WO2022079951A1 - Rotating joint, and manipulator having rotating joint - Google Patents

Rotating joint, and manipulator having rotating joint Download PDF

Info

Publication number
WO2022079951A1
WO2022079951A1 PCT/JP2021/024508 JP2021024508W WO2022079951A1 WO 2022079951 A1 WO2022079951 A1 WO 2022079951A1 JP 2021024508 W JP2021024508 W JP 2021024508W WO 2022079951 A1 WO2022079951 A1 WO 2022079951A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating body
housing
rotary joint
output rotating
input rotating
Prior art date
Application number
PCT/JP2021/024508
Other languages
French (fr)
Japanese (ja)
Inventor
英樹 有田
直哉 竹原
雅比古 有田
秀人 石黒
Original Assignee
株式会社石黒エンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社石黒エンジニアリング filed Critical 株式会社石黒エンジニアリング
Publication of WO2022079951A1 publication Critical patent/WO2022079951A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear

Definitions

  • One of the embodiments of the present invention relates to a rotary joint that functions as a joint portion of a manipulator and a manipulator including this rotary joint.
  • the manipulator has a plurality of arms (links) and joints connecting the arms as a basic configuration.
  • the joint changes the angle (offset angle) between the directions in which the two connected arms extend, or changes the helix angle between the connected arms, thereby providing an end effector attached to the end arm. You can move it to any location.
  • a motor is attached to each joint, and the movement of the industrial robot is controlled by appropriately operating the motor (see Patent Documents 1 to 3).
  • One of the tasks of the embodiment of the present invention is to provide a rotary joint having a novel structure that functions as a joint for a manipulator.
  • one of the embodiments of the present invention is to provide a rotary joint capable of forming a manipulator having a compact shape.
  • one of the embodiments of the present invention is to provide a manipulator including the rotary joint.
  • the rotary joint comprises a housing, an input rotating body, a drive motor, and an output rotating body.
  • the input rotating body surrounds at least a part of the housing.
  • the drive motor is fixed to the housing, surrounds the input rotating body, and rotates the input rotating body around at least a part of the housing.
  • the output rotating body surrounds the drive motor, at least a part of which is exposed from the housing, and rotates coaxially with the rotating axis of the input rotating body.
  • the manipulator comprises a rotary joint and a first arm connected to the rotary joint.
  • the rotary joint comprises a housing, an input rotating body, a drive motor, and an output rotating body.
  • the input rotating body surrounds at least a part of the housing.
  • the drive motor is fixed to the housing, surrounds the input rotating body, and rotates the input rotating body around at least a part of the housing.
  • the output rotating body surrounds the drive motor, at least a part of which is exposed from the housing, and rotates coaxially with the rotating axis of the input rotating body.
  • the first arm is connected to the output rotating body of the rotating joint.
  • the rotary joint comprises a housing, an input rotating body, a drive motor, and an output rotating body.
  • the input rotating body surrounds at least a part of the housing.
  • the drive motor is fixed to the housing, surrounds the input rotating body, and rotates the input rotating body around at least a part of the housing.
  • the output rotating body surrounds the drive motor, at least a part of which is exposed from the housing, and rotates coaxially with the rotating axis of the input rotating body.
  • the housing is arranged so as to sandwich the output rotating body, and has a pair of screw holes extending perpendicularly to the rotation axis from the outer surface of the housing.
  • the second arm is fixed via a pair of screw holes.
  • a rotary joint according to one of the embodiments of the present invention and a schematic perspective view of a manipulator including the rotary joint.
  • the conceptual diagram which shows the structure of the rotary joint which concerns on one of the Embodiments of this invention.
  • the schematic perspective view of the rotary joint which concerns on one of the Embodiments of this invention.
  • the schematic perspective view of the rotary joint which concerns on one of the Embodiments of this invention.
  • Schematic cross-sectional perspective view of a rotary joint according to one of the embodiments of the present invention Schematic cross-sectional view of a rotary joint according to one of the embodiments of the present invention.
  • Schematic cross-sectional view of a part of a rotary joint according to one of the embodiments of the present invention Schematic cross-sectional view of a part of a rotary joint according to one of the embodiments of the present invention.
  • the manipulator 200 including the rotary joint 100 and the rotary joint 100 according to the embodiment of the present invention will be described with reference to the drawings and the like.
  • the present invention can be carried out in various embodiments without departing from the gist thereof, and is not construed as being limited to the description contents of the embodiments exemplified below.
  • a structure is exposed from another structure means an aspect in which a part of one structure is not covered by another structure, and is not covered by another structure.
  • the portion also includes an embodiment covered by yet another structure.
  • FIG. 1 shows a schematic perspective view of a manipulator 100 including a rotary joint 100 and a rotary joint 100. Details will be described later, but in this figure, the housing 110 and the output rotating body 190, which are a part of the structure of the rotating joint 100, are shown.
  • the rotary joint 100 has a cylindrical shape as a whole, and a part of the housing 110 constitutes a part of a side surface of the cylindrical shape.
  • the output rotating body 190 has a cylindrical shape and constitutes a part of the cylindrical side surface of the rotating joint 100.
  • the output rotating body 190 is housed around the central axis of the cylindrical shape (the axis penetrating the center of the upper surface and the bottom surface of the cylindrical shape, and the rotating axis Ar parallel to the x direction in the drawing). It rotates around a part of the body 110 (arrow 216 in the figure).
  • the output rotating body 190 is arranged so as to be sandwiched between a part of the housing 110 in the x direction.
  • the cylinder refers to a three-dimensional shape formed from a top surface and a bottom surface parallel to each other and a curved side surface connecting the top surface and the bottom surface.
  • the cross section of the top surface, bottom surface, and side surface parallel to the top surface or bottom surface is a circle, and the side surface is a surface having a normal line perpendicular to the axis penetrating the center of the top surface and bottom surface.
  • the surface on the more positive side in the x direction (the surface on the right side shown in FIG. 1) is referred to as the upper surface, and the surface facing the surface (not shown) is referred to as the bottom surface.
  • At least two arms 202 can be connected to the rotary joint 100.
  • One arm 202-1 is connected to the output rotating body 190 directly or via an indirect member such as a connector 204 by a screw or the like.
  • the arm 202-1 or the connector 204 can incorporate a motor (not shown) that rotates the arm 202-1 around a rotation axis (arm rotation axis) that extends in the direction in which the arm 202-1 extends.
  • a motor not shown
  • the rotation function centered on the rotation axis Ar due to the rotation of the output rotating body 190 (arrow 208 in the figure) and the rotation function centering on the arm rotation axis by the built-in motor (arrow 210 in the figure) are armed. It can be given to 202-1.
  • the arm 202-1 By connecting the arm 202-1 to the output rotating body 190, the arm 202-1 can be extended from the side surface instead of the upper surface or the bottom surface of the cylindrical shape of the rotating joint 100. Therefore, it is not necessary to offset the arm 202-1 in the x direction when connecting to the rotary joint 100, it is possible to prevent the manipulator 200 from becoming bulky in the x direction, and it is possible to provide a manipulator having a compact shape. ..
  • an end effector may be connected to the end of the arm 202-1 opposite to the rotary joint 100.
  • the other arm 202-2 is connected to the housing 110.
  • the arm 202-2 is connected to the side surface of the housing 110, not to the upper surface or the bottom surface of the cylindrical shape. More specifically, the arm 202-2 is directly connected to the surface of the portion of the housing 110 that sandwiches the output rotating body 190 and has a normal line perpendicular to the rotation axis Ar , or is connected via the connector 206. Will be done.
  • a motor (not shown) is built in the arm 202-2 or the connector 206, and the arm 202 has a rotation function (arrow 212 in the figure) centered on a rotation axis in which the arm 202-2 extends in the extending direction by the motor. Given to -2. With this rotation function, the rotation joint 100 and the arm 202-1 can be rotated about the rotation axis of the arm 202-2.
  • the arm 202-2 is fixed to the side surface of the housing 110 instead of the top surface or the bottom surface of the cylindrical shape. Therefore, it is not necessary to offset the arm 202-2 in the x direction when connecting to the rotary joint 100. Further, when fixing the arm 202-2, it is not necessary to use a fixing member such as a clamp that clamps the rotary joint 100 in the x direction. Therefore, it is possible to prevent the manipulator 200 from becoming bulky in the x direction, and it is possible to provide a manipulator having a compact shape.
  • FIG. 2 is a conceptual diagram for explaining the structure of the rotary joint 100
  • FIGS. 3A and 3B are schematic perspective views showing the entire example of the rotary joint 100.
  • FIG. 2 for ease of viewing, only a part of the housing 110 is shown, and the output rotating body 190 is shown by a dotted line.
  • 4 and 5 are a schematic cross-sectional perspective view and a cross-sectional view of an example of the rotary joint 100, respectively.
  • FIG. 6 is a schematic cross-sectional view corresponding to FIG. 5, in which members other than the housing 110 are shown by dotted lines.
  • 7 and 8 are schematic cross-sectional views of a part of an example of the rotary joint 100.
  • the rotary joint 100 includes an input rotating body 130 and a drive motor 150 as a basic configuration in addition to the housing 110 and the output rotating body 190 described above (FIG. 2).
  • the rotary joint 100 can further include a speed reducer 170 that transmits the rotational driving force of the input rotating body 130 to the output rotating body 190.
  • the drive motor 150 causes the input rotating body 130 to rotate around a part of the housing 110 in a circumferential shape.
  • the rotational driving force of the input rotating body 130 can be transmitted to the output rotating body 190 via the speed reducer 170, while the output rotating body 190 surrounds a part of the housing 110, the input rotating body 130, and the drive motor 150. , Rotate around these in a circle.
  • the axis of rotation of the output rotating body 190 and the input rotating body 130 is coaxial, and is the rotation axis Ar .
  • the rotary joint 100 is further provided with an encoder 160 for determining the position of the output rotating body 190, side caps 112 on the portions corresponding to the upper and lower surfaces of the cylindrical shape of the rotary joint 100, and the like as an arbitrary configuration. It may be (see FIGS. 3A to 6). Further, although not shown, a brake may be provided to stop the operation of the input rotating body 130 and the output rotating body 190.
  • housing (1) Structure and function There are no restrictions on the configuration or structure of the housing 110, but as shown in FIGS. 4 and 5, the housing 110 includes a drive motor 150 and a speed reducer fixed in the housing 110.
  • the 170 is fixed and configured to accommodate the input rotating body 130 and the output rotating body 190 which are movable parts. Further, the housing 110 is configured so that a part thereof is surrounded by the input rotating body 130 and covers the inside of the input rotating body 130. Further, the housing 110 is configured so as to partially sandwich the output rotating body 190 in the x direction.
  • the housing 110 may be configured so that the side cap 112 can be fixed at the portions corresponding to the upper surface and the bottom surface of the cylindrical shape.
  • the part 110a which is a part of the housing 110, accommodates the input rotating body 130 so as to sandwich it, and covers the inside of the input rotating body 130 to protect the input rotating body 130 and protect the input rotating body 130. It functions as a support for fixing the speed reducer 170.
  • the part 110b which is another part of the housing 110, imparts sufficient physical strength to the housing 110, covers the side surface of the output rotating body 190 in the x direction, and sandwiches the output rotating body 190.
  • the outer surface of the part 110b and the output rotating body 190 (the outer surface having a normal line perpendicular to the axis of rotation Ar ) constitutes a cylindrical side surface.
  • the outer surface of the part 110b and the output rotating body 190 may be on the same curved surface. That is, in the direction perpendicular to the rotation axis Ar , the distance from the rotation axis Ar to the outer surface of the housing 110 and the distance from the rotation axis Ar to the outer surface of the output rotating body 190 may be the same.
  • the difference between these distances may be 1 mm or more and 10 mm or less.
  • the outer surface of each member refers to a surface far from the rotation axis Ar in the direction perpendicular to the rotation axis Ar .
  • the part 110c which is still another part of the housing 110, protects the drive motor 150 and the input rotating body 130 by covering the drive motor 150 and the input rotating body 130 in cooperation with the part 110b, and is used as a support for fixing the encoder 160. Can be done.
  • the part 110d which is still another part of the housing 110, can function as a rib for fixing the side cap 112.
  • the part 110d can be configured to separate the side cap 112 from other parts of the housing 110 (eg, parts 110a, 110b, etc.) to form a space 118 inside the rotary joint 100.
  • the part 110d can be provided with an opening through which the rotation axis Ar passes, whereby the space 118 can be opened in the x direction by removing the side cap 112.
  • the above-mentioned parts 110a, 110b, 110c, 110d are defined by functions and do not necessarily have to be physically separable.
  • the housing 110 may include parts other than the above-mentioned parts 110a, 110b, 110c and 110d. Therefore, the housing 110 may be a single integrated structure, or may be configured by fixing a plurality of parts with bolts, adhesives, or the like.
  • the above-mentioned parts 110a to 110d may be integrated or may be independent members connected to each other.
  • the housing 110 may be made of a metal material such as iron, aluminum or titanium, or an alloy material such as stainless steel, or may be made of a material containing a polymer such as fiber reinforced plastic.
  • the housing 110 may have a through hole 110f extending along the rotation axis Ar and connecting to the space 118.
  • the size of the through hole 110f can be arbitrarily set, and for example, the diameter thereof may be appropriately selected from the range of 1 cm or more and 20 cm or less.
