WO2022080342A1 - Method for producing water-absorbing resin particles - Google Patents

Method for producing water-absorbing resin particles Download PDF

Info

Publication number
WO2022080342A1
WO2022080342A1 PCT/JP2021/037650 JP2021037650W WO2022080342A1 WO 2022080342 A1 WO2022080342 A1 WO 2022080342A1 JP 2021037650 W JP2021037650 W JP 2021037650W WO 2022080342 A1 WO2022080342 A1 WO 2022080342A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
resin particles
absorbent resin
decomposition product
gel
Prior art date
Application number
PCT/JP2021/037650
Other languages
French (fr)
Japanese (ja)
Inventor
英二 森田
真平 長谷川
一充 鈴木
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Priority to CN202180064221.3A priority Critical patent/CN116194208A/en
Priority to JP2022556984A priority patent/JPWO2022080342A1/ja
Publication of WO2022080342A1 publication Critical patent/WO2022080342A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for producing water-absorbent resin particles. More specifically, the present invention relates to a method for producing water-absorbent resin particles that enables reuse of water-absorbent resin particles in used sanitary goods. More specifically, the present invention relates to a method for producing water-absorbent resin particles capable of reusing the water-absorbent resin particles contained in sanitary products, particularly used sanitary products.
  • sanitary goods include an absorber composed of pulp fibers and water-absorbent resin particles, and it is necessary to separate the pulp fibers and water-absorbent resin particles in order to reuse them as members.
  • the water-absorbent resin particles in the absorber of the used hygiene product absorb water and become a swelled gel state, it is difficult to separate them as they are. Therefore, a technique has been proposed in which water-absorbent resin particles are decomposed and solubilized to separate solubilized components of pulp fibers and water-absorbent resin particles.
  • sanitary goods containing pulp fibers and water-absorbent resin particles are treated with ozone.
  • Patent Documents 1 and 2 There are techniques (Patent Documents 1 and 2) for recovering pulp fibers after decomposing and solubilizing water-absorbent resin particles by treating with a contained aqueous solution. Further, as a technique for decomposing and solubilizing water-absorbent resin particles, a technique using an oxidizing agent such as hydrogen peroxide as a decomposition method (Patent Documents 3 to 5) is known.
  • the present invention is a method for efficiently producing recycled water-absorbent resin particles having excellent various properties by using waste of water-absorbent resin particles derived from sanitary goods or the like as a raw material and having a small decrease in absorption characteristics.
  • the purpose is to provide.
  • the present invention comprises a polymerization step (I) of polymerizing a monomer composition containing a water-soluble vinyl monomer (a1) and a cross-linking agent (b) to obtain a water-containing gel containing the cross-linking polymer (A), and the water-containing gel.
  • a method for producing water-absorbent resin particles which comprises a crushing and classifying step (IV) for crushing and classifying a substance, wherein the polymerization step (I), the gel shredding step (II), the drying step (III), and the above.
  • a method for producing water-absorbent resin particles wherein the decomposition product (B) of the water-absorbent resin particles obtained from sanitary products is added in at least one step selected from the group consisting of the pulverization classification step (IV). This is a method for producing water-absorbent resin particles having a water-soluble content of the decomposition product (B) of 1.0 to 30.0% by weight.
  • the method for producing water-absorbent resin particles of the present invention may have each of the above-mentioned essential steps, and may further include other steps as long as the gist of the present invention is not deviated. Further, the process of the present invention may include a transportation stage and a storage stage without departing from the spirit.
  • the water-soluble vinyl monomer (a1) in the present invention is not particularly limited, and is a known monomer, for example, at least one water-soluble substituent disclosed in paragraphs 0007 to 0023 of Japanese Patent No. 36485553 and ethylenia-free.
  • Vinyl monomers having a saturated group for example, anionic vinyl monomers, nonionic vinyl monomers and cationic vinyl monomers), anionic vinyl monomers and nonionic vinyl monomers disclosed in paragraphs 0009 to 0024 of JP-A-2003-165883.
  • the water-soluble vinyl monomer (a1) is preferably an anionic vinyl monomer, more preferably a carboxy (salt) group, a sulfo (salt) group, an amino group, a carbamoyl group, an ammonio group or a mono-, di- or tri-alkyl. It is a vinyl monomer having an ammonio group.
  • vinyl monomers having a carboxy (salt) group or a carbamoyl group are more preferable, (meth) acrylic acid (salt) and (meth) acrylamide are more preferable, and (meth) acrylic acid (salt) is particularly preferable.
  • the most preferable is acrylic acid (salt).
  • (meth) acrylic acid (salt) means acrylic acid, acrylate, methacrylic acid or methacrylamide
  • (meth) acrylamide means acrylamide or methacrylamide.
  • the salt includes an alkali metal (lithium, sodium, potassium, etc.) salt, an alkaline earth metal (magnesium, calcium, etc.) salt, an ammonium (NH 4 ) salt, and the like. Of these salts, alkali metal salts and ammonium salts are preferable, and alkali metal salts are more preferable, and sodium salts are particularly preferable, from the viewpoint of absorption characteristics and the like.
  • an acid group-containing monomer such as acrylic acid or methacrylic acid
  • a part of the acid group-containing monomer can be neutralized with a base.
  • alkali metal hydroxides such as sodium hydroxide and potassium hydroxide
  • alkali metal carbonates such as sodium carbonate, sodium hydrogencarbonate and potassium carbonate can be usually used.
  • Neutralization may be performed either before or during the polymerization of the acid group-containing monomer in the process of producing the water-absorbent resin particles, and after the polymerization, the acid group is in the state of a water-containing gel containing the crosslinked polymer (A) described later. It is also possible to neutralize the contained polymer.
  • the degree of neutralization of the acid group is preferably 50 to 80 mol%.
  • the degree of neutralization is less than 50 mol%, the adhesiveness of the obtained hydrogel polymer may be high, and the workability during production and use may be deteriorated. Further, the amount of water retention of the obtained water-absorbent resin particles may decrease.
  • the degree of neutralization exceeds 80%, the pH of the obtained resin becomes high, and there may be a concern about the safety of the obtained resin on the skin of the human body.
  • the constituent unit of the crosslinked polymer (A) in addition to the water-soluble vinyl monomer (a1), another vinyl monomer (a2) copolymerizable with these can be used as the constituent unit.
  • the other vinyl monomer (a2) one type may be used alone, or two or more types may be used in combination.
  • the other copolymerizable vinyl monomer (a2) is not particularly limited, and is known (for example, the hydrophobic vinyl monomer disclosed in paragraphs 0028 to 0029 of Japanese Patent No. 36485553, JP-A-2003-165883).
  • Hydrophobic vinyl monomers (such as the vinyl monomers disclosed in paragraph 0025 and paragraph 0058 of JP-A-2005-75982) can be used, and specifically, for example, the following vinyl monomers (i) to (iii) and the like can be used. Can be used.
  • Styrene such as styrene, ⁇ -methylstyrene, vinyltoluene and hydroxystyrene, vinylnaphthalene, halogen-substituted styrene such as dichlorostyrene and the like.
  • Alkenes ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.
  • alkaziene butadiene and isoprene, etc.
  • (Iii) Alicyclic ethylenic monomer having 5 to 15 carbon atoms Monoethylene unsaturated monomer (pinene, limonene, indene, etc.); and polyethylene vinyl monomer [cyclopentadiene, bicyclopentadiene, etylidene norbornene, etc.] and the like.
  • the content of the other vinyl monomer (a2) unit is preferably 0 to 5 mol%, more preferably 0 to 3 mol, based on the number of moles of the water-soluble vinyl monomer (a1) unit from the viewpoint of absorption performance and the like. %, Particularly preferably 0 to 2 mol%, particularly preferably 0 to 1.5 mol%, and the content of the other vinyl monomer (a2) unit is 0 mol% from the viewpoint of absorption performance and the like. Most preferred.
  • the cross-linking agent (b) is not particularly limited and reacts with a cross-linking agent having two or more ethylenically unsaturated groups and a water-soluble substituent disclosed in paragraphs 0031 to 0034 of Japanese Patent No. 3648553 (for example). JP-A-2003-165883, a cross-linking agent having at least one functional group to be obtained and having at least one ethylenically unsaturated group and a cross-linking agent having at least two functional groups capable of reacting with a water-soluble substituent.
  • a cross-linking agent of the cross-linking vinyl monomer disclosed in paragraph 0059 of JP-A-2005-75982 and the cross-linking vinyl monomer disclosed in paragraphs 0015 to 0016 of JP-A-2005-59559) can be used. ..
  • a cross-linking agent having two or more ethylenically unsaturated groups is preferable from the viewpoint of absorption performance and the like, and more preferably, a poly (meth) allyl ether of a polyhydric alcohol having 2 to 40 carbon atoms and a carbon number of carbon atoms.
  • the cross-linking agent (b) may be used alone or in combination of two or more.
  • cross-linking agent (b1) having a polyether chain as an essential component in the molecule among the cross-linking agents (b). Since the flexibility is improved by having the polyether chain in the molecule, it is presumed that the force applied to the water-absorbent resin particles at the time of shearing is not locally applied and is relaxed to the particles or the entire gel.
  • (b1) one type may be used alone, two or more types may be used in combination, or a cross-linking agent (b) other than (b1) may be used in combination.
  • polyether chain examples include a polyoxyethylene chain, a polyoxypropylene chain, a polyoxytetramethylene chain, and a copolymerized polyether chain thereof.
  • a polyether chain containing a polyoxyethylene chain is preferable from the viewpoint of improving the efficiency of decomposition and solubilization of the water-absorbent resin.
  • the content of the oxyethylene chain in the polyether chain is preferably 50% by weight or more, and the polyoxyethylene polyoxypropylene chain is more preferable.
  • the polyoxyethylene polyoxypropylene chain is not particularly limited as long as it is a chain composed of oxyethylene units and oxypropylene units.
  • the cross-linking agent (b1) is selected from the group consisting of a hydroxyl group, an allyl group, an acryloyl group, an alkoxysilyl group, a carboxyl group, an epoxy group, an isocyano group, an N-methylol group, and an N-alkoxymethyl group in the molecule. It is preferable to have two or more crosslinkable functional groups per molecule.
  • the crosslinkable functional group is preferably an allyl group, an acryloyl group, a vinyl ether group, an alkoxysilyl group, a carboxyl group or an epoxy group, and more preferably an allyl group or an acryloyl group, from the viewpoint of improving the efficiency of decomposition and solubilization of the water-absorbent resin.
  • Group vinyl ether group.
  • Specific examples of the cross-linking agent (b1) include Alcox CP-A1H, Alcox CP-A2H (both manufactured by Meisei Chemical Industry Co., Ltd.), A-1000 (polyethylene glycol diacrylate, number average molecular weight 1108), A-.
  • BPE-30 (diacrylate of 30 mol of ethylene oxide adduct of bisphenol A, number average molecular weight is 1133) (both by Shin-Nakamura Chemical Industry Co., Ltd.) and the like can be mentioned. From the viewpoint of degradability, Alcox CP-A1H and Alcox CP-A2H are preferable.
  • the cross-linking agent (b1) has a polyether chain as an essential component in the molecule, but has a number average molecular weight of 100 to 150,000 from the viewpoint of improving the efficiency of decomposition and solubilization and the water absorption performance of the water-absorbent resin particles. It is preferable, more preferably 200 to 100,000.
  • the number average molecular weight (hereinafter abbreviated as Mn) in the present invention is measured by gel permeation chromatography (hereinafter abbreviated as GPC).
  • GPC gel permeation chromatography
  • the measurement shall be in accordance with the following measurement conditions.
  • GPC model HLC-8120GPC
  • Tosoh Corporation column TSKgel GMHXL 2 bottles + TSKgel Multipole HXL-M
  • Tosoh Corporation solvent Tetrahydrofuran (THF)
  • Detection device Refractive index detector
  • Reference material Standard polystyrene (TSKstandardPOLYSTYRENE), manufactured by Tosoh Corporation
  • the content (mol%) of the cross-linking agent (b) unit is the number of moles of the water-soluble vinyl monomer (a1) unit, and the total number of moles of (a1) and (a2) when other vinyl monomers (a2) are used. Based on this, 0.001 to 5, more preferably 0.005 to 3, and particularly preferably 0.01 to 1. Within these ranges, the absorption performance is further improved.
  • the above-mentioned monomer composition containing the water-soluble vinyl monomer (a1) and the cross-linking agent (b) is polymerized to obtain a water-containing gel containing the cross-linked polymer (A).
  • the polymerization step (I) is included.
  • a decomposition product (B) of water-absorbent resin particles obtained from a sanitary product described later may be added to the main polymerization step (I).
  • polymerization step (I) known solution polymerization (adiabatic polymerization, thin film polymerization, spray polymerization, etc .; JP-A-55-133413, etc.), known suspension polymerization method, reverse phase suspension polymerization (specially A water-containing gel containing the crosslinked polymer (A) according to JP-A-54-30710, JP-A-56-26909, JP-A-1-5808, etc. (a water-containing gel in which the crosslinked polymer contains water). Can be obtained.
  • the crosslinked polymer (A) may be one kind alone or a mixture of two or more kinds.
  • the solution polymerization method is preferable, and since it is not necessary to use an organic solvent and is advantageous in terms of production cost, the aqueous solution polymerization method is particularly preferable because it has a large water retention capacity and is water soluble.
  • the aqueous solution adiabatic polymerization method is most preferable because water-absorbent resin particles having a small amount of components can be obtained and temperature control during polymerization is not required.
  • a mixed solvent containing water and an organic solvent can be used, and the organic solvent includes methanol, ethanol, acetone, methyl ethyl ketone, N, N-dimethylformamide, dimethyl sulfoxide, and two or more of these. Can be mentioned as a mixture of.
  • the amount (% by weight) of the organic solvent used is preferably 40 or less, more preferably 30 or less, based on the weight of water.
  • azo compounds [azobisisobutyronitrile, azobiscyanovaleric acid and 2,2'-azobis (2-amidinopropane)) can be used.
  • the amount (% by weight) of the polymerization initiator used is preferably 0.0005 to 5 based on the total weight of the water-soluble vinyl monomer (a1) and, when other vinyl monomers (a2) are also used. More preferably, it is 0.001 to 2.
  • a polymerization control agent typified by a chain transfer agent may be used in combination, and specific examples thereof include sodium hypophosphite, sodium phosphite, alkyl mercaptans, and alkyl halides. , Thiocarbonyl compounds and the like. These polymerization control agents may be used alone or in combination of two or more of them.
  • the amount (% by weight) of the polymerization control agent used is preferably 0.0005 to 5 based on the total weight of the water-soluble vinyl monomer (a1) and other vinyl monomers (a2) when they are also used. More preferably, it is 0.001 to 2.
  • the polymerization may be carried out in the presence of a dispersant or a surfactant, if necessary. Further, in the case of the reverse phase suspension polymerization method, the polymerization can be carried out using a hydrocarbon solvent such as xylene, normal hexane and normal heptane.
  • a hydrocarbon solvent such as xylene, normal hexane and normal heptane.
  • the polymerization start temperature can be appropriately adjusted depending on the type of catalyst used, but is preferably 0 to 100 ° C, more preferably 2 to 80 ° C.
  • the gel shredding step (II) is a step of shredding the water-containing gel containing the crosslinked polymer (A) obtained by the above-mentioned polymerization step to obtain water-containing gel particles.
  • a decomposition product (B) of water-absorbent resin particles obtained from a sanitary product described later may be added.
  • the size (maximum diameter) of the hydrous gel particles after the gel shredding step is preferably 50 ⁇ m to 10 cm, more preferably 100 ⁇ m to 2 cm, and particularly preferably 500 ⁇ m to 1 cm. Within these ranges, the drying property in the drying step is further improved.
  • Gel shredding can be performed by a known method, and can be shredded using a crushing device (for example, a kneader, a universal mixer, a uniaxial or biaxial kneading extruder, a minced machine, a meat chopper, etc.).
  • a crushing device for example, a kneader, a universal mixer, a uniaxial or biaxial kneading extruder, a minced machine, a meat chopper, etc.
  • the water-containing gel of the acid group-containing polymer obtained after the polymerization can be neutralized by mixing a base during the gel shredding step.
  • the base used when neutralizing the acid group-containing polymer and the preferable range of the degree of neutralization are the same as when the acid group-containing monomer is used.
  • the hydrogel particles obtained in the gel shredding step (II) are dried (including distilling off the solvent).
  • the hydrogel particles are dried with hot air at a temperature of 80 to 300 ° C.
  • a method, a thin film drying method using a drum dryer heated to 100 to 230 ° C., a (heating) vacuum drying method, a freeze drying method, an infrared drying method, decantation, filtration, etc. can be applied, and these are used in combination. You can also do it.
  • the heat source (steam, heat medium, etc.) of these dryers is not particularly limited.
  • the drying method is not particularly limited to a batch drying method or a continuous drying method.
  • a decomposition product (B) of water-absorbent resin particles obtained from a sanitary product described later may be added to the main drying step (III).
  • the water content (% by weight) after drying is preferably 0 to 20, more preferably 1 to 10, based on the weight of the crosslinked polymer (A). Within these ranges, the absorption performance is further improved.
  • the water content in the present invention was heated by an infrared moisture meter (JE400 manufactured by KETT Co., Ltd .: 120 ⁇ 5 ° C., 30 minutes, atmospheric humidity 50 ⁇ 10% RH before heating, lamp specification 100 V, 40 W). It is obtained from the weight loss of the measurement sample before and after heating.
  • JE400 manufactured by KETT Co., Ltd . 120 ⁇ 5 ° C., 30 minutes, atmospheric humidity 50 ⁇ 10% RH before heating, lamp specification 100 V, 40 W.
  • the crushing method in the crushing classification step (IV) for crushing and classifying the dried product that has undergone the drying step (III) is not particularly limited, and is a crushing device (for example, a hammer type crusher, an impact type crusher, a roll type crusher). And a shet airflow type crusher) can be used.
  • a decomposition product (B) of water-absorbent resin particles obtained from a sanitary product described later in this pulverization classification step (IV) may be added.
  • the classification in the pulverization classification step (IV) is performed in order to control the weight average particle size and particle size distribution of the pulverized resin particles.
  • the classification device is not particularly limited, but known methods such as a vibrating sieve, an in-plane moving sieve, a movable net type sieve, a forced stirring sieve, and a sonic sieve are used, and a vibrating sieve and an in-plane moving sieve are preferably used.
  • the resin particles after classification may contain some other components such as a residual solvent and a residual cross-linking component.
  • the method for producing water-absorbent resin particles of the present invention is obtained by obtaining a polymerization step (I), a gel shredding step (II), a drying step (III), and a pulverization classification step (IV), and contains a crosslinked polymer (A).
  • the water-absorbent resin particles are obtained, but other steps may be further included as long as the gist of the production method of the present invention is not deviated.
  • the method for producing water-absorbent resin particles of the present invention may include, as another step, a surface cross-linking step (V) in which the resin particles containing the cross-linked polymer (A) are surface-crosslinked with a surface cross-linking agent.
  • the surface cross-linking step (V) may include a step (Va) of mixing the resin particles and the surface cross-linking agent (d) and a reaction step (Vb) of the surface cross-linking agent (d) as essential steps. good.
  • Examples of the surface cross-linking agent (d) include polyvalent glycidyl compounds, polyvalent amines, polyvalent aziridine compounds and polyhydric isocyanate compounds described in JP-A-59-189103, and JP-A-58-180233. And the polyhydric alcohol of JP-A-61-16903, the silane coupling agent described in JP-A-61-21305 and JP-A-61-252212, and described in JP-A-5-508425. Uses alkylene carbonates, polyvalent oxazoline compounds described in JP-A-11-240959, and surface cross-linking agents of JP-A-51-136588 and JP-A-61-257235 (polyvalent metals, etc.). can.
  • polyhydric glycidyl compounds, polyhydric alcohols and polyhydric amines are preferable, and polyhydric glycidyl compounds and polyhydric alcohols are more preferable, and polyhydric alcohols are particularly preferable, from the viewpoint of economic efficiency and absorption characteristics.
  • Valuable glycidyl compounds most preferably ethylene glycol diglycidyl ethers.
  • One type of surface cross-linking agent may be used alone, or two or more types may be used in combination.
  • the amount (part by weight) of the surface cross-linking agent used is not particularly limited because it can be variously changed depending on the type of the surface cross-linking agent, the conditions for cross-linking, the target performance, etc. It is preferably 0.001 to 3, more preferably 0.005 to 2, and particularly preferably 0.01 to 1.5 with respect to 100 parts by weight of the resin particles containing the coalescence (A).
  • the surface cross-linking of the cross-linked polymer (A) has a step (Va) of mixing the resin particles containing the cross-linked polymer (A) and the surface cross-linking agent (d), and is performed by heating as necessary.
  • a mixing method a cylindrical mixer, a screw type mixer, a screw type extruder, a turbulizer, a nauter type mixer, a double arm type kneader, a fluid type mixer, a V type mixer, a minced mixer, and a ribbon type are used. Examples thereof include a method of uniformly mixing using a mixing device such as a mixer, an air flow type mixer, a rotary disk type mixer, a conical blender and a roll mixer.
  • the surface cross-linking agent (d) may be diluted with water and / or any solvent before use.
  • the water-absorbent resin particles obtained by the production method of the present invention preferably have a structure in which the surface of the resin particles containing the crosslinked polymer (A) is surface-crosslinked with the surface cross-linking agent (d).
  • gel blocking can be suppressed and necessary absorption characteristics (balance between water retention amount and absorption amount under load) can be controlled.
  • the decomposition product (B) reacts with the surface cross-linking agent (d) to form a chemical bond, so that the cross-linking density is increased and sufficient strength can be given to the resin particles.
  • the temperature of the resin particles in the reaction step is preferably room temperature or higher from the viewpoint of the reaction rate. Further, the powder temperature of (A) may be set to room temperature or higher by the step before that, but is preferably 100 ° C. or lower.
  • the heating temperature is preferably 100 to 180 ° C. Indirect heating using steam is possible if the heating is 180 ° C or lower, which is advantageous in terms of equipment, and if the heating temperature is lower than 100 ° C, the absorption performance may deteriorate.
  • the heating time can be appropriately set depending on the heating temperature, but is preferably 5 to 60 minutes from the viewpoint of absorption performance. It is also possible to further surface-crosslink the water-absorbent resin particles obtained by surface-crosslinking with a surface-crosslinking agent of the same type or different type as the surface-crosslinking agent used first.
  • the particle size is adjusted by sieving as necessary.
  • the water-absorbent resin particles of the present invention may contain a polyvalent metal salt (e).
  • a polyvalent metal salt e
  • the absorption performance of the water-absorbent resin particles containing the decomposition product (B) can be dramatically improved. It is presumed that the polyvalent metal salt (e) has a plurality of polyvalent metal atoms and thus interacts with the water-absorbent resin particles containing the decomposition product (B) at multiple points to improve the absorption performance.
  • Examples of the polyvalent metal salt (e) include inorganic acid salts of zirconium, aluminum or titanium, and examples of the inorganic acid forming the polyvalent metal salt (e) include sulfuric acid, hydrochloric acid, nitric acid, hydrobromic acid and iodine. Examples thereof include hydride and phosphoric acid.
  • Examples of the inorganic acid salt of zirconium include zirconium sulfate and zirconium chloride, and examples of the inorganic acid salt of aluminum include aluminum sulfate, aluminum chloride, aluminum nitrate, ammonium aluminum sulfate, potassium aluminum sulfate, sodium aluminum sulfate and the like.
  • Examples of the inorganic acid salt of titanium include titanium sulfate, titanium chloride and titanium nitrate.
  • an inorganic acid salt of aluminum is preferable, and aluminum sulfate, aluminum chloride, potassium aluminum sulfate, and sodium aluminum sulfate are more preferable from the viewpoint of improving the absorption performance under pressure.
  • the amount (% by weight) of the polyvalent metal salt (e) used is preferably 0.05 to 5.0, more preferably 0.05 to 5.0, based on the weight of the crosslinked polymer (A) from the viewpoint of absorption performance under pressure. It is 0.2 to 2.0, particularly preferably 0.35 to 1.5.
  • the polyvalent metal salt (e) is a hydrate, the mass excluding the hydrated water is used as a reference.
  • the polyvalent metal salt (e) may be added in any of the steps such as the polymerization step (I), the gel shredding step (II), and the surface cross-linking step, but the absorption performance under pressure may be obtained. From the viewpoint of improvement, it is preferably present on the surface of the resin particles, and it is preferable to add it in the surface cross-linking step. Further, in the case of surface treatment with the above-mentioned surface cross-linking agent, it can be added at any of the mixing step before the reaction step of surface-treating by surface cross-linking, after the reaction step, and at the same time as the reaction step.
  • the equipment and temperature for mixing the polyvalent metal salt (e) can be the same as the above-mentioned surface cross-linking step.
  • the water-absorbent resin particles can contain a liquid-permeable improver, if necessary.
  • the liquid flow improving agent means a material that treats the surface of water-absorbent resin particles by non-covalent bond interaction (ionic bond, hydrogen bond, hydrophobic interaction, etc.), and is distinguished from the above-mentioned surface cross-linking agent.
  • the liquid-permeable improver is contained on the surface of the water-absorbent resin particles and has an effect of preventing inter-particle blocking during gel swelling and improving the liquid-permeable property.
  • liquid passage improving agent examples include the above-mentioned polyvalent metal salt (e) in addition to cationic organic polymers and inorganic particles. These can be used alone or in combination.
  • the cationic organic polymer is not particularly limited, but a known cationic organic polymer exemplified in International Publication No. 2017-57709 can be used.
  • Inorganic particles include hydrophilic inorganic particles, hydrophobic inorganic particles and the like.
  • the hydrophilic inorganic particles include particles such as glass, silica gel, silica (coloidal silica, fumed silica, etc.) and clay.
  • the hydrophobic inorganic particles include particles such as carbon fiber, kaolin, talc, mica, bentonite, sericite, asbestos and silas. Of these, hydrophilic inorganic particles are preferable, and silica (coloidal silica, fumed silica, etc.) is most preferable.
  • the amount (parts by weight) of the liquid-permeable improver used is preferably 0.05 to 5 and more preferably 0.2 to 2.0 with respect to 100 parts by weight of the water-absorbent resin particles from the viewpoint of absorption performance.
  • the water-absorbent resin particles include additives ⁇ for example, known (for example, JP-A-2003-225565, JP-A-2006-131767, etc.) preservatives, fungicides, antibacterial agents, antioxidants, ultraviolet absorbers, colorants, etc. It can also contain fragrances, deodorants, organic fibrous substances, etc. ⁇ .
  • the content (% by weight) of the additives is preferably 0.001 to 10, more preferably 0.01 to 5, particularly preferably 0.01 to 5, based on the weight of the crosslinked polymer (A). It is preferably 0.05 to 1, most preferably 0.1 to 0.5.
  • the method for producing the water-absorbent resin particles of the present invention is at least selected from the group consisting of the polymerization step (I), the gel shredding step (II), the drying step (III) and the pulverization classification step (IV).
  • the decomposition product (B) of the water-absorbent resin particles obtained from the sanitary goods is added.
  • the decomposition product (B) of the water-absorbent resin particles obtained from the sanitary ware is the polymerization step (I), the gel shredding step (II), the drying step (III) and / or the crushing classification step (IV).
  • the decomposition product (B) becomes a part of the water-absorbent resin particles obtained by the production method of the present invention.
  • the water-absorbent resin particles contained in the sanitary products are obtained by polymerizing the above-mentioned monomer composition containing the water-soluble vinyl monomer (a1) and the cross-linking agent (b) to obtain the water-absorbent resin particles containing the cross-linked polymer (A). It can be manufactured by the same method as the manufacturing method.
  • the decomposition product (B) is a decomposition product of water-absorbent resin particles contained in sanitary products, and may be a decomposition product having a water-soluble content of 1.0 to 30.0% by weight, and is an unused sanitary product. It may be a decomposition product obtained from the water-absorbent resin particles contained in the above, or it may be a decomposition product obtained from the swollen water-absorbent resin particles contained in the used sanitary goods.
  • the water-absorbent resin particles to be decomposed preferably have a cross-linked polymer (A') containing a water-soluble vinyl monomer (a1') and a cross-linking agent (b') as essential constituent units.
  • the water-soluble vinyl monomer (a1') and the cross-linking agent (b') may be the same as or different from the above-mentioned (a1) and (b), respectively, but from the viewpoint of stability of absorption characteristics. , It is preferable that they are the same.
  • the properties of the water-absorbent resin particles to be decomposed are not particularly limited, but include powder, granules, gels that have absorbed liquids, and the like.
  • Examples of the decomposition product (B) include those obtained by subjecting water-absorbent resin particles contained in sanitary products to chemical treatment, mechanical treatment, or both. When the water-absorbent resin particles are chemically or mechanically treated, at least a part of the bonds of the molecules constituting the crosslinked polymer (A') of the water-absorbent resin particles is broken, so that the decomposition product (B) is contained. The decomposed product (Z) to be decomposed is obtained.
  • Chemical treatment of the water-absorbent resin particles includes a method of heating the crosslinked polymer (A') above the thermal decomposition temperature, a method of irradiating an active energy ray such as ultraviolet rays, and an oxidizing agent (hydrogen peroxide and hypochlorite). Etc.) to oxidatively decompose.
  • an active energy ray such as ultraviolet rays
  • an oxidizing agent hydroogen peroxide and hypochlorite
  • a method of stirring water-absorbent resin particles using a roller mill, a jet mill, a pin mill, a vibration mill, a planetary mill, a bead mill, an attritor, a mixing device with a crusher, a cutter mill, etc.] can be mentioned.
  • the shearing force generated by stirring the water-absorbent resin particles breaks at least a part of the bonds of the molecules constituting the crosslinked polymer (A'), so that the decomposed product (Z) containing the decomposed product (B) is produced. can get.
  • the decomposition product (B) added by the production method of the present invention has a water-soluble content of 1.0 to 30.0% by weight.
  • the decomposition product (B) may be a product obtained by washing and / or drying the decomposition product (Z) obtained by chemically treating or mechanically treating the water-absorbent resin particles, or may be a decomposition treatment.
  • the product (Z) itself may be used, or the decomposed product (Z) obtained by chemical treatment or mechanical treatment may be used as a known dehydrator (centrifugal dehydrator, roller dehydrator, etc.) and / or dehydration. It may be dehydrated with an agent.
  • decomposition product (B) used in the production method of the present invention are not particularly limited, and examples thereof include powder, granules, and gels.
  • Examples of the dehydrating agent used when dehydrating the decomposed product (Z) obtained by performing a chemical treatment and / or a mechanical treatment include a water-soluble polyvalent metal compound and the like.
  • a water-soluble polyvalent metal compound is an element having a valence of 2 or more in a periodic table, and is a water-soluble polyvalent metal compound that forms a carboxyl group or a chelate salt with a carboxyl group ion after being dissolved in water or reacting with water. If so, there is no particular limitation.
  • polyvalent metal compounds containing alkaline earth metals such as magnesium, calcium, strontium and barium
