WO2022079927A1 - Method for culturing plant cell - Google Patents

Method for culturing plant cell Download PDF

Info

Publication number
WO2022079927A1
WO2022079927A1 PCT/JP2021/002140 JP2021002140W WO2022079927A1 WO 2022079927 A1 WO2022079927 A1 WO 2022079927A1 JP 2021002140 W JP2021002140 W JP 2021002140W WO 2022079927 A1 WO2022079927 A1 WO 2022079927A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
medium
cells
trehalose
culturing
Prior art date
Application number
PCT/JP2021/002140
Other languages
French (fr)
Japanese (ja)
Inventor
浩史 塚本
千寿 柳原
祐二 石田
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2022079927A1 publication Critical patent/WO2022079927A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/46Gramineae or Poaceae, e.g. ryegrass, rice, wheat or maize
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/04Plant cells or tissues

Definitions

  • the present invention relates to a method for culturing plant cells and a method for regenerating plants.
  • Non-Patent Document 1 Culture medium Various improvements in culture medium have been tried in the transformation of maize with Agrobacterium. Selection of transformed cells in N6 basal medium (Non-Patent Document 1), addition of AgNO3 and carbenicillin to medium (Non-Patent Document 1, Non-Patent Document 2), addition of cysteine to coexisting medium (Non-Patent Document 3) As a result, the culture efficiency was improved. It has also been reported that the transformation efficiency in indicine is enhanced by modifying the composition of the co-culture medium and the gelling agent (Non-Patent Document 4).
  • Non-Patent Document 5 Pretreatment of plant tissue pieces Hiei et al. (2006) (Non-Patent Document 5) shows that the transformation efficiency is increased by heat-treating or centrifuging immature embryos of rice and maize before inoculation with Agrobacterium, and even varieties that could not be transformed so far. It was reported that a transformant was obtained. Further, Ishida and Hiei (WO2011 / 013764) (Patent Document 1) found that transformed plants can be obtained with high efficiency by removing hypocotyls from immature wheat embryos co-cultured with Agrobacterium.
  • the culture method for transforming rice, corn and wheat with Agrobacterium has significantly improved efficiency and expanded the number of applicable varieties. Has been made.
  • Non-Patent Document 6 As other methods, in recent years, as a method for producing a transformant, there are a method using a fertilized egg (Non-Patent Document 6) and an implanter particle gun method (Non-Patent Document 7).
  • Trehalose Small animals such as Polypedilum vanderplanki and plants such as Selaginella can sleep and survive in extremely dry environments such as deserts because trehalose is accumulated in the living body at a high concentration. It has been known. In addition, it has been reported that trehalose functions even during dry dormancy and imparts various stress-tolerant functionality to animals and plants (Non-Patent Document 8).
  • sucrose and / or maltose are used as carbon sources as a conventional method.
  • trehalose is rarely used in plant tissue culture.
  • PLBs protocomb-like spheres
  • PLB formation was promoted at concentrations of 5-40 g / l of sucrose and 10-80 g / l of trehalose, with concentrations of 20 g / l each being the most effective. Rooting from shoots was observed only in the trehalose-added group, and trehalose has been reported to be effective for rooting from shoots (Non-Patent Document 10).
  • Non-Patent Document 11 trehalose is known to inhibit the metabolism and growth of plants (Non-Patent Document 12, Non-Patent Document 13).
  • Non-Patent Document 14 trehalose has been reported to interfere with the regulation of carbohydrate-related genes (Non-Patent Document 14, Non-Patent Document 15). As a result, trehalose was not used for culturing gramineous plants in place of sucrose and / or maltose.
  • An object of the present invention is to provide a method for culturing plant cells and a method for regenerating plants.
  • the present inventors cultivate immature wheat embryos in a medium containing trehalose instead of the carbon source (sucrose or maltose) used in the conventional method. As a result, it was found that the plant regeneration rate was remarkably improved as compared with the conventional medium, and the present invention was completed. By using this method, it has become possible to efficiently produce transformed crops and genome-edited crops.
  • the present invention includes, but is not limited to, the following aspects.
  • a method for culturing plant cells which comprises culturing cells of a gramineous plant using a culture medium containing trehalose.
  • Aspect 2 The method according to aspect 1, wherein the plant cells of the Gramineae family are cultured to obtain a plant cell group and / or a regenerated plant.
  • Aspect 3 The method according to aspect 1 or 2, wherein the gramineous plant is selected from the group consisting of rice, corn, wheat, barley, rye, and sorghum.
  • Aspect 4 The method according to any one of aspects 1-3, wherein the gramineous plant is wheat or corn.
  • the present invention relates to a plant culturing method.
  • the method of the present invention comprises culturing grass cells using a culture medium containing trehalose.
  • Plant The "plant” in the above method is a gramineous plant.
  • the gramineous plant any plant belonging to the gramineous family (Poaceae) can be used.
  • the gramineous plant is selected from the group consisting of rice, corn, wheat, barley, rye, and sorghum, without limitation.
  • the term “one aspect” is intended to be non-limiting.
  • the above culture method can be used particularly for plants or varieties that are considered to be "difficult to culture”. Is.
  • Difficult-to-culture means that it is difficult to culture, specifically, for example, it is difficult to culture cells or tissues isolated from a plant, formation of callus by treatment such as dedifferentiation, or a plant from callus. It means that it is difficult to redifferentiate into.
  • the gramineous plant preferably belongs to the genus Wheat (Triticum) or the genus Corn (Zea).
  • “wheat” and “corn” mean plants of the genus Wheat and the genus Corn, respectively, unless otherwise specified.
  • T.I. aegilopodes As the genus Wheat, for example, as a one-grain wheat, T.I. aegilopodes, T.I. thaudar and T.I. Using monococcum (1 grain wheat) as a 2-grain wheat, T.I. dicoccoides, T.I. dicoccum (2 grains of wheat, emmer wheat), T.I. pyromidale, T.I. Orientale (Khorasan wheat), T.I. durum (durum wheat, macaroni wheat), T.I. turgidium (rivet wheat), T.I. Polishum (Polish wheat), and T.I. Persicum (Persian wheat), as well as three-grain wheat, T.I.
  • Zea mays As the genus Corn, five species are known: Zea mays, Zea diploperennis, Zea luxurians, Zea nicaraguensis and Zea perennis. Many cultivars have been developed for Zea mays.
  • the seeds and varieties of corn used in the present invention are not particularly limited, but are preferably varieties belonging to Zea mays.
  • Plant materials include, but are not limited to, immature embryos, ripe seeds, fertilized eggs, callus, protoplasts, or cell groups derived from them. Immature embryos or ripe seeds are preferred.
  • the term "immature embryo” refers to an embryo of an immature seed that is in the process of ripening after pollination.
  • the stage (ripening stage) of the immature embryos used in the method of the present invention is not particularly limited and may be collected at any time after pollination, but those 7 to 21 days after pollination are used. preferable.
  • "Ripe seeds” are those that have completed the ripening process after pollination and are fully ripe as seeds.
  • “Fertilized egg” means a cell in which a sperm cell and an egg cell are fused.
  • a "plant fertilized egg” is a fertilized egg cell isolated from a tissue containing a plant embryo sac, that is, a fertilized egg that has been fertilized and fertilized at the stage of a plant and isolated from the plant. May be good.
  • an egg cell and a sperm cell may be isolated from a plant before pollination and fertilization, and then fused to produce and obtain a fertilized egg cell.
  • a fertilized egg may be prepared and obtained by electrical fusion. Further, it may be a fertilized egg obtained by fusing egg cells and sperm cells of different kinds of plants.
  • a "protoplast” is a cell from which a cell wall has been removed from a plant cell.
  • the method for culturing a plant includes culturing cells of a gramineous plant using a culture medium containing trehalose. Limited, in one embodiment, the culture of plant cells is carried out in the step of regenerating the plant from the immature embryo.
  • the culture medium for plant cells may be one that is usually used for culturing plant cells, and is not particularly limited.
  • Non-limiting examples thereof include WLS medium, WLS-RES medium, MS medium, LS medium, N6 medium, B5 medium, R2 medium, and medium based on CC medium. These media may be concentrated from the basic concentration or diluted. The amount is preferably 1/10 to 2 times, more preferably 1/5 to 1 times.
  • the basic medium is a WLS medium or a WLS-RES medium. These media have the following composition.
  • WLS medium 1 x LS major inorganic salt, 100 ⁇ M FeEDTA, 1 x LS minor inorganic salt, 1 x MS vitamin, 0.5 mg / L 2,4-D, 2.2 mg / L picrolam, 4% maltose monohydrate , 500 mg / L glutamine, 100 mg / L casein hydrolyzate, 3.7 mM MgCl 2, 0.195% MES, 57 ⁇ M ascorbic acid, 5 ⁇ M AgNO 3 , 5 g / L agarose, pH 5.8.
  • WLS-RES medium medium in which 2.2 mg / l picrolam of WLS medium is replaced with 2.5 mg / l dicamba
  • 1 ⁇ LS major inorganic salt 100 ⁇ M FeEDTA, 1 ⁇ LS minor inorganic salt, 1 ⁇ MS vitamin, 0 .5 mg / L 2,4-D, 2.5 mg / L medium, 4% maltose monohydrate, 500 mg / L glutamine, 100 mg / L casein hydrolyzate, 3.7 mM MgCl 2, 0.195% MES, 57 ⁇ M ascorbic acid, 5 ⁇ M AgNO 3 , 5 g / L agarose, pH 5.8.
  • Trehalose is a type of disaccharide in which glucose is 1,1-glycosidic bonded. Trehalose is added to the appropriately prepared culture medium.
  • the concentration of trehalose added to the culture medium is not particularly limited. In one embodiment, the concentration of trehalose in the culture medium is 20 mM or more, 50 mM or more, 75 mM or more, 100 mM or more, 125 mM or more, 150 mM or more, 180 mM or more, 200 mM or more, 220 mM or more, 240 mM or more, 250 mM or more.
  • the trehalose concentration in the culture medium is 1000 mM or less, 800 mM or less, 600 mM or less, 500 mM or less, 450 mM or less, 400 mM or less, 350 mM or less, 300 mM or less, 280 mM or less.
  • the concentration of trehalose in the culture medium is 20 mM or more and 1000 mM or less, 50 mM or more and 800 mM or less, 100 mM or more and 600 mM or less, and 150 mM or more and 400 mM or less.
  • the culture medium containing trehalose does not contain a carbon source (for example, sucrose or maltose) used in a conventional method, or may have a reduced content, instead of containing trehalose.
  • the culture medium contains no carbon source other than trehalose.
  • the carbon source means sucrose, maltose, glucose and the like.
  • the carbon source means maltose.
  • long-term cultures on carbon sources containing no other than trehalose are excluded.
  • Non-limitingly long-term culture means, for example, 6 days or more, 7 days or more, 8 days or more, 10 days or more, 17 days or more.
  • the concentration of trehalose can be grasped as the content per unit volume of the medium when the trehalose is not always uniformly contained in the whole medium, for example, when the medium is a solid.
  • the time when trehalose is added to the medium is not particularly limited.
  • the addition time may be at or after the start of culturing.
  • the culture medium containing trehalose is used at any time of the step of culturing the plant cells until the time when the plant cells have the ability to regenerate and differentiate.
  • the culture medium containing trehalose is used for a short period of time after the immature embryos are prepared, for example, within 16 days, within 8 days, within 5 days, within 3 days, or within 2 days.
  • the culture medium containing trehalose is used for the period from the preparation of immature embryos to the introduction of the substance into the plant.
  • trehalose may be added to the culture medium at one time or in divided doses (for example, several times).
  • a culture involving substance introduction with a particle gun an immature embryo and a cell group derived from the immature embryo are placed and cultured on a culture medium containing trehalose from 1 day or 2 days before the particle gun treatment. Is good.
  • a culture involving introduction of a substance with agrobacterium when a cell group derived from an immature embryo is used as a material, the day before the agrobacterium inoculation treatment, one day before, or two days after the inoculation. It is better to place them on a culture medium containing trehalose and cultivate them. It is good to place it on the bed and inoculate it.
  • the medium may include, but is not limited to, a plant growth regulator.
  • Plant growth regulators are auxins. Specifically, for example, as auxins, indole-3-acetic acid (IAA), 2,4-dichlorophenoxyacetic acid (2,4-D), picrolam, daikamba, naphthalene acetic acid (NAA), naphthoxyacetic acid, phenylacetic acid, for example. , 2,4,5-Trichlorophenoxyacetic acid or other auxins can be added.
  • the auxins are plant hormones selected from the group consisting of 2,4-D, IAA, NAA.
  • other plant growth regulators such as kinetin and cytokinins such as 4PU can be added. These plant growth regulators may be used alone or in admixture of a plurality at different concentrations.
  • feeder cells may be added to the culture medium.
  • the type of feeder cell is not particularly limited.
  • liquid cultured cells of rice, liquid cultured cells of wheat, and the like can be used. It is possible to use known feeder cells and plant explants. Examples thereof include rice suspension cell culture (Oc, RIKEN BioResource Research Center) and wheat suspension culture cells (HT3-1). Examples of the plant explants include ovaries.
  • the timing of adding the feeder cells is not limited, and may be before, at the start, or after the start of culturing the plant cells.
  • the culture temperature can be appropriately selected, preferably 18 ° C.-35 ° C., more preferably 20-30 ° C., and most preferably 23-28 ° C. Further, the culture in this step is preferably performed in a dark place or a dim place, but the culture is not limited to this.
  • the above-mentioned culturing method includes culturing plant cells of the Gramineae family to obtain a plant cell group and / or a regenerated plant.
  • the cell group may be an embryoid body, a spherical embryo, a callus, or the like.
  • the process of inducing division of a fertilized egg and causing cell proliferation to form an embryoid body, a spherical embryo, a callus, or the like is not particularly limited because the optimum conditions differ depending on the plant.
  • the present invention is also used in a culture medium containing trehalose for culturing grass cells, use of trehalose in a culture medium for grass cells, and a culture medium for grass cells. Also includes trehalose.
  • the above-mentioned culturing method improves the culturing efficiency of plant cells as compared with the case of culturing in a medium containing no trehalose.
  • the culture efficiency of plant cells is not limited, and means, for example, the callus formation rate in culture.
  • the culture efficiency (for example, callus formation rate) is improved to, for example, 1.1 times or more, 2 times or more, 3 times or more, 5 times or more, 10 times or more, and 30 times or more.
  • "Improved culture efficiency" includes the case where callus formation occurs in Gramineae varieties in which callus was not formed when cultured in a medium containing no trehalose.
  • the present invention relates to a method for regenerating plants.
  • the regeneration method of the present invention is a method for regenerating a plant from cells of a gramineous plant. (1) The cells of Gramineae plants are cultured using a culture medium containing trehalose, and then (2) Culturing in redifferentiation medium, Including that.
  • the redifferentiation step that is, the culture step in the redifferentiation medium is not particularly limited.
  • the cultured cell group is transferred to an arbitrary medium, for example, a redifferentiation medium consisting of the LSF medium described in the examples of the present specification (for example, LSFCuP5 (—C) medium), and cultured.
  • the redifferentiation step may be performed by irradiating with light.
  • the redifferentiation medium may be, for example, LSF medium, MS medium, B5 medium, N6 medium, and may be a liquid medium containing no solid medium using a solidifying material such as agarose, agar, gellan gum, and gellite.
  • a plant growth regulator containing auxin and cytokinin may be added to the redifferentiation medium.
  • the redifferentiation medium comprises auxins.
  • auxins The meanings of terms such as “auxin” and “cytokinin” are as described in "1. Plant cell culture method”.
  • Gramineae plants regenerated plants
  • the regenerated plants include plants regenerated by culturing immature embryos and redifferentiation, cells, tissues, etc. obtained from the plants, and "T0 generation” which is the redifferentiation generation obtained by the above-mentioned plant regeneration method.
  • T1 generation progeny plants
  • progeny plants such as "T1 generation” derived from the self-fertilized seeds of T0 generation plants, hybrid plants crossed with them as one parent, and progeny plants.
  • the method for culturing plant cells and the method for regenerating plants of the present invention it has become possible to stably and efficiently obtain regenerated plants from the cell group obtained by culturing cells of grasses.
  • the regenerated plant into which the substance is introduced can be stably and efficiently obtained.
  • the transformant is introduced into the immature embryo.
  • the plant cells of the above-mentioned culture method and plant regeneration method are plant cells into which a substance has been introduced.
  • the plant cells of the culture method and the plant regeneration method of the present invention include a step of introducing a substance selected from the group consisting of nucleic acid, protein and nucleic acid protein complex into cells of grasses.
  • the substance to be introduced is selected from the group consisting of nucleic acid, protein and nucleic acid-protein complex without limitation.
  • the nucleic acid is not particularly limited, and may be DNA, RNA, a combination of both, or a mixture. It is preferably a circular DNA such as a vector, a linear DNA, a circular RNA or a linear RNA. Any length can be used depending on the transformation method used.
  • Protein is a general term for molecules in which various amino acids are linked in a fixed order by amide bonds (also referred to as "peptide bonds").
  • the protein contains a nuclease such as Cas9 nuclease for genome editing, a modifying enzyme, an antibody and the like.
  • a nucleic acid-protein complex is a complex formed by a nucleic acid and a protein.
  • deoxyribonuclear protein complex of DNA and VirD2 protein, etc.
  • ribonuclear protein complex of guide RNA and Cas9 protein, etc.
  • the like are included.
  • the nucleic acid may be two or more types of DNA or RNA, or a combination of DNA and RNA. Different types of substances such as nucleic acids and proteins may be introduced.
  • the method for introducing a substance into a plant is not particularly limited as long as it is a known method capable of introducing a desired substance into a plant, and can be appropriately selected depending on the type of plant.
  • a physicochemical method such as a particle gun method, a polyethylene glycol method (PEG method), an electroporation method, a microinjection method, a whisker method, or a biological method such as an Agrobacterium method (agrobacterium method).
  • the method of indirect introduction of DNA can be preferably used.
  • the substance is introduced by the particle gun method or the Agrobacterium method.
  • Patent Document 2 International Publication WO2017 / 171092
  • Patent Document 3 International Publication WO2018 / 143480
  • transformation or genome editing may be performed by introducing a substance.
  • Genome editing is a technique for modifying a target gene as desired by using a site-specific nuclease.
  • site-specific nucleases include ZFN (Zinc finger nuclease), TALEN, and CRISPR / Cas9 (Crisper Cas9), which were developed and discovered after 2005.
  • Tissue culture of gramineous plants, for example, wheat and production of regenerated bodies are necessary techniques in the development of wheat varieties.
  • immature embryos or cultured cells that have been gene-introduced by the Agrobacterium method or the particle gun method are tissue-cultured, and regenerated bodies are produced from callus.
  • the method of acquisition is the standard method.
  • immature embryos or cultured cells into which ribonucleoprotein (RNP) has been introduced may be cultured to obtain a regenerated body.
  • RNP ribonucleoprotein
  • the above-mentioned culturing method improves the efficiency of introducing a substance as compared with the case of culturing in a medium containing no trehalose.
  • the introduction efficiency of a substance means, for example, a callus formation rate, a transformation rate (transformation frequency), a genome editing rate (genome editing frequency), and the like in culture without limitation.
  • high efficiency of substance introduction means that the target substance is introduced into plant cells with high efficiency, callus is induced with high efficiency from immature embryos, etc., and it is high from transformed callus. It is a concept that includes the fact that redifferentiation occurs with efficiency.
  • improved of introduction efficiency of a substance means improvement of introduction efficiency of a target substance into plant cells, improvement of callus induction rate from immature embryos, etc., and improvement of callus induction rate from transformed callus. It is a concept that includes improving the efficiency of redifferentiation.
  • the introduction efficiency (for example, transformation efficiency) of a substance is, for example, 1.3 times or more, 1.5 times or more, 2 times or more, 3 times or more, 4 times or more, 10 times or more, 25 times. It will be improved to the above. "Improvement of substance introduction efficiency" includes cases where transformation is not possible when cultured in a medium containing no trehalose, or these can be achieved in grass varieties that cannot be genome-edited.
  • Example 1 Callus induction from immature wheat embryos (1) Preparation and culture of immature embryos Part of the methods of WO2011 / 013764 (Patent Document 1) and Ishida (2015) (Non-Patent Document 16) are modified to produce wheat. Immature embryos were prepared. Nine varieties of Fielder, Claire, Mace, JTX001, Cadenza, Paragon, JTX002, Cronox and Jugger were tested.
  • Immature wheat seeds about 14 days after flowering were demineralized, surface sterilized in 70% ethanol for 45 seconds, and then surface sterilized with 1% sodium hypochlorite containing 1 drop of Tween 20 for 10 minutes.
  • the treated immature seeds were washed 4 times with sterile water, immature embryos were collected under a stereomicroscope and recovered in WLS-liq medium.
  • the immature embryos were washed once with WLS-liq medium and then centrifuged at 5,000 ⁇ g at 4 ° C. for 10 minutes.
  • each medium is as follows. WLS-liq medium: 0.1 ⁇ LS major inorganic salt, 10 ⁇ M FeEDTA, 0.1 ⁇ LS minor inorganic salt, 0.1 ⁇ MS vitamin, 1% glucose, 0.05% MES, pH 5.8
  • WLS90-RES medium 1 x LS major inorganic salt, 100 ⁇ M FeEDTA, 1 x LS minor inorganic salt, 1 x MS vitamin, 0.5 mg / L 2,4-D, 2.5 mg / L daikamba, 9% maltose water.
  • Japanese product (250 mM) 500 mg / L glutamine, 100 mg / L casein hydrolyzate, 3.7 mM MgCl 2, 0.195% MES, 57 ⁇ M ascorbic acid, 5 ⁇ M 5 g / L agarose, pH 5.8.
  • WLS0 / 90-RES medium A medium in which maltose monohydrate of WLS90-RES medium is changed to trehalose dihydrate (250 mM) having a concentration of 9.46%.
  • SpCas9 (Cas9 derived from Streptococcus pyogenes) gene is shown in SEQ ID NO: 2.
  • SEQ ID NO: 2 is Svitashev et al. It is quoted from the report (Non-Patent Document 17) of (2015).
  • SpCas9 is inserted between the corn ubiquitin promoter with the first intron of corn ubiquitin and the Nos and 35S terminators, and in addition, the SV40-derived nuclear localization signal (9 amino acids) and carboxyl terminus (C) on the amino-terminal (N-terminal) side.
  • a plasmid inserted into the pUC19 vector was constructed so that the (terminal) side contained a sequence encoding a virD2-derived nuclear localization signal (18 amino acids).
  • the base sequence of the sgRNA transcription unit is shown in SEQ ID NO: 3.
  • a plasmid was constructed by inserting the sgRNA gene sequence containing the promoter and terminator of wheat U6 polymerase III into the pUC18 vector.
  • the target sequence of the wheat LOX2 gene was used as the sgRNA gene sequence (Non-Patent Document 18).
  • the prepared gold particle suspension (40 mg / ml) was vortexed for 5 minutes until it became uniform.
  • the plasmid DNA was coated on gold particles and adhered to microcarriers.
  • water was added to make a total of 40 ⁇ l, and then TransIT-. 2020 (registered trademark) (0.8 ⁇ l) was added. Then, after vortexing continuously for 2 to 3 minutes, the tube was allowed to stand still for 1 minute.
  • a gene was used with a particle gun (BioLISTIC PDS1000 / He, Bio-Rad) according to the Biolistic PDS-1000 / He Particure Delivery System instruction manual (BIO-RAD). Introduced. 5 ⁇ l of gold particle suspension was used per shot. The target distance was 5 cm from the stopping plate, and the shooting pressure was 650 psi. After the particle gun treatment, immature embryos on the plate medium were cultured at 28 ° C. for 1 day (dark place) and then at 25 ° C.
  • the table below summarizes the number of days, medium, and experimental content (process) of each process from immature embryo preparation to leaf sampling.
  • Composition of WLS60-P5 1 ⁇ LS major inorganic salt, 100 ⁇ M FeEDTA, 1 ⁇ LS minor inorganic salt, 1 ⁇ MS vitamin, 0.5 mg / L 2,4-D, 2.2 mg / L picrolam, 6% maltose 1 Hydrate, 500 mg / L glutamine, 100 mg / L casein hydrolyzate, 3.7 mM MgCl 2 , 0.195% MES, 57 ⁇ M ascorbic acid, 5 ⁇ M AgNO 3 , 5 mg / L phosphinotricin, 5 g / L agarose, pH 5 8.8.
  • Composition of WLS-P10 1 ⁇ LS major inorganic salt, 100 ⁇ M FeEDTA, 1 ⁇ LS minor inorganic salt, 1 ⁇ MS vitamin, 0.5 mg / L 2,4-D, 2.2 mg / L picrolam, 4% maltose 1 Hydrate, 500 mg / L glutamine, 100 mg / L casein hydrolyzate, 3.7 mM MgCl 2, 0.195% MES, 57 ⁇ M ascorbic acid, 5 ⁇ M AgNO 3 , 10 mg / L phosphinotricin, 5 g / L agarose, pH 5 8.8.
  • the callus formation rate was determined by (number of callus generated / number of immature embryos under test) ⁇ 100 (%) in step 6 of Table 1.
  • callus was replanted in a medium containing phosphinotricin for selection by the selection marker bar gene and cultured (number of premature embryos tested in which regenerated individuals were generated /). It was determined by the number of immature embryos to be tested) ⁇ 100 (%). The results are shown in Table 2.
  • Example 2 Effect of maltose / trehalose ratio on callus induction from wheat immature embryos (1) Preparation and culture of immature embryos Immature embryos of wheat (variety: Fielder) were prepared in the same manner as in Example 1. As the initial culture medium, WLS90-RES medium, or various trehalose-modified WLS media (WLS72 / 18-RES medium, WLS60 / 30-RES medium, WLS30 /) in which all or part of the maltose of WLS-RES medium is replaced with trehalose. 60-RES medium, WLS18 / 72-RES medium and WLS0 / 90-RES medium) were used to culture immature embryos as shown in Table 4.
  • WLS90-RES medium or various trehalose-modified WLS media (WLS72 / 18-RES medium, WLS60 / 30-RES medium, WLS30 /) in which all or part of the maltose of WLS-RES medium is replaced with trehalose. 60-RES medium
  • WLS72 / 18-RES medium Change maltose monohydrate in WLS90-RES medium to 7.2% maltose monohydrate (200 mM) and 1.89% trehalose dihydrate (50 mM).
  • Medium (maltose: trehalose 8: 2).
  • the table below summarizes the number of days, medium, and experimental content (steps) of each step of preparing immature embryos, inducing callus, and counting callus.
  • Example 2 Effect of maltose / trehalose ratio on callus formation rate and plant regeneration rate
  • the callus formation rate was examined for immature embryos that had been DNA-introduced by a particle gun.
  • the callus formation rate was determined by (number of callus generated / number of immature embryos under test) ⁇ 100 (%) in step 6 of Table 4.
  • Example 3 Effect of trehalose on callus induction and seedling formation from immature wheat embryos (1) Preparation and culture of immature embryos In the same manner as in Example 1, immature embryos of wheat (variety: Fielder) were prepared. As the initial culture medium, WLS40-RES medium, WLS90-RES medium, or WLS0 / 40-RES medium and WLS0 / 90-RES medium as trehalose-modified WLS medium were used for culturing.
  • WLS40-RES medium 1 x LS major inorganic salt, 100 ⁇ M FeEDTA, 1 x LS minor inorganic salt, 1 x MS vitamin, 0.5 mg / L 2,4-D, 2.5 mg / L Daikamba, 4% maltose water Japanese product (111 mM), 500 mg / L glutamine, 100 mg / L casein hydrolyzate, 3.7 mM MgCl2, 0.195% MES, 57 ⁇ M ascorbic acid, 5 ⁇ M 5 g / L agarose, pH 5.8.
  • WLS90-RES medium 1 x LS major inorganic salt, 100 ⁇ M FeEDTA, 1 x LS minor inorganic salt, 1 x MS vitamin, 0.5 mg / L 2,4-D, 2.5 mg / L Daikamba, 9% maltose water Japanese product (250 mM), 500 mg / L glutamine, 100 mg / L casein hydrolyzate, 3.7 mM MgCl2, 0.195% MES, 57 ⁇ M ascorbic acid, 5 ⁇ M 5 g / L agarose, pH 5.8.
  • WLS0 / 40-RES medium A medium in which maltose monohydrate of WLS40-RES medium is changed to trehalose dihydrate (111 mM) having a concentration of 4.2%.
  • WLS0 / 90-RES medium A medium in which maltose monohydrate of WLS90-RES medium is changed to trehalose dihydrate (250 mM) having a concentration of 9.46%.
  • the table below summarizes the number of days, medium, and experimental content (steps) of each step of preparing immature embryos, inducing callus, forming regenerated bodies, and counting.
  • the callus formation rate was determined by (number of callus generated / number of immature embryos under test) ⁇ 100 (%) in step 4 of Table 6.
  • the seedling rate was determined by counting the regenerated seedlings in step 6 of Table 6 (number of premature embryos tested / number of immature embryos tested) ⁇ 100 (%).
  • Table 7 shows the effect of the trehalose-added medium on the callus formation rate
  • Table 8 shows the effect of the trehalose-added medium on the seedling rate.
  • Example 4 Callus induction from immature maize embryos
  • the immature embryos of maize inbread B104 were aseptically collected, and Ishida et al. (2007) Agrobacterium tumefaciens was inoculated by the method of (Non-Patent Document 21).
  • heat treatment at 46 ° C. and centrifugation at 20,000 ⁇ g were performed (Non-Patent Document 4).
  • the T-DNA region of pLC41GWH of WO2014 / 157541 was regulated by the corn ubiquitin promoter and intron, and the GUS gene (Pubi-Iubi-Icat GUS-) mediated by the catalase intron of Hima. Tonos), and LBA4404 (pLC41 GUS-bar) having a binary vector modified to T-DNA having a Bar gene (P35S-bar-T35S) controlled by the cauliflower mosaic virus 35S promoter, and WO2014 / 157541 (Patent Document 4). ) LBA4404 (pLC41 GUS-Bar :: pVGW9) having a booster vector was used.
  • the GUS gene (P35S-Icat GUS-Tnos) regulated by the cauliflower mosaic virus 35S promoter in the T-DNA region and mediated by the catalase intron of Hima
  • the Bar gene (P35S-bar) regulated by the cauliflower mosaic virus 35S promoter.
  • LBA4404 (pSB131) (Non-Patent Document 22) having a super binary vector having -Tnos) was also subjected to the test.
  • the immature embryos after inoculation were placed on the LS-AS medium and cultured at 25 ° C. in the dark for 7 days.
  • 2% sucrose in the LS-AS medium was reduced to 1.5%
  • 1% glucose was reduced to 0.75%
  • 1.08% trehalose dihydrate was added.
  • the present invention it has become possible to facilitate the cultivation of gramineous plants, which are conventionally said to be difficult to culture, and to efficiently obtain plant regenerated cells from cultured cells.
  • a substance into a plant cell at any stage of the steps of the method for culturing the plant cell and the method for regenerating the plant cell, it is possible to stably and efficiently obtain the regenerated plant into which the substance has been introduced.
  • this method it becomes possible to efficiently produce transformed crops of grasses and genome-edited crops, which have been difficult in the past.
  • SEQ ID NO: 1 is the base sequence of the bar gene.
  • SEQ ID NO: 2 is the base sequence of the SpCas9 gene.
  • SEQ ID NO: 3 is the base sequence of the sequence of the sgRNA expression unit.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Botany (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Environmental Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Cell Biology (AREA)
  • Physiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a method for culturing a plant cell and a method for reproducing a plant body. The method for culturing a plant cell according to the present invention comprises culturing a cell of a plant belonging to the family Gramineae using a culture medium containing trehalose. The method for reproducing a plant body according to the present invention is a method for reproducing a plant body from a cell of a plant belonging to the family Gramineae, and comprises (1) culturing a cell of a plant belonging to the family Gramineae using a culture medium containing trehalose and (2) culturing the resultant product in a redifferentiation culture medium.