  • the rotary joint 100 has a so-called hollow structure, and by using this through hole 110f, the motor for driving the arms 202-1 and 202-2 and the sensor mounted on these are used.
  • a power cable for can be arranged through the through hole 110f. As a result, the portion where the power cable of the manipulator 200 is exposed to the outside can be significantly reduced. This contributes not only to the provision of the manipulator 200 having high design, but also to the prevention of accidents and malfunctions due to the interference of the power cable.
  • Opening The housing 110 may be further provided with an opening 110g for inserting a power cable for connecting the drive motor 150 to a power source and a power cable extending from the arm 202 (FIGS. 2 and 4). See FIG. 5).
  • the opening 110g is provided on the outer surface of the housing 110 having a normal line perpendicular to the rotation axis Ar .
  • the opening 110g is formed so as to be connected to the through hole 110f, and the space 118 is connected to the opening 110g.
  • the openings 110g are provided at least two, preferably four or more. When two openings 110g are provided, both of the openings 110g may be provided on the same side with respect to the output rotating body 190, and the two openings 110g may be arranged so as to overlap each other via the rotation axis Ar .
  • the two openings 110g are connected via the space 118, and the power cable can be passed from one opening 110g to the other opening 110g via the space 118.
  • four openings 110g are provided, one pair of openings 110g is provided on one side of the output rotating body 190, and these openings 110g are arranged so as to overlap each other via the rotation axis Ar . ..
  • the other pair of openings 110g is provided on the side opposite to the one pair of openings 110g with respect to the output rotating body 190, and the other pair of openings 110g overlap each other via the rotation axis Ar. Place in. Since each pair of openings 110 g is connected to the space 118, the power cable can be arranged on both the top surface side and the bottom surface side, and the degree of freedom in wiring arrangement can be improved.
  • the housing 110 can be further provided with screw holes 110e for connecting to the arm 202-2 (FIGS. 3A, 3B, 4).
  • the screw hole 110e extends in a direction perpendicular to the rotation axis Ar from the outer surface having a normal line perpendicular to the rotation axis Ar of the housing 110, that is, the surface constituting the side surface of the cylindrical shape. It is preferable to provide at least two screw holes 110e, and four screw holes 110e may be provided. When two screw holes 110e are provided, they are provided so as to sandwich the output rotating body 190.
  • one pair of screw holes 110e is provided on one side of the output rotating body 190, and the other pair of screw holes 110e is provided on the other side of the output rotating body 190.
  • a pair of screw holes 110e are provided so as to sandwich the opening 110g.
  • the input rotating body 130 has a cylindrical shape that surrounds at least a part of the housing 110 (for example, the above-mentioned part 110a), and rotates around a part of the housing 110 in a circumferential shape. Arranged (FIGS. 2, 4, 5). A permanent magnet is arranged on the input rotating body 130, and is driven by an induction action by a current flowing through the drive motor 150.
  • the size of the input rotating body 130 there is no limitation on the size of the input rotating body 130, and the inner diameter thereof may be equal to or larger than the outer diameter of a part of the housing 110 (for example, the part 110a) surrounded by the input rotating body 130.
  • the outer diameter of the input rotating body 130 can be selected in the range of, for example, larger than 3 cm and 50 cm or less.
  • the length (length in the x direction) of the input rotating body 130 can be arbitrarily set, and may be selected from a range of, for example, 10 cm or more and 50 cm or less.
  • the drive motor 150 is a motor having a cylindrical shape for rotating the input rotating body 130, is fixed to the housing 110, and is provided so as to surround at least a part of the outer periphery of the input rotating body 130.
  • the central axis of the cylindrical shape formed by the drive motor 150 may be coaxial with the rotation axis Ar .
  • Power is supplied to the drive motor 150 from an external power source via a power cable passing through the space 118 and the opening 110 g, and this electric energy is used for the rotation of the input rotating body 130.
  • the method of fixing the drive motor 150 is arbitrary, and it may be fixed with screws or may be fixed with an adhesive.
  • a groove 110i may be provided on the surface of the housing 110 in contact with the drive motor 150, and the adhesive may be injected into the groove 110i.
  • the drive motor 150 can be fixed with a sufficient amount of adhesive, so that the drive motor 150 can be firmly fixed in the rotary joint 100. Further, since it is not necessary to use a screw, the weight of the rotary joint 100 can be reduced.
  • the speed reducer 170 reduces the rotation speed of the input rotating body 130 and transmits the rotation driving force obtained from the input rotating body 130 to the output rotating body 190 at a rotation speed lower than the rotation speed of the input rotating body 130.
  • the output rotating body 190 is configured to rotate.
  • the speed reducer 170 may be configured so that the rotation direction of the output rotating body 190 is the same as the rotation direction of the input rotating body 130, or the rotation directions may be opposite to each other.
  • the speed reducer 170 can be configured by, for example, a circular spline 170a, a wave generator 170b, a flexible spline 170c, or the like (FIG. 5).
  • the circular spline 170a and the flexible spline 170c are fixed to the output rotating body 190 and the housing 110, respectively.
  • the wave generator 170b is directly or indirectly connected to the input rotating body 130.
  • the fixing method of the speed reducer 170 is arbitrarily selected, and may be performed by using an adhesive, bolts, screws, or the like. In the example shown in FIGS.
  • a motor shaft 132 is connected to the input rotating body 130, and the input rotating body 130 is fixed to the wave generator 170b by a bolt via the motor shaft 132. Therefore, the rotation of the input rotating body 130 is transmitted to the wave generator 170b via the motor shaft 132.
  • the flexible spline 170c is also fixed to the housing 110 by bolts.
  • the inside of the circular spline 170a and the outside of the flexible spline 170c are engraved with teeth, but since the number of teeth in the latter is larger than the number of teeth in the former, the number of rotations in the latter is less than the number of rotations in the input rotating body 130. Rotates, and along with this, the output rotating body 190 rotates with the torque increased by the speed reducer 170.
  • the output rotating body 190 is a rotating body having a substantially cylindrical shape in appearance, and is not only a part of the housing 110 surrounded by the input rotating body 130 inside the tubular shape, but also the drive motor 150.
  • the input rotating body 130 is arranged (FIG. 2, FIG. 4, FIG. 5).
  • the output rotating body 190 is configured to surround a part of the housing 110, the drive motor 150, and the input rotating body 130.
  • the rotation of the input rotating body 130 is transmitted to the output rotating body 190 by the speed reducer 170, and as a result, the output rotating body 190 rotates around a part of the housing 110, the input rotating body 130, and the drive motor 150. Rotate.
  • the rotation axis of the output rotating body 190 is coaxial with that of the input rotating body 130, and each rotating body rotates about the rotation axis Ar .
  • Examples of the material contained in the output rotating body 190 include metals such as iron, aluminum and titanium, and alloys such as stainless steel.
  • At least a part of the output rotating body 190 is exposed from the housing, and the exposed surface, that is, the outer surface (the surface having a normal line perpendicular to the rotation axis Ar ) is also connected to the arm 202-1.
  • a screw hole 190a for the purpose can be provided (FIGS. 3A to 5).
  • the screw hole 190a extends from the outer surface of the output rotating body 190 in a direction perpendicular to the rotation axis Ar . It is preferable to provide at least two screw holes 190a, and four screw holes 190a may be provided. When two screw holes 190a are provided, they are arranged so as to be located on a straight line parallel to the axis of rotation Ar .
  • one pair of screw holes 190a is arranged so as to be located on a straight line parallel to the rotation axis Ar , and the other screw holes 190a are also different parallel to the rotation axis Ar. It is arranged so that it is located on a straight line. Further, one of one pair of screw holes 190a and one of the other pair of screw holes 190a are arranged on the circumference centered on one point on the rotation axis Ar , and with the other of one pair of screw holes 190a. The other of the other pair of screw holes 190a is arranged on a different circumference centered on a point on the axis of rotation Ar .
  • the encoder 160 includes a magnetically patterned magnetic ring 160a, a magnetic sensor 160b for detecting the magnetic field of the magnetic ring 160a, an encoder substrate 160c for controlling the magnetic sensor 160b, and the like. Can be configured with.
  • the magnetic ring 160a is attached to an input rotating body 130 or a member fixed to the input rotating body 130 and rotating at the same time (for example, a motor shaft 132), and rotates together with the input rotating body 130.
  • the magnetic sensor 160b and the encoder board 160c are fixed to the housing 110.
  • the change in the magnetic field due to the rotation of the magnetic ring 160a is detected by the magnetic sensor 160b, and the change is processed by the encoder board 160c to calculate the number of rotations and the position of the input rotating body 130, and the output rotating body is based on this data.
  • the relative position of the 190 with respect to the housing 110 is determined.
  • the magnetic ring 160a of the encoder 160 is attached to the output rotating body 190 or a member fixed to the output rotating body 190, and the rotating joint 100 is configured so that the magnetic change due to the rotation of the output rotating body 190 is detected by the magnetic sensor 160b. May be good.
  • the side cap 112 which is an arbitrary configuration, has a main surface perpendicular to the rotation axis Ar , and can be arranged so as to form a top surface or a bottom surface of the cylindrical shape of the rotation joint 100.
  • the side cap 112 is attached to the housing 110 so as to be attached to and detached from the housing 110 using only frictional force or using screws 114 and 116 (FIGS. 3A and 3B).
  • the side cap 112 can function as a side wall of the space 118 connected to the opening 110 g, and is provided so that the space 118 can be opened in the x direction by removing the side cap 112. Therefore, by removing the side cap 112, the power cable arranged in the space 118 can be visually recognized, and as a result, the state of the power cable can be easily confirmed.
  • the side cap 112 may be provided with a through hole that overlaps with the through hole 110f of the housing 110 in the x direction.
  • the power cable connecting the arm 202-1 and the power supply can be extended from the through hole of the side cap 112 to the through hole 110f of the housing 110, so that the power cable is the manipulator 200. The length of the portion exposed from the can be reduced.
  • the bearing rotary joint 100 includes an input rotating body 130 and an output rotating body 190 as rotatable portions. Therefore, bearings may be provided in order to smoothly rotate these rotating bodies.
  • the arrangement of the bearings is arbitrary, but as shown in FIG. 5, for example, a pair of bearings 140 and 142 can be provided between the output rotating body 190 and the housing 110. Similarly, a pair of bearings 144 and 146 can be provided between the input rotating body 130 and the housing 110.
  • bearings 140, 142, 144, 146 can be provided so as to mesh with the step provided in the housing 110.
  • the housing has a step 110h formed by a surface whose cross section perpendicular to the rotation axis Ar is concentric with the rotation axis Ar and a surface perpendicular to the surface.
  • the bearings 140 and 142 can be arranged at the 110 so as to mesh with the step 110h. That is, the bearings 140 and 142 can be arranged so that the two surfaces of the housing 110 constituting the step 110h are in contact with the bearing 140 or 142 at the same time.
  • the bearing can be stably arranged in the housing 110.
  • the method of fixing the bearings 140, 142, 144, 146 is arbitrary, and they may be simply physically arranged or fixed with screws or adhesives.
  • a groove is formed on the surface of the housing 110, the input rotating body 130, and / or the output rotating body 190 in contact with the bearing, and the bearing is fixed by injecting the adhesive into the groove.
  • You may.
  • a groove 190b may be provided on a part of the surface of the output rotating body 190 in contact with the bearing 140, and an adhesive (not shown) may be injected into the groove 190b.
  • a groove 110i may be provided on a part of the surface where the housing 110 comes into contact with the bearing 142, and the adhesive may be injected into the groove 110i.
  • a groove may be formed in a part of the surface of the input rotating body 130 in contact with the bearing 144 or 146, and an adhesive may be applied to the groove.
  • a groove may be formed on the contact surface, and an adhesive may be provided in the groove.
  • the oil seal reducer 170 uses a relatively large amount of oil to prevent wear.
  • An oil seal can be provided to prevent this oil from leaking to the outside or entering the drive motor 150.
  • the number, structure, and arrangement of oil seals can be selected as appropriate.
  • oil seals 120 and 126 for preventing leakage to the outside are provided between the housing 110 and the output rotating body 190, and further, an oil seal for preventing intrusion into the drive motor 150.
  • 122 and 124 are provided between the housing and the motor shaft 132.
  • the oil seal has a ring shape, and its cross section (a cross section parallel to the rotation axis Ar when placed on the rotary joint 100) is a flat surface on the outside of the oil seal and sharp on the inside. ..
  • these oil seals 120, 122, 124, 126 may be arranged so that the housing 110, which is a fixing portion, is in contact with the outside of the oil seal, or the inside is in contact with the housing 110. It may be arranged.
  • the rotary joint 100 includes an input rotating body 130 and an output rotating body 190 that coaxially rotate around the housing 110, and the output rotating body 190 rotates as an input. While surrounding the body 130, it rotates around the input rotating body 130 in a circumferential shape.
  • the central axis of the cylindrical drive motor 150 that drives the input rotating body 130 may be coaxial with the rotating axis Ar of the input rotating body 130 and the output rotating body 190.
  • the output rotating body 190 is configured so that the arm is connected to an outer surface having a normal line perpendicular to the rotation axis Ar , and the housing 110 has an outer surface having a normal line perpendicular to the rotation axis Ar .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)
  • Retarders (AREA)

