyo Chemical Industry) 2.5 mmol was added and stirred. After heating to 180 degrees, 3 drops of piperidine (manufactured by Nakarai) were dropped. After 1 hour, stop heating and cool to obtain a yellow solid. Filter through ethanol, vacuum dry the filtrate, and isolate the filtrate by silica gel column chromatography to isolate the intermediate enone (3o) 5-[(2E) -3- (cyclohexyl) prop-2-enoyl]. -6-hydroxy-1,3-dimethyl-2-methylidene-1,2,3,4-tetrahydropyrimidin-4-one is obtained in a yield of 25%. The structure was confirmed by 1H NMR.
5‐[(2E)‐3‐(cyclohexyl)prop‐2‐enoyl]‐6‐hydroxy‐1,3‐dimethyl‐2‐methylidene‐1,2,3,4‐tetrahydropyrimidin‐4‐one (3o) : yellow solid; 1H NMR (400 MHz, CDCl3) δ 16.96 (s, 1H), 7.80 (d, J = 15.6 Hz, 1H), 7.28 (dd, J = 15.6, 6.7 Hz, 1H), 3.34 (d, J = 15.6 Hz, 6H), 2.30 (d, J = 6.7 Hz, 1H), 1.86-1.78 (m, 4H), 1.70 (d, J = 12.4 Hz, 1H), 1.38-1.19 (m, 5H) 5-[(2E) -3- (cyclohexyl) prop-2-enoyl] -6-hydroxy-1,3-dimethyl-2-methylidene-1,2,3,4-tetrahydropyrimidin-4-one (3o): yellow solid; 1 H NMR (400 MHz, CDCl 3 ) δ 16.96 (s, 1H), 7.80 (d, J = 15.6 Hz, 1H), 7.28 (dd, J = 15.6, 6.7 Hz, 1H), 3.34 (d) , J = 15.6 Hz, 6H), 2.30 (d, J = 6.7 Hz, 1H), 1.86-1.78 (m, 4H), 1.70 (d, J = 12.4 Hz, 1H), 1.38-1.19 (m, 5H)
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
20 mL容の二口フラスコに合成した中間体エノン化合物5‐[(2E)‐3‐(cyclohexyl)prop‐2‐enoyl]‐6‐hydroxy‐1,3‐dimethyl‐2‐methylidene‐1,2,3,4‐tetrahydropyrimidin‐4‐one(3o) 0.4 mmol、2 eqヒドラジン一水和物(ナカライ製)、エタノールを加え攪拌した。反応終了後、減圧濃縮し、真空乾燥して化合物4c(5-(5-cyclohexylpyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid)を80%の収率で得た。構造は1H NMR(Varian NMR 400 MHz system )により決定した。 Intermediate Enon compound 5-[(2E) -3- (cyclohexyl) prop-2-enoyl] -6-hydroxy-1,3-dimethyl-2-methylidene-1,2 synthesized in a 20 mL two-necked flask , 3,4-tetrahydropyrimidin-4-one (3o) 0.4 mmol, 2 eq hydrazine monohydrate (manufactured by Nakarai), and ethanol were added and stirred. After completion of the reaction, the mixture was concentrated under reduced pressure and dried under vacuum to give compound 4c (5- (5-cyclohexylpyrazolidin-3-ylidene) -1,3-dimethylbarbituric acid) in a yield of 80%. The structure was determined by 1 H NMR (Varian NMR 400 MHz system).
5-(5-cyclohexylpyrazolidin-3-ylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (4o):黄色オイル; 1H NMR (400 MHz, CDCl3) δ4.29(s, 1H), 3.99-3.94 (d, 1H), 3.62 (s, 1H), 3.32 (s, 6H) 2.22 (s, 3H), 1.45 (dd, J = 18.8, 10.7 Hz, 1H), 1.27-1.14 (m, 4H), 1.04 (q, J = 11.7 Hz, 2H) 5- (5-cyclohexylpyrazolidin-3-ylidene) -1,3-dimethylpyrimidine-2,4,6 (1H, 3H, 5H) -trione (4o): yellow oil; 1 H NMR (400 MHz, CDCl 3 ) δ4 .29 (s, 1H), 3.99-3.94 (d, 1H), 3.62 (s, 1H), 3.32 (s, 6H) 2.22 (s, 3H), 1.45 (dd, J = 18.8, 10.7 Hz, 1H) , 1.27-1.14 (m, 4H), 1.04 (q, J = 11.7 Hz, 2H)
Figure JPOXMLDOC01-appb-C000055
 
Figure JPOXMLDOC01-appb-C000055
 
5oの合成 
10 mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、0.2 mmolの化合物4o(5-(5-cyclohexylpyrazolidin-3-ylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione)、酢酸(ナカライ製) 0.5 mL, 無水酢酸(東京化成製)0.5 mLを加え125oCで2時間攪拌した。反応終了後はトルエンを加えてエバポレーターで濃縮し、真空乾燥した。その後ゲル浸透クロマトグラフィー(GPC)(日本分析工業社製 LaboACE LC-5060)によって分離し、純粋な化合物として5-(1-アセチル-5-ヘキシルピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5o)を黄色オイル状物質(収率57%)として得た。構造は1H NMRと13C NMRによりTMSをそれぞれ0ppm基準として決定した。
5o composition
After frame-drying a 10 mL two-necked flask under an argon atmosphere, 0.2 mmol of compound 4o (5- (5-cyclohexylpyrazolidin-3-ylidene) -1,3-dimethylpyrimidine-2,4,6 (1H,) 3H, 5H) -trione), acetic acid (manufactured by Nakarai) 0.5 mL, and acetic anhydride (manufactured by Tokyo Kasei) 0.5 mL were added, and the mixture was stirred at 125 o C for 2 hours. After completion of the reaction, toluene was added, the mixture was concentrated on an evaporator, and the mixture was vacuum dried. It is then separated by gel permeation chromatography (GPC) (LaboACE LC-5060, manufactured by Nippon Analytical Industry Co., Ltd.) and as a pure compound 5- (1-acetyl-5-hexylpyrazolidine-3-iriden) -1,3- Dimethylbarbituric acid (Compound 5o) was obtained as a yellow oily substance (yield 57%). The structure was determined by 1 H NMR and 13 C NMR with TMS as the 0 ppm standard, respectively.
5-(1-acetyl-5-cyclohexylpyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid (5o):yellow oil; 1H NMR (400 MHz, CDCl3)δ1.94 (s, 3H), 3.25 (s, 3H), 3.34(s, 3H), 3.93 (d, J = 19.0 Hz, 1H), 4.33 (dd, J = 10.8, 19.4 Hz, 1H), 5.41 (d, J = 8.5 Hz, 1H), 7.23 (d, J = 7.8 Hz, 2H), 7.40 (d, J = 7.5 Hz, 2H) 13.63 (br, 1H); 13C NMR(100 MHz, CDCl3)δ20.6, 27.7, 45.0, 58.0, 86.3, 126.6, 129.9, 135.0, 137.8, 151.5, 157.5, 162.0, 163.6, 164.3. 5- (1-acetyl-5-cyclohexylpyrazolidin-3-ylidene) -1,3-dimethylbarbituric acid (5o): yellow oil; 1 H NMR (400 MHz, CDCl 3 ) δ1.94 (s, 3H), 3.25 ( s, 3H), 3.34 (s, 3H), 3.93 (d, J = 19.0 Hz, 1H), 4.33 (dd, J = 10.8, 19.4 Hz, 1H), 5.41 (d, J = 8.5 Hz, 1H), 7.23 (d, J = 7.8 Hz, 2H), 7.40 (d, J = 7.5 Hz, 2H) 13.63 (br, 1H); 13 C NMR (100 MHz, CDCl 3 ) δ 20.6, 27.7, 45.0, 58.0, 86.3, 126.6, 129.9, 135.0, 137.8, 151.5, 157.5, 162.0, 163.6, 164.3.
Figure JPOXMLDOC01-appb-C000056
 