Description

植物細胞の培養方法Plant cell culture method
 本発明は、植物細胞の培養方法及び植物体の再生方法に関する。 The present invention relates to a method for culturing plant cells and a method for regenerating plants.
 (1)植物細胞の培養と植物体の再生について
 イネ、トウモロコシ、コムギなどのイネ科植物において、未熟胚あるいは完熟胚を単離・培養し、植物体を再生した例が報告されているが、培養効率の種間差、品種間差は大きく、培養がほとんどできないものも多い。とりわけ、主要な作物では、コムギやトウモロコシにおいて培養困難な品種が多く知られている。現在までに種々の創意工夫によって、その効率は徐々に改善されてきた。その手段としては、主として、培養培地の改変と植物組織片への前処理の2つがある。
(1) Culturing of plant cells and regeneration of plants There have been reports of cases in which immature or ripe embryos were isolated and cultured in grasses such as rice, corn, and wheat, and the plants were regenerated. There are large differences in culture efficiency between species and varieties, and many of them cannot be cultivated. In particular, among major crops, many varieties that are difficult to cultivate in wheat and corn are known. To date, its efficiency has been gradually improved by various ingenuity. There are mainly two means for this: modification of the culture medium and pretreatment of plant tissue pieces.
 1)培養培地
 アグロバクテリウムによるトウモロコシ形質転換において様々な培養培地の改善が試されている。N6基本培地での形質転換細胞の選抜(非特許文献1)、培地へのAgNO3及びカルベニシリンの添加(非特許文献1、非特許文献2)、共存培地へのシステインの添加(非特許文献3)などによって、培養効率の向上がなされた。共存培養培地の組成及びゲル化剤を改変することにより、インディカイネでの形質転換効率(transformation efficiency)が高まることも報告されている(非特許文献4)。
1) Culture medium Various improvements in culture medium have been tried in the transformation of maize with Agrobacterium. Selection of transformed cells in N6 basal medium (Non-Patent Document 1), addition of AgNO3 and carbenicillin to medium (Non-Patent Document 1, Non-Patent Document 2), addition of cysteine to coexisting medium (Non-Patent Document 3) As a result, the culture efficiency was improved. It has also been reported that the transformation efficiency in indicine is enhanced by modifying the composition of the co-culture medium and the gelling agent (Non-Patent Document 4).
 2)植物組織片への前処理
 Hiei et al.(2006)(非特許文献5)はアグロバクテリウムを接種する前のイネ及びトウモロコシの未熟胚に熱処理や遠心処理をすることにより形質転換効率が高まること、及びこれまで形質転換できなかった品種でも形質転換体が得られることを報告した。また、Ishida and Hiei(WO2011/013764)(特許文献1)は、アグロバクテリウムと共存培養したコムギ未熟胚から胚軸を取り除くことにより、高い効率で形質転換植物が得られることを見出した。
2) Pretreatment of plant tissue pieces Hiei et al. (2006) (Non-Patent Document 5) shows that the transformation efficiency is increased by heat-treating or centrifuging immature embryos of rice and maize before inoculation with Agrobacterium, and even varieties that could not be transformed so far. It was reported that a transformant was obtained. Further, Ishida and Hiei (WO2011 / 013764) (Patent Document 1) found that transformed plants can be obtained with high efficiency by removing hypocotyls from immature wheat embryos co-cultured with Agrobacterium.
 このように培地組成の改変や材料となる植物組織片への前処理などの工夫により、アグロバクテリウムによるイネ、トウモロコシ及びコムギの形質転換における培養法は、格段の効率の向上及び適応品種の拡大がなされている。 In this way, by devising measures such as modifying the medium composition and pretreating the plant tissue pieces used as materials, the culture method for transforming rice, corn and wheat with Agrobacterium has significantly improved efficiency and expanded the number of applicable varieties. Has been made.
 その他の方法としては、近年では、形質転換体を作出する方法として、受精卵を用いる方法(非特許文献6)やインプランタパーティクルガン法(非特許文献7)がある。 As other methods, in recent years, as a method for producing a transformant, there are a method using a fertilized egg (Non-Patent Document 6) and an implanter particle gun method (Non-Patent Document 7).
 (2)トレハロース
 ネムリユスリカなどの微小動物、イワヒバなどの植物が砂漠などの極度に乾燥した環境の下で乾眠し、生存できるのは、トレハロースが生体内に高濃度で蓄積されるためであることが知られている。また、トレハロースは乾燥休眠時でも機能するほか、動植物に様々なストレス耐性機能性を付与することが報告されている(非特許文献8)。
(2) Trehalose Small animals such as Polypedilum vanderplanki and plants such as Selaginella can sleep and survive in extremely dry environments such as deserts because trehalose is accumulated in the living body at a high concentration. It has been known. In addition, it has been reported that trehalose functions even during dry dormancy and imparts various stress-tolerant functionality to animals and plants (Non-Patent Document 8).
 しかしながら、一般的な植物においては、極限環境で生存する前述の動植物ほどの高濃度のトレハロースを含有することはない。加えて、植物の一次代謝において、炭素源として、トレハロースが利用されることはない。事実、植物体内のスクロースと比較すると、トレハロースの含有濃度は低いことが明らかとなっている。例えば、シロイズナズナでは、葉中のスクロースの含有量は9mg/g(乾燥重量)であるが、トレハロースの含有量は0mg/g(乾燥重量)であり、茎中のスクロースの含有量は7.5mg/g(乾燥重量)であるが、トレハロースの含有量は0.1mg/g(乾燥重量)である(非特許文献9)。 However, general plants do not contain as high a concentration of trehalose as the above-mentioned animals and plants that survive in extreme environments. In addition, trehalose is not used as a carbon source in the primary metabolism of plants. In fact, it has been revealed that the concentration of trehalose is lower than that of sucrose in plants. For example, in white sucrose, the content of sucrose in the leaves is 9 mg / g (dry weight), the content of trehalose is 0 mg / g (dry weight), and the content of sucrose in the stem is 7.5 mg. Although it is / g (dry weight), the content of trehalose is 0.1 mg / g (dry weight) (Non-Patent Document 9).
 人工的な植物組織の培養では、常法として、炭素源はスクロース及び/又はマルトースが使用されている。一方、トレハロースの植物組織培養における利用はほとんどない。しかしながら、例外的に、熱帯性着生種のシンビジウムであるCymbidium finlaysonianumのプロトコーム様球体(PLB)形成では、トレハロースの添加が有効であることが示されている。ショ糖5~40g/lやトレハロース10~80g/lの濃度で、PLB形成は促進され、それぞれ20g/lの濃度が最も有効であった。シュートからの発根はトレハロース添加区のみで認められ、トレハロースはシュートからの発根に有効と報告されている(非特許文献10)。 In culturing artificial plant tissues, sucrose and / or maltose are used as carbon sources as a conventional method. On the other hand, trehalose is rarely used in plant tissue culture. However, as an exception, the addition of trehalose has been shown to be effective in the formation of protocomb-like spheres (PLBs) of Cymbidium finlaysonianum, a tropical epiphytic cymbidium. PLB formation was promoted at concentrations of 5-40 g / l of sucrose and 10-80 g / l of trehalose, with concentrations of 20 g / l each being the most effective. Rooting from shoots was observed only in the trehalose-added group, and trehalose has been reported to be effective for rooting from shoots (Non-Patent Document 10).
 一方、コムギにおいては、トレハロース利用による小胞子の組織培養による植物体再生の試みがなされた研究があるが、トレハロースの効果はなかったと報告されている(非特許文献11)。また、トレハロースは植物の代謝や生育を阻害することが知られている(非特許文献12、非特許文献13)。オオムギでは、トレハロースは炭水化物関連遺伝子の制御を妨げることが報告されている(非特許文献14、非特許文献15)。これらにより、トレハロースはスクロース及び/又はマルトースの代わりに、イネ科の植物の培養に利用されることはなかった。 On the other hand, in wheat, there is a study in which an attempt was made to regenerate a plant by tissue culture of microspores using trehalose, but it is reported that trehalose had no effect (Non-Patent Document 11). Further, trehalose is known to inhibit the metabolism and growth of plants (Non-Patent Document 12, Non-Patent Document 13). In barley, trehalose has been reported to interfere with the regulation of carbohydrate-related genes (Non-Patent Document 14, Non-Patent Document 15). As a result, trehalose was not used for culturing gramineous plants in place of sucrose and / or maltose.
WO2011/013764WO2011 / 013764 WO2017/171092WO2017 / 171092 WO2018/143480WO2018 / 143480 WO2014/157541WO2014 / 157541
 本発明は、植物細胞の培養方法及び植物体の再生方法を提供することを目的とする。 An object of the present invention is to provide a method for culturing plant cells and a method for regenerating plants.
 本発明者らは上記問題解決のために鋭意研究に努めた結果、コムギ未熟胚の培養・再生化において、常法で用いる炭素源(スクロースやマルトース)ではなく、トレハロースを含有する培地で培養することによって、常法培地と比較して、顕著に植物再生率が向上することを見出し、本発明を完成させた。本方法の利用によって、形質転換作物の作出やゲノム編集作物の作出が効率的に可能となった。 As a result of diligent research to solve the above problems, the present inventors cultivate immature wheat embryos in a medium containing trehalose instead of the carbon source (sucrose or maltose) used in the conventional method. As a result, it was found that the plant regeneration rate was remarkably improved as compared with the conventional medium, and the present invention was completed. By using this method, it has become possible to efficiently produce transformed crops and genome-edited crops.
 限定されるわけではないが、本発明は以下の態様を含む。
[態様1]
 イネ科植物の細胞を、トレハロースを含有する培養培地を用いて培養することを含む、植物細胞の培養方法。
[態様2]
 イネ科の植物細胞を培養し、植物細胞群及び/又は植物再生体を得る、ことを含む、態様1に記載の方法。
[態様3]
 イネ科植物が、イネ、トウモロコシ、コムギ、オオムギ、ライムギ、及びソルガムからなる群から選択される、態様1又は2に記載の方法。
[態様4]
 イネ科植物が、コムギ又はトウモロコシである、態様1-3のいずれか1項に記載の方法。
[態様5]
 イネ科植物の細胞が、未熟胚、完熟種子、受精卵、カルス、プロトプラスト、又はそれらに由来する細胞群である、態様1-4のいずれか1項に記載の方法。
[態様6]
 イネ科植物の細胞が、未熟胚又はそれに由来する細胞群である、態様1-5のいずれか1項に記載の方法。
[態様7]
 イネ科植物の細胞に、核酸、タンパク質及び核酸タンパク質複合体からなる群から選択される物質を導入する工程を含む、態様1-6のいずれか1項に記載の方法。
[態様8]
 物質の導入により形質転換又はゲノム編集を行う、態様7に記載の方法。
[態様9]
 パーティクルガン法又はアグロバクテリウム法によって物質を導入する、態様7又は8に記載の方法。
[態様10]
 植物細胞の培養効率が向上する、態様1-9のいずれか1項に記載の方法。
[態様11]
 物質の導入効率が向上する、態様7-9のいずれか1項に記載の方法。
[態様12]
 イネ科植物の細胞からの植物体の再生方法であって、
 (1)イネ科植物の細胞を、トレハロースを含有する培養培地を用いて培養し、そして、
 (2)再分化培地で培養する、
ことを含む、植物体の再生方法。
The present invention includes, but is not limited to, the following aspects.
[Aspect 1]
A method for culturing plant cells, which comprises culturing cells of a gramineous plant using a culture medium containing trehalose.
[Aspect 2]
The method according to aspect 1, wherein the plant cells of the Gramineae family are cultured to obtain a plant cell group and / or a regenerated plant.
[Aspect 3]
The method according to aspect 1 or 2, wherein the gramineous plant is selected from the group consisting of rice, corn, wheat, barley, rye, and sorghum.
[Aspect 4]
The method according to any one of aspects 1-3, wherein the gramineous plant is wheat or corn.
[Aspect 5]
The method according to any one of aspects 1-4, wherein the cells of a gramineous plant are immature embryos, ripe seeds, fertilized eggs, callus, protoplasts, or a cell group derived from them.
[Aspect 6]
The method according to any one of aspects 1-5, wherein the cells of a gramineous plant are immature embryos or a cell group derived from the immature embryos.
[Aspect 7]
The method according to any one of aspects 1-6, comprising the step of introducing a substance selected from the group consisting of nucleic acid, protein and nucleic acid protein complex into cells of a gramineous plant.
[Aspect 8]
The method according to aspect 7, wherein transformation or genome editing is performed by introducing a substance.
[Aspect 9]
The method according to aspect 7 or 8, wherein the substance is introduced by a particle gun method or an Agrobacterium method.
[Aspect 10]
The method according to any one of aspects 1-9, wherein the culture efficiency of plant cells is improved.
[Aspect 11]
The method according to any one of aspects 7-9, wherein the introduction efficiency of the substance is improved.
[Aspect 12]
It is a method of regenerating a plant from the cells of a gramineous plant.
(1) The cells of Gramineae plants are cultured using a culture medium containing trehalose, and then
(2) Culturing in redifferentiation medium,
How to regenerate a plant, including that.
 従来培養が困難であるといわれているイネ科植物の培養を容易とし、培養細胞から植物再生体を効率的に取得することが可能になった。 It has become possible to easily cultivate gramineous plants, which are said to be difficult to cultivate in the past, and to efficiently obtain regenerated plants from cultured cells.
 1.植物細胞の培養方法
 本発明は、植物の培養方法に関する。本発明の方法は、イネ科植物の細胞を、トレハロースを含有する培養培地を用いて培養することを含む。
1. 1. Plant Cell Culturing Method The present invention relates to a plant culturing method. The method of the present invention comprises culturing grass cells using a culture medium containing trehalose.
 植物
 上記方法における「植物」は、イネ科の植物である。イネ科植物としては、イネ科(Poaceae)に属するいずれの植物でも用いることができる。一態様として、非限定的に、イネ科植物は、イネ、トウモロコシ、コムギ、オオムギ、ライムギ、及びソルガムからなる群から選択される。(本明細書において、「一態様」と言及した場合には、非限定的であることを意図する。)上記培養方法は、特に、「難培養」とされる植物あるいは品種に用いることが可能である。「難培養」とは、培養が困難、具体的には、例えば、植物体から単離された細胞や組織等の培養が困難、脱分化等の処理によるカルスの形成や、カルスからの植物体への再分化が困難である、ことを意味する。
Plant The "plant" in the above method is a gramineous plant. As the gramineous plant, any plant belonging to the gramineous family (Poaceae) can be used. In one aspect, the gramineous plant is selected from the group consisting of rice, corn, wheat, barley, rye, and sorghum, without limitation. (In the present specification, the term "one aspect" is intended to be non-limiting.) The above culture method can be used particularly for plants or varieties that are considered to be "difficult to culture". Is. "Difficult-to-culture" means that it is difficult to culture, specifically, for example, it is difficult to culture cells or tissues isolated from a plant, formation of callus by treatment such as dedifferentiation, or a plant from callus. It means that it is difficult to redifferentiate into.
 一態様として、イネ科の植物はコムギ(Triticum)属又はトウモロコシ属(Zea)に属するものが好ましい。本明細書において、「コムギ」、「トウモロコシ」とは、特に言及しない限り、各々、コムギ属、トウモロコシ属の植物を意味する。 As one aspect, the gramineous plant preferably belongs to the genus Wheat (Triticum) or the genus Corn (Zea). In the present specification, "wheat" and "corn" mean plants of the genus Wheat and the genus Corn, respectively, unless otherwise specified.
 コムギ属としては、例えば、1粒系のコムギとして、T.aegilopoides、T.thaoudar、及び、T.monococcum(1粒コムギ)を、2粒系のコムギとして、T.dicoccoides、T.dicoccum(2粒コムギ、エンマーコムギ)、T.pyromidale、T.orientale(コーラサンコムギ)、T.durum(デュラムコムギ、マカロニコムギ)、T.turgidum(リベットコムギ)、T.polonicum(ポーランドコムギ)、及びT.persicum(ペルシャコムギ)を、並びに3粒系のコムギとして、T.aestivum(普通コムギ、パンコムギ)、T.spelta(スペルトコムギ)、T.compactum(クラブコムギ、密穂コムギ)、T.sphaerococcum(インド矮性コムギ)、T.maha(マカコムギ)、及びT.vavilovii(バビロビコムギ)を挙げることができる。本発明においてパンコムギ(T.aestivum)又はマカロニコムギ(T.durum)に属する品種が好適であり、特に、T.aestivumに属する品種が好適である。 As the genus Wheat, for example, as a one-grain wheat, T.I. aegilopodes, T.I. thaudar and T.I. Using monococcum (1 grain wheat) as a 2-grain wheat, T.I. dicoccoides, T.I. dicoccum (2 grains of wheat, emmer wheat), T.I. pyromidale, T.I. Orientale (Khorasan wheat), T.I. durum (durum wheat, macaroni wheat), T.I. turgidium (rivet wheat), T.I. Polishum (Polish wheat), and T.I. Persicum (Persian wheat), as well as three-grain wheat, T.I. aestivum (ordinary wheat, bread wheat), T.I. spelled, T.I. compactum (Club Wheat, Mitsuho Wheat), T.I. sphereococcum (Indian dwarf wheat), T.I. maha, and T.I. Vavilovii can be mentioned. In the present invention, varieties belonging to bread wheat (T. aestivum) or macaroni wheat (T. durum) are suitable, and in particular, T.I. Varieties belonging to aestivum are suitable.