Abstract

The present disclosure addresses the problem of providing a rotating joint that functions as a joint for a manipulator. The rotating joint comprises a casing, an input rotating body, a drive motor, and an output rotating body. The input rotating body surrounds at least part of the casing. The drive motor is secured to the casing, surrounds the input rotating body, and causes the input rotating body to rotate about the at least part of the casing. The output rotating body surrounds the drive motor, is such that at least part thereof is exposed from the casing, and rotates coaxially with a rotating shaft of the input rotating body.

Description

回転ジョイントおよび回転ジョイントを有するマニピュレータManipulator with rotary joints and rotary joints
 本発明の実施形態の一つは、マニピュレータの関節部として機能する回転ジョイントおよびこの回転ジョイントを含むマニピュレータに関する。 One of the embodiments of the present invention relates to a rotary joint that functions as a joint portion of a manipulator and a manipulator including this rotary joint.
 現在、産業用のマニピュレータ(ロボット)が様々な分野で利用されている。マニピュレータは、複数のアーム(リンク)、およびアーム同士を連結する関節を基本的な構成として有している。関節は、連結される二つのアームが延伸する方向の間の角度(オフセット角)を変化させる、または連結されるアーム同士のねじれ角を変化させ、これにより、末端のアームに取り付けられるエンドエフェクタを任意の場所に移動することができる。各関節にはモータが取り付けられ、モータを適宜動作させることで産業用ロボットの動きが制御される(特許文献1から3参照)。 Currently, industrial manipulators (robots) are used in various fields. The manipulator has a plurality of arms (links) and joints connecting the arms as a basic configuration. The joint changes the angle (offset angle) between the directions in which the two connected arms extend, or changes the helix angle between the connected arms, thereby providing an end effector attached to the end arm. You can move it to any location. A motor is attached to each joint, and the movement of the industrial robot is controlled by appropriately operating the motor (see Patent Documents 1 to 3).
特開2018-040460号公報Japanese Unexamined Patent Publication No. 2018-040460 特開2012-241723号公報Japanese Unexamined Patent Publication No. 2012-241723 特開2015-161382号公報Japanese Unexamined Patent Publication No. 2015-161382
 本発明の実施形態の一つは、マニピュレータ用の関節として機能する、新規構造を有する回転ジョイントを提供することを課題の一つとする。あるいは、本発明の実施形態の一つは、コンパクトな形状のマニピュレータを構成することができる回転ジョイントを提供することを課題の一つとする。あるいは、本発明の実施形態の一つは、上記回転ジョイントを含むマニピュレータを提供することを課題の一つとする。 One of the tasks of the embodiment of the present invention is to provide a rotary joint having a novel structure that functions as a joint for a manipulator. Alternatively, one of the embodiments of the present invention is to provide a rotary joint capable of forming a manipulator having a compact shape. Alternatively, one of the embodiments of the present invention is to provide a manipulator including the rotary joint.
 本発明の実施形態の一つは、回転ジョイントである。この回転ジョイントは、筐体、入力回転体、駆動モータ、および出力回転体を備える。入力回転体は筐体の少なくとも一部を囲む。駆動モータは筐体に固定され、入力回転体を囲み、入力回転体を筐体の上記少なくとも一部の周りで回転させる。出力回転体は駆動モータを囲み、筐体から少なくとも一部が露出し、入力回転体の回転軸と同軸に回転する。 One of the embodiments of the present invention is a rotary joint. The rotary joint comprises a housing, an input rotating body, a drive motor, and an output rotating body. The input rotating body surrounds at least a part of the housing. The drive motor is fixed to the housing, surrounds the input rotating body, and rotates the input rotating body around at least a part of the housing. The output rotating body surrounds the drive motor, at least a part of which is exposed from the housing, and rotates coaxially with the rotating axis of the input rotating body.
 本発明の実施形態の一つは、マニピュレータである。このマニピュレータは、回転ジョイント、および回転ジョイントに連結される第1のアームを備える。回転ジョイントは、筐体、入力回転体、駆動モータ、および出力回転体を備える。入力回転体は筐体の少なくとも一部を囲む。駆動モータは筐体に固定され、入力回転体を囲み、入力回転体を筐体の上記少なくとも一部の周りで回転させる。出力回転体は駆動モータを囲み、筐体から少なくとも一部が露出し、入力回転体の回転軸と同軸に回転する。第1のアームは、回転ジョイントの出力回転体に連結される。 One of the embodiments of the present invention is a manipulator. The manipulator comprises a rotary joint and a first arm connected to the rotary joint. The rotary joint comprises a housing, an input rotating body, a drive motor, and an output rotating body. The input rotating body surrounds at least a part of the housing. The drive motor is fixed to the housing, surrounds the input rotating body, and rotates the input rotating body around at least a part of the housing. The output rotating body surrounds the drive motor, at least a part of which is exposed from the housing, and rotates coaxially with the rotating axis of the input rotating body. The first arm is connected to the output rotating body of the rotating joint.
 本発明の実施形態の一つは、マニピュレータである。このマニピュレータは、回転ジョイント、および第2のアームを備える。回転ジョイントは、筐体、入力回転体、駆動モータ、および出力回転体を備える。入力回転体は筐体の少なくとも一部を囲む。駆動モータは筐体に固定され、入力回転体を囲み、入力回転体を筐体の上記少なくとも一部の周りで回転させる。出力回転体は駆動モータを囲み、筐体から少なくとも一部が露出し、入力回転体の回転軸と同軸に回転する。筐体は、出力回転体を挟むように配置され、筐体の外表面から回転軸に対して垂直に延伸する一対のねじ穴を有する。第2のアームは、一対のねじ穴を介して固定される。 One of the embodiments of the present invention is a manipulator. This manipulator comprises a rotary joint and a second arm. The rotary joint comprises a housing, an input rotating body, a drive motor, and an output rotating body. The input rotating body surrounds at least a part of the housing. The drive motor is fixed to the housing, surrounds the input rotating body, and rotates the input rotating body around at least a part of the housing. The output rotating body surrounds the drive motor, at least a part of which is exposed from the housing, and rotates coaxially with the rotating axis of the input rotating body. The housing is arranged so as to sandwich the output rotating body, and has a pair of screw holes extending perpendicularly to the rotation axis from the outer surface of the housing. The second arm is fixed via a pair of screw holes.
本発明の実施形態の一つに係る回転ジョイント、および回転ジョイントを含むマニピュレータの模式的斜視図。A rotary joint according to one of the embodiments of the present invention, and a schematic perspective view of a manipulator including the rotary joint. 本発明の実施形態の一つに係る回転ジョイントの構造を示す概念図。The conceptual diagram which shows the structure of the rotary joint which concerns on one of the Embodiments of this invention. 本発明の実施形態の一つに係る回転ジョイントの模式的斜視図。The schematic perspective view of the rotary joint which concerns on one of the Embodiments of this invention. 本発明の実施形態の一つに係る回転ジョイントの模式的斜視図。The schematic perspective view of the rotary joint which concerns on one of the Embodiments of this invention. 本発明の実施形態の一つに係る回転ジョイントの模式的断面斜視図。Schematic cross-sectional perspective view of a rotary joint according to one of the embodiments of the present invention. 本発明の実施形態の一つに係る回転ジョイントの模式的断面図。Schematic cross-sectional view of a rotary joint according to one of the embodiments of the present invention. 本発明の実施形態の一つに係る回転ジョイントの一部の模式的断面図。Schematic cross-sectional view of a part of a rotary joint according to one of the embodiments of the present invention. 本発明の実施形態の一つに係る回転ジョイントの一部の模式的断面図。Schematic cross-sectional view of a part of a rotary joint according to one of the embodiments of the present invention. 本発明の実施形態の一つに係る回転ジョイントの一部の模式的断面図。Schematic cross-sectional view of a part of a rotary joint according to one of the embodiments of the present invention.
 以下、本発明の実施形態に係る回転ジョイント100および回転ジョイント100を含むマニピュレータ200について、図面等を参照しつつ説明する。ただし、本発明は、その要旨を逸脱しない範囲において様々な態様で実施することができ、以下に例示する実施形態の記載内容に限定して解釈されるものではない。 Hereinafter, the manipulator 200 including the rotary joint 100 and the rotary joint 100 according to the embodiment of the present invention will be described with reference to the drawings and the like. However, the present invention can be carried out in various embodiments without departing from the gist thereof, and is not construed as being limited to the description contents of the embodiments exemplified below.
 図面は、説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。本明細書と各図において、既出の図に関して説明したものと同様の機能を備えた要素には、同一の符号を付して、重複する説明を省略することがある。同一または類似する構成を有する複数の要素を個別に表す場合には符号にハイフンと自然数を用い、これら複数の要素を区別することなく、複数または個々の要素を表す場合には符号のみを用いる。また、一つの要素の部分を表す場合には、符号と小文字のアルファベットを用いる。 The drawings may schematically represent the width, thickness, shape, etc. of each part as compared with the actual embodiment in order to clarify the explanation, but the drawings are merely examples and limit the interpretation of the present invention. It's not something to do. In the present specification and each figure, elements having the same functions as those described with respect to the above-mentioned figures may be designated by the same reference numerals and duplicate description may be omitted. Hyphens and natural numbers are used as symbols when representing multiple elements having the same or similar composition individually, and only the code is used when representing multiple or individual elements without distinguishing between these multiple elements. When representing a part of one element, a code and a lowercase alphabet are used.
 本明細書および特許請求の範囲において、ある構造体の上に他の構造体を配置する態様を表現するにあたり、単に「上に」と表記する場合、特に断りの無い限りは、ある構造体に接するように、直上に他の構造体を配置する場合と、ある構造体の上方に、さらに別の構造体を介して他の構造体を配置する場合との両方を含むものとする。 In the present specification and the scope of patent claims, when expressing an aspect of arranging another structure on one structure, when the term "above" is simply used, the structure shall be used unless otherwise specified. It includes both the case where another structure is placed directly above the structure so as to be in contact with each other, and the case where another structure is placed above one structure via yet another structure.
 以下、「ある構造体が他の構造体から露出する」という表現は、ある構造体の一部が他の構造体によって覆われていない態様を意味し、この他の構造体によって覆われていない部分は、さらに別の構造体によって覆われる態様も含む。 Hereinafter, the expression "a structure is exposed from another structure" means an aspect in which a part of one structure is not covered by another structure, and is not covered by another structure. The portion also includes an embodiment covered by yet another structure.
1.マニピュレータ
 図1に回転ジョイント100および回転ジョイント100を含むマニピュレータ200の模式的斜視図を示す。詳細は後述するが、この図においては、回転ジョイント100に関しては、その構成の一部である筐体110と出力回転体190が図示されている。
1. 1. Manipulator FIG. 1 shows a schematic perspective view of a manipulator 100 including a rotary joint 100 and a rotary joint 100. Details will be described later, but in this figure, the housing 110 and the output rotating body 190, which are a part of the structure of the rotating joint 100, are shown.
 回転ジョイント100は、全体として円柱形状を有しており、筐体110の一部はこの円柱形状の側面の一部を構成する。出力回転体190は円筒形状を有し、回転ジョイント100の円柱形状の側面の一部を構成する。後述するように、出力回転体190は、この円柱形状の中心軸(円柱形状の上面と底面の中心を貫通する軸であり、図中、x方向に平行な回転軸Ar)を中心に筐体110の一部の周りを回転する(図中、矢印216)。出力回転体190は、x方向において筐体110の一部に挟まれるように配置される。ここで、円柱とは互いに平行な上面と底面、および上面と底面を接続する湾曲した側面から形成される三次元形状を指す。上面、底面、および側面の上面または底面に平行な断面は円であり、側面は、上面と底面の中心を貫通する軸に対して垂直な法線を有する面である。以下、便宜上、x方向においてより正側の面(図1に図示される右側の面)を上面とし、これに対向する図示されない面を底面とする。 The rotary joint 100 has a cylindrical shape as a whole, and a part of the housing 110 constitutes a part of a side surface of the cylindrical shape. The output rotating body 190 has a cylindrical shape and constitutes a part of the cylindrical side surface of the rotating joint 100. As will be described later, the output rotating body 190 is housed around the central axis of the cylindrical shape (the axis penetrating the center of the upper surface and the bottom surface of the cylindrical shape, and the rotating axis Ar parallel to the x direction in the drawing). It rotates around a part of the body 110 (arrow 216 in the figure). The output rotating body 190 is arranged so as to be sandwiched between a part of the housing 110 in the x direction. Here, the cylinder refers to a three-dimensional shape formed from a top surface and a bottom surface parallel to each other and a curved side surface connecting the top surface and the bottom surface. The cross section of the top surface, bottom surface, and side surface parallel to the top surface or bottom surface is a circle, and the side surface is a surface having a normal line perpendicular to the axis penetrating the center of the top surface and bottom surface. Hereinafter, for convenience, the surface on the more positive side in the x direction (the surface on the right side shown in FIG. 1) is referred to as the upper surface, and the surface facing the surface (not shown) is referred to as the bottom surface.
 回転ジョイント100には、少なくとも二つのアーム202を連結することができる。一方のアーム202-1は、出力回転体190に直接、またはコネクタ204などの間接部材を介し、ねじなどによって連結される。アーム202-1またはコネクタ204には、アーム202-1が延伸する方向に延伸する回転軸(アーム回転軸)を中心にアーム202-1を回転させるモータ(図示しない)を内蔵することができ、これにより、出力回転体190の回転による回転軸Arを中心とする回転機能(図中、矢印208)、および内臓モータによるアーム回転軸を中心とする回転機能(図中、矢印210)をアーム202-1に付与することができる。 At least two arms 202 can be connected to the rotary joint 100. One arm 202-1 is connected to the output rotating body 190 directly or via an indirect member such as a connector 204 by a screw or the like. The arm 202-1 or the connector 204 can incorporate a motor (not shown) that rotates the arm 202-1 around a rotation axis (arm rotation axis) that extends in the direction in which the arm 202-1 extends. As a result, the rotation function centered on the rotation axis Ar due to the rotation of the output rotating body 190 (arrow 208 in the figure) and the rotation function centering on the arm rotation axis by the built-in motor (arrow 210 in the figure) are armed. It can be given to 202-1.