  • polyvalent metal compounds containing transition metals such as iron, nickel, copper and zinc
  • trivalent or higher such as boron, aluminum and gallium.
  • examples thereof include polyvalent metal compounds containing the above metals. Even if the polyvalent metal compound is a non-hydrate, monohydrate, dihydrate, trihydrate, tetrahydrate, pentahydrate, hexahydrate, and heptahydrate It may be a hydrate such as a substance, octahydrate or nine hydrate.
  • These dehydrating agents may be used alone or in combination of two or more.
  • the "water-soluble polyvalent metal compound” refers to a polyvalent metal compound having a solubility in water at 20 ° C. of 1 mg / ml or more, preferably 10 mg / ml or more.
  • water-soluble polyvalent metal compound containing magnesium examples include magnesium sulfate, magnesium nitrate, magnesium chloride, magnesium bromide, magnesium iodide, magnesium perchlorate, magnesium permanganate, magnesium acetate and the like.
  • Water-soluble polyvalent metal compounds containing calcium include calcium oxide, calcium peroxide, calcium hydroxide, calcium fluoride, calcium chloride, calcium bromide, calcium iodide, calcium hydride, calcium carbide, calcium phosphate, and carbonic acid. Calcium, calcium nitrate, calcium sulfite, calcium silicate, calcium phosphate, calcium pyrophosphate, calcium hypochlorite, calcium chlorate, calcium perchlorate, calcium bromide, calcium iodide, calcium chromate, calcium acetate, calcium gluconate , Calcium benzoate, calcium stearate and the like.
  • a water-soluble polyvalent metal compound containing calcium is preferable, and calcium chloride, calcium oxide, calcium acetate and calcium hypochlorite are more preferable. These can be used alone or in combination of two or more. This purpose is the same in other parts of the specification of the present application.
  • the amount of the dehydrating agent added is preferably 0.01 to 10% by weight, more preferably 0.03 to 8% by weight, based on the weight of the decomposed product (Z) before the dehydration treatment. It is% by weight, most preferably 0.1 to 7% by weight. Within these ranges, dehydration proceeds efficiently from the decomposition-treated product (Z), and handling becomes easy.
  • the decomposition product (B) is a decomposition product of water-absorbent resin particles contained in sanitary products from the viewpoint of reducing the environmental load by reusing waste as a resource, and the water-absorbent resin particles contained in used sanitary products. It is preferably a decomposition product of.
  • the hygienic product is not particularly limited as long as it is a hygienic product containing water-absorbent resin particles.
  • Hygiene products include disposable diapers (children's disposable diapers and adult disposable diapers, etc.), napkins (physiological napkins, etc.), paper towels, pads (pads for incontinence and surgical underpads, etc.) and pet sheets (pet urine absorption sheets).
  • Etc., and the hygienic product may be a final product, an intermediate product, or the like.
  • mince machines When using water-absorbent resin particles contained in sanitary products, mince machines (meat choppers), jaw crushers, hammer crushers, roll crushers, and self-crushing machines are used for absorbers that are included in sanitary products and contain water-absorbent resin particles as constituent members.
  • the step of sterilizing the water-absorbent resin particles may be performed before the decomposition treatment of the water-absorbent resin particles contained in the sanitary goods described above, or may be performed at the same time as the decomposition treatment.
  • the steps for sterilizing the water-absorbent resin particles include a high-temperature treatment step of heat-treating to 100 ° C. or higher, a step of irradiating with ultraviolet rays, a step of using a sterilizing agent, and a gas of an alkylating agent such as ethylene oxide or formaldehyde in the presence of ozone. Examples include the process used in.
  • the bactericidal agent include an aqueous solution in which ozone is dissolved and hypochlorite (salt).
  • the step of sterilizing the water-absorbent resin particles is preferably a step of using a bactericidal agent, and more preferably a step of using hypochlorite (salt).
  • the sterilization treatment step may be performed as a step that also serves as a decomposition treatment, or the decomposition treatment may be performed separately.
  • the water-soluble content (% by weight) of the decomposition product (B) is 1.0 to 30.0, preferably 1.0 to 25, from the viewpoint of the absorption characteristics of the water-absorbent resin particles obtained by the present production method. It is 0.0, more preferably 2.0 to 20.0, and particularly preferably 2.0 to 10.0. If it exceeds 30.0, various low molecular weight bodies will be produced by breaking a plurality of bonds. Therefore, it is not easy to obtain water-absorbent resin particles having stable absorption performance even when added to the manufacturing process.
  • radical polymerization does not proceed
  • the gel shredding step it reacts with the surface cross-linking agent in the subsequent surface cross-linking step, so that the cross-linking agent is wasted.
  • the reaction with the main chain portion that the cross-linking agent originally wants to react with does not proceed, which lowers the gel strength and leads to a decrease in the amount of absorption under load.
  • the amount of water-soluble content is large, a large amount is lost when the decomposition product (B) is obtained, and as a result, the recycling efficiency is deteriorated and it is difficult to obtain the effect of reducing the environmental load.
  • the decomposition product of the water-absorbent resin particles is composed of a mixture of a water-soluble component and a water-insoluble component.
  • a method of removing the insoluble component and using only the soluble component is also possible, but one of them should be removed. It is preferable to use all of them for reuse from the viewpoint of reuse of decomposition products.
  • the water-soluble component includes a constituent monomer of the polymer generated by the decomposition of the crosslinked polymer (A') and a non-crosslinked polymer generated by the decomposition.
  • the water-soluble content which means the weight ratio of the water-soluble component to the total solid content, contained in the decomposition product of the crosslinked polymer is measured by the following method.
  • Decomposition product (Z) obtained by weighing 100 g of physiological saline (salt concentration 0.9% by weight) in a 300 ml plastic container and subjecting the physiological saline to chemical treatment and / or mechanical treatment. Add 2 g, seal with a wrap, rotate the stirrer at 500 rpm for 3 hours, and stir to prepare a water-soluble component extract from which the water-soluble component of the water-absorbent resin particles has been extracted. Then, this water-soluble component extract is filtered using a filter paper manufactured by ADVANTEC Toyo Co., Ltd. (product name; JIS P 3801, No. 2, thickness 0.26 mm, reserved particle diameter 5 ⁇ m).
  • titration [W KOH, S ] ml) of N / 50 KOH aqueous solution required for the pH of the measurement solution (G) to reach 10
  • the titration amount [W HCl, S ] ml) of the N / 10 HCl aqueous solution required for the pH of the solution after the pH of (G) to be adjusted to 2.7 is obtained by the following method.
  • n COOH (mol) (W KOH, SW KOH, b ) ⁇ (1/50) / 1000 ⁇ 5
  • n tot (mol) (W HCl, SW HCl, b ) ⁇ (1/10) / 1000 ⁇ 5
  • the amount of neutralized acrylic acid substance nCOONa is calculated by the following mathematical formula.
  • n COONa (mol) n tot -n COOH
  • the unneutralized acrylic acid weight mCOOH is calculated by the following formula.
  • m COOH (g) n COOH ⁇ 72
  • the amount of neutralized acrylic acid substance mCOONa is calculated by the following formula.
  • m COONa (g) n COONa ⁇ 94
  • Water-soluble content of the water-absorbent resin particles is calculated by the following formula. can do.
  • Water-soluble content (% by weight) ⁇ (m COOH + m COONa ) x 100 ⁇ / ⁇ 1.2 x (100- WH2O ) ⁇
  • [W KOH, b ] in the formula is a titration amount of N / 50 KOH aqueous solution in a blank test conducted using 50 g of physiological saline (saline concentration 0.9% by weight) as a test solution, and is a titration. It is a value ([W KOH, b ] ml) obtained by titrating an aqueous KOH solution of N / 50 until the pH of water reaches 10. For [W HCl, b ], a blank test solution titrated with an N / 50 KOH aqueous solution until the pH reached 10, and then a N / 10 HCl aqueous solution was titrated until the pH reached 2.7. The obtained value ([W HCl, b ] ml).
  • the water-absorbent resin particles before the decomposition treatment contain water-soluble components (inorganic acid, organic acid having a carboxylic acid group, sulfonic acid group, etc.), the water-absorbent resin particles before the decomposition treatment By subtracting the water-soluble content measured and quantified by the above method from the water-soluble content measurement value measured for the decomposition product (B), the water-soluble content generated by the decomposition in the decomposition product (B) can be obtained. You can ask.
  • the decomposition product (B) comprises the polymerization step (I), the gel shredding step (II), the drying step (III), and the pulverization classification step (IV). It is added in at least one step selected from the group. By adding it during these steps, it is possible to efficiently produce a water-absorbent resin having excellent various properties such as absorption properties. Above all, from the viewpoint of improving water absorption performance and stabilizing quality, the method of adding to the polymerization step (I) and / or the gel shredding step (II) is preferable, and it is more preferable to add to the gel shredding step (II). ..
  • the gel shredding step means a series of steps of putting the water-containing gel into the crushing device and operating the crushing device to obtain the shredded gel. Then, in the method of adding the decomposition product (B) to the gel shredding step (II), the decomposition product (B) is put into the crushing device in advance in the crushing device in which the operation of cutting the hydrous gel is not performed.
  • the decomposition product (B) When the decomposition product (B) is added to the polymerization step (I) using an acid group-containing monomer such as acrylic acid or methacrylic acid as the water-soluble vinyl monomer (a1), the decomposition product (B) is uniformly dissolved in the aqueous acrylic acid solution. It may be dispersed in an aqueous solution of acrylic acid.
  • the property of (B) added to the polymerization step (I) is preferably gel-like.
  • the weight ratio of the decomposition product (B) of the water-absorbent resin particles to the water-soluble vinyl monomer (a1) is 5/95 to 95/5. It is more preferably 5/95 to 80/20, and even more preferably 10/90 to 70/30. Within these ranges, the absorption performance of the water-absorbent resin particles obtained by this production method becomes good.
  • the decomposition product (B) is preferably 1 to 50 (% by weight) based on the total weight of the monomer composition in the polymerization step (I). ), More preferably 1 to 40, and particularly preferably 1 to 30.
  • the properties of the decomposition product (B) may be powdery or gel. Further, the number of shredding may be increased or decreased as necessary, or the number of additions may be divided into two or more times, but the absorption performance of the water-absorbent resin particles after recycling containing (B) may be improved. From the viewpoint, it is preferable that the water-containing gel containing the crosslinked polymer (A) and (B) are kneaded while being shredded.
  • the range of the mixed weight ratio of the water-containing gel containing the crosslinked polymer (A) and the decomposition product (B) is preferably 99/1 to 10 /. It is 90, more preferably 97/3 to 20/80. Within these ranges, the drying property is not impaired and the required water absorption performance can be satisfied.
  • the decomposition product (B) is added to the drying step (III)
  • the decomposition product (B) is added in the method described above as a method applied to the drying step (III).
  • the decomposition product (B) is added to the pulverization classification step (IV)
  • the decomposition product (B) is added to the pulverization apparatus described above as the pulverization method in the pulverization classification step (IV).
  • the content (% by weight) of the decomposition product (B) to be added is the crosslinked polymer. It is preferably 1 to 45, more preferably 1 to 40, and particularly preferably 1 to 30 with respect to the total weight of (A).
  • an operation of removing metal ions remaining in the decomposed product (B) may be performed in advance by using an ion exchange resin or a complex ion, if necessary.
  • the metal content remaining in the decomposition product (B) can be measured by ICP emission spectroscopic analysis measurement or the like.
  • the weight average particle diameter ( ⁇ m) of the water-absorbent resin particles obtained by the production method of the present invention is preferably 150 to 600, more preferably 200 to 500, from the viewpoint of absorption performance and handleability.
  • the weight average particle size was determined by using a low-tap test sieve shaker and a standard sieve (JIS Z8801-1: 2006), Perry's Chemical Engineers Handbook 6th Edition (McGlow Hill Book Company, 1984). , Page 21). That is, the JIS standard sieves are combined in the order of 1000 ⁇ m, 850 ⁇ m, 710 ⁇ m, 500 ⁇ m, 425 ⁇ m, 355 ⁇ m, 250 ⁇ m, 150 ⁇ m, 125 ⁇ m, 75 ⁇ m and 45 ⁇ m, and the saucer from the top. Place about 50 g of the measurement particles in the uppermost sieve and shake with a low-tap test sieve shaker for 5 minutes.
  • the shape of the water-absorbent resin particles obtained by the production method of the present invention is not particularly limited, and examples thereof include amorphous crushed form, phosphorus fragment form, pearl form, and rice granules.
  • the amorphous crushed form is preferable from the viewpoint that it is easily entangled with the fibrous material for use in disposable diapers and the like and there is no concern that it will fall off from the fibrous material.
  • the apparent density (g / ml) of the water-absorbent resin particles obtained by the production method of the present invention is preferably 0.40 to 0.80, more preferably 0.50 to 0., From the viewpoint of the absorption performance of sanitary products. 75, particularly preferably 0.50 to 0.70. Within this range, the water absorption rate when the water-absorbent resin particles swell becomes good.
  • the apparent density is measured at 25 ° C. in accordance with JIS K7365: 1999.
  • the amount of water-absorbing resin particles obtained by the production method of the present invention with respect to physiological saline is preferably 50 g / g or more and 70 g / g or less, and more preferably 53 g / g or more and 67 g when surface cross-linking is not performed. It is less than / g.
  • surface cross-linking it is preferably 30 g / g or more and 60 g / g or less, and more preferably 30 g / g or more and 55 g / g or less. If the water retention amount is low, the absorption amount of the diaper is small, and if the water retention amount is too high, the water-soluble content is large, which is not preferable.
  • the amount of water retained in the present invention is measured by the following method.
  • the amount of water-absorbent resin particles obtained by the production method of the present invention absorbed under load (g / g) is preferably 19 or more, more preferably 23 or more. If it is less than 19, leakage is likely to occur during repeated use, which is not preferable. Further, the higher the upper limit value is, the more preferably it is not particularly limited, but from the viewpoint of performance balance with other physical characteristics and productivity, it is preferably 28 or less, more preferably 26 or less.
  • the amount of absorption under load can be appropriately adjusted depending on the type and amount of the cross-linking agent (b) and the surface cross-linking agent (e).
  • the amount of absorption under load in the present invention is measured by the following method.
  • Measurements were performed by sieving into a cylindrical plastic tube (inner diameter: 25 mm, height: 34 mm) with a nylon mesh with a mesh opening of 63 ⁇ m (JIS Z8801-1: 2006) attached to the bottom, in the range of 250 to 500 ⁇ m using a standard sieve. Weigh 0.16 g of the sample, set the cylindrical plastic tube vertically and arrange it on a nylon net so that the measurement sample has almost uniform thickness, and then put a weight (weight: 210.6 g, outside) on this measurement sample. Diameter: 24.5 mm,) was placed.
  • the absorption amount of the water-absorbent resin particles obtained by the production method of the present invention under no load measured by the Demand Wetability test is preferably 5 g / g to 30 g / g, more preferably 10 g / g to 30 g / g. It is less than or equal to g. Within this range, water can be absorbed without causing liquid leakage in the absorber, and if it is less than 5 g / g, the amount of water absorption is too small and there is a concern that leakage will occur. If it exceeds 30 g / g, the liquid will be absorbed.
  • the "absorption amount under no load measured in the Demand Wetability test" in the present invention is measured by the following method.
  • the content of the polyvalent metal element of the water-absorbent resin particles obtained by the production method of the present invention is preferably 0.1 to 10% by weight, more preferably 0, based on the weight of the crosslinked polymer (A). .1 to 8% by weight, particularly preferably 0.1 to 5% by weight.
  • the polyvalent metal element is contained in a surface cross-linking agent for water-absorbent resin particles, a dehydrating agent used for dehydrating decomposition products, and drainage absorbed by used sanitary goods.
  • the content of the polyvalent metal element derived from the dehydrating agent of the water-absorbent resin particles is preferably 0.1 to 8% by weight, more preferably 0.1 to 7% by weight, based on the weight of the crosslinked polymer (A). It is 5.5% by weight, particularly preferably 0.1 to 4.5% by weight.
  • the content of the polyvalent metal element of the water-absorbent resin particles in the present invention is measured by the following method.
  • ⁇ Method of measuring the content of multivalent metal elements by fluorescent X-ray measurement> Take 5.000 g of the measurement sample into a sample container for loose powder (film is made of polypropylene, diameter 27 mm), and use a wavelength dispersive fluorescent X-ray analyzer (Axios, manufactured by Spectris Co., Ltd.) at 100 mA and 24 kV under a helium atmosphere. The setting was performed, the measurement was carried out, and the quantitative analysis software Uniquant was used.
  • the distribution index of the polyvalent metal element of the water-absorbent resin particles obtained by the production method of the present invention is preferably 0.1 to 3.0, more preferably 0.1 to 2.5, and most preferably. It is 0.1 to 2.0. Within this range, the variation in the distribution state of the multivalent metal element is small, so that the water absorption performance is good.
  • the distribution index of the polyvalent metal element derived from the dehydrating agent is preferably 0.1 to 3.0, more preferably 0.1 to 2.5, and most preferably 0.1 to 2.0. .. The smaller the value of the distribution index, the more the polyvalent metal element is evenly distributed in the water-absorbent resin particles.
  • the small distribution index is found in the water-absorbent resin particles obtained by the production method of the present invention. It means that the components derived from the decomposition product (B) are uniformly distributed on the surface and inside. When the distribution of the component derived from the decomposition product (B) in the water-absorbent resin particles is uniform, the water-absorbent resin particles swell uniformly at the time of water absorption, so that the water absorption performance is good.
  • the position of the polyvalent metal element in the water-absorbent resin particles is measured by using electron beam measurement (EDX, WDX) or the like.
  • EDX, WDX electron beam measurement
  • the image obtained by the measurement can be analyzed by processing it with image processing software (for example, WinROOF, etc.).
  • the distribution index of the polyvalent metal element in the present invention is measured by the following method.
  • ⁇ Distribution index of multivalent metal elements The water-absorbent resin particles were allowed to stand and dried at 140 ° C. for 30 minutes, and the particle size was adjusted to 500-300 ⁇ m particles by sieving in the order of JIS standard sieve 500 ⁇ m, 300 ⁇ m, and saucer.
  • the measurement sample (U) was embedded with Aronix D-800 (acrylic resin) manufactured by JEOL Ltd., and LUXSPOT (using a halogen lamp) manufactured by JEOL Ltd. was irradiated for 1 minute to cure the resin and embed it.
  • the resin is cut with a microtome (LEICA EM UC7, manufactured by Leica) to expose the measurement surface, and the processed embedded resin is fixed to the sample table with carbon tape and a thin-film deposition device manufactured by JEOL Ltd. (JEC-300FC). ), Platinum was vapor-deposited under the conditions of 20 kV and 70 seconds.
  • the obtained platinum vapor deposition material was put into a scanning electron microscope measurement (QUANTA FEG, manufactured by FEI), and energy dispersion type X-ray spectroscopy (Octane Elite, manufactured by Ametec) was applied to an acceleration voltage of 15 kV and a spot 4 (irradiation diameter).
  • the water-absorbent resin particles obtained by the method of the present invention can be used for various applications requiring the water-absorbing action of the water-absorbing resin particles and the swelling action due to the water-absorbing resin particles, and are used for sanitary goods, pet-sheets, soil water-retaining materials, and batteries. It can be used as a gelling agent, agricultural materials such as seedling raising sheets and granulated fertilizers, dew condensation inhibitor, water retaining material for cold storage material, and building material such as water blocking agent.
  • the angle of the wing 30 degrees with respect to the vertical direction and the wing width of 3.0 cm) was fixed at a height of 0.5 cm from the bottom surface of the poly bucket, and the mixture was stirred at a rotation speed of 600 rpm for 10 minutes. After stopping the stirring blade, all the gel in the poly bucket was taken out.
  • the gel (Z-1) taken out is a crosslinked polymer by applying a shearing force to the swollen water-absorbent resin particles (Q-1) by stirring using a three-one motor, so that the water-absorbent resin particles (Q-1) are also crosslinked polymers.
  • -1) is a gel containing a decomposition product produced by decomposition treatment.
  • the gel (Z-2) taken out is a crosslinked polymer by applying a shearing force to the swollen water-absorbent resin particles (Q-1) by stirring using a three-one motor, so that the water-absorbent resin particles (Q-1) are also crosslinked polymers.
  • -1) is a gel containing a decomposition product produced by decomposition treatment. Weigh 41.00 g of the removed gel (Z-2), put it in a tea bag (length 20 cm, width 10 cm) made of a nylon net with an opening of 63 ⁇ m (JIS Z8801-1: 2006), and then put it in a centrifuge. Then, the mixture was centrifuged at 150 G for 90 seconds to remove excess physiological saline.
  • the tea bag was placed in a 500 ml conical beaker containing 500 ml of a 1 wt% calcium chloride aqueous solution, soaked for 1 hour without stirring, and then the contents of the tea bag were all SUS bats (length 20 cm, width 20 cm, height). It was transferred to 4 cm) and spread evenly on the bat.
  • the whole SUS vat was placed in a vacuum constant temperature dryer (model number: VOS-210C manufactured by Tokyo Rika Kikai Co., Ltd.) and allowed to stand at 50 ° C. for 24 hours to remove excess water, and the decomposition product (B-2) used in Example 2 was removed. ) Was obtained.
  • the water-soluble content of (B-2) was 4.5% by weight, and the water content measured by an infrared moisture meter was 61.1% by weight.
  • ⁇ Manufacturing example 6 100 parts of the fluff pulp and 100 parts of the water-absorbent resin particles (Q-1) obtained in Production Example 1 are mixed with an air flow type mixer ⁇ Padformer manufactured by Otec Co., Ltd. ⁇ to obtain a mixture, and then this The mixture was uniformly laminated on an acrylic plate (thickness 4 mm) so as to have a basis weight of about 500 g / m 2 , and pressed at a pressure of 5 kg / cm 2 for 30 seconds to obtain an absorber.
  • a 10 cm x 10 cm test piece of this absorber [the weight of the water-absorbent resin particles (Q-1) contained in the test piece is 5 g] is cut out and a 2 L poly bucket (height 19 cm, bottom diameter 13 cm, top surface diameter 16 cm). After that, 300 ml of physiological saline (salt concentration 0.9% by weight) was added, and the mixture was allowed to stand for 1 hour. A test piece absorbed in physiological saline was used as a substitute for used sanitary products. Sanitary goods with 4 paddle stirring blades (propeller diameter 10.0 cm, blade angle: 30 degrees with respect to the vertical direction, blade width 3.0 cm) attached to the Three-One Motor (trade name: High Power Model No.
  • the 2L poly bucket containing the substitute was fixed at a height of 0.5 cm from the bottom surface of the poly bucket and operated at a rotation speed of 600 rpm for 10 minutes to stir the used sanitary substitute. After stirring for 10 minutes, the fluff pulp was removed by a decantation operation and a sieving operation, and swelled to obtain a gel-like substance (Z-3).
  • the gel-like product is decomposed by applying a shearing force by stirring using a three-one motor to the gel in which the water-absorbent resin particles (Q-1) contained in the substitute for used sanitary products are swollen. It is a gel containing decomposition products.
  • a tea bag (length 20 cm, width 10 cm) made of a nylon net having an opening of 63 ⁇ m (JIS Z8801-1: 2006). After that, it was placed in a centrifuge and dehydrated by centrifugation at 150 G for 90 seconds to remove excess physiological saline. Next, put the tea bag) in a 500 ml conical beaker containing 500 ml of a 1 wt% calcium chloride aqueous solution, soak it for 1 hour without stirring, and then fill the contents of the tea bag with a SUS bat (length 20 cm, width 20 cm, 20 cm).
  • ⁇ Manufacturing example 7> 5. Put 30.0 g of the water-absorbent resin particles (Q-1) obtained in Production Example 1 into a PE wide-mouthed bottle 10 L (manufactured by Sampler Tech Co., Ltd.), and further ascorbic acid (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.). Add 1500 ml of ion-exchanged water in which 0 g and 0.7 g of iron (II) sulfate / heptahydrate (manufactured by Fuji Film Wako Junyaku Co., Ltd.) are dissolved and let stand for 20 minutes to swell the water-absorbent resin particles. I let you.
  • ⁇ Manufacturing example 8> 3. Put 30.0 g of the water-absorbent resin particles (Q-1) obtained in Production Example 1 into a PE wide-mouthed bottle 10 L (manufactured by Sampler Tech Co., Ltd.), and further ascorbic acid (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.). Add 1500 ml of ion-exchanged water in which 0 g and 0.7 g of iron (II) sulfate / heptahydrate (manufactured by Fuji Film Wako Junyaku Co., Ltd.) are dissolved and let stand for 20 minutes to swell the water-absorbent resin particles. I let you.
  • the angle of the wing 30 degrees with respect to the vertical direction and the wing width of 3.0 cm) was fixed at a height of 0.5 cm from the bottom surface of the poly bucket, and the mixture was stirred at a rotation speed of 600 rpm for 10 minutes. After stopping the stirring blade, all the gel in the poly bucket was taken out.
  • the gel (Z-6) taken out the swollen water-absorbent resin particles (Q-1) are subjected to shearing force by stirring using a three-one motor, so that the water-absorbent resin particles (Q-1) which are also crosslinked polymers are applied.
  • -1) is a gel containing a decomposition product produced by decomposition treatment.
  • Example 1 The hydrous gel (1) 452.04 parts and the decomposition product (B-1) 14.1 parts obtained in Production Example 1 were simultaneously put into a minced machine used in the gel cutting step, and the mixture was mixed and finely mixed with the minced machine. I refused. Further, while mixing and cutting, 115.58 parts of a 48.5% sodium hydroxide aqueous solution was added and mixed to obtain hydrogel particles. The obtained hydrogel particles were dried with an aeration type band dryer ⁇ 150 ° C., wind speed 2 m / sec ⁇ to obtain a dried product.
  • Example 2 The hydrous gel (1) 452.04 parts and the decomposition product (B-2) 42.7 parts obtained in Production Example 1 were simultaneously put into a minced machine used for the gel cutting step, and the mixture was mixed and finely mixed with the minced machine. I refused. Further, while mixing and cutting, 115.58 parts of a 48.5% sodium hydroxide aqueous solution was added and mixed to obtain hydrogel particles. The obtained hydrogel particles were dried with an aeration type band dryer ⁇ 150 ° C., wind speed 2 m / sec ⁇ to obtain a dried product.
  • Example 3 In Example 2, the same operation was performed except that 14.2 parts of the decomposition product (B-3) was used instead of 42.7 parts of the decomposition product (B-2), and the water-absorbent resin particles (P-3) were used.
  • Example 4 In Example 2, the same operation was performed except that 42.7 parts of the decomposition product (B-4) was used instead of 42.7 parts of the decomposition product (B-2), and the water-absorbent resin particles (P-4) were used.
  • Example 5 In Example 2, the same operation was performed except that 42.7 parts of the decomposition product (B-5) was used instead of 42.7 parts of the decomposition product (B-2), and the water-absorbent resin particles (P-5) were used.
  • Example 6 147 parts (2.04 mol) of acrylic acid, crosslinker (b) ⁇ pentaerythritol triallyl ether ⁇ 0.6305 parts (0.0024 mol part), 10 parts of decomposition product (B-1) and 344 parts of deionized water. .65 parts were kept at 3 ° C. while stirring and mixing.
  • this hydrogel (1) was shredded with a minced machine, 128.42 parts of a 48.5% sodium hydroxide aqueous solution was added and mixed to obtain hydrogel particles. Further, the hydrogel particles were dried with an aeration type band dryer ⁇ 150 ° C., wind speed 2 m / sec ⁇ to obtain a dried product. The dried product was pulverized with a juicer mixer and then adjusted to a particle size range of 710 to 150 ⁇ m, whereby the dried product particles (1) were obtained.
  • Example 7 In Example 6, the same operation was carried out except that 10 parts of the decomposition product (B-3) was used instead of 10 parts of the decomposition product (B-1) to obtain water-absorbent resin particles (P-7).
  • Example 8> The hydrous gel (1) 452.04 parts and the decomposition product (B-2) 14.1 parts obtained in Production Example 1 were simultaneously put into a minced machine used in the gel cutting step, and the mixture was mixed and finely mixed with the minced machine. I refused. Further, while mixing and cutting, 115.58 parts of a 48.5% sodium hydroxide aqueous solution was added and mixed to obtain hydrogel particles. The obtained hydrogel particles were dried with an aeration type band dryer ⁇ 150 ° C., wind speed 2 m / sec ⁇ to obtain a dried product.
  • Example 11 In Example 2, the same operation was performed except that 42.7 parts of the decomposition product (B-9) was used instead of 42.7 parts of the decomposition product (B-2), and the water-absorbent resin particles (P-11) were used.
  • Example 12 In Example 2, the same operation was performed except that 42.7 parts of the decomposition product (B-8) was used instead of 42.7 parts of the decomposition product (B-2), and the water-absorbent resin particles (P-12) were used.
  • Example 6 ⁇ Comparative Example 3> In Example 6, the same operation was carried out except that 10 parts of the decomposed product (B-6) was used instead of 10 parts of the decomposed product (B-1) to obtain water-absorbent resin particles (H-3).
  • Example 6 ⁇ Comparative Example 4> In Example 6, the same operation was carried out except that 10 parts of the decomposed product (B-7) was used instead of 10 parts of the decomposed product (B-1) to obtain water-absorbent resin particles (H-4).
  • Example 2 ⁇ Comparative Example 5> In Example 2, the same operation was carried out except that 10 parts of the decomposed product (B-6) was used instead of 10 parts of the decomposed product (B-2) to obtain water-absorbent resin particles (H-5).
  • Example 2 ⁇ Comparative Example 6> In Example 2, the same operation was carried out except that 10 parts of the decomposed product (B-7) was used instead of 10 parts of the decomposed product (B-2) to obtain water-absorbent resin particles (H-6).
  • the water-absorbent resin particles of the present invention obtained the water retention amount, the absorption amount under load, and the absorption amount under no load measured by the Demand Wetability test as comparative examples. It can be seen that it is superior to the water-absorbent resin particles. Further, according to the production method of the present invention, the required water absorption rate can be set in an appropriate range, so that the required absorption performance can be exhibited even when the absorber is used.
  • the decomposition product of the water-absorbent resin particles which is the waste of the water-absorbent resin particles
  • the manufacturing method of the present invention can be said to be an excellent manufacturing method from the viewpoint of resource saving and reduction of environmental load.
  • the method for producing water-absorbent resin particles of the present invention includes paper diapers (children's disposable diapers, adult disposable diapers, etc.), napkins (physiological napkins, etc.), paper towels, pads (pads for incontinence and surgical underpads, etc.) and pets. It can be suitably used for recycling waste of water-absorbent resin particles discharged when reusing sanitary products such as sheets (pet urine absorbing sheets).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Analytical Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

Provided is a method for efficiently producing recycled water-absorbing resin particles having little reduced absorbing properties and various excellent properties, using, as a raw material, waste water-absorbing resin particles derived from used sanitary supplies, etc. This method for producing water-absorbing resin particles comprises a polymerization step (I) in which a monomer composition is polymerized to obtain an aqueous gel containing a crosslinked polymer (A), a gel chopping step (II) in which the aqueous gel is chopped, a drying step (III) in which the aqueous-gel particles obtained in the step (II) are dried, and a pulverization/classification step (IV) in which the dried particles obtained in the step (III) are pulverized and classified, wherein a product (B) of decomposition of water-absorbing resin particles obtained from sanitary supplies is added in at least one step among the steps (I), (II), (III), and (IV), the decomposition product (B) having a content of water solubles of 1.0-30.0 wt%.