 トウモロコシ属としては、Zea mays、Zea diploperennis、Zea luxurians、Zea nicaraguensis及びZea perennisの5種が知られている。Zea maysには、多くの栽培品種が開発されている。本発明に使用されるトウモロコシの種、品種は特に限定されないが、好ましくは、Zea maysに属する品種である。 As the genus Corn, five species are known: Zea mays, Zea diploperennis, Zea luxurians, Zea nicaraguensis and Zea perennis. Many cultivars have been developed for Zea mays. The seeds and varieties of corn used in the present invention are not particularly limited, but are preferably varieties belonging to Zea mays.
 イネ科植物の細胞
 植物材料としては、限定されるものではないが、イネ科植物の未熟胚、完熟種子、受精卵、カルス、プロトプラスト、又はそれらに由来する細胞群が挙げられる。好ましくは、未熟胚又は完熟種子である。本明細書において「未熟胚」とは、受粉後の登熟過程にある未熟種子の胚をいう。本発明の方法に供される未熟胚のステージ(熟期)は特に限定されるものではなく、受粉後いかなる時期に採取されたものであってもよいが、受粉後7から21日後のものが好ましい。「完熟種子」とは、受粉後の登熟過程が終了して種子として完熟しているものをいう。「受精卵」とは、精細胞と卵細胞とが融合した細胞を意味する。「植物受精卵」とは、植物の胚嚢を含む組織から単離される受精した卵細胞である、即ち、植物体の段階で受粉・受精させ、該植物体から単離した受精卵、であってもよい。あるいは、受粉・受精前の植物体から卵細胞及び精細胞を単離したのち、それらを融合させて受精卵細胞を作出及び取得してもよい。なお、電気的な融合により受精卵を作成及び取得してもよい。また、異種の植物同士の卵細胞と精細胞の融合により得られた受精卵、であってもよい。「プロトプラスト」とは、植物細胞から細胞壁を取り除いた細胞である。
Cell of Gramineae Plants Plant materials include, but are not limited to, immature embryos, ripe seeds, fertilized eggs, callus, protoplasts, or cell groups derived from them. Immature embryos or ripe seeds are preferred. As used herein, the term "immature embryo" refers to an embryo of an immature seed that is in the process of ripening after pollination. The stage (ripening stage) of the immature embryos used in the method of the present invention is not particularly limited and may be collected at any time after pollination, but those 7 to 21 days after pollination are used. preferable. "Ripe seeds" are those that have completed the ripening process after pollination and are fully ripe as seeds. "Fertilized egg" means a cell in which a sperm cell and an egg cell are fused. A "plant fertilized egg" is a fertilized egg cell isolated from a tissue containing a plant embryo sac, that is, a fertilized egg that has been fertilized and fertilized at the stage of a plant and isolated from the plant. May be good. Alternatively, an egg cell and a sperm cell may be isolated from a plant before pollination and fertilization, and then fused to produce and obtain a fertilized egg cell. A fertilized egg may be prepared and obtained by electrical fusion. Further, it may be a fertilized egg obtained by fusing egg cells and sperm cells of different kinds of plants. A "protoplast" is a cell from which a cell wall has been removed from a plant cell.
 トレハロースを含有する培養培地
 上記植物の培養方法は、イネ科植物の細胞を、トレハロースを含有する培養培地を用いて培養することを含む。限定的に、一態様において、植物細胞の培養は、未熟胚から植物体を再生させる工程において行う。
Culture Medium Containing Trehalose The method for culturing a plant includes culturing cells of a gramineous plant using a culture medium containing trehalose. Limited, in one embodiment, the culture of plant cells is carried out in the step of regenerating the plant from the immature embryo.
 以下、植物細胞の培養方法の態様の例を説明する。植物細胞の培養培地は、植物細胞を通常培養するために通常使用されるものでもよく、特に限定されない。非限定的に、例えばWLS培地、WLS-RES培地、MS培地、LS培地、N6培地、B5培地、R2培地、CC培地を基本とする培地等が挙げられる。これらの培地は、基本の濃度から高濃度にされたものでも、希釈されたものであってもよい。好ましくは、1/10倍から2倍量、より好ましくは、1/5倍から1倍量である。 Hereinafter, an example of the mode of the method for culturing plant cells will be described. The culture medium for plant cells may be one that is usually used for culturing plant cells, and is not particularly limited. Non-limiting examples thereof include WLS medium, WLS-RES medium, MS medium, LS medium, N6 medium, B5 medium, R2 medium, and medium based on CC medium. These media may be concentrated from the basic concentration or diluted. The amount is preferably 1/10 to 2 times, more preferably 1/5 to 1 times.
 一態様において、基本となる培地は、WLS培地、WLS-RES培地である。これらの培地は以下の組成を有する。 In one embodiment, the basic medium is a WLS medium or a WLS-RES medium. These media have the following composition.
 WLS培地: 1×LSメジャー無機塩、100μM FeEDTA、1×LSマイナー無機塩、1×MSビタミン、0.5mg/L 2,4-D、2.2mg/L ピクローラム、4% マルトース一水和物、500mg/L グルタミン、100mg/L カゼイン加水分解物、3.7mM MgCl2、0.195% MES、57μM アスコルビン酸、5μM AgNO、5g/L アガロース、pH5.8。 WLS medium: 1 x LS major inorganic salt, 100 μM FeEDTA, 1 x LS minor inorganic salt, 1 x MS vitamin, 0.5 mg / L 2,4-D, 2.2 mg / L picrolam, 4% maltose monohydrate , 500 mg / L glutamine, 100 mg / L casein hydrolyzate, 3.7 mM MgCl 2, 0.195% MES, 57 μM ascorbic acid, 5 μM AgNO 3 , 5 g / L agarose, pH 5.8.
 WLS-RES培地(WLS培地の2.2mg/l ピクローラムを2.5mg/l ダイカンバに置換した培地): 1×LSメジャー無機塩、100μM FeEDTA、1×LSマイナー無機塩、1×MSビタミン、0.5mg/L 2,4-D、2.5mg/L ダイカンバ、4% マルトース一水和物、500mg/L グルタミン、100mg/L カゼイン加水分解物、3.7mM MgCl2、0.195% MES、57μM アスコルビン酸、5μM AgNO、5g/L アガロース、pH5.8。 WLS-RES medium (medium in which 2.2 mg / l picrolam of WLS medium is replaced with 2.5 mg / l dicamba): 1 × LS major inorganic salt, 100 μM FeEDTA, 1 × LS minor inorganic salt, 1 × MS vitamin, 0 .5 mg / L 2,4-D, 2.5 mg / L medium, 4% maltose monohydrate, 500 mg / L glutamine, 100 mg / L casein hydrolyzate, 3.7 mM MgCl 2, 0.195% MES, 57 μM ascorbic acid, 5 μM AgNO 3 , 5 g / L agarose, pH 5.8.
 「トレハロース」は、グルコースが1,1-グリコシド結合している二糖の一種である。適宜調整された培養培地にトレハロースを添加する。培養培地に添加されるトレハロースの濃度は特に限定されない。一態様において、培養培地中のトレハロースの濃度は、20mM以上、50mM以上、75mM以上、100mM以上、125mM以上、150mM以上、180mM以上、200mM以上、220mM以上、240mM以上、250mM以上である。一態様において、培養培地中のトレハロース濃度は、1000mM以下、800mM以下、600mM以下、500mM以下、450mM以下、400mM以下、350mM以下、300mM以下、280mM以下である。非限定的に、培養培地中のトレハロースの濃度は20mM以上1000mM以下、50mM以上800mM以下、100mM以上600mM以下、150mM以上400mM以下である。 "Trehalose" is a type of disaccharide in which glucose is 1,1-glycosidic bonded. Trehalose is added to the appropriately prepared culture medium. The concentration of trehalose added to the culture medium is not particularly limited. In one embodiment, the concentration of trehalose in the culture medium is 20 mM or more, 50 mM or more, 75 mM or more, 100 mM or more, 125 mM or more, 150 mM or more, 180 mM or more, 200 mM or more, 220 mM or more, 240 mM or more, 250 mM or more. In one embodiment, the trehalose concentration in the culture medium is 1000 mM or less, 800 mM or less, 600 mM or less, 500 mM or less, 450 mM or less, 400 mM or less, 350 mM or less, 300 mM or less, 280 mM or less. Not limited, the concentration of trehalose in the culture medium is 20 mM or more and 1000 mM or less, 50 mM or more and 800 mM or less, 100 mM or more and 600 mM or less, and 150 mM or more and 400 mM or less.
 一態様において、上記トレハロースを含む培養培地は、トレハロースを含む代わりに、常法で用いる炭素源(例えば、スクロースやマルトース)を含まない、あるいは、含量を減じてもよい。一態様において、培養培地はトレハロース以外の炭素源を含まない。炭素源とは、スクロースや、マルトース、グルコース等を意味する。一態様において、炭素源とは、マルトースを意味する。但し、培地中の糖がトレハロースのみである場合を長期間とすることはできない。言い換えると、一態様において、トレハロース以外を含まない炭素源での長期培養は除く。非限定的に、長期間培養とは、例えば、6日以上、7日以上、8日以上、10日以上、17日以上を意味する。 In one embodiment, the culture medium containing trehalose does not contain a carbon source (for example, sucrose or maltose) used in a conventional method, or may have a reduced content, instead of containing trehalose. In one embodiment, the culture medium contains no carbon source other than trehalose. The carbon source means sucrose, maltose, glucose and the like. In one aspect, the carbon source means maltose. However, the case where the only sugar in the medium is trehalose cannot be used for a long period of time. In other words, in one embodiment, long-term cultures on carbon sources containing no other than trehalose are excluded. Non-limitingly long-term culture means, for example, 6 days or more, 7 days or more, 8 days or more, 10 days or more, 17 days or more.
 上記トレハロースの濃度は、例えば培地が固体のように、トレハロースが必ずしも培地全体に均一に含まれているとは限らない場合、培地単位体積当たりの含有量として把握することができる。 The concentration of trehalose can be grasped as the content per unit volume of the medium when the trehalose is not always uniformly contained in the whole medium, for example, when the medium is a solid.
 培養工程において、トレハロースを培地に添加する時期は特に限定されない。添加時期は、培養開始時もしくはそれ以降でもよい。非限定的に、一態様において、トレハロースを含む培養培地を、植物細胞が再生分化能を有する時期まで、植物細胞を培養する工程の、いずれかの時期に使用する。一態様において、トレハロースを含む培養培地を未熟胚が調製されてからの短期間、例えば、16日以内、8日以内、5日以内、3日以内、2日以内使用する。一態様において、トレハロースを含む培養培地を未熟胚が調製されてから植物への物質の導入を行うまでの期間使用する。培養期間中、トレハロースを培養培地に、一度に添加してもよく、あるいは、(例えば数回に)分けて添加してもよい。一態様において、パーティクルガンで物質導入を伴う培養においては、パーティクルガン処理前の当日、1日前、あるいは2日前からトレハロースを含む培養培地上に未熟胚及びそれに由来する細胞群を置床し、培養するのが良い。また、一態様において、アグロバクテリウムで物質導入を伴う培養においては、未熟胚に由来する細胞群を材料とした場合、アグロバクテリウム接種処理前の当日、1日前、あるいは、接種後2日後までトレハロースを含む培養培地上にそれらを置床し、培養するのが良く、未熟胚を材料とした場合、アグロバクテリウム接種処理の当日、あるいは、接種後2日後までトレハロースを含む培養培地上にそれらを置床し、培養するのが良い。 In the culture step, the time when trehalose is added to the medium is not particularly limited. The addition time may be at or after the start of culturing. In one embodiment, without limitation, the culture medium containing trehalose is used at any time of the step of culturing the plant cells until the time when the plant cells have the ability to regenerate and differentiate. In one embodiment, the culture medium containing trehalose is used for a short period of time after the immature embryos are prepared, for example, within 16 days, within 8 days, within 5 days, within 3 days, or within 2 days. In one embodiment, the culture medium containing trehalose is used for the period from the preparation of immature embryos to the introduction of the substance into the plant. During the culture period, trehalose may be added to the culture medium at one time or in divided doses (for example, several times). In one embodiment, in a culture involving substance introduction with a particle gun, an immature embryo and a cell group derived from the immature embryo are placed and cultured on a culture medium containing trehalose from 1 day or 2 days before the particle gun treatment. Is good. In addition, in one embodiment, in a culture involving introduction of a substance with agrobacterium, when a cell group derived from an immature embryo is used as a material, the day before the agrobacterium inoculation treatment, one day before, or two days after the inoculation. It is better to place them on a culture medium containing trehalose and cultivate them. It is good to place it on the bed and inoculate it.
 非限定的に、一態様において、培地は、植物成長調整物質を含んでもよい。植物成長調整物質は、オーキシン類である。具体的には、例えば、オーキシン類として特にインドール-3-酢酸(IAA)、2,4-ジクロロフェノキシ酢酸(2,4-D)、ピクローラム、ダイカンバ、ナフタレン酢酸(NAA)、ナフトキシ酢酸、フェニル酢酸、2,4,5-トリクロロフェノキシ酢酸又は他のオーキシン類を添加することができる。一態様において、オーキシン類は、2,4-D、IAA、NAAからなる群より選択される植物ホルモンである。あるいは、カイネチンや4PUのようなサイトカイニンなど、他の植物成長調節物質を添加することもできる。これらの植物成長調節物質は、単独でも複数を異なる濃度で混合させてもよい。 In one embodiment, the medium may include, but is not limited to, a plant growth regulator. Plant growth regulators are auxins. Specifically, for example, as auxins, indole-3-acetic acid (IAA), 2,4-dichlorophenoxyacetic acid (2,4-D), picrolam, daikamba, naphthalene acetic acid (NAA), naphthoxyacetic acid, phenylacetic acid, for example. , 2,4,5-Trichlorophenoxyacetic acid or other auxins can be added. In one embodiment, the auxins are plant hormones selected from the group consisting of 2,4-D, IAA, NAA. Alternatively, other plant growth regulators such as kinetin and cytokinins such as 4PU can be added. These plant growth regulators may be used alone or in admixture of a plurality at different concentrations.
 一様態において、培養培地に、フィーダー(ナース)細胞を加えてもよい。フィーダー細胞の種類は特に限定されない。例えば、イネの液体培養細胞や、コムギの液体培養細胞などを用いることが可能である。公知のフィーダー細胞や植物外植片を用いることが可能である。例えば、イネ浮遊細胞培養物(Oc、理化学研究所バイオリソース研究センター)や、コムギ懸濁培養細胞(HT3-1)などが挙げられる。植物外植片としては、子房などが挙げられる。フィーダー細胞を添加する時期は限定されるものではなく、植物細胞の培養開始前、開始時、開始後であってもよい。 In a uniform state, feeder (nurse) cells may be added to the culture medium. The type of feeder cell is not particularly limited. For example, liquid cultured cells of rice, liquid cultured cells of wheat, and the like can be used. It is possible to use known feeder cells and plant explants. Examples thereof include rice suspension cell culture (Oc, RIKEN BioResource Research Center) and wheat suspension culture cells (HT3-1). Examples of the plant explants include ovaries. The timing of adding the feeder cells is not limited, and may be before, at the start, or after the start of culturing the plant cells.
 培養温度は、適宜選択可能であり、好ましくは18℃-35℃、さらに好ましくは20-30℃、最も好ましくは23-28℃で行われる。また、この工程の培養は好ましくは暗所、もしくは薄暗い所で行われるが、これに限定されない。 The culture temperature can be appropriately selected, preferably 18 ° C.-35 ° C., more preferably 20-30 ° C., and most preferably 23-28 ° C. Further, the culture in this step is preferably performed in a dark place or a dim place, but the culture is not limited to this.
 一態様において、上記培養方法は、イネ科の植物細胞を培養し、植物細胞群及び/又は植物再生体を得る、ことを含む。 In one embodiment, the above-mentioned culturing method includes culturing plant cells of the Gramineae family to obtain a plant cell group and / or a regenerated plant.
 細胞群は、胚様体、球状様胚、カルスなどであってもよい。受精卵を分裂誘導し細胞増殖させ、胚様体、球状様胚、カルスなどを形成させる工程は、植物によって最適条件が異なるため特に限定されない。 The cell group may be an embryoid body, a spherical embryo, a callus, or the like. The process of inducing division of a fertilized egg and causing cell proliferation to form an embryoid body, a spherical embryo, a callus, or the like is not particularly limited because the optimum conditions differ depending on the plant.
 「植物再生体を得る」ことについて、「2.植物体の再生方法」において詳述する。 "Obtaining a plant regeneration body" will be described in detail in "2. Plant regeneration method".
 本発明はまた、イネ科植物の細胞を培養するための、トレハロースを含有する培養培地、トレハロースの、イネ科植物の細胞の培養培地への使用、イネ科植物の細胞の培養培地に使用されるトレハロースも含む。 The present invention is also used in a culture medium containing trehalose for culturing grass cells, use of trehalose in a culture medium for grass cells, and a culture medium for grass cells. Also includes trehalose.
 一態様において、上記培養方法により、トレハロースを含まない培地で培養した場合と比較して、植物細胞の培養効率が向上する。植物細胞の培養効率は、非限定的に、例えば、培養におけるカルス化率等を意味する。 In one embodiment, the above-mentioned culturing method improves the culturing efficiency of plant cells as compared with the case of culturing in a medium containing no trehalose. The culture efficiency of plant cells is not limited, and means, for example, the callus formation rate in culture.