Figure JPOXMLDOC01-appb-C000056
 
(実施例17)
5-(1-アセチル-5-(2-クロロ-3-メトキシフェニル)ピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5p)の調製(一般式(A):R=CH4ClOCH3、R=CH、R=CH)
(Example 17)
Preparation of 5- (1-Acetyl-5- (2-Chloro-3-methoxyphenyl) Pyrazolidine-3-Ilidene) -1,3-dimethylbarbituric acid (Compound 5p) (general formula (A): R 1 = C 6 H 4 ClOCH 3 , R 2 = CH 3 , R 3 = CH 3 )
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
還流管を取り付けた10 mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、4等量の2-クロロ-3-メトキシベンズアルデヒド(東京化成工業製)、5-アセチル-1,3-ジメチルバルビツール酸 (東京化成工業製)2.5 mmolを加え攪拌した。180度に加温したのち、ピぺリジン(ナカライ製)を3滴滴下した。7分後、加熱を停止し、冷やすことで黄色個体が得られる。エタノールで濾過を行い、濾物は真空乾燥を行うことで中間体エノン((E)-5-(3-(2-chloro-3-methoxyphenyl)acryloyl)-6-hydroxy-1,3-dimethylpyrimidine-2,4(1H,3H)-dione)が85%の収率で得られる。構造は1H NMRにより決定した。 After frame-drying a 10 mL two-necked flask equipped with a reflux tube in an argon atmosphere, 4 equal volumes of 2-chloro-3-methoxybenzaldehyde (manufactured by Tokyo Chemical Industry Co., Ltd.), 5-acetyl-1,3- 2.5 mmol of dimethylbarbituric acid (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred. After heating to 180 degrees, 3 drops of piperidine (manufactured by Nakarai) were dropped. After 7 minutes, stop heating and let cool to obtain a yellow solid. After filtering with ethanol and vacuum-drying the filter, intermediate enone ((E) -5-(3- (2-chloro-3-methoxyphenyl) acryloyl) -6-hydroxy-1,3-dimethylpyrimidine- 2,4 (1H, 3H) -dione) is obtained in a yield of 85%. The structure was determined by 1 H NMR.
(E)-5-(3-(2-chloro-3-methoxyphenyl)acryloyl)-6-hydroxy-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (3p) : yellow solid; 1H NMR (400 MHz, CDCl3) δ 17.04 (s, 1H), 8.55-8.45 (m, 2H), 7.48-6.99 (m, 4H), 3.93 (s, 4H), 3.38 (d, J = 13.7 Hz, 6H) (E) -5- (3- (2-chloro-3-methoxyphenyl) acryloyl) -6-hydroxy-1,3-dimethylpyrimidine-2,4 (1H, 3H) -dione (3p): yellow solid; 1 H NMR (400 MHz, CDCl 3 ) δ 17.04 (s, 1H), 8.55-8.45 (m, 2H), 7.48-6.99 (m, 4H), 3.93 (s, 4H), 3.38 (d, J = 13.7 Hz, 6H)
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
4pの合成 
50 mL容の二口フラスコに合成した中間体エノン化合物(E)-5-(3-(2-chloro-3-methoxyphenyl)acryloyl)-6-hydroxy-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (3p) 1mmol、2 eqヒドラジン一水和物(ナカライ製)、エタノールを加え攪拌した。反応終了後、エタノールで濾過。ろ物は真空乾燥して化合物4pを80%の収率で得た。構造は1H NMR及び13C NMR(Varian NMR 400 MHz system )により決定した。
4p composition
Intermediate enone compound synthesized in a 50 mL two-necked flask (E) -5-(3- (2-chloro-3-methoxyphenyl) acryloyl) -6-hydroxy-1,3-dimethylpyrimidine-2,4 (1H) , 3H) -dione (3p) 1 mmol, 2 eq hydrazine monohydrate (manufactured by Nakarai) and ethanol were added and stirred. After completion of the reaction, filter with ethanol. The filtrate was vacuum dried to give compound 4p in 80% yield. The structure was determined by 1 H NMR and 13 C NMR (Varian NMR 400 MHz system).
5-(1-acetyl-5-4-(2-chrolo-3-metoxy)pyrazolidin-3-ylidene) 5-(5-(2-chloro-3-methoxyphenyl)pyrazolidin-3-ylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (4p):white solid; 1H NMR (400 MHz, CDCl3) δ 12.08 (s, 1H), 7.24 (t, J = 7.6 Hz, 1H), 7.09 (d, J = 6.9 Hz, 1H), 6.90 (d, J = 7.9 Hz, 1H), 5.27 (s, 2H), 4.13-4.09 (m, 2H), 3.91 (s, 3H), 3.80 (d, J =18.9 Hz, 1H), 3.34 (s, 3H) , 3.28 (s, 3H) 5- (1-acetyl-5-4- (2-chrolo-3-metoxy) pyrazolidin-3-ylidene) 5- (5- (2-chloro-3-methoxyphenyl) pyrazolidin-3-ylidene) -1,3 -dimethylpyrimidine-2,4,6 (1H, 3H, 5H)-trione (4p): white solid; 1 H NMR (400 MHz, CDCl 3 ) δ 12.08 (s, 1H), 7.24 (t, J = 7.6 Hz) , 1H), 7.09 (d, J = 6.9 Hz, 1H), 6.90 (d, J = 7.9 Hz, 1H), 5.27 (s, 2H), 4.13-4.09 (m, 2H), 3.91 (s, 3H) , 3.80 (d, J = 18.9 Hz, 1H), 3.34 (s, 3H), 3.28 (s, 3H)
Figure JPOXMLDOC01-appb-C000059
 
Figure JPOXMLDOC01-appb-C000059
 
5pの合成 
10 mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、0.2 mmolの化合物4p(5-(1-acetyl-5-4-(2-chrolo-3-metoxy)pyrazolidin-3-ylidene) 5-(5-(2-chloro-3-methoxyphenyl)pyrazolidin-3-ylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione)、酢酸(ナカライ製) 0.5 mL, 無水酢酸(東京化成製)0.5 mLを加え125oCで2時間攪拌した。反応終了後はトルエンを加えてエバポレーターで濃縮し、真空乾燥した。その後ゲル浸透クロマトグラフィー(GPC)(日本分析工業社製 LaboACE LC-5060)によって分離し、純粋な化合物として5-(1-acetyl-5-(2-chloro-3-methoxyphenyl)pyrazolidin-3-ylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (化合物5p)を白色固体(収率75%)として得た。構造は1H NMRと13C NMRによりTMSをそれぞれ0ppm基準として決定した。
5p composition
After frame-drying a 10 mL two-necked flask under an argon atmosphere, 0.2 mmol of compound 4p (5- (1-acetyl-5-4- (2-chrolo-3-metoxy) pyrazolidin-3-ylidene) 5- (5- (2-chloro-3-methoxyphenyl) pyrazolidin-3-ylidene) -1,3-dimethylpyrimidine-2,4,6 (1H, 3H, 5H) -trione), acetic anhydride (manufactured by Nakarai) 0.5 mL , 0.5 mL of acetic anhydride (manufactured by Tokyo Kasei) was added, and the mixture was stirred at 125 o C for 2 hours. After completion of the reaction, toluene was added, the mixture was concentrated on an evaporator, and the mixture was vacuum dried. It is then separated by gel permeation chromatography (GPC) (LaboACE LC-5060, manufactured by Nippon Analytical Industry Co., Ltd.) and as a pure compound 5- (1-acetyl-5- (2-chloro-3-methoxyphenyl) pyrazolidin-3-ylidene). ) -1,3-dimethylpyrimidine-2,4,6 (1H, 3H, 5H) -trione (Compound 5p) was obtained as a white solid (yield 75%). The structure was determined by 1 H NMR and 13 C NMR with TMS as the 0 ppm standard, respectively.
5-(1-acetyl-5-(2-chloro-3-methoxyphenyl)pyrazolidin-3-ylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (5p): white solid; 1H NMR (400 MHz, CDCl3) δ 7.29-7.26 (m, 1H), 6.95 (d, J = 8.0 Hz, 1H), 6.79 (d, J = 7.4 Hz, 1H), 5.82 (d, J = 8.0 Hz, 1H), 4.35 (dd, J = 19.3, 10.9 Hz, 1H), 3.94 (s+m, 3+1H), 3.35 (s, 3H), 3.26 (s, 3H), 1.95 (s, 3H); 13C NMR(100 MHz, CDCl3) δ 164.3, 163.5, 162.0, 158.0, 155.9, 151.5, 138.1, 128.5, 119.9, 116.8, 112.1, 86.4, 56.4, 55.9, 43.9, 29.6, 27.7, 20.3 5- (1-acetyl-5- (2-chloro-3-methoxyphenyl) pyrazolidin-3-ylidene) -1,3-dimethylpyrimidine-2,4,6 (1H, 3H, 5H)-trione (5p): white solid; 1 H NMR (400 MHz, CDCl 3 ) δ 7.29-7.26 (m, 1H), 6.95 (d, J = 8.0 Hz, 1H), 6.79 (d, J = 7.4 Hz, 1H), 5.82 (d, J = 8.0 Hz, 1H), 4.35 (dd, J = 19.3, 10.9 Hz, 1H), 3.94 (s + m, 3 + 1H), 3.35 (s, 3H), 3.26 (s, 3H), 1.95 (s) , 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 164.3, 163.5, 162.0, 158.0, 155.9, 151.5, 138.1, 128.5, 119.9, 116.8, 112.1, 86.4, 56.4, 55.9, 43.9, 29.6, 27.7, 20.3
Figure JPOXMLDOC01-appb-C000060
 