 アーム202-1を出力回転体190に連結することにより、回転ジョイント100が有する円柱形状の上面または底面ではなく側面からアーム202-1を延伸させることができる。このため、回転ジョイント100との連結時にアーム202-1をx方向にオフセットさせる必要がなく、マニピュレータ200がx方向に嵩張ることを防ぐことができ、コンパクトな形状を有するマニピュレータを提供することができる。図示しないが、アーム202-1の回転ジョイント100とは反対の端部には、エンドエフェクタを連結してもよい。 By connecting the arm 202-1 to the output rotating body 190, the arm 202-1 can be extended from the side surface instead of the upper surface or the bottom surface of the cylindrical shape of the rotating joint 100. Therefore, it is not necessary to offset the arm 202-1 in the x direction when connecting to the rotary joint 100, it is possible to prevent the manipulator 200 from becoming bulky in the x direction, and it is possible to provide a manipulator having a compact shape. .. Although not shown, an end effector may be connected to the end of the arm 202-1 opposite to the rotary joint 100.
 他方のアーム202-2は、筐体110に連結される。ここで、アーム202-2は、筐体110が構成する円柱形状の上面や底面ではなく、側面に連結される。より具体的には、筐体110の出力回転体190を挟持する部分のうち、回転軸Arに対して垂直な法線を有する表面にアーム202-2が直接、またはコネクタ206を介して連結される。アーム202-2またはコネクタ206にはモータ(図示しない)が内蔵され、このモータによってアーム202-2が延伸する方向に延伸する回転軸を中心とする回転機能(図中、矢印212)がアーム202-2に与えられる。この回転機能により、回転ジョイント100とアーム202-1をアーム202-2の回転軸を中心に回転することができる。 The other arm 202-2 is connected to the housing 110. Here, the arm 202-2 is connected to the side surface of the housing 110, not to the upper surface or the bottom surface of the cylindrical shape. More specifically, the arm 202-2 is directly connected to the surface of the portion of the housing 110 that sandwiches the output rotating body 190 and has a normal line perpendicular to the rotation axis Ar , or is connected via the connector 206. Will be done. A motor (not shown) is built in the arm 202-2 or the connector 206, and the arm 202 has a rotation function (arrow 212 in the figure) centered on a rotation axis in which the arm 202-2 extends in the extending direction by the motor. Given to -2. With this rotation function, the rotation joint 100 and the arm 202-1 can be rotated about the rotation axis of the arm 202-2.
 上述したように、アーム202-2は筐体110が構成する円柱形状の上面や底面ではなく側面に固定される。このため、回転ジョイント100との連結時にアーム202-2をx方向にオフセットさせる必要がない。また、アーム202-2の固定の際、回転ジョイント100をx方向において挟持するクランプなどの固定部材を使用する必要がない。このため、マニピュレータ200がx方向に嵩張ることを防ぐことができ、コンパクトな形状を有するマニピュレータを提供することができる。 As described above, the arm 202-2 is fixed to the side surface of the housing 110 instead of the top surface or the bottom surface of the cylindrical shape. Therefore, it is not necessary to offset the arm 202-2 in the x direction when connecting to the rotary joint 100. Further, when fixing the arm 202-2, it is not necessary to use a fixing member such as a clamp that clamps the rotary joint 100 in the x direction. Therefore, it is possible to prevent the manipulator 200 from becoming bulky in the x direction, and it is possible to provide a manipulator having a compact shape.
2.回転ジョイント
 以下、回転ジョイント100の構造を図2から図8を用いて説明する。図2は回転ジョイント100の構造を説明するための概念図であり、図3Aと図3Bは回転ジョイント100の一例の全体を表す模式的斜視図である。図2では、見やすさを考慮し、筐体110は一部のみが示されており、出力回転体190は点線で示されている。図4と図5はそれぞれ回転ジョイント100の一例の模式的な断面斜視図と断面図である。図6は図5に対応する模式的断面図であり、ここでは、筐体110以外の部材は点線で示されている。図7と図8は、回転ジョイント100の一例の一部の模式的断面図である。
2. 2. Rotating joint Hereinafter, the structure of the rotating joint 100 will be described with reference to FIGS. 2 to 8. FIG. 2 is a conceptual diagram for explaining the structure of the rotary joint 100, and FIGS. 3A and 3B are schematic perspective views showing the entire example of the rotary joint 100. In FIG. 2, for ease of viewing, only a part of the housing 110 is shown, and the output rotating body 190 is shown by a dotted line. 4 and 5 are a schematic cross-sectional perspective view and a cross-sectional view of an example of the rotary joint 100, respectively. FIG. 6 is a schematic cross-sectional view corresponding to FIG. 5, in which members other than the housing 110 are shown by dotted lines. 7 and 8 are schematic cross-sectional views of a part of an example of the rotary joint 100.
2-1.概要
 回転ジョイント100は、上述した筐体110と出力回転体190に加え、入力回転体130と駆動モータ150を基本的な構成として備える(図2)。回転ジョイント100はさらに、入力回転体130の回転駆動力を出力回転体190に伝達する減速機170を有することができる。駆動モータ150によって入力回転体130が筐体110の一部の周りを円周状に回転する。入力回転体130の回転駆動力は減速機170を介して出力回転体190に伝達することができ、出力回転体190が筐体110の一部、入力回転体130、および駆動モータ150を囲みながら、これらの周りを円周状に回転する。出力回転体190と入力回転体130の回転軸は同軸であり、回転軸Arである。
2-1. Overview The rotary joint 100 includes an input rotating body 130 and a drive motor 150 as a basic configuration in addition to the housing 110 and the output rotating body 190 described above (FIG. 2). The rotary joint 100 can further include a speed reducer 170 that transmits the rotational driving force of the input rotating body 130 to the output rotating body 190. The drive motor 150 causes the input rotating body 130 to rotate around a part of the housing 110 in a circumferential shape. The rotational driving force of the input rotating body 130 can be transmitted to the output rotating body 190 via the speed reducer 170, while the output rotating body 190 surrounds a part of the housing 110, the input rotating body 130, and the drive motor 150. , Rotate around these in a circle. The axis of rotation of the output rotating body 190 and the input rotating body 130 is coaxial, and is the rotation axis Ar .
 後述するように、回転ジョイント100はさらに、出力回転体190の位置を判断するためのエンコーダ160、回転ジョイント100の円柱形状の上面と底面に相当する部分にサイドキャップ112などを任意の構成として備えてもよい(図3Aから図6参照)。また、図示しないが、入力回転体130や出力回転体190の動作を停止するためのブレーキを設けてもよい。 As will be described later, the rotary joint 100 is further provided with an encoder 160 for determining the position of the output rotating body 190, side caps 112 on the portions corresponding to the upper and lower surfaces of the cylindrical shape of the rotary joint 100, and the like as an arbitrary configuration. It may be (see FIGS. 3A to 6). Further, although not shown, a brake may be provided to stop the operation of the input rotating body 130 and the output rotating body 190.
2-2.筐体
(1)構造と機能
 筐体110の構成や構造に制約はないが、図4と図5に示すように、筐体110は、筐体110内に固定される駆動モータ150と減速機170を固定し、可動部である入力回転体130と出力回転体190を収容するように構成される。また、筐体110は、その一部が入力回転体130に囲まれ、入力回転体130の内部を覆うように構成される。さらに、筐体110は、一部がx方向において出力回転体190を挟むように構成される。筐体110は、円柱形状の上面と底面に相当する部分においてサイドキャップ112を固定できるように構成されてもよい。
2-2. Housing (1) Structure and function There are no restrictions on the configuration or structure of the housing 110, but as shown in FIGS. 4 and 5, the housing 110 includes a drive motor 150 and a speed reducer fixed in the housing 110. The 170 is fixed and configured to accommodate the input rotating body 130 and the output rotating body 190 which are movable parts. Further, the housing 110 is configured so that a part thereof is surrounded by the input rotating body 130 and covers the inside of the input rotating body 130. Further, the housing 110 is configured so as to partially sandwich the output rotating body 190 in the x direction. The housing 110 may be configured so that the side cap 112 can be fixed at the portions corresponding to the upper surface and the bottom surface of the cylindrical shape.
 例えば図6に示すように、筐体110の一部であるパーツ110aは、入力回転体130を挟み込むように収容し、入力回転体130の内側を覆うことで入力回転体130を保護するとともに、減速機170を固定する支持体として機能する。 For example, as shown in FIG. 6, the part 110a, which is a part of the housing 110, accommodates the input rotating body 130 so as to sandwich it, and covers the inside of the input rotating body 130 to protect the input rotating body 130 and protect the input rotating body 130. It functions as a support for fixing the speed reducer 170.
 筐体110の他の一部であるパーツ110bは、筐体110に十分な物理的強度を付与するとともに、x方向において出力回転体190の側面を覆い、出力回転体190を挟む。パーツ110bと出力回転体190の外表面(回転軸Arに垂直な法線を有する外表面)によって円柱形状の側面が構成される。パーツ110bと出力回転体190の外表面は、同一曲面上であってもよい。すなわち、回転軸Arに対して垂直な方向において、回転軸Arから筐体110の外表面までの距離と、回転軸Arから出力回転体190の外表面までの距離は同一でもよい。あるいは、これらの距離の差は、1mm以上10mm以下であってもよい。このように筐体110と出力回転体190を構成することにより、デザイン性が向上するだけでなく、アーム202の回転時にアーム202と筐体110との干渉を防ぐことができる。なお、ここで、各部材の外表面とは、回転軸Arに対して垂直な方向において回転軸Arから遠い方の面を指す。 The part 110b, which is another part of the housing 110, imparts sufficient physical strength to the housing 110, covers the side surface of the output rotating body 190 in the x direction, and sandwiches the output rotating body 190. The outer surface of the part 110b and the output rotating body 190 (the outer surface having a normal line perpendicular to the axis of rotation Ar ) constitutes a cylindrical side surface. The outer surface of the part 110b and the output rotating body 190 may be on the same curved surface. That is, in the direction perpendicular to the rotation axis Ar , the distance from the rotation axis Ar to the outer surface of the housing 110 and the distance from the rotation axis Ar to the outer surface of the output rotating body 190 may be the same. Alternatively, the difference between these distances may be 1 mm or more and 10 mm or less. By configuring the housing 110 and the output rotating body 190 in this way, not only the design can be improved, but also the interference between the arm 202 and the housing 110 can be prevented when the arm 202 is rotated. Here, the outer surface of each member refers to a surface far from the rotation axis Ar in the direction perpendicular to the rotation axis Ar .
 筐体110のさらに他の部分であるパーツ110cは、パーツ110bと協同的に駆動モータ150や入力回転体130を覆うことでこれらを保護するとともに、エンコーダ160を固定するための支持体として用いることができる。 The part 110c, which is still another part of the housing 110, protects the drive motor 150 and the input rotating body 130 by covering the drive motor 150 and the input rotating body 130 in cooperation with the part 110b, and is used as a support for fixing the encoder 160. Can be done.
 筐体110のさらに他の部分であるパーツ110dは、サイドキャップ112を固定するためのリブとして機能することができる。パーツ110dは、サイドキャップ112を筐体110の他の部分(例えばパーツ110a、110bなど)から離隔して回転ジョイント100内部に空間118を形成するように構成することができる。パーツ110dには回転軸Arが通る開口を設けることができ、これにより、サイドキャップ112を取り外すことで空間118をx方向に開放することができる。 The part 110d, which is still another part of the housing 110, can function as a rib for fixing the side cap 112. The part 110d can be configured to separate the side cap 112 from other parts of the housing 110 (eg, parts 110a, 110b, etc.) to form a space 118 inside the rotary joint 100. The part 110d can be provided with an opening through which the rotation axis Ar passes, whereby the space 118 can be opened in the x direction by removing the side cap 112.
 上述したパーツ110a、110b、110c、110dは機能によって定義されており、必ずしも物理的に分離可能である必要は無い。また、筐体110は、上述したパーツ110a、110b、110c、110d以外のパーツを含んでもよい。したがって、筐体110は一体化された一つの構造体であってもよく、複数のパーツがボルトまたは接着剤などによって固定されることで構成されてもよい。例えば、上述したパーツ110aから110dは一体化されていてもよく、あるいは互いに接続された独立した部材であってもよい。筐体110は鉄やアルミニウム、チタンなどの金属材料やステンレスなどの合金材料で構成してもよく、あるいは繊維強化プラスチックなどの高分子を含む材料で構成してもよい。 The above-mentioned parts 110a, 110b, 110c, 110d are defined by functions and do not necessarily have to be physically separable. Further, the housing 110 may include parts other than the above-mentioned parts 110a, 110b, 110c and 110d. Therefore, the housing 110 may be a single integrated structure, or may be configured by fixing a plurality of parts with bolts, adhesives, or the like. For example, the above-mentioned parts 110a to 110d may be integrated or may be independent members connected to each other. The housing 110 may be made of a metal material such as iron, aluminum or titanium, or an alloy material such as stainless steel, or may be made of a material containing a polymer such as fiber reinforced plastic.
(2)貫通孔
 図2や図4、図5に示されるように、筐体110は、回転軸Arに沿って延伸し、空間118と繋がる貫通孔110fを有してもよい。貫通孔110fの大きさは任意に設定でき、例えばその直径は、1cm以上20cm以下の範囲から適宜選択すればよい。貫通孔110fを設けることで、回転ジョイント100は所謂中空構造を有することになり、この貫通孔110fを利用することで、アーム202-1、202-2を駆動するモータやこれらに搭載されるセンサのための電源ケーブルを貫通孔110fを通して配置することができる。その結果、マニピュレータ200の電源ケーブルが外部に露出する部分を大幅に低減することができる。このことは、高いデザイン性を有するマニピュレータ200の提供のみならず、電源ケーブルの干渉による事故や動作不良を防止することにも寄与する。
(2) Through hole As shown in FIGS. 2, 4 and 5, the housing 110 may have a through hole 110f extending along the rotation axis Ar and connecting to the space 118. The size of the through hole 110f can be arbitrarily set, and for example, the diameter thereof may be appropriately selected from the range of 1 cm or more and 20 cm or less. By providing the through hole 110f, the rotary joint 100 has a so-called hollow structure, and by using this through hole 110f, the motor for driving the arms 202-1 and 202-2 and the sensor mounted on these are used. A power cable for can be arranged through the through hole 110f. As a result, the portion where the power cable of the manipulator 200 is exposed to the outside can be significantly reduced. This contributes not only to the provision of the manipulator 200 having high design, but also to the prevention of accidents and malfunctions due to the interference of the power cable.
(3)開口
 筐体110にはさらに、駆動モータ150を電源と接続するための電源ケーブルやアーム202から延伸する電源ケーブルを挿入するための開口110gを設けることができる(図2、図4、図5参照)。開口110gは、筐体110の外表面のうち、回転軸Arに対して垂直な法線を有する表面に設けられる。貫通孔110fが設けられる場合には、開口110gは貫通孔110fへ繋がるように形成され、空間118は開口110gへ繋がる。