 非限定的に、培養効率(例えば、カルス化率)が、例えば、1.1倍以上、2倍以上、3倍以上、5倍以上、10倍以上、30倍以上に向上する。「培養効率が向上する」には、トレハロースを含まない培地で培養した場合にはカルスが形成されなかったイネ科の品種において、カルス形成が生じるようになる場合も含む。 Non-limitingly, the culture efficiency (for example, callus formation rate) is improved to, for example, 1.1 times or more, 2 times or more, 3 times or more, 5 times or more, 10 times or more, and 30 times or more. "Improved culture efficiency" includes the case where callus formation occurs in Gramineae varieties in which callus was not formed when cultured in a medium containing no trehalose.
 2.植物体の再生方法
 本発明は、植物体の再生方法に関する。本発明の再生方法は、イネ科植物の細胞からの植物体の再生方法であって、
 (1)イネ科植物の細胞を、トレハロースを含有する培養培地を用いて培養し、そして、
 (2)再分化培地で培養する、
ことを含む。
2. 2. Method for Regenerating Plants The present invention relates to a method for regenerating plants. The regeneration method of the present invention is a method for regenerating a plant from cells of a gramineous plant.
(1) The cells of Gramineae plants are cultured using a culture medium containing trehalose, and then
(2) Culturing in redifferentiation medium,
Including that.
 「植物」、「イネ科植物」、「(イネ科植物の)細胞」、「培養培地」、「トレハロース」等の用語の意義は、「1.植物細胞の培養方法」において記載した通りである。 The meanings of terms such as "plant", "grass", "cells (of grass)", "culture medium", and "trehalose" are as described in "1. Method for culturing plant cells". ..
 再分化工程、すなわち、再分化培地での培養工程は特に限定されない。培養細胞群を、任意の培地、例えば、本明細書の実施例に記載したLSF培地(例えば、LSFCuP5(-C)培地)からなる再分化培地に移し、培養する。非限定的に、再分化工程は光を照射して行ってもよい。再分化培地には、例えば、LSF培地、MS培地、B5培地、N6培地であり、アガロース、寒天やゲランガム、ゲルライト等固化材を使用した固体培地を含まない液体培地であってもよい。 The redifferentiation step, that is, the culture step in the redifferentiation medium is not particularly limited. The cultured cell group is transferred to an arbitrary medium, for example, a redifferentiation medium consisting of the LSF medium described in the examples of the present specification (for example, LSFCuP5 (—C) medium), and cultured. Non-limitingly, the redifferentiation step may be performed by irradiating with light. The redifferentiation medium may be, for example, LSF medium, MS medium, B5 medium, N6 medium, and may be a liquid medium containing no solid medium using a solidifying material such as agarose, agar, gellan gum, and gellite.
 再分化培地には、オーキシン、サイトカイニンを含む植物成長調節物質を添加してもよい。一態様において、再分化培地は、オーキシン類を含む。「オーキシン」、「サイトカイニン」等の用語の意義は、「1.植物細胞の培養方法」において記載した通りである。 A plant growth regulator containing auxin and cytokinin may be added to the redifferentiation medium. In one embodiment, the redifferentiation medium comprises auxins. The meanings of terms such as "auxin" and "cytokinin" are as described in "1. Plant cell culture method".
 再分化工程によって、根、シュートなどが再分化した個体を、土が入ったポットなどに移植すれば、正常な植物個体として育成させることができる。 By transplanting an individual whose roots, shoots, etc. have been redifferentiated by the redifferentiation step into a pot containing soil, it can be grown as a normal plant individual.
 上記植物再生法によって再生されたイネ科植物(再生植物体)も提供される。再生された植物とは、未熟胚の培養、再分化により再生された植物、該植物から得られた細胞、組織等や、上記植物再生法により得られた再分化当代である「T0世代」やT0世代の植物の自殖種子に由来する「T1世代」などの後代植物、それらを片親にして交配した雑種植物やその後代植物を含む。 Gramineae plants (regenerated plants) regenerated by the above plant regeneration method are also provided. The regenerated plants include plants regenerated by culturing immature embryos and redifferentiation, cells, tissues, etc. obtained from the plants, and "T0 generation" which is the redifferentiation generation obtained by the above-mentioned plant regeneration method. Includes progeny plants such as "T1 generation" derived from the self-fertilized seeds of T0 generation plants, hybrid plants crossed with them as one parent, and progeny plants.
 本発明以前は、イネ科植物において特に「難培養」とされる種や品種について、効率よく培養することができず、再生された植物を得ることは困難或いは不可能であった。上記植物再生法により、このような植物、品種についても簡便な方法で効率よく培養、再生植物体を得ることが可能になった。 Prior to the present invention, it was not possible to efficiently cultivate species and varieties of Gramineae plants, which are considered to be "difficult to culture", and it was difficult or impossible to obtain regenerated plants. The above-mentioned plant regeneration method has made it possible to efficiently cultivate such plants and varieties by a simple method and obtain regenerated plants.
 3.植物への物質の導入
 植物、特に単子葉植物の遺伝子組換え技術は、1990年代にアグロバクテリウムを利用した方法がイネ、トウモロコシで開発されたことを契機に急速に利用が普及した。現在までに様々な形質転換方法が開発されてきている。
3. 3. Introduction of substances into plants The genetic recombination technology for plants, especially monocotyledonous plants, has rapidly become widespread since the development of methods using Agrobacterium in rice and maize in the 1990s. To date, various transformation methods have been developed.
 また、近年効率的にゲノム編集を行うことが可能になりつつあるが、これも作物種、品種ごとに組織培養の容易性が異なる点が、ゲノム編集効率(genome editing efficiency)に大きな影響を与えるため、実用化の妨げとなっている。 In recent years, it has become possible to efficiently edit the genome, but the fact that the ease of tissue culture differs depending on the crop species and varieties has a great influence on the efficiency of genome editing (genome editing efficiency). Therefore, it hinders practical use.
 本発明の、植物細胞の培養方法、植物再生方法により、イネ科植物の細胞を培養することによって得た細胞群から、安定して効率よく再生植物体を得ることが可能になった。上記植物細胞の培養方法、再生方法の工程におけるいずれかの段階において、植物細胞に物質を導入することにより、物質が導入された再生植物を安定して効率よく取得することができる。一態様において、未熟胚に形質転換物質を導入する。 According to the method for culturing plant cells and the method for regenerating plants of the present invention, it has become possible to stably and efficiently obtain regenerated plants from the cell group obtained by culturing cells of grasses. By introducing a substance into a plant cell at any stage of the steps of the method for culturing the plant cell and the method for regenerating the plant cell, the regenerated plant into which the substance is introduced can be stably and efficiently obtained. In one embodiment, the transformant is introduced into the immature embryo.
 一態様において、上記培養方法、植物再生方法の植物細胞は、物質が導入された植物細胞である。一態様において、発明の培養方法、植物再生方法の植物細胞は、イネ科植物の細胞に、核酸、タンパク質及び核酸タンパク質複合体からなる群から選択される物質を導入する工程を含む。 In one embodiment, the plant cells of the above-mentioned culture method and plant regeneration method are plant cells into which a substance has been introduced. In one embodiment, the plant cells of the culture method and the plant regeneration method of the present invention include a step of introducing a substance selected from the group consisting of nucleic acid, protein and nucleic acid protein complex into cells of grasses.
 導入する物質は、非限定的に、核酸、タンパク質及び核酸タンパク質複合体からなる群から選択される。核酸は特に限定されず、DNA、RNA、両者の結合体、混合物であってもよい。好ましくはベクターのような環状DNA、直鎖DNA、環状RNA又は直鎖RNAである。使用される形質転換方法に応じた任意の長さのものを使用可能である。タンパク質は、決まった順番で様々なアミノ酸が、アミド結合(「ペプチド結合」ともいう)でつながった分子の総称である。タンパク質は、ゲノム編集のためのCas9ヌクレアーゼ等ヌクレアーゼや、修飾酵素、抗体等を含む。核酸タンパク質複合体は、核酸とタンパク質が複合体を形成したものである。例えば、デオキシリボ核タンパク質(DNAとVirD2タンパク質の複合体等)、リボ核タンパク質(ガイドRNAとCas9タンパク質の複合体等)などが含まれる。 The substance to be introduced is selected from the group consisting of nucleic acid, protein and nucleic acid-protein complex without limitation. The nucleic acid is not particularly limited, and may be DNA, RNA, a combination of both, or a mixture. It is preferably a circular DNA such as a vector, a linear DNA, a circular RNA or a linear RNA. Any length can be used depending on the transformation method used. Protein is a general term for molecules in which various amino acids are linked in a fixed order by amide bonds (also referred to as "peptide bonds"). The protein contains a nuclease such as Cas9 nuclease for genome editing, a modifying enzyme, an antibody and the like. A nucleic acid-protein complex is a complex formed by a nucleic acid and a protein. For example, deoxyribonuclear protein (complex of DNA and VirD2 protein, etc.), ribonuclear protein (complex of guide RNA and Cas9 protein, etc.) and the like are included.
 2種類以上の核酸、タンパク質及び核酸タンパク質複合体を導入してもよい。核酸は、2種類以上のDNA又はRNAでも、DNAとRNAの組み合わせでもよい。核酸とタンパク質など異なる種の物質を導入してもよい。 Two or more types of nucleic acids, proteins and nucleic acid-protein complexes may be introduced. The nucleic acid may be two or more types of DNA or RNA, or a combination of DNA and RNA. Different types of substances such as nucleic acids and proteins may be introduced.
 物質を植物に導入する方法は、植物に所望の物質を導入することのできる公知の方法ならば特に限定されず、植物の種類に応じて適宜選択することができる。例えば、パーティクルガン法、ポリエチレングリコール法(PEG法)、エレクトロポレーション法、マイクロインジェクション法、ウィスカー法などの物理化学的方法(DNAの直接導入法)あるいはアグロバクテリウム法などの生物学的方法(DNAの間接導入法)を好ましく用いることができる。一態様において、パーティクルガン法又はアグロバクテリウム法によって物質を導入する。 The method for introducing a substance into a plant is not particularly limited as long as it is a known method capable of introducing a desired substance into a plant, and can be appropriately selected depending on the type of plant. For example, a physicochemical method (direct DNA introduction method) such as a particle gun method, a polyethylene glycol method (PEG method), an electroporation method, a microinjection method, a whisker method, or a biological method such as an Agrobacterium method (agrobacterium method). The method of indirect introduction of DNA) can be preferably used. In one embodiment, the substance is introduced by the particle gun method or the Agrobacterium method.
 植物への物質の導入は、非限定的に、例えば、国際公開WO2017/171092(特許文献2)、国際公開WO2018/143480(特許文献3)に記載の方法によって行うことができる。 The introduction of the substance into the plant can be performed, for example, by the method described in International Publication WO2017 / 171092 (Patent Document 2) and International Publication WO2018 / 143480 (Patent Document 3) without limitation.
 一態様において、物質の導入により形質転換又はゲノム編集を行ってもよい。
ゲノム編集とは、部位特異的ヌクレアーゼを利用して、思い通りに標的遺伝子を改変する技術である。部位特異的ヌクレアーゼとしては、2005年以降に開発・発見された、ZFN(ズィーエフエヌ、又は、ジンクフィンガーヌクレアーゼ)、TALEN(タレン)、CRISPER/Cas9(クリスパー・キャスナイン)などが知られている。
In one embodiment, transformation or genome editing may be performed by introducing a substance.
Genome editing is a technique for modifying a target gene as desired by using a site-specific nuclease. Known site-specific nucleases include ZFN (Zinc finger nuclease), TALEN, and CRISPR / Cas9 (Crisper Cas9), which were developed and discovered after 2005.
 イネ科植物、例えば、コムギの組織培養と再生体作出は、コムギの品種開発においては、必要な技術である。とりわけ、遺伝子組換えコムギを作出する際やゲノム編集コムギを作出する際には、例えば、アグロバクテリウム法やパーティクルガン法で遺伝子導入した未熟胚や培養細胞を組織培養し、カルスから再生体を取得する方法が標準法となっている。なお、ゲノム編集作出では、DNAの導入に代わって、リボヌクレオタンパク質(RNP)を導入した未熟胚や培養細胞を培養し、再生体を取得してもよい。 Tissue culture of gramineous plants, for example, wheat and production of regenerated bodies are necessary techniques in the development of wheat varieties. In particular, when producing recombinant wheat or genome-editing wheat, for example, immature embryos or cultured cells that have been gene-introduced by the Agrobacterium method or the particle gun method are tissue-cultured, and regenerated bodies are produced from callus. The method of acquisition is the standard method. In the genome editing production, instead of introducing DNA, immature embryos or cultured cells into which ribonucleoprotein (RNP) has been introduced may be cultured to obtain a regenerated body.
 一態様において、上記培養方法により、トレハロースを含まない培地で培養した場合と比較して、物質の導入効率が向上する。物質の導入効率は、非限定的に、例えば、培養におけるカルス化率、形質転換率(transformation frequency)、ゲノム編集率(genome editing frequency)等を意味する。 In one embodiment, the above-mentioned culturing method improves the efficiency of introducing a substance as compared with the case of culturing in a medium containing no trehalose. The introduction efficiency of a substance means, for example, a callus formation rate, a transformation rate (transformation frequency), a genome editing rate (genome editing frequency), and the like in culture without limitation.
 本明細書中で、「物質の導入効率が高い」とは、高い効率で目的物質が植物細胞へ導入されること、未熟胚等から高い効率でカルスが誘導されること、形質転換カルスから高い効率で再分化が起こること、を包含する概念である。また、本明細書において「物質の導入効率が向上する」とは、目的物質の植物細胞への導入効率が向上すること、未熟胚等からのカルス誘導率が向上すること、形質転換カルスからの再分化効率が向上すること、を包含する概念である。 In the present specification, "high efficiency of substance introduction" means that the target substance is introduced into plant cells with high efficiency, callus is induced with high efficiency from immature embryos, etc., and it is high from transformed callus. It is a concept that includes the fact that redifferentiation occurs with efficiency. Further, in the present specification, "improvement of introduction efficiency of a substance" means improvement of introduction efficiency of a target substance into plant cells, improvement of callus induction rate from immature embryos, etc., and improvement of callus induction rate from transformed callus. It is a concept that includes improving the efficiency of redifferentiation.
 非限定的に、物質の導入効率(例えば、形質転換効率)が、例えば、1.3倍以上、1.5倍以上、2倍以上、3倍以上、4倍以上、10倍以上、25倍以上に向上する。「物質の導入効率が向上する」には、トレハロースを含まない培地で培養した場合には形質転換ができない、あるいは、ゲノム編集ができないイネ科の品種において、これらができるようになる場合も含む。 Non-limitingly, the introduction efficiency (for example, transformation efficiency) of a substance is, for example, 1.3 times or more, 1.5 times or more, 2 times or more, 3 times or more, 4 times or more, 10 times or more, 25 times. It will be improved to the above. "Improvement of substance introduction efficiency" includes cases where transformation is not possible when cultured in a medium containing no trehalose, or these can be achieved in grass varieties that cannot be genome-edited.
 以下、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。当業者は本明細書の記載に基づいて容易に本発明に修飾・変更を加えることができ、それらは本発明の技術的範囲に含まれる。 Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to these examples. Those skilled in the art can easily modify or modify the present invention based on the description of the present specification, and these are included in the technical scope of the present invention.
 実施例1:コムギ未熟胚からのカルス誘導
 (1)未熟胚の調製及び培養
 WO2011/013764(特許文献1)及びIshida(2015)(非特許文献16)の方法の一部を改変してコムギの未熟胚の調製を行った。Fielder、Claire、Mace、JTX001、Cadenza、Paragon、JTX002、Cronox及びJaggerの9種類の品種を試験に供した。
Example 1: Callus induction from immature wheat embryos (1) Preparation and culture of immature embryos Part of the methods of WO2011 / 013764 (Patent Document 1) and Ishida (2015) (Non-Patent Document 16) are modified to produce wheat. Immature embryos were prepared. Nine varieties of Fielder, Claire, Mace, JTX001, Cadenza, Paragon, JTX002, Cronox and Jugger were tested.