Figure JPOXMLDOC01-appb-C000060
 
(実施例18)
5-(1-アセチル-5-(4-n-オクチルフェニル)ピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5q)の調製(一般式(A):R=CH(C8H17)、R=CH、R=CH)
(Example 18)
Preparation of 5- (1-acetyl-5- (4-n-octylphenyl) pyrazolidine-3-ylidene) -1,3-dimethylbarbituric acid (Compound 5q) (general formula (A): R 1 = C 6 H 5 (C 8 H 17 ), R 2 = CH 3 , R 3 = CH 3 )
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
還流管を取り付けた10 mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、4等量の4-オクチルベンズアルデヒド(東京化成工業製)、5-アセチル-1,3-ジメチルバルビツール酸 (東京化成工業製)2.5 mmolを加え攪拌した。180度に加温したのち、ピぺリジン(ナカライ製)を3滴滴下した。1時間後、加熱を停止し、冷やすことで黄色個体が得られる。エタノールで濾過を行い、濾物は真空乾燥を行うことで中間体エノン(3q) (E)-6-hydroxy-1,3-dimethyl-5-(3-(4-octylphenyl)acryloyl)pyrimidine-2,4(1H,3H)-dioneが48%の収率で得られる。構造は1H NMRにより決定した。 After frame-drying a 10 mL two-necked flask equipped with a reflux tube in an argon atmosphere, 4 equal volumes of 4-octylbenzaldehyde (manufactured by Tokyo Chemical Industry Co., Ltd.) and 5-acetyl-1,3-dimethylbarbituric acid (Made by Tokyo Chemical Industry) 2.5 mmol was added and stirred. After heating to 180 degrees, 3 drops of piperidine (manufactured by Nakarai) were dropped. After 1 hour, the heating is stopped and the mixture is cooled to obtain a yellow solid. After filtering with ethanol and vacuum drying the filter, intermediate enone (3q) (E) -6-hydroxy-1,3-dimethyl-5- (3- (4-octylphenyl) acryloyl) pyrimidine-2 , 4 (1H, 3H) -dione is obtained in 48% yield. The structure was determined by 1H NMR.
(E)-6-hydroxy-1,3-dimethyl-5-(3-(4-octylphenyl)acryloyl)pyrimidine-2,4(1H,3H)-dione (3q) : yellow solid; 1H NMR (400 MHz, CDCl3) δ 16.96 (s, 1H), 8.52 (d, J = 15.8 Hz, 1H), 7.98 (d, J = 15.8 Hz, 1H), 7.59 (d, J = 8.3 Hz, 2H), 7.21 (d, J = 8.3 Hz, 2H), 3.37 (s, 3H), 3.35 (s, 3H), 2.63 (t, J = 7.7 Hz, 2H), 1.65-1.58 (m, 2H), 1.32-1.27 (m, 13H), 0.88 (t, J = 6.9 Hz, 4H) (E) -6-hydroxy-1,3-dimethyl-5- (3- (4-octylphenyl) acryloyl) pyrimidine-2,4 (1H, 3H) -dione (3q): yellow solid; 1 H NMR (400) MHz, CDCl 3 ) δ 16.96 (s, 1H), 8.52 (d, J = 15.8 Hz, 1H), 7.98 (d, J = 15.8 Hz, 1H), 7.59 (d, J = 8.3 Hz, 2H), 7.21 (d, J = 8.3 Hz, 2H), 3.37 (s, 3H), 3.35 (s, 3H), 2.63 (t, J = 7.7 Hz, 2H), 1.65-1.58 (m, 2H), 1.32-1.27 ( m, 13H), 0.88 (t, J = 6.9 Hz, 4H)
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
4qの合成
50 mL容の二口フラスコに合成した中間体エノン化合物(E)-6-hydroxy-1,3-dimethyl-5-(3-(4-octylphenyl)acryloyl)pyrimidine-2,4(1H,3H)-dione (3q) ,1  mmol、2 eqヒドラジン一水和物(ナカライ製)、エタノールを加え攪拌した。反応終了後、エタノールで濾過。ろ物は真空乾燥して化合物4qを56%の収率で得た。構造は1H NMR(Varian NMR 400 MHz system )により決定した。
4q composition
Intermediate enone compound (E) -6-hydroxy-1,3-dimethyl-5- (3- (4-octylphenyl) acryloyl) pyrimidine-2,4 (1H, 3H) synthesized in a 50 mL two-necked flask -Dione (3q), 1 mmol, 2 eq hydrazine monohydrate (manufactured by Nakarai) and ethanol were added and stirred. After completion of the reaction, filter with ethanol. The filtrate was vacuum dried to give compound 4q in 56% yield. The structure was determined by 1 H NMR (Varian NMR 400 MHz system).
1,3-dimethyl-5-(5-(4-octylphenyl)pyrazolidin-3-ylidene)pyrimidine-2,4,6(1H,3H,5H)-trione (4q):white solid; 1H NMR (400 MHz, CDCl3) δ  7.22-7.14 (m, 4H), 5.40 (d, J = 7.4 Hz, 1H), 4.32 (dd, J = 19.5, 10.9 Hz, 1H), 3.96 (dd, J = 19.4, 3.7 Hz, 1H), 3.34 (s, 3H), 3.25 (s, 3H), 2.60 (t, J = 7.7 Hz, 2H), 1.94-1.91 (m, 2H), 1.59-1.57 (m, 2H), 1.30-1.23 (m, 8H), 0.87 (t, J = 6.8 Hz, 3H) 1,3-dimethyl-5-(5- (4-octylphenyl) pyrazolidin-3-ylidene) pyrimidine-2,4,6 (1H, 3H, 5H) -trione (4q): white solid; 1 H NMR (400) MHz, CDCl 3 ) δ 7.22-7.14 (m, 4H), 5.40 (d, J = 7.4 Hz, 1H), 4.32 (dd, J = 19.5, 10.9 Hz, 1H), 3.96 (dd, J = 19.4, 3.7) Hz, 1H), 3.34 (s, 3H), 3.25 (s, 3H), 2.60 (t, J = 7.7 Hz, 2H), 1.94-1.91 (m, 2H), 1.59-1.57 (m, 2H), 1.30 -1.23 (m, 8H), 0.87 (t, J = 6.8 Hz, 3H)
Figure JPOXMLDOC01-appb-C000063
 
Figure JPOXMLDOC01-appb-C000063
 
5qの合成
10 mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、0.3 mmolの化合物1,3-dimethyl-5-(5-(4-octylphenyl)pyrazolidin-3-ylidene)pyrimidine-2,4,6(1H,3H,5H)-trione (4q)、酢酸(ナカライ製) 0.6 mL, 無水酢酸(東京化成製)0.6 mLを加え125oCで2時間攪拌した。反応終了後はトルエンを加えてエバポレーターで濃縮し、真空乾燥した。純粋な化合物として1,3-dimethyl-5-(5-(4-octylphenyl)-1-(prop-1-en-2-yl)pyrazolidin-3-ylidene)pyrimidine-2,4,6(1H,3H,5H)-trione (化合物5q)を白色固体(収率96%)として得た。構造は1H NMRと13C NMRによりTMSをそれぞれ0ppm基準として決定した。
5q composition
After frame-drying a 10 mL two-necked flask under an argon atmosphere, 0.3 mmol of compound 1,3-dimethyl-5-(5- (4-octylphenyl) pyrazolidin-3-ylidene) pyrimidine-2,4, 6 (1H, 3H, 5H) -trione (4q), acetic acid (manufactured by Nakarai) 0.6 mL, and acetic anhydride (manufactured by Tokyo Kasei) 0.6 mL were added, and the mixture was stirred at 125 o C for 2 hours. After completion of the reaction, toluene was added, the mixture was concentrated on an evaporator, and the mixture was vacuum dried. As a pure compound 1,3-dimethyl-5-(5- (4-octylphenyl) -1- (prop-1-en-2-yl) pyrazolidin-3-ylidene) pyrimidine-2,4,6 (1H, 3H, 5H) -trione (compound 5q) was obtained as a white solid (yield 96%). The structure was determined by 1 H NMR and 13 C NMR with TMS as the 0 ppm standard, respectively.
1,3-dimethyl-5-(5-(4-octylphenyl)-1-(prop-1-en-2-yl)pyrazolidin-3-ylidene)pyrimidine-2,4,6(1H,3H,5H)-trione (5q): white solid; 1H NMR (400 MHz, CDCl3) δ12.00 (s, 1H), 7.26 (d, J = 8.0 Hz, 1H), 7.17 (d, J = 8.0 Hz, 1H), 5.08 (brs, 1H), 4.83-4.78 (m, 1H), 4.13-4.05 (m, 1H),3.76-3.69 (m, 1H), 3.31 (s, 3H), 3.28 (s, 3H), 2.58 (t, J = 7.6 Hz, 2H), 2.08 (s, 3H), 1.59-1.56 (m, 2H), 1.30-1.24 (m, 10H), 0.88 (t, J = 6.8 Hz, 3H); 13C NMR(100 MHz, CDCl3) δ 166.1, 164.9, 162.3, 151.8, 144.3, 136.2, 129.0, 126.2, 86.1, 59.5, 42.7, 35.5, 31.8, 31.4, 29.4, 29.24, 29.21, 27.7, 27.6, 22.6, 21.4, 14.1 1,3-dimethyl-5- (5- (4-octylphenyl) -1- (prop-1-en-2-yl) pyrazolidin-3-ylidene) pyrimidine-2,4,6 (1H, 3H, 5H) -trione (5q): white solid; 1 H NMR (400 MHz, CDCl 3 ) δ12.00 (s, 1H), 7.26 (d, J = 8.0 Hz, 1H), 7.17 (d, J = 8.0 Hz, 1H) ), 5.08 (brs, 1H), 4.83-4.78 (m, 1H), 4.13-4.05 (m, 1H), 3.76-3.69 (m, 1H), 3.31 (s, 3H), 3.28 (s, 3H), 2.58 (t, J = 7.6 Hz, 2H), 2.08 (s, 3H), 1.59-1.56 (m, 2H), 1.30-1.24 (m, 10H), 0.88 (t, J = 6.8 Hz, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 166.1, 164.9, 162.3, 151.8, 144.3, 136.2, 129.0, 126.2, 86.1, 59.5, 42.7, 35.5, 31.8, 31.4, 29.4, 29.24, 29.21, 27.7, 27.6, 22.6, 21.4, 14.1
Figure JPOXMLDOC01-appb-C000064
 
Figure JPOXMLDOC01-appb-C000064
 
(実施例19)
5-(1-プロピノイル-5-フェニルピラゾリジン-3-イリデン)-1,3-ジシクロヘキシルバルビツール酸(化合物5r)の調製(一般式(A):R=CH、R=CHCH3、R=CH(c-Hex))
(Example 19)
Preparation of 5- (1-propinoyl-5-phenylpyrazolidine-3-iriden) -1,3-dicyclohexylbarbituric acid (Compound 5r) (general formula (A): R 1 = C 6 H 5 , R 2 ) = CH 2 CH 3 , R 3 = C 6 H 5 (c-Hex))
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
5rの合成 
10 mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、実施例10で合成した4i(1,3-biscyclohexyl-5-(5-phenylpyrazolidin-3-ylidene)barbituric acid)、プロピオン酸(ナカライ製) 0.6 mL, 無水プロピオン酸(東京化成製)0.6 mLを加え125oCで2時間攪拌した。反応終了後はトルエンを加えてエバポレーターで濃縮し、真空乾燥した。その後ゲル浸透クロマトグラフィー(GPC)(日本分析工業社製 LaboACE LC-5060)によって分離し、純粋な化合物として5-(1-プロピノイル-5-フェニルピラゾリジン-3-イリデン)-1,3-ジシクロヘキシルバルビツール酸(化合物5r)を黄色アメ(収率51%)として得た。構造は1H NMR及び13C NMR(Varian NMR 400 MHz system )により決定した。
5r composition
After frame-drying a 10 mL two-necked flask in an argon atmosphere, 4i (1,3-biscyclohexyl-5- (5-phenylpyrazolidin-3-ylidene) barbituric acid) synthesized in Example 10 and propionic acid ( Nakarai) 0.6 mL and propionic anhydride (Tokyo Kasei) 0.6 mL were added, and the mixture was stirred at 125 o C for 2 hours. After completion of the reaction, toluene was added, the mixture was concentrated on an evaporator, and the mixture was vacuum dried. It is then separated by gel permeation chromatography (GPC) (LaboACE LC-5060, manufactured by Nippon Analytical Industry Co., Ltd.) and as a pure compound 5- (1-propinoyl-5-phenylpyrazolidine-3-ylidene) -1,3- Dicyclohexylbarbituric acid (Compound 5r) was obtained as yellow candy (yield 51%). The structure was determined by 1 H NMR and 13 C NMR (Varian NMR 400 MHz system).
5-(1-propynoyl-5-phenylpyrazolidin-3-ylidene)-1,3-dicyclohexylbarbituric acid (5r): yellow oil; 1H NMR (400 MHz, CDCl3)δ 7.40-7.25 (m, 3H), 7.22 (d, J = 7.0 Hz, 2H), 5.39 (brs, 1H), 4.74-4.61 (m, 2H), 4.25-4.15 (m, 1H), 4.02-3.92 (m, 1H), 2.39-2.22 (m, 5H), 1.99-1.92 (m, 1H), 1.85-1.72 (m, 4H), 1.71-1.52 (m, 6H), 1.37-1.10 (m, 6H), 1.20-0.98 (m, 3H); 13C NMR (100 MHz, CDCl3) δ 167.1, 164.6, 162.5, 157.7, 150.8, 139.7, 129.6, 128.8, 124.9, 87.1, 58.1, 53.9, 45.3, 29.2, 26.5, 26.3, 25.3, 8.5 5- (1-propynoyl-5-phenylpyrazolidin-3-ylidene) -1,3-dicyclohexylbarbituric acid (5r): yellow oil; 1 H NMR (400 MHz, CDCl 3 ) δ 7.40-7.25 (m, 3H), 7.22 (d, J = 7.0 Hz, 2H), 5.39 (brs, 1H), 4.74-4.61 (m, 2H), 4.25-4.15 (m, 1H), 4.02-3.92 (m, 1H), 2.39-2.22 (m) , 5H), 1.99-1.92 (m, 1H), 1.85-1.72 (m, 4H), 1.71-1.52 (m, 6H), 1.37-1.10 (m, 6H), 1.20-0.98 (m, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 167.1, 164.6, 162.5, 157.7, 150.8, 139.7, 129.6, 128.8, 124.9, 87.1, 58.1, 53.9, 45.3, 29.2, 26.5, 26.3, 25.3, 8.5
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
(実施例20)
5-(1-n-ブチロイル-5-フェニルピラゾリジン-3-イリデン)-1,3-ジシクロヘキシルバルビツール酸(化合物5s)の調製(一般式(A):R=CH、R=CHCH2 CH3、R=CH(c-Hex))
(Example 20)
Preparation of 5- (1-n-butyroyl-5-phenylpyrazolidine-3-ylidene) -1,3-dicyclohexylbarbituric acid (Compound 5s) (general formula (A): R 1 = C 6 H 5 , R 2 = CH 2 CH 2 CH 3 , R 3 = C 6 H 5 (c-Hex))
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
5sの合成 
10 mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、実施例10で合成した4i(1,3-biscyclohexyl-5-(5-phenylpyrazolidin-3-ylidene)barbituric acid)0.3 mmol、酪酸(ナカライ製) 0.6 mL, 無水酪酸(東京化成製)0.6 mLを加え125oCで2時間攪拌した。反応終了後はトルエンを加えてエバポレーターで濃縮し、真空乾燥した。その後ゲル浸透クロマトグラフィー(GPC)(日本分析工業社製 LaboACE LC-5060)によって分離し、純粋な化合物として5-(1- n-ブチロイル-5-フェニルピラゾリジン-3-イリデン)-1,3-ジシクロヘキシルバルビツール酸(化合物5r)を黄色オイル(収率71%)として得た。構造は1H NMR及び13C NMR(Varian NMR 400 MHz system )により決定した。
5s composition
After frame-drying a 10 mL two-necked flask in an argon atmosphere, 4i (1,3-biscyclohexyl-5- (5-phenylpyrazolidin-3-ylidene) barbituric acid) 0.3 mmol synthesized in Example 10, butyric acid (Nakarai) 0.6 mL and anhydrous butyric acid (Tokyo Kasei) 0.6 mL were added, and the mixture was stirred at 125 o C for 2 hours. After completion of the reaction, toluene was added, the mixture was concentrated on an evaporator, and the mixture was vacuum dried. After that, it was separated by gel permeation chromatography (GPC) (LaboACE LC-5060 manufactured by Nippon Analytical Industry Co., Ltd.), and 5- (1-n-butyroyl-5-phenylpyrazolidine-3-ylidene) -1, as a pure compound. 3-Dicyclohexylbarbituric acid (Compound 5r) was obtained as a yellow oil (yield 71%). The structure was determined by 1 H NMR and 13 C NMR (Varian NMR 400 MHz system).
5-(1-n-butyloyl-5-phenylpyrazolidin-3-ylidene)-1,3-dicyclohexylbarbituric acid (5s): yellow oil; 1H NMR (400 MHz, CDCl3) δ 7.39-7.36 (m, 3H), 7.22 (d, J = 7.2 Hz, 2H), 5.38 (d, J = 6.7 Hz, 1H), 4.79-4.65 (m, 2H), 4.29-4.22 (m, 1H), 3.98 (d, J = 18.8 Hz, 1H), 2.44-2.27 (m, 4H), 2.25-2.17 (m, 1H), 2.05-1.94 (m, 1H), 1.80-0.75 (m, 21H); 13C NMR (100 MHz, CDCl3) δ 166.3, 164.6, 162.6, 157.7, 150.8, 139.8, 129.6, 128.8, 125.0, 87.1, 58.1, 53.9, 45.4, 34.7, 29.2, 26.5, 25.3, 18.0, 13.6 5- (1-n-butyloyl-5-phenylpyrazolidin-3-ylidene) -1,3-dicyclohexylbarbituric acid (5s): yellow oil; 1 H NMR (400 MHz, CDCl 3 ) δ 7.39-7.36 (m, 3H) , 7.22 (d, J = 7.2 Hz, 2H), 5.38 (d, J = 6.7 Hz, 1H), 4.79-4.65 (m, 2H), 4.29-4.22 (m, 1H), 3.98 (d, J = 18.8) Hz, 1H), 2.44-2.27 (m, 4H), 2.25-2.17 (m, 1H), 2.05-1.94 (m, 1H), 1.80-0.75 (m, 21H); 13 C NMR (100 MHz, CDCl 3 ) ) δ 166.3, 164.6, 162.6, 157.7, 150.8, 139.8, 129.6, 128.8, 125.0, 87.1, 58.1, 53.9, 45.4, 34.7, 29.2, 26.5, 25.3, 18.0, 13.6
Figure JPOXMLDOC01-appb-C000068
 