(3) Opening The housing 110 may be further provided with an opening 110g for inserting a power cable for connecting the drive motor 150 to a power source and a power cable extending from the arm 202 (FIGS. 2 and 4). See FIG. 5). The opening 110g is provided on the outer surface of the housing 110 having a normal line perpendicular to the rotation axis Ar . When the through hole 110f is provided, the opening 110g is formed so as to be connected to the through hole 110f, and the space 118 is connected to the opening 110g.
 開口110gは少なくとも二つ、好ましくは4つまたはそれ以上設けられる。開口110gを二つ設ける場合には、開口110gはいずれも出力回転体190に対して同じ側に設けられ、かつ、二つの開口110gが回転軸Arを介して重なるように配置すればよい。二つの開口110gは空間118を介して繋がり、電源ケーブルを一方の開口110gから空間118を介して他方の開口110gへ通すことができる。開口110gを四つ設ける場合には、一方の対の開口110gを出力回転体190に対して一方の側に設け、かつ、これらの開口110gが回転軸Arを介して互いに重なるように配置する。一方、他方の対の開口110gは、出力回転体190に対して一方の対の開口110gとは反対側に設け、かつ、他方の対の開口110g同士が回転軸Arを介して互いに重なるように配置する。いずれの対の開口110gも空間118と繋がるため、電源ケーブルを上面側と底面側の両方に配することが可能となり、配線の配置自由度を向上させることができる。 The openings 110g are provided at least two, preferably four or more. When two openings 110g are provided, both of the openings 110g may be provided on the same side with respect to the output rotating body 190, and the two openings 110g may be arranged so as to overlap each other via the rotation axis Ar . The two openings 110g are connected via the space 118, and the power cable can be passed from one opening 110g to the other opening 110g via the space 118. When four openings 110g are provided, one pair of openings 110g is provided on one side of the output rotating body 190, and these openings 110g are arranged so as to overlap each other via the rotation axis Ar . .. On the other hand, the other pair of openings 110g is provided on the side opposite to the one pair of openings 110g with respect to the output rotating body 190, and the other pair of openings 110g overlap each other via the rotation axis Ar. Place in. Since each pair of openings 110 g is connected to the space 118, the power cable can be arranged on both the top surface side and the bottom surface side, and the degree of freedom in wiring arrangement can be improved.
(4)ねじ穴
 筐体110にはさらに、アーム202-2との接続のためのねじ穴110eを設けることができる(図3A、図3B、図4)。ねじ穴110eは、筐体110の回転軸Arに垂直な法線を有する外表面、すなわち、円柱形状の側面を構成する面から回転軸Arに対して垂直な方向に延伸する。ねじ穴110eは少なくとも二つ設けることが好ましく、四つのねじ穴110eを設けてもよい。二つのねじ穴110eを設ける場合、これらは出力回転体190を挟むように設けられる。四つのねじ穴110eを設ける場合には、一方の対のねじ穴110eを出力回転体190の一方の側に設け、他方の対のねじ穴110eを出力回転体190の他方の側に設ける。好ましくは、一対のねじ穴110eが開口110gを挟むように設ける。このようにねじ穴110eを設けることで、開口110gの近傍に一対のねじ穴110eを配置できるので、アーム202-2を確実に連結できるのみならず、アーム202-2から延伸する電源ケーブルがマニピュレータ200から露出する部分の長さを低減することができる。
(4) Screw holes The housing 110 can be further provided with screw holes 110e for connecting to the arm 202-2 (FIGS. 3A, 3B, 4). The screw hole 110e extends in a direction perpendicular to the rotation axis Ar from the outer surface having a normal line perpendicular to the rotation axis Ar of the housing 110, that is, the surface constituting the side surface of the cylindrical shape. It is preferable to provide at least two screw holes 110e, and four screw holes 110e may be provided. When two screw holes 110e are provided, they are provided so as to sandwich the output rotating body 190. When the four screw holes 110e are provided, one pair of screw holes 110e is provided on one side of the output rotating body 190, and the other pair of screw holes 110e is provided on the other side of the output rotating body 190. Preferably, a pair of screw holes 110e are provided so as to sandwich the opening 110g. By providing the screw holes 110e in this way, a pair of screw holes 110e can be arranged in the vicinity of the opening 110g, so that not only the arm 202-2 can be reliably connected, but also the power cable extending from the arm 202-2 is a manipulator. The length of the portion exposed from 200 can be reduced.
2-3.入力回転体
 入力回転体130は、少なくとも筐体110の一部(例えば上述したパーツ110a)を囲む筒状の形状を有し、筐体110の一部の周りを円周状に回転するように配置される(図2、図4、図5)。入力回転体130には永久磁石が配置されており、駆動モータ150に流れる電流による誘導作用によって駆動される。
2-3. Input rotating body The input rotating body 130 has a cylindrical shape that surrounds at least a part of the housing 110 (for example, the above-mentioned part 110a), and rotates around a part of the housing 110 in a circumferential shape. Arranged (FIGS. 2, 4, 5). A permanent magnet is arranged on the input rotating body 130, and is driven by an induction action by a current flowing through the drive motor 150.
 入力回転体130の大きさに制約はなく、その内径は入力回転体130によって囲まれる筐体110の一部(例えば、パーツ110a)の外径以上であればよい。入力回転体130の外径は、例えば3cmよりも大きく50cm以下の範囲で選択することができる。入力回転体130の長さ(x方向における長さ)も任意に設定でき、例えば10cm以上50cm以下の範囲から選択すればよい。 There is no limitation on the size of the input rotating body 130, and the inner diameter thereof may be equal to or larger than the outer diameter of a part of the housing 110 (for example, the part 110a) surrounded by the input rotating body 130. The outer diameter of the input rotating body 130 can be selected in the range of, for example, larger than 3 cm and 50 cm or less. The length (length in the x direction) of the input rotating body 130 can be arbitrarily set, and may be selected from a range of, for example, 10 cm or more and 50 cm or less.
2-4.駆動モータ
 駆動モータ150は、入力回転体130を回転させるための筒状の形状を有するモータであり、筐体110に固定され、入力回転体130の外周の少なくとも一部を囲むように設けられる。駆動モータ150が形成する円筒の形状の中心軸は、回転軸Arと同軸でもよい。駆動モータ150には、空間118と開口110gを経由する電源ケーブルを介して外部電源から電源が供給され、この電気エネルギーが入力回転体130の回転に利用される。
2-4. Drive motor The drive motor 150 is a motor having a cylindrical shape for rotating the input rotating body 130, is fixed to the housing 110, and is provided so as to surround at least a part of the outer periphery of the input rotating body 130. The central axis of the cylindrical shape formed by the drive motor 150 may be coaxial with the rotation axis Ar . Power is supplied to the drive motor 150 from an external power source via a power cable passing through the space 118 and the opening 110 g, and this electric energy is used for the rotation of the input rotating body 130.
 駆動モータ150の固定方法は任意であり、ねじで固定してもよく、接着剤を用いて固定してもよい。後者の場合、図7に示すように、筐体110の駆動モータ150が接触する面に溝110iを設け、この溝110iに接着剤を注入してもよい。これにより、十分な量の接着剤で駆動モータ150の固定ができるため、回転ジョイント100内に駆動モータ150を強固に固定することができる。また、ねじを用いる必要がなくなるため、回転ジョイント100の軽量化が可能となる。 The method of fixing the drive motor 150 is arbitrary, and it may be fixed with screws or may be fixed with an adhesive. In the latter case, as shown in FIG. 7, a groove 110i may be provided on the surface of the housing 110 in contact with the drive motor 150, and the adhesive may be injected into the groove 110i. As a result, the drive motor 150 can be fixed with a sufficient amount of adhesive, so that the drive motor 150 can be firmly fixed in the rotary joint 100. Further, since it is not necessary to use a screw, the weight of the rotary joint 100 can be reduced.
2-5.減速機
 減速機170は、入力回転体130の回転数を減じるとともに、入力回転体130から得られる回転駆動力を出力回転体190に伝達し、入力回転体130の回転数よりも低い回転数で出力回転体190を回転するように構成される。減速機170は、出力回転体190の回転方向が入力回転体130の回転方向と同一になるように構成されていてもよく、回転方向が互いに反対になるように構成されていてもよい。
2-5. Reducer The speed reducer 170 reduces the rotation speed of the input rotating body 130 and transmits the rotation driving force obtained from the input rotating body 130 to the output rotating body 190 at a rotation speed lower than the rotation speed of the input rotating body 130. The output rotating body 190 is configured to rotate. The speed reducer 170 may be configured so that the rotation direction of the output rotating body 190 is the same as the rotation direction of the input rotating body 130, or the rotation directions may be opposite to each other.
 減速機170の構成にも制約はなく、例えばサーキュラスプライン170a、ウェーブジェネレータ170b、およびフレキシブルスプライン170cなどによって構成することができる(図5)。サーキュラスプライン170aとフレキシブルスプライン170cはそれぞれ出力回転体190と筐体110に固定される。一方、ウェーブジェネレータ170bは、入力回転体130に直接または間接的に接続される。減速機170の固定方法は任意に選択され、接着剤やボルト、ねじなどを用いて行えばよい。図4と図5に示した例では、入力回転体130にはモータ軸132が接続され、モータ軸132を介して入力回転体130がウェーブジェネレータ170bにボルトによって固定される。したがって、入力回転体130の回転はモータ軸132を介してウェーブジェネレータ170bに伝達される。同様に、フレキシブルスプライン170cもボルトによって筐体110に固定される。サーキュラスプライン170aの内側とフレキシブルスプライン170cの外側には歯が刻まれているが、後者の歯数は前者の歯数より多いため、入力回転体130の回転数よりも少ない回転数でサーキュラスプライン170aが回転し、これに伴い、減速機170によって増大されたトルクで出力回転体190が回転する。 There are no restrictions on the configuration of the speed reducer 170, and it can be configured by, for example, a circular spline 170a, a wave generator 170b, a flexible spline 170c, or the like (FIG. 5). The circular spline 170a and the flexible spline 170c are fixed to the output rotating body 190 and the housing 110, respectively. On the other hand, the wave generator 170b is directly or indirectly connected to the input rotating body 130. The fixing method of the speed reducer 170 is arbitrarily selected, and may be performed by using an adhesive, bolts, screws, or the like. In the example shown in FIGS. 4 and 5, a motor shaft 132 is connected to the input rotating body 130, and the input rotating body 130 is fixed to the wave generator 170b by a bolt via the motor shaft 132. Therefore, the rotation of the input rotating body 130 is transmitted to the wave generator 170b via the motor shaft 132. Similarly, the flexible spline 170c is also fixed to the housing 110 by bolts. The inside of the circular spline 170a and the outside of the flexible spline 170c are engraved with teeth, but since the number of teeth in the latter is larger than the number of teeth in the former, the number of rotations in the latter is less than the number of rotations in the input rotating body 130. Rotates, and along with this, the output rotating body 190 rotates with the torque increased by the speed reducer 170.
2-6.出力回転体
 出力回転体190は、外観が概ね筒状の形状を有する回転体であり、その筒状形状の内部に入力回転体130によって囲まれる筐体110の一部のみならず、駆動モータ150、入力回転体130が配置される(図2、図4、図5)。換言すると、出力回転体190は、筐体110の一部、駆動モータ150、および入力回転体130を囲むように構成される。入力回転体130の回転が減速機170によって出力回転体190に伝達され、その結果、出力回転体190が筐体110の一部、入力回転体130、および駆動モータ150の周囲を円周状に回転する。出力回転体190の回転軸は入力回転体130のそれと同軸であり、いずれの回転体も回転軸Arを中心として回転する。出力回転体190に含まれる材料としては、例えば鉄やアルミニウム、チタンなどの金属、あるいはステンレスなどの合金が挙げられる。
2-6. The output rotating body The output rotating body 190 is a rotating body having a substantially cylindrical shape in appearance, and is not only a part of the housing 110 surrounded by the input rotating body 130 inside the tubular shape, but also the drive motor 150. , The input rotating body 130 is arranged (FIG. 2, FIG. 4, FIG. 5). In other words, the output rotating body 190 is configured to surround a part of the housing 110, the drive motor 150, and the input rotating body 130. The rotation of the input rotating body 130 is transmitted to the output rotating body 190 by the speed reducer 170, and as a result, the output rotating body 190 rotates around a part of the housing 110, the input rotating body 130, and the drive motor 150. Rotate. The rotation axis of the output rotating body 190 is coaxial with that of the input rotating body 130, and each rotating body rotates about the rotation axis Ar . Examples of the material contained in the output rotating body 190 include metals such as iron, aluminum and titanium, and alloys such as stainless steel.
 出力回転体190は、少なくとも一部が筐体から露出し、その露出した面、すなわち、外表面(回転軸Arに対して垂直な法線を有する面)にもアーム202-1との接続のためのねじ穴190aを設けることができる(図3Aから図5)。ねじ穴190aは、出力回転体190の外表面から回転軸Arに対して垂直な方向に延伸する。ねじ穴190aは少なくとも二つ設けることが好ましく、四つのねじ穴190aを設けてもよい。二つのねじ穴190aを設ける場合、これらは回転軸Arに平行な直線上に位置するように配置される。四つのねじ穴110eを設ける場合には、一方の対のねじ穴190aが回転軸Arに平行な直線上に位置するように配置され、他方のねじ穴190aも回転軸Arに平行な異なる直線上に位置するように配置される。さらに、一方の対のねじ穴190aの一つと他方の対のねじ穴190aの一つが回転軸Ar上の一点を中心とする円周上に配置され、一方の対のねじ穴190aの他方と他方の対のねじ穴190aの他方が回転軸Ar上の一点を中心とする異なる円周上に配置される。このようにねじ穴190aを設けることで、アーム202-1を出力回転体190に確実に連結することができる。 At least a part of the output rotating body 190 is exposed from the housing, and the exposed surface, that is, the outer surface (the surface having a normal line perpendicular to the rotation axis Ar ) is also connected to the arm 202-1. A screw hole 190a for the purpose can be provided (FIGS. 3A to 5). The screw hole 190a extends from the outer surface of the output rotating body 190 in a direction perpendicular to the rotation axis Ar . It is preferable to provide at least two screw holes 190a, and four screw holes 190a may be provided. When two screw holes 190a are provided, they are arranged so as to be located on a straight line parallel to the axis of rotation Ar . When four screw holes 110e are provided, one pair of screw holes 190a is arranged so as to be located on a straight line parallel to the rotation axis Ar , and the other screw holes 190a are also different parallel to the rotation axis Ar. It is arranged so that it is located on a straight line. Further, one of one pair of screw holes 190a and one of the other pair of screw holes 190a are arranged on the circumference centered on one point on the rotation axis Ar , and with the other of one pair of screw holes 190a. The other of the other pair of screw holes 190a is arranged on a different circumference centered on a point on the axis of rotation Ar . By providing the screw hole 190a in this way, the arm 202-1 can be reliably connected to the output rotating body 190.
2-7.エンコーダ
 任意の構成であるエンコーダ160の構成に制約はなく、光学式エンコーダでもよく、磁気式エンコーダ、電磁誘導式エンコーダでもよい。磁気式エンコーダの場合には、図5に示すように、エンコーダ160は、磁気パターニングされた磁気リング160a、磁気リング160aの磁界を検知する磁気センサ160b、および磁気センサ160bを制御するエンコーダ基板160cなどで構成することができる。磁気リング160aは入力回転体130または入力回転体130に固定されて同時に回転する部材(例えばモータ軸132)に取り付けられ、入力回転体130と共に回転する。一方、磁気センサ160bとエンコーダ基板160cは筐体110に固定される。磁気リング160aの回転による磁界の変化が磁気センサ160bによって検出され、この変化をエンコーダ基板160cによって処理することで、入力回転体130の回転回数と位置を算出し、このデータに基づいて出力回転体190の筐体110に対する相対的位置が決定される。図示しないが、エンコーダ160の磁気リング160aを出力回転体190またはこれに固定される部材に取り付け、出力回転体190の回転による磁気変化を磁気センサ160bによって検出するよう、回転ジョイント100を構成してもよい。