 開花後14日前後のコムギの未熟種子を脱頴し、70%エタノール中で45秒間表面殺菌処理した後、Tween 20を1滴含む1%次亜塩素酸ナトリウムで10分間表面殺菌処理した。処理後の未熟種子を滅菌水で4回洗浄し、実体顕微鏡下で未熟胚を採取し、そして、WLS-liq培地中に回収した。WLS-liq培地で1度未熟胚を洗浄後、5,000×g、4℃、10分間遠心処理した。 Immature wheat seeds about 14 days after flowering were demineralized, surface sterilized in 70% ethanol for 45 seconds, and then surface sterilized with 1% sodium hypochlorite containing 1 drop of Tween 20 for 10 minutes. The treated immature seeds were washed 4 times with sterile water, immature embryos were collected under a stereomicroscope and recovered in WLS-liq medium. The immature embryos were washed once with WLS-liq medium and then centrifuged at 5,000 × g at 4 ° C. for 10 minutes.
 25個の未熟胚をシャーレに移し、胚軸をメスで除去した後、以下の「WLS90-RES培地」又は「WLS0/90-RES」上に胚盤側を上向きにして置床し、25℃、暗黒下で、1日間培養した。得られた未熟胚を(3)のパーティクルガン処理に用いた。 Twenty-five immature embryos are transferred to a petri dish, the hypocotyl is removed with a scalpel, and then placed on the following "WLS90-RES medium" or "WLS0 / 90-RES" with the scutellum side facing up at 25 ° C. The cells were cultured in the dark for 1 day. The obtained immature embryos were used for the particle gun treatment of (3).
 各培地の組成は以下の通りである。
 WLS-liq培地: 0.1×LSメジャー無機塩、10μM FeEDTA、0.1×LSマイナー無機塩、0.1×MSビタミン、1%グルコース、0.05%MES、pH5.8
The composition of each medium is as follows.
WLS-liq medium: 0.1 × LS major inorganic salt, 10 μM FeEDTA, 0.1 × LS minor inorganic salt, 0.1 × MS vitamin, 1% glucose, 0.05% MES, pH 5.8
 WLS90-RES培地: 1×LSメジャー無機塩、100μM FeEDTA、1×LSマイナー無機塩、1×MSビタミン、0.5mg/L 2,4-D、2.5mg/L ダイカンバ、9% マルトース一水和物(250mM)、500mg/L グルタミン、100mg/L カゼイン加水分解物、3.7mM MgCl2、0.195% MES、57μM アスコルビン酸、5μM 5g/L アガロース、pH5.8。 WLS90-RES medium: 1 x LS major inorganic salt, 100 μM FeEDTA, 1 x LS minor inorganic salt, 1 x MS vitamin, 0.5 mg / L 2,4-D, 2.5 mg / L daikamba, 9% maltose water. Japanese product (250 mM), 500 mg / L glutamine, 100 mg / L casein hydrolyzate, 3.7 mM MgCl 2, 0.195% MES, 57 μM ascorbic acid, 5 μM 5 g / L agarose, pH 5.8.
 WLS0/90-RES培地:WLS90-RES培地のマルトース一水和物を、濃度9.46%のトレハロース二水和物(250mM)に変更した培地。 WLS0 / 90-RES medium: A medium in which maltose monohydrate of WLS90-RES medium is changed to trehalose dihydrate (250 mM) having a concentration of 9.46%.
 (2)bar遺伝子、Cas9遺伝子及びsgRNA遺伝子のプラスミド構築及び調製
 bar遺伝子、Cas9遺伝子及びsgRNA遺伝子を含むプラスミドを構築した。bar遺伝子の塩基配列を配列番号1に示した。bar遺伝子は35Sプロモーターで制御し、ターミネーターにはNosを用いた。これらをpUC19ベクター内に挿入した。
(2) Construction and preparation of plasmids for the bar gene, Cas9 gene and sgRNA gene A plasmid containing the bar gene, Cas9 gene and sgRNA gene was constructed. The base sequence of the bar gene is shown in SEQ ID NO: 1. The bar gene was controlled by the 35S promoter, and Nos was used as the terminator. These were inserted into the pUC19 vector.
 SpCas9(Streptococcus pyogenesに由来するCas9)遺伝子の塩基配列を配列番号2に示した。配列番号2はSvitashev et al.(2015)の報告(非特許文献17)より引用した。SpCas9は、トウモロコシユビキチンの第1イントロンを有するトウモロコシユビキチンプロモーターとNos及び35Sターミネーターの間に挿入し、加えて、アミノ末端(N末端)側にSV40由来核移行シグナル(9アミノ酸)及びカルボキシル末端(C末端)側にvirD2由来核移行シグナル(18アミノ酸)をコードする配列が含まれるように、pUC19ベクター内に挿入したプラスミドを構築した。sgRNA転写ユニットの塩基配列を配列番号3に示した。コムギU6ポリメラーゼIIIのプロモ―ター及びターミネーターを含むsgRNA遺伝子配列をpUC18ベクター内に挿入したプラスミドを構築した。なお、sgRNA遺伝子配列として、コムギLOX2遺伝子のターゲット配列を用いた(非特許文献18)。 The nucleotide sequence of the SpCas9 (Cas9 derived from Streptococcus pyogenes) gene is shown in SEQ ID NO: 2. SEQ ID NO: 2 is Svitashev et al. It is quoted from the report (Non-Patent Document 17) of (2015). SpCas9 is inserted between the corn ubiquitin promoter with the first intron of corn ubiquitin and the Nos and 35S terminators, and in addition, the SV40-derived nuclear localization signal (9 amino acids) and carboxyl terminus (C) on the amino-terminal (N-terminal) side. A plasmid inserted into the pUC19 vector was constructed so that the (terminal) side contained a sequence encoding a virD2-derived nuclear localization signal (18 amino acids). The base sequence of the sgRNA transcription unit is shown in SEQ ID NO: 3. A plasmid was constructed by inserting the sgRNA gene sequence containing the promoter and terminator of wheat U6 polymerase III into the pUC18 vector. The target sequence of the wheat LOX2 gene was used as the sgRNA gene sequence (Non-Patent Document 18).
 (3)パーティクルガンによるDNA導入及びその後の培養
 コムギに対するバーティクルガンによるDNAの導入する方法は、基本的にはBarcelo and Lazzeri(1995)(非特許文献19)及びRasco-Gaunt(2001)(非特許文献20)の方法を参考とした。
(3) DNA introduction by particle gun and subsequent culture The method of introducing DNA by verticle gun into wheat is basically Barcelo and Lazzeri (1995) (Non-Patent Document 19) and Rasco-Gaunt (2001) (Non-patent). The method of Document 20) was referred to.
 15mgの金粒子(BIO-RAD製、粒径0.6μm)を1.5mlチューブに取り分けた。前述のチューブに0.5mlの70%エタノールを加え、超音波を90秒間行った後、15分間振とうした。5秒間遠心し、上清を捨てた。0.5mlの滅菌水に懸濁し、1分間ボルテックスし、遠心後上清を除去した。上記処理を3回繰り返した。0.375mlの50%グリセロールに懸濁(40mg/ml)後、金粒子懸濁液として4℃で保存した。 15 mg of gold particles (manufactured by BIO-RAD, particle size 0.6 μm) were separated into 1.5 ml tubes. 0.5 ml of 70% ethanol was added to the above-mentioned tube, ultrasonic waves were performed for 90 seconds, and then shaking was performed for 15 minutes. Centrifuge for 5 seconds and discard the supernatant. It was suspended in 0.5 ml of sterile water, vortexed for 1 minute, and the supernatant was removed after centrifugation. The above process was repeated 3 times. After suspension in 0.375 ml of 50% glycerol (40 mg / ml), it was stored as a gold particle suspension at 4 ° C.
 調製した金粒子懸濁液(40mg/ml)を均一になるまで5分間ボルテックスした。プラスミドDNAの金粒子へのコーティングとマイクロキャリヤーへの接着を行った。金粒子20μl(0.8mg)、(2)で調整したプラスミドDNA(bar遺伝子680fmol、Cas9遺伝子204fmol及びsgRNA遺伝子204fmol)を混和した後、合計で40μlになるように水を加えた後、TransIT-2020(登録商標)(0.8 μl)を加えた。その後、2、3分間続けてボルテックスした後、1分間チューブを静地した。フラッシュ(2s)遠心後、上清を捨て、次に、56μlの70%エタノールで洗浄した。フラッシュ(2s)遠心後、上清を捨て、56μlの100%エタノールで洗浄した。フラッシュ(2s)遠心後、上清を捨てた後、34μlのエタノール(100%)で再懸濁した。タッピングで穏やかに懸濁した後、ボルテックス処理した(2-3秒)。その後、超音波洗浄機で30秒処理した。 The prepared gold particle suspension (40 mg / ml) was vortexed for 5 minutes until it became uniform. The plasmid DNA was coated on gold particles and adhered to microcarriers. After mixing 20 μl (0.8 mg) of gold particles and the plasmid DNA (bar gene 680 fmol, Cas9 gene 204 fmol and sgRNA gene 204 fmol) prepared in (2), water was added to make a total of 40 μl, and then TransIT-. 2020 (registered trademark) (0.8 μl) was added. Then, after vortexing continuously for 2 to 3 minutes, the tube was allowed to stand still for 1 minute. After flush (2s) centrifugation, the supernatant was discarded and then washed with 56 μl of 70% ethanol. After flush (2s) centrifugation, the supernatant was discarded and washed with 56 μl of 100% ethanol. After centrifugation by flash (2s), the supernatant was discarded and then resuspended in 34 μl of ethanol (100%). After gently suspending by tapping, it was vortexed (2-3 seconds). Then, it was treated with an ultrasonic cleaner for 30 seconds.
 (1)に記載の通り調製した未熟胚25個に対して、Biolistic PDS-1000/He Particle Delivery System取扱説明書(BIO-RAD)に従って、パーティクルガン(BIOLISTIC PDS1000/He,Bio-Rad)で遺伝子導入した。1ショット当たり5μlの金粒子懸濁液を使用した。ターゲット距離はストッピングプレートから5cmで、撃ち込み圧は650psiとした。パーティクルガン処理後、プレート培地上の未熟胚を28℃で1日間(暗所)、続いて25℃で培養した。 For 25 immature embryos prepared as described in (1), a gene was used with a particle gun (BioLISTIC PDS1000 / He, Bio-Rad) according to the Biolistic PDS-1000 / He Particure Delivery System instruction manual (BIO-RAD). Introduced. 5 μl of gold particle suspension was used per shot. The target distance was 5 cm from the stopping plate, and the shooting pressure was 650 psi. After the particle gun treatment, immature embryos on the plate medium were cultured at 28 ° C. for 1 day (dark place) and then at 25 ° C.
 以下の表は、未熟胚調製から葉サンプリングまでの各工程の日数、培地、実験内容(工程)をまとめたものである。 The table below summarizes the number of days, medium, and experimental content (process) of each process from immature embryo preparation to leaf sampling.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 WLS60-P5の組成: 1×LSメジャー無機塩、100μM FeEDTA、1×LSマイナー無機塩、1×MSビタミン、0.5mg/L 2,4-D、2.2mg/L ピクローラム、6% マルトース一水和物、500mg/L グルタミン、100mg/L カゼイン加水分解物、3.7mM MgCl、0.195% MES、57μM アスコルビン酸、5μM AgNO、5mg/L ホスフィノトリシン、5g/L アガロース、pH5.8。 Composition of WLS60-P5: 1 × LS major inorganic salt, 100 μM FeEDTA, 1 × LS minor inorganic salt, 1 × MS vitamin, 0.5 mg / L 2,4-D, 2.2 mg / L picrolam, 6% maltose 1 Hydrate, 500 mg / L glutamine, 100 mg / L casein hydrolyzate, 3.7 mM MgCl 2 , 0.195% MES, 57 μM ascorbic acid, 5 μM AgNO 3 , 5 mg / L phosphinotricin, 5 g / L agarose, pH 5 8.8.
 WLS-P10の組成: 1×LSメジャー無機塩、100μM FeEDTA、1×LSマイナー無機塩、1×MSビタミン、0.5mg/L 2,4-D、2.2mg/L ピクローラム、4% マルトース一水和物、500mg/L グルタミン、100mg/L カゼイン加水分解物、3.7mM MgCl2、0.195% MES、57μM アスコルビン酸、5μM AgNO、10mg/L ホスフィノトリシン、5g/L アガロース、pH5.8。 Composition of WLS-P10: 1 × LS major inorganic salt, 100 μM FeEDTA, 1 × LS minor inorganic salt, 1 × MS vitamin, 0.5 mg / L 2,4-D, 2.2 mg / L picrolam, 4% maltose 1 Hydrate, 500 mg / L glutamine, 100 mg / L casein hydrolyzate, 3.7 mM MgCl 2, 0.195% MES, 57 μM ascorbic acid, 5 μM AgNO 3 , 10 mg / L phosphinotricin, 5 g / L agarose, pH 5 8.8.
 LSFCuP5(-C)の組成: 1×LSメジャー無機塩、100μM FeEDTA、1×LSマイナー無機塩、1×LSビタミン、0.2mg/L IBA、10μM CuSO、1.5% スクロース、0.05% MES、5mg/L ホスフィノトリシン、3g/L ゲライト、pH5.8。 Composition of LSCFCuP5 (-C): 1 x LS major inorganic salt, 100 μM FeEDTA, 1 x LS minor inorganic salt, 1 x LS vitamin, 0.2 mg / L IBA, 10 μM CuSO 4 , 1.5% sucrose, 0.05 % MES, 5 mg / L phosphinotricine, 3 g / L gelite, pH 5.8.
 (4)結果
 (i)カルス化率及び形質転換率に対するトレハロース添加培地の効果
 (3)においてパーティクルガンによるDNA導入を行った未熟胚について、カルス化率及び形質転換率を調べた。
(4) Results (i) Effect of trehalose-added medium on callus formation rate and transformation rate In (3), the callus formation rate and transformation rate of immature embryos introduced with DNA by a particle gun were examined.
 カルス化率は、表1の工程6において、(生じたカルス数/供試未熟胚数)×100(%)により求めた。形質転換率は、表1の工程7において、選択マーカーbar遺伝子による選択を行うためのホスフィノトリシンを含有する培地にカルスを植え替えて培養し、(再生個体が生じた供試未熟胚数/供試未熟胚数)×100(%)により求めた。結果を表2に示す。 The callus formation rate was determined by (number of callus generated / number of immature embryos under test) × 100 (%) in step 6 of Table 1. For the transformation rate, in step 7 of Table 1, callus was replanted in a medium containing phosphinotricin for selection by the selection marker bar gene and cultured (number of premature embryos tested in which regenerated individuals were generated /). It was determined by the number of immature embryos to be tested) × 100 (%). The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示す通り、(3)においてパーティクルガンによるDNA導入を行った、供試した9品種、Fielder、Claire、Mace、JTX001、Cadenza、Paragon、JTX002、Cronox及びJaggerにおいて、マルトース含有の標準培地よりも、トレハロース培地において、カルス化率(%)が顕著に向上した。さらに7品種、Claire、Mace、JTX001、Cadenza、Paragon、JTX002及びCronoxにおいて、マルトース含有の標準培地よりも、トレハロース培地において、形質転換率(%)が顕著に向上した。 As shown in Table 2, in the nine varieties tested, Fielder, Claire, Mace, JTX001, Cadenza, Paragon, JTX002, Cronox and Jagger, in which DNA was introduced by a particle gun in (3), from the standard medium containing maltose. However, the callus formation rate (%) was significantly improved in the trehalose medium. Furthermore, in 7 varieties, Claire, Mace, JTX001, Cadenza, Paragon, JTX002 and Cronox, the transformation rate (%) was significantly improved in the trehalose medium as compared with the standard medium containing maltose.
 (ii)ゲノム編集率に対するトレハロース添加培地の効果
 (3)においてパーティクルガンによるDNA導入を行った未熟胚について、ゲノム編集率を調べた。ゲノム編集率は以下のように調べ、(ゲノム編集個体が生じた供試未熟胚数/供試未熟胚数)×100(%)により求めた。
(Ii) Effect of trehalose-added medium on genome editing rate In (3), the genome editing rate was investigated for immature embryos that had undergone DNA introduction by a particle gun. The genome editing rate was investigated as follows, and was determined by (number of immature embryos tested / number of immature embryos tested) x 100 (%).
 パーティクルガン処理約85日後、プラントボックス内で10cm~15cm程度に伸びた葉5~10mg程度を切り取り、サンプリングした。液体窒素で葉サンプルを凍結し、TissueLyser II(QIAGEN)を用いて凍結した葉サンプルを粉砕した。その後、QIAcubeHT(QIAGEN)のプロトコールに従い、QIAcubeHTでDNAを抽出した。ゲノム編集の標的とした、A、BおよびDゲノムのTaLOX2遺伝子について、PCR/RE分析を行い、ゲノム編集による変異を検出した。 Approximately 85 days after the particle gun treatment, about 5 to 10 mg of leaves that had grown to about 10 cm to 15 cm were cut out and sampled in the plant box. The leaf sample was frozen in liquid nitrogen, and the frozen leaf sample was crushed using TissueLyser II (QIAGEN). Then, according to the protocol of QIAcubeHT (QIAGEN), DNA was extracted by QIAcubeHT. PCR / RE analysis was performed on the TaLOX2 genes of the A, B, and D genomes targeted for genome editing, and mutations due to genome editing were detected.
 PCR反応は、20μl反応液中に、10×ExTaq Buffer 2μl、dNTP Mixture(各2.5mM)1.6μl、プライマーLOX2-F(10μM)0.4μl、プライマーLOX2-R(10μM)0.4μl、ExTaqHS 0.1μl、ゲノムDNA4μlを混和し、98℃10秒、60℃30秒、72℃1分を30回行った。PCRプライマーはZhangら(非特許文献18)のプライマーを使用した。得られたPCR産物を5μlとり、10×NEB CutSmart buffer 2μl、制限酵素SacI-HF(20U/μl)を1μl含む20μlの溶液を調製し、37℃で3時間インキュベーションした後、1.5%TypeIIアガロースゲルを用いた電気泳動で分析した。なお、ネガティブコントロールにはFielderのゲノムDNAを用いた。制限酵素SacIによって、PCR産物が切断された場合はゲノム編集されていないと判断し、切断されない場合はゲノム編集されていると判断した。 For the PCR reaction, 10 × ExTaq Buffer 2 μl, dNTP Mixture (2.5 mM each) 1.6 μl, primer LOX2-F (10 μM) 0.4 μl, primer LOX2-R (10 μM) 0.4 μl, in 20 μl reaction solution, ExTaqHS 0.1 μl and genomic DNA 4 μl were mixed, and 98 ° C. for 10 seconds, 60 ° C. for 30 seconds, and 72 ° C. for 1 minute were performed 30 times. As the PCR primer, the primer of Zhang et al. (Non-Patent Document 18) was used. Take 5 μl of the obtained PCR product, prepare a 20 μl solution containing 2 μl of 10 × NEB CutSmart buffer and 1 μl of the restriction enzyme SacI-HF (20 U / μl), incubate at 37 ° C. for 3 hours, and then 1.5% TypeII. Analysis was performed by electrophoresis using an agarose gel. Fielder's genomic DNA was used for the negative control. When the PCR product was cleaved by the restriction enzyme SacI, it was determined that the genome was not edited, and when it was not cleaved, it was determined that the genome was edited.