Description

吸水性樹脂粒子の製造方法Method for manufacturing water-absorbent resin particles
 本発明は、吸水性樹脂粒子の製造方法に関する。更に詳しくは、使用済み衛生用品の吸水性樹脂粒子の再利用を可能とする吸水性樹脂粒子の製造方法に関するものである。更に詳しくは、衛生用品、特に、使用済の衛生用品、に含まれる吸水性樹脂粒子の再利用を可能とする吸水性樹脂粒子の製造方法に関するものである。 The present invention relates to a method for producing water-absorbent resin particles. More specifically, the present invention relates to a method for producing water-absorbent resin particles that enables reuse of water-absorbent resin particles in used sanitary goods. More specifically, the present invention relates to a method for producing water-absorbent resin particles capable of reusing the water-absorbent resin particles contained in sanitary products, particularly used sanitary products.
 衛生用品の使用量が増加するにつれて、使用後の衛生用品のごみ処理問題が深刻な問題となりつつある。衛生用品、特に紙おむつは社会が少子高齢化する時代に欠かせない用品として急激に普及し、その消費は急増している。使用後の衛生用品のごみ処理に関し、紙おむつなどは、通常、焼却処理されているが、おむつ中の水分の割合は約8割近くであるため、焼却には大きな燃焼エネルギーが必要となる。このため処理には焼却炉自体に大きな負荷がかかり、結果として焼却炉の寿命を短くする原因に繋がる。また、焼却処理は大気汚染や地球の温暖化に繋がり、環境に負荷をかける要因にもなるため、改善が強く望まれている。 As the amount of hygiene products used has increased, the problem of waste disposal of hygiene products after use is becoming a serious problem. Hygiene products, especially disposable diapers, are rapidly becoming widespread as indispensable products in an era of declining birthrate and aging society, and their consumption is rapidly increasing. Regarding waste disposal of sanitary goods after use, disposable diapers and the like are usually incinerated, but since the proportion of water in the diapers is close to 80%, incineration requires a large amount of combustion energy. For this reason, the treatment puts a heavy load on the incinerator itself, and as a result, it leads to a cause of shortening the life of the incinerator. In addition, incineration leads to air pollution and global warming, and is a factor that puts a burden on the environment, so improvement is strongly desired.
 上記課題に対し、使用済み衛生用品から部材を回収し、再利用するための検討が進められている。通常、衛生用品はパルプ繊維と吸水性樹脂粒子から構成される吸収体を含み、部材として再利用するためにはパルプ繊維と吸水性樹脂粒子を分離する必要がある。しかし、使用済み衛生用品の吸収体中の吸水性樹脂粒子は水を吸収して膨潤したゲル状態となるため、そのままでは分離が難しい。従って、吸水性樹脂粒子を分解して可溶化し、パルプ繊維と吸水性樹脂粒子の可溶化成分を分離する技術が提案されており、例えば、パルプ繊維及び吸水性樹脂粒子を含む衛生用品をオゾン含有水溶液で処理することで、吸水性樹脂粒子を分解・可溶化した後、パルプ繊維を回収する技術(特許文献1及び2)等がある。また、吸水性樹脂粒子を分解して可溶化する技術としては、分解方法として過酸化水素等の酸化剤を使用する技術(特許文献3~5)が知られている。 For the above issues, studies are underway to collect and reuse parts from used hygiene products. Normally, sanitary goods include an absorber composed of pulp fibers and water-absorbent resin particles, and it is necessary to separate the pulp fibers and water-absorbent resin particles in order to reuse them as members. However, since the water-absorbent resin particles in the absorber of the used hygiene product absorb water and become a swelled gel state, it is difficult to separate them as they are. Therefore, a technique has been proposed in which water-absorbent resin particles are decomposed and solubilized to separate solubilized components of pulp fibers and water-absorbent resin particles. For example, sanitary goods containing pulp fibers and water-absorbent resin particles are treated with ozone. There are techniques (Patent Documents 1 and 2) for recovering pulp fibers after decomposing and solubilizing water-absorbent resin particles by treating with a contained aqueous solution. Further, as a technique for decomposing and solubilizing water-absorbent resin particles, a technique using an oxidizing agent such as hydrogen peroxide as a decomposition method (Patent Documents 3 to 5) is known.
特開2016-881号公報Japanese Unexamined Patent Publication No. 2016-881 特開2017-209675号公報Japanese Unexamined Patent Publication No. 2017-209675 特開平4-317784号公報Japanese Unexamined Patent Publication No. 4-317784 特開平6-313008号公報Japanese Unexamined Patent Publication No. 6-313008 特開2003-321574号公報Japanese Patent Application Laid-Open No. 2003-321574
 前述した使用済み衛生用品の再利用技術はいずれも、パルプ繊維を回収し、再生パルプとして利用することが目的であり、吸水性樹脂粒子の分解・可溶化成分は廃棄されるか又は固形燃料等でリサイクルされており、省資源及び環境負荷低減の観点から十分であるとは言い難い。また、吸水性樹脂粒子を分解して可溶化する従来技術については、環境負荷の少ない廃棄方法を提供することが目的であり、再利用の観点から改善する余地がある。 All of the above-mentioned reuse techniques for used sanitary goods are aimed at recovering pulp fibers and using them as recycled pulp, and the decomposition / solubilization components of water-absorbent resin particles are either discarded or solid fuel, etc. It is hard to say that it is sufficient from the viewpoint of resource saving and reduction of environmental load. Further, the conventional technique of decomposing and solubilizing water-absorbent resin particles has an object of providing a disposal method having a small environmental load, and there is room for improvement from the viewpoint of reuse.
 本発明は、衛生用品等に由来する、吸水性樹脂粒子の廃棄物を、原料として使用し、吸収特性の低下が小さく、各種特性に優れる再利用吸水性樹脂粒子を効率的に製造する方法を提供することを目的とする。 The present invention is a method for efficiently producing recycled water-absorbent resin particles having excellent various properties by using waste of water-absorbent resin particles derived from sanitary goods or the like as a raw material and having a small decrease in absorption characteristics. The purpose is to provide.
 本発明は、水溶性ビニルモノマー(a1)及び架橋剤(b)を含む単量体組成物を重合して架橋重合体(A)を含む含水ゲルを得る重合工程(I)と、前記含水ゲルを細断し、含水ゲル粒子を得るゲル細断工程(II)と、ゲル裁断工程(II)で得られた含水ゲル粒子を乾燥する乾燥工程(III)と、乾燥工程(III)を経た乾燥物を粉砕、分級する粉砕分級工程(IV)とを含む吸水性樹脂粒子の製造方法であって、前記重合工程(I)、前記ゲル細断工程(II)、前記乾燥工程(III)及び前記粉砕分級工程(IV)からなる群より選ばれた少なくとも1つの工程で、衛生用品から得られた吸水性樹脂粒子の分解物(B)を添加する、吸水性樹脂粒子の製造方法であって、前記分解物(B)の水可溶分量が1.0~30.0重量%である吸水性樹脂粒子の製造方法である。 The present invention comprises a polymerization step (I) of polymerizing a monomer composition containing a water-soluble vinyl monomer (a1) and a cross-linking agent (b) to obtain a water-containing gel containing the cross-linking polymer (A), and the water-containing gel. A gel shredding step (II) for shredding the water-containing gel particles to obtain water-containing gel particles, a drying step (III) for drying the water-containing gel particles obtained in the gel cutting step (II), and a drying step (III). A method for producing water-absorbent resin particles, which comprises a crushing and classifying step (IV) for crushing and classifying a substance, wherein the polymerization step (I), the gel shredding step (II), the drying step (III), and the above. A method for producing water-absorbent resin particles, wherein the decomposition product (B) of the water-absorbent resin particles obtained from sanitary products is added in at least one step selected from the group consisting of the pulverization classification step (IV). This is a method for producing water-absorbent resin particles having a water-soluble content of the decomposition product (B) of 1.0 to 30.0% by weight.
 本発明の吸水性樹脂粒子の製造方法は、衛生用品の再利用の際に排出される吸水性樹脂粒子の廃棄物を使用しても、吸収特性の低下が少なく、各種特性に優れた吸水性樹脂粒子を製造することができ、省資源及び環境負荷低減に寄与する。 In the method for producing water-absorbent resin particles of the present invention, even if the waste of water-absorbent resin particles discharged when the sanitary goods are reused is used, the absorption characteristics are hardly deteriorated and the water absorption is excellent in various characteristics. Resin particles can be manufactured, which contributes to resource saving and reduction of environmental load.
 本発明の吸水性樹脂粒子の製造方法は、上記の必須の工程をそれぞれ有していればよく、本発明の趣旨を逸脱しない範囲でその他の工程を更に含んでもよい。さらに、本発明の工程には、趣旨を逸脱しない範囲で輸送段階や貯蔵段階を含めてもよい。 The method for producing water-absorbent resin particles of the present invention may have each of the above-mentioned essential steps, and may further include other steps as long as the gist of the present invention is not deviated. Further, the process of the present invention may include a transportation stage and a storage stage without departing from the spirit.
 本発明における水溶性ビニルモノマー(a1)としては特に限定はなく、公知のモノマー、例えば、特許第3648553号公報の0007~0023段落に開示されている少なくとも1個の水溶性置換基とエチレン性不飽和基とを有するビニルモノマー(例えばアニオン性ビニルモノマー、非イオン性ビニルモノマー及びカチオン性ビニルモノマー)、特開2003-165883号公報の0009~0024段落に開示されているアニオン性ビニルモノマー、非イオン性ビニルモノマー及びカチオン性ビニルモノマー並びに特開2005-75982号公報の0041~0051段落に開示されているカルボキシ基、スルホ基、ホスホノ基、水酸基、カルバモイル基、アミノ基及びアンモニオ基からなる群から選ばれる少なくとも1種を有するビニルモノマーが使用できる。 The water-soluble vinyl monomer (a1) in the present invention is not particularly limited, and is a known monomer, for example, at least one water-soluble substituent disclosed in paragraphs 0007 to 0023 of Japanese Patent No. 36485553 and ethylenia-free. Vinyl monomers having a saturated group (for example, anionic vinyl monomers, nonionic vinyl monomers and cationic vinyl monomers), anionic vinyl monomers and nonionic vinyl monomers disclosed in paragraphs 0009 to 0024 of JP-A-2003-165883. Select from the group consisting of a sex vinyl monomer, a cationic vinyl monomer, and a carboxy group, a sulfo group, a phosphono group, a hydroxyl group, a carbamoyl group, an amino group, and an ammonio group disclosed in paragraphs 0041 to 0051 of JP-A-2005-75982. A vinyl monomer having at least one of these can be used.
 水溶性ビニルモノマー(a1)としては、好ましくはアニオン性ビニルモノマー、より好ましくはカルボキシ(塩)基、スルホ(塩)基、アミノ基、カルバモイル基、アンモニオ基又はモノ-、ジ-若しくはトリ-アルキルアンモニオ基を有するビニルモノマーである。これらのなかでは、より好ましくはカルボキシ(塩)基又はカルバモイル基を有するビニルモノマー、さらに好ましくは(メタ)アクリル酸(塩)及び(メタ)アクリルアミド、特に好ましくは(メタ)アクリル酸(塩)、最も好ましくはアクリル酸(塩)である。 The water-soluble vinyl monomer (a1) is preferably an anionic vinyl monomer, more preferably a carboxy (salt) group, a sulfo (salt) group, an amino group, a carbamoyl group, an ammonio group or a mono-, di- or tri-alkyl. It is a vinyl monomer having an ammonio group. Among these, vinyl monomers having a carboxy (salt) group or a carbamoyl group are more preferable, (meth) acrylic acid (salt) and (meth) acrylamide are more preferable, and (meth) acrylic acid (salt) is particularly preferable. The most preferable is acrylic acid (salt).
 なお、「カルボキシ(塩)基」は「カルボキシ基」又は「カルボキシレート基」を意味し、「スルホ(塩)基」は「スルホ基」又は「スルホネート基」を意味する。また、(メタ)アクリル酸(塩)はアクリル酸、アクリル酸塩、メタクリル酸又はメタクリル酸塩を意味し、(メタ)アクリルアミドはアクリルアミド又はメタクリルアミドを意味する。また、塩としては、アルカリ金属(リチウム、ナトリウム及びカリウム等)塩、アルカリ土類金属(マグネシウム及びカルシウム等)塩又はアンモニウム(NH)塩等が含まれる。これらの塩のうち、吸収特性の観点等から、アルカリ金属塩及びアンモニウム塩が好ましく、さらに好ましくはアルカリ金属塩、特に好ましくはナトリウム塩である。 In addition, "carboxy (salt) group" means "carboxy group" or "carboxylate group", and "sulfo (salt) group" means "sulfo group" or "sulfonate group". Further, (meth) acrylic acid (salt) means acrylic acid, acrylate, methacrylic acid or methacrylamide, and (meth) acrylamide means acrylamide or methacrylamide. The salt includes an alkali metal (lithium, sodium, potassium, etc.) salt, an alkaline earth metal (magnesium, calcium, etc.) salt, an ammonium (NH 4 ) salt, and the like. Of these salts, alkali metal salts and ammonium salts are preferable, and alkali metal salts are more preferable, and sodium salts are particularly preferable, from the viewpoint of absorption characteristics and the like.
 水溶性ビニルモノマー(a1)としてアクリル酸やメタクリル酸等の酸基含有モノマーを用いる場合、酸基含有モノマーの一部を塩基で中和することができる。中和する塩基としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物や、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩を通常使用できる。中和は吸水性樹脂粒子の製造工程において、酸基含有モノマーの重合前及び重合中のいずれで行っても良いし、重合後に後述する架橋重合体(A)を含む含水ゲルの状態で酸基含有ポリマーを中和することもできる。 When an acid group-containing monomer such as acrylic acid or methacrylic acid is used as the water-soluble vinyl monomer (a1), a part of the acid group-containing monomer can be neutralized with a base. As the base to be neutralized, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and alkali metal carbonates such as sodium carbonate, sodium hydrogencarbonate and potassium carbonate can be usually used. Neutralization may be performed either before or during the polymerization of the acid group-containing monomer in the process of producing the water-absorbent resin particles, and after the polymerization, the acid group is in the state of a water-containing gel containing the crosslinked polymer (A) described later. It is also possible to neutralize the contained polymer.
 酸基含有モノマーを用いる場合の酸基の中和度は、50~80モル%であることが好ましい。中和度が50モル%未満の場合、得られる含水ゲル重合体の粘着性が高くなり、製造時及び使用時の作業性が悪化する場合がある。更に得られる吸水性樹脂粒子の保水量が低下する場合がある。一方、中和度が80%を超える場合、得られた樹脂のpHが高くなり人体の皮膚に対する安全性が懸念される場合がある。 When an acid group-containing monomer is used, the degree of neutralization of the acid group is preferably 50 to 80 mol%. When the degree of neutralization is less than 50 mol%, the adhesiveness of the obtained hydrogel polymer may be high, and the workability during production and use may be deteriorated. Further, the amount of water retention of the obtained water-absorbent resin particles may decrease. On the other hand, when the degree of neutralization exceeds 80%, the pH of the obtained resin becomes high, and there may be a concern about the safety of the obtained resin on the skin of the human body.
 架橋重合体(A)の構成単位として、水溶性ビニルモノマー(a1)の他に、これらと共重合可能なその他のビニルモノマー(a2)を構成単位とすることができる。その他のビニルモノマー(a2)は1種を単独で用いても、2種以上を併用してもよい。 As the constituent unit of the crosslinked polymer (A), in addition to the water-soluble vinyl monomer (a1), another vinyl monomer (a2) copolymerizable with these can be used as the constituent unit. As the other vinyl monomer (a2), one type may be used alone, or two or more types may be used in combination.
 共重合可能なその他のビニルモノマー(a2)としては特に限定はなく、公知(例えば、特許第3648553号公報の0028~0029段落に開示されている疎水性ビニルモノマー、特開2003-165883号公報の0025段落及び特開2005-75982号公報の0058段落に開示されているビニルモノマー等)の疎水性ビニルモノマー等が使用でき、具体的には例えば下記の(i)~(iii)のビニルモノマー等が使用できる。
(i)炭素数8~30の芳香族エチレン性モノマー
 スチレン、α-メチルスチレン、ビニルトルエン及びヒドロキシスチレン等のスチレン、並びにビニルナフタレン、並びにジクロルスチレン等のスチレンのハロゲン置換体等。
(ii)炭素数2~20の脂肪族エチレン性モノマー
 アルケン(エチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン及びオクタデセン等);並びにアルカジエン(ブタジエン及びイソプレン等)等。
(iii)炭素数5~15の脂環式エチレン性モノマー
 モノエチレン性不飽和モノマー(ピネン、リモネン及びインデン等);並びにポリエチレン性ビニルモノマー[シクロペンタジエン、ビシクロペンタジエン及びエチリデンノルボルネン等]等。
The other copolymerizable vinyl monomer (a2) is not particularly limited, and is known (for example, the hydrophobic vinyl monomer disclosed in paragraphs 0028 to 0029 of Japanese Patent No. 36485553, JP-A-2003-165883). Hydrophobic vinyl monomers (such as the vinyl monomers disclosed in paragraph 0025 and paragraph 0058 of JP-A-2005-75982) can be used, and specifically, for example, the following vinyl monomers (i) to (iii) and the like can be used. Can be used.
(I) Aromatic ethylenic monomer having 8 to 30 carbon atoms Styrene such as styrene, α-methylstyrene, vinyltoluene and hydroxystyrene, vinylnaphthalene, halogen-substituted styrene such as dichlorostyrene and the like.
(Ii) Alkenes (ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.); and alkaziene (butadiene and isoprene, etc.) having 2 to 20 carbon atoms.
(Iii) Alicyclic ethylenic monomer having 5 to 15 carbon atoms Monoethylene unsaturated monomer (pinene, limonene, indene, etc.); and polyethylene vinyl monomer [cyclopentadiene, bicyclopentadiene, etylidene norbornene, etc.] and the like.
 その他のビニルモノマー(a2)単位の含有量は、吸収性能等の観点から、水溶性ビニルモノマー(a1)単位のモル数に基づいて、0~5モル%が好ましく、更に好ましくは0~3モル%、特に好ましくは0~2モル%、とりわけ好ましくは0~1.5モル%であり、吸収性能等の観点から、その他のビニルモノマー(a2)単位の含有量が0モル%であることが最も好ましい。 The content of the other vinyl monomer (a2) unit is preferably 0 to 5 mol%, more preferably 0 to 3 mol, based on the number of moles of the water-soluble vinyl monomer (a1) unit from the viewpoint of absorption performance and the like. %, Particularly preferably 0 to 2 mol%, particularly preferably 0 to 1.5 mol%, and the content of the other vinyl monomer (a2) unit is 0 mol% from the viewpoint of absorption performance and the like. Most preferred.
 架橋剤(b)としては特に限定はなく公知(例えば、特許第3648553号公報の0031~0034段落に開示されているエチレン性不飽和基を2個以上有する架橋剤、水溶性置換基と反応し得る官能基を少なくとも1個有してかつ少なくとも1個のエチレン性不飽和基を有する架橋剤及び水溶性置換基と反応し得る官能基を少なくとも2個有する架橋剤、特開2003-165883号公報の0028~0031段落に開示されているエチレン性不飽和基を2個以上有する架橋剤、エチレン性不飽和基と反応性官能基とを有する架橋剤及び反応性置換基を2個以上有する架橋剤、特開2005-75982号公報の0059段落に開示されている架橋性ビニルモノマー並びに特開2005-95759号公報の0015~0016段落に開示されている架橋性ビニルモノマー)の架橋剤等が使用できる。これらの内、吸収性能等の観点から、エチレン性不飽和基を2個以上有する架橋剤が好ましく、更に好ましいのは、炭素数2~40の多価アルコールのポリ(メタ)アリルエーテル、炭素数2~40の多価アルコールの(メタ)アクリレート、炭素数2~40の多価アルコールの(メタ)アクリルアミド、特に好ましいのは炭素数2~40の多価アルコールのポリアリルエーテル、最も好ましいのはペンタエリスリトールトリアリルエーテルである。架橋剤(b)は1種を単独で用いても、2種以上を併用してもよい。 The cross-linking agent (b) is not particularly limited and reacts with a cross-linking agent having two or more ethylenically unsaturated groups and a water-soluble substituent disclosed in paragraphs 0031 to 0034 of Japanese Patent No. 3648553 (for example). JP-A-2003-165883, a cross-linking agent having at least one functional group to be obtained and having at least one ethylenically unsaturated group and a cross-linking agent having at least two functional groups capable of reacting with a water-soluble substituent. A cross-linking agent having two or more ethylenically unsaturated groups, a cross-linking agent having an ethylenically unsaturated group and a reactive functional group, and a cross-linking agent having two or more reactive substituents disclosed in paragraphs 0028 to 0031. , A cross-linking agent of the cross-linking vinyl monomer disclosed in paragraph 0059 of JP-A-2005-75982 and the cross-linking vinyl monomer disclosed in paragraphs 0015 to 0016 of JP-A-2005-59559) can be used. .. Of these, a cross-linking agent having two or more ethylenically unsaturated groups is preferable from the viewpoint of absorption performance and the like, and more preferably, a poly (meth) allyl ether of a polyhydric alcohol having 2 to 40 carbon atoms and a carbon number of carbon atoms. (Meta) acrylates of 2-40 polyhydric alcohols, (meth) acrylamides of polyhydric alcohols with 2-40 carbon atoms, particularly preferred are polyallyl ethers of polyhydric alcohols with 2-40 carbon atoms, most preferred. Pentaerythritol triallyl ether. The cross-linking agent (b) may be used alone or in combination of two or more.
 分子の切断を受けにくくするためには、架橋剤(b)のうち、分子内にポリエーテル鎖を必須成分として有する架橋剤(b1)を使用するのが望ましい。ポリエーテル鎖を分子内に持つことで、可とう性が向上するため、剪断時に吸水性樹脂粒子にかかる力が局所的にならず、粒子あるいはゲル全体に緩和されることが推測される。(b1)は1種を単独で使用することもできるし、2種類以上を併用してもよく、また(b1)以外の架橋剤(b)と併用してもよい。 In order to make the molecule less susceptible to cleavage, it is desirable to use the cross-linking agent (b1) having a polyether chain as an essential component in the molecule among the cross-linking agents (b). Since the flexibility is improved by having the polyether chain in the molecule, it is presumed that the force applied to the water-absorbent resin particles at the time of shearing is not locally applied and is relaxed to the particles or the entire gel. As for (b1), one type may be used alone, two or more types may be used in combination, or a cross-linking agent (b) other than (b1) may be used in combination.
 ポリエーテル鎖としてはポリオキシエチレン鎖、ポリオキシプロピレン鎖、ポリオキシテトラメチレン鎖、及びこれらの共重合ポリエーテル鎖等が挙げられる。これらのうち、吸水性樹脂の分解・可溶化の効率向上の観点からポリオキシエチレン鎖を含むポリエーテル鎖が好ましい。ポリオキシエチレン鎖を含むポリエーテル鎖の場合、ポリエーテル鎖におけるオキシエチレン鎖の含有率は50重量%以上が好ましく、ポリオキシエチレンポリオキシプロピレン鎖がさらに好ましい。ここで、ポリオキシエチレンポリオキシプロピレン鎖とは、オキシエチレン単位とオキシプロピレン単位によって構成される鎖であれば特に限定されない。 Examples of the polyether chain include a polyoxyethylene chain, a polyoxypropylene chain, a polyoxytetramethylene chain, and a copolymerized polyether chain thereof. Of these, a polyether chain containing a polyoxyethylene chain is preferable from the viewpoint of improving the efficiency of decomposition and solubilization of the water-absorbent resin. In the case of a polyether chain containing a polyoxyethylene chain, the content of the oxyethylene chain in the polyether chain is preferably 50% by weight or more, and the polyoxyethylene polyoxypropylene chain is more preferable. Here, the polyoxyethylene polyoxypropylene chain is not particularly limited as long as it is a chain composed of oxyethylene units and oxypropylene units.
 架橋剤(b1)は、分子内に、ヒドロキシル基、アリル基、アクリロイル基、アルコキシシリル基、カルボキシル基、エポキシ基、イソシアノ基、N-メチロール基、及びN-アルコキシメチル基からなる群から選ばれる1種以上の架橋性官能基を1分子当たり2個以上有することが好ましい。
 架橋性官能基は、吸水性樹脂の分解・可溶化の効率向上の観点から、アリル基、アクリロイル基、ビニルエーテル基、アルコキシシリル基、カルボキシル基、エポキシ基が好ましく、さらに好ましくは、アリル基、アクリロイル基、ビニルエーテル基である。
 架橋剤(b1)の具体例としては、アルコックスCP-A1H、アルコックスCP-A2H(ともに明成化学工業株式会社製)、A-1000(ポリエチレングリコールジアクリレート、数平均分子量は1108)、A―BPE-30(ビスフェノールAのエチレンオキサイド30モル付加物のジアクリレート、数平均分子量は1133)(ともに新中村化学工業株式会社)等が挙げられる。分解性の観点から好ましくは、アルコックスCP-A1H、アルコックスCP-A2Hである。
The cross-linking agent (b1) is selected from the group consisting of a hydroxyl group, an allyl group, an acryloyl group, an alkoxysilyl group, a carboxyl group, an epoxy group, an isocyano group, an N-methylol group, and an N-alkoxymethyl group in the molecule. It is preferable to have two or more crosslinkable functional groups per molecule.
The crosslinkable functional group is preferably an allyl group, an acryloyl group, a vinyl ether group, an alkoxysilyl group, a carboxyl group or an epoxy group, and more preferably an allyl group or an acryloyl group, from the viewpoint of improving the efficiency of decomposition and solubilization of the water-absorbent resin. Group, vinyl ether group.
Specific examples of the cross-linking agent (b1) include Alcox CP-A1H, Alcox CP-A2H (both manufactured by Meisei Chemical Industry Co., Ltd.), A-1000 (polyethylene glycol diacrylate, number average molecular weight 1108), A-. BPE-30 (diacrylate of 30 mol of ethylene oxide adduct of bisphenol A, number average molecular weight is 1133) (both by Shin-Nakamura Chemical Industry Co., Ltd.) and the like can be mentioned. From the viewpoint of degradability, Alcox CP-A1H and Alcox CP-A2H are preferable.
 架橋剤(b1)は、分子内にポリエーテル鎖を必須成分として有するが、分解・可溶化の効率化の観点と吸水性樹脂粒子の吸水性能の観点から数平均分子量は100~150,000が好ましく、さらに好ましくは200~100,000である。 The cross-linking agent (b1) has a polyether chain as an essential component in the molecule, but has a number average molecular weight of 100 to 150,000 from the viewpoint of improving the efficiency of decomposition and solubilization and the water absorption performance of the water-absorbent resin particles. It is preferable, more preferably 200 to 100,000.
 本発明における数平均分子量(以下、Mnと略記する)は、ゲルパーミエーションクロマトグラフィー(以下、GPCと略記する)にて測定する。測定は次の測定条件に従うものとする。
<GPC測定条件>
GPC機種:HLC-8120GPC、東ソー(株)製
カラム:TSKgel GMHXL2本+TSKgel Multipore HXL-M、東ソー(株)製
溶媒:テトラヒドロフラン(THF)
検出装置:屈折率検出器
基準物質:標準ポリスチレン(TSKstandard POLYSTYRENE)、東ソー(株)製
The number average molecular weight (hereinafter abbreviated as Mn) in the present invention is measured by gel permeation chromatography (hereinafter abbreviated as GPC). The measurement shall be in accordance with the following measurement conditions.
<GPC measurement conditions>
GPC model: HLC-8120GPC, Tosoh Corporation column: TSKgel GMHXL 2 bottles + TSKgel Multipole HXL-M, Tosoh Corporation solvent: Tetrahydrofuran (THF)
Detection device: Refractive index detector Reference material: Standard polystyrene (TSKstandardPOLYSTYRENE), manufactured by Tosoh Corporation
 架橋剤(b)単位の含有量(モル%)は、水溶性ビニルモノマー(a1)単位のモル数、その他のビニルモノマー(a2)を用いる場合は(a1)及び(a2)の合計モル数に基づいて、0.001~5が好ましく、更に好ましくは0.005~3、特に好ましくは0.01~1である。これらの範囲であると、吸収性能が更に良好となる。 The content (mol%) of the cross-linking agent (b) unit is the number of moles of the water-soluble vinyl monomer (a1) unit, and the total number of moles of (a1) and (a2) when other vinyl monomers (a2) are used. Based on this, 0.001 to 5, more preferably 0.005 to 3, and particularly preferably 0.01 to 1. Within these ranges, the absorption performance is further improved.
 本発明の吸水性樹脂粒子の製造方法は、前述した水溶性ビニルモノマー(a1)及び架橋剤(b)を含む単量体組成物を重合して架橋重合体(A)を含む含水ゲルを得る重合工程(I)を含む。本重合工程(I)には後述する衛生用品から得られた吸水性樹脂粒子の分解物(B)を添加しても良い。 In the method for producing water-absorbent resin particles of the present invention, the above-mentioned monomer composition containing the water-soluble vinyl monomer (a1) and the cross-linking agent (b) is polymerized to obtain a water-containing gel containing the cross-linked polymer (A). The polymerization step (I) is included. A decomposition product (B) of water-absorbent resin particles obtained from a sanitary product described later may be added to the main polymerization step (I).
 重合工程(I)としては、公知の溶液重合(断熱重合、薄膜重合及び噴霧重合法等;特開昭55-133413号公報等)や、公知の懸濁重合法や逆相懸濁重合(特公昭54-30710号公報、特開昭56-26909号公報及び特開平1-5808号公報等)によって架橋重合体(A)を含む含水ゲル(架橋重合体が水を含んだ含水ゲル状物)を得ることができる。架橋重合体(A)は、1種単独でも良いし、2種以上の混合物であっても良い。 As the polymerization step (I), known solution polymerization (adiabatic polymerization, thin film polymerization, spray polymerization, etc .; JP-A-55-133413, etc.), known suspension polymerization method, reverse phase suspension polymerization (specially A water-containing gel containing the crosslinked polymer (A) according to JP-A-54-30710, JP-A-56-26909, JP-A-1-5808, etc. (a water-containing gel in which the crosslinked polymer contains water). Can be obtained. The crosslinked polymer (A) may be one kind alone or a mixture of two or more kinds.
 重合方法の内、好ましいのは溶液重合法であり、有機溶媒等を使用する必要がなく生産コスト面で有利なことから、特に好ましいのは水溶液重合法であり、保水量が大きく、且つ水可溶性成分量の少ない吸水性樹脂粒子が得られ、重合時の温度コントロールが不要である点から、水溶液断熱重合法が最も好ましい。 Of the polymerization methods, the solution polymerization method is preferable, and since it is not necessary to use an organic solvent and is advantageous in terms of production cost, the aqueous solution polymerization method is particularly preferable because it has a large water retention capacity and is water soluble. The aqueous solution adiabatic polymerization method is most preferable because water-absorbent resin particles having a small amount of components can be obtained and temperature control during polymerization is not required.
 水溶液重合を行う場合、水と有機溶媒とを含む混合溶媒を使用することができ、有機溶媒としては、メタノール、エタノール、アセトン、メチルエチルケトン、N,N-ジメチルホルムアミド、ジメチルスルホキシド及びこれらの2種以上の混合物を挙げられる。水溶液重合を行う場合、有機溶媒の使用量(重量%)は、水の重量を基準として40以下が好ましく、更に好ましくは30以下である。 When performing aqueous solution polymerization, a mixed solvent containing water and an organic solvent can be used, and the organic solvent includes methanol, ethanol, acetone, methyl ethyl ketone, N, N-dimethylformamide, dimethyl sulfoxide, and two or more of these. Can be mentioned as a mixture of. In the case of aqueous solution polymerization, the amount (% by weight) of the organic solvent used is preferably 40 or less, more preferably 30 or less, based on the weight of water.
 重合に開始剤を用いる場合、従来公知のラジカル重合用開始剤が使用可能であり、例えば、アゾ化合物[アゾビスイソブチロニトリル、アゾビスシアノ吉草酸及び2,2’-アゾビス(2-アミジノプロパン)ハイドロクロライド等]、無機過酸化物(過酸化水素、過硫酸アンモニウム、過硫酸カリウム及び過硫酸ナトリウム等)、有機過酸化物[過酸化ベンゾイル、ジ-t-ブチルパーオキサイド、クメンヒドロパーオキサイド、コハク酸パーオキサイド及びジ(2-エトキシエチル)パーオキシジカーボネート等]及びレドックス触媒(アルカリ金属の亜硫酸塩又は重亜硫酸塩、亜硫酸アンモニウム、重亜硫酸アンモニウム及びアスコルビン酸等の酸化還元剤とアルカリ金属の過硫酸塩、過硫酸アンモニウム、過酸化水素及び有機過酸化物等の酸化剤との組み合わせよりなるもの)等が挙げられる。これらの触媒は、単独で使用してもよく、これらの2種以上を併用しても良い。