2-7. Encoder There are no restrictions on the configuration of the encoder 160, which is an arbitrary configuration, and an optical encoder, a magnetic encoder, or an electromagnetic induction encoder may be used. In the case of a magnetic encoder, as shown in FIG. 5, the encoder 160 includes a magnetically patterned magnetic ring 160a, a magnetic sensor 160b for detecting the magnetic field of the magnetic ring 160a, an encoder substrate 160c for controlling the magnetic sensor 160b, and the like. Can be configured with. The magnetic ring 160a is attached to an input rotating body 130 or a member fixed to the input rotating body 130 and rotating at the same time (for example, a motor shaft 132), and rotates together with the input rotating body 130. On the other hand, the magnetic sensor 160b and the encoder board 160c are fixed to the housing 110. The change in the magnetic field due to the rotation of the magnetic ring 160a is detected by the magnetic sensor 160b, and the change is processed by the encoder board 160c to calculate the number of rotations and the position of the input rotating body 130, and the output rotating body is based on this data. The relative position of the 190 with respect to the housing 110 is determined. Although not shown, the magnetic ring 160a of the encoder 160 is attached to the output rotating body 190 or a member fixed to the output rotating body 190, and the rotating joint 100 is configured so that the magnetic change due to the rotation of the output rotating body 190 is detected by the magnetic sensor 160b. May be good.
2-8.サイドキャップ
 任意の構成であるサイドキャップ112は、回転軸Arに対して垂直な主面を有し、回転ジョイント100の円柱形状の上面や底面を構成するように配置することができる。サイドキャップ112は、筐体110に対し、摩擦力のみ、あるいはねじ114、116を用いて着脱できるように取り付けられる(図3A、図3B)。サイドキャップ112は、開口110gと繋がる空間118の側壁として機能することができ、取り外すことで空間118をx方向に開放できるように設けられる。したがって、サイドキャップ112を取り外すことにより、空間118内に配される電源ケーブルを視認することができ、その結果、電源ケーブルの状態を容易に確認することが可能となる。
2-8. Side cap The side cap 112, which is an arbitrary configuration, has a main surface perpendicular to the rotation axis Ar , and can be arranged so as to form a top surface or a bottom surface of the cylindrical shape of the rotation joint 100. The side cap 112 is attached to the housing 110 so as to be attached to and detached from the housing 110 using only frictional force or using screws 114 and 116 (FIGS. 3A and 3B). The side cap 112 can function as a side wall of the space 118 connected to the opening 110 g, and is provided so that the space 118 can be opened in the x direction by removing the side cap 112. Therefore, by removing the side cap 112, the power cable arranged in the space 118 can be visually recognized, and as a result, the state of the power cable can be easily confirmed.
 図示しないが、サイドキャップ112には、筐体110の貫通孔110fとx方向において重なる貫通孔を設けてもよい。サイドキャップ112に貫通孔を設けることで、アーム202-1と電源を接続する電源ケーブルをサイドキャップ112の貫通孔から筐体110の貫通孔110fへ延伸させることができるため、電源ケーブルがマニピュレータ200から露出する部分の長さを低減することができる。 Although not shown, the side cap 112 may be provided with a through hole that overlaps with the through hole 110f of the housing 110 in the x direction. By providing the through hole in the side cap 112, the power cable connecting the arm 202-1 and the power supply can be extended from the through hole of the side cap 112 to the through hole 110f of the housing 110, so that the power cable is the manipulator 200. The length of the portion exposed from the can be reduced.
2-9.ベアリング
 回転ジョイント100には、回転可能な部分として入力回転体130と出力回転体190を備える。このため、これらの回転体を円滑に回転させるため、ベアリングを設けてもよい。ベアリングの配置は任意であるが、例えば図5に示すように、一対のベアリング140、142を出力回転体190と筐体110の間に設けることができる。同様に、一対のベアリング144と146を入力回転体130と筐体110の間に設けることができる。ベアリングの構造や数に制約はなく、任意の構成を備えるベアリングを用いればよい。例えば出力回転体190と筐体110の間に三つ以上のベアリングを設けてもよい。
2-9. The bearing rotary joint 100 includes an input rotating body 130 and an output rotating body 190 as rotatable portions. Therefore, bearings may be provided in order to smoothly rotate these rotating bodies. The arrangement of the bearings is arbitrary, but as shown in FIG. 5, for example, a pair of bearings 140 and 142 can be provided between the output rotating body 190 and the housing 110. Similarly, a pair of bearings 144 and 146 can be provided between the input rotating body 130 and the housing 110. There are no restrictions on the structure or number of bearings, and bearings having any configuration may be used. For example, three or more bearings may be provided between the output rotating body 190 and the housing 110.
 これらのベアリング140、142、144、146は、筐体110に設けられる段差に噛み合うように設けることができる。例えば図5の部分拡大図(図8)に示すように、回転軸Arに垂直な断面が回転軸Arと同心円となる面とこれに対し垂直な面によって形成される段差110hを筐体110に設け、この段差110hに噛み合うようにベアリング140、142を配置することができる。すなわち、段差110hを構成する筐体110の二つの面がベアリング140または142と同時に接するように、ベアリング140、142を配置することができる。図示しないが、ベアリング144、146に関しても同様である。このような配置を採用することで、ベアリングを安定的に筐体110内に配置することができる。 These bearings 140, 142, 144, 146 can be provided so as to mesh with the step provided in the housing 110. For example, as shown in the partially enlarged view (FIG. 8) of FIG. 5, the housing has a step 110h formed by a surface whose cross section perpendicular to the rotation axis Ar is concentric with the rotation axis Ar and a surface perpendicular to the surface. The bearings 140 and 142 can be arranged at the 110 so as to mesh with the step 110h. That is, the bearings 140 and 142 can be arranged so that the two surfaces of the housing 110 constituting the step 110h are in contact with the bearing 140 or 142 at the same time. Although not shown, the same applies to the bearings 144 and 146. By adopting such an arrangement, the bearing can be stably arranged in the housing 110.
 ベアリング140、142、144、146の固定方法は任意であり、単に物理的に配置するだけでもよく、ねじや接着剤で固定してもよい。接着剤で固定する場合には、筐体110、入力回転体130、および/または出力回転体190のベアリングと接触する面に溝を形成し、この溝に接着剤を注入することでベアリングを固定してもよい。例えば図8に示すように、出力回転体190のベアリング140と接触する面の一部に溝190bを設け、この溝190bに図示しない接着剤を注入すればよい。同様に、筐体110がベアリング142と接触する面の一部に溝110iを設け、この溝110iに接着剤を注入してもよい。図示しないが、入力回転体130のベアリング144または146と接触する面の一部に溝を形成し、この溝に接着剤を塗布してもよく、同様に、筐体110のベアリング140、142と接触する面に溝を形成し、この溝に接着剤を設けてもよい。このように、ベアリングが接触する部材の面に溝を設けて接着剤を注入することで、十分な量の接着剤でベアリングの固定ができるため、回転ジョイント100内にベアリングを強固に固定することができる。また、ねじを用いる必要がなくなるため、回転ジョイント100の軽量化が可能となる。 The method of fixing the bearings 140, 142, 144, 146 is arbitrary, and they may be simply physically arranged or fixed with screws or adhesives. When fixing with an adhesive, a groove is formed on the surface of the housing 110, the input rotating body 130, and / or the output rotating body 190 in contact with the bearing, and the bearing is fixed by injecting the adhesive into the groove. You may. For example, as shown in FIG. 8, a groove 190b may be provided on a part of the surface of the output rotating body 190 in contact with the bearing 140, and an adhesive (not shown) may be injected into the groove 190b. Similarly, a groove 110i may be provided on a part of the surface where the housing 110 comes into contact with the bearing 142, and the adhesive may be injected into the groove 110i. Although not shown, a groove may be formed in a part of the surface of the input rotating body 130 in contact with the bearing 144 or 146, and an adhesive may be applied to the groove. Similarly, with the bearings 140 and 142 of the housing 110. A groove may be formed on the contact surface, and an adhesive may be provided in the groove. In this way, by providing a groove on the surface of the member with which the bearing comes into contact and injecting the adhesive, the bearing can be fixed with a sufficient amount of adhesive, so that the bearing can be firmly fixed in the rotary joint 100. Can be done. Further, since it is not necessary to use a screw, the weight of the rotary joint 100 can be reduced.
2-10.オイルシール
 減速機170には、摩耗を防止するために比較的多量のオイルが用いられる。このオイルが外部に漏れ出す、あるいは駆動モータ150へ浸入することを防ぐため、オイルシールを設けることができる。オイルシールの数や構造、配置も適宜選択することができる。図5に示す例では、外部への漏れを防止するためのオイルシール120、126が筐体110と出力回転体190の間に設けられ、さらに駆動モータ150への浸入を防止するためのオイルシール122、124が筐体とモータ軸132の間に設けられている。オイルシールはリング状の形状を有し、その断面(回転ジョイント100に配置した際、回転軸Arに対して平行な断面)は、オイルシールの外側において平坦面であり、内側は尖っている。回転ジョイント100では、固定部である筐体110がオイルシールの外側と接触するようにこれらのオイルシール120、122、124、126を配置してもよく、あるいは内側が筐体110と接するように配置してもよい。
2-10. The oil seal reducer 170 uses a relatively large amount of oil to prevent wear. An oil seal can be provided to prevent this oil from leaking to the outside or entering the drive motor 150. The number, structure, and arrangement of oil seals can be selected as appropriate. In the example shown in FIG. 5, oil seals 120 and 126 for preventing leakage to the outside are provided between the housing 110 and the output rotating body 190, and further, an oil seal for preventing intrusion into the drive motor 150. 122 and 124 are provided between the housing and the motor shaft 132. The oil seal has a ring shape, and its cross section (a cross section parallel to the rotation axis Ar when placed on the rotary joint 100) is a flat surface on the outside of the oil seal and sharp on the inside. .. In the rotary joint 100, these oil seals 120, 122, 124, 126 may be arranged so that the housing 110, which is a fixing portion, is in contact with the outside of the oil seal, or the inside is in contact with the housing 110. It may be arranged.
 以上述べたように、本発明の実施形態の一つに係る回転ジョイント100は、同軸で筐体110の周りを回転する入力回転体130と出力回転体190を備え、出力回転体190が入力回転体130を取り囲みながら入力回転体130の周りを円周状に回転する。入力回転体130を駆動する筒状の駆動モータ150の中心軸は、入力回転体130と出力回転体190の回転軸Arと同軸でもよい。さらに、出力回転体190は、回転軸Arに垂直な法線を有する外表面にアームが連結されるように構成され、筐体110は、回転軸Arに垂直な法線を有する外表面に他のアームが連結されるように構成される。このため、この二つのアームを回転ジョイント100で連結する際、回転軸Ar方向にアームをオフセットする必要がなく(図1参照)、コンパクトな形状を有するマニピュレータ200を提供することが可能である。 As described above, the rotary joint 100 according to one of the embodiments of the present invention includes an input rotating body 130 and an output rotating body 190 that coaxially rotate around the housing 110, and the output rotating body 190 rotates as an input. While surrounding the body 130, it rotates around the input rotating body 130 in a circumferential shape. The central axis of the cylindrical drive motor 150 that drives the input rotating body 130 may be coaxial with the rotating axis Ar of the input rotating body 130 and the output rotating body 190. Further, the output rotating body 190 is configured so that the arm is connected to an outer surface having a normal line perpendicular to the rotation axis Ar , and the housing 110 has an outer surface having a normal line perpendicular to the rotation axis Ar . It is configured so that other arms are connected to it. Therefore, when connecting the two arms with the rotary joint 100, it is not necessary to offset the arms in the rotation axis Ar direction (see FIG. 1), and it is possible to provide the manipulator 200 having a compact shape. ..
 本発明の実施形態として上述した実施形態を基にして、当業者が適宜構成要素の追加、削除もしくは設計変更を行ったもの、または工程の追加、省略もしくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。上述した各実施形態の態様によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、または当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと解される。 As an embodiment of the present invention, a person skilled in the art has appropriately added, deleted, or changed the design of components based on the above-described embodiment, or added, omitted, or changed the conditions of the present invention. As long as it has the gist of the above, it is included in the scope of the present invention. Of course, other effects different from those brought about by the embodiments described above, which are obvious from the description of the present specification or which can be easily predicted by those skilled in the art, are described in the present invention. It is understood that it is brought about by the invention.
 100:回転ジョイント、110:筐体、110a:パーツ、110b:パーツ、110c:パーツ、110d:パーツ、110e:ねじ穴、110f:貫通孔、110g:開口、110h:段差、110i:溝、112:サイドキャップ、114:ねじ、116:ねじ、120:オイルシール、122:オイルシール、124:オイルシール、126:オイルシール、130:入力回転体、132:モータ軸、140:ベアリング、142:ベアリング、144:ベアリング、146:ベアリング、150:駆動モータ、160:エンコーダ、160a:磁気リング、160b:磁気センサ、160c:エンコーダ基板、170:減速機、170a:サーキュラスプライン、170b:ウェーブジェネレータ、170c:フレキシブルスプライン、190:出力回転体、190a:ねじ穴、190b:溝、200:マニピュレータ、202:アーム、202-1:アーム、202-2:アーム、204:コネクタ、206:コネクタ、208:矢印、210:矢印、212:矢印、216:矢印 100: Rotating joint, 110: Housing, 110a: Parts, 110b: Parts, 110c: Parts, 110d: Parts, 110e: Screw holes, 110f: Through holes, 110g: Openings, 110h: Steps, 110i: Grooves, 112: Side cap, 114: screw, 116: screw, 120: oil seal, 122: oil seal, 124: oil seal, 126: oil seal, 130: input rotating body, 132: motor shaft, 140: bearing, 142: bearing, 144: Bearing, 146: Bearing, 150: Drive motor, 160: Encoder, 160a: Magnetic ring, 160b: Magnetic sensor, 160c: Encoder board, 170: Reducer, 170a: Circular spline, 170b: Wave generator, 170c: Flexible Spline, 190: Output rotating body, 190a: Screw hole, 190b: Groove, 200: Manipulator, 202: Arm, 202-1: Arm, 202-2: Arm, 204: Connector, 206: Connector, 208: Arrow, 210 : Arrow, 212: Arrow, 216: Arrow

Claims (10)

  1.  筐体、
     前記筐体の少なくとも一部を囲む筒状の入力回転体、
     前記筐体に固定され、前記入力回転体を囲み、前記入力回転体を前記筐体の前記少なくとも一部の周りで回転させる駆動モータ、および
     前記駆動モータを囲み、前記筐体から少なくとも一部が露出し、前記入力回転体の回転軸と同軸に回転する出力回転体を備え、
     前記回転軸に対して垂直な法線を有する前記筐体の表面は、アームを連結するための一対の連結部を有し、
     前記一対の連結部は、前記出力回転体を挟むように配置される回転ジョイント。
    Housing,
    A cylindrical input rotating body that surrounds at least a part of the housing,
    A drive motor fixed to the housing, surrounding the input rotating body and rotating the input rotating body around at least a part of the housing, and surrounding the drive motor, at least a part from the housing. It is equipped with an output rotating body that is exposed and rotates coaxially with the rotating axis of the input rotating body.
    The surface of the housing having a normal perpendicular to the axis of rotation has a pair of connecting portions for connecting the arms.
    The pair of connecting portions are rotary joints arranged so as to sandwich the output rotating body.
  2.  前記筐体は、前記回転軸に沿って延伸する貫通孔を有する、請求項1に記載の回転ジョイント。 The rotary joint according to claim 1, wherein the housing has a through hole extending along the rotary axis.
  3.  前記入力回転体の回転駆動力を前記出力回転体へ伝達する減速機をさらに備える、請求項1に記載の回転ジョイント。 The rotary joint according to claim 1, further comprising a speed reducer that transmits the rotational driving force of the input rotating body to the output rotating body.
  4.  前記筐体と前記出力回転体の間に第1のオイルシールを有し、
     前記筐体と前記入力回転体の間に第2のオイルシールを有する、請求項1に記載の回転ジョイント。
    It has a first oil seal between the housing and the output rotating body.
    The rotary joint according to claim 1, wherein a second oil seal is provided between the housing and the input rotating body.
  5.  前記筐体と前記出力回転体の間に第1のベアリングを有し、
     前記筐体と前記入力回転体の間に第2のベアリングを有し、
     前記第1のベアリングと前記第2のベアリングは、いずれも接着剤によって固定される、請求項1に記載の回転ジョイント。
    It has a first bearing between the housing and the output rotating body.
    It has a second bearing between the housing and the input rotating body.
    The rotary joint according to claim 1, wherein both the first bearing and the second bearing are fixed by an adhesive.
  6.  前記駆動モータは、接着剤によって前記筐体に固定される、請求項1に記載の回転ジョイント。 The rotary joint according to claim 1, wherein the drive motor is fixed to the housing by an adhesive.
  7.  前記出力回転体は、前記回転軸に垂直な方向に延伸するねじ穴を有する、請求項1に記載の回転ジョイント。 The rotary joint according to claim 1, wherein the output rotating body has a screw hole extending in a direction perpendicular to the rotating axis.
  8.  前記一対の連結部の各々は、ねじ穴であり、
     前記ねじ穴は、前記筐体の外表面から前記回転軸に対して垂直に延伸する、請求項1に記載の回転ジョイント。
    Each of the pair of connecting portions is a screw hole.
    The rotary joint according to claim 1, wherein the screw hole extends perpendicularly to the rotary axis from the outer surface of the housing.
  9.  請求項1に記載の回転ジョイント、および
     前記回転ジョイントの前記出力回転体に連結される第1のアームを備えるマニピュレータ。
    A manipulator comprising the rotary joint according to claim 1 and a first arm connected to the output rotating body of the rotary joint.
  10.  請求項1に記載の回転ジョイント、および
     前記回転ジョイントの前記筐体に連結される第2のアームを備え、
     前記筐体は、前記出力回転体を挟むように配置され、前記筐体の外表面から前記回転軸に対して垂直に延伸する一対のねじ穴を有し、
     前記第2のアームは、前記一対のねじ穴を介して固定されるマニピュレータ。
    The rotary joint according to claim 1 and a second arm connected to the housing of the rotary joint are provided.
    The housing is arranged so as to sandwich the output rotating body, and has a pair of screw holes extending perpendicularly to the rotation axis from the outer surface of the housing.
    The second arm is a manipulator fixed via the pair of screw holes.
PCT/JP2021/024508 2020-10-12 2021-06-29 Rotating joint, and manipulator having rotating joint WO2022079951A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020171828A JP6820633B1 (en) 2020-10-12 2020-10-12 Manipulators with rotary joints and rotary joints
JP2020-171828 2020-10-12