 結果を表3に示す。 The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の通り、供試した5品種、Claire、Mace、JTX001、Paragon及びJTX002において、マルトース含有の標準培地よりも、トレハロース培地において、ゲノム編集率が顕著に向上した。 As shown in Table 3, in the five test varieties, Claire, Mace, JTX001, Paragon and JTX002, the genome editing rate was significantly improved in the trehalose medium as compared with the standard medium containing maltose.
 実施例2:コムギ未熟胚からのカルス誘導におけるマルトース/トレハロースの割合の影響
 (1)未熟胚の調製および培養
 実施例1と同様に、コムギ(品種:Fielder)の未熟胚を調製した。初期の培養培地として、WLS90-RES培地、またはWLS-RES培地のマルトースの全部あるいは一部をトレハロースに代替した各種トレハロース改変WLS培地(WLS72/18-RES培地、WLS60/30-RES培地、WLS30/60-RES培地、WLS18/72-RES培地およびWLS0/90-RES培地)を用いて、表4に示すように未熟胚を培養した。
Example 2: Effect of maltose / trehalose ratio on callus induction from wheat immature embryos (1) Preparation and culture of immature embryos Immature embryos of wheat (variety: Fielder) were prepared in the same manner as in Example 1. As the initial culture medium, WLS90-RES medium, or various trehalose-modified WLS media (WLS72 / 18-RES medium, WLS60 / 30-RES medium, WLS30 /) in which all or part of the maltose of WLS-RES medium is replaced with trehalose. 60-RES medium, WLS18 / 72-RES medium and WLS0 / 90-RES medium) were used to culture immature embryos as shown in Table 4.
 WLS90-RES培地: 1×LSメジャー無機塩、100μM FeEDTA、1×LSマイナー無機塩、1×MSビタミン、0.5mg/L 2,4-D、2.5mg/L ダイカンバ、9% マルトース一水和物(250mM)、500mg/L グルタミン、100mg/L カゼイン加水分解物、3.7mM MgCl、0.195% MES、57μM アスコルビン酸、5μM 5g/L アガロース、pH5.8(マルトース:トレハロース=10:0)。 WLS90-RES medium: 1 x LS major inorganic salt, 100 μM FeEDTA, 1 x LS minor inorganic salt, 1 x MS vitamin, 0.5 mg / L 2,4-D, 2.5 mg / L daikamba, 9% maltose hydrate Japanese product (250 mM), 500 mg / L glutamine, 100 mg / L casein hydrolyzate, 3.7 mM MgCl 2 , 0.195% MES, 57 μM ascorbic acid, 5 μM 5 g / L agarose, pH 5.8 (maltose: trehalose = 10) : 0).
 WLS72/18-RES培地: WLS90-RES培地のマルトース一水和物を、濃度7.2%のマルトース一水和物(200mM)および濃度1.89%のトレハロース二水和物(50mM)に変更した培地(マルトース:トレハロース=8:2)。 WLS72 / 18-RES medium: Change maltose monohydrate in WLS90-RES medium to 7.2% maltose monohydrate (200 mM) and 1.89% trehalose dihydrate (50 mM). Medium (maltose: trehalose = 8: 2).
 WLS60/30-RES培地: WLS90-RES培地のマルトース一水和物を、濃度6%のマルトース一水和物(167mM)および濃度3.14%のトレハロース二水和物(83mM)に変更した培地(マルトース:トレハロース=6.7:3.3)。 WLS60 / 30-RES medium: A medium in which the maltose monohydrate of the WLS90-RES medium is changed to a maltose monohydrate (167 mM) having a concentration of 6% and a trehalose dihydrate (83 mM) having a concentration of 3.14%. (Maltose: trehalose = 6.7: 3.3).
 WLS30/60-RES培地: WLS90-RES培地のマルトース一水和物を、濃度3%のマルトース一水和物(83mM)および濃度6.32%のトレハロース二水和物(167mM)に変更した培地(マルトース:トレハロース=3.3:6.7)。 WLS30 / 60-RES medium: A medium in which the maltose monohydrate of the WLS90-RES medium is changed to a maltose monohydrate (83 mM) having a concentration of 3% and a trehalose dihydrate (167 mM) having a concentration of 6.32%. (Maltose: trehalose = 3.3: 6.7).
 WLS18/72-RES培地: WLS90-RES培地のマルトース一水和物を、濃度1.8%のマルトース一水和物(50mM)および濃度7.57%のトレハロース二水和物(200mM)に変更した培地(マルトース:トレハロース=2:8)。 WLS18 / 72-RES medium: Change maltose monohydrate in WLS90-RES medium to 1.8% maltose monohydrate (50 mM) and 7.57% trehalose dihydrate (200 mM). Medium (maltose: trehalose = 2: 8).
 WLS0/90-RES培地:WLS90-RES培地のマルトース一水和物を、濃度9.46%のトレハロース二水和物(250mM)に変更した培地(マルトース:トレハロース=0:10)。 WLS0 / 90-RES medium: A medium in which the maltose monohydrate of the WLS90-RES medium is changed to trehalose dihydrate (250 mM) having a concentration of 9.46% (maltose: trehalose = 0:10).
 以下の表は、未熟胚を調製し、カルスを誘導し、カルスを計数するまでの各工程の日数、培地、実験内容(工程)をまとめたものである。 The table below summarizes the number of days, medium, and experimental content (steps) of each step of preparing immature embryos, inducing callus, and counting callus.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (2)カルス化率および植物再生体率に対するマルトース/トレハロースの割合の効果
 実施例1(3)と同様に、パーティクルガンによるDNA導入を行った未熟胚について、カルス化率を調べた。カルス化率は、表4の工程6において、(生じたカルス数/供試未熟胚数)×100(%)により求めた。
(2) Effect of maltose / trehalose ratio on callus formation rate and plant regeneration rate In the same manner as in Example 1 (3), the callus formation rate was examined for immature embryos that had been DNA-introduced by a particle gun. The callus formation rate was determined by (number of callus generated / number of immature embryos under test) × 100 (%) in step 6 of Table 4.
 表5のとおり、供試した6品種のうち、Mace、JTX001、ParagonおよびCronoxの4品種において、マルトース含有の標準培地(WLS90-RES培地)よりも、WLS0/90-RES培地において、カルス化率(%)が顕著に向上した。さらに、品種MaceのWLS30/60-RES培地およびWLS18/72-RES培地において、わずかなカルス化率の向上がみられた。CronoxのWLS60/30-RES培地およびWLS30/60-RES培地においてもカルス化率の向上がみられた。 As shown in Table 5, among the 6 varieties tested, 4 varieties of Mace, JTX001, Paragon and Cronox had a callus formation rate in the WLS0 / 90-RES medium rather than the standard medium containing maltose (WLS90-RES medium). (%) Has improved significantly. Furthermore, in the WLS30 / 60-RES medium and WLS18 / 72-RES medium of the cultivar Mace, a slight improvement in the callus formation rate was observed. Improvements in callus formation were also observed in Cronox's WLS60 / 30-RES medium and WLS30 / 60-RES medium.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例3:コムギ未熟胚からのカルス誘導および苗化におけるトレハロースの効果
 (1)未熟胚の調製および培養
 実施例1と同様に、コムギ(品種:Fielder)の未熟胚を調製した。初期の培養培地として、WLS40-RES培地、WLS90-RES培地、またはトレハロース改変WLS培地として、WLS0/40-RES培地、WLS0/90-RES培地を用いて、培養した。
Example 3: Effect of trehalose on callus induction and seedling formation from immature wheat embryos (1) Preparation and culture of immature embryos In the same manner as in Example 1, immature embryos of wheat (variety: Fielder) were prepared. As the initial culture medium, WLS40-RES medium, WLS90-RES medium, or WLS0 / 40-RES medium and WLS0 / 90-RES medium as trehalose-modified WLS medium were used for culturing.
 WLS40-RES培地: 1×LSメジャー無機塩、100μM FeEDTA、1×LSマイナー無機塩、1×MSビタミン、0.5mg/L 2,4-D、2.5mg/L ダイカンバ、4% マルトース一水和物(111mM)、500mg/L グルタミン、100mg/L カゼイン加水分解物、3.7mM MgCl2、0.195% MES、57μM アスコルビン酸、5μM 5g/L アガロース、pH5.8。 WLS40-RES medium: 1 x LS major inorganic salt, 100 μM FeEDTA, 1 x LS minor inorganic salt, 1 x MS vitamin, 0.5 mg / L 2,4-D, 2.5 mg / L Daikamba, 4% maltose water Japanese product (111 mM), 500 mg / L glutamine, 100 mg / L casein hydrolyzate, 3.7 mM MgCl2, 0.195% MES, 57 μM ascorbic acid, 5 μM 5 g / L agarose, pH 5.8.
 WLS90-RES培地: 1×LSメジャー無機塩、100μM FeEDTA、1×LSマイナー無機塩、1×MSビタミン、0.5mg/L 2,4-D、2.5mg/L ダイカンバ、9% マルトース一水和物(250mM)、500mg/L グルタミン、100mg/L カゼイン加水分解物、3.7mM MgCl2、0.195% MES、57μM アスコルビン酸、5μM 5g/L アガロース、pH5.8。 WLS90-RES medium: 1 x LS major inorganic salt, 100 μM FeEDTA, 1 x LS minor inorganic salt, 1 x MS vitamin, 0.5 mg / L 2,4-D, 2.5 mg / L Daikamba, 9% maltose water Japanese product (250 mM), 500 mg / L glutamine, 100 mg / L casein hydrolyzate, 3.7 mM MgCl2, 0.195% MES, 57 μM ascorbic acid, 5 μM 5 g / L agarose, pH 5.8.
 WLS0/40-RES培地:WLS40-RES培地のマルトース一水和物を、濃度4.2%のトレハロース二水和物(111mM)に変更した培地。 WLS0 / 40-RES medium: A medium in which maltose monohydrate of WLS40-RES medium is changed to trehalose dihydrate (111 mM) having a concentration of 4.2%.
 WLS0/90-RES培地:WLS90-RES培地のマルトース一水和物を、濃度9.46%のトレハロース二水和物(250mM)に変更した培地。 WLS0 / 90-RES medium: A medium in which maltose monohydrate of WLS90-RES medium is changed to trehalose dihydrate (250 mM) having a concentration of 9.46%.
 以下の表は、未熟胚を調製し、カルスを誘導し、再生体を形成して計数するまでの各工程の日数、培地、実験内容(工程)をまとめたものである。 The table below summarizes the number of days, medium, and experimental content (steps) of each step of preparing immature embryos, inducing callus, forming regenerated bodies, and counting.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 カルス化率は、表6の工程4において、(生じたカルス数/供試未熟胚数)×100(%)により求めた。苗化率は、表6の工程6において、再生した苗を計数し、(再生個体が生じた供試未熟胚数/供試未熟胚数)×100(%)により求めた。 The callus formation rate was determined by (number of callus generated / number of immature embryos under test) × 100 (%) in step 4 of Table 6. The seedling rate was determined by counting the regenerated seedlings in step 6 of Table 6 (number of premature embryos tested / number of immature embryos tested) × 100 (%).
 カルス化率に対するトレハロース添加培地の効果を表7に、苗化率に対するトレハロース添加培地の効果を表8に示す。 Table 7 shows the effect of the trehalose-added medium on the callus formation rate, and Table 8 shows the effect of the trehalose-added medium on the seedling rate.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表7および表8に示すとおり、WLS0/40-RES培地においては、培養期間が0日間(すなわち、WLS0/40-RES培地を使用しない場合)よりも、1日間培養した場合、カルス化率および苗化率が顕著に向上した。しかしながら、5日間あるいは16日間培養した場合、0日間と比較して、カルス化率および苗化率は低下した。WLS0/90-RES培地においては、培養期間が0日間(すなわち、WLS0/90-RES培地を使用しない場合)よりも、5日間培養した場合、カルス化率および苗化率が顕著に向上した。 As shown in Tables 7 and 8, in WLS0 / 40-RES medium, when the culture period was 1 day rather than 0 days (that is, when WLS0 / 40-RES medium was not used), the callus formation rate and The seedling rate was significantly improved. However, when cultured for 5 days or 16 days, the callus formation rate and the seedling formation rate were lower than those for 0 days. In the WLS0 / 90-RES medium, the callus formation rate and the seedling rate were significantly improved when the culture period was 0 days (that is, when the WLS0 / 90-RES medium was not used) and the culture period was 5 days.
 実施例4:トウモロコシ未熟胚からのカルス誘導
 トウモロコシインブレッドB104の未熟胚を無菌的に採取し、Ishida et al.(2007)(非特許文献21)の方法でアグロバクテリウム・チュメファシエンスを接種した。接種前に形質転換効率を高めるため、46℃の熱処理と20,000×gの遠心処理を行なった(非特許文献4)。アグロバクテリウム菌株には、WO2014/157541(特許文献4)のpLC41GWHのT-DNA領域を、トウモロコシユビキチンプロモーターおよびイントロンで制御され、ヒマのカタラーゼイントロンが介在したGUS遺伝子(Pubi-Iubi-Icat GUS-Tnos)、およびカリフラワーモザイクウイルス35Sプロモーターで制御されたBar遺伝子(P35S-bar-T35S)を有するT-DNAに改変したバイナリーベクターを有するLBA4404(pLC41 GUS-bar)、およびWO2014/157541(特許文献4)のブースターベクターを有するLBA4404(pLC41 GUS-Bar::pVGW9)を使用した。
Example 4: Callus induction from immature maize embryos The immature embryos of maize inbread B104 were aseptically collected, and Ishida et al. (2007) Agrobacterium tumefaciens was inoculated by the method of (Non-Patent Document 21). In order to increase the transformation efficiency before inoculation, heat treatment at 46 ° C. and centrifugation at 20,000 × g were performed (Non-Patent Document 4). In the agrobacterium strain, the T-DNA region of pLC41GWH of WO2014 / 157541 (Patent Document 4) was regulated by the corn ubiquitin promoter and intron, and the GUS gene (Pubi-Iubi-Icat GUS-) mediated by the catalase intron of Hima. Tonos), and LBA4404 (pLC41 GUS-bar) having a binary vector modified to T-DNA having a Bar gene (P35S-bar-T35S) controlled by the cauliflower mosaic virus 35S promoter, and WO2014 / 157541 (Patent Document 4). ) LBA4404 (pLC41 GUS-Bar :: pVGW9) having a booster vector was used.
 また、T-DNA領域にカリフラワーモザイクウイルス35Sプロモーターで制御され、ヒマのカタラーゼイントロンが介在したGUS遺伝子(P35S-Icat GUS-Tnos)、およびカリフラワーモザイクウイルス35Sプロモーターで制御されたBar遺伝子(P35S-bar-Tnos)を有するスーパーバイナリーベクターを有するLBA4404 (pSB131)(非特許文献22)も試験に供した。 In addition, the GUS gene (P35S-Icat GUS-Tnos) regulated by the cauliflower mosaic virus 35S promoter in the T-DNA region and mediated by the catalase intron of Hima, and the Bar gene (P35S-bar) regulated by the cauliflower mosaic virus 35S promoter. LBA4404 (pSB131) (Non-Patent Document 22) having a super binary vector having -Tnos) was also subjected to the test.
 接種後の未熟胚をLS-AS培地に置床し、25℃、暗黒下で7日間培養した。トレハロース添加培地は、LS-AS培地の2%ショ糖を1.5%に、1%ブドウ糖を0.75%にそれぞれ減じ、1.08%トレハロース二水和物を添加した。 The immature embryos after inoculation were placed on the LS-AS medium and cultured at 25 ° C. in the dark for 7 days. For the trehalose-added medium, 2% sucrose in the LS-AS medium was reduced to 1.5%, 1% glucose was reduced to 0.75%, and 1.08% trehalose dihydrate was added.
 フォスフィノスリシンを含む選抜培地LSD1.5AおよびLSD1.5Bで約1カ月間、25℃、暗黒下で培養した後、コンパクトなタイプIカルスを形成した未熟胚を計数した。カルス化率および形質転換率に対するトレハロース添加培地の効果を表9に示す。 After culturing in selective media LSD1.5A and LSD1.5B containing phospinothricin at 25 ° C. in the dark for about 1 month, immature embryos forming compact type I callus were counted. Table 9 shows the effects of the trehalose-added medium on the callus formation rate and the transformation rate.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 試験1~4のいずれの試験においても、トレハロースを添加しない対照の共存培地で培養した後、選抜培養を行った未熟胚に比べ、トレハロースを添加した共存培地で培養後、選抜培養を行った未熟胚の方が、高い効率で薬剤耐性を示す形質転換カルスを形成した。このことにより、アグロバクテリウム法により遺伝子導入処理を行ったトウモロコシにおいても、トレハロースによる形質転換効率向上の効果の見られることが明らかとなった。 In any of the tests 1 to 4, immature embryos were cultured in a coexisting medium to which trehalose was added and then selected and cultured as compared with immature embryos which were cultured in a control coexisting medium to which no trehalose was added and then subjected to selective culture. Embryos formed transformed callus that showed drug resistance with higher efficiency. From this, it was clarified that the effect of improving the transformation efficiency by trehalose can be seen even in maize subjected to gene transfer treatment by the Agrobacterium method.
 本発明により、従来培養が困難であるといわれているイネ科植物の培養を容易とし、培養細胞から植物再生体を効率的に取得することが可能になった。上記植物細胞の培養方法、再生方法の工程におけるいずれかの段階において、植物細胞に物質を導入することにより、物質が導入された再生植物を安定して効率よく取得することもできる。本方法の利用によって、従来困難であったイネ科植物の形質転換作物の作出やゲノム編集作物の作出が効率的にできることとなる。 According to the present invention, it has become possible to facilitate the cultivation of gramineous plants, which are conventionally said to be difficult to culture, and to efficiently obtain plant regenerated cells from cultured cells. By introducing a substance into a plant cell at any stage of the steps of the method for culturing the plant cell and the method for regenerating the plant cell, it is possible to stably and efficiently obtain the regenerated plant into which the substance has been introduced. By using this method, it becomes possible to efficiently produce transformed crops of grasses and genome-edited crops, which have been difficult in the past.
 配列番号1は、bar遺伝子の塩基配列である。
 配列番号2は、SpCas9遺伝子の塩基配列である。
 配列番号3は、sgRNA発現ユニットの配列の塩基配列である。
SEQ ID NO: 1 is the base sequence of the bar gene.
SEQ ID NO: 2 is the base sequence of the SpCas9 gene.
SEQ ID NO: 3 is the base sequence of the sequence of the sgRNA expression unit.