 重合開始剤の使用量(重量%)は、水溶性ビニルモノマー(a1)の、その他のビニルモノマー(a2)も使用する場合はそれらの、合計重量に基づいて、0.0005~5が好ましく、更に好ましくは0.001~2である。
When an initiator is used for polymerization, conventionally known initiators for radical polymerization can be used. For example, azo compounds [azobisisobutyronitrile, azobiscyanovaleric acid and 2,2'-azobis (2-amidinopropane)) can be used. Hydrochloride, etc.], Inorganic peroxides (hydrogen peroxide, ammonium persulfate, potassium persulfate, sodium persulfate, etc.), organic peroxides [benzoyl peroxide, dit-butyl peroxide, cumene hydroperoxide, succinic acid, etc.] Acid peroxide and di (2-ethoxyethyl) peroxydicarbonate, etc.] and redox catalyst (alkali metal sulfite or bicarbonate, ammonium sulfite, ammonium peroxide, ascorbic acid, and other oxidation-reducing agents and alkali metal peroxides. (Combined with oxidizing agents such as sulfate, ammonium persulfate, hydrogen peroxide and organic peroxide) and the like. These catalysts may be used alone or in combination of two or more of them.
The amount (% by weight) of the polymerization initiator used is preferably 0.0005 to 5 based on the total weight of the water-soluble vinyl monomer (a1) and, when other vinyl monomers (a2) are also used. More preferably, it is 0.001 to 2.
 重合時には、必要に応じて連鎖移動剤に代表される重合コントロール剤を併用しても良く、これらの具体例としては、次亜リン酸ナトリウム、亜リン酸ナトリウム、アルキルメルカプタン類、ハロゲン化アルキル類、チオカルボニル化合物類等が挙げられる。これらの重合コントロール剤は、単独で使用してもよく、これらの2種以上を併用しても良い。
 重合コントロール剤の使用量(重量%)は、水溶性ビニルモノマー(a1)の、その他のビニルモノマー(a2)も使用する場合はそれらの、合計重量に基づいて、0.0005~5が好ましく、更に好ましくは0.001~2である。
At the time of polymerization, a polymerization control agent typified by a chain transfer agent may be used in combination, and specific examples thereof include sodium hypophosphite, sodium phosphite, alkyl mercaptans, and alkyl halides. , Thiocarbonyl compounds and the like. These polymerization control agents may be used alone or in combination of two or more of them.
The amount (% by weight) of the polymerization control agent used is preferably 0.0005 to 5 based on the total weight of the water-soluble vinyl monomer (a1) and other vinyl monomers (a2) when they are also used. More preferably, it is 0.001 to 2.
 重合方法として懸濁重合法又は逆相懸濁重合法をとる場合は、必要に応じて、分散剤又は界面活性剤の存在下に重合を行っても良い。また、逆相懸濁重合法の場合、キシレン、ノルマルヘキサン及びノルマルヘプタン等の炭化水素系溶媒を使用して重合を行うことができる。 When a suspension polymerization method or a reverse phase suspension polymerization method is used as the polymerization method, the polymerization may be carried out in the presence of a dispersant or a surfactant, if necessary. Further, in the case of the reverse phase suspension polymerization method, the polymerization can be carried out using a hydrocarbon solvent such as xylene, normal hexane and normal heptane.
 重合開始温度は、使用する触媒の種類によって適宜調整することができるが、0~100℃が好ましく、更に好ましくは2~80℃である。 The polymerization start temperature can be appropriately adjusted depending on the type of catalyst used, but is preferably 0 to 100 ° C, more preferably 2 to 80 ° C.
 ゲル細断工程(II)は、前記の重合工程により得られた架橋重合体(A)を含む含水ゲルを細断し、含水ゲル粒子を得る工程であり、本ゲル裁断工程(II)には後述する衛生用品から得られた吸水性樹脂粒子の分解物(B)を添加しても良い。
 ゲル細断工程後の含水ゲル粒子の大きさ(最長径)は50μm~10cmが好ましく、更に好ましくは100μm~2cm、特に好ましくは500μm~1cmである。これらの範囲であると、乾燥工程での乾燥性が更に良好となる。
The gel shredding step (II) is a step of shredding the water-containing gel containing the crosslinked polymer (A) obtained by the above-mentioned polymerization step to obtain water-containing gel particles. A decomposition product (B) of water-absorbent resin particles obtained from a sanitary product described later may be added.
The size (maximum diameter) of the hydrous gel particles after the gel shredding step is preferably 50 μm to 10 cm, more preferably 100 μm to 2 cm, and particularly preferably 500 μm to 1 cm. Within these ranges, the drying property in the drying step is further improved.
 ゲル細断は、公知の方法で行うことができ、粉砕装置(例えば、ニーダー、万能混合機、一軸又は二軸の混練押し出し機、ミンチ機およびミートチョッパー等)を使用して細断できる。 Gel shredding can be performed by a known method, and can be shredded using a crushing device (for example, a kneader, a universal mixer, a uniaxial or biaxial kneading extruder, a minced machine, a meat chopper, etc.).
 また、前述のとおり、重合後に得られた酸基含有ポリマーの含水ゲルをゲル細断工程中に塩基を混合して中和することもできる。なお、酸基含有ポリマーを中和する場合に使用する塩基や中和度の好ましい範囲は、酸基含有モノマーを用いる場合と同様である。 Further, as described above, the water-containing gel of the acid group-containing polymer obtained after the polymerization can be neutralized by mixing a base during the gel shredding step. The base used when neutralizing the acid group-containing polymer and the preferable range of the degree of neutralization are the same as when the acid group-containing monomer is used.
 ゲル細断工程(II)で得られた含水ゲル粒子を乾燥する(溶媒の留去を含む。)乾燥工程(III)に適用される方法としては、80~300℃の温度の熱風で乾燥する方法、100~230℃に加熱されたドラムドライヤー等による薄膜乾燥法、(加熱)減圧乾燥法、凍結乾燥法、赤外線による乾燥法、デカンテーション及び濾過等が適用でき、これらは複数個組み合わせて使用することもできる。また、これらの乾燥機の熱源(スチーム及び熱媒等)については特に限定されない。また、乾燥方式はバッチ乾燥方式でも、連続乾燥方式でも特に制限はない。本乾燥工程(III)に後述する衛生用品から得られた吸水性樹脂粒子の分解物(B)を添加しても良い。 The hydrogel particles obtained in the gel shredding step (II) are dried (including distilling off the solvent). As a method applied to the drying step (III), the hydrogel particles are dried with hot air at a temperature of 80 to 300 ° C. A method, a thin film drying method using a drum dryer heated to 100 to 230 ° C., a (heating) vacuum drying method, a freeze drying method, an infrared drying method, decantation, filtration, etc. can be applied, and these are used in combination. You can also do it. Further, the heat source (steam, heat medium, etc.) of these dryers is not particularly limited. Further, the drying method is not particularly limited to a batch drying method or a continuous drying method. A decomposition product (B) of water-absorbent resin particles obtained from a sanitary product described later may be added to the main drying step (III).
 溶媒に水を含む場合、乾燥後の含水率(重量%)は、架橋重合体(A)の重量に基づいて、0~20が好ましく、さらに好ましくは1~10である。これらの範囲であると、吸収性能がさらに良好となる。 When water is contained in the solvent, the water content (% by weight) after drying is preferably 0 to 20, more preferably 1 to 10, based on the weight of the crosslinked polymer (A). Within these ranges, the absorption performance is further improved.
 なお、本発明における含水率は、赤外線水分計((株)KETT社製JE400等:120±5℃、30分、加熱前の雰囲気湿度50±10%RH、ランプ仕様100V、40W)により加熱したときの加熱前後の測定試料の重量減量から求められる。 The water content in the present invention was heated by an infrared moisture meter (JE400 manufactured by KETT Co., Ltd .: 120 ± 5 ° C., 30 minutes, atmospheric humidity 50 ± 10% RH before heating, lamp specification 100 V, 40 W). It is obtained from the weight loss of the measurement sample before and after heating.
 乾燥工程(III)を経た乾燥物を粉砕、分級する粉砕分級工程(IV)における粉砕方法については、特に限定はなく、粉砕装置(たとえば、ハンマー式粉砕機、衝撃式粉砕機、ロール式粉砕機及びシェット気流式粉砕機)等が使用できる。本粉砕分級工程(IV)で後述する衛生用品から得られた吸水性樹脂粒子の分解物(B)を添加しても良い。 The crushing method in the crushing classification step (IV) for crushing and classifying the dried product that has undergone the drying step (III) is not particularly limited, and is a crushing device (for example, a hammer type crusher, an impact type crusher, a roll type crusher). And a shet airflow type crusher) can be used. A decomposition product (B) of water-absorbent resin particles obtained from a sanitary product described later in this pulverization classification step (IV) may be added.
 粉砕分級工程(IV)における分級は、粉砕された樹脂粒子の重量平均粒子径及び粒度分布を制御するために行われる。分級装置は特に限定されないが、振動篩、面内運動篩、可動網式篩、強制撹拌篩、音波篩等の公知の方法が用いられ、好ましくは振動篩、面内運動篩が用いられる。分級後の樹脂粒子は、場合によって、残留溶媒や残存架橋成分等の他の成分を多少含んでも良い。 The classification in the pulverization classification step (IV) is performed in order to control the weight average particle size and particle size distribution of the pulverized resin particles. The classification device is not particularly limited, but known methods such as a vibrating sieve, an in-plane moving sieve, a movable net type sieve, a forced stirring sieve, and a sonic sieve are used, and a vibrating sieve and an in-plane moving sieve are preferably used. Depending on the case, the resin particles after classification may contain some other components such as a residual solvent and a residual cross-linking component.
 本発明の吸水性樹脂粒子の製造方法は、重合工程(I)、ゲル細断工程(II)、乾燥工程(III)、粉砕分級工程(IV)を得て、架橋重合体(A)を含有する吸水性樹脂粒子を得るが、さらに、本発明の製造方法の主旨を逸脱しない範囲でその他の工程をさらに含んでもよい。 The method for producing water-absorbent resin particles of the present invention is obtained by obtaining a polymerization step (I), a gel shredding step (II), a drying step (III), and a pulverization classification step (IV), and contains a crosslinked polymer (A). The water-absorbent resin particles are obtained, but other steps may be further included as long as the gist of the production method of the present invention is not deviated.
 本発明の吸水性樹脂粒子の製造方法は、その他の工程として、架橋重合体(A)を含有する樹脂粒子を表面架橋剤により表面架橋する表面架橋工程(V)を有してもよい。そして、表面架橋工程(V)は、樹脂粒子と表面架橋剤(d)とを混合する工程(Va)と、表面架橋剤(d)による反応工程(Vb)とを必須工程として有してもよい。 The method for producing water-absorbent resin particles of the present invention may include, as another step, a surface cross-linking step (V) in which the resin particles containing the cross-linked polymer (A) are surface-crosslinked with a surface cross-linking agent. The surface cross-linking step (V) may include a step (Va) of mixing the resin particles and the surface cross-linking agent (d) and a reaction step (Vb) of the surface cross-linking agent (d) as essential steps. good.
 表面架橋剤(d)としては、公知(特開昭59-189103号公報に記載の多価グリシジル化合物、多価アミン、多価アジリジン化合物及び多価イソシアネート化合物等、特開昭58-180233号公報及び特開昭61-16903号公報の多価アルコール、特開昭61-211305号公報及び特開昭61-252212号公報に記載のシランカップリング剤、特表平5-508425号公報に記載のアルキレンカーボネート、特開平11-240959号公報に記載の多価オキサゾリン化合物並びに特開昭51-136588号公報及び特開昭61-257235号公報に記載の多価金属等)の表面架橋剤等が使用できる。これらの表面架橋剤のうち、経済性及び吸収特性の観点から、多価グリシジル化合物、多価アルコール及び多価アミンが好ましく、更に好ましいのは多価グリシジル化合物及び多価アルコール、特に好ましいのは多価グリシジル化合物、最も好ましいのはエチレングリコールジグリシジルエーテルである。表面架橋剤は1種を単独で用いても良いし、2種以上を併用しても良い。 Examples of the surface cross-linking agent (d) include polyvalent glycidyl compounds, polyvalent amines, polyvalent aziridine compounds and polyhydric isocyanate compounds described in JP-A-59-189103, and JP-A-58-180233. And the polyhydric alcohol of JP-A-61-16903, the silane coupling agent described in JP-A-61-21305 and JP-A-61-252212, and described in JP-A-5-508425. Uses alkylene carbonates, polyvalent oxazoline compounds described in JP-A-11-240959, and surface cross-linking agents of JP-A-51-136588 and JP-A-61-257235 (polyvalent metals, etc.). can. Among these surface cross-linking agents, polyhydric glycidyl compounds, polyhydric alcohols and polyhydric amines are preferable, and polyhydric glycidyl compounds and polyhydric alcohols are more preferable, and polyhydric alcohols are particularly preferable, from the viewpoint of economic efficiency and absorption characteristics. Valuable glycidyl compounds, most preferably ethylene glycol diglycidyl ethers. One type of surface cross-linking agent may be used alone, or two or more types may be used in combination.
 表面架橋剤の使用量(重量部)は、表面架橋剤の種類、架橋させる条件、目標とする性能等により種々変化させることができるため特に限定はないが、吸収特性の観点等から、架橋重合体(A)を含有する樹脂粒子100重量部に対して、0.001~3が好ましく、更に好ましくは0.005~2、特に好ましくは0.01~1.5である。 The amount (part by weight) of the surface cross-linking agent used is not particularly limited because it can be variously changed depending on the type of the surface cross-linking agent, the conditions for cross-linking, the target performance, etc. It is preferably 0.001 to 3, more preferably 0.005 to 2, and particularly preferably 0.01 to 1.5 with respect to 100 parts by weight of the resin particles containing the coalescence (A).
 架橋重合体(A)の表面架橋は、架橋重合体(A)を含有する樹脂粒子と表面架橋剤(d)とを混合する工程(Va)を有し、必要に応じて加熱することで行うことができる。混合方法としては、円筒型混合機、スクリュー型混合機、スクリュー型押出機、タービュライザー、ナウター型混合機、双腕型ニーダー、流動式混合機、V型混合機、ミンチ混合機、リボン型混合機、気流型混合機、回転円盤型混合機、コニカルブレンダー及びロールミキサー等の混合装置を用いて均一混合する方法が挙げられる。この際、表面架橋剤(d)は、水及び/又は任意の溶剤で希釈して使用しても良い。 The surface cross-linking of the cross-linked polymer (A) has a step (Va) of mixing the resin particles containing the cross-linked polymer (A) and the surface cross-linking agent (d), and is performed by heating as necessary. be able to. As a mixing method, a cylindrical mixer, a screw type mixer, a screw type extruder, a turbulizer, a nauter type mixer, a double arm type kneader, a fluid type mixer, a V type mixer, a minced mixer, and a ribbon type are used. Examples thereof include a method of uniformly mixing using a mixing device such as a mixer, an air flow type mixer, a rotary disk type mixer, a conical blender and a roll mixer. At this time, the surface cross-linking agent (d) may be diluted with water and / or any solvent before use.
 架橋重合体(A)を含有する樹脂粒子と表面架橋剤(d)とを混合した後、反応工程(Vb)において樹脂粒子表面近傍を(d)と反応させる。本願発明の製造方法により得られた吸水性樹脂粒子は、架橋重合体(A)を含有する樹脂粒子の表面が表面架橋剤(d)により表面架橋された構造を有することが好ましい。表面架橋剤により表面架橋された構造を有することにより、ゲルブロッキングを抑制でき、必要な吸収特性(保水量と荷重下吸収量のバランス)を制御することが可能となる。また、本反応工程により、分解物(B)と表面架橋剤(d)が反応し、化学結合が形成されることで架橋密度が上がり、樹脂粒子に十分な強度を与えることができる。反応工程における樹脂粒子の温度は、反応速度の観点から室温以上であることが好ましい。また、それ以前の工程によって(A)の粉体温度が室温以上になっていてもよいが、好ましくは100℃以下である。 After mixing the resin particles containing the crosslinked polymer (A) and the surface crosslinking agent (d), the vicinity of the surface of the resin particles is reacted with (d) in the reaction step (Vb). The water-absorbent resin particles obtained by the production method of the present invention preferably have a structure in which the surface of the resin particles containing the crosslinked polymer (A) is surface-crosslinked with the surface cross-linking agent (d). By having a structure cross-linked with a surface cross-linking agent, gel blocking can be suppressed and necessary absorption characteristics (balance between water retention amount and absorption amount under load) can be controlled. Further, in this reaction step, the decomposition product (B) reacts with the surface cross-linking agent (d) to form a chemical bond, so that the cross-linking density is increased and sufficient strength can be given to the resin particles. The temperature of the resin particles in the reaction step is preferably room temperature or higher from the viewpoint of the reaction rate. Further, the powder temperature of (A) may be set to room temperature or higher by the step before that, but is preferably 100 ° C. or lower.
 加熱温度は、好ましくは100~180℃である。180℃以下の加熱であれば蒸気を利用した間接加熱が可能であり設備上有利であり、100℃未満の加熱温度では吸収性能が悪くなる場合がある。また、加熱時間は加熱温度により適宜設定することができるが、吸収性能の観点から、好ましくは5~60分である。表面架橋して得られる吸水性樹脂粒子を、最初に用いた表面架橋剤と同種又は異種の表面架橋剤を用いて、更に表面架橋することも可能である。 The heating temperature is preferably 100 to 180 ° C. Indirect heating using steam is possible if the heating is 180 ° C or lower, which is advantageous in terms of equipment, and if the heating temperature is lower than 100 ° C, the absorption performance may deteriorate. The heating time can be appropriately set depending on the heating temperature, but is preferably 5 to 60 minutes from the viewpoint of absorption performance. It is also possible to further surface-crosslink the water-absorbent resin particles obtained by surface-crosslinking with a surface-crosslinking agent of the same type or different type as the surface-crosslinking agent used first.
 架橋重合体(A)を含有する樹脂粒子の表面を表面架橋剤(d)により架橋した後、必要により篩別して粒度調整される。 After the surface of the resin particles containing the crosslinked polymer (A) is crosslinked with the surface crosslinking agent (d), the particle size is adjusted by sieving as necessary.
 本発明の吸水性樹脂粒子は、多価金属塩(e)を含有させてもよい。多価金属塩(e)を含有させることにより、分解物(B)を含有する吸水性樹脂粒子の吸収性能を飛躍的に向上させることができる。多価金属塩(e)は多価金属原子を複数個有することで、分解物(B)を含有する吸水性樹脂粒子と多点で相互作用し、吸収性能が向上すると推定される。 The water-absorbent resin particles of the present invention may contain a polyvalent metal salt (e). By containing the polyvalent metal salt (e), the absorption performance of the water-absorbent resin particles containing the decomposition product (B) can be dramatically improved. It is presumed that the polyvalent metal salt (e) has a plurality of polyvalent metal atoms and thus interacts with the water-absorbent resin particles containing the decomposition product (B) at multiple points to improve the absorption performance.
 多価金属塩(e)としては、ジルコニウム、アルミニウム又はチタニウムの無機酸塩が挙げられ、多価金属塩(e)を形成する無機酸としては、硫酸、塩酸、硝酸、臭化水素酸、ヨウ化水素酸及びリン酸等が挙げられる。ジルコニウムの無機酸塩としては、硫酸ジルコニウム及び塩化ジルコニウム等が挙げられ、アルミニウムの無機酸塩としては、硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウム、硫酸アンモニムアルミニウム、硫酸カリウムアルミニウム及び硫酸ナトリウムアルミニウム等が挙げられ、チタニウムの無機酸塩としては、硫酸チタニウム、塩化チタニウム及び硝酸チタニウム等が挙げられる。 Examples of the polyvalent metal salt (e) include inorganic acid salts of zirconium, aluminum or titanium, and examples of the inorganic acid forming the polyvalent metal salt (e) include sulfuric acid, hydrochloric acid, nitric acid, hydrobromic acid and iodine. Examples thereof include hydride and phosphoric acid. Examples of the inorganic acid salt of zirconium include zirconium sulfate and zirconium chloride, and examples of the inorganic acid salt of aluminum include aluminum sulfate, aluminum chloride, aluminum nitrate, ammonium aluminum sulfate, potassium aluminum sulfate, sodium aluminum sulfate and the like. Examples of the inorganic acid salt of titanium include titanium sulfate, titanium chloride and titanium nitrate.
 これらの内、加圧下での吸収性能が向上する観点から、アルミニウムの無機酸塩が好ましく、更に好ましいのは硫酸アルミニウム、塩化アルミニウム、硫酸カリウムアルミニウム及び硫酸ナトリウムアルミニウムである。 Of these, an inorganic acid salt of aluminum is preferable, and aluminum sulfate, aluminum chloride, potassium aluminum sulfate, and sodium aluminum sulfate are more preferable from the viewpoint of improving the absorption performance under pressure.
 多価金属塩(e)の使用量(重量%)は、加圧下での吸収性能の観点から架橋重合体(A)の重量に基づいて、0.05~5.0が好ましく、更に好ましくは0.2~2.0、特に好ましくは0.35~1.5である。ここで、多価金属塩(e)が、水和物である場合、水和水を除く質量を基準とする。 The amount (% by weight) of the polyvalent metal salt (e) used is preferably 0.05 to 5.0, more preferably 0.05 to 5.0, based on the weight of the crosslinked polymer (A) from the viewpoint of absorption performance under pressure. It is 0.2 to 2.0, particularly preferably 0.35 to 1.5. Here, when the polyvalent metal salt (e) is a hydrate, the mass excluding the hydrated water is used as a reference.
 多価金属塩(e)を添加するタイミングとしては、重合工程(I)、ゲル細断工程(II)、表面架橋工程等、いずれの工程で添加しても良いが、加圧下での吸収性能向上の観点から、樹脂粒子表面に存在することが好ましく、表面架橋工程において添加することが好ましい。また、上述した表面架橋剤により表面処理する場合には、表面架橋により表面処理をする反応工程前の混合工程、上記反応工程後、及び上記反応工程と同時のいずれにおいても添加することができる。また、多価金属塩(e)を混合する設備及び温度については、上述した表面架橋工程と同様に行うことができる。 The polyvalent metal salt (e) may be added in any of the steps such as the polymerization step (I), the gel shredding step (II), and the surface cross-linking step, but the absorption performance under pressure may be obtained. From the viewpoint of improvement, it is preferably present on the surface of the resin particles, and it is preferable to add it in the surface cross-linking step. Further, in the case of surface treatment with the above-mentioned surface cross-linking agent, it can be added at any of the mixing step before the reaction step of surface-treating by surface cross-linking, after the reaction step, and at the same time as the reaction step. The equipment and temperature for mixing the polyvalent metal salt (e) can be the same as the above-mentioned surface cross-linking step.
 吸水性樹脂粒子は、必要により通液向上剤を含有することができる。通液向上剤とは、非共有結合相互作用(イオン結合、水素結合、疎水性相互作用等)により、吸水性樹脂粒子の表面を処理する材料を意味し、前述の表面架橋剤とは区別される。通液向上剤は、吸水性樹脂粒子の表面に含有し、ゲル膨潤時の粒子間ブロッキングを防ぎ、通液性を向上させる作用を有する。 The water-absorbent resin particles can contain a liquid-permeable improver, if necessary. The liquid flow improving agent means a material that treats the surface of water-absorbent resin particles by non-covalent bond interaction (ionic bond, hydrogen bond, hydrophobic interaction, etc.), and is distinguished from the above-mentioned surface cross-linking agent. To. The liquid-permeable improver is contained on the surface of the water-absorbent resin particles and has an effect of preventing inter-particle blocking during gel swelling and improving the liquid-permeable property.
 通液向上剤としては、カチオン性有機ポリマー、無機粒子等の他、上記多価金属塩(e)が挙げられる。これらは、単独で使用することも、併用することもできる。 Examples of the liquid passage improving agent include the above-mentioned polyvalent metal salt (e) in addition to cationic organic polymers and inorganic particles. These can be used alone or in combination.
 カチオン性有機ポリマーとしては、特に限定されないが、国際公開2017-57709号に例示のある公知のカチオン性有機ポリマーが使用できる。 The cationic organic polymer is not particularly limited, but a known cationic organic polymer exemplified in International Publication No. 2017-57709 can be used.
 無機粒子としては、親水性無機粒子及び疎水性無機粒子等が含まれる。親水性無機物粒子としては、ガラス、シリカゲル、シリカ(コロイダルシリカやフュームドシリカ等)及びクレー等の粒子が挙げられる。また、疎水性無機粒子としては、炭素繊維、カオリン、タルク、マイカ、ベントナイト、セリサイト、アスベスト及びシラス等の粒子が挙げられる。これらのうち、親水性無機粒子が好ましく、最も好ましいのはシリカ(コロイダルシリカやフュームドシリカ等)である。 Inorganic particles include hydrophilic inorganic particles, hydrophobic inorganic particles and the like. Examples of the hydrophilic inorganic particles include particles such as glass, silica gel, silica (coloidal silica, fumed silica, etc.) and clay. Examples of the hydrophobic inorganic particles include particles such as carbon fiber, kaolin, talc, mica, bentonite, sericite, asbestos and silas. Of these, hydrophilic inorganic particles are preferable, and silica (coloidal silica, fumed silica, etc.) is most preferable.
 通液向上剤の使用量(重量部)は、吸収性能の観点から吸水性樹脂粒子100重量部に対して、0.05~5が好ましく、更に好ましくは0.2~2.0である。 The amount (parts by weight) of the liquid-permeable improver used is preferably 0.05 to 5 and more preferably 0.2 to 2.0 with respect to 100 parts by weight of the water-absorbent resin particles from the viewpoint of absorption performance.
 吸水性樹脂粒子は、添加剤{例えば、公知(特開2003-225565号、特開2006-131767号等)の防腐剤、防かび剤、抗菌剤、酸化防止剤、紫外線吸収剤、着色剤、芳香剤、消臭剤及び有機質繊維状物等}を含むこともできる。これらの添加剤を含有させる場合、添加剤の含有量(重量%)は、架橋重合体(A)の重量に基づいて、0.001~10が好ましく、更に好ましくは0.01~5、特に好ましくは0.05~1、最も好ましくは0.1~0.5である。 The water-absorbent resin particles include additives {for example, known (for example, JP-A-2003-225565, JP-A-2006-131767, etc.) preservatives, fungicides, antibacterial agents, antioxidants, ultraviolet absorbers, colorants, etc. It can also contain fragrances, deodorants, organic fibrous substances, etc.}. When these additives are contained, the content (% by weight) of the additives is preferably 0.001 to 10, more preferably 0.01 to 5, particularly preferably 0.01 to 5, based on the weight of the crosslinked polymer (A). It is preferably 0.05 to 1, most preferably 0.1 to 0.5.
 本発明の吸水性樹脂粒子の製造方法は、前記重合工程(I)、前記ゲル細断工程(II)、前記乾燥工程(III)及び前記粉砕分級工程(IV)からなる群より選ばれた少なくとも1つの工程で、衛生用品から得られた吸水性樹脂粒子の分解物(B)を添加する。
 衛生用品から得られた吸水性樹脂粒子の分解物(B)は、前記重合工程(I)、前記ゲル細断工程(II)、前記乾燥工程(III)及び/又は前記粉砕分級工程(IV)で添加されることにより、分解物(B)が本発明の製造方法で得られる吸水性樹脂粒子の一部となる。
The method for producing the water-absorbent resin particles of the present invention is at least selected from the group consisting of the polymerization step (I), the gel shredding step (II), the drying step (III) and the pulverization classification step (IV). In one step, the decomposition product (B) of the water-absorbent resin particles obtained from the sanitary goods is added.
The decomposition product (B) of the water-absorbent resin particles obtained from the sanitary ware is the polymerization step (I), the gel shredding step (II), the drying step (III) and / or the crushing classification step (IV). When added in, the decomposition product (B) becomes a part of the water-absorbent resin particles obtained by the production method of the present invention.
 衛生用品に含まれる吸水性樹脂粒子は、前述した水溶性ビニルモノマー(a1)及び架橋剤(b)を含む単量体組成物を重合させて架橋重合体(A)を含む吸水性樹脂粒子を製造する方法と同様の方法で製造することができる。
 分解物(B)は、衛生用品に含まれる吸水性樹脂粒子の分解物であって、水可溶分量が1.0~30.0重量%の分解物であれば良く、未使用の衛生用品に含まれる吸水性樹脂粒子から得られた分解物であっても、使用済の衛生用品に含まれる膨潤した吸水性樹脂粒子から得られた分解物であっても良い。
The water-absorbent resin particles contained in the sanitary products are obtained by polymerizing the above-mentioned monomer composition containing the water-soluble vinyl monomer (a1) and the cross-linking agent (b) to obtain the water-absorbent resin particles containing the cross-linked polymer (A). It can be manufactured by the same method as the manufacturing method.
The decomposition product (B) is a decomposition product of water-absorbent resin particles contained in sanitary products, and may be a decomposition product having a water-soluble content of 1.0 to 30.0% by weight, and is an unused sanitary product. It may be a decomposition product obtained from the water-absorbent resin particles contained in the above, or it may be a decomposition product obtained from the swollen water-absorbent resin particles contained in the used sanitary goods.
 分解に供される吸水性樹脂粒子は、水溶性ビニルモノマー(a1’)及び架橋剤(b’)を必須構成単位とする架橋重合体(A’)を有していることが好ましい。
水溶性ビニルモノマー(a1’)及び架橋剤(b’)は、それぞれ前記(a1)及び(b)と同一であってもよいし、異なっていてもよいが、吸収特性の安定性の観点から、同一であることが好ましい。
分解に供される吸水性樹脂粒子の性状としては、特に制限はないが、粉末状、顆粒状及び液体を吸収したゲル状等も含まれる。
The water-absorbent resin particles to be decomposed preferably have a cross-linked polymer (A') containing a water-soluble vinyl monomer (a1') and a cross-linking agent (b') as essential constituent units.
The water-soluble vinyl monomer (a1') and the cross-linking agent (b') may be the same as or different from the above-mentioned (a1) and (b), respectively, but from the viewpoint of stability of absorption characteristics. , It is preferable that they are the same.
The properties of the water-absorbent resin particles to be decomposed are not particularly limited, but include powder, granules, gels that have absorbed liquids, and the like.
 分解物(B)としては、衛生用品に含まれる吸水性樹脂粒子を化学的処理、力学的処理、又はその両方を行って得られるものがあげられる。吸水性樹脂粒子に化学的処理又は力学的処理を行うと、吸水性樹脂粒子が有する架橋重合体(A’)を構成する分子の結合の少なくとも一部が切れることで分解物(B)を含有する分解処理物(Z)が得られる。
 吸水性樹脂粒子の化学的処理としては、架橋重合体(A’)の熱分解温度以上に加熱する方法、紫外線等の活性エネルギー線を照射する方法及び酸化剤(過酸化水素及び次亜塩素酸等)を用いて酸化分解する方法等があげられる。
 吸水性樹脂粒子の力学的処理としては、公知の撹拌機[ミンチ機(ミートチョッパー)、ジョークラッシャー、ハンマークラッシャー、ロールクラッシャー、自生粉砕機、スタンプミル、石臼型粉砕機、らいかい機、リングミル、ローラーミル、ジェットミル、ピンミル、振動ミル、遊星ミル、ビーズミル、アトライター、櫂型撹拌機付き混合装置、及びカッターミル等]を用いて吸水性樹脂粒子を撹拌する方法等があげられる。吸水性樹脂粒子を撹拌することで生じる剪断力により、架橋重合体(A’)を構成する分子の結合の少なくとも一部が切れることで分解物(B)を含有する分解処理物(Z)が得られる。
Examples of the decomposition product (B) include those obtained by subjecting water-absorbent resin particles contained in sanitary products to chemical treatment, mechanical treatment, or both. When the water-absorbent resin particles are chemically or mechanically treated, at least a part of the bonds of the molecules constituting the crosslinked polymer (A') of the water-absorbent resin particles is broken, so that the decomposition product (B) is contained. The decomposed product (Z) to be decomposed is obtained.
Chemical treatment of the water-absorbent resin particles includes a method of heating the crosslinked polymer (A') above the thermal decomposition temperature, a method of irradiating an active energy ray such as ultraviolet rays, and an oxidizing agent (hydrogen peroxide and hypochlorite). Etc.) to oxidatively decompose.
As the mechanical treatment of water-absorbent resin particles, known stirrers [minced machine (meat chopper), jaw crusher, hammer crusher, roll crusher, self-made crusher, stamp mill, stone mill type crusher, raft machine, ring mill, etc. A method of stirring water-absorbent resin particles using a roller mill, a jet mill, a pin mill, a vibration mill, a planetary mill, a bead mill, an attritor, a mixing device with a crusher, a cutter mill, etc.] can be mentioned. The shearing force generated by stirring the water-absorbent resin particles breaks at least a part of the bonds of the molecules constituting the crosslinked polymer (A'), so that the decomposed product (Z) containing the decomposed product (B) is produced. can get.
 本発明の製造方法で添加される分解物(B)は、水可溶分量が1.0~30.0重量%である。分解物(B)は、吸水性樹脂粒子に化学的処理、又は力学的処理を行って得られた分解処理物(Z)を洗浄及び/又は乾燥して得られたものでも良いし、分解処理物(Z)そのものでも良いし、化学的処理、又は力学的処理を行って得られた分解処理物(Z)を公知の脱水装置(遠心脱水機、及びローラー式脱水機等)及び/又は脱水剤を用いて脱水したものでも良い。
 なかでも、化学的処理、又は力学的処理を行ったものそのまま用いること、並びに化学的処理又は力学的処理を行ったものを公知の脱水装置(遠心脱水機、及びローラー式脱水機等)及び/又は脱水剤で脱水したものを用いることが好ましい。
 本発明の製造方法に用いる分解物(B)の性状としては、特に制限はないが、粉末状、顆粒状及びゲル状等が挙げられる。
The decomposition product (B) added by the production method of the present invention has a water-soluble content of 1.0 to 30.0% by weight. The decomposition product (B) may be a product obtained by washing and / or drying the decomposition product (Z) obtained by chemically treating or mechanically treating the water-absorbent resin particles, or may be a decomposition treatment. The product (Z) itself may be used, or the decomposed product (Z) obtained by chemical treatment or mechanical treatment may be used as a known dehydrator (centrifugal dehydrator, roller dehydrator, etc.) and / or dehydration. It may be dehydrated with an agent.
Among them, those that have been chemically or mechanically treated can be used as they are, and those that have been chemically or mechanically treated can be used as known dehydrators (centrifugal dehydrators, roller dehydrators, etc.) and /. Alternatively, it is preferable to use one dehydrated with a dehydrating agent.
The properties of the decomposition product (B) used in the production method of the present invention are not particularly limited, and examples thereof include powder, granules, and gels.
 化学的処理及び/又は力学的処理を行って得られた分解処理物(Z)を脱水する場合に使用する脱水剤としては、水溶性多価金属化合物等が挙げられる。
 水溶性多価金属化合物は、周期表において2以上の価数を有する元素であって、水へ溶解又は水と反応後にカルボキシル基、又はカルボキシル基イオンとキレート塩を形成する水溶性多価金属化合物であれば、特に制限されない。例えば、マグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属を含む多価金属化合物、鉄、ニッケル、銅、亜鉛等の遷移金属を含む多価金属化合物、ホウ素、アルミニウム、ガリウム等の3価以上の金属を含む多価金属化合物等が挙げられる。なお、多価金属化合物は、非水和物であっても、一水和物、二水和物、三水和物、四水和物、五水和物、六水和物、七水和物、八水和物、九水和物のような水和物であってもよい。
 これらの脱水剤は単独で使用してもよく、2種以上を併用してもよい。
 なお、本発明において「水溶性多価金属化合物」とは、20℃の水に対する溶解度が1mg/ml以上であり、好ましくは10mg/ml以上である多価金属化合物を示す。
Examples of the dehydrating agent used when dehydrating the decomposed product (Z) obtained by performing a chemical treatment and / or a mechanical treatment include a water-soluble polyvalent metal compound and the like.
A water-soluble polyvalent metal compound is an element having a valence of 2 or more in a periodic table, and is a water-soluble polyvalent metal compound that forms a carboxyl group or a chelate salt with a carboxyl group ion after being dissolved in water or reacting with water. If so, there is no particular limitation. For example, polyvalent metal compounds containing alkaline earth metals such as magnesium, calcium, strontium and barium, polyvalent metal compounds containing transition metals such as iron, nickel, copper and zinc, and trivalent or higher such as boron, aluminum and gallium. Examples thereof include polyvalent metal compounds containing the above metals. Even if the polyvalent metal compound is a non-hydrate, monohydrate, dihydrate, trihydrate, tetrahydrate, pentahydrate, hexahydrate, and heptahydrate It may be a hydrate such as a substance, octahydrate or nine hydrate.
These dehydrating agents may be used alone or in combination of two or more.
In the present invention, the "water-soluble polyvalent metal compound" refers to a polyvalent metal compound having a solubility in water at 20 ° C. of 1 mg / ml or more, preferably 10 mg / ml or more.
 マグネシウムを含む水溶性多価金属化合物としては、硫酸マグネシウム、硝酸マグネシウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、過塩素酸マグネシウム、過マンガン酸マグネシウム及び酢酸マグネシウム等が挙げられる。 Examples of the water-soluble polyvalent metal compound containing magnesium include magnesium sulfate, magnesium nitrate, magnesium chloride, magnesium bromide, magnesium iodide, magnesium perchlorate, magnesium permanganate, magnesium acetate and the like.
 カルシウムを含む水溶性多価金属化合物としては、酸化カルシウム、過酸化カルシウム、水酸化カルシウム、フッ化カルシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、水素化カルシウム、炭化カルシウム、リン化カルシウム、炭酸カルシウム、硝酸カルシウム、亜硫酸カルシウム、ケイ酸カルシウム、リン酸カルシウム、ピロリン酸カルシウム、次亜塩素酸カルシウム、塩素酸カルシウム、過塩素酸カルシウム、臭素酸カルシウム、ヨウ素酸カルシウム、クロム酸カルシウム、酢酸カルシウム、グルコン酸カルシウム、安息香酸カルシウム及びステアリン酸カルシウム等が含まれる。 Water-soluble polyvalent metal compounds containing calcium include calcium oxide, calcium peroxide, calcium hydroxide, calcium fluoride, calcium chloride, calcium bromide, calcium iodide, calcium hydride, calcium carbide, calcium phosphate, and carbonic acid. Calcium, calcium nitrate, calcium sulfite, calcium silicate, calcium phosphate, calcium pyrophosphate, calcium hypochlorite, calcium chlorate, calcium perchlorate, calcium bromide, calcium iodide, calcium chromate, calcium acetate, calcium gluconate , Calcium benzoate, calcium stearate and the like.
 脱水剤のうち、脱水効率等の観点から、好ましくはカルシウムを含む水溶性多価金属化合物であり、更に好ましくは塩化カルシウム、酸化カルシウム、酢酸カルシウム及び次亜塩素酸カルシウムである。これらは1種のみ使用又は2種以上を併用することができる。この趣旨は本願明細書の他の箇所でも同じ。 Among the dehydrating agents, from the viewpoint of dehydration efficiency and the like, a water-soluble polyvalent metal compound containing calcium is preferable, and calcium chloride, calcium oxide, calcium acetate and calcium hypochlorite are more preferable. These can be used alone or in combination of two or more. This purpose is the same in other parts of the specification of the present application.
 脱水剤をもちいる場合、脱水剤の添加量は、脱水処理前の分解処理物(Z)の重量に対して、好ましくは0.01~10重量%であり、更に好ましくは0.03~8重量%であり、最も好ましくは0.1~7重量%である。これらの範囲であると、分解処理物(Z)中から脱水が効率的に進行し、ハンドリングが容易となる。 When a dehydrating agent is used, the amount of the dehydrating agent added is preferably 0.01 to 10% by weight, more preferably 0.03 to 8% by weight, based on the weight of the decomposed product (Z) before the dehydration treatment. It is% by weight, most preferably 0.1 to 7% by weight. Within these ranges, dehydration proceeds efficiently from the decomposition-treated product (Z), and handling becomes easy.
 分解物(B)は、廃棄物を資源として再利用することによる環境負荷低減の観点から、衛生用品に含まれる吸水性樹脂粒子の分解物であり、使用済み衛生用品に含まれる吸水性樹脂粒子の分解物であることが好ましい。
 衛生用品としては、吸水性樹脂粒子を含む衛生用品であれば特に限定はない。衛生用品としては、紙おむつ(子供用紙おむつ及び大人用紙おむつ等)、ナプキン(生理用ナプキン等)、紙タオル、パッド(失禁者用パッド及び手術用アンダーパッド等)及びペットシート(ペット尿吸収シート)等が挙げられ、衛生用品は最終製品や中間製品等であっても良い。
The decomposition product (B) is a decomposition product of water-absorbent resin particles contained in sanitary products from the viewpoint of reducing the environmental load by reusing waste as a resource, and the water-absorbent resin particles contained in used sanitary products. It is preferably a decomposition product of.
The hygienic product is not particularly limited as long as it is a hygienic product containing water-absorbent resin particles. Hygiene products include disposable diapers (children's disposable diapers and adult disposable diapers, etc.), napkins (physiological napkins, etc.), paper towels, pads (pads for incontinence and surgical underpads, etc.) and pet sheets (pet urine absorption sheets). Etc., and the hygienic product may be a final product, an intermediate product, or the like.
 衛生用品に含まれる吸水性樹脂粒子を用いる場合、衛生用品に含まれ、構成部材として吸水性樹脂粒子を含む吸収体をミンチ機(ミートチョッパー)、ジョークラッシャー、ハンマークラッシャー、ロールクラッシャー、自生粉砕機、スタンプミル、石臼型粉砕機、らいかい機、リングミル、ローラーミル、ジェットミル、ピンミル、振動ミル、遊星ミル、ビーズミル、アトライター、堅型撹拌機、及びカッターミル等、特開2020―11158公報等に記載の破砕装置を使用して粉砕処理することで、吸水性樹脂粒子の分解物が得られる。
 破砕装置を使用して吸収体を粉砕する過程で吸水性樹脂粒子に剪断力がかかり、それによって架橋重合体(A’)を構成する分子の結合の少なくとも一部が切れることで分解物(B)が得られる。その際、基本的に衛生用品に含まれる吸水性樹脂粒子の含水率は吸水性樹脂粒子の生産時よりも高い傾向にあることが一般的である。これは、衛生物品を製造する工程中に加水をしながら吸水性樹脂粒子を添加することや、衛生物品として保管されている間や、破砕装置で処理される前までに空気に触れる期間があり、その間に大気中の水分を吸水するためである。分解に供される吸水性樹脂粒子の含水率が高いことで、より破砕装置から加わる剪断力による架橋重合体(A’)を構成する分子の結合の切断は進行しやすい。
When using water-absorbent resin particles contained in sanitary products, mince machines (meat choppers), jaw crushers, hammer crushers, roll crushers, and self-crushing machines are used for absorbers that are included in sanitary products and contain water-absorbent resin particles as constituent members. , Stamp mill, stone mill type crusher, crusher, ring mill, roller mill, jet mill, pin mill, vibration mill, planetary mill, bead mill, attritor, rigid stirrer, cutter mill, etc., JP-A-2020-11158 By crushing the particles using the crushing apparatus described in the above, decomposition products of water-absorbent resin particles can be obtained.
In the process of crushing the absorber using a crusher, shearing force is applied to the water-absorbent resin particles, which breaks at least a part of the bonds of the molecules constituting the crosslinked polymer (A'), thereby breaking the decomposition product (B). ) Is obtained. At that time, basically, the water content of the water-absorbent resin particles contained in the sanitary goods tends to be higher than that at the time of production of the water-absorbent resin particles. This includes the addition of water-absorbent resin particles while adding water during the process of manufacturing sanitary goods, and the period of exposure to air while stored as sanitary goods and before being processed by a crusher. In the meantime, it absorbs moisture in the atmosphere. Since the water content of the water-absorbent resin particles subjected to decomposition is high, the bond of the molecule constituting the crosslinked polymer (A') is more likely to proceed due to the shearing force applied from the crusher.
 吸水性樹脂粒子を殺菌処理する工程は、前述した衛生用品に含まれる吸水性樹脂粒子の分解処理より前に行ってもよいし、分解処理と同時に行ってもよい。
 吸水性樹脂粒子を殺菌処理する工程としては、100℃以上に加熱処理する高温処理工程、紫外線照射を行う工程、殺菌剤を使用する工程及びエチレンオキシドやホルムアルデヒド等のアルキル化剤の気体をオゾン存在下で使用する工程等が挙げられる。殺菌剤としては、オゾンを溶解させた水溶液及び次亜塩素酸(塩)等が挙げられる。
 吸水性樹脂粒子を殺菌処理する工程としては安全面の観点から、好ましくは殺菌剤を使用する工程であり、更に好ましくは次亜塩素酸(塩)を使用する工程である。
 なお、紫外線の照射すること、又は殺菌剤を使用することで吸水性樹脂粒子を殺菌処理する場合、同時に架橋重合体の分解が進行する。そのため、殺菌処理工程を分解処理を兼ねる工程として行っても良く、分解処理を別途行っても良い。
The step of sterilizing the water-absorbent resin particles may be performed before the decomposition treatment of the water-absorbent resin particles contained in the sanitary goods described above, or may be performed at the same time as the decomposition treatment.
The steps for sterilizing the water-absorbent resin particles include a high-temperature treatment step of heat-treating to 100 ° C. or higher, a step of irradiating with ultraviolet rays, a step of using a sterilizing agent, and a gas of an alkylating agent such as ethylene oxide or formaldehyde in the presence of ozone. Examples include the process used in. Examples of the bactericidal agent include an aqueous solution in which ozone is dissolved and hypochlorite (salt).
From the viewpoint of safety, the step of sterilizing the water-absorbent resin particles is preferably a step of using a bactericidal agent, and more preferably a step of using hypochlorite (salt).
When the water-absorbent resin particles are sterilized by irradiating with ultraviolet rays or by using a bactericidal agent, the decomposition of the crosslinked polymer proceeds at the same time. Therefore, the sterilization treatment step may be performed as a step that also serves as a decomposition treatment, or the decomposition treatment may be performed separately.
 分解物(B)の水可溶分量(重量%)は、本製造方法で得られる吸水性樹脂粒子の吸収特性の観点から、1.0~30.0であり、好ましくは1.0~25.0であり、更に好ましくは2.0~20.0であり、特に好ましくは2.0~10.0である。30.0を超える場合、複数の結合が切断されことによって様々な低分子量体が生成することとなる。そのため、製造工程に添加したとしても安定した吸収性能を有する吸水性樹脂粒子を得ることが容易でない。例えば、重合工程で添加した場合はラジカル重合が進行しないことや、ゲル細断工程に添加した場合、それに続く表面架橋工程で、表面架橋剤と反応してしまうことで架橋剤を無駄に消費してしまうだけではなく、本来架橋剤が反応してほしい主鎖部分との反応が進行しないことによってゲル強度が低下し、荷重下吸収量の低下につながる。また、水可溶分量が多いと分解物(B)を得る際に多くをロスする結果、リサイクル効率が悪くなり環境負荷への低減効果が得にくい。 The water-soluble content (% by weight) of the decomposition product (B) is 1.0 to 30.0, preferably 1.0 to 25, from the viewpoint of the absorption characteristics of the water-absorbent resin particles obtained by the present production method. It is 0.0, more preferably 2.0 to 20.0, and particularly preferably 2.0 to 10.0. If it exceeds 30.0, various low molecular weight bodies will be produced by breaking a plurality of bonds. Therefore, it is not easy to obtain water-absorbent resin particles having stable absorption performance even when added to the manufacturing process. For example, when it is added in the polymerization step, radical polymerization does not proceed, and when it is added in the gel shredding step, it reacts with the surface cross-linking agent in the subsequent surface cross-linking step, so that the cross-linking agent is wasted. Not only that, but also the reaction with the main chain portion that the cross-linking agent originally wants to react with does not proceed, which lowers the gel strength and leads to a decrease in the amount of absorption under load. Further, if the amount of water-soluble content is large, a large amount is lost when the decomposition product (B) is obtained, and as a result, the recycling efficiency is deteriorated and it is difficult to obtain the effect of reducing the environmental load.
 また、吸水性樹脂粒子の分解物は水可溶成分と水不溶解分の混合物からなるが、不溶解分を除去して可溶成分のみ使用する方法も可能であるが、一方を除去することなく全て再利用に用いる方が、分解物の再利用の観点から好ましい。
 なお、水可溶分としては架橋重合体(A’)が分解することで発生した重合体の構成単量体及び分解により生じた非架橋重合体が含まれる。
 架橋重合体の分解物に含まれる、全固形分に対する水溶性成分の重量比率を意味する水可溶分量は以下の方法により測定される。
Further, the decomposition product of the water-absorbent resin particles is composed of a mixture of a water-soluble component and a water-insoluble component. A method of removing the insoluble component and using only the soluble component is also possible, but one of them should be removed. It is preferable to use all of them for reuse from the viewpoint of reuse of decomposition products.
The water-soluble component includes a constituent monomer of the polymer generated by the decomposition of the crosslinked polymer (A') and a non-crosslinked polymer generated by the decomposition.
The water-soluble content, which means the weight ratio of the water-soluble component to the total solid content, contained in the decomposition product of the crosslinked polymer is measured by the following method.
<水可溶分量>
 300mlのプラスチック容器に生理食塩水(食塩濃度0.9重量%)100gをはかり取り、その生理食塩水に化学的処理及び/又は力学的処理を行って得られた分解処理物(Z)1.2gを加え、ラップでシールして3時間、500rpmでスターラーを回転させ攪拌して、吸水性樹脂粒子の水可溶分が抽出された水可溶分抽出液を調製する。そして、この水可溶分抽出液を、ADVANTEC東洋株式会社製の濾紙(品名;JIS P 3801、No.2、厚さ0.26mm、保留粒子径5μm)を用いて、濾過する。そして、得られた濾液の10gをはかり取り、イオン交換水40gを加えて吸水性樹脂粒子の分解物に含まれる水可溶分量を測定する測定溶液(G)とする。
<Amount of soluble water>
1. Decomposition product (Z) obtained by weighing 100 g of physiological saline (salt concentration 0.9% by weight) in a 300 ml plastic container and subjecting the physiological saline to chemical treatment and / or mechanical treatment. Add 2 g, seal with a wrap, rotate the stirrer at 500 rpm for 3 hours, and stir to prepare a water-soluble component extract from which the water-soluble component of the water-absorbent resin particles has been extracted. Then, this water-soluble component extract is filtered using a filter paper manufactured by ADVANTEC Toyo Co., Ltd. (product name; JIS P 3801, No. 2, thickness 0.26 mm, reserved particle diameter 5 μm). Then, 10 g of the obtained filtrate is weighed, and 40 g of ion-exchanged water is added to prepare a measurement solution (G) for measuring the water-soluble content contained in the decomposition product of the water-absorbent resin particles.
 次に、上記測定溶液(G)について、測定溶液(G)のpHが10になるのに必要な、N/50のKOH水溶液の滴定量([WKOH,S]ml)、及び、測定溶液(G)をpH10にした後の溶液のpHが2.7になるのに必要な、N/10のHCl水溶液の滴定量([WHCl,S]ml)を以下の方法で得る。 Next, for the measurement solution (G), titration ([W KOH, S ] ml) of N / 50 KOH aqueous solution required for the pH of the measurement solution (G) to reach 10, and the measurement solution. The titration amount ([W HCl, S ] ml) of the N / 10 HCl aqueous solution required for the pH of the solution after the pH of (G) to be adjusted to 2.7 is obtained by the following method.
 吸水性樹脂の構成単量体がアクリル酸とそのナトリウム塩である場合、吸水性樹脂粒子の分解物に含まれる未中和アクリル酸物質量nCOOHは、以下の数式で計算される。
COOH(mol)=(WKOH,S-WKOH,b)×(1/50)/1000×5
また、総アクリル酸物質量ntotは、以下の数式で計算される。
tot(mol)=(WHCl,S-WHCl,b)×(1/10)/1000×5
また、中和アクリル酸物質量nCOONaは、以下の数式で計算される。
COONa(mol)=ntot-nCOOH
さらに、未中和アクリル酸重量mCOOHは、以下の数式で計算される。
COOH(g)=nCOOH×72
また、中和アクリル酸物質量mCOONaは、以下の数式で計算される。
COONa(g)=nCOONa×94
 以上の値及び試料として用いた吸水性樹脂粒子の分解物に含まれる水分量([WH2O]重量%)をもとに、以下の計算式により、吸水性樹脂粒子の水可溶分量を算出することができる。
水可溶分量(重量%)={(mCOOH+mCOONa)×100}/{1.2×(100-WH2O)}
When the constituent monomer of the water-absorbent resin is acrylic acid and its sodium salt, the amount of unneutralized acrylic acid substance n COOH contained in the decomposition product of the water-absorbent resin particles is calculated by the following formula.
n COOH (mol) = (W KOH, SW KOH, b ) × (1/50) / 1000 × 5
Further, the total amount of acrylic acid substance n tot is calculated by the following formula.
n tot (mol) = (W HCl, SW HCl, b ) × (1/10) / 1000 × 5
The amount of neutralized acrylic acid substance nCOONa is calculated by the following mathematical formula.
n COONa (mol) = n tot -n COOH
Further, the unneutralized acrylic acid weight mCOOH is calculated by the following formula.
m COOH (g) = n COOH × 72
The amount of neutralized acrylic acid substance mCOONa is calculated by the following formula.
m COONa (g) = n COONa × 94
Based on the above values and the amount of water contained in the decomposition product of the water-absorbent resin particles used as the sample ([ WH2O ]% by weight), the water-soluble content of the water-absorbent resin particles is calculated by the following formula. can do.
Water-soluble content (% by weight) = {(m COOH + m COONa ) x 100} / {1.2 x (100- WH2O )}
 なお、式中の[WKOH,b]は、生理食塩水(食塩濃度0.9重量%)50gを試験溶液として用いて行った空試験におけるN/50のKOH水溶液の滴定量であり、食塩水のpHが10になるまで、N/50のKOH水溶液の滴定を行って得られる値([WKOH,b]ml)である。また、[WHCl,b]は、pH10になるまでN/50のKOH水溶液で滴定した空試験溶液を、その後、pHが2.7になるまで、N/10のHCl水溶液の滴定を行って得られた値([WHCl,b]ml)である。 [W KOH, b ] in the formula is a titration amount of N / 50 KOH aqueous solution in a blank test conducted using 50 g of physiological saline (saline concentration 0.9% by weight) as a test solution, and is a titration. It is a value ([W KOH, b ] ml) obtained by titrating an aqueous KOH solution of N / 50 until the pH of water reaches 10. For [W HCl, b ], a blank test solution titrated with an N / 50 KOH aqueous solution until the pH reached 10, and then a N / 10 HCl aqueous solution was titrated until the pH reached 2.7. The obtained value ([W HCl, b ] ml).
 なお、分解処理する前の吸水性樹脂粒子に水可溶分(無機酸、及びカルボン酸基やスルホン酸基等を有する有機酸等)が含まれる場合、分解処理する前の吸水性樹脂粒子において上記の方法で同様に測定定量した水可溶分を分解物(B)について測定した水可溶分測定の値から差し引くことで、分解物(B)中の分解により生じた水可溶分を求めることができる。 If the water-absorbent resin particles before the decomposition treatment contain water-soluble components (inorganic acid, organic acid having a carboxylic acid group, sulfonic acid group, etc.), the water-absorbent resin particles before the decomposition treatment By subtracting the water-soluble content measured and quantified by the above method from the water-soluble content measurement value measured for the decomposition product (B), the water-soluble content generated by the decomposition in the decomposition product (B) can be obtained. You can ask.
 本発明の吸水樹脂粒子の製造方法において、分解物(B)は、前記重合工程(I)、前記ゲル細断工程(II)、前記乾燥工程(III)及び前記粉砕分級工程(IV)からなる群より選ばれた少なくとも1つの工程で添加される。これらの工程時に添加することで、吸収特性等の各種特性に優れる吸水性樹脂を効率的に製造することができる。
 中でも、吸水性能の向上及び品質安定化の観点から重合工程(I)及び/又はゲル細断工程(II)に添加する方法が好ましく、ゲル細断工程(II)に添加されることが更に好ましい。
 ここでゲル細断工程とは、粉砕装置に当該の含水ゲルを投入し、粉砕装置を稼働させて細断されたゲルを得る一連の工程を意味する。
 そして、分解物(B)をゲル細断工程(II)に添加する方法には、含水ゲルを裁断する操作が行われていない粉砕装置中に分解物(B)を事前に粉砕装置に投入しておいてから含水ゲルを投入する方法、含水ゲルを裁断する操作が行われている粉砕装置中に分解物(B)を添加する方法、及び稼働している粉砕装置中に含水ゲルと分解物(B)とを同時に投入する方法が含まれる。
In the method for producing water-absorbent resin particles of the present invention, the decomposition product (B) comprises the polymerization step (I), the gel shredding step (II), the drying step (III), and the pulverization classification step (IV). It is added in at least one step selected from the group. By adding it during these steps, it is possible to efficiently produce a water-absorbent resin having excellent various properties such as absorption properties.
Above all, from the viewpoint of improving water absorption performance and stabilizing quality, the method of adding to the polymerization step (I) and / or the gel shredding step (II) is preferable, and it is more preferable to add to the gel shredding step (II). ..
Here, the gel shredding step means a series of steps of putting the water-containing gel into the crushing device and operating the crushing device to obtain the shredded gel.
Then, in the method of adding the decomposition product (B) to the gel shredding step (II), the decomposition product (B) is put into the crushing device in advance in the crushing device in which the operation of cutting the hydrous gel is not performed. The method of adding the hydrogel after leaving it, the method of adding the decomposition product (B) into the crusher in which the operation of cutting the hydrogel is performed, and the method of adding the hydrogel and the decomposition product into the operating crusher. A method of simultaneously inputting (B) and (B) is included.
 分解物(B)を水溶性ビニルモノマー(a1)としてアクリル酸やメタクリル酸等の酸基含有モノマーを用いる重合工程(I)に添加する場合、分解物(B)はアクリル酸水溶液に均一に溶解してもよく、アクリル酸水溶液中に分散していてもよい。
 重合工程(I)に添加する(B)の性状としてはゲル状であることが好ましい。
When the decomposition product (B) is added to the polymerization step (I) using an acid group-containing monomer such as acrylic acid or methacrylic acid as the water-soluble vinyl monomer (a1), the decomposition product (B) is uniformly dissolved in the aqueous acrylic acid solution. It may be dispersed in an aqueous solution of acrylic acid.
The property of (B) added to the polymerization step (I) is preferably gel-like.
 また、分解物(B)を重合工程(I)に添加する場合、水溶性ビニルモノマー(a1)に対する吸水性樹脂粒子の分解物(B)の重量比は5/95~95/5であり、より好ましくは5/95~80/20であり、更に好ましくは10/90~70/30である。これらの範囲であると、本製造方法で得られる吸水性樹脂粒子の吸収性能が良好となる。
 また、分解物(B)を重合工程(I)に添加する場合、分解物(B)は重合工程(I)における単量体組成物の全重量に対して、好ましくは1~50(重量%)、より好ましくは1~40、特に好ましくは1~30である。
When the decomposition product (B) is added to the polymerization step (I), the weight ratio of the decomposition product (B) of the water-absorbent resin particles to the water-soluble vinyl monomer (a1) is 5/95 to 95/5. It is more preferably 5/95 to 80/20, and even more preferably 10/90 to 70/30. Within these ranges, the absorption performance of the water-absorbent resin particles obtained by this production method becomes good.
When the decomposition product (B) is added to the polymerization step (I), the decomposition product (B) is preferably 1 to 50 (% by weight) based on the total weight of the monomer composition in the polymerization step (I). ), More preferably 1 to 40, and particularly preferably 1 to 30.
 分解物(B)をゲル細断工程(II)に添加する場合、分解物(B)の性状は粉体状、あるいはゲル状であっても構わない。また必要に応じて細断回数を増減させてもよいし、添加回数を2回以上に分割して投入してもよいが、(B)を含んだリサイクル後の吸水性樹脂粒子の吸収性能の観点から、架橋重合体(A)を含む含水ゲルと(B)とが細断しながら混練されることが好ましい。 When the decomposition product (B) is added to the gel shredding step (II), the properties of the decomposition product (B) may be powdery or gel. Further, the number of shredding may be increased or decreased as necessary, or the number of additions may be divided into two or more times, but the absorption performance of the water-absorbent resin particles after recycling containing (B) may be improved. From the viewpoint, it is preferable that the water-containing gel containing the crosslinked polymer (A) and (B) are kneaded while being shredded.
 分解物(B)をゲル細断工程(II)に添加する場合、架橋重合体(A)を含む含水ゲルと分解物(B)との混合重量比率の範囲は好ましくは99/1~10/90であり、更に好ましくは97/3~20/80である。これらの範囲であると乾燥性を損なわず、かつ必要な吸水性能を満足させることができる。 When the decomposition product (B) is added to the gel shredding step (II), the range of the mixed weight ratio of the water-containing gel containing the crosslinked polymer (A) and the decomposition product (B) is preferably 99/1 to 10 /. It is 90, more preferably 97/3 to 20/80. Within these ranges, the drying property is not impaired and the required water absorption performance can be satisfied.
 分解物(B)を乾燥工程(III)に添加する場合、乾燥工程(III)に適用される方法として前記で説明した方法において分解物(B)を添加する。 When the decomposition product (B) is added to the drying step (III), the decomposition product (B) is added in the method described above as a method applied to the drying step (III).
 分解物(B)を粉砕分級工程(IV)に添加する場合、粉砕分級工程(IV)における粉砕方法として前記で説明した粉砕装置に分解物(B)を添加する。 When the decomposition product (B) is added to the pulverization classification step (IV), the decomposition product (B) is added to the pulverization apparatus described above as the pulverization method in the pulverization classification step (IV).
 分解物(B)を乾燥工程(III)、又は粉砕分級工程(IV)のいずれかの工程に添加する場合には、添加する分解物(B)の含有量(重量%)は、架橋重合体(A)の全重量に対して、好ましくは、1~45、より好ましくは1~40、特に好ましくは1~30である。 When the decomposition product (B) is added to either the drying step (III) or the pulverization classification step (IV), the content (% by weight) of the decomposition product (B) to be added is the crosslinked polymer. It is preferably 1 to 45, more preferably 1 to 40, and particularly preferably 1 to 30 with respect to the total weight of (A).
 添加する分解物(B)に対しては、必要に応じて事前にイオン交換樹脂や錯イオンの使用によって分解物(B)中に残存する金属イオンを除去する操作を行ってもよい。なお、分解物(B)に残存する金属含量はICP発光分光分析測定等によって測定することができる。 For the decomposed product (B) to be added, an operation of removing metal ions remaining in the decomposed product (B) may be performed in advance by using an ion exchange resin or a complex ion, if necessary. The metal content remaining in the decomposition product (B) can be measured by ICP emission spectroscopic analysis measurement or the like.
 本発明の製造方法で得られる吸水性樹脂粒子の重量平均粒子径(μm)は、吸収性能及びハンドリング性の観点から、好ましくは150~600であり、更に好ましくは200~500である。 The weight average particle diameter (μm) of the water-absorbent resin particles obtained by the production method of the present invention is preferably 150 to 600, more preferably 200 to 500, from the viewpoint of absorption performance and handleability.
 なお、重量平均粒子径は、ロータップ試験篩振とう機及び標準ふるい(JIS Z8801-1:2006)を用いて、ペリーズ・ケミカル・エンジニアーズ・ハンドブック第6版(マックグローヒル・ブック・カンパニー、1984、21頁)に記載の方法で測定される。すなわち、JIS標準ふるいを、上から1000μm、850μm、710μm、500μm、425μm、355μm、250μm、150μm、125μm、75μm及び45μm、並びに受け皿、の順等に組み合わせる。最上段のふるいに測定粒子の約50gを入れ、ロータップ試験篩振とう機で5分間振とうさせる。各ふるい及び受け皿上の測定粒子の重量を秤量し、その合計を100重量%として各ふるい上の粒子の重量分率を求め、この値を対数確率紙[横軸がふるいの目開き(粒子径)、縦軸が重量分率]にプロットした後、各点を結ぶ線を引き、重量分率が50重量%に対応する粒子径を求め、これを重量平均粒子径とする。 The weight average particle size was determined by using a low-tap test sieve shaker and a standard sieve (JIS Z8801-1: 2006), Perry's Chemical Engineers Handbook 6th Edition (McGlow Hill Book Company, 1984). , Page 21). That is, the JIS standard sieves are combined in the order of 1000 μm, 850 μm, 710 μm, 500 μm, 425 μm, 355 μm, 250 μm, 150 μm, 125 μm, 75 μm and 45 μm, and the saucer from the top. Place about 50 g of the measurement particles in the uppermost sieve and shake with a low-tap test sieve shaker for 5 minutes. Weigh the measured particles on each sieve and saucer, and set the total to 100% by weight to obtain the weight fraction of the particles on each sieve. ), The vertical axis is the weight fraction], then draw a line connecting each point to obtain the particle size corresponding to the weight fraction of 50% by weight, and use this as the weight average particle diameter.
 本発明の製造方法で得られる吸水性樹脂粒子の形状については特に限定はなく、不定形破砕状、リン片状、パール状及び米粒状等が挙げられる。これらのうち、紙おむつ用途等での繊維状物とのからみが良く、繊維状物からの脱落の心配がないという観点から、不定形破砕状が好ましい。 The shape of the water-absorbent resin particles obtained by the production method of the present invention is not particularly limited, and examples thereof include amorphous crushed form, phosphorus fragment form, pearl form, and rice granules. Of these, the amorphous crushed form is preferable from the viewpoint that it is easily entangled with the fibrous material for use in disposable diapers and the like and there is no concern that it will fall off from the fibrous material.
 本発明の製造方法で得られる吸水性樹脂粒子の見掛け密度(g/ml)は、衛生用品の吸収性能の観点から、0.40~0.80が好ましく、更に好ましくは0.50~0.75、特に好ましくは0.50~0.70である。この範囲であると、吸水性樹脂粒子が膨潤する際の吸水速度が良好となる。なお、見掛け密度は、JIS K7365:1999に準拠して、25℃で測定される。 The apparent density (g / ml) of the water-absorbent resin particles obtained by the production method of the present invention is preferably 0.40 to 0.80, more preferably 0.50 to 0., From the viewpoint of the absorption performance of sanitary products. 75, particularly preferably 0.50 to 0.70. Within this range, the water absorption rate when the water-absorbent resin particles swell becomes good. The apparent density is measured at 25 ° C. in accordance with JIS K7365: 1999.
 本発明の製造方法により得られる吸水性樹脂粒子の生理食塩水に対する保水量は、表面架橋を行わない場合は、好ましくは50g/g以上70g/g以下であり、更に好ましくは53g/g以上67g/g以下である。表面架橋を行った場合には、好ましくは30g/g以上60g/g以下であり、更に好ましくは30g/g以上55g/g以下である。保水量が低いとおむつの吸収量が少なくなり、保水量が高すぎる場合には水可溶分が多くなり好ましくない。尚、本発明における保水量は以下の方法で測定される。 The amount of water-absorbing resin particles obtained by the production method of the present invention with respect to physiological saline is preferably 50 g / g or more and 70 g / g or less, and more preferably 53 g / g or more and 67 g when surface cross-linking is not performed. It is less than / g. When surface cross-linking is performed, it is preferably 30 g / g or more and 60 g / g or less, and more preferably 30 g / g or more and 55 g / g or less. If the water retention amount is low, the absorption amount of the diaper is small, and if the water retention amount is too high, the water-soluble content is large, which is not preferable. The amount of water retained in the present invention is measured by the following method.
<保水量の測定方法>
 目開き63μm(JIS Z8801-1:2006)のナイロン網で作製したティーバッグ(縦20cm、横10cm)に測定試料1.00gを入れ、生理食塩水(食塩濃度0.9%)1,000ml中に無撹拌下、1時間浸漬した後引き上げて、15分間吊るして水切りした。その後、ティーバッグごと、遠心分離器にいれ、150Gで90秒間遠心脱水して余剰の生理食塩水を取り除き、ティーバックを含めた重量(h1)を測定し次式から保水量を求めた。(h2)は、測定試料の無い場合について上記と同様の操作により計測したティーバックの重量である。なお、使用した生理食塩水及び測定雰囲気の温度は25℃±2℃であった。
保水量(g/g)=(h1)-(h2)
<Measurement method of water retention>
Put 1.00 g of the measurement sample in a tea bag (length 20 cm, width 10 cm) made of a nylon net with an opening of 63 μm (JIS Z8801-1: 2006), and put it in 1,000 ml of physiological saline (salt concentration 0.9%). After soaking for 1 hour without stirring, the sample was pulled up and hung for 15 minutes to drain water. Then, the whole tea bag was placed in a centrifuge and dehydrated at 150 G for 90 seconds to remove excess physiological saline, and the weight (h1) including the tea bag was measured to determine the water retention amount from the following formula. (H2) is the weight of the tea bag measured by the same operation as above when there is no measurement sample. The temperature of the physiological saline used and the measurement atmosphere was 25 ° C ± 2 ° C.
Water retention (g / g) = (h1)-(h2)
 本発明の製造方法により得られる吸水性樹脂粒子の荷重下吸収量(g/g)は19以上であることが好ましく、更に好ましくは23以上である。19未満であると、繰り返し使用時に漏れが生じやすく好ましくない。また、上限値は高いほど好ましく特に制限されないが、他物性との性能バランスや生産性の観点から、好ましくは28以下、より好ましくは26以下である。荷重下吸収量は、架橋剤(b)および表面架橋剤(e)の種類と量で適宜調整することができる。従って、例えば、荷重下吸収量を上げる必要がある場合、架橋剤(b)および表面架橋剤(e)の使用量を上げることで容易に実現することができる。尚、本発明における荷重下吸収量は以下の方法で測定される。 The amount of water-absorbent resin particles obtained by the production method of the present invention absorbed under load (g / g) is preferably 19 or more, more preferably 23 or more. If it is less than 19, leakage is likely to occur during repeated use, which is not preferable. Further, the higher the upper limit value is, the more preferably it is not particularly limited, but from the viewpoint of performance balance with other physical characteristics and productivity, it is preferably 28 or less, more preferably 26 or less. The amount of absorption under load can be appropriately adjusted depending on the type and amount of the cross-linking agent (b) and the surface cross-linking agent (e). Therefore, for example, when it is necessary to increase the absorption amount under load, it can be easily realized by increasing the amount of the cross-linking agent (b) and the surface cross-linking agent (e). The amount of absorption under load in the present invention is measured by the following method.
<荷重下吸収量の測定方法>
 目開き63μm(JIS Z8801-1:2006)のナイロン網を底面に貼った円筒型プラスチックチューブ(内径:25mm、高さ:34mm)内に、標準ふるいを用いて250~500μmの範囲にふるい分けした測定試料0.16gを秤量し、円筒型プラスチックチューブを垂直にしてナイロン網上に測定試料がほぼ均一厚さになるように整えた後、この測定試料の上に分銅(重量:210.6g、外径:24.5mm、)を載せた。この円筒型プラスチックチューブ全体の重量(M1)を計量した後、生理食塩水(食塩濃度0.9%)60mlの入ったシャーレ(直径:12cm)の中に測定試料及び分銅の入った円筒型プラスチックチューブを垂直に立ててナイロン網側を下面にして浸し、60分静置した。60分後に、円筒型プラスチックチューブをシャーレから引き上げ、これを斜めに傾けて底部に付着した水を一箇所に集めて水滴として垂らすことで余分な水を除去した後、測定試料及び分銅の入った円筒型プラスチックチューブ全体の重量(M2)を計量し、次式から荷重下吸収量を求めた。なお、使用した生理食塩水及び測定雰囲気の温度は25℃±2℃とした。
 荷重下吸収量(g/g)={(M2)-(M1)}/0.16
<Measurement method of absorption under load>
Measurements were performed by sieving into a cylindrical plastic tube (inner diameter: 25 mm, height: 34 mm) with a nylon mesh with a mesh opening of 63 μm (JIS Z8801-1: 2006) attached to the bottom, in the range of 250 to 500 μm using a standard sieve. Weigh 0.16 g of the sample, set the cylindrical plastic tube vertically and arrange it on a nylon net so that the measurement sample has almost uniform thickness, and then put a weight (weight: 210.6 g, outside) on this measurement sample. Diameter: 24.5 mm,) was placed. After weighing the entire weight (M1) of this cylindrical plastic tube, a cylindrical plastic containing a measurement sample and a weight is placed in a petri dish (diameter: 12 cm) containing 60 ml of physiological saline (salt concentration 0.9%). The tube was erected vertically and immersed with the nylon mesh side facing down, and allowed to stand for 60 minutes. After 60 minutes, the cylindrical plastic tube was pulled up from the petri dish, tilted diagonally, and the water adhering to the bottom was collected in one place and dropped as water droplets to remove excess water, and then the measurement sample and weight were contained. The weight (M2) of the entire cylindrical plastic tube was weighed, and the amount of absorption under load was calculated from the following equation. The temperature of the physiological saline used and the measurement atmosphere was 25 ° C ± 2 ° C.
Absorption amount under load (g / g) = {(M2)-(M1)} /0.16
 本発明の製造方法により得られる吸水性樹脂粒子のDemand Wettability試験で測定された無荷重下での吸収量は、好ましくは5g/g~30g/gであり、更に好ましくは10g/g~30g/g以下である。この範囲であると、吸収体に際に液漏れが発生せずに吸水することができ、5g/g未満では吸水量が少な過ぎるため漏れ発生の懸念が生じ、30g/gを超えると液が吸収体中で拡散しないことで局所的な吸水となるため、漏れ発生の懸念や吸収体の吸水面積を効率的に使えていないため経済的ではない。尚、本発明における「Demand Wettability試験で測定された無荷重下での吸収量」は以下の方法で測定される。 The absorption amount of the water-absorbent resin particles obtained by the production method of the present invention under no load measured by the Demand Wetability test is preferably 5 g / g to 30 g / g, more preferably 10 g / g to 30 g / g. It is less than or equal to g. Within this range, water can be absorbed without causing liquid leakage in the absorber, and if it is less than 5 g / g, the amount of water absorption is too small and there is a concern that leakage will occur. If it exceeds 30 g / g, the liquid will be absorbed. Since it does not diffuse in the absorber, it absorbs water locally, so it is not economical because there is a concern about leakage and the water absorption area of the absorber cannot be used efficiently. The "absorption amount under no load measured in the Demand Wetability test" in the present invention is measured by the following method.
<Demand Wettability試験で測定された無荷重下での吸収量>
 吸収性樹脂粒子0.50gと生理食塩水とを用いて特開2014-005472号明細書に記載されたDW法で測定した場合に、吸水開始から1分後の吸収量(ml/g)をDemand Wettability試験で測定された無荷重下での吸収量とする。なお、DW試験はビュレットと導管とに接続された測定台上で、無荷重下における吸収性樹脂の吸い上げ能力を判断するものである。
<Absorption amount under no load measured by Demand Wetability test>
When measured by the DW method described in JP-A-2014-005472 using 0.50 g of absorbent resin particles and physiological saline, the amount of absorption (ml / g) 1 minute after the start of water absorption is determined. It is the amount of absorption under no load measured in the Demand Wetability test. The DW test determines the suction capacity of the absorbent resin under no load on a measuring table connected to the burette and the conduit.
本発明の製造方法により得られる吸水性樹脂粒子の多価金属元素の含有量は、架橋重合体(A)の重量に対して、好ましくは0.1~10重量%であり、更に好ましくは0.1~8重量%、特に好ましくは0.1~5重量%である。多価金属元素は、吸水性樹脂粒子の表面架橋剤、分解物の脱水処理に用いる脱水剤、及び使用済み衛生用品が吸収した排液等に含まれる。吸水性樹脂粒子の脱水剤由来の多価金属元素の含有量は、架橋重合体(A)の重量に対して、好ましくは0.1~8重量%であり、更に好ましくは0.1~7.5重量%、特に好ましくは0.1~4.5重量%である。尚、本発明における吸水性樹脂粒子の多価金属元素の含有量は以下の方法で測定される。 The content of the polyvalent metal element of the water-absorbent resin particles obtained by the production method of the present invention is preferably 0.1 to 10% by weight, more preferably 0, based on the weight of the crosslinked polymer (A). .1 to 8% by weight, particularly preferably 0.1 to 5% by weight. The polyvalent metal element is contained in a surface cross-linking agent for water-absorbent resin particles, a dehydrating agent used for dehydrating decomposition products, and drainage absorbed by used sanitary goods. The content of the polyvalent metal element derived from the dehydrating agent of the water-absorbent resin particles is preferably 0.1 to 8% by weight, more preferably 0.1 to 7% by weight, based on the weight of the crosslinked polymer (A). It is 5.5% by weight, particularly preferably 0.1 to 4.5% by weight. The content of the polyvalent metal element of the water-absorbent resin particles in the present invention is measured by the following method.
<蛍光X線測定による多価金属元素の含有量測定方法>
 測定サンプル5.000gをルースパウダ用試料容器(フィルムはポリプロピレン製, 直径27mm)に取り入れ、波長分散型蛍光X線分析装置(Axios、スペクトリス株式会社社製)にて、ヘリウム雰囲気下、100mA、24kVに設定し測定を実施し、定量分析ソフトUniquantを使用した。
<Method of measuring the content of multivalent metal elements by fluorescent X-ray measurement>
Take 5.000 g of the measurement sample into a sample container for loose powder (film is made of polypropylene, diameter 27 mm), and use a wavelength dispersive fluorescent X-ray analyzer (Axios, manufactured by Spectris Co., Ltd.) at 100 mA and 24 kV under a helium atmosphere. The setting was performed, the measurement was carried out, and the quantitative analysis software Uniquant was used.
 本発明の製造方法により得られる吸水性樹脂粒子の多価金属元素の分布指数は、好ましくは0.1~3.0であり、更に好ましくは0.1~2.5であり、最も好ましくは0.1~2.0である。この範囲であると、多価金属元素の分布状態のバラツキが小さいため、吸水性能が良好となる。脱水剤由来の多価金属元素の分布指数は、好ましくは0.1~3.0であり、更に好ましくは0.1~2.5であり、最も好ましくは0.1~2.0である。
 分布指数は値が小さいほど多価金属元素が吸水性樹脂粒子中に均等に分布していることを意味する。例えば、脱水剤由来の多価金属元素は本製造方法において添加する分解物(B)にも含まれるため、分布指数が小さいことは、本発明の製造方法で得られた吸水性樹脂粒子中に分解物(B)に由来する成分が表面及び内部に均一に分布していることを意味する。吸水性樹脂粒子中での分解物(B)に由来する成分の分布が均一であると、吸水時に吸水性樹脂粒子が均一的に膨潤するため、吸水性能が良好となる。
The distribution index of the polyvalent metal element of the water-absorbent resin particles obtained by the production method of the present invention is preferably 0.1 to 3.0, more preferably 0.1 to 2.5, and most preferably. It is 0.1 to 2.0. Within this range, the variation in the distribution state of the multivalent metal element is small, so that the water absorption performance is good. The distribution index of the polyvalent metal element derived from the dehydrating agent is preferably 0.1 to 3.0, more preferably 0.1 to 2.5, and most preferably 0.1 to 2.0. ..
The smaller the value of the distribution index, the more the polyvalent metal element is evenly distributed in the water-absorbent resin particles. For example, since the polyvalent metal element derived from the dehydrating agent is also contained in the decomposition product (B) added in the present production method, the small distribution index is found in the water-absorbent resin particles obtained by the production method of the present invention. It means that the components derived from the decomposition product (B) are uniformly distributed on the surface and inside. When the distribution of the component derived from the decomposition product (B) in the water-absorbent resin particles is uniform, the water-absorbent resin particles swell uniformly at the time of water absorption, so that the water absorption performance is good.
 本発明の製造方法により得られる吸水性樹脂粒子中の多価金属元素の分布は、電子線測定(EDX、WDX)等を用いて吸水性樹脂粒子における多価金属元素の存在位置を測定し、測定で得た画像を画像処理ソフトウェア(例えば、WinROOF、等)で処理することで解析することが得ることができる。
 なお、本発明における多価金属元素の分布指数は以下の方法で測定される。
For the distribution of the polyvalent metal element in the water-absorbent resin particles obtained by the production method of the present invention, the position of the polyvalent metal element in the water-absorbent resin particles is measured by using electron beam measurement (EDX, WDX) or the like. The image obtained by the measurement can be analyzed by processing it with image processing software (for example, WinROOF, etc.).
The distribution index of the polyvalent metal element in the present invention is measured by the following method.
<多価金属元素の分布指数>
 吸水性樹脂粒子を140℃で30分間静置乾燥し、JIS標準ふるい500μ、300μm、並びに受け皿、の順に重ねてふるい操作で、500-300μmの粒子に粒径を調整し、測定サンプル(U)を得た。次いで、東亜合成株式会社アロニックスD―800(アクリル系樹脂)で測定サンプル(U)を包埋し、日本電子社製LUXSPOT(ハロゲンランプを使用)を1分間照射し樹脂を硬化させ、包埋した樹脂をミクロトーム(LEICA EM UC7、ライカ社製)で切断して測定面を出す加工を行い、更に、加工した包埋樹脂をカーボンテープで試料台に固定し日本電子社製蒸着装置(JEC―300FC)で20kV、70秒間の条件で白金蒸着させた。得られた白金蒸着物を、走査型電子顕微鏡測定(QUANTA FEG、FEI社製)に入れて、エネルギー分散型X線分光法(Octane Elite、アメテック社製)を加速電圧15kV、スポット4(照射径)、WD10mmの測定条件下、白金蒸着物の測定面中で吸水性樹脂粒子が露出している任意の10点を選択し、それぞれについてポイントアナリシス(点分析)で測定を実施した。
 10点の測定値についての平均値を[SEM-EDXによる多価金属含量の平均値]とし、10点の測定値を[SEM-EDXによる金属含量の標準偏差値]とし、吸水樹脂粒子中に含まれる多価金属元素の分布状態について下記計算値より多価金属元素の分布指数を求めた。
 多価金属元素の分布指数=[SEM-EDXによる金属含量の標準偏差値]/[SEM-EDXによる多価金属含量の平均値]
<Distribution index of multivalent metal elements>
The water-absorbent resin particles were allowed to stand and dried at 140 ° C. for 30 minutes, and the particle size was adjusted to 500-300 μm particles by sieving in the order of JIS standard sieve 500 μm, 300 μm, and saucer. Got Next, the measurement sample (U) was embedded with Aronix D-800 (acrylic resin) manufactured by JEOL Ltd., and LUXSPOT (using a halogen lamp) manufactured by JEOL Ltd. was irradiated for 1 minute to cure the resin and embed it. The resin is cut with a microtome (LEICA EM UC7, manufactured by Leica) to expose the measurement surface, and the processed embedded resin is fixed to the sample table with carbon tape and a thin-film deposition device manufactured by JEOL Ltd. (JEC-300FC). ), Platinum was vapor-deposited under the conditions of 20 kV and 70 seconds. The obtained platinum vapor deposition material was put into a scanning electron microscope measurement (QUANTA FEG, manufactured by FEI), and energy dispersion type X-ray spectroscopy (Octane Elite, manufactured by Ametec) was applied to an acceleration voltage of 15 kV and a spot 4 (irradiation diameter). ), Arbitrary 10 points where the water-absorbent resin particles were exposed on the measurement surface of the platinum vapor deposition were selected under the measurement conditions of WD 10 mm, and the measurement was carried out by point analysis (point analysis) for each of them.
The average value of the 10 measurement values is [the average value of the polyvalent metal content by SEM-EDX], and the 10 measurement value is [the standard deviation value of the metal content by SEM-EDX]. Regarding the distribution state of the contained polyvalent metal elements, the distribution index of the polyvalent metal elements was obtained from the following calculated values.
Distribution index of polyvalent metal elements = [standard deviation value of metal content by SEM-EDX] / [average value of polyvalent metal content by SEM-EDX]
 本発明の方法で得られた吸水性樹脂粒子は、吸水性樹脂粒子による吸水作用及びそれによる膨潤作用を必要とする各種用途に用いることができ、衛生用品、ペットーシート、土壌の保水材、電池用ゲル化剤、育苗シートや造粒型肥料等の農業資材、結露防止剤、蓄冷材用保水材、及び止水剤等の建築資材等に用いることができる。 The water-absorbent resin particles obtained by the method of the present invention can be used for various applications requiring the water-absorbing action of the water-absorbing resin particles and the swelling action due to the water-absorbing resin particles, and are used for sanitary goods, pet-sheets, soil water-retaining materials, and batteries. It can be used as a gelling agent, agricultural materials such as seedling raising sheets and granulated fertilizers, dew condensation inhibitor, water retaining material for cold storage material, and building material such as water blocking agent.
 以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。なお、特に定めない限り、部は重量部、%は重量%を示す。 Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Unless otherwise specified, parts indicate parts by weight and% indicates weight%.
 以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。なお、特に定めない限り、部は重量部、%は重量%を示す。 Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Unless otherwise specified, parts indicate parts by weight and% indicates weight%.
<製造例1>
 市販品のおむつGOO.N(パンツLサイズ、製品名 まっさらさら通気、大王製紙(株)社製、2021年5月 日本)を手で解砕し、吸収体に含まれている破砕状の吸水性樹脂粒子をパルプと共に取出した後にそれぞれを篩によって分別し、破砕状の吸水性樹脂粒子(Q-1)を得た。
<Manufacturing example 1>
Commercially available diapers GOO. N (Pants L size, product name: Smooth ventilation, manufactured by Daio Paper Corporation, May 2021, Japan) is crushed by hand, and the crushed water-absorbent resin particles contained in the absorber are combined with pulp. After taking out, each was separated by a sieve to obtain crushed water-absorbent resin particles (Q-1).
<製造例2>
 製造例1で得た吸水性樹脂粒子(Q-1)10.00gを量りとり、2Lポリバケツ(高さ19cm、底面の直径13cm、上面の直径16cm)に入れた。次いで、前記の2Lポリバケツに生理食塩水(食塩濃度0.9重量%)400mlを入れ、更にスリーワンモータ(商品名 ハイパワー 型番 BLh600)に取り付けた4枚パドルの撹拌羽(プロペラ径10.0cm、羽の角度:鉛直方向に対して30度、羽幅3.0cm)をポリバケツ底面から0.5cmの高さに固定し、600rpmの回転数で10分間撹拌した。撹拌羽の停止後、ポリバケツ中のゲルを全量取出した。
 なお、取り出したゲル(Z-1)は、膨潤した吸水性樹脂粒子(Q-1)に対してスリーワンモータを用いた撹拌による剪断力がかかることで架橋重合体でもある吸水性樹脂粒子(Q-1)が分解処理されて生じる分解物を含むゲルである。
 取り出したゲル(Z-1)を41.00g量りとり、SUS製バット(縦20cm、横20cm、高さ4cm)に移し、バット上に均一的に広げた。次いで、SUSバットごと真空定温乾燥機(型番:VОS-210C 東京理化器械社製)に入れて50℃、24時間静置し、余剰の生理食塩水を取り除いた。次いで、バット上に残った(Z-1)全量を目開き63μm(JIS Z8801-1:2006)のナイロン網で作成したティーバッグ(縦20cm、横10cm)に入れ、1重量%塩化カルシウム水溶液500mlが入った500mlコニカルビーカーの中に入れ、無撹拌下で1時間浸漬した後、ティーバックの中身を全てSUS製バット(縦20cm、横20cm、高さ4cm)に移し、バット上に均一的に広げた。次いで、SUSバットごと真空定温乾燥機(型番:VОS-210C 東京理化器械社製)に入れて50℃、24時間静置し、余剰の水分を取り除き、実施例1に用いる分解物(B-1)を得た。(B-1)の水可溶分は7.7重量%であり、赤外線水分計を用いて測定した含水率は、62.2重量%であった。
<Manufacturing example 2>
10.00 g of the water-absorbent resin particles (Q-1) obtained in Production Example 1 were weighed and placed in a 2 L poly bucket (height 19 cm, bottom diameter 13 cm, top surface diameter 16 cm). Next, 400 ml of physiological saline (salt concentration 0.9% by weight) was placed in the above 2L poly bucket, and a stirring blade (propeller diameter 10.0 cm, propeller diameter 10.0 cm) of four paddles attached to a three-one motor (trade name: High Power Model No. BLh600) was added. The angle of the wing: 30 degrees with respect to the vertical direction and the wing width of 3.0 cm) was fixed at a height of 0.5 cm from the bottom surface of the poly bucket, and the mixture was stirred at a rotation speed of 600 rpm for 10 minutes. After stopping the stirring blade, all the gel in the poly bucket was taken out.
The gel (Z-1) taken out is a crosslinked polymer by applying a shearing force to the swollen water-absorbent resin particles (Q-1) by stirring using a three-one motor, so that the water-absorbent resin particles (Q-1) are also crosslinked polymers. -1) is a gel containing a decomposition product produced by decomposition treatment.
41.00 g of the removed gel (Z-1) was weighed, transferred to a SUS vat (length 20 cm, width 20 cm, height 4 cm) and spread uniformly on the vat. Next, the entire SUS vat was placed in a vacuum constant temperature dryer (model number: VOS-210C manufactured by Tokyo Rika Kikai Co., Ltd.) and allowed to stand at 50 ° C. for 24 hours to remove excess physiological saline. Next, the entire amount of (Z-1) remaining on the vat was placed in a tea bag (length 20 cm, width 10 cm) made of a nylon net having an opening of 63 μm (JIS Z8801-1: 2006), and 500 ml of a 1 wt% calcium chloride aqueous solution was placed. Place in a 500 ml conical beaker containing calcium chloride, soak for 1 hour without stirring, then transfer all the contents of the tea bag to a SUS vat (length 20 cm, width 20 cm, height 4 cm) and evenly on the vat. I spread it out. Next, the whole SUS vat was placed in a vacuum constant temperature dryer (model number: VOS-210C manufactured by Tokyo Rika Kikai Co., Ltd.) and allowed to stand at 50 ° C. for 24 hours to remove excess water, and the decomposition product (B-1) used in Example 1 was removed. ) Was obtained. The water-soluble content of (B-1) was 7.7% by weight, and the water content measured with an infrared moisture meter was 62.2% by weight.
<製造例3>
 製造例1で得た吸水性樹脂粒子(Q-1)10.00gを量りとり、2Lポリバケツ(高さ19cm、底面の直径13cm、上面の直径16cm)に入れた。次いで、前記の2Lポリバケツに生理食塩水(食塩濃度0.9重量%)400mlを入れ、更に製造例2と同様に撹拌羽を固定し、400rpmの回転数で10分間撹拌した。撹拌羽の停止後、ポリバケツ中のゲル(Z-2)を全量取出した。なお、取り出したゲル(Z-2)は、膨潤した吸水性樹脂粒子(Q-1)に対してスリーワンモータを用いた撹拌による剪断力がかかることで架橋重合体でもある吸水性樹脂粒子(Q-1)が分解処理されて生じる分解物を含むゲルである。
 取り出したゲル(Z-2)を41.00g量りとり、目開き63μm(JIS Z8801-1:2006)のナイロン網で作成したティーバッグ(縦20cm、横10cm)に入れた後、遠心分離器にいれ、150Gで90秒間遠心脱水して余剰の生理食塩水を取り除いた。次にティーバッグを1重量%塩化カルシウム水溶液500mlが入った500mlコニカルビーカーの中に入れ、無撹拌下で1時間浸漬した後、ティーバックの中身を全てSUS製バット(縦20cm、横20cm、高さ4cm)に移し、バット上に均一的に広げた。次いで、SUSバットごと真空定温乾燥機(型番:VОS-210C 東京理化器械社製)に入れて50℃、24時間静置し、余剰の水分を取り除き、実施例2で用いる分解物(B-2)を得た。(B-2)の水可溶分は4.5重量%であり、赤外線水分計で測定した含水率は61.1重量%であった。
<Manufacturing example 3>
10.00 g of the water-absorbent resin particles (Q-1) obtained in Production Example 1 were weighed and placed in a 2 L poly bucket (height 19 cm, bottom diameter 13 cm, top surface diameter 16 cm). Next, 400 ml of physiological saline (salt concentration 0.9% by weight) was placed in the 2 L poly bucket, and the stirring blades were further fixed in the same manner as in Production Example 2, and the mixture was stirred at a rotation speed of 400 rpm for 10 minutes. After stopping the stirring blade, the entire amount of gel (Z-2) in the poly bucket was taken out. The gel (Z-2) taken out is a crosslinked polymer by applying a shearing force to the swollen water-absorbent resin particles (Q-1) by stirring using a three-one motor, so that the water-absorbent resin particles (Q-1) are also crosslinked polymers. -1) is a gel containing a decomposition product produced by decomposition treatment.
Weigh 41.00 g of the removed gel (Z-2), put it in a tea bag (length 20 cm, width 10 cm) made of a nylon net with an opening of 63 μm (JIS Z8801-1: 2006), and then put it in a centrifuge. Then, the mixture was centrifuged at 150 G for 90 seconds to remove excess physiological saline. Next, the tea bag was placed in a 500 ml conical beaker containing 500 ml of a 1 wt% calcium chloride aqueous solution, soaked for 1 hour without stirring, and then the contents of the tea bag were all SUS bats (length 20 cm, width 20 cm, height). It was transferred to 4 cm) and spread evenly on the bat. Next, the whole SUS vat was placed in a vacuum constant temperature dryer (model number: VOS-210C manufactured by Tokyo Rika Kikai Co., Ltd.) and allowed to stand at 50 ° C. for 24 hours to remove excess water, and the decomposition product (B-2) used in Example 2 was removed. ) Was obtained. The water-soluble content of (B-2) was 4.5% by weight, and the water content measured by an infrared moisture meter was 61.1% by weight.
<製造例4>
 製造例3で得た吸水性樹脂粒子の分解物(B-2)を、更に150℃設定の循風乾燥機内で3時間静置乾燥し、実施例3で用いる分解物(B-3)を得た。(B-3)の水可溶分は3.2重量%であり、赤外線水分計で測定した含水率は1.2重量%であった。
<Manufacturing example 4>
The decomposition product (B-2) of the water-absorbent resin particles obtained in Production Example 3 was further statically dried for 3 hours in a circulating air dryer set at 150 ° C., and the decomposition product (B-3) used in Example 3 was obtained. Obtained. The water-soluble content of (B-3) was 3.2% by weight, and the water content measured by an infrared moisture meter was 1.2% by weight.
<製造例5>
 製造例2において、1重量%塩化カルシウム水溶液500mlの代わりに、1重量%次亜塩素酸カルシウム水溶液500mlを使用した以外は同様の操作を行い、実施例4で用いる分解物(B-4)を得た。(B-4)の水可溶分は6.3重量%であり、赤外線水分計で測定した含水率は60.2重量%であった。
<Manufacturing example 5>
In Production Example 2, the same operation was performed except that 500 ml of a 1 wt% calcium hypochlorite aqueous solution was used instead of 500 ml of a 1 wt% calcium chloride aqueous solution, and the decomposition product (B-4) used in Example 4 was obtained. Obtained. The water-soluble content of (B-4) was 6.3% by weight, and the water content measured by an infrared moisture meter was 60.2% by weight.
<製造例6>
 フラッフパルプ100部と製造例1で得た吸水性樹脂粒子(Q-1)100部とを気流型混合装置{株式会社オーテック社製パッドフォーマー}で混合して、混合物を得た後、この混合物を坪量約500g/mとなるように均一にアクリル板(厚み4mm)上に積層し、5kg/cmの圧力で30秒間プレスし、吸収体を得た。この吸収体の10cm×10cmの試験片[試験片に含まれる吸水性樹脂粒子(Q-1)の重量は5g]を切り出し、2Lポリバケツ(高さ19cm、底面の直径13cm、上面の直径16cm)に入れた後、生理食塩水(食塩濃度0.9重量%)300mlを入れ、そのまま1時間静置した。
 生理食塩水中で吸水した試験片を使用済みの衛生用品の代替物とした。
 スリーワンモータ(商品名 ハイパワー 型番 BLh600)に取り付けた4枚パドルの攪拌羽(プロペラ径10.0cm、羽の角度:鉛直方向に対して30度、羽幅3.0cm)を使用済みの衛生用品の代替物が入った前記の2Lポリバケツにポリバケツ底面から0.5cmの高さで固定し、600rpmの回転数で10分間稼働させて使用済みの衛生用品の代替物を撹拌した。10分間の撹拌後、デカンテーション操作と篩別操作とによりフラッフパルプを取り除き、膨潤してゲル状物(Z-3)を得た。ゲル状物は、使用済みの衛生用品の代替物に含まれていた吸水性樹脂粒子(Q-1)が膨潤したゲルに対してスリーワンモータを用いた撹拌による剪断力がかかることで分解処理されて生じる分解物を含むゲルである。
 フラッフパルプを取り除いた後の含むゲル(Z-3)を41.00g量りとり、目開き63μm(JIS Z8801-1:2006)のナイロン網で作成したティーバッグ(縦20cm、横10cm)に入れた後、遠心分離器にいれ、150Gで90秒間遠心脱水して余剰の生理食塩水を取り除いた。次にティーバッグ)を1重量%塩化カルシウム水溶液500mlが入った500mlコニカルビーカーの中に入れ、無撹拌下で1時間浸漬した後、ティーバックの中身を全てSUS製バット(縦20cm、横20cm、高さ4cm)に移し、バット上に均一的に広げた。次いで、SUSバットごと真空定温乾燥機(型番:VОS-210C 東京理化器械社製)に入れて50℃、24時間静置し、余剰の水分を取り除き、実施例5に用いる分解物(B-5)を得た。(B-5)の含水率は64.4重量%、水可溶分は10.2重量%であった。
<Manufacturing example 6>
100 parts of the fluff pulp and 100 parts of the water-absorbent resin particles (Q-1) obtained in Production Example 1 are mixed with an air flow type mixer {Padformer manufactured by Otec Co., Ltd.} to obtain a mixture, and then this The mixture was uniformly laminated on an acrylic plate (thickness 4 mm) so as to have a basis weight of about 500 g / m 2 , and pressed at a pressure of 5 kg / cm 2 for 30 seconds to obtain an absorber. A 10 cm x 10 cm test piece of this absorber [the weight of the water-absorbent resin particles (Q-1) contained in the test piece is 5 g] is cut out and a 2 L poly bucket (height 19 cm, bottom diameter 13 cm, top surface diameter 16 cm). After that, 300 ml of physiological saline (salt concentration 0.9% by weight) was added, and the mixture was allowed to stand for 1 hour.
A test piece absorbed in physiological saline was used as a substitute for used sanitary products.
Sanitary goods with 4 paddle stirring blades (propeller diameter 10.0 cm, blade angle: 30 degrees with respect to the vertical direction, blade width 3.0 cm) attached to the Three-One Motor (trade name: High Power Model No. BLh600) The 2L poly bucket containing the substitute was fixed at a height of 0.5 cm from the bottom surface of the poly bucket and operated at a rotation speed of 600 rpm for 10 minutes to stir the used sanitary substitute. After stirring for 10 minutes, the fluff pulp was removed by a decantation operation and a sieving operation, and swelled to obtain a gel-like substance (Z-3). The gel-like product is decomposed by applying a shearing force by stirring using a three-one motor to the gel in which the water-absorbent resin particles (Q-1) contained in the substitute for used sanitary products are swollen. It is a gel containing decomposition products.
After removing the fluff pulp, 41.00 g of the contained gel (Z-3) was weighed and placed in a tea bag (length 20 cm, width 10 cm) made of a nylon net having an opening of 63 μm (JIS Z8801-1: 2006). After that, it was placed in a centrifuge and dehydrated by centrifugation at 150 G for 90 seconds to remove excess physiological saline. Next, put the tea bag) in a 500 ml conical beaker containing 500 ml of a 1 wt% calcium chloride aqueous solution, soak it for 1 hour without stirring, and then fill the contents of the tea bag with a SUS bat (length 20 cm, width 20 cm, 20 cm). It was transferred to a height of 4 cm) and spread evenly on a bat. Next, the whole SUS vat was placed in a vacuum constant temperature dryer (model number: VOS-210C manufactured by Tokyo Rika Kikai Co., Ltd.) and allowed to stand at 50 ° C. for 24 hours to remove excess water, and the decomposition product (B-5) used in Example 5 was removed. ) Was obtained. The water content of (B-5) was 64.4% by weight, and the water-soluble content was 10.2% by weight.
<製造例7>
 製造例1で得た吸水性樹脂粒子(Q-1)30.0gをPE広口瓶10L(株式会社サンプラテック社製)に入れ、さらにアスコルビン酸(富士フィルム和光純薬(株)社製)5.0g、硫酸鉄(II)・七水和物0.7g(富士フィルム和光純薬(株)社製)を溶解させたイオン交換水1500mlを入れて20分間静置し、吸水性樹脂粒子を膨潤させた。その後、ホモジナイザー(製品名:エクセルオートホモジナイザー、株式会社日本精機製作所製)を使用し、10分間、1500rpmで膨潤状態の吸水性樹脂粒子を分散、均一化した。ホモジナイザーに付着した膨潤した吸水性樹脂粒子を回収しながら、ホモジナイザーを取り除いた後、PVCAフィルム(サランフィルム)でPE広口瓶の上部を覆い、PVCAフィルムが外れないように輪ゴムで固定して、密閉状態とした。続いて、これを70℃に設定した恒温機(型式:IG401、ヤマト科学社製)で10時間静置させ、吸水性樹脂粒子の分解処理を行った。分解処理後、得られた処理液(Z-4)をSUS製バット(縦20cm、横20cm、高さ4cm)に移し、バット上に均一的に広げた。次いで、SUSバットごと真空定温乾燥機(型番:VОS-210C 東京理化器械社製)に入れて50℃、24時間静置し、余剰の水分を取り除き、比較例2に用いる吸水性樹脂粒子の分解物(B-6)を得た。(B-6)の含水率は75.1重量%、水可溶分は82.0重量%であった。
<Manufacturing example 7>
5. Put 30.0 g of the water-absorbent resin particles (Q-1) obtained in Production Example 1 into a PE wide-mouthed bottle 10 L (manufactured by Sampler Tech Co., Ltd.), and further ascorbic acid (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.). Add 1500 ml of ion-exchanged water in which 0 g and 0.7 g of iron (II) sulfate / heptahydrate (manufactured by Fuji Film Wako Junyaku Co., Ltd.) are dissolved and let stand for 20 minutes to swell the water-absorbent resin particles. I let you. Then, using a homogenizer (product name: Excel Auto Homogenizer, manufactured by Nissei Tokyo Office Co., Ltd.), the water-absorbent resin particles in a swollen state were dispersed and homogenized at 1500 rpm for 10 minutes. After removing the homogenizer while collecting the swollen water-absorbent resin particles adhering to the homogenizer, cover the upper part of the PE wide-mouthed bottle with PVCA film (Saran film), fix it with a rubber band so that the PVCA film does not come off, and seal it. It was in a state. Subsequently, this was allowed to stand for 10 hours in a thermostat (model: IG401, manufactured by Yamato Scientific Co., Ltd.) set at 70 ° C. to decompose the water-absorbent resin particles. After the decomposition treatment, the obtained treatment liquid (Z-4) was transferred to a SUS vat (length 20 cm, width 20 cm, height 4 cm) and spread uniformly on the vat. Next, the entire SUS vat was placed in a vacuum constant temperature dryer (model number: VOS-210C manufactured by Tokyo Rika Kikai Co., Ltd.) and allowed to stand at 50 ° C. for 24 hours to remove excess water and decompose the water-absorbent resin particles used in Comparative Example 2. The thing (B-6) was obtained. The water content of (B-6) was 75.1% by weight, and the water-soluble content was 82.0% by weight.
<製造例8>
 製造例1で得た吸水性樹脂粒子(Q-1)30.0gをPE広口瓶10L(株式会社サンプラテック社製)に入れ、さらにアスコルビン酸(富士フィルム和光純薬(株)社製)3.0g、硫酸鉄(II)・七水和物0.7g(富士フィルム和光純薬(株)社製)を溶解させたイオン交換水1500mlを入れて20分間静置し、吸水性樹脂粒子を膨潤させた。その後、ホモジナイザー(製品名:エクセルオートホモジナイザー、株式会社日本精機製作所製)を使用し、3分間、1500rpmで膨潤状態の吸水性樹脂粒子を分散、均一化した。ホモジナイザーに付着した膨潤した吸水性樹脂粒子を回収しながら、ホモジナイザーを取り除いた後、PVCAフィルム(サランフィルム)でPE広口瓶の上部を覆い、PVCAフィルムが外れないように輪ゴムで固定して、密閉状態とした。続いて、これを70℃に設定した恒温機(型式:IG401、ヤマト科学社製)で10時間静置させ、吸水性樹脂粒子の分解処理を行った。分解処理後、得られた処理液(Z-5)をSUS製バット(縦20cm、横20cm、高さ4cm)に移し、バット上に均一的に広げた。次いで、SUSバットごと真空定温乾燥機(型番:VОS-210C 東京理化器械社製)に入れて50℃、24時間静置し、余剰の水分を取り除き、比較例3に用いる吸水性樹脂粒子の分解物(B-7)を得た。(B-7)の含水率は42.4重量%、水可溶分は35.0重量%であった。
<Manufacturing example 8>
3. Put 30.0 g of the water-absorbent resin particles (Q-1) obtained in Production Example 1 into a PE wide-mouthed bottle 10 L (manufactured by Sampler Tech Co., Ltd.), and further ascorbic acid (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.). Add 1500 ml of ion-exchanged water in which 0 g and 0.7 g of iron (II) sulfate / heptahydrate (manufactured by Fuji Film Wako Junyaku Co., Ltd.) are dissolved and let stand for 20 minutes to swell the water-absorbent resin particles. I let you. Then, using a homogenizer (product name: Excel Auto Homogenizer, manufactured by Nissei Tokyo Office Co., Ltd.), the water-absorbent resin particles in a swollen state were dispersed and homogenized at 1500 rpm for 3 minutes. After removing the homogenizer while collecting the swollen water-absorbent resin particles adhering to the homogenizer, cover the upper part of the PE wide-mouthed bottle with PVCA film (Saran film), fix it with a rubber band so that the PVCA film does not come off, and seal it. It was in a state. Subsequently, this was allowed to stand for 10 hours in a thermostat (model: IG401, manufactured by Yamato Scientific Co., Ltd.) set at 70 ° C. to decompose the water-absorbent resin particles. After the decomposition treatment, the obtained treatment liquid (Z-5) was transferred to a SUS vat (length 20 cm, width 20 cm, height 4 cm) and spread uniformly on the vat. Next, the entire SUS vat was placed in a vacuum constant temperature dryer (model number: VOS-210C manufactured by Tokyo Rika Kikai Co., Ltd.) and allowed to stand at 50 ° C. for 24 hours to remove excess water and decompose the water-absorbent resin particles used in Comparative Example 3. The thing (B-7) was obtained. The water content of (B-7) was 42.4% by weight, and the water-soluble content was 35.0% by weight.
<製造例9>
 製造例2において、1重量%塩化カルシウム水溶液500mlを1重量%酢酸カルシウム水溶液500mlに変更した以外は、製造例2と同様の操作を行い、分解物(B-8)を得た。(B-8)の水可溶分は8.0重量%であり、赤外線水分計を用いて測定した含水率は、62.9重量%であった。
<Manufacturing example 9>
In Production Example 2, 500 ml of a 1 wt% calcium chloride aqueous solution was changed to 500 ml of a 1 wt% calcium acetate aqueous solution, and the same operation as in Production Example 2 was carried out to obtain a decomposition product (B-8). The water-soluble content of (B-8) was 8.0% by weight, and the water content measured with an infrared moisture meter was 62.9% by weight.
<製造例10>
 製造例1で得た吸水性樹脂粒子(Q-1)10.00gを量りとり、2Lポリバケツ(高さ19cm、底面の直径13cm、上面の直径16cm)に入れた。次いで、前記の2Lポリバケツに生理食塩水(食塩濃度0.9重量%)400mlを入れ、更にスリーワンモータ(商品名 ハイパワー 型番 BLh600)に取り付けた4枚パドルの撹拌羽(プロペラ径10.0cm、羽の角度:鉛直方向に対して30度、羽幅3.0cm)をポリバケツ底面から0.5cmの高さに固定し、600rpmの回転数で10分間撹拌した。撹拌羽の停止後、ポリバケツ中のゲルを全量取出した。
 なお、取り出したゲル(Z-6)は、膨潤した吸水性樹脂粒子(Q-1)に対してスリーワンモータを用いた撹拌による剪断力がかかることで架橋重合体でもある吸水性樹脂粒子(Q-1)が分解処理されて生じる分解物を含むゲルである。
 取り出したゲルを41.00g量りとり、目開き63μm(JIS Z8801-1:2006)のナイロン網で作成したティーバッグ(縦20cm、横10cm)に入れた後、遠心分離器にいれ、150Gで90秒間遠心脱水して余剰の生理食塩水を取り除いた。次いで、ティーバックの中身を全てSUS製バット(縦20cm、横20cm、高さ4cm)に移し、バット上に均一的に広げた。次いで、SUSバットごと真空定温乾燥機(型番:VОS-210C 東京理化器械社製)に入れて50℃、24時間静置し、余剰の水分を取り除き、分解物(B-9)を得た。(B-9)の水可溶分は7.7重量%であり、赤外線水分計を用いて測定した含水率は、95.2重量%であった。
<Manufacturing example 10>
10.00 g of the water-absorbent resin particles (Q-1) obtained in Production Example 1 were weighed and placed in a 2 L poly bucket (height 19 cm, bottom diameter 13 cm, top surface diameter 16 cm). Next, 400 ml of physiological saline (salt concentration 0.9% by weight) was placed in the above 2L poly bucket, and a stirring blade (propeller diameter 10.0 cm, propeller diameter 10.0 cm) of four paddles attached to a three-one motor (trade name: High Power Model No. BLh600) was added. The angle of the wing: 30 degrees with respect to the vertical direction and the wing width of 3.0 cm) was fixed at a height of 0.5 cm from the bottom surface of the poly bucket, and the mixture was stirred at a rotation speed of 600 rpm for 10 minutes. After stopping the stirring blade, all the gel in the poly bucket was taken out.
In the gel (Z-6) taken out, the swollen water-absorbent resin particles (Q-1) are subjected to shearing force by stirring using a three-one motor, so that the water-absorbent resin particles (Q-1) which are also crosslinked polymers are applied. -1) is a gel containing a decomposition product produced by decomposition treatment.
Weigh 41.00 g of the removed gel, put it in a tea bag (length 20 cm, width 10 cm) made of a nylon net with an opening of 63 μm (JIS Z8801-1: 2006), put it in a centrifuge, and 90 at 150 G. Excess saline was removed by centrifugation for a second. Next, all the contents of the tea bag were transferred to a SUS vat (length 20 cm, width 20 cm, height 4 cm) and spread uniformly on the vat. Next, the whole SUS vat was placed in a vacuum constant temperature dryer (model number: VOS-210C manufactured by Tokyo Rika Kikai Co., Ltd.) and allowed to stand at 50 ° C. for 24 hours to remove excess water to obtain a decomposed product (B-9). The water-soluble content of (B-9) was 7.7% by weight, and the water content measured with an infrared moisture meter was 95.2% by weight.
<実施例1>
 製造例1で得られた含水ゲル(1)452.04部と分解物(B-1)14.1部とをゲル裁断工程で用いるミンチ機に同時に投入し、その混合物をミンチ機で混合細断した。更に混合裁断しながら48.5%水酸化ナトリウム水溶液115.58部を添加して混合し、含水ゲル粒子を得た。得られた含水ゲル粒子を通気型バンド乾燥機{150℃、風速2m/秒}で乾燥し、乾燥体を得た。次いで、乾燥体に、エチレングリコールジグリシジルエーテルの2%水/メタノール混合溶液(水/メタノールの重量比=70/30)5.00部をスプレー噴霧しながら混合し、150℃で30分間静置して表面架橋して、吸水性樹脂粒子(P-1)を得た。
<Example 1>
The hydrous gel (1) 452.04 parts and the decomposition product (B-1) 14.1 parts obtained in Production Example 1 were simultaneously put into a minced machine used in the gel cutting step, and the mixture was mixed and finely mixed with the minced machine. I refused. Further, while mixing and cutting, 115.58 parts of a 48.5% sodium hydroxide aqueous solution was added and mixed to obtain hydrogel particles. The obtained hydrogel particles were dried with an aeration type band dryer {150 ° C., wind speed 2 m / sec} to obtain a dried product. Next, 5.00 parts of a 2% water / methanol mixed solution (water / methanol weight ratio = 70/30) of ethylene glycol diglycidyl ether was mixed with the dried product while spraying, and allowed to stand at 150 ° C. for 30 minutes. The surface was crosslinked to obtain water-absorbent resin particles (P-1).
<実施例2>
 製造例1で得られた含水ゲル(1)452.04部と分解物(B-2)42.7部とをゲル裁断工程に用いるミンチ機に同時に投入し、その混合物をミンチ機で混合細断した。更に混合裁断しながら48.5%水酸化ナトリウム水溶液115.58部を添加して混合し、含水ゲル粒子を得た。得られた含水ゲル粒子を通気型バンド乾燥機{150℃、風速2m/秒}で乾燥し、乾燥体を得た。次いで、乾燥体に、エチレングリコールジグリシジルエーテルの2%水/メタノール混合溶液(水/メタノールの重量比=70/30)5.00部をスプレー噴霧しながら混合し、150℃で30分間静置して表面架橋して、吸水性樹脂粒子(P-2)を得た。
<Example 2>
The hydrous gel (1) 452.04 parts and the decomposition product (B-2) 42.7 parts obtained in Production Example 1 were simultaneously put into a minced machine used for the gel cutting step, and the mixture was mixed and finely mixed with the minced machine. I refused. Further, while mixing and cutting, 115.58 parts of a 48.5% sodium hydroxide aqueous solution was added and mixed to obtain hydrogel particles. The obtained hydrogel particles were dried with an aeration type band dryer {150 ° C., wind speed 2 m / sec} to obtain a dried product. Next, 5.00 parts of a 2% water / methanol mixed solution (water / methanol weight ratio = 70/30) of ethylene glycol diglycidyl ether was mixed with the dried product while spraying, and allowed to stand at 150 ° C. for 30 minutes. The surface was crosslinked to obtain water-absorbent resin particles (P-2).
<実施例3>
 実施例2において、分解物(B-2)42.7部の代わりに分解物(B-3)14.2部を使用する以外は同様の操作を行い、吸水性樹脂粒子(P-3)を得た。
<Example 3>
In Example 2, the same operation was performed except that 14.2 parts of the decomposition product (B-3) was used instead of 42.7 parts of the decomposition product (B-2), and the water-absorbent resin particles (P-3) were used. Got
<実施例4>
 実施例2において、分解物(B-2)42.7部の代わりに分解物(B-4)42.7部を使用する以外は同様の操作を行い、吸水性樹脂粒子(P-4)を得た。
<Example 4>
In Example 2, the same operation was performed except that 42.7 parts of the decomposition product (B-4) was used instead of 42.7 parts of the decomposition product (B-2), and the water-absorbent resin particles (P-4) were used. Got
<実施例5>
 実施例2において、分解物(B-2)42.7部の代わりに分解物(B-5)42.7部を使用する以外は同様の操作を行い、吸水性樹脂粒子(P-5)を得た。
<Example 5>
In Example 2, the same operation was performed except that 42.7 parts of the decomposition product (B-5) was used instead of 42.7 parts of the decomposition product (B-2), and the water-absorbent resin particles (P-5) were used. Got
<実施例6>
 アクリル酸147部(2.04モル部)、架橋剤(b){ペンタエリスリトールトリアリルエーテル}0.6305部(0.0024モル部)、分解物(B-1)10部及び脱イオン水344.65部を攪拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、1%過酸化水素水溶液0.63部、2%アスコルビン酸水溶液1.1774部及び2%の2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド]水溶液2.355部を添加・混合して重合を開始させた。混合物の温度が90℃に達した後、90±2℃で約5時間重合することにより含水ゲル(1)を得た。次にこの含水ゲル(1)502.27部をミンチ機で細断しながら48.5%水酸化ナトリウム水溶液128.42部を添加して混合し、含水ゲル粒子を得た。更に含水ゲル粒子を通気型バンド乾燥機{150℃、風速2m/秒}で乾燥し、乾燥体を得た。乾燥体をジューサーミキサーにて粉砕した後、目開き710~150μmの粒子径範囲に調整することにより、乾燥体粒子(1)を得た。この乾燥体粒子(1)100部を高速攪拌しながら、エチレングリコールジグリシジルエーテルの2%水/メタノール混合溶液(水/メタノールの重量比=70/30)の5.00部をスプレー噴霧して混合し、150℃で30分間静置して表面架橋して、アクリル酸の架橋重合体でもある吸水性樹脂粒子(P-6)を得た。
<Example 6>
147 parts (2.04 mol) of acrylic acid, crosslinker (b) {pentaerythritol triallyl ether} 0.6305 parts (0.0024 mol part), 10 parts of decomposition product (B-1) and 344 parts of deionized water. .65 parts were kept at 3 ° C. while stirring and mixing. After inflowing nitrogen into this mixture to reduce the amount of dissolved oxygen to 1 ppm or less, 0.63 parts of a 1% hydrogen peroxide solution and 1.1774 parts of a 2% ascorbic acid solution and 2% of 2,2'-azobis [ 2-355 parts of a 2-methyl-N- (2-hydroxyethyl) -propionamide] aqueous solution was added and mixed to initiate polymerization. After the temperature of the mixture reached 90 ° C., the mixture was polymerized at 90 ± 2 ° C. for about 5 hours to obtain a hydrogel (1). Next, while 502.27 parts of this hydrogel (1) was shredded with a minced machine, 128.42 parts of a 48.5% sodium hydroxide aqueous solution was added and mixed to obtain hydrogel particles. Further, the hydrogel particles were dried with an aeration type band dryer {150 ° C., wind speed 2 m / sec} to obtain a dried product. The dried product was pulverized with a juicer mixer and then adjusted to a particle size range of 710 to 150 μm, whereby the dried product particles (1) were obtained. While stirring 100 parts of the dried body particles (1) at high speed, 5.00 parts of a 2% water / methanol mixed solution of ethylene glycol diglycidyl ether (water / methanol weight ratio = 70/30) is spray-sprayed. The mixture was mixed and allowed to stand at 150 ° C. for 30 minutes for surface cross-linking to obtain water-absorbent resin particles (P-6) which are also crosslinked polymers of acrylic acid.
<実施例7>
 実施例6において、分解物(B-1)10部の代わりに分解物(B-3)10部を使用する以外は同様の操作を行い、吸水性樹脂粒子(P-7)を得た。
<Example 7>
In Example 6, the same operation was carried out except that 10 parts of the decomposition product (B-3) was used instead of 10 parts of the decomposition product (B-1) to obtain water-absorbent resin particles (P-7).
<実施例8>
 製造例1で得られた含水ゲル(1)452.04部と分解物(B-2)14.1部とをゲル裁断工程で用いるミンチ機に同時に投入し、その混合物をミンチ機で混合細断した。更に混合裁断しながら48.5%水酸化ナトリウム水溶液115.58部を添加して混合し、含水ゲル粒子を得た。得られた含水ゲル粒子を通気型バンド乾燥機{150℃、風速2m/秒}で乾燥し、乾燥体を得た。次いで、乾燥体に、エチレングリコールジグリシジルエーテルの2%水/メタノール混合溶液(水/メタノールの重量比=70/30)5.00部、多価金属塩(e)として、硫酸ナトリウムアルミニウム12水和物1.2部をスプレー噴霧しながら混合し、150℃で30分間静置して表面架橋して、吸水性樹脂粒子(P-8)を得た。
<Example 8>
The hydrous gel (1) 452.04 parts and the decomposition product (B-2) 14.1 parts obtained in Production Example 1 were simultaneously put into a minced machine used in the gel cutting step, and the mixture was mixed and finely mixed with the minced machine. I refused. Further, while mixing and cutting, 115.58 parts of a 48.5% sodium hydroxide aqueous solution was added and mixed to obtain hydrogel particles. The obtained hydrogel particles were dried with an aeration type band dryer {150 ° C., wind speed 2 m / sec} to obtain a dried product. Next, 5.00 parts of a 2% water / methanol mixed solution (water / methanol weight ratio = 70/30) of ethylene glycol diglycidyl ether was added to the dried product, and 12 water of sodium aluminum sulfate as the polyvalent metal salt (e). 1.2 parts of Japanese product was mixed while spraying and allowed to stand at 150 ° C. for 30 minutes for surface cross-linking to obtain water-absorbent resin particles (P-8).
<実施例9>
 実施例2において、エチレングリコールジグリシジルエーテルの2%水/メタノール混合溶液(水/メタノールの重量比=70/30)5.00部を2.00部に変更して使用する以外は同様の操作を行い、吸水性樹脂粒子(P-9)を得た。
<Example 9>
In Example 2, the same operation is performed except that 5.00 parts of a 2% water / methanol mixed solution of ethylene glycol diglycidyl ether (water / methanol weight ratio = 70/30) is changed to 2.00 parts. Was carried out to obtain water-absorbent resin particles (P-9).
<実施例10>
 実施例2において、エチレングリコールジグリシジルエーテルの2%水/メタノール混合溶液(水/メタノールの重量比=70/30)5.00部を7.50部に変更して使用する以外は同様の操作を行い、吸水性樹脂粒子(P-10)を得た。
<Example 10>
In Example 2, the same operation is performed except that 5.00 parts of a 2% water / methanol mixed solution of ethylene glycol diglycidyl ether (water / methanol weight ratio = 70/30) is changed to 7.50 parts. Was carried out to obtain water-absorbent resin particles (P-10).
<実施例11>
 実施例2において、分解物(B-2)42.7部の代わりに分解物(B-9)42.7部を使用する以外は同様の操作を行い、吸水性樹脂粒子(P-11)を得た。
<Example 11>
In Example 2, the same operation was performed except that 42.7 parts of the decomposition product (B-9) was used instead of 42.7 parts of the decomposition product (B-2), and the water-absorbent resin particles (P-11) were used. Got
<実施例12>
 実施例2において、分解物(B-2)42.7部の代わりに分解物(B-8)42.7部を使用する以外は同様の操作を行い、吸水性樹脂粒子(P-12)を得た。
<Example 12>
In Example 2, the same operation was performed except that 42.7 parts of the decomposition product (B-8) was used instead of 42.7 parts of the decomposition product (B-2), and the water-absorbent resin particles (P-12) were used. Got
<比較例1>
 製造例1で得られた吸水性樹脂粒子(Q-1)と製造例3で得られた分解物(B-2)を、90/10の重量比でユニパック(株式会社 生産日本社製 L-4サイズ)に入れて、このユニパックを上下に手で振とうさせて(Q-1)と(B-2)を十分に混ぜ合わせ、吸水性樹脂粒子(H-1)とした。
<Comparative Example 1>
The water-absorbent resin particles (Q-1) obtained in Production Example 1 and the decomposition product (B-2) obtained in Production Example 3 were mixed in a weight ratio of 90/10 with Unipack (manufactured by Nippon Co., Ltd., L-). (4 sizes), and this unipack was shaken up and down by hand to sufficiently mix (Q-1) and (B-2) to obtain water-absorbent resin particles (H-1).
<比較例2>
 製造例1で得られた吸水性樹脂粒子(Q-1)と製造例6で得られた分解物(B-5)を、90/10の重量比でユニパック(株式会社 生産日本社製 L-4サイズ)に入れて、このユニパックを上下に手で振とうさせて(Q-1)と(B-2)を十分に混ぜ合わせ、吸水性樹脂粒子(H-2)とした。
<Comparative Example 2>
The water-absorbent resin particles (Q-1) obtained in Production Example 1 and the decomposition product (B-5) obtained in Production Example 6 are mixed in a weight ratio of 90/10 to Unipack (L- manufactured by Nippon Seisakusho Co., Ltd.). (4 sizes), and this unipack was shaken up and down by hand to sufficiently mix (Q-1) and (B-2) to obtain water-absorbent resin particles (H-2).
<比較例3>
 実施例6において、分解物(B-1)10部の代わりに分解物(B-6)10部を使用する以外は同様の操作を行い、吸水性樹脂粒子(H-3)を得た。
<Comparative Example 3>
In Example 6, the same operation was carried out except that 10 parts of the decomposed product (B-6) was used instead of 10 parts of the decomposed product (B-1) to obtain water-absorbent resin particles (H-3).
<比較例4>
 実施例6において、分解物(B-1)10部の代わりに分解物(B-7)10部を使用する以外は同様の操作を行い、吸水性樹脂粒子(H-4)を得た。
<Comparative Example 4>
In Example 6, the same operation was carried out except that 10 parts of the decomposed product (B-7) was used instead of 10 parts of the decomposed product (B-1) to obtain water-absorbent resin particles (H-4).
<比較例5>
 実施例2において、分解物(B-2)10部の代わりに分解物(B-6)10部を使用する以外は同様の操作を行い、吸水性樹脂粒子(H-5)を得た。
<Comparative Example 5>
In Example 2, the same operation was carried out except that 10 parts of the decomposed product (B-6) was used instead of 10 parts of the decomposed product (B-2) to obtain water-absorbent resin particles (H-5).
<比較例6>
 実施例2において、分解物(B-2)10部の代わりに分解物(B-7)10部を使用する以外は同様の操作を行い、吸水性樹脂粒子(H-6)を得た。
<Comparative Example 6>
In Example 2, the same operation was carried out except that 10 parts of the decomposed product (B-7) was used instead of 10 parts of the decomposed product (B-2) to obtain water-absorbent resin particles (H-6).
 実施例及び比較例で得た吸水性樹脂について、生理食塩水に対する保水量、荷重下吸収量、見掛け密度、重量平均粒子径、多価金属元素の含有量、多価金属元素の分布指数、Demand Wettability試験で測定された無荷重下での吸収量の結果を表1、2に示した。 Regarding the water-absorbent resins obtained in Examples and Comparative Examples, the amount of water retained in physiological saline, the amount absorbed under load, apparent density, weight average particle size, content of polyvalent metal elements, distribution index of polyvalent metal elements, Demand. The results of the absorption amount under no load measured by the Wetability test are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 表1、2に示す結果から明らかなように、本発明の吸水性樹脂粒子は保水量、荷重下吸収量及びDemand Wettability試験で測定された無荷重下での吸収量が比較例で得られた吸水性樹脂粒子よりも優れることが分かる。また、本発明の製造方法により、必要とされる吸水速度も適度な範囲とできるため、吸収体にした際にも必要な吸収性能を発現させることができる。本結果から、本発明の製造方法を用いることで、吸水性樹脂粒子の廃棄物である吸水性樹脂粒子の分解物を原料として再利用することができ、得られた吸水性樹脂粒子は良好な吸収特性を発揮することが分かる。従って、本発明の製造方法は、省資源及び環境負荷低減の観点から、優れた製造方法と言える。 As is clear from the results shown in Tables 1 and 2, the water-absorbent resin particles of the present invention obtained the water retention amount, the absorption amount under load, and the absorption amount under no load measured by the Demand Wetability test as comparative examples. It can be seen that it is superior to the water-absorbent resin particles. Further, according to the production method of the present invention, the required water absorption rate can be set in an appropriate range, so that the required absorption performance can be exhibited even when the absorber is used. From this result, by using the production method of the present invention, the decomposition product of the water-absorbent resin particles, which is the waste of the water-absorbent resin particles, can be reused as a raw material, and the obtained water-absorbent resin particles are good. It can be seen that it exhibits absorption characteristics. Therefore, the manufacturing method of the present invention can be said to be an excellent manufacturing method from the viewpoint of resource saving and reduction of environmental load.
 本発明の吸水性樹脂粒子の製造方法は、紙おむつ(子供用紙おむつ及び大人用紙おむつ等)、ナプキン(生理用ナプキン等)、紙タオル、パッド(失禁者用パッド及び手術用アンダーパッド等)及びペットシート(ペット尿吸収シート)等の衛生用品の再利用の際に排出される吸水性樹脂粒子の廃棄物のリサイクルに好適に利用できる。

 
The method for producing water-absorbent resin particles of the present invention includes paper diapers (children's disposable diapers, adult disposable diapers, etc.), napkins (physiological napkins, etc.), paper towels, pads (pads for incontinence and surgical underpads, etc.) and pets. It can be suitably used for recycling waste of water-absorbent resin particles discharged when reusing sanitary products such as sheets (pet urine absorbing sheets).

Claims (6)

  1.  水溶性ビニルモノマー(a1)及び架橋剤(b)を含む単量体組成物を重合して架橋重合体(A)を含む含水ゲルを得る重合工程(I)と、
    前記含水ゲルを細断し、含水ゲル粒子を得るゲル細断工程(II)と、
    ゲル裁断工程(II)で得られた含水ゲル粒子を乾燥する乾燥工程(III)と、
    乾燥工程(III)を経た乾燥物を粉砕、分級する粉砕分級工程(IV)とを含む吸水性樹脂粒子の製造方法であって、
    前記重合工程(I)、前記ゲル細断工程(II)、前記乾燥工程(III)及び前記粉砕分級工程(IV)からなる群より選ばれた少なくとも1つの工程で、衛生用品から得られた吸水性樹脂粒子の分解物(B)を添加する、吸水性樹脂粒子の製造方法であって、前記分解物(B)の水可溶分量が1.0~30.0重量%である吸水性樹脂粒子の製造方法。
    A polymerization step (I) of polymerizing a monomer composition containing a water-soluble vinyl monomer (a1) and a cross-linking agent (b) to obtain a water-containing gel containing the cross-linking polymer (A).
    In the gel shredding step (II) of shredding the water-containing gel to obtain water-containing gel particles,
    A drying step (III) of drying the hydrogel particles obtained in the gel cutting step (II), and a drying step (III).
    A method for producing water-absorbent resin particles, which comprises a pulverization classification step (IV) for pulverizing and classifying a dried product that has undergone the drying step (III).
    Water absorption obtained from sanitary products in at least one step selected from the group consisting of the polymerization step (I), the gel shredding step (II), the drying step (III) and the pulverization classification step (IV). A method for producing water-absorbent resin particles by adding the decomposition product (B) of the sex resin particles, wherein the water-soluble content of the decomposition product (B) is 1.0 to 30.0% by weight. How to make particles.
  2.  前記分解物(B)を、前記重合工程(I)及び/又は前記ゲル細断工程(II)で、添加する請求項1に記載の吸水性樹脂粒子の製造方法。 The method for producing water-absorbent resin particles according to claim 1, wherein the decomposition product (B) is added in the polymerization step (I) and / or the gel shredding step (II).
  3.  前記分解物(B)を、重合工程(I)において、単量体組成物の全重量に対して1~50重量%添加する請求項1又は2に記載の吸水性樹脂粒子の製造方法。 The method for producing water-absorbent resin particles according to claim 1 or 2, wherein the decomposition product (B) is added in an amount of 1 to 50% by weight based on the total weight of the monomer composition in the polymerization step (I).
  4.  前記分解物(B)が、脱水処理前の分解処理物(Z)の重量に対して0.01~10重量%の脱水剤(a)を添加して脱水処理して得られた分解物である請求項1~3のいずれかに記載の吸水性樹脂粒子の製造方法。 The decomposition product (B) is a decomposition product obtained by dehydrating the decomposition product (Z) before the dehydration treatment by adding 0.01 to 10% by weight of the dehydrating agent (a) to the weight of the decomposition product (Z). The method for producing water-absorbent resin particles according to any one of claims 1 to 3.
  5.  前記脱水剤(a)が塩化カルシウム、酸化カルシウム、酢酸カルシウム及び次亜塩素酸カルシウムからなる群より選ばれた少なくとも1種の水溶性多価金属化合物である請求項4に記載の吸水性樹脂粒子の製造方法。 The water-absorbent resin particles according to claim 4, wherein the dehydrating agent (a) is at least one water-soluble polyvalent metal compound selected from the group consisting of calcium chloride, calcium oxide, calcium acetate and calcium hypochlorite. Manufacturing method.
  6.  前記分解物(B)が、使用済み衛生用品に含まれる吸水性樹脂粒子から得られた分解物である請求項1~5のいずれかに記載の吸水性樹脂粒子の製造方法。

     
    The method for producing water-absorbent resin particles according to any one of claims 1 to 5, wherein the decomposition product (B) is a decomposition product obtained from water-absorbent resin particles contained in used sanitary goods.

PCT/JP2021/037650 2020-10-15 2021-10-12 Method for producing water-absorbing resin particles WO2022080342A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180064221.3A CN116194208A (en) 2020-10-15 2021-10-12 Method for producing water-absorbent resin particles
JP2022556984A JPWO2022080342A1 (en) 2020-10-15 2021-10-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020173634 2020-10-15
JP2020-173634 2020-10-15

Publications (1)

Publication Number Publication Date
WO2022080342A1 true WO2022080342A1 (en) 2022-04-21

Family

ID=81208203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037650 WO2022080342A1 (en) 2020-10-15 2021-10-12 Method for producing water-absorbing resin particles

Country Status (3)

Country Link
JP (1) JPWO2022080342A1 (en)
CN (1) CN116194208A (en)
WO (1) WO2022080342A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149576A1 (en) 2022-02-04 2023-08-10 株式会社日本触媒 Method for producing water-absorbing resin containing recycled water-absorbing resin, and use thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247307A (en) * 1992-03-03 1993-09-24 Nippon Shokubai Co Ltd Water absorbing resin composition
JPH06313008A (en) * 1993-04-28 1994-11-08 Mitsubishi Petrochem Co Ltd Decomposition of water absorptive polymer
JP2001316519A (en) * 2000-05-09 2001-11-16 Nippon Asahi Kiko Hanbai Kk Decomposing agent and decomposition method
JP2003326161A (en) * 2002-03-06 2003-11-18 Nippon Shokubai Co Ltd Regeneration method for water absorbing resin, and water absorbent
JP2019108640A (en) * 2017-12-20 2019-07-04 ユニ・チャーム株式会社 Method for manufacturing recycle pulp fiber, use for inactivation and decomposition of highly water-absorbing polymer of peracid, and inactivating and decomposing agent of highly water-absorbing polymer containing peracid
WO2020059762A1 (en) * 2018-09-18 2020-03-26 株式会社日本触媒 Method for producing particulate water-absorbing agent and particulate water-absorbing agent

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SA08290542B1 (en) * 2007-08-28 2012-11-14 نيبون شوكوباي كو. ، ليمتد Method for Producing Water Absorbent Resin
WO2009048157A1 (en) * 2007-10-09 2009-04-16 Nippon Shokubai Co., Ltd. Surface treatment method for water-absorbent resin
JP2010053296A (en) * 2008-08-29 2010-03-11 Nippon Shokubai Co Ltd Method for producing water-absorbing resin
US7910688B2 (en) * 2008-10-22 2011-03-22 Evonik Stockhausen Inc. Recycling superabsorbent polymer fines
JP5649336B2 (en) * 2010-06-02 2015-01-07 Sdpグローバル株式会社 Method for producing absorbent resin particles
JP2017501295A (en) * 2014-01-06 2017-01-12 ハンファ ケミカル コーポレーションHanwha Chemical Corporation Method for producing superabsorbent resin
CN103819603B (en) * 2014-02-27 2016-04-20 浙江卫星石化股份有限公司 The preparation method of the super absorbent resin that extractable matter is low
CN106068297B (en) * 2014-03-03 2018-08-28 株式会社日本触媒 The manufacturing method of polyacrylic acid (salt) water-absorbent resin
CN113166432B (en) * 2018-11-21 2024-04-02 三洋化成工业株式会社 Water-absorbent resin particles that are easily dehydrated and method for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247307A (en) * 1992-03-03 1993-09-24 Nippon Shokubai Co Ltd Water absorbing resin composition
JPH06313008A (en) * 1993-04-28 1994-11-08 Mitsubishi Petrochem Co Ltd Decomposition of water absorptive polymer
JP2001316519A (en) * 2000-05-09 2001-11-16 Nippon Asahi Kiko Hanbai Kk Decomposing agent and decomposition method
JP2003326161A (en) * 2002-03-06 2003-11-18 Nippon Shokubai Co Ltd Regeneration method for water absorbing resin, and water absorbent
JP2019108640A (en) * 2017-12-20 2019-07-04 ユニ・チャーム株式会社 Method for manufacturing recycle pulp fiber, use for inactivation and decomposition of highly water-absorbing polymer of peracid, and inactivating and decomposing agent of highly water-absorbing polymer containing peracid
WO2020059762A1 (en) * 2018-09-18 2020-03-26 株式会社日本触媒 Method for producing particulate water-absorbing agent and particulate water-absorbing agent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149576A1 (en) 2022-02-04 2023-08-10 株式会社日本触媒 Method for producing water-absorbing resin containing recycled water-absorbing resin, and use thereof

Also Published As

Publication number Publication date
JPWO2022080342A1 (en) 2022-04-21
CN116194208A (en) 2023-05-30

Similar Documents

Publication Publication Date Title
JP5084513B2 (en) Method for producing modified water-absorbing resin
KR102165459B1 (en) Absorbent and method for manufacturing the same, and absorbent article using the absorbent
US8975339B2 (en) Surface treatment method for water-absorbent resin
JP6722654B2 (en) Aqueous liquid absorbent resin particle production method, aqueous liquid absorbent resin particle, absorbent body and absorbent article
JP3175791B2 (en) Manufacturing method of water absorbing agent
WO2020213298A1 (en) Method for producing water-absorbing resin particles
WO2019221235A1 (en) Method for producing water-absorbing resin
JP2011068897A (en) Production method of water-absorbent resin
JP2008523196A (en) Surface treatment method for water absorbent resin
JP7234101B2 (en) Water-absorbing resin particles easily dehydrated and method for producing the same
WO2022080342A1 (en) Method for producing water-absorbing resin particles
JP2993801B2 (en) Process for producing particulate hydrogel polymer and water absorbent resin
JP6744792B2 (en) Method for producing aqueous liquid-absorbent resin particles
JP2012007151A (en) Method for production of absorbing resin
EP4130053A1 (en) Particulate water-absorbing agent
JP2019006899A (en) Manufacturing method of granular treatment material
JP2007277466A (en) Method for producing modified water absorbent resin
JP2007321008A (en) Method for producing modified water-absorbing resin
JP4198266B2 (en) Method for producing water absorbent resin
JP2007056071A (en) Method for preparing modified water absorbent resin
WO2023063182A1 (en) Method for producing water absorbent resin composition
JPWO2019188648A1 (en) Water-absorbent resin particles and their manufacturing method
JP7453918B2 (en) Water-absorbing resin particles and their manufacturing method
JP2021001316A (en) Water-absorbing resin particle and method for producing the same
WO2023149423A1 (en) Water-absorbable resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022556984

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21880081

Country of ref document: EP

Kind code of ref document: A1