Figure JPOXMLDOC01-appb-C000068
 
(実施例21)
5-(1-i-ブチロイル-5-フェニルピラゾリジン-3-イリデン)-1,3-ジシクロヘキシルバルビツール酸(化合物5t)の調製(一般式(A):R=CH、R=CHCH3、R=CH(c-Hex))
(Example 21)
Preparation of 5- (1-i-butyroyl-5-phenylpyrazolidine-3-ylidene) -1,3-dicyclohexylbarbituric acid (compound 5t) (general formula (A): R 1 = C 6 H 5 , R 2 = CH 2 CH 3 , R 3 = C 6 H 5 (c-Hex))
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
5tの合成
10 mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、実施例10で合成した4i(1,3-biscyclohexyl-5-(5-phenylpyrazolidin-3-ylidene)barbituric acid)0.3 mmol、イソ酪酸(ナカライ製) 0.6 mL, 無水イソ酪酸(東京化成製)0.6 mLを加え125oCで2時間攪拌した。反応終了後はトルエンを加えてエバポレーターで濃縮し、真空乾燥した。その後ゲル浸透クロマトグラフィー(GPC)(日本分析工業社製 LaboACE LC-5060)によって分離し、純粋な化合物として5-(1-i-ブチロイル-5-フェニルピラゾリジン-3-イリデン)-1,3-ジシクロヘキシルバルビツール酸(化合物5t)を黄色オイル(収率82%)として得た。構造は1H NMR及び13C NMR(Varian NMR 400 MHz system )により決定した。
5t composition
After frame-drying a 10 mL two-necked flask in an argon atmosphere, 4i (1,3-biscyclohexyl-5- (5-phenylpyrazolidin-3-ylidene) barbituric acid) 0.3 mmol synthesized in Example 10, iso 0.6 mL of butyric acid (manufactured by Nakarai) and 0.6 mL of anhydrous isobutyric acid (manufactured by Tokyo Kasei) were added, and the mixture was stirred at 125 o C for 2 hours. After completion of the reaction, toluene was added, the mixture was concentrated on an evaporator, and the mixture was vacuum dried. After that, it was separated by gel permeation chromatography (GPC) (LaboACE LC-5060 manufactured by Nippon Analytical Industry Co., Ltd.), and 5- (1-i-butyroyl-5-phenylpyrazolidine-3-ylidene) -1, as a pure compound. 3-Dicyclohexylbarbituric acid (Compound 5t) was obtained as a yellow oil (yield 82%). The structure was determined by 1H NMR and 13C NMR (Varian NMR 400 MHz system).
5-(1-i-butyloyl-5-phenylpyrazolidin-3-ylidene)-1,3-dicyclohexylbarbituric acid (5t): yellow oil; 1H NMR (400 MHz, CDCl3); δ 7.39-7.36 (m, 3H), 7.22 (d, J = 7.3 Hz, 2H), 5.44 (d, J = 7.3 Hz, 1H), 4.79-4.66 (m, 2H), 4.29-4.22 (m, 1H), 4.00 (d, J = 17.2 Hz, 1H), 2.48-2.30 (m, 5H), 1.88-1.74 (m, 4H), 1.70-1.55 (m, 6H), 1.45-1.20 (m, 9H), 0.85-0.78 (m, 3H);13C NMR (100 MHz, CDCl3) δ 170.6, 164.6, 162.6, 157.8, 150.9, 140.2, 129.6, 128.9, 124.9, 87.2, 58.0, 53.9, 45.3, 31.7, 29.2, 26.5, 25.3, 19.4, 18.5 5- (1-i-butyloyl-5-phenylpyrazolidin-3-ylidene) -1,3-dicyclohexylbarbituric acid (5t): yellow oil; 1 H NMR (400 MHz, CDCl 3 ); δ 7.39-7.36 (m, 3H) ), 7.22 (d, J = 7.3 Hz, 2H), 5.44 (d, J = 7.3 Hz, 1H), 4.79-4.66 (m, 2H), 4.29-4.22 (m, 1H), 4.00 (d, J = 17.2 Hz, 1H), 2.48-2.30 (m, 5H), 1.88-1.74 (m, 4H), 1.70-1.55 (m, 6H), 1.45-1.20 (m, 9H), 0.85-0.78 (m, 3H) 13 C NMR (100 MHz, CDCl 3 ) δ 170.6, 164.6, 162.6, 157.8, 150.9, 140.2, 129.6, 128.9, 124.9, 87.2, 58.0, 53.9, 45.3, 31.7, 29.2, 26.5, 25.3, 19.4, 18.5
Figure JPOXMLDOC01-appb-C000070
 
Figure JPOXMLDOC01-appb-C000070
 
(実施例22)
5-(1-n-ヘキサノイル-5-フェニルピラゾリジン-3-イリデン)-1,3-ジシクロヘキシルバルビツール酸(化合物5u)の調製(一般式(A):R=CH、R=CHCHCHCHCH3、R=CH(c-Hex))
(Example 22)
Preparation of 5- (1-n-hexanoyl-5-phenylpyrazolidine-3-iriden) -1,3-dicyclohexylbarbituric acid (Compound 5u) (general formula (A): R 1 = C 6 H 5 , R 2 = CH 2 CH 2 CH 2 CH 2 CH 3 , R 3 = C 6 H 5 (c-Hex))
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
5uの合成
10 mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、実施例10で合成した4i(1,3-biscyclohexyl-5-(5-phenylpyrazolidin-3-ylidene)barbituric acid)0.3 mmol、ヘキサン酸(ナカライ製) 0.6 mL, 無水ヘキサン酸(東京化成製)0.6 mLを加え125oCで2時間攪拌した。反応終了後はトルエンを加えてエバポレーターで濃縮し、真空乾燥した。その後ゲル浸透クロマトグラフィー(GPC)(日本分析工業社製 LaboACE LC-5060)によって分離し、純粋な化合物として5-(1-i-ブチロイル-5-フェニルピラゾリジン-3-イリデン)-1,3-ジシクロヘキシルバルビツール酸(化合物5t)を黄色オイル(収率51%)として得た。構造は1H NMR及び13C NMR(Varian NMR 400 MHz system )により決定した。
5u composition
After frame-drying a 10 mL two-necked flask in an argon atmosphere, 4i (1,3-biscyclohexyl-5- (5-phenylpyrazolidin-3-ylidene) barbituric acid) 0.3 mmol and hexane synthesized in Example 10 0.6 mL of acid (manufactured by Nakarai) and 0.6 mL of anhydrous caproic acid (manufactured by Tokyo Kasei) were added, and the mixture was stirred at 125 o C for 2 hours. After completion of the reaction, toluene was added, the mixture was concentrated on an evaporator, and the mixture was vacuum dried. After that, it was separated by gel permeation chromatography (GPC) (LaboACE LC-5060 manufactured by Nippon Analytical Industry Co., Ltd.), and 5- (1-i-butyroyl-5-phenylpyrazolidine-3-ylidene) -1, as a pure compound. 3-Dicyclohexylbarbituric acid (Compound 5t) was obtained as a yellow oil (yield 51%). The structure was determined by 1H NMR and 13C NMR (Varian NMR 400 MHz system).
5-(1-n-hexanoyl-5-phenylpyrazolidin-3-ylidene)-1,3-dicyclohexylbarbituric acid (5u): yellow oil; 1H NMR (400 MHz, CDCl3); δ 7.39-7.36 (m, 3H), 7.22 (d, J = 7.3 Hz, 2H), 5.44 (d, J = 7.3 Hz, 1H), 4.79-4.66 (m, 2H), 4.29-4.22 (m, 1H), 4.05-3.99 (m, 1H), 2.48-2.30 (m, 5H), 2.24-2.15 (m, 1H), 1.88-1.74 (m, 4H), 1.70-1.55 (m, 8H), 1.45-1.20 (m, 10H), 0.84 (t, J = 7.2 Hz 3H);13C NMR (100 MHz, CDCl3) δ 170.6, 164.6, 162.6, 157.8, 150.9, 140.2, 129.6, 128.9, 124.9, 87.2, 58.0, 53.9, 45.3, 31.2, 29.2, 27.5, 26.5, 25.3, 24.1, 22.3, 13.9 5- (1-n-hexanoyl-5-phenylpyrazolidin-3-ylidene) -1,3-dicyclohexylbarbituric acid (5u): yellow oil; 1 H NMR (400 MHz, CDCl 3 ); δ 7.39-7.36 (m, 3H) ), 7.22 (d, J = 7.3 Hz, 2H), 5.44 (d, J = 7.3 Hz, 1H), 4.79-4.66 (m, 2H), 4.29-4.22 (m, 1H), 4.05-3.99 (m, 1H), 2.48-2.30 (m, 5H), 2.24-2.15 (m, 1H), 1.88-1.74 (m, 4H), 1.70-1.55 (m, 8H), 1.45-1.20 (m, 10H), 0.84 ( t, J = 7.2 Hz 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 170.6, 164.6, 162.6, 157.8, 150.9, 140.2, 129.6, 128.9, 124.9, 87.2, 58.0, 53.9, 45.3, 31.2, 29.2, 27.5, 26.5, 25.3, 24.1, 22.3, 13.9
Figure JPOXMLDOC01-appb-C000072
 
Figure JPOXMLDOC01-appb-C000072
 
(実施例23)
5-(1-アセチル-5-フェニル-2-ピラゾリン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5a’(ケト―イミン体))の調製
(Example 23)
Preparation of 5- (1-Acetyl-5-Phenyl-2-pyrazolin-3-iriden) -1,3-dimethylbarbituric acid (Compound 5a'(keto-imine form))
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
25mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、上記実施例1で合成した中間体エノン化合物6-hydroxy-1,3-dimethyl-5-[(2E)-3-phenylprop-2-enoyl]-1,2,3,4-tetrahydropyrimidine-2,4-dione0.5mmol、ヒドラジン一水和物(ナカライ製)2mmol、氷酢酸(ナカライ製)1mLを加え125oCで2時間攪拌した。反応終了後、エタノール(EtOH)で濾過を行い、濾物は真空乾燥し化合物5’aを得た。構造は1HNMR及び13CNMRにより決定した。白色固体の5-(1-アセチル-5-4(フェノキシフェニル)ピラゾリジン-3-イリデン)-1,3-ジメチルバルビツール酸(化合物5a’)を得た(収率80%)。 A 25 mL two-necked flask was frame-dried under an argon atmosphere, and then the intermediate enone compound 6-hydroxy-1,3-dimethyl-5-[(2E) -3-phenylprop-2) synthesized in Example 1 above was used. -enoyl] -1,2,3,4-tetrahydropyrimidine-2,4-dione 0.5 mmol, hydrazine monohydrate (manufactured by Nakarai) 2 mmol, glacial acetic acid (manufactured by Nakarai) 1 mL were added, and the mixture was stirred at 125 o C for 2 hours. .. After completion of the reaction, filtration was carried out with ethanol (EtOH), and the filtrate was vacuum dried to obtain compound 5'a. The structure was determined by 1 H NMR and 13 C NMR. A white solid 5- (1-acetyl-5-4 (phenoxyphenyl) pyrazolidine-3-ylidene) -1,3-dimethylbarbituric acid (Compound 5a') was obtained (yield 80%).
(5a’): white solid; 1HNMR (400 MHz, CDCl3)δ1.94 (s, 3H), 3.31 (s, 6H), 3.90-4.02 (m, 1H), 4.28-4.36 (m, 1H), 5.40 (d, J = 8.4 Hz, 1H), 7.22-7.42 (m, 5H); 13CNMR (100 MHz, CDCl3)δ20.6, 27.7, 45.1, 58.6, 86.3, 125.0, 129.0, 129.7, 139.2, 139.3, 151.6, 157.7, 163.6. (5a'): white solid; 1 HNMR (400 MHz, CDCl 3 ) δ1.94 (s, 3H), 3.31 (s, 6H), 3.90-4.02 (m, 1H), 4.28-4.36 (m, 1H) , 5.40 (d, J = 8.4 Hz, 1H), 7.22-7.42 (m, 5H); 13 CNMR (100 MHz, CDCl 3 ) δ20.6, 27.7, 45.1, 58.6, 86.3, 125.0, 129.0, 129.7, 139.2 , 139.3, 151.6, 157.7, 163.6.
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
(実施例24)
5‐(1‐acetyl‐5‐phenyl‐4,5‐dihydro‐1H‐pyrazol‐3‐yl)‐6‐hydroxy‐1,3‐dimethyl‐1,2,3,4‐tetrahydropyrimidine‐2,4‐dione(化合物5a”(エノール体))の調製
(Example 24)
5- (1-acetyl-5-phenyl-4-4,5-dihydro-1H-pyrazol-3-yl) -6-hydroxy-1,3-dimethyl-1,2,3,4-tetrahydropyrimidine-2,4- Preparation of dione (compound 5a ”(enol form))
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
25mL容の二口フラスコをアルゴン雰囲気下でフレームドライをした後、中間体エノン化合物6-hydroxy-1,3-dimethyl-5-[(2E)-3-phenylprop-2-enoyl]-1,2,3,4-tetrahydropyrimidine-2,4-dione)0.6mmol、アセチルヒドラジン東京化成工業製0.6mmol、メタノール3mLを加え、バス温度80oCで18時間攪拌した。反応終了後、メタノール(MeOH)で濾過を行い、濾物は真空乾燥し白色固体の化合物5a”を得た。構造は1HNMR(DMSO)より決定した。 After frame-drying a 25 mL two-necked flask in an argon atmosphere, the intermediate enone compound 6-hydroxy-1,3-dimethyl-5-[(2E) -3-phenylprop-2-enoyl] -1,2 , 3,4-tetrahydropyrimidine-2,4-dione) 0.6 mmol, acetylhydrazine Tokyo Chemical Industry 0.6 mmol, and 3 mL of methanol were added, and the mixture was stirred at a bath temperature of 80 o C for 18 hours. After completion of the reaction, filtration was carried out with methanol (MeOH), and the filtrate was vacuum dried to obtain compound 5a "as a white solid. The structure was determined by 1 HNMR (DMSO).
(5a”): white solid; 1HNMR (400 MHz, DMSO)δ3.16 (s, 3H), 3.18 (s, 3H), 3.33 (s, 3H), 3.60-3.70 (m, 1H), 3.82-3.98 (m, 1H), 4.62 (s, 1H), 7.02-7.28 (m, 3H). 13Cは薄いため未観測 (5a ”): white solid; 1 HNMR (400 MHz, DMSO) δ3.16 (s, 3H), 3.18 (s, 3H), 3.33 (s, 3H), 3.60-3.70 (m, 1H), 3.82- 3.98 (m, 1H), 4.62 (s, 1H), 7.02-7.28 (m, 3H). 13C is thin and has not been observed.
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
(NMRチャート比較)
上記各実施例で得られた化合物5a、化合物5a’および化合物5a”の各々のNMRチャートを図1、図2および図3に示す。各NMRチャートを比較した。
(Comparison of NMR charts)
The NMR charts of Compound 5a, Compound 5a'and Compound 5a "obtained in each of the above Examples are shown in FIGS. 1, 2 and 3. The NMR charts were compared.
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
上記NMRチャートの結果から、化合物5a’では3.31 (s, 6H)が等価に観測された(H1,H2に対応するプロトン)。化合物5a’では13CのC3、C4に相当するカルボニルが等価となるため、13Cの数が化合物5aに比べて1つ少ないという特徴が確認された。 From the results of the above NMR chart, 3.31 (s, 6H) was observed equivalently in compound 5a'(protons corresponding to H1 and H2). Since the carbonyls corresponding to C3 and C4 of 13 C are equivalent in compound 5a', it was confirmed that the number of 13 C is one less than that of compound 5a.
 化合物5a”は、5員環のHを示す4.0~5.5ppmの領域のマルチプレット(多重線)の形状が、上記実施例の化合物5aおよび化合物5a’とは全く異なっていた。4.6ppm付近にOH由来のシングレット(単一線)が観測された。 Compound 5a ”has a completely different shape of the multiplet (multiplex line) in the region of 4.0 to 5.5 ppm indicating H of the 5-membered ring from the compound 5a and compound 5a'of the above-mentioned examples. In the vicinity of 4.6 ppm. OH-derived singlet (single line) was observed.
(溶解性比較)
上記実施例の化合物5aおよび化合物5a’はクロロホルムに易溶であったが、本実施例の化合物5a”はクロロホルムに難溶であった。
(Comparison of solubility)
Compound 5a and compound 5a'of the above example were easily soluble in chloroform, but compound 5a "of this example was sparingly soluble in chloroform.
以上の結果から、各実施例の化合物5a、化合物5a’および化合物5a”が、常温で異なる構造の化合物として各々別個独立して合成されたことが確認された。同様に、この他の各実施例のすべての化合物に関連する、前記一般式(I)、一般式(II)、若しくは一般式(III)で表される異なる構造の化合物も、各々別個独立して合成することができる。 From the above results, it was confirmed that compound 5a, compound 5a'and compound 5a "of each example were synthesized separately and independently as compounds having different structures at room temperature. Similarly, each of the other implementations. Compounds having different structures represented by the general formula (I), the general formula (II), or the general formula (III), which are related to all the compounds of the example, can also be synthesized separately and independently.
(反応工程ごとの収率)
上記各実施例における各反応工程ごとの収率を以下にまとめた。
(Yield for each reaction process)
The yields for each reaction step in each of the above examples are summarized below.
(1)1段階目(アルドール縮合反応) (1) First stage (aldol condensation reaction)
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-T000081
Figure JPOXMLDOC01-appb-T000081
(2)2段階目(ピラゾリジン形成反応) (2) Second stage (pyrazolidine formation reaction)
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-T000083
 
Figure JPOXMLDOC01-appb-T000083
 
(3)3段階目(アルカノイル化(アシル化)反応) (3) Third step (alkanoylation (acylation) reaction)
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-T000085
Figure JPOXMLDOC01-appb-T000085
(実施例25)
本発明者らが以前開発したHREルシフェラーゼアッセイ系(Tsujita, T.; Kawaguchi,S-i.;Dan,T.;Baird,L.; Miyata,T.; Yamamoto,M.,Hypoxia-Sensitive Reporter System for High-Throughput Screening.Tohoku J. Exp. Med. 2015, 235 (2), 151-159)を用いて、上記各実施例の化合物について、HIFが活性化されたシグナルを示すかを測定し、HIF活性化能(HIF転写活性能)を測定した。比較例として上述した従来のHIF活性剤として知られているジメチルオキサロイルグリシン(DMOG;Dimethyloxaloylglycine)のHIF活性化能(HIF転写活性能)も測定した。
(Example 25)
The HRE luciferase assay system (Tsujita, T .; Kawaguchi, Si .; Dan, T .; Baird, L .; Miyata, T .; Yamamoto, M., Hypoxia-Sensitive Reporter System for High) previously developed by the present inventors. -Throughput Screening. Tohoku J. Exp. Med. 2015, 235 (2), 151-159) was used to measure whether the compounds of each of the above examples show HIF-activated signals and HIF activity. The chemical ability (HIF transcription activity ability) was measured. As a comparative example, the HIF activation ability (HIF transcription activity ability) of dimethyloxaloylglycine (DMOG; Dimethyloxaloylglycine), which is known as the above-mentioned conventional HIF activator, was also measured.
 HREルシフェラーゼアッセイ系はHIFの転写調節領域の調整下で、nano-Luc(プロメガ社)を発現する構築を安定的に導入したSK-N-BE(2)-C細胞(SKN:HER-NLuc)を用いた。SKN:HRE-NLucを384 ウェルプレート(コーニング社製)に7.0×103 cell/wellで播種し、16時間、37 ℃、5% CO2で前培養した。翌日100 μMから段階希釈した各種薬剤を含む培地に交換し、24時間培養した。刺激後培地の1/3量のルシフェラーゼアッセイ(NanoGlo Luciferase Assay、プロメガ社製)を添加したのち、吸光・蛍光・発光スペクトル測定用マルチモードマイクロプレートリーダー(SpectraMax i3x、モレキュラーデバイス社製)で発光強度を測定した。HIF転写活性に基づく、ルシフェラーゼ活性は1% DMSO刺激を1としたときの、各種薬剤の相対活性を求めた。 The HRE luciferase assay system is a SK-N-BE (2) -C cell (SKN: HER-NLuc) that stably introduces a structure that expresses nano-Luc (Promega) under the regulation of the transcriptional regulatory region of HIF. Was used. SKN: HRE-N Luc was seeded on a 384-well plate (Corning) at 7.0 × 10 3 cell / well and precultured at 37 ° C for 16 hours at 5% CO 2 . The next day, the cells were replaced with a medium containing various drugs serially diluted from 100 μM, and cultured for 24 hours. After adding 1/3 of the luciferase assay (NanoGlo Luciferase Assay, manufactured by Promega) after stimulation, the emission intensity is measured with a multimode microplate reader (SpectraMax i3x, manufactured by Molecular Device) for measuring absorption, fluorescence, and emission spectra. Was measured. The luciferase activity based on the HIF transcription activity was determined as the relative activity of various drugs when 1% DMSO stimulation was set to 1.
SKN:HRE-NLucを384 ウェルプレート(コーニング社製)に7.0×103 cell/wellで播種し、16時間、37 ℃、5% CO2で前培養した。翌日100μMから段階希釈した各種薬剤を含む培地に交換し、24時間培養した。刺激後、細胞数測定キット(Cell Counting Kit-8、 同仁化学研究所製)を培地の1/10量添加し、インキュベーター内で30分~1時間呈色反応させた。その後、吸光・蛍光・発光スペクトル測定用マルチモードマイクロプレートリーダー(SpectraMax i3x、モレキュラーデバイス社製)で450 nmの吸光度を測定した。最後に1% DMSO処理の細胞を100%とした場合の各刺激における生存率を求めた。 SKN: HRE-N Luc was seeded on a 384-well plate (Corning) at 7.0 × 10 3 cell / well and precultured at 37 ° C for 16 hours at 5% CO 2 . The next day, the cells were replaced with a medium containing various drugs serially diluted from 100 μM, and cultured for 24 hours. After stimulation, 1/10 of the medium was added with Cell Counting Kit-8 (manufactured by Dojin Kagaku Kenkyusho), and the color reaction was carried out in the incubator for 30 minutes to 1 hour. After that, the absorbance at 450 nm was measured with a multimode microplate reader (SpectraMax i3x, manufactured by Molecular Devices) for measuring absorbance, fluorescence, and emission spectra. Finally, the survival rate for each stimulus was calculated when the cells treated with 1% DMSO were 100%.
得られた結果を図4~図9に示すと共に、以下の表にまとめた。表中の5倍活性比とは、(市販品ロキサデュスタット(FG-4592、アステラス製薬/フィブロジェン社製)の5倍活性濃度)/(各化合物の5倍活性濃度)の比率を示す。また、表中のHIF転写活性能は、以下を示す。
+   化合物5a(基準)以上
++   5倍活性比 1以上
+++  5倍活性比 10以上
The obtained results are shown in FIGS. 4 to 9 and summarized in the following table. The 5-fold activity ratio in the table indicates the ratio of (5-fold activity concentration of commercially available roxadustat (FG-4592, Astellas Pharma / Fibrogen)) / (5-fold activity concentration of each compound). .. The HIF transcription activity in the table is as follows.
+ Compound 5a (standard) or higher
++ 5 times activity ratio 1 or more
+++ 5 times activity ratio 10 or more
Figure JPOXMLDOC01-appb-T000086
Figure JPOXMLDOC01-appb-T000086
さらに、上述の実施例1で得られた5a(ケト-エナミン体)と、実施例13で得られた5a’(ケト―イミン体)について得られたHIF転写活性能の測定結果を図10に示す。 Furthermore, the measurement results of the HIF transcription activity obtained for the 5a (keto-enamine form) obtained in Example 1 and the 5a'(keto-imine form) obtained in Example 13 are shown in FIG. show.
得られた結果から、各実施例に係るすべての化合物は、高いHIF活性化能を発揮することが確認された。独立して合成された化合物であるケト-エナミン体、ケト―イミン体、エノール―イミン体のいずれについても高いHIF活性化能を発揮することが確認された。実施例1の化合物5aは、従来からHIF活性剤として知られている比較例のDMOGとほぼ同等の優れたHIF活性化能を発揮した。さらに、この他の各実施例に係る化合物のすべては、比較例のDMOGを大きく上回るHIF活性化能を示した。特に化合物5iについて非常に高いHIF活性化能が確認された。 From the obtained results, it was confirmed that all the compounds according to each example exhibited high HIF activation ability. It was confirmed that all of the independently synthesized compounds, keto-enamine, keto-imine, and enol-imine, exert high HIF activation ability. Compound 5a of Example 1 exhibited excellent HIF activating ability almost equivalent to that of DMOG of Comparative Example, which has been conventionally known as a HIF activator. Furthermore, all of the compounds according to each of the other examples showed a HIF activation ability that greatly exceeded that of the DMOG of the comparative example. In particular, very high HIF activation ability was confirmed for compound 5i.
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
細胞毒性については、化合物5iに若干の弱い細胞毒性が見受けられた程度であるが、この細胞毒性の数値については、活性の作用領域0.3μM以上に対して、LC50が24μM程度と100倍近く差があることから、かなり微弱な細胞毒性であり、一定の安全性が確認されている。その他の各実施例に係る化合物については細胞毒性は全く検出されず高い安全性が確認された。 Regarding cytotoxicity, some weak cytotoxicity was observed in compound 5i, but the value of this cytotoxicity is about 100 times that of LC 50 , which is about 24 μM, compared to the active action region of 0.3 μM or more. Since there is a difference, it is a fairly weak cytotoxicity, and a certain level of safety has been confirmed. No cytotoxicity was detected for the compounds according to each of the other examples, and high safety was confirmed.
実施例1の化合物5aについて、市販品ロキサデュスタット(FG-4592、アステラス製薬/フィブロジェン社製)及び従来のHIF活性剤として知られているジメチルオキサロイルグリシン(DMOG)に対して、イムノブロット (immunoblot; IB)(別名ウエスタンブロッティング(Western Blotting:WB))を用いてHIF安定化細胞間比較を行った結果を図11に示す。電気泳動によって分離したタンパク質を疎水性膜に転写し、抗体反応からバンド検出してターゲットのタンパク質であるHIF-1α、HIF-2α、α-チューブリンを検出した。得られた結果から、実施例1の化合物5aは、市販品ロキサデュスタットや公知のHIF活性剤(DMOG)よりも優れた安定性を示すことが確認された。

 
The compound 5a of Example 1 was immunocombined with the commercially available roxadustat (FG-4592, manufactured by Astellas Pharma / Fibrogen) and dimethyloxaloylglycine (DMOG) known as a conventional HIF activator. FIG. 11 shows the results of comparison between HIF-stabilized cells using a blot (immunoblot; IB) (also known as Western Blotting (WB)). The protein separated by electrophoresis was transferred to a hydrophobic membrane, and the band was detected from the antibody reaction to detect the target proteins HIF-1α, HIF-2α, and α-tubulin. From the obtained results, it was confirmed that the compound 5a of Example 1 showed superior stability to the commercially available roxadustat and the known HIF activator (DMOG).

Claims (16)

  1. 下記の一般式(I)、一般式(II)、若しくは一般式(III)で表されるピラゾリン誘導体又はその塩。
    (ただし、Rは、置換又は非置換の5員環又は6員環からなる芳香環数1~2の単環構造、縮合環構造、若しくは多環構造のアリール基、又は置換若しくは非置換の環状アルキル基であり、Rは水素原子又は置換若しくは非置換のアルキル基であり、Rはそれぞれ独立して置換又は非置換の直鎖又は環状アルキル基である。但し、一般式(III)において、(R、R、R)の組み合わせが、各々、(フェニル基、メチル基、水素原子)、(フェニル基、メチル基、メチル基)、および、(フェニル基、エチル基、エチル基)である場合を除く。)
    Figure JPOXMLDOC01-appb-C000001
    A pyrazoline derivative represented by the following general formula (I), general formula (II), or general formula (III) or a salt thereof.
    (However, R 1 is an aryl group having a monocyclic structure, a fused ring structure, or a polycyclic structure having an aromatic ring number of 1 to 2 consisting of a substituted or unsubstituted 5-membered ring or a 6-membered ring, or a substituted or unsubstituted aryl group. A cyclic alkyl group, R 2 is a hydrogen atom or a substituted or unsubstituted alkyl group, and R 3 is an independently substituted or unsubstituted linear or cyclic alkyl group, provided with the general formula (III). In, the combinations of (R 1 , R 2 , R 3 ) are (phenyl group, methyl group, hydrogen atom), (phenyl group, methyl group, methyl group), and (phenyl group, ethyl group, ethyl, respectively). Except when it is based on).
    Figure JPOXMLDOC01-appb-C000001
  2. Rが置換又は非置換の1若しくは2つのベンゼン環又はナフタレン環を含むアリール基、又は置換若しくは非置換の炭素数3~10の環状アルキル基から構成される、
    請求項1に記載のピラゾリン誘導体又はその塩。
    R1 is composed of an aryl group containing one or two substituted or unsubstituted benzene rings or naphthalene rings, or a substituted or unsubstituted cyclic alkyl group having 3 to 10 carbon atoms.
    The pyrazoline derivative according to claim 1 or a salt thereof.
  3. Rが炭素数1~10の直鎖又は分岐鎖の低級アルキル基から構成される、
    請求項1又は請求項2に記載のピラゾリン誘導体又はその塩。
    R 2 is composed of a linear or branched lower alkyl group having 1 to 10 carbon atoms.
    The pyrazoline derivative or a salt thereof according to claim 1 or 2.
  4. Rが炭素数1~6の直鎖又は環状アルキル基から構成される、
    請求項1~3のいずれかに記載のピラゾリン誘導体又はその塩。
    R 3 is composed of a linear or cyclic alkyl group having 1 to 6 carbon atoms.
    The pyrazoline derivative or a salt thereof according to any one of claims 1 to 3.
  5. ラセミ体、エナンチオマー、ジアステレオマー、又はメソ体である、
    請求項1~4のいずれかに記載のピラゾリン誘導体又はその塩。
    Racemic, enantiomer, diastereomer, or meso,
    The pyrazoline derivative or a salt thereof according to any one of claims 1 to 4.
  6. 下記の一般式(I)、一般式(II)、若しくは一般式(III)で表されるピラゾリン誘導体又はその塩を含有する組成物。
    (ただし、Rは、置換又は非置換の5員環又は6員環からなる芳香環数1~2の単環構造、縮合環構造、若しくは多環構造のアリール基、又は置換若しくは非置換の環状アルキル基であり、Rは水素原子又は置換若しくは非置換のアルキル基であり、Rはそれぞれ独立して置換又は非置換の直鎖又は環状アルキル基である。)
    Figure JPOXMLDOC01-appb-C000002
    A composition containing a pyrazoline derivative represented by the following general formula (I), general formula (II), or general formula (III) or a salt thereof.
    (However, R 1 is an aryl group having a monocyclic structure, a fused ring structure, or a polycyclic structure having an aromatic ring number of 1 to 2 consisting of a substituted or unsubstituted 5-membered ring or a 6-membered ring, or a substituted or unsubstituted aryl group. A cyclic alkyl group, R 2 is a hydrogen atom or a substituted or unsubstituted alkyl group, and R 3 is an independently substituted or unsubstituted linear or cyclic alkyl group.)
    Figure JPOXMLDOC01-appb-C000002
  7. Rが置換又は非置換の1若しくは2つのベンゼン環又はナフタレン環を含むアリール基、又は置換若しくは非置換の炭素数3~10の環状アルキル基から構成される、
    請求項6に記載の組成物。
    R1 is composed of an aryl group containing one or two substituted or unsubstituted benzene rings or naphthalene rings, or a substituted or unsubstituted cyclic alkyl group having 3 to 10 carbon atoms.
    The composition according to claim 6.
  8. Rが炭素数1~5の低級アルキル基から構成される、
    請求項6又は請求項7に記載の組成物。
    R 2 is composed of a lower alkyl group having 1 to 5 carbon atoms.
    The composition according to claim 6 or 7.
  9. Rが炭素数1~6の直鎖又は環状アルキル基から構成される、
    請求項6~8のいずれかに記載の組成物。
    R 3 is composed of a linear or cyclic alkyl group having 1 to 6 carbon atoms.
    The composition according to any one of claims 6 to 8.
  10. ラセミ体、エナンチオマー、ジアステレオマー、又はメソ体である、
    請求項6~9のいずれかに記載の組成物。
    Racemic, enantiomer, diastereomer, or meso,
    The composition according to any one of claims 6 to 9.
  11.  プロリン水酸化酵素の活性阻害に使用する請求項6~10のいずれかに記載の組成物。 The composition according to any one of claims 6 to 10, which is used for inhibiting the activity of proline hydroxylase.
  12.  プロリン水酸化酵素の活性阻害により治療可能な疾病に使用するための、請求項11に記載の組成物。 The composition according to claim 11, for use in a disease that can be treated by inhibiting the activity of proline hydroxylase.
  13.  前記疾病が、腎臓病、慢性腎疾患、虚血性疾患、高血圧、糖尿病、および動脈硬化からなる群から選択される、請求項12に記載の組成物。 The composition according to claim 12, wherein the disease is selected from the group consisting of kidney disease, chronic kidney disease, ischemic disease, hypertension, diabetes, and arteriosclerosis.
  14. 態様が医薬品、医薬部外品、又は試薬である請求項6~13のいずれかに記載の組成物。 The composition according to any one of claims 6 to 13, wherein the embodiment is a drug, a quasi drug, or a reagent.
  15. 経口投与用である、請求項14に記載の組成物。 The composition according to claim 14, which is for oral administration.
  16. 請求項15に記載の組成物を含有する経口投与用低酸素誘導因子活性剤。

     
    A hypoxia-inducible factor activator for oral administration containing the composition according to claim 15.

PCT/JP2021/037662 2020-10-16 2021-10-12 Novel nitrogen-containing cyclic compound and application thereof WO2022080346A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-174971 2020-10-16
JP2020174971A JP6904528B1 (en) 2020-10-16 2020-10-16 New nitrogen-containing cyclic compounds and their uses

Publications (1)

Publication Number Publication Date
WO2022080346A1 true WO2022080346A1 (en) 2022-04-21

Family

ID=76918202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037662 WO2022080346A1 (en) 2020-10-16 2021-10-12 Novel nitrogen-containing cyclic compound and application thereof

Country Status (2)

Country Link
JP (1) JP6904528B1 (en)
WO (1) WO2022080346A1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007149422A2 (en) * 2006-06-20 2007-12-27 Dow Corning Corporation Curable organosilicon composition

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE REGISTRY [online] March 2012 (2012-03-01), retrieved from STN Database accession no. 1358899-40-7 *
DATABASE REGISTRY [online] March 2012 (2012-03-01), retrieved from STN Database accession no. 1358903-45-3 *
THINNES, C. C. ET AL.: "Selective Inhibitors of a Human Prolyl Hydroxylase (OGFOD1) Involved in Ribosomal Decoding", CHEMISTRY - A EUROPEAN JOURNAL, vol. 25, no. 8, 2019, pages 2019 - 2024, XP055913601, DOI: 10.1002/chem.201804790 *

Also Published As

Publication number Publication date
JP2022066061A (en) 2022-04-28
JP6904528B1 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
US7732482B2 (en) Compound from Antrodia camphorata and the use thereof
CA1267417A (en) 2,5-diaryl tetrahydrofurans and analogs thereof as paf-antagonists
EP1856043B1 (en) 1-h-pyrrole-2-carboxamides and imidazole-5-carboxamides and use thereof as fak, kdr and tie2 kinase modulators for the treatment of cancer
CN104936591B (en) Hematopoietin expression facilitator
US7109232B2 (en) Compounds from Antrodia camphorata having anti-inflammatory and anti-tumor activity
CA2512243A1 (en) N-aryl heteroaromatic products, compositions containing same and use thereof
KR102106365B1 (en) Geranyl geranyl acetone analogs and uses thereof
Kieslich et al. Formation of δ-Lactones by Cyanide Catalyzed Rearrangement of α-Hydroxy-β-oxoesters
WO2022080346A1 (en) Novel nitrogen-containing cyclic compound and application thereof
EP1851198B1 (en) Substituted pyrroles, compositions containing same, method for making same and use thereof
EP1633738A2 (en) Novel indole derivatives, method of preparing same in the form of medicaments, pharmaceutical compositions and, in particular, kdr inhibitors
Tanabe et al. Total synthesis of γ-alkylidenebutenolides, potent melanogenesis inhibitors from Thai medicinal plant Melodorum fruticosum
JP5403844B2 (en) Novel mixtures and compounds obtained from the mycelium of AntrodiaCamphorata
CN109438448B (en) Indolo-heptatomic ring compound and preparation method and application thereof
KR100574684B1 (en) Cinnamaldehyde derivatives inhibiting growth of tumor cell and regulating cell cycle, preparations and pharmaceutical compositions thereof
JP2005247724A5 (en)
CN112010860B (en) Benzyloxypyrazolopyrimidine compounds, pharmaceutical compositions and uses thereof
EP3189060B1 (en) Derivatives of macrocyclic n-aryl-2-amino-4-aryl-pyrimidine polyethers as inhibitors of ftl3 and jak
Marpna et al. Trifluoroacetic acid-mediated oxidative self-condensation of acetophenones in the presence of SeO2: A serendipitous approach for the synthesis of fused [1, 3] dioxolo [4, 5-d][1, 3] dioxoles
CA2184068A1 (en) Optically pure 4-aryl-2-hydroxytetronic acids
CN109134478B (en) Thiopyrrolone splicing double-spiro-oxoindole compound containing continuous three quaternary carbons and preparation method and application thereof
CN112824414A (en) Propenone derivative of N-acetylofloxacin and preparation method and application thereof
JP2013241477A (en) New mixture and compound obtained from mycelium of antrodia camphorata, and use thereof
TW201018462A (en) Novel mixture and compounds from mycelia of antrodia camphorata having hepatoprotection, anti-inflammatory and anti-tumor activities
CN117586210A (en) Dimethyl sulfide substituted 2, 3-dihydrofuran derivative and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21880085

Country of ref document: EP

Kind code of ref document: A1