Claims (12)

  1.  イネ科植物の細胞を、トレハロースを含有する培養培地を用いて培養することを含む、植物細胞の培養方法。 A method for culturing plant cells, which comprises culturing cells of grasses using a culture medium containing trehalose.
  2.  イネ科の植物細胞を培養し、植物細胞群及び/又は植物再生体を得る、ことを含む、請求項1に記載の方法。 The method according to claim 1, wherein the plant cells of the Gramineae family are cultured to obtain a plant cell group and / or a regenerated plant.
  3.  イネ科植物が、イネ、トウモロコシ、コムギ、オオムギ、ライムギ、及びソルガムからなる群から選択される、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the gramineous plant is selected from the group consisting of rice, corn, wheat, barley, rye, and sorghum.
  4.  イネ科植物が、コムギ又はトウモロコシである、請求項1-3のいずれか1項に記載の方法。 The method according to any one of claims 1-3, wherein the gramineous plant is wheat or corn.
  5.  イネ科植物の細胞が、未熟胚、完熟種子、受精卵、カルス、プロトプラスト、又はそれらに由来する細胞群である、請求項1-4のいずれか1項に記載の方法。 The method according to any one of claims 1-4, wherein the cells of a gramineous plant are immature embryos, ripe seeds, fertilized eggs, callus, protoplasts, or a cell group derived from them.
  6.  イネ科植物の細胞が、未熟胚又はそれに由来する細胞群である、請求項1-5のいずれか1項に記載の方法。 The method according to any one of claims 1-5, wherein the cells of a gramineous plant are immature embryos or a cell group derived from the immature embryos.
  7.  イネ科植物の細胞に、核酸、タンパク質及び核酸タンパク質複合体からなる群から選択される物質を導入する工程を含む、請求項1-6のいずれか1項に記載の方法。 The method according to any one of claims 1-6, comprising the step of introducing a substance selected from the group consisting of nucleic acid, protein and nucleic acid-protein complex into cells of Gramineae plants.
  8.  物質の導入により形質転換又はゲノム編集を行う、請求項7に記載の方法。 The method according to claim 7, wherein transformation or genome editing is performed by introducing a substance.
  9.  パーティクルガン法又はアグロバクテリウム法によって物質を導入する、請求項7又は8に記載の方法。 The method according to claim 7 or 8, wherein the substance is introduced by the particle gun method or the Agrobacterium method.
  10.  植物細胞の培養効率が向上する、請求項1-9のいずれか1項に記載の方法。 The method according to any one of claims 1-9, which improves the efficiency of culturing plant cells.
  11.  物質の導入効率が向上する、請求項7-9のいずれか1項に記載の方法。 The method according to any one of claims 7-9, which improves the efficiency of introducing a substance.
  12.  イネ科植物の細胞からの植物体の再生方法であって、
     (1)イネ科植物の細胞を、トレハロースを含有する培養培地を用いて培養し、そして、
     (2)再分化培地で培養する、
    ことを含む、植物体の再生方法。
    It is a method of regenerating a plant from the cells of a gramineous plant.
    (1) The cells of Gramineae plants are cultured using a culture medium containing trehalose, and then
    (2) Culturing in redifferentiation medium,
    How to regenerate a plant, including that.
PCT/JP2021/002140 2020-10-13 2021-01-22 Method for culturing plant cell WO2022079927A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-172481 2020-10-13
JP2020172481A JP2023166645A (en) 2020-10-13 2020-10-13 Method for culturing plant cells