Publications (1)

Publication Number Publication Date
WO2022079951A1 true WO2022079951A1 (en) 2022-04-21

Family

ID=74200308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024508 WO2022079951A1 (en) 2020-10-12 2021-06-29 Rotating joint, and manipulator having rotating joint

Country Status (2)

Country Link
JP (2) JP6820633B1 (en)
WO (1) WO2022079951A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244777A1 (en) 2021-05-17 2022-11-24 慶應義塾 Actuator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07124884A (en) * 1993-10-27 1995-05-16 Yaskawa Electric Corp Revolute joint section driving structure for industrial robot
JP2012223081A (en) * 2011-04-14 2012-11-12 Jtekt Corp Electric actuator and joint apparatus
CN204076277U (en) * 2014-09-11 2015-01-07 南京工业职业技术学院 A kind of joint of robot
JP2017101734A (en) * 2015-12-01 2017-06-08 日本電産シンポ株式会社 Speed reducer with electric motor
EP3270000A2 (en) * 2016-07-12 2018-01-17 Phase Motion Control S.p.A. Gearmotor
JP2018035885A (en) * 2016-08-31 2018-03-08 日本電産シンポ株式会社 Wave gear speed reducer with electric motor
JP2018066468A (en) * 2016-10-23 2018-04-26 水野 博 Planetary gear
JP2019092300A (en) * 2017-11-15 2019-06-13 セイコーエプソン株式会社 Motor and robot
JP2019152282A (en) * 2018-03-05 2019-09-12 住友重機械工業株式会社 Speed reduction device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07124884A (en) * 1993-10-27 1995-05-16 Yaskawa Electric Corp Revolute joint section driving structure for industrial robot
JP2012223081A (en) * 2011-04-14 2012-11-12 Jtekt Corp Electric actuator and joint apparatus
CN204076277U (en) * 2014-09-11 2015-01-07 南京工业职业技术学院 A kind of joint of robot
JP2017101734A (en) * 2015-12-01 2017-06-08 日本電産シンポ株式会社 Speed reducer with electric motor
EP3270000A2 (en) * 2016-07-12 2018-01-17 Phase Motion Control S.p.A. Gearmotor
JP2018035885A (en) * 2016-08-31 2018-03-08 日本電産シンポ株式会社 Wave gear speed reducer with electric motor
JP2018066468A (en) * 2016-10-23 2018-04-26 水野 博 Planetary gear
JP2019092300A (en) * 2017-11-15 2019-06-13 セイコーエプソン株式会社 Motor and robot
JP2019152282A (en) * 2018-03-05 2019-09-12 住友重機械工業株式会社 Speed reduction device

Also Published As

Publication number Publication date
JP6820633B1 (en) 2021-01-27
JP2022063827A (en) 2022-04-22
JP2022063521A (en) 2022-04-22

Similar Documents

Publication Publication Date Title
US7253578B2 (en) Pivoting apparatus of industrial robot
JP3952955B2 (en) Articulated robot
US8881617B2 (en) Robot arm with cable protection structure
US5437490A (en) Finger module, finger module structure, and robot hand
TWI490098B (en) Robot joint mechanism
KR900005109B1 (en) Robot articulation joint
JP2019177446A (en) Driving unit for robot and robot
JP2007175844A (en) Finger unit of robot hand and assembling method
EP0502832B1 (en) Wrist for an industrial robot
CN100482426C (en) An industrial robot
JPH0156624B2 (en)
US7556299B2 (en) Finger unit and multi-finger grasping mechanism
WO2022079951A1 (en) Rotating joint, and manipulator having rotating joint
IE53744B1 (en) Split-ball type wrist and manipulator assembly for robot
JP2008073775A (en) Industrial robot
JP6229779B2 (en) Horizontal articulated robot
US20060182595A1 (en) Robot wrist comprising a drive unit incorporated in a tilt
CN111482950A (en) Robot
JP2000343477A (en) Joint part structure of robot
KR19980701448A (en) Wrist mechanism of articulated robot
JP6989540B2 (en) robot
JPWO2018008679A1 (en) Arm drive
EP3441643A1 (en) Speed reducer and actuator
KR100660661B1 (en) Swing device of industrial robot
CN220516855U (en) Joint structure and robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21879695

Country of ref document: EP

Kind code of ref document: A1