Publications (1)

Publication Number Publication Date
WO2022079927A1 true WO2022079927A1 (en) 2022-04-21

Family

ID=81209080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002140 WO2022079927A1 (en) 2020-10-13 2021-01-22 Method for culturing plant cell

Country Status (2)

Country Link
JP (1) JP2023166645A (en)
WO (1) WO2022079927A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007306917A (en) * 2006-04-20 2007-11-29 National Agriculture & Food Research Organization Method for increasing the resistance of rice plant to pathogenic microorganism and pathogenic microorganism-resistant rice transformant
WO2011013764A1 (en) * 2009-07-29 2011-02-03 日本たばこ産業株式会社 Method for gene transfer into triticum plant using agrobacterium bacterium, and method for production of transgenic plant of triticum plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007306917A (en) * 2006-04-20 2007-11-29 National Agriculture & Food Research Organization Method for increasing the resistance of rice plant to pathogenic microorganism and pathogenic microorganism-resistant rice transformant
WO2011013764A1 (en) * 2009-07-29 2011-02-03 日本たばこ産業株式会社 Method for gene transfer into triticum plant using agrobacterium bacterium, and method for production of transgenic plant of triticum plant

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HIEI, YUKOH ET AL.: "Development of Agrobacterium-mediated transformation method for monocotyledonous plants", BREEDING RESEARCH, vol. 2, no. 4, 2000, pages 205 - 213 *
ISHIDA Y, ET AL.: "IMPROVED PROTOCOL FOR TRANSFORMTION OF MAIZE (ZEA MAYS L.) MEDIATED BY AGROBACTERIUM TUMEFACIENS", PLANT BIOTECHNOLOGY, JAPANESE SOCIETY FOR PLANT CELL AND MOLECULAR BIOLOGY, TOKYO,, JP, vol. 20, no. 01, 1 March 2003 (2003-03-01), JP , pages 57 - 66, XP009070864, ISSN: 1342-4580 *
PUOLIMATKA MATTI, PAUK JANOS: "Effect of Induction Duration and Medium Composition on Plant Regeneration in Wheat (Triticum aestivum L.) Anther Culture", JOURNAL OF PLANT PHYSIOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 156, no. 2, 1 February 2000 (2000-02-01), AMSTERDAM, NL, pages 197 - 203, XP055932943, ISSN: 0176-1617, DOI: 10.1016/S0176-1617(00)80306-5 *
REDHA AMINA, SULEMAN PATRICE: "Assessment of Polyamines and Trehalose in Wheat Microspores Culture for Embryogenesis and Green Regenerated Plants", AMERICAN JOURNAL OF PLANT SCIENCES, SCIENTIFIC RESEARCH PUBLISHING, INC., US, vol. 04, no. 11, 1 November 2013 (2013-11-01), US , pages 2218 - 2226, XP055932945, ISSN: 2158-2742, DOI: 10.4236/ajps.2013.411275 *

Also Published As

Publication number Publication date
JP2023166645A (en) 2023-11-22

Similar Documents

Publication Publication Date Title
JP6990653B2 (en) Methods and compositions for rapid plant transformation
US20080229447A1 (en) Transformation of immature soybean seeds through organogenesis
JP5766605B2 (en) A method for introducing a gene into a wheat genus plant using Agrobacterium, a method for producing a transformed plant of a wheat genus plant
US11512320B2 (en) Methods of gene editing and transforming cannabis
JP2023544016A (en) Rapid transformation of monocot explants
AU2015321438B2 (en) Method for transforming a plant cell or plant tissue using Agrobacterium, transgenic plant, transgenic cell or transgenic tissue, culture medium and use of a method for transforming a plant cell or tissue
US6153813A (en) Methods for genotype-independent nuclear and plastid transformation coupled with clonal regeneration utilizing mature zygotic embryos in rice (Oryza sativa) seeds
WO2022198106A1 (en) Producing betalains using plant cell matrices
US20090023212A1 (en) Method for transforming soybean (Glycine max)
CN115768898A (en) Method for rapid genome modification of recalcitrant plants
EP4038094A1 (en) Genetically modified plants and methods of making the same
WO2021153163A1 (en) Method for culturing plant cell and method for regenerating plant
WO2022079927A1 (en) Method for culturing plant cell
CN109042297B (en) Maize inbred line SL1303 young embryo transformation method
KR100496029B1 (en) Method for Producing Transgenic Perilla Plants, and Herbicide-Resistent Perilla Plants by the Method
US20090023213A1 (en) Method to increase the rate of transgenic embryo formation after inoculation of immature cotyledons with agrobacterium
JP2009523021A (en) A novel and effective transformation method of sunflower and oilseed based on positive selection
WO2007064037A1 (en) Method for transformation of plant belonging to family araceae
WO2022198107A1 (en) Producing betalain in cannabaceae plant parts
Jin et al. Regeneration and Genetic Transformation of Arabidopsis Pumila: An Ephemeral Plant Suitable for Investigating the Mechanisms for Adaptation to Desert Environments
Thiyagarajan et al. Factors influencing Agrobacterium-mediated genetic transformation efficiency in wheat.
KR100363122B1 (en) A method for the development of transgenic garlic plants by gene manipulation and its transgenic garlic
Ibrahim Genetic transformation of barley (Hordeum vulgare L.) to engineer the biosynthetic pathway of lysine and threonine in the endosperm
JP2018027020A (en) Method for gene transfer into plant belonging to genus sorghum using agrobacterium, and method for production of transgenic plant of plant belonging to genus sorghum
WO2022198085A2 (en) Plant cell matrices and methods thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21879675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP