WO2022079883A1 - Hollow cylindrical body and method for manufacturing hollow cylindrical body - Google Patents

Hollow cylindrical body and method for manufacturing hollow cylindrical body Download PDF

Info

Publication number
WO2022079883A1
WO2022079883A1 PCT/JP2020/039046 JP2020039046W WO2022079883A1 WO 2022079883 A1 WO2022079883 A1 WO 2022079883A1 JP 2020039046 W JP2020039046 W JP 2020039046W WO 2022079883 A1 WO2022079883 A1 WO 2022079883A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
metal wire
intersection
hollow cylindrical
hollow tubular
Prior art date
Application number
PCT/JP2020/039046
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 芳澤
Original Assignee
富士フィルター工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フィルター工業株式会社 filed Critical 富士フィルター工業株式会社
Priority to PCT/JP2020/039046 priority Critical patent/WO2022079883A1/en
Publication of WO2022079883A1 publication Critical patent/WO2022079883A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow

Definitions

  • the present invention relates to a hollow cylindrical body formed by winding a metal wire in a spiral and multi-layered manner.
  • Hollow cylinders in which metal wires are wound in a spiral and multi-layered shape are used in various fields.
  • a filter incorporated in an inflator for an airbag mounted on an automobile can be mentioned.
  • An airbag mounted on an automobile includes a sensor for detecting an automobile collision, an inflator that burns a gas generating agent to generate gas at the time of an automobile collision, and a bag that is deployed by the generated gas.
  • the inflator incorporates a filter that cools the gas while removing the solid residue generated by the combustion of the gas generating agent.
  • the filter for an airbag inflator described in Patent Document 1 is made by rolling a metal wire having a perfect circular cross section and processing the metal wire into a rectangular cross section in a spiral shape at a predetermined angle and a predetermined pitch. It is formed by winding in layers and optionally sintering. Patent Document 1 describes that the airbag inflator filter has rigidity to withstand the impact of an explosively generated combustion gas.
  • the combustion gas mainly applies pressure in the outer diameter direction of the filter.
  • the filter receives a larger pressure in the axial direction than in the outer radial direction.
  • the metal wires are spirally and multilayerly wound, and the metal wires constituting the adjacent wire layers are fixed in the radial direction. It is obtained by deforming a hollow cylindrical member in which an intersection in contact with the metal wire and a non-intersection located between two intersections arranged adjacently and spaced apart along the longitudinal direction of the metal wire are formed. It is a hollow cylindrical body, and at least a part of the non-intersections has entered a wire layer different from the intersections located on both sides in the longitudinal direction of the non-intersections, and the wire layer to which the non-intersections belong. It is characterized in that it is deformed so as to be in axial contact with the metal wire rod belonging to a wire rod layer different from that of the above.
  • FIG. 1 A) to (c) are flowcharts showing the manufacturing process of the hollow cylindrical body which concerns on one Embodiment of this invention. It is a schematic diagram which shows an example of the precursor manufacturing apparatus. It is a schematic diagram which shows the other example of the precursor manufacturing apparatus. It is a perspective view which shows an example of a compression molding type.
  • (A) and (b) are schematic vertical cross-sectional views showing how the precursor is compressed by using the compression molding mold shown in FIG. It is a figure which shows the hollow cylindrical member which concerns on a reference example by an X-ray CT photograph, (a) is a front view, (b) is a partially enlarged view, (c) is a partially enlarged vertical sectional view. It is a figure which shows the result of the axial compression test. It is a figure which shows the result of the pressure loss measurement.
  • the hollow cylindrical body according to the embodiment of the present invention is used in various fields.
  • a hollow cylinder is used as a filter to remove foreign matter from various fluids.
  • the hollow cylinder is used as a sound deadening material or as a heat exchange member.
  • the use case of the hollow cylindrical body is an example.
  • the hollow cylindrical body may be used for a purpose different from the above cases in fields other than the above.
  • FIG. 1 is a vertical sectional view showing a schematic configuration example of an inflator in which a hollow cylindrical body according to an embodiment of the present invention is mounted as a filter.
  • the inflator 200 includes a cylindrical housing 201, an igniter 203 attached to one end of the housing 201 in the axial direction, and a diffuser 215 attached to the other end of the housing 201 in the axial direction.
  • a combustion chamber 205 is formed in the hollow portion of the housing 201, and the combustion chamber 205 is filled with the gas generating agent 207.
  • a bottomed cylindrical cup member 209 having one end surface in the axial direction closed is arranged.
  • a large number of gas passage holes 211 through which the combustion gas generated by the gas generator 207 passes are formed on the circumferential side surface of the cup member 209.
  • the gas passage hole 211 is set to a size that prohibits the passage of the gas generating agent 207.
  • An opening 213 that communicates with the hollow inside of the diffuser 215 is formed on the other end surface of the cup member 209 in the axial direction.
  • the diffuser 215 includes a case 217 in which one end surface in the axial direction is open and the other end surface (bottom surface 217a) is closed, and a hollow cylindrical body 10 housed in the case 217.
  • a gas discharge hole 219 that discharges combustion gas to the outside is formed on the circumferential side surface of the case 217.
  • the hollow tubular body 10 functions as a means for cooling the high-heat combustion gas generated by the combustion of the gas generating agent 207, and also functions as a filter means for capturing the combustion residue generated by the generation of the combustion gas.
  • the operation outline of the inflator 200 is as follows.
  • the igniter 203 is activated to ignite the gas generating agent 207 in the combustion chamber 205.
  • the gas generator 207 burns to generate combustion gas.
  • the combustion gas enters the diffuser 215 side through the gas passage hole 211 and the opening 213 of the cup member 209 (in the directions of arrows A1 and A2 in the figure).
  • the combustion gas that has entered the hollow portion 11 of the hollow tubular body 10 from the opening 213 collides with the bottom surface 217a of the case 217, and then moves inside the hollow tubular body 10 in the outer radial direction from the gas discharge hole 219. It is discharged to the outside (in the direction of arrow A3 in the figure).
  • the combustion gas discharged to the outside finally inflates the bag.
  • both ends in the axial direction and the outer peripheral surface of the hollow tubular body 10 are closely supported by the case 217, and movement in the axial direction is prohibited.
  • the hollow tubular body 10 since the hollow tubular body 10 receives a large amount of pressure in the axial direction and the outer diameter direction due to the combustion of the gas generating agent 207, the hollow tubular body 10 needs to have a strength capable of withstanding this pressure. ..
  • the combustion gas applies a particularly strong pressure in the axial direction of the hollow cylindrical body 10 in the process of moving from the housing 201 toward the diffuser 215.
  • the hollow cylindrical body 10 mounted as a filter on the cylinder type inflator it is particularly necessary to increase the strength in the axial direction.
  • FIG. 2A and 2B are views showing a hollow tubular body according to an embodiment of the present invention by an X-ray CT photograph
  • FIG. 2A is a front view
  • FIG. 2B is a partially enlarged view
  • FIG. 2C is a partially enlarged view.
  • It is a BB sectional view of (b).
  • the part circled is the corresponding part in each figure.
  • this figure is an example of using a metal wire 20 having a thickness of 0.42 mm by rolling a metal wire (round wire) having a wire diameter of ⁇ 0.6 mm by 30%.
  • a precursor having an axial length of 50 mm is compressed in the axial direction to form a hollow cylindrical body 10 having an axial length of 25 mm.
  • the metal wire rod 20 is wound spirally and in a multilayer shape, and the metal wire rods 20 and 20 constituting the adjacent wire rod layers are fixed in the radial direction.
  • the non-intersection portion 23 has a wire rod layer whose radial position is different from that of the intersection portions 22 and 22 located on both sides of the non-intersection portion 23 in the longitudinal direction.
  • the metal wire 20n belonging to a wire layer (wire layer Ln) different from the wire layer (wire layer Ln-2m) to which the non-intersection portion 23 belongs is deformed so as to be in axial contact with the metal wire 20n. It is characterized by being.
  • the auxiliary codes n and n-2m attached to the reference numerals 20 and the reference numerals L indicate the numbers or positions of the wire rod layer L.
  • the metal wire 20n indicates that the metal wire 20 belongs to the wire layer Ln.
  • the hollow cylindrical body 10 is porous and can be used as a filter for removing unnecessary substances exceeding a specific size from various fluids such as liquids and gases.
  • the hollow cylindrical body 10 can be used as a cooling means for cooling the passing fluid in the process of passing various fluids through the holes formed in the hollow tubular body 10. Further, the hollow cylindrical body 10 can be used as a sound deadening material, a heat exchange member, or the like.
  • the hollow cylindrical body 10 forms a flow path through which the fluid passes in the direction in which the wire rod layers overlap, that is, in the radial direction of the hollow tubular body.
  • the fluid may be passed from the inner diameter side to the outer diameter side of the hollow cylinder, or may be passed from the outer diameter side to the inner diameter side.
  • the radial direction does not mean the diametrical direction (radial direction) in the strict sense, but generally means the radial direction with respect to the axial direction and the circumferential direction.
  • the size (axial dimension, diameter, thickness, etc.) of the hollow tubular body 10 is appropriately determined according to the structure, size, and the like of the device on which the hollow tubular body 10 is mounted.
  • FIG. 3 is a schematic perspective view showing a precursor of a hollow cylindrical body according to an embodiment of the present invention.
  • the precursor (hollow tubular member) 30 processed into the hollow tubular body 10 according to the embodiment of the present invention has at least one metal wire 20 constant in the axial direction (vertical direction in the figure). It is formed by winding in a spiral and multi-layered manner with an inclination angle ⁇ .
  • the individual layers (layers having different radial positions) wound in the same direction are referred to as wire rod layers L1, L2, and so on.
  • the extending direction of the metal wire 20n (thickness not shown) constituting the outermost wire layer Ln in FIG. 3 is the direction indicated by the solid arrow, and the metal wire 20n forming the wire layer Ln-1 immediately inside the metal wire 20n.
  • the extending direction of -1 is the direction indicated by the broken line arrow.
  • the extending direction of the metal wire 20n-2 constituting the wire layer Ln-2 immediately inside the wire layer Ln-1 is the direction indicated by the solid arrow like the metal wire 20n.
  • the precursor 30 has one wire layer (for example, wire layer L1) formed by spirally winding the metal wire 20 at a constant inclination angle with respect to the axial direction, and the outer peripheral side of one wire layer L1.
  • Another wire material layer (for example, wire material layer L2) formed by spirally winding the metal wire material at an inclination angle different from that of the metal wire material constituting the one wire material layer L1.
  • the metal wires constituting one wire layer L1 and the other wire layers L2 adjacent thereto are not parallel to each other in the axial direction and are configured to intersect each other. It should be noted that the metal wire rod constituting one wire rod layer may be configured so that the inclination angle with respect to the axial direction changes in one wire rod layer.
  • Examples of the type of metal used as the material of the precursor 30 include iron, mild steel, stainless steel, nickel alloy, and copper alloy, and austenitic stainless steel (SUS304) is particularly preferable.
  • a sintering step may be included in the manufacturing process of the hollow cylindrical body 10.
  • a metal material that is difficult to sinter can be used as the material of the precursor 30 in addition to the above metal material.
  • titanium, aluminum, magnesium and the like can also be used as the material of the precursor 30.
  • the thickness and cross-sectional shape of the metal wire used for the precursor 30 depend on the size of the final product, the hollow cylindrical body 10, the substance removed by the hollow tubular body by its filter function, the pressure loss, and the like. Will be decided as appropriate.
  • a metal wire rod obtained by rolling a metal wire having a substantially perfect circular cross section and processing it into a predetermined cross section shape is used.
  • a flat rolled wire obtained by crushing the metal wire in the radial direction so as to have a predetermined rolling ratio may be used, or the metal wire may be rolled so that the cross section has an irregular shape (hereinafter, ""
  • a deformed wire (referred to as "deformed rolling") may be used.
  • the irregular shape is generally defined as "having a suspicious shape / appearance different from the usual one", but here, the irregular shape means that the cross-sectional shape is circular, elliptical, polygonal, etc. over the entire length.
  • the cross-sectional shape of the metal wire is irregular over the entire length in the longitudinal direction with respect to the metal wire having a regular shape, for example, W-shaped, U-shaped, J-shaped, L-shaped, X. It broadly includes those having a character shape, a shape, and the like.
  • the cross-sectional shape and outer shape of the metal wire rod are not constant over the entire length in the longitudinal direction of the metal wire rod, and the configuration having different cross-sectional shapes and outer shapes depending on the position in the longitudinal direction is also included in the irregular shape.
  • FIG. 4 is an enlarged schematic view showing a portion where the metal wires intersect in the precursor body.
  • the metal wire is a flat rolled wire
  • the metal wires 20n and 20n-1, 20n-1 and 20n-2, 20n-2 which respectively constitute the adjacent wire layers Ln and Ln-1, Ln-1 and Ln-2, ...
  • the overlapping metal wires 20 are in contact with each other.
  • the metal wire portion between the intersection 22 adjacent to the metal wire 20 in the longitudinal direction and the intersection 22 is referred to as a non-intersection portion 23 (non-overlap portion).
  • the intersecting portion 22 and the non-intersecting portion 23 appear alternately along the longitudinal direction of the metal wire rod 20.
  • the non-intersecting portion 23 is not in contact with the metal wire 20 constituting another adjacent wire layer, and when the precursor 30 is compressively deformed in the axial direction, it can be twisted and deformed in various directions. Is.
  • the intersecting portion 22 and the non-intersecting portion 23 formed on the metal wire rod 20n constituting the wire rod layer Ln belong to the wire rod layer Ln.
  • the metal wire rods 20 constituting one wire rod layer L are arranged apart in the axial direction.
  • a spiral spiral space S (Sn, Sn-1, Sn-2 ) Extending along the metal wire 20 is formed in each wire layer L.
  • the spiral space S is formed between the metal wires 20 adjacent to each other in the axial direction.
  • the separation t between the metal wire 20n-2 and the metal wire 20n in the lateral direction is such that when the non-intersection portion 23 of the metal wire 20n-2 is deformed and enters the spiral space Sn, the non-intersection portion 23 It is set so as to come into contact with the metal wire 20n in the axial direction with a predetermined pressing force capable of improving the axial strength.
  • the separation t is the projected metal wire 20n-2 and the metal wire 20n when the metal wire 20n-2 is projected onto the wire layer Ln from the normal direction of the wire layer Ln (the radial direction of the precursor 30). Shown as a distance from and in the short direction.
  • [Manufacturing method of hollow cylinder] 5 (a) to 5 (c) are flowcharts showing a manufacturing process of a hollow cylindrical body according to an embodiment of the present invention.
  • the manufacturing process of the hollow cylindrical body 10 according to the embodiment of the present invention includes a rolling step (step S1) of rolling a metal wire to form a metal wire, and a hollow by winding the metal wire in a spiral and multilayer shape. It includes a wire rod winding step (step S2) for forming a tubular precursor 30 and a compression step (step S3) for axially compressing the precursor 30 to form a hollow tubular body 10.
  • the hollow cylindrical body 10 is completed through the compression step.
  • the precursor 30 see FIG.
  • the manufacturing process of the hollow tubular body 10 may optionally include a sintering step (step S4) in which the metal wires 20 and 20 in contact with each other are diffusion-bonded to each other.
  • the sintering step may be performed before the compression step, as shown in FIG. 5 (b). In this case, the precursor 30 to which the intersection 22 is joined is obtained.
  • the sintering step may be performed after the compression step, as shown in FIG. 5 (c). After the compression step of FIG. 5B, a sintering step may be further performed.
  • FIG. 6 is a schematic diagram showing an example of a precursor manufacturing apparatus. This device manufactures a hollow cylindrical precursor 30 from a metal wire 21.
  • the manufacturing apparatus 100A is longitudinal with respect to a rolling apparatus 110 that rolls a metal wire 21 supplied from a bobbin (not shown) and a metal wire (hereinafter referred to as “metal wire 20”) whose cross-sectional shape is deformed by rolling.
  • a tension unit 120 that applies a predetermined tension in a direction and a winding device 130 that winds a metal wire rod 20 around a mandrel 131 to form a precursor are substantially provided. Further, on the transport path of the metal wire rod 20, a plurality of transport rollers 140 for transporting while guiding the metal wire rod are arranged.
  • the rolling apparatus 110 is an apparatus for carrying out the rolling step of step S1.
  • the winding device 130 is an device that carries out the wire rod winding step of step S2.
  • the rolling apparatus 110 includes two columnar rolling rollers 111a and 111b that are arranged so as to face each other and rotate.
  • the portion where the surfaces (opposing surfaces) of the rolling roller 111a and the rolling roller 111b come into contact with each other constitutes a pressurizing portion 112 that sandwiches the metal wire 21 and deforms it into a desired shape.
  • the rolling apparatus 110 plastically deforms the metal wire 21 at the pressurizing section 112 under a predetermined temperature and pressure to obtain a metal wire 20 having a predetermined cross-sectional shape.
  • the rolling may be cold rolling or hot rolling.
  • the cross-sectional shape of the metal wire 21 supplied from the bobbin is usually circular.
  • the rolling rollers 111a and 111b are means for processing a metal wire 21 (round wire) having a circular cross-sectional shape into a so-called "flat rolled wire” having a metal wire rod 20 having a substantially elliptical cross section or a substantially rectangular cross section. But it may be. Alternatively, convex portions and / or concave portions for rolling the metal wire into a desired cross-sectional shape may be formed on the surface of either one or both of the rolling rollers 111a and 111b. In this case, when the metal wire passes through the pressure portion 112, it is rolled by these convex portions and concave portions and plastically deformed to be processed into a metal wire having an irregular cross-sectional shape.
  • the tension unit 120 has a fixed roller 121 fixedly arranged at a predetermined position in a rotatable state, and a movable roller 122 that moves closer to or away from the fixed roller 121 and is rotatable. By moving the movable roller 122 closer to or further away from the fixed roller 121, a predetermined tension is applied to the metal wire 20 wound around the fixed roller 121 and the movable roller 122 and conveyed.
  • the winding device 130 is a guide member that guides the metal wire rod 20 by reciprocating at a predetermined speed in the axial direction of the mandrel 131 (direction orthogonal to the paper surface in the drawing) and the mandrel 131 that rotates in a fixed direction at a predetermined speed. 132 and.
  • the mandrel 131 is generally columnar or cylindrical and is generally made of a metal such as stainless steel, copper alloy or aluminum alloy.
  • one end of the metal wire 20 is locked at an appropriate position on the mandrel 131, and the mandrel 131 is attached to the axis of the mandrel 131 in a state where a predetermined tension is applied to the metal wire 20 by the tension unit 120.
  • the metal wire rod 20 is reciprocated in the axial direction of the mandrel 131 by the guide member 132 while rotating at a constant speed in a constant direction around the center.
  • the metal wire 20 is spirally and multi-layered around the outer circumference of the mandrel 131. Further, the metal wires constituting the adjacent wire rod layers intersect with each other to form a mesh.
  • each metal wire rod is wound in the clockwise direction in a state of being inclined by a predetermined angle ⁇ with respect to the axial direction of the mandrel in FIG.
  • the metal wire constituting the second wire layer to be wound around the outer periphery of the first wire layer is wound in the counterclockwise direction in a state of being inclined by a predetermined angle ⁇ with respect to the axial direction of the mandrel.
  • the metal wire constituting the third wire layer to be wound around the outer periphery of the second wire layer is wound in the clockwise direction in a state of being inclined by a predetermined angle ⁇ with respect to the axial direction of the mandrel.
  • the rotation of the mandrel 131 is stopped. Then, the metal wire 20 is cut, and the cut end portion is joined to an appropriate position of the metal wire that has been wound by spot welding or the like and removed from the mandrel 131 to obtain a hollow tubular precursor 30.
  • the angle (winding angle) of the metal wire 20 with respect to the axial direction of the mandrel 131 and the distance (pitch) between the metal wires 20 adjacent to each other in the axial direction are the ratio of the rotation speed of the mandrel 131 to the moving speed of the guide member 132. It can be changed by adjusting it as appropriate. By appropriately changing the diameter of the metal wire 21 and its rolling shape, the winding angle of the metal wire 20, the pitch, and the number of windings, the pressure loss of the fluid passing through the hollow cylindrical body 10 is controlled to an appropriate value. be able to.
  • FIG. 7 is a schematic diagram showing another configuration example of the precursor manufacturing apparatus 100B.
  • the manufacturing apparatus 100B is provided with a plurality of rolling devices 110 (110A, 110B) on the transport path of the metal wire 21, and can perform rolling on the metal wire 21 a plurality of times.
  • the buffer unit 150 may be optionally inserted between the rolling apparatus 110A and 110B.
  • the buffer unit 150 has a fixed roller 151 whose axis is fixed in a position rotatably at a predetermined position, and a rotatable movable roller 152 that moves closer to or further from the fixed roller 151.
  • a metal wire after being rolled by the rolling apparatus 110A in the previous stage is wound around the fixed roller 151 and the movable roller 152.
  • the buffer unit 150 synchronizes between the rolling apparatus 110A and the winding apparatus 130, or causes a machining speed difference between the rolling apparatus 110A and 110B. Absorb.
  • the rolling directions of the metal strands 21 by the rolling devices 110A and 110B may be the same direction or different directions.
  • the metal wire is rolled a plurality of times, a metal wire having a more complicated outer surface shape can be obtained than in the case of one rolling. Further, by performing rolling a plurality of times, the effect that the shape of the metal wire can be stabilized can be obtained.
  • FIG. 8 is a perspective view showing an example of a compression molding mold.
  • the compression molding die 300 includes a cavity 310 (female mold) having a compression space 311 for accommodating the precursor 30 to be molded, and a stamp 320 (core, male mold) for pressing the precursor 30.
  • the cavity 310 closes a cylindrical outer cylinder 313, a cylindrical columnar body 315 protruding into the hollow portion of the outer cylinder 313 along the axial direction of the outer cylinder 313, and one end surface of the outer cylinder 313 in the axial direction.
  • a bottom plate 317 is provided.
  • the outer cylinder 313 is a hollow body having both ends in the axial direction open, and the columnar body 315 and the bottom plate 317 are integrated.
  • the cylindrical space formed by the outer cylinder 313, the columnar body 315, and the bottom plate 317 is the compression space 311 that receives the precursor 30 and the stamp 320.
  • the stamp 320 is a cylinder provided with a hollow insertion portion 321 penetrating in the axial direction. When the axial one end of the stamp 320 is inserted into the compression space 311 from the axial other end opening of the cavity 310, the axial other end opening thereof is inside the hollow portion 31 (see FIG. 3) of the precursor 30.
  • the columnar body 315 is inserted from.
  • FIG. 9A and 9 (b) are schematic vertical cross-sectional views showing how the precursor is compressed using the compression molding mold shown in FIG.
  • the cylindrical precursor 30 is first housed in the compression space 311 of the compression molding die 300 (in the direction of arrow C1 in the figure).
  • the inner shape of the outer cylinder 313 is set to be substantially the same as or slightly larger than the outer shape of the precursor 30.
  • the outer shape of the columnar body 315 is made to be substantially the same as or slightly smaller than the inner shape of the precursor 30.
  • At least one of the inner surface of the outer cylinder 313 and the outer surface of the columnar body 315 serves to position the precursor 30 in the compression space 311. As shown in FIG.
  • the hollow cylindrical body 10 is produced by compressing the precursor 30 in the axial direction (direction of arrow C2 in the figure) by the stamping die 320.
  • the inner and outer shapes of the precursor 30 are deformed according to the shape of the compression space 311 in the process of being compressed.
  • ⁇ Sintering process> The hollow tubular body after being compressed by the precursor 30 produced by the manufacturing apparatus 100A and 100B shown in FIGS. 6 and 7 or the compression molding die 300 shown in FIGS. 8 and 9 is baked at a high temperature. It may be tied (step S4 shown in FIGS. 5 (b) and 5 (c)).
  • the temperature at the time of sintering varies depending on the type, thickness, number of windings, pitch, winding angle, etc. of the metal wire, but it shall be in the range of 500 to 1500 degrees (° C.). Of these, the range of 1100 to 1201 degrees is preferable.
  • Sintering is performed for the purpose of alleviating the internal strain of the metal wire rod generated during rolling and joining the overlapping portions of the metal wire rod.
  • Sintering is preferably performed in an electric furnace set to a predetermined temperature, and the sintering time varies depending on the type, thickness, number of windings, winding density, pitch, and sintering temperature of the metal wire, but is 30 to 80. It is preferable to select within the range of minutes.
  • Sintering can be performed in air, but it is preferably performed in vacuum or in an inert gas that does not embrittle the metal wire or cause a chemical reaction. Examples of the inert gas include nitrogen gas and argon, but nitrogen gas is particularly preferable. As shown in FIG. 5 (b), in the sintering step performed before the compression step, the intersection 22 (see FIG.
  • FIG. 10A and 10B are views showing a hollow tubular member according to a reference example by an X-ray CT photograph
  • FIG. 10A is a front view
  • FIG. 10B is a partially enlarged view
  • FIG. 10C is a partial enlarged view. It is a DD cross-sectional view.
  • the part circled is the corresponding part in each figure.
  • a metal wire having a wire diameter of ⁇ 0.4 mm and rolled so as to have a rolling ratio of 50% (thickness 0.2 mm) is wound spirally and in a multilayer shape to form a hollow cylinder. It is formed in a shape. Since Reference Example 40 has not undergone the compression step (step S3), the metal wire rod 20 is aligned in any of the axial direction, the radial direction, and the circumferential direction. The non-intersecting portion 23 is not curved or twisted, and the non-intersecting portion does not enter another wire layer. The metal wires in the precursor 30 are also in an aligned state in the same manner as in Reference Example 40 shown in FIG.
  • the hollow tubular body 10 shown in FIG. 2 and the precursor 30 shown in FIG. 3 have an intersection 22 in which the metal wires constituting the adjacent wire layers are in fixed contact with each other in the radial direction.
  • the state in which the metal wires 20 and 20 are in contact with each other at the intersection 22 is maintained before and after the compression step. In other words, the longitudinal position of the intersection 22 with respect to the metal wire 20 is maintained before and after the compression step. Further, in the method of manufacturing the hollow cylindrical body 10, the contact state between the metal wires at the intersection 22 is controlled so as to be maintained before and after the compression step.
  • the tension applied to the metal wire 20 from the tension unit 120 in the wire winding step (step S2) of the metal wire 20 is before and after the compression step.
  • the size is set so that the position of the intersection 22 with respect to the longitudinal direction of the metal wire 20 can be maintained, that is, a frictional force can be exerted to the extent that the metal wires 20 do not slip (or shift) at the intersection 22.
  • the metal wire rod 20 has a longitudinal strength capable of maintaining its own shape against the above tension. At the intersection 22, the metal wires 20 and 20 are in surface contact with each other and exert the above frictional force.
  • the tension applied to the metal wire 20 in the wire winding step of the metal wire 20 is increased. It may be smaller than the manufacturing method in which the sintering step is not carried out. However, in order to reliably join the intersection 22, it is desirable that the metal wires 20 and 20 are in surface contact with each other at the intersection 22. Since the intersection 22 is joined by sintering, the position of the intersection 22 with respect to the longitudinal direction of the metal wire 20 is maintained before and after the axial compression of the precursor 30.
  • the state of contact between the metal wires 20 is maintained before and after the compression step. Therefore, in the compression step, deformation of the non-intersecting portion 23, specifically, bending deformation, torsional deformation, and the like are promoted.
  • the amount of deformation of the non-intersecting portion 23 from the precursor 30 in the compression step is larger than the amount of deformation of the intersecting portion 22.
  • the amount of deformation can be shown as an index that comprehensively considers the amount of movement of the metal wire 20 in the radial and axial directions, the amount of twist, and the like.
  • the relative positional relationship between the number of intersections and the intersections 22 is maintained before and after the compression process. Therefore, at the intersection 22, the radial layer structure (layer structure) of the hollow cylindrical body 10 is maintained before and after the compression step. Further, the number of holes (mesh) formed in the precursor 30 and the relative positional relationship between the holes (mesh) are maintained before and after the compression step.
  • Deformation at the intersection 22 is limited because the intersection 22 is fixed. Deformation at the intersection 22 is limited because the precursor 30 has a large resistance to torsional deformation about its axis. That is, the precursor 30 includes S-wound metal wires 20n, 20n-2 ... (Metal wires spirally wound in the first direction) and Z-wound metal wires 20n-1, 20n-3 ... (First). The metal wire rod spirally wound in the second direction opposite to the direction of the above) is sequentially laminated in the radial direction. The S-wound metal wire and the Z-wound metal wire mutually suppress torsional deformation centered on the axis of the precursor 30.
  • the circumferential movement and the radial movement of the intersection 22 in the compression step are suppressed. Further, since the compression molding die 300 is used in the compression step, the expansion of the outer diameter and the reduction of the inner diameter of the hollow tubular body 10 are also limited by the size of the compression space 311 of the compression molding die 300. ..
  • the hollow cylindrical body 10 has an axial contact portion 24 in which the metal wires 20 and 20 are in axial contact with each other.
  • the axial contact portion 24 is a metal wire rod 20 in which at least a part of the non-intersection portion 23 deformed by the compression process belongs to a wire rod layer different from the intersection portions 22 and 22 located on both sides of the non-intersection portion 23 in the longitudinal direction. It is formed by making axial contact with the intersecting portion 22 or the non-intersecting portion 23).
  • the axial contact portion 24 is formed by the non-intersecting portions 23 deformed in the compression step, or by the non-intersecting portions 23 and the intersecting portions 22 deformed in the compression step.
  • the angles of the metal wires 20 constituting the intersection 22 change within a range in which the axial contact portion 24 can be formed.
  • the metal wires 20 and 20 come into contact with each other at a predetermined pressing force capable of improving the axial strength of the hollow cylindrical body 10.
  • the radial position of the non-intersection portion 23 (or the distance from the central axis Ax of the hollow cylindrical body 10 shown in FIG. 3) is different from the radial position of the intersection 22 located on both sides of the non-intersection portion 23 in the longitudinal direction. In this case, it is determined that the non-intersecting portion 23 has entered a wire rod layer different from the wire rod layer to which it belongs.
  • the "wire layer to which it belongs” is a wire layer to which the intersections 22 and 22 located on both sides of the non-intersection portion 23 in the longitudinal direction belong.
  • the axial contact portion 24 is formed as follows. In the compression step, first, the outer diameter side or the inner diameter side or the inner diameter side so that at least a part of the non-intersection portion 23 enters the wire rod layer L different from the intersection portions 22 and 22 located on both sides in the longitudinal direction of the non-intersection portion 23. Transform to the side. Then, at least a part of the deformed non-intersecting portion 23 is deformed so as to come into contact with the metal wire rod 20 belonging to the wire rod layer different from the wire rod layer to which it belongs so as to be in contact with the metal wire rod 20 in the axial direction with a predetermined pressing force.
  • the metal wires 20 and 20 come into contact with each other at the intersection 22 and the axial contact portion 24.
  • the total area of the portions of the hollow cylindrical body 10 where the metal wires come into contact with each other includes the contact area at the intersection 22 and the contact area at the axial contact portion 24.
  • the axial contact portion 24 is formed, the total area of the portions where the metal wires come into contact with each other in the hollow cylindrical body 10 is increased, so that the strength of the hollow tubular body 10 is particularly high. Improve in direction.
  • the axial contact portion 24 is formed by metal wires 20 having the same winding direction. That is, when the outermost wire rod layer is Ln, the metal wire rods constituting the wire rod layer Ln-2, the wire rod layer Ln-4, and the like are in axial contact with the metal wire rod constituting the wire rod layer Ln. , The axial contact portion 24 is formed with the metal wire rod constituting the wire rod layer Ln.
  • the number of axial contact portions 24 increases from the inner diameter side to the outer diameter side.
  • the distance between the intersections 22 adjacent to each other in the longitudinal direction of the metal wire 20 is larger on the outer diameter side than on the inner diameter side.
  • the non-intersecting portion 23 located on the outer diameter side is more likely to enter the other wire rod layer L due to deformation than the non-intersecting portion 23 located on the inner diameter side, and the axial contact portion 24 is more likely to be formed.
  • the precursor 30 is formed by spirally winding a continuous metal wire 20 at an angle ⁇ with respect to the axis of the mandrel 131 (see FIGS. 6 and 7). Has been done.
  • a plurality of holes (mesh) are uniformly formed in the radial direction (within the wall thickness) of the precursor 30.
  • the precursor 30 has a uniform porous shape (or uniform network structure) in the radial direction (direction in which the wire rod layers overlap) (see FIG. 4).
  • the quantity of the intersection 22 formed on the precursor 30 does not change before and after the compression step.
  • the relative positional relationship between the intersections 22 formed on the precursor 30 is maintained before and after the compression step.
  • the number and relative positional relationship of the holes (mesh) formed in the precursor 30 are also maintained before and after the compression step. Therefore, the hollow cylindrical body 10 has a uniform porous shape in the radial direction (within the wall thickness).
  • the gap between the precursor 30 and the compression molding die 300 is set so that the non-intersecting portion 23 can be deformed into a desired shape.
  • the compression molding die 300 is set to have a shape having a gap between the precursor 30 and the precursor 30 so that at least one of the expansion of the outer diameter and the reduction of the inner diameter of the precursor 30 can be performed.
  • the outer diameter of the columnar body 315 is set to be substantially the same as the inner diameter of the precursor 30.
  • the term "substantially the same” here allows the existence of a gap sufficient to allow the precursor 30 to be inserted into the compression space 311 of the compression molding die 300, but positively changes the diameter size of the precursor 30.
  • the inner diameter of the outer cylinder 313 is set to be larger than the outer diameter of the precursor 30, so that the outer diameter of the precursor 30 is increased to some extent according to the inner shape of the outer cylinder 313 in the compression step. Intended.
  • the outer cylinder 313 has a gap between the precursor 30 and the precursor 30 so that the outer diameter of the precursor 30 can be increased.
  • the relationship between the inner and outer diameters of the compression molding die 300 and the precursor 30 may be reversed from the above, and the inner diameter of the precursor 30 may be reduced and deformed.
  • the rolling ratio (or rolling shape) of the metal wire 21 is set so that the metal wires 20 can come into contact with each other at a predetermined pressure in the axial direction by compressing the precursor 30.
  • the rolling ratio is preferably 20 to 80%, particularly preferably 20 to 50%.
  • the width-thickness ratio of the metal wire 20 is equal to the width-thickness ratio of the flat-rolled wire rolled in the range of 20 to 40%. Set. The width and thickness of the metal wire 20 are as shown in FIG.
  • the non-intersecting portion 23 located in the same wire rod layer L as the intersecting portions 22 and 22 located on both sides in the longitudinal direction is deformed into another wire rod layer. It is in axial contact with the metal wire 20 to which it belongs. Therefore, the strength of the hollow cylindrical body 10 is improved in the axial direction.
  • the axial strength of the hollow tubular body 10 can be improved by compressing the precursor 30 in the axial direction in the compression step. Therefore, it is possible to improve the axial strength of the hollow cylindrical body using a metal material that is difficult to sinter.
  • a cylindrical member in which a metal wire is wound in a spiral and a multilayer shape may be subjected to a sintering process in order to increase the rigidity.
  • a sintering process since the strength in the axial direction of the hollow tubular body can be improved without performing the sintering process, it is possible to reduce the cost and the manufacturing time by omitting the sintering step.
  • the present invention shows the case of obtaining a hollow cylindrical body having a cylindrical shape (the cross-sectional shape orthogonal to the axial direction is a perfect circle) has been shown, but the present invention also shows the case of obtaining a hollow tubular body having a shape other than the above shape. Applicable. Specifically, the present invention obtains a hollow cylindrical body having various cross-sectional shapes such as an elliptical cylinder, a square cylinder, and a star-shaped cylinder (the cross-sectional shape is elliptical, rectangular, or star-shaped). It can also be applied to cases.
  • a hollow tubular shape having a convex cross-sectional shape by winding a metal wire spirally and in multiple layers around a mandrel having a convex cross-sectional shape (eg, a mandrel having an elliptical columnar shape or a prismatic shape).
  • You may try to obtain a precursor of.
  • a metal wire is spirally and multi-layered around a mandrel having an appropriate shape, and a hollow cylindrical member removed from the mandrel is pressed in the radial direction to form a desired cross section such as a star shape.
  • a hollow cylindrical precursor having a surface shape may be obtained.
  • the compression molding die used in the compression step is one having a compression space having a shape corresponding to the shape of the precursor.
  • the present invention can be applied not only to a hollow cylindrical body having a constant inner / outer diameter in the axial direction, but also to a hollow cylindrical body having a tapered shape (eg, a weight shape, a weight base shape) in which the inner / outer diameter changes in the axial direction. ..
  • the present invention can also be applied to a hollow cylindrical body having a flange portion protruding in the outer diameter direction at least at one end in the axial direction.
  • the present invention can also be applied to a hollow cylindrical body having a bottomed cylinder in which at least one end surface in the axial direction is closed.
  • Test result 1 In order to carry out the axial compression test and the pressure loss measurement, five hollow cylindrical test pieces 1 and five hollow cylindrical comparative examples 1 were prepared.
  • a metal wire having a thickness of 0.42 mm was used by rolling a metal wire (round wire) having a wire diameter of ⁇ 0.6 mm and SUS304 by 30%.
  • the test body 1 and Comparative Example 1 have a hollow cylindrical shape having an inner diameter of 8 mm, an outer diameter of 18.1 mm, and an axial length of 35 mm, and the weight thereof is 19 g.
  • the number of intersections formed in the test body 1 and the comparative example 1 is the same.
  • the test body 1 is a hollow cylindrical body produced by the method according to the embodiment of the present invention. That is, the test body 1 prepares a cylindrical precursor 30 having an axial length of 55 mm by winding the metal wire in a spiral and multilayer shape, and then in a compression step (step S3), a cylinder having an axial length of 35 mm. The precursor 30 is compression-molded in the axial direction so as to have a shape. In Comparative Example 1, the metal wire is spirally and multi-layered so as to have a cylindrical shape. Comparative Example 1 has not undergone a compression step.
  • the appearance of the cylindrical member as in Comparative Example 1 varies depending on the wire diameter of the metal wire used, the rolling ratio, the winding angle of the metal wire, the separation of the metal wire in the axial direction, etc., but the wire of the comparative example used in the test The state of the layer is almost the same as the reference example shown in FIG.
  • the test piece 1 and Comparative Example 1 were not sintered.
  • FIG. 11 is a diagram showing the results of the axial compression test.
  • FIG. 11A is a table showing the relationship between displacement and load
  • FIG. 11B is a displacement-load curve.
  • the amount of axial displacement was measured when an axial compressive load was applied to each of the test piece 1 and Comparative Example 1. As can be seen from FIG. 11, when the displacement is 6 mm or more, the test piece 1 has about twice the axial strength as that of Comparative Example 1.
  • FIG. 12 is a diagram showing the results of pressure loss measurement.
  • FIG. 12A is a table showing the relationship between the volumetric flow rate and the pressure loss
  • FIG. 12B is a graph showing the relationship.
  • no significant difference was observed in the pressure loss between the test piece 1 and the comparative example 1.
  • the number of intersections is the same in the test body 1 and the comparative example 1, and in the test body 1, the relative positional relationship between the intersections is maintained even after compression. Therefore, the number of holes (mesh) formed by the crossing of the metal wires within the wall thickness of the test body 1 and the comparative example 1 is the same in the test body 1 and the comparative example 1. For this reason, it is probable that there was no significant difference in pressure loss between the test piece 1 and Comparative Example 1.
  • ⁇ Conclusion> As described above, according to the present embodiment, by compressing the hollow tubular precursor 30 in the axial direction, the cylindrical member not compressed in the axial direction and the inner / outer diameter, the weight, and the number of intersections are present. , And a hollow cylinder with improved axial strength can be obtained while having the same or equivalent pressure loss. That is, according to the present embodiment, it is possible to obtain a hollow cylindrical body having the same shape, function, and raw material cost, but with improved axial strength.
  • the metal wire 20 is spirally and multi-layered, and the metal wires constituting the adjacent wire layer L are in fixed contact with each other in the radial direction. It is obtained by deforming a hollow cylindrical member (precursor 30) in which 22 and a non-intersection portion 23 located between two intersections arranged adjacent to each other along the longitudinal direction of a metal wire are formed. ..
  • the non-intersecting portion has entered a wire rod layer different from the intersecting portions located on both sides in the longitudinal direction of the non-intersecting portion, and the wire rod layer to which the non-intersecting portion belongs. It is characterized in that it is deformed so as to come into contact with a metal wire belonging to a wire layer different from that in the axial direction.
  • the metal wires are in fixed contact with each other, so that the deformation of the metal wire at the intersection is limited.
  • the term "fixed” as used herein includes both cases where the metal wires constituting the intersection are separable and non-separable. Separable means, for example, the movement of metal wires is restricted by frictional force, and inseparable means, for example, the case where the intersections are integrated by sintering or the like. Since the intersection is fixed, the non-intersection mainly between the intersections is deformed according to the deformation of the hollow cylindrical member. In the present embodiment, the non-intersection portion belonging to the same wire rod layer as the intersection located on both sides in the longitudinal direction is in axial contact with the metal wire rod belonging to the other wire rod layer. As described above, in the present embodiment, since the metal wires constituting the different wire rod layers are brought into contact with each other in the axial direction, the strength of the hollow tubular body in the axial direction is improved.
  • the hollow cylindrical body 10 is characterized in that the contact state between the metal wires 20 at the intersection 22 is maintained before and after the deformation.
  • the intersection formed in the hollow tubular member maintains a state in which the metal wires are in contact with each other before and after the deformation of the hollow tubular member. That is, the metal wires forming the intersection are restrained from each other so that the position of the intersection with respect to the longitudinal direction of the metal wire does not move before and after the deformation of the hollow tubular member.
  • the crossing angle between the metal wires at the intersection changes according to the deformation of the hollow tubular member as long as the metal wires constituting the different wire layers come into contact with each other in the axial direction.
  • the contact state between the metal wires at the intersection is maintained before and after the deformation of the hollow tubular member, the deformation of the non-intersection portion according to the deformation of the hollow tubular member is promoted. ..
  • the number of axial contact portions 24 in which the metal wire rods 20 constituting the different wire rod layers L are in axial contact with each other increases from the inner diameter side to the outer diameter side. It is characterized by that.
  • the distance between the intersections adjacent to each other in the longitudinal direction of the metal wire is larger on the outer diameter side than on the inner diameter side. Therefore, the non-intersecting portion located on the outer diameter side is more likely to enter another wire layer due to deformation than the non-intersecting portion located on the inner diameter side, and the axial contact portion is more likely to be formed.
  • the axial contact portion 24 in which the metal wires 20 constituting the different wire layers L are in contact with each other in the axial direction is formed by the metal wires having the same winding direction. It is characterized by.
  • a metal wire that extends in the same direction as the spiral space and constitutes a wire layer different from the wire layer to which the spiral space belongs is made to enter into the spiral space S.
  • the metal wires constituting the different wire layers are brought into axial contact with each other to improve the axial strength of the hollow cylindrical body.
  • the metal wire 20 is wound spirally and in a multilayer shape, and the metal wires constituting the adjacent wire layer L are radially contacted with the intersection 22.
  • a step S2) and a compression step (step S3) of axially compressing the hollow cylindrical member in which the metal wires constituting the intersection are in fixed contact with each other are included.
  • the compression step is characterized in that at least a part of the non-intersection portion 23 is deformed so as to be in axial contact with a metal wire material belonging to a wire rod layer different from the intersection portion 22 located on both sides of the non-intersection portion in the longitudinal direction. And.
  • the intersection formed in the hollow tubular member may be fixedly configured by utilizing the frictional force between the metal wires, or may be a compression step. It may be fixedly configured by integrating the metal wires with each other by sintering or the like performed before the above. If the hollow tubular body is manufactured without going through the sintering step (step S4), the manufacturing cost of the hollow tubular body is reduced and the manufacturing time is shortened by omitting the sintering step. Further, it is possible to fabricate a hollow cylindrical body having improved axial strength from a metal that is difficult to sinter. According to this aspect, since the metal wires constituting the different wire rod layers are brought into contact with each other in the axial direction, the strength of the hollow tubular body in the axial direction is improved.
  • the non-intersection portion 23 is a wire rod layer different from the intersection portion 22 located on both sides in the longitudinal direction of the non-intersection portion. It is characterized in that it is deformed so as to enter L.
  • the non-intersection portion is deformed so as to enter a wire rod layer different from the wire rod layer to which the non-intersection portion belongs, and the metal wire rods 20 constituting the different wire rod layers are brought into axial contact with each other. The strength of the tubular body in the axial direction is improved.
  • the tension applied to the metal wire 20 in the wire winding step (step S2) of the method for manufacturing the hollow tubular body 10 according to this embodiment is such that the metal wires meet each other at the intersection 22 before and after the compression step (step S3). It is characterized in that it is set to a size that can maintain a contact state.
  • the intersection formed in the hollow tubular member (precursor 30) in this embodiment is fixedly formed by utilizing the frictional force between the metal wires. Even if the sintering step (step S4) is not included in the manufacturing process of the hollow tubular body, the hollow tubular body having improved strength in the axial direction can be obtained. If the sintering step is omitted, the manufacturing cost of the hollow cylindrical body can be reduced, and the manufacturing time can be shortened. In addition, it is possible to produce a hollow cylindrical body having improved axial strength from a metal that is difficult to sinter.
  • the amount of deformation from the hollow tubular member (precursor 30) is larger in the non-intersection portion 23 than in the intersection portion 22.
  • the hollow cylindrical body has an intersecting portion whose deformation is limited when the hollow tubular member is compressively deformed, and a non-intersecting portion which is largely deformable by the compressive deformation of the hollow tubular member.
  • the non-intersecting portion greatly contributes to the modification of the properties of the hollow cylindrical body due to deformation.
  • the axial contact portion 24 in which the metal wires constituting the different wire rod layers L are in axial contact with each other is formed. By forming the axial contact portion, the axial strength of the hollow cylindrical body is improved.
  • the compression molding mold 300 for molding the hollow tubular member has an enlarged outer diameter and an inner diameter of the hollow tubular member. It is characterized by having a shape capable of performing at least one of the reductions of. That is, the compression molding die has a gap between the hollow cylindrical member and the hollow tubular member that can perform at least one of expansion of the outer diameter and reduction of the inner diameter of the hollow tubular member.
  • the compression molding mold not only controls the amount of change in the inner and outer diameters, but also functions as a means for controlling the deformation mode of the non-intersecting portion 23. According to this aspect, it is possible to obtain a hollow cylindrical member having desired properties by appropriately controlling the deformation mode of the non-intersecting portion.
  • movable roller 200 ... gas generator , 201 ... housing, 203 ... igniter, 205 ... combustion chamber, 207 ... gas generator, 209 ... cup member, 211 ... gas passage hole, 213 ... opening, 215 ... diffuser, 217 ... case, 217a ... bottom surface, 219.
  • gas discharge hole 300 ... compression molding mold, 310 ... cavity, 311 ... compression space, 313 ... outer cylinder, 315 ... columnar body, 317 ... bottom plate, 320 ... stamp, 321 ... insertion part

Abstract

To provide a hollow cylindrical body in which strength thereof is improved in the axial direction. A hollow cylindrical body 10 according to the present embodiment is obtained by deforming a precursor having a hollow cylinder shape, the precursor having: crossing portions 22, in which metallic wires 20 are spirally wound forming multiple layers and the metallic wires constituting adjacent wire layers are fixed to be in contact with each other in a radial direction; and non-crossing portions 23, each of which is located between the two crossing portions spaced next to each other along the longitudinal direction of the metallic wire. At least some of the non-crossing portions in the hollow cylindrical body are placed in the wire layers different from those of the crossing portions disposed on both sides of the longitudinal direction of the non-crossing portions, and the non-crossing portions are deformed to form axial contact portions 24 that are in contact, in the axial direction, with the metallic wires belonging to the wire layers different from the wire layers to which the non-crossing portions belong. The formation of the axial contact portions can improve strength in the axial direction.

Description

中空筒状体、及び中空筒状体の製造方法Hollow cylinder and method for manufacturing hollow cylinder
 本発明は、金属線材を螺旋状且つ多層状に巻き付けることにより形成される中空筒状体に関する。 The present invention relates to a hollow cylindrical body formed by winding a metal wire in a spiral and multi-layered manner.
 金属線材が螺旋状且つ多層状に巻き付けられた中空筒状体は、様々な分野において活用されている。このような中空筒状体の活用事例として、例えば自動車に搭載されるエアバッグ用のインフレータ内に組み込まれるフィルタを挙げることができる。
 自動車に搭載されるエアバッグは、自動車の衝突を検知するセンサと、自動車の衝突時にガス発生剤を燃焼させてガスを発生させるインフレータと、発生したガスにより展開するバッグとを備える。上記インフレータには、ガス発生剤の燃焼により発生した固体残渣を取り除くと共に、ガスを冷却するフィルタが組み込まれる。
 特許文献1に記載のエアバッグインフレーター用フィルタは、断面が真円形状の金属線を圧延して、断面長方形状に加工した金属線材を所定の角度、及び所定のピッチにて螺旋状、且つ多層状に巻き付けて、任意で焼結をすることにより形成される。特許文献1には、このエアバッグインフレーター用フィルタが、爆発的に発生した燃焼ガスの衝撃に耐える剛性を有することが記載されている。
Hollow cylinders in which metal wires are wound in a spiral and multi-layered shape are used in various fields. As an example of utilization of such a hollow cylinder, for example, a filter incorporated in an inflator for an airbag mounted on an automobile can be mentioned.
An airbag mounted on an automobile includes a sensor for detecting an automobile collision, an inflator that burns a gas generating agent to generate gas at the time of an automobile collision, and a bag that is deployed by the generated gas. The inflator incorporates a filter that cools the gas while removing the solid residue generated by the combustion of the gas generating agent.
The filter for an airbag inflator described in Patent Document 1 is made by rolling a metal wire having a perfect circular cross section and processing the metal wire into a rectangular cross section in a spiral shape at a predetermined angle and a predetermined pitch. It is formed by winding in layers and optionally sintering. Patent Document 1 describes that the airbag inflator filter has rigidity to withstand the impact of an explosively generated combustion gas.
特開2001-171472公報Japanese Unexamined Patent Publication No. 2001-171472
 特許文献1に記載のインフレータにおいては、ガス発生剤はフィルタの中空部内に配置されるため、燃焼ガスは主としてフィルタの外径方向に圧力を加える。しかし、ガス発生剤とフィルタとが軸方向に配置された構成のインフレータ(図1参照)においては、フィルタは外径方向よりも軸方向への圧力をより大きく受ける。このように、軸方向に加わる荷重に耐えられる強度を有した中空筒状体が求められている。
 本発明は上述の事情に鑑みてなされたものであり、軸方向の強度を向上させた中空筒状体を提供することを目的とする。
In the inflator described in Patent Document 1, since the gas generating agent is arranged in the hollow portion of the filter, the combustion gas mainly applies pressure in the outer diameter direction of the filter. However, in an inflator (see FIG. 1) in which the gas generating agent and the filter are arranged in the axial direction, the filter receives a larger pressure in the axial direction than in the outer radial direction. As described above, there is a demand for a hollow cylindrical body having a strength capable of withstanding a load applied in the axial direction.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a hollow cylindrical body having improved axial strength.
 上記の課題を解決するために、請求項1に記載の発明は、金属線材が螺旋状、且つ多層状に巻き付けられており、隣接する線材層を構成する前記金属線材同士が径方向に固定的に接触した交差部と、前記金属線材の長手方向に沿って隣接して離間配置された2つの前記交差部間に位置する非交差部とが形成された中空筒状部材を変形させて得られる中空筒状体であって、少なくとも一部の前記非交差部は、該非交差部の長手方向の両隣に位置する前記交差部とは異なる線材層に進入しており、該非交差部が属する線材層とは異なる線材層に属する前記金属線材と軸方向に接触するように変形されていることを特徴とする。 In order to solve the above problems, in the invention according to claim 1, the metal wires are spirally and multilayerly wound, and the metal wires constituting the adjacent wire layers are fixed in the radial direction. It is obtained by deforming a hollow cylindrical member in which an intersection in contact with the metal wire and a non-intersection located between two intersections arranged adjacently and spaced apart along the longitudinal direction of the metal wire are formed. It is a hollow cylindrical body, and at least a part of the non-intersections has entered a wire layer different from the intersections located on both sides in the longitudinal direction of the non-intersections, and the wire layer to which the non-intersections belong. It is characterized in that it is deformed so as to be in axial contact with the metal wire rod belonging to a wire rod layer different from that of the above.
 本発明によれば、軸方向における強度を向上させた中空筒状体を提供することが可能となる。 According to the present invention, it is possible to provide a hollow cylindrical body having improved strength in the axial direction.
本発明の一実施形態に係る中空筒状体が搭載されるインフレータの概略構成例を示す縦断面図である。It is a vertical sectional view which shows the schematic structural example of the inflator on which the hollow cylindrical body which concerns on one Embodiment of this invention is mounted. 本発明の一実施形態に係る中空筒状体をX線CT写真で示す図であり、(a)は正面図であり、(b)は部分拡大図であり、(c)は部分拡大縦断面図である。It is a figure which shows the hollow tubular body which concerns on one Embodiment of this invention by the X-ray CT photograph, (a) is a front view, (b) is a partially enlarged view, (c) is a partially enlarged vertical cross section. It is a figure. 本発明の一実施形態に係る中空筒状体の前駆体を示す模式的斜視図である。It is a schematic perspective view which shows the precursor of the hollow cylindrical body which concerns on one Embodiment of this invention. 前駆体内で金属線材が交差する部分を拡大して示した模式図である。It is a schematic diagram which enlarged and showed the part where the metal wire material intersects in the precursor body. (a)~(c)は、本発明の一実施形態に係る中空筒状体の製造工程を示すフローチャートである。(A) to (c) are flowcharts showing the manufacturing process of the hollow cylindrical body which concerns on one Embodiment of this invention. 前駆体の製造装置の一例を示す模式図である。It is a schematic diagram which shows an example of the precursor manufacturing apparatus. 前駆体の製造装置の他の例を示す模式図である。It is a schematic diagram which shows the other example of the precursor manufacturing apparatus. 圧縮成形型の一例を示す斜視図である。It is a perspective view which shows an example of a compression molding type. (a)、(b)は、図8に示す圧縮成形用型を用いて前駆体を圧縮する様子を示す模式的縦断面図である。(A) and (b) are schematic vertical cross-sectional views showing how the precursor is compressed by using the compression molding mold shown in FIG. 参考例に係る中空筒状部材をX線CT写真で示す図であり、(a)は正面図であり、(b)は部分拡大図であり、(c)は部分拡大縦断面図である。It is a figure which shows the hollow cylindrical member which concerns on a reference example by an X-ray CT photograph, (a) is a front view, (b) is a partially enlarged view, (c) is a partially enlarged vertical sectional view. 軸方向圧縮試験の結果を示す図である。It is a figure which shows the result of the axial compression test. 圧力損失測定の結果を示す図である。It is a figure which shows the result of the pressure loss measurement.
 以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載される構成要素、種類、組み合わせ、形状、その相対配置などは特定的な記載がない限り、この発明の範囲をそれのみに限定する主旨ではなく単なる説明例に過ぎない。 Hereinafter, the present invention will be described in detail using the embodiments shown in the figure. However, unless there is a specific description, the components, types, combinations, shapes, relative arrangements, etc. described in this embodiment are merely explanatory examples, not the purpose of limiting the scope of the present invention to that alone. ..
 本発明の一実施形態に係る中空筒状体は、様々な分野において使用される。例えば、中空筒状体は、各種の流体から異物を除去するフィルタとして使用される。或いは、中空筒状体は、消音材として、又は熱交換部材として、使用される。なお、上記中空筒状体の使用事例は一例である。中空筒状体は、上記以外の分野において、上記事例とは異なる目的で使用される場合もある。 The hollow cylindrical body according to the embodiment of the present invention is used in various fields. For example, a hollow cylinder is used as a filter to remove foreign matter from various fluids. Alternatively, the hollow cylinder is used as a sound deadening material or as a heat exchange member. The use case of the hollow cylindrical body is an example. The hollow cylindrical body may be used for a purpose different from the above cases in fields other than the above.
 以下の説明において、層番号を示す補助符号n、mは正の整数である。
〔シリンダ型インフレータの概略構成〕
 本発明の一実施形態に係る中空筒状体は、例えば、自動車用エアバッグ装置のインフレータを構成するフィルタとして使用される。
 図1は、本発明の一実施形態に係る中空筒状体がフィルタとして搭載されるインフレータの概略構成例を示す縦断面図である。
In the following description, the auxiliary codes n and m indicating the layer numbers are positive integers.
[Outline configuration of cylinder type inflator]
The hollow cylindrical body according to the embodiment of the present invention is used, for example, as a filter constituting an inflator of an automobile airbag device.
FIG. 1 is a vertical sectional view showing a schematic configuration example of an inflator in which a hollow cylindrical body according to an embodiment of the present invention is mounted as a filter.
 インフレータ200は、円筒状のハウジング201と、ハウジング201の軸方向の一端部に取り付けられた点火器203と、ハウジング201の軸方向の他端側に取り付けられたディフューザ215とを備える。
 ハウジング201の中空部内には燃焼室205が形成されており、燃焼室205にはガス発生剤207が充填されている。ハウジング201の軸方向他端寄りの燃焼室205内には、軸方向一端面が閉塞した有底筒状のカップ部材209が配置されている。カップ部材209の周方向側面には、ガス発生剤207が発生させた燃焼ガスを通過させるガス通過孔211が多数貫通形成されている。なお、ガス通過孔211はガス発生剤207の通過を禁止する大きさに設定されている。カップ部材209の軸方向の他端面には、ディフューザ215の中空内部と連通する開口部213が形成されている。
 ディフューザ215は、軸方向一端面が開口し、他端面(底面217a)が閉塞したケース217と、ケース217内に収容された中空筒状体10と、を備える。ケース217の周方向側面には、燃焼ガスを外部に放出すガス放出孔219が形成されている。中空筒状体10は、ガス発生剤207の燃焼により発生した高熱の燃焼ガスを冷却する手段として機能すると共に、燃焼ガスの発生に伴って生じる燃焼残渣を捕捉するフィルタ手段として機能する。
The inflator 200 includes a cylindrical housing 201, an igniter 203 attached to one end of the housing 201 in the axial direction, and a diffuser 215 attached to the other end of the housing 201 in the axial direction.
A combustion chamber 205 is formed in the hollow portion of the housing 201, and the combustion chamber 205 is filled with the gas generating agent 207. In the combustion chamber 205 near the other end in the axial direction of the housing 201, a bottomed cylindrical cup member 209 having one end surface in the axial direction closed is arranged. A large number of gas passage holes 211 through which the combustion gas generated by the gas generator 207 passes are formed on the circumferential side surface of the cup member 209. The gas passage hole 211 is set to a size that prohibits the passage of the gas generating agent 207. An opening 213 that communicates with the hollow inside of the diffuser 215 is formed on the other end surface of the cup member 209 in the axial direction.
The diffuser 215 includes a case 217 in which one end surface in the axial direction is open and the other end surface (bottom surface 217a) is closed, and a hollow cylindrical body 10 housed in the case 217. A gas discharge hole 219 that discharges combustion gas to the outside is formed on the circumferential side surface of the case 217. The hollow tubular body 10 functions as a means for cooling the high-heat combustion gas generated by the combustion of the gas generating agent 207, and also functions as a filter means for capturing the combustion residue generated by the generation of the combustion gas.
 インフレータ200の動作概要は以下の通りである。
 点火器203が作動して、燃焼室205内のガス発生剤207に着火する。ガス発生剤207が燃焼して燃焼ガスが発生する。燃焼ガスは、カップ部材209のガス通過孔211及び開口部213を介してディフューザ215側に進入する(図中矢印A1、A2方向)。開口部213から中空筒状体10の中空部11内に進入した燃焼ガスは、ケース217の底面217aに衝突した後、中空筒状体10内部を外径方向に移動してガス放出孔219から外部に排出される(図中矢印A3方向)。外部に排出された燃焼ガスは最終的にバッグを膨張させる。
 中空筒状体10の軸方向両端、及び外周面は、ケース217によって密着して支持されており、軸方向への移動が禁止されている。しかし、ガス発生剤207の燃焼により、中空筒状体10は軸方向と外径方向に多大な圧力を受けるため、中空筒状体10はこの圧力に耐えうる強度を有している必要がある。図1に示すシリンダ型のインフレータ200において、燃焼ガスはハウジング201からディフューザ215に向かって移動する過程で中空筒状体10の軸方向に向けて特に強大な圧力を加える。シリンダ型のインフレータにフィルタとして搭載される中空筒状体10では、特に軸方向の強度を高める必要がある。
The operation outline of the inflator 200 is as follows.
The igniter 203 is activated to ignite the gas generating agent 207 in the combustion chamber 205. The gas generator 207 burns to generate combustion gas. The combustion gas enters the diffuser 215 side through the gas passage hole 211 and the opening 213 of the cup member 209 (in the directions of arrows A1 and A2 in the figure). The combustion gas that has entered the hollow portion 11 of the hollow tubular body 10 from the opening 213 collides with the bottom surface 217a of the case 217, and then moves inside the hollow tubular body 10 in the outer radial direction from the gas discharge hole 219. It is discharged to the outside (in the direction of arrow A3 in the figure). The combustion gas discharged to the outside finally inflates the bag.
Both ends in the axial direction and the outer peripheral surface of the hollow tubular body 10 are closely supported by the case 217, and movement in the axial direction is prohibited. However, since the hollow tubular body 10 receives a large amount of pressure in the axial direction and the outer diameter direction due to the combustion of the gas generating agent 207, the hollow tubular body 10 needs to have a strength capable of withstanding this pressure. .. In the cylinder type inflator 200 shown in FIG. 1, the combustion gas applies a particularly strong pressure in the axial direction of the hollow cylindrical body 10 in the process of moving from the housing 201 toward the diffuser 215. In the hollow cylindrical body 10 mounted as a filter on the cylinder type inflator, it is particularly necessary to increase the strength in the axial direction.
〔中空筒状体の概略構成〕
 図2は、本発明の一実施形態に係る中空筒状体をX線CT写真で示す図であり、(a)は正面図であり、(b)は部分拡大図であり、(c)は(b)のB-B断面図である。なお、図中、丸で囲まれた部分は、各図で対応する箇所である。また、本図は、線径φ0.6mmの金属素線(丸線)を30%圧延して厚さ0.42mmとした金属線材20を用いた例である。また、軸方向長が50mmの前駆体を軸方向に圧縮して軸方向長が25mmの中空筒状体10としたものである。
 本発明の一実施形態に係る中空筒状体10は、金属線材20が螺旋状、且つ多層状に巻き付けられており、隣接する線材層を構成する金属線材20、20同士が径方向に固定的に接触した交差部22と、各層を構成する金属線材20の長手方向に沿って隣接して離間配置された2つの交差部22、22間に位置する非交差部23とが形成された前駆体30(図3、図4参照)を軸方向に圧縮変形させることにより得られる。中空筒状体10において、少なくとも一部の非交差部23(金属線材20n-2m)は、該非交差部23の長手方向の両隣に位置する交差部22、22とは径方向位置が異なる線材層に進入(没入)しており、該非交差部23が属する線材層(線材層Ln-2m)とは異なる線材層(線材層Ln)に属する金属線材20nと軸方向に接触するように変形されていることを特徴とする。なお、符号20や符号Lに付した補助符号n、n-2mは、線材層Lの番号又は位置を示す。金属線材20nは、この金属線材20が線材層Lnに属することを示す。
[Rough configuration of hollow cylinder]
2A and 2B are views showing a hollow tubular body according to an embodiment of the present invention by an X-ray CT photograph, FIG. 2A is a front view, FIG. 2B is a partially enlarged view, and FIG. 2C is a partially enlarged view. It is a BB sectional view of (b). In the figure, the part circled is the corresponding part in each figure. Further, this figure is an example of using a metal wire 20 having a thickness of 0.42 mm by rolling a metal wire (round wire) having a wire diameter of φ0.6 mm by 30%. Further, a precursor having an axial length of 50 mm is compressed in the axial direction to form a hollow cylindrical body 10 having an axial length of 25 mm.
In the hollow cylindrical body 10 according to the embodiment of the present invention, the metal wire rod 20 is wound spirally and in a multilayer shape, and the metal wire rods 20 and 20 constituting the adjacent wire rod layers are fixed in the radial direction. A precursor in which an intersecting portion 22 in contact with the above and a non-intersecting portion 23 located between the two intersecting portions 22 and 22 arranged adjacent to each other along the longitudinal direction of the metal wire 20 constituting each layer are formed. It is obtained by compressing and deforming 30 (see FIGS. 3 and 4) in the axial direction. In the hollow tubular body 10, at least a part of the non-intersection portion 23 (metal wire rod 20n-2m) has a wire rod layer whose radial position is different from that of the intersection portions 22 and 22 located on both sides of the non-intersection portion 23 in the longitudinal direction. The metal wire 20n belonging to a wire layer (wire layer Ln) different from the wire layer (wire layer Ln-2m) to which the non-intersection portion 23 belongs is deformed so as to be in axial contact with the metal wire 20n. It is characterized by being. The auxiliary codes n and n-2m attached to the reference numerals 20 and the reference numerals L indicate the numbers or positions of the wire rod layer L. The metal wire 20n indicates that the metal wire 20 belongs to the wire layer Ln.
 この中空筒状体10は多孔性であり、液体や気体等の各種の流体中から特定の大きさを超える不要な物質等を除去するフィルタとして使用できる。中空筒状体10は、各種の流体が中空筒状体10に形成された各孔を通過する過程で、通過する流体を冷却する冷却手段として使用できる。また、この中空筒状体10は、消音材、熱交換部材等として使用できる。
 中空筒状体10は、線材層が重なり合う方向に、即ち、中空筒状体の径方向に流体が通過する流路を形成する。流体は、中空筒状体の内径側から外径側に通過させても、外径側から内径側に通過させてもよい。ここで径方向とは厳密な意味の直径方向(半径方向)ではなく、軸方向、周方向に対して、概ね径方向という意味である。
 中空筒状体10の大きさ(軸方向寸法、直径、厚さ等)は、中空筒状体10が搭載される装置の構造や大きさ等に応じて適宜決定される。
The hollow cylindrical body 10 is porous and can be used as a filter for removing unnecessary substances exceeding a specific size from various fluids such as liquids and gases. The hollow cylindrical body 10 can be used as a cooling means for cooling the passing fluid in the process of passing various fluids through the holes formed in the hollow tubular body 10. Further, the hollow cylindrical body 10 can be used as a sound deadening material, a heat exchange member, or the like.
The hollow cylindrical body 10 forms a flow path through which the fluid passes in the direction in which the wire rod layers overlap, that is, in the radial direction of the hollow tubular body. The fluid may be passed from the inner diameter side to the outer diameter side of the hollow cylinder, or may be passed from the outer diameter side to the inner diameter side. Here, the radial direction does not mean the diametrical direction (radial direction) in the strict sense, but generally means the radial direction with respect to the axial direction and the circumferential direction.
The size (axial dimension, diameter, thickness, etc.) of the hollow tubular body 10 is appropriately determined according to the structure, size, and the like of the device on which the hollow tubular body 10 is mounted.
 以下では、先に中空筒状体10の製造方法及び装置について説明し、中空筒状体の各種の特徴については後述する。
〔前駆体の外観構成〕
 図3は、本発明の一実施形態に係る中空筒状体の前駆体を示す模式的斜視図である。
 本発明の一実施形態に係る中空筒状体10に加工される前駆体(中空筒状部材)30は、少なくとも一本の金属線材20を、軸方向(図中上下方向)に対して一定の傾斜角度θを有して螺旋状に、且つ多層状に巻き付けることにより形成される。ここで同じ方向に巻き付けられている個々の層(径方向位置が異なる層)を線材層L1、L2・・・と称する。各線材層L1、L2・・・を構成する金属線材は、正面視で前駆体30の軸方向に対して傾斜した同一方向へ延びており、また隣接する各線材層を構成する金属線材は互いに交差する方向に延びている(平行していない)。
Hereinafter, the method and apparatus for manufacturing the hollow cylindrical body 10 will be described first, and various features of the hollow tubular body will be described later.
[Appearance composition of precursor]
FIG. 3 is a schematic perspective view showing a precursor of a hollow cylindrical body according to an embodiment of the present invention.
The precursor (hollow tubular member) 30 processed into the hollow tubular body 10 according to the embodiment of the present invention has at least one metal wire 20 constant in the axial direction (vertical direction in the figure). It is formed by winding in a spiral and multi-layered manner with an inclination angle θ. Here, the individual layers (layers having different radial positions) wound in the same direction are referred to as wire rod layers L1, L2, and so on. The metal wires constituting the respective wire layers L1, L2 ... Extend in the same direction inclined with respect to the axial direction of the precursor 30 in the front view, and the metal wires constituting the adjacent wire layers are mutually. It extends in the direction of intersection (not parallel).
 図3中における最外層の線材層Lnを構成する金属線材20n(厚みを図示省略)の延びる方向は実線矢印で示した方向であり、その直ぐ内側の線材層Ln-1を構成する金属線材20n-1の延びる方向は破線矢印で示した方向である。また、線材層Ln-1の直ぐ内側の線材層Ln-2を構成する金属線材20n-2の伸びる方向は、金属線材20nと同じく実線矢印で示した方向である。
 前駆体30は、金属線材20を軸方向に対して一定の傾斜角度にて螺旋状に巻付けることにより形成した一つの線材層(例えば、線材層L1)と、一つの線材層L1の外周側に重ねて、且つ該一つの線材層L1を構成する金属線材とは異なる傾斜角度にて螺旋状に金属線材を巻付けることにより形成される他の線材層(例えば、線材層L2)と、を有する。一つの線材層L1とこれと隣接する他の線材層L2を夫々構成する金属線材同士は軸方向とは非平行であり、且つ互いに交差するように構成されている。
 なお、一つの線材層を構成する金属線材の軸方向に対する傾斜角度が一つの線材層中で変化するように構成してもよい。
The extending direction of the metal wire 20n (thickness not shown) constituting the outermost wire layer Ln in FIG. 3 is the direction indicated by the solid arrow, and the metal wire 20n forming the wire layer Ln-1 immediately inside the metal wire 20n. The extending direction of -1 is the direction indicated by the broken line arrow. Further, the extending direction of the metal wire 20n-2 constituting the wire layer Ln-2 immediately inside the wire layer Ln-1 is the direction indicated by the solid arrow like the metal wire 20n.
The precursor 30 has one wire layer (for example, wire layer L1) formed by spirally winding the metal wire 20 at a constant inclination angle with respect to the axial direction, and the outer peripheral side of one wire layer L1. Another wire material layer (for example, wire material layer L2) formed by spirally winding the metal wire material at an inclination angle different from that of the metal wire material constituting the one wire material layer L1. Have. The metal wires constituting one wire layer L1 and the other wire layers L2 adjacent thereto are not parallel to each other in the axial direction and are configured to intersect each other.
It should be noted that the metal wire rod constituting one wire rod layer may be configured so that the inclination angle with respect to the axial direction changes in one wire rod layer.
 前駆体30の材料となる金属の種類としては、鉄、軟鋼、ステンレス鋼、ニッケル合金、銅合金などを挙げることができ、中でもオーステナイト系ステンレス鋼(SUS304)が好適である。上記金属を使用する場合は、中空筒状体10の製造工程中に焼結工程を含んでもよい。
 中空筒状体10の製造工程に焼結工程を含まない場合は、上記金属材料に加えて、焼結が困難な金属材料を前駆体30の材料として使用できる。例えば、前駆体30の材料としてチタン、アルミニウム、マグネシウム等も使用することができる。
Examples of the type of metal used as the material of the precursor 30 include iron, mild steel, stainless steel, nickel alloy, and copper alloy, and austenitic stainless steel (SUS304) is particularly preferable. When the above metal is used, a sintering step may be included in the manufacturing process of the hollow cylindrical body 10.
When the manufacturing process of the hollow tubular body 10 does not include the sintering process, a metal material that is difficult to sinter can be used as the material of the precursor 30 in addition to the above metal material. For example, titanium, aluminum, magnesium and the like can also be used as the material of the precursor 30.
 また、前駆体30に使用される金属線材の太さ及び断面形状は、最終製品である中空筒状体10の大きさ、中空筒状体がそのフィルタ機能により除去する物質、圧力損失等に応じて適宜決定される。
 前駆体30には、例えば横断面が概略真円形状の金属素線を圧延して所定の横断面形状に加工した金属線材が使用される。例えば、金属線材には、所定の圧延率となるように金属素線を径方向に潰した平圧延線を用いてもよいし、横断面が異形となるように金属素線を圧延(以下「異形圧延」と称する)した異形線を用いてもよい。
 なお、異形とは一般に、「普通とは違う怪しい形・姿をしていること」と定義されるが、ここで異形とは、断面形状が全長に亘って円形、楕円形、多角形等の規則的な形状を有している金属線材に対して、金属線材の断面形状が長手方向全長に亘って不規則な形状、例えばW字状、U字状、J字状、L字状、X字状、~状等々を有したものを広く含むものである。また、金属線材の断面形状、外形が、金属線材の長手方向全長に亘って一定でなく、長手方向の位置によって異なる断面形状、外形を有している構成も異形に含むものである。
The thickness and cross-sectional shape of the metal wire used for the precursor 30 depend on the size of the final product, the hollow cylindrical body 10, the substance removed by the hollow tubular body by its filter function, the pressure loss, and the like. Will be decided as appropriate.
As the precursor 30, for example, a metal wire rod obtained by rolling a metal wire having a substantially perfect circular cross section and processing it into a predetermined cross section shape is used. For example, as the metal wire, a flat rolled wire obtained by crushing the metal wire in the radial direction so as to have a predetermined rolling ratio may be used, or the metal wire may be rolled so that the cross section has an irregular shape (hereinafter, "" A deformed wire (referred to as "deformed rolling") may be used.
In addition, the irregular shape is generally defined as "having a suspicious shape / appearance different from the usual one", but here, the irregular shape means that the cross-sectional shape is circular, elliptical, polygonal, etc. over the entire length. The cross-sectional shape of the metal wire is irregular over the entire length in the longitudinal direction with respect to the metal wire having a regular shape, for example, W-shaped, U-shaped, J-shaped, L-shaped, X. It broadly includes those having a character shape, a shape, and the like. Further, the cross-sectional shape and outer shape of the metal wire rod are not constant over the entire length in the longitudinal direction of the metal wire rod, and the configuration having different cross-sectional shapes and outer shapes depending on the position in the longitudinal direction is also included in the irregular shape.
 図4は、前駆体内で金属線材が交差する部分を拡大して示した模式図である。なお、本図には、金属線材が平圧延線の場合を示している。
 前駆体30において、隣接する線材層LnとLn-1、Ln-1とLn-2、・・・を夫々構成する金属線材20nと20n-1、20n-1と20n-2、20n-2と・・・が互いに交差する方向に延びることにより、隣接する線材層Lを構成する金属線材20同士が重なった交差部22(オーバーラップ部)が前駆体30内に複数個形成される。交差部22においては、重なった金属線材20同士が接触している。
 以下では、金属線材20の長手方向に隣接する交差部22と交差部22との間にある金属線材部分を非交差部23(非オーバーラップ部)と呼ぶ。即ち、交差部22と非交差部23は金属線材20の長手方向に沿って交互に現れる。非交差部23は隣接する他の線材層を構成する金属線材20とは接触しておらず、前駆体30が軸方向に圧縮変形されたときに、捩れ変形、各種方向への湾曲変形が可能である。
 前駆体30において、線材層Lnを構成する金属線材20n上に形成された交差部22と非交差部23は、線材層Lnに属する。
FIG. 4 is an enlarged schematic view showing a portion where the metal wires intersect in the precursor body. In this figure, the case where the metal wire is a flat rolled wire is shown.
In the precursor 30, the metal wires 20n and 20n-1, 20n-1 and 20n-2, 20n-2, which respectively constitute the adjacent wire layers Ln and Ln-1, Ln-1 and Ln-2, ... By extending in the direction in which ... At the intersection 22, the overlapping metal wires 20 are in contact with each other.
Hereinafter, the metal wire portion between the intersection 22 adjacent to the metal wire 20 in the longitudinal direction and the intersection 22 is referred to as a non-intersection portion 23 (non-overlap portion). That is, the intersecting portion 22 and the non-intersecting portion 23 appear alternately along the longitudinal direction of the metal wire rod 20. The non-intersecting portion 23 is not in contact with the metal wire 20 constituting another adjacent wire layer, and when the precursor 30 is compressively deformed in the axial direction, it can be twisted and deformed in various directions. Is.
In the precursor 30, the intersecting portion 22 and the non-intersecting portion 23 formed on the metal wire rod 20n constituting the wire rod layer Ln belong to the wire rod layer Ln.
 前駆体30において、一の線材層Lを構成する金属線材20は軸方向に離間して配置されている。これにより、各線材層L内には、金属線材20に沿って伸びる螺旋状の螺旋空間S(Sn、Sn-1、Sn-2・・・)が形成される。螺旋空間Sは、軸方向に隣接する金属線材20の間に形成される。
 螺旋空間Snの長手方向に沿って螺旋空間Snと同方向に延びる金属線材20n-2、20n-4…の少なくとも1つは、螺旋空間Snと径方向に重なっている。螺旋空間Snと径方向に重なる金属線材20n-2、20n-4…の少なくとも一部が、金属線材20nに対して満たす条件について、金属線材20n-2の例により説明すれば、以下の通りである。
 即ち、金属線材20n-2と金属線材20nとの短手方向における離隔tは、金属線材20n-2の非交差部23が変形して螺旋空間Sn内に進入したときに、該非交差部23が金属線材20nに対して軸方向強度を向上可能な所定の押圧力で軸方向に接触するように設定されている。なお、上記離隔tは、金属線材20n-2を線材層Lnの法線方向(前駆体30の径方向)から線材層Lnに投影した場合に、投影された金属線材20n-2と金属線材20nとの短手方向における離隔として示される。
In the precursor 30, the metal wire rods 20 constituting one wire rod layer L are arranged apart in the axial direction. As a result, a spiral spiral space S (Sn, Sn-1, Sn-2 ...) Extending along the metal wire 20 is formed in each wire layer L. The spiral space S is formed between the metal wires 20 adjacent to each other in the axial direction.
At least one of the metal wires 20n-2, 20n-4 ... Extending in the same direction as the spiral space Sn along the longitudinal direction of the spiral space Sn overlaps the spiral space Sn in the radial direction. The conditions that at least a part of the metal wires 20n-2, 20n-4, etc. overlapping in the spiral space Sn in the radial direction satisfy the metal wire 20n will be described by the example of the metal wire 20n-2 as follows. be.
That is, the separation t between the metal wire 20n-2 and the metal wire 20n in the lateral direction is such that when the non-intersection portion 23 of the metal wire 20n-2 is deformed and enters the spiral space Sn, the non-intersection portion 23 It is set so as to come into contact with the metal wire 20n in the axial direction with a predetermined pressing force capable of improving the axial strength. The separation t is the projected metal wire 20n-2 and the metal wire 20n when the metal wire 20n-2 is projected onto the wire layer Ln from the normal direction of the wire layer Ln (the radial direction of the precursor 30). Shown as a distance from and in the short direction.
〔中空筒状体の製造方法〕
 図5(a)~(c)は、本発明の一実施形態に係る中空筒状体の製造工程を示すフローチャートである。
 本発明の一実施形態に係る中空筒状体10の製造工程は、金属素線を圧延して金属線材を形成する圧延工程(ステップS1)と、金属線材を螺旋状且つ多層状に巻き付けて中空筒状の前駆体30を形成する線材巻付工程(ステップS2)と、前駆体30を軸方向に圧縮して中空筒状体10を形成する圧縮工程(ステップS3)と、を含む。圧縮工程を経て中空筒状体10は完成する。圧縮工程では、交差部22を構成する金属線材20、20同士が固定的に接触した前駆体30(図3参照)を軸方向に圧縮する。
 なお、中空筒状体10の製造工程には、互いに接触した金属線材20、20同士を拡散接合させる焼結工程(ステップS4)を任意で含んでもよい。焼結工程は、図5(b)に示すように、圧縮工程の前に実施されてもよい。この場合、交差部22が接合された前駆体30が得られる。或いは、焼結工程は、図5(c)に示すように、圧縮工程の後に実施されてもよい。図5(b)の圧縮工程の後、更に焼結工程が実施されてもよい。
[Manufacturing method of hollow cylinder]
5 (a) to 5 (c) are flowcharts showing a manufacturing process of a hollow cylindrical body according to an embodiment of the present invention.
The manufacturing process of the hollow cylindrical body 10 according to the embodiment of the present invention includes a rolling step (step S1) of rolling a metal wire to form a metal wire, and a hollow by winding the metal wire in a spiral and multilayer shape. It includes a wire rod winding step (step S2) for forming a tubular precursor 30 and a compression step (step S3) for axially compressing the precursor 30 to form a hollow tubular body 10. The hollow cylindrical body 10 is completed through the compression step. In the compression step, the precursor 30 (see FIG. 3) in which the metal wires 20 and 20 constituting the intersection 22 are in fixed contact with each other is compressed in the axial direction.
The manufacturing process of the hollow tubular body 10 may optionally include a sintering step (step S4) in which the metal wires 20 and 20 in contact with each other are diffusion-bonded to each other. The sintering step may be performed before the compression step, as shown in FIG. 5 (b). In this case, the precursor 30 to which the intersection 22 is joined is obtained. Alternatively, the sintering step may be performed after the compression step, as shown in FIG. 5 (c). After the compression step of FIG. 5B, a sintering step may be further performed.
<圧延・線材巻付工程~製造装置1>
 圧延工程(ステップS1)及び線材巻付工程(ステップS2)について、これらの工程にて使用される前駆体30の製造装置と共に説明する。
 図6は、前駆体の製造装置の一例を示す模式図である。この装置は金属素線21から中空筒状の前駆体30を作製するものである。
 製造装置100Aは、不図示のボビンから供給される金属素線21を圧延する圧延装置110と、圧延により断面形状が変形した後の金属素線(以下「金属線材20」という)に対して長手方向へ所定の張力を与えるテンションユニット120と、金属線材20を心棒131に巻付けて前駆体を形成する巻付装置130と、を概略備える。また、金属線材20の搬送経路上には、金属線材をガイドしつつ搬送する複数の搬送ローラ140が配置されている。
 圧延装置110は、ステップS1の圧延工程を実施する装置である。巻付装置130は、ステップS2の線材巻付工程を実施する装置である。
<Rolling / wire winding process-Manufacturing equipment 1>
The rolling step (step S1) and the wire rod winding step (step S2) will be described together with the precursor 30 manufacturing apparatus used in these steps.
FIG. 6 is a schematic diagram showing an example of a precursor manufacturing apparatus. This device manufactures a hollow cylindrical precursor 30 from a metal wire 21.
The manufacturing apparatus 100A is longitudinal with respect to a rolling apparatus 110 that rolls a metal wire 21 supplied from a bobbin (not shown) and a metal wire (hereinafter referred to as “metal wire 20”) whose cross-sectional shape is deformed by rolling. A tension unit 120 that applies a predetermined tension in a direction and a winding device 130 that winds a metal wire rod 20 around a mandrel 131 to form a precursor are substantially provided. Further, on the transport path of the metal wire rod 20, a plurality of transport rollers 140 for transporting while guiding the metal wire rod are arranged.
The rolling apparatus 110 is an apparatus for carrying out the rolling step of step S1. The winding device 130 is an device that carries out the wire rod winding step of step S2.
 圧延装置110は対向配置されて回転する2つの円柱状の圧延ローラ111a、111bを備える。圧延ローラ111aと圧延ローラ111bの表面(対向面)同士が接触する部分は、金属素線21を間に挟んで所望の形状に変形させる加圧部112を構成している。圧延装置110は所定の温度及び圧力下で金属素線21を加圧部112にて塑性変形させることにより、所定の断面形状を有する金属線材20を得る。圧延は冷間圧延でも熱間圧延でもよい。なお、ボビンから供給される金属素線21の横断面形状は、通常は円形状である。
 圧延ローラ111a、111bは、横断面形状が円形の金属素線21(丸線)を、横断面が概略長円形状又は概略矩形状の金属線材20であるいわゆる「平圧延線」に加工する手段でもよい。或いは、圧延ローラ111a、111bの何れか一方、又は双方の表面には、金属素線を所望の断面形状に圧延加工するための凸部、又は/及び、凹部が形成されていてもよい。この場合、金属素線は、加圧部112を通過する際にこれらの凸部や凹部により圧延されて塑性変形して異形の断面形状を備えた金属線材に加工される。
The rolling apparatus 110 includes two columnar rolling rollers 111a and 111b that are arranged so as to face each other and rotate. The portion where the surfaces (opposing surfaces) of the rolling roller 111a and the rolling roller 111b come into contact with each other constitutes a pressurizing portion 112 that sandwiches the metal wire 21 and deforms it into a desired shape. The rolling apparatus 110 plastically deforms the metal wire 21 at the pressurizing section 112 under a predetermined temperature and pressure to obtain a metal wire 20 having a predetermined cross-sectional shape. The rolling may be cold rolling or hot rolling. The cross-sectional shape of the metal wire 21 supplied from the bobbin is usually circular.
The rolling rollers 111a and 111b are means for processing a metal wire 21 (round wire) having a circular cross-sectional shape into a so-called "flat rolled wire" having a metal wire rod 20 having a substantially elliptical cross section or a substantially rectangular cross section. But it may be. Alternatively, convex portions and / or concave portions for rolling the metal wire into a desired cross-sectional shape may be formed on the surface of either one or both of the rolling rollers 111a and 111b. In this case, when the metal wire passes through the pressure portion 112, it is rolled by these convex portions and concave portions and plastically deformed to be processed into a metal wire having an irregular cross-sectional shape.
 テンションユニット120は、所定位置に回転自在な状態で固定配置された固定ローラ121と、固定ローラ121に対して接近又は離間移動し、且つ回転自在な可動ローラ122とを有する。固定ローラ121に対して可動ローラ122を接近また離間移動させることにより、固定ローラ121及び可動ローラ122に巻き掛けられて搬送される金属線材20に対して所定の張力を与える。
 巻付装置130は、一定方向に所定速度にて回転する心棒131と、心棒131の軸方向(図中紙面と直交する方向)に所定速度にて往復移動して金属線材20をガイドするガイド部材132と、を備える。心棒131は概略円柱状又は円筒状であり、一般的にステンレス鋼、銅合金、アルミニウム合金などの金属から形成される。
The tension unit 120 has a fixed roller 121 fixedly arranged at a predetermined position in a rotatable state, and a movable roller 122 that moves closer to or away from the fixed roller 121 and is rotatable. By moving the movable roller 122 closer to or further away from the fixed roller 121, a predetermined tension is applied to the metal wire 20 wound around the fixed roller 121 and the movable roller 122 and conveyed.
The winding device 130 is a guide member that guides the metal wire rod 20 by reciprocating at a predetermined speed in the axial direction of the mandrel 131 (direction orthogonal to the paper surface in the drawing) and the mandrel 131 that rotates in a fixed direction at a predetermined speed. 132 and. The mandrel 131 is generally columnar or cylindrical and is generally made of a metal such as stainless steel, copper alloy or aluminum alloy.
 前駆体30を作製するには、心棒131の適所に金属線材20の一端を係止し、金属線材20に対してテンションユニット120にて所定の張力を与えた状態にて、心棒131をその軸線を中心として一定方向に一定速度で回転させると共に、ガイド部材132によって金属線材20を心棒131の軸方向に往復移動させる。この動作により、金属線材20は心棒131の外周に螺旋状、且つ多層状に巻付けられる。また、隣接する線材層を構成する金属線材同士が互いに交差して網目を形成する。
 例えば、心棒131の外周に直接巻き付けられる第1の線材層では、各金属線材が図3において心棒の軸方向に対して所定角度θだけ傾斜した状態で時計回り方向へ巻き付けられているとすると、第1の線材層の外周に巻き付けられる第2の線材層を構成する金属線材は、心棒の軸方向に対して所定角度θだけ傾斜した状態で反時計回り方向に巻き付けられる。第2の線材層の外周に巻き付けられる第3の線材層を構成する金属線材は、心棒の軸方向に対して所定角度θだけ傾斜した状態で時計回り方向へ巻き付けられる。以下、順次繰り返される。
In order to produce the precursor 30, one end of the metal wire 20 is locked at an appropriate position on the mandrel 131, and the mandrel 131 is attached to the axis of the mandrel 131 in a state where a predetermined tension is applied to the metal wire 20 by the tension unit 120. The metal wire rod 20 is reciprocated in the axial direction of the mandrel 131 by the guide member 132 while rotating at a constant speed in a constant direction around the center. By this operation, the metal wire 20 is spirally and multi-layered around the outer circumference of the mandrel 131. Further, the metal wires constituting the adjacent wire rod layers intersect with each other to form a mesh.
For example, in the first wire rod layer directly wound around the outer circumference of the mandrel 131, it is assumed that each metal wire rod is wound in the clockwise direction in a state of being inclined by a predetermined angle θ with respect to the axial direction of the mandrel in FIG. The metal wire constituting the second wire layer to be wound around the outer periphery of the first wire layer is wound in the counterclockwise direction in a state of being inclined by a predetermined angle θ with respect to the axial direction of the mandrel. The metal wire constituting the third wire layer to be wound around the outer periphery of the second wire layer is wound in the clockwise direction in a state of being inclined by a predetermined angle θ with respect to the axial direction of the mandrel. Hereafter, it is repeated sequentially.
 金属線材20を所定回数(所定の層数)巻付けた後、心棒131の回転を停止させる。その後、金属線材20を切断し、切断された端部をスポット溶接等により巻付けを完了した金属線材の適所に接合して心棒131から取り外すことにより、中空筒状の前駆体30を得る。
 心棒131の軸方向に対する金属線材20の角度(巻付け角度)、及び軸方向に隣接する金属線材20同士の間隔(ピッチ)は、心棒131の回転速度とガイド部材132の移動速度との比率を適宜調節することにより変更することができる。金属素線21の直径とその圧延形状、金属線材20の巻付け角度、ピッチ、巻付け回数を適宜変更することにより、中空筒状体10を通過する流体の圧力損失を適切な値に制御することができる。
After winding the metal wire 20 a predetermined number of times (a predetermined number of layers), the rotation of the mandrel 131 is stopped. Then, the metal wire 20 is cut, and the cut end portion is joined to an appropriate position of the metal wire that has been wound by spot welding or the like and removed from the mandrel 131 to obtain a hollow tubular precursor 30.
The angle (winding angle) of the metal wire 20 with respect to the axial direction of the mandrel 131 and the distance (pitch) between the metal wires 20 adjacent to each other in the axial direction are the ratio of the rotation speed of the mandrel 131 to the moving speed of the guide member 132. It can be changed by adjusting it as appropriate. By appropriately changing the diameter of the metal wire 21 and its rolling shape, the winding angle of the metal wire 20, the pitch, and the number of windings, the pressure loss of the fluid passing through the hollow cylindrical body 10 is controlled to an appropriate value. be able to.
<圧延・線材巻付工程~製造装置2>
 図7は、前駆体の製造装置100Bの他の構成例を示す模式図である。製造装置100Bは、金属素線21の搬送経路上に複数の圧延装置110(110A、110B)を備え、金属素線21に対して複数回の圧延を実施することができる。
 製造装置100B内に複数の圧延装置を配置する場合、圧延装置110A、110B間に、任意でバッファユニット150を挿入してもよい。バッファユニット150は、所定位置に回転自在な状態で軸心を位置固定された固定ローラ151と、固定ローラ151に対して接近又は離間移動する回転自在な可動ローラ152とを有する。固定ローラ151と可動ローラ152には、前段の圧延装置110Aにより圧延された後の金属素線が巻き掛けられる。固定ローラ151に対して可動ローラ152を接近また離間移動させることにより、バッファユニット150は圧延装置110Aと巻付装置130との間の同期を取り、或いは圧延装置110A、110B間の加工速度差を吸収する。
 複数回の圧延を実施する場合、各圧延装置110A、110Bによる金属素線21の圧延方向は、同一方向としてもよいし、異なる方向としてもよい。
 金属素線に対して複数回の圧延を実施する場合、圧延1回の場合よりも更に複雑な外面形状の金属線材を得ることができる。また、複数回の圧延を実施することにより、金属線材の形状を安定させることができるという効果も得られる。
<Rolling / wire winding process-Manufacturing equipment 2>
FIG. 7 is a schematic diagram showing another configuration example of the precursor manufacturing apparatus 100B. The manufacturing apparatus 100B is provided with a plurality of rolling devices 110 (110A, 110B) on the transport path of the metal wire 21, and can perform rolling on the metal wire 21 a plurality of times.
When a plurality of rolling apparatus are arranged in the manufacturing apparatus 100B, the buffer unit 150 may be optionally inserted between the rolling apparatus 110A and 110B. The buffer unit 150 has a fixed roller 151 whose axis is fixed in a position rotatably at a predetermined position, and a rotatable movable roller 152 that moves closer to or further from the fixed roller 151. A metal wire after being rolled by the rolling apparatus 110A in the previous stage is wound around the fixed roller 151 and the movable roller 152. By moving the movable roller 152 closer to or further away from the fixed roller 151, the buffer unit 150 synchronizes between the rolling apparatus 110A and the winding apparatus 130, or causes a machining speed difference between the rolling apparatus 110A and 110B. Absorb.
When rolling a plurality of times, the rolling directions of the metal strands 21 by the rolling devices 110A and 110B may be the same direction or different directions.
When the metal wire is rolled a plurality of times, a metal wire having a more complicated outer surface shape can be obtained than in the case of one rolling. Further, by performing rolling a plurality of times, the effect that the shape of the metal wire can be stabilized can be obtained.
<圧縮工程~圧縮成形用型>
 圧縮工程(ステップS3)について、この工程にて使用される圧縮成形用型の構成と共に説明する。
 図8は、圧縮成形用型の一例を示す斜視図である。
 圧縮成形用型300は、成形対象の前駆体30を収容する圧縮空間311を備えたキャビティ310(雌型)と、前駆体30を押圧する押型320(コア、雄型)とを備える。
 キャビティ310は、円筒状の外筒313と、外筒313の軸方向に沿って外筒313の中空部内に突出した円柱状の柱状体315と、外筒313の軸方向の一端面を閉止する底板317とを備える。外筒313は軸方向両端部が開口した中空体であり、柱状体315と底板317とは一体化されている。外筒313と柱状体315と底板317とによって形成される円筒状の空間が、前駆体30及び押型320を受け容れる圧縮空間311である。
 押型320は、軸方向に貫通する中空の挿通部321を備えた円筒体である。押型320の軸方向一端部が、キャビティ310の軸方向他端開口から圧縮空間311内に挿入される際に、前駆体30の中空部31(図3参照)内にはその軸方向他端開口から柱状体315が挿入される。
<Compression process-Compression molding mold>
The compression step (step S3) will be described together with the configuration of the compression molding die used in this step.
FIG. 8 is a perspective view showing an example of a compression molding mold.
The compression molding die 300 includes a cavity 310 (female mold) having a compression space 311 for accommodating the precursor 30 to be molded, and a stamp 320 (core, male mold) for pressing the precursor 30.
The cavity 310 closes a cylindrical outer cylinder 313, a cylindrical columnar body 315 protruding into the hollow portion of the outer cylinder 313 along the axial direction of the outer cylinder 313, and one end surface of the outer cylinder 313 in the axial direction. A bottom plate 317 is provided. The outer cylinder 313 is a hollow body having both ends in the axial direction open, and the columnar body 315 and the bottom plate 317 are integrated. The cylindrical space formed by the outer cylinder 313, the columnar body 315, and the bottom plate 317 is the compression space 311 that receives the precursor 30 and the stamp 320.
The stamp 320 is a cylinder provided with a hollow insertion portion 321 penetrating in the axial direction. When the axial one end of the stamp 320 is inserted into the compression space 311 from the axial other end opening of the cavity 310, the axial other end opening thereof is inside the hollow portion 31 (see FIG. 3) of the precursor 30. The columnar body 315 is inserted from.
 図9(a)、(b)は、図8に示す圧縮成形用型を用いて前駆体を圧縮する様子を示す模式的縦断面図である。
 図9(a)に示すように、円筒状の前駆体30は、まず圧縮成形用型300の圧縮空間311内に収容される(図中矢印C1方向)。外筒313の内形状は、前駆体30の外形状と略同一か、ややこれよりも大きくなるように設定されている。柱状体315の外形状は、前駆体30の内形状と略同一か、ややこれよりも小さくなるように作製されている。外筒313の内面と柱状体315の外面の少なくとも一方が、圧縮空間311内で前駆体30を位置決めする機能を果たす。
 図9(b)に示すように、押型320によって前駆体30を軸方向(図中矢印C2方向)に圧縮することにより中空筒状体10が作製される。前駆体30の内形状と外形状は、圧縮される過程で圧縮空間311の形状に応じて変形する。
9 (a) and 9 (b) are schematic vertical cross-sectional views showing how the precursor is compressed using the compression molding mold shown in FIG.
As shown in FIG. 9A, the cylindrical precursor 30 is first housed in the compression space 311 of the compression molding die 300 (in the direction of arrow C1 in the figure). The inner shape of the outer cylinder 313 is set to be substantially the same as or slightly larger than the outer shape of the precursor 30. The outer shape of the columnar body 315 is made to be substantially the same as or slightly smaller than the inner shape of the precursor 30. At least one of the inner surface of the outer cylinder 313 and the outer surface of the columnar body 315 serves to position the precursor 30 in the compression space 311.
As shown in FIG. 9B, the hollow cylindrical body 10 is produced by compressing the precursor 30 in the axial direction (direction of arrow C2 in the figure) by the stamping die 320. The inner and outer shapes of the precursor 30 are deformed according to the shape of the compression space 311 in the process of being compressed.
<焼結工程>
 図6及び図7に示した製造装置100A、100Bにより作成された前駆体30、又は図8及び図9に示した圧縮成形用型300により圧縮された後の中空筒状体は、高温で焼結されてもよい(図5(b)、(c)に示すステップS4)。焼結する際の温度は、金属線の種類、太さ、巻付け回数、ピッチ、巻き付け角度などにより異なるが、500~1500度(℃)の範囲で行うものとする。この中でも1100~1201度の範囲が好適である。
 焼結は、圧延の際に生じた金属線材の内部歪を緩和し、かつ、金属線材の重なり合う部分を接合することを目的として行う。焼結は所定温度に設定された電気炉内で実施するのが好ましく、焼結時間は、金属線材の種類、太さ、巻き付け回数、巻き付け密度、ピッチ、焼結温度により変わるが、30~80分の範囲で選ぶのが好ましい。焼結は空気中で行うこともできるが、真空中や金属線材を脆化させたり化学反応を生起するおそれのない不活性ガス中で行うのが好ましい。不活性ガスとしては、窒素ガス、アルゴンなどをあげることができるが、中でも窒素ガスが好適である。
 図5(b)に示すように、圧縮工程の前に実施する焼結工程は、前駆体30中の交差部22(図4参照)を原子レベルで接合(固定)し、非交差部23の変形を促進する。
 図5(c)に示すように、圧縮工程の後に実施する焼結工程は、圧縮変形後に接触した金属線材20同士を原子レベルで接合するので、最終製品となる中空筒状体10の強度が更に向上する。
<Sintering process>
The hollow tubular body after being compressed by the precursor 30 produced by the manufacturing apparatus 100A and 100B shown in FIGS. 6 and 7 or the compression molding die 300 shown in FIGS. 8 and 9 is baked at a high temperature. It may be tied (step S4 shown in FIGS. 5 (b) and 5 (c)). The temperature at the time of sintering varies depending on the type, thickness, number of windings, pitch, winding angle, etc. of the metal wire, but it shall be in the range of 500 to 1500 degrees (° C.). Of these, the range of 1100 to 1201 degrees is preferable.
Sintering is performed for the purpose of alleviating the internal strain of the metal wire rod generated during rolling and joining the overlapping portions of the metal wire rod. Sintering is preferably performed in an electric furnace set to a predetermined temperature, and the sintering time varies depending on the type, thickness, number of windings, winding density, pitch, and sintering temperature of the metal wire, but is 30 to 80. It is preferable to select within the range of minutes. Sintering can be performed in air, but it is preferably performed in vacuum or in an inert gas that does not embrittle the metal wire or cause a chemical reaction. Examples of the inert gas include nitrogen gas and argon, but nitrogen gas is particularly preferable.
As shown in FIG. 5 (b), in the sintering step performed before the compression step, the intersection 22 (see FIG. 4) in the precursor 30 is bonded (fixed) at the atomic level, and the non-intersection 23 is joined (fixed). Promotes deformation.
As shown in FIG. 5 (c), in the sintering step performed after the compression step, the metal wires 20 that have come into contact with each other after the compression deformation are joined at the atomic level, so that the strength of the hollow tubular body 10 as a final product is increased. Further improvement.
〔中空筒状体の特徴〕
 以上のようにして作製される中空筒状体の特徴について、参考例と比較しながら図2に基づき詳細に説明する。
<参考例>
 図10は、参考例に係る中空筒状部材をX線CT写真で示す図であり、(a)は正面図であり、(b)は部分拡大図であり、(c)は(b)のD-D断面図である。なお、図中、丸で囲まれた部分は、各図で対応する箇所である。
 本図に示す参考例40は、線径φ0.4mmの金属素線を圧延率50%(厚さ0.2mm)となるように圧延した金属線材を、螺旋状且つ多層状に巻き付けて中空円筒状に形成したものである。参考例40は圧縮工程(ステップS3)を経ていないため、金属線材20は軸方向、径方向、周方向の何れの方向にも整列している。非交差部23は湾曲変形、捩れ変形等しておらず、非交差部は他の線材層へ進入していない。
 なお、前駆体30中の金属線材も、図10に示す参考例40と同様に整列した状態である。
[Characteristics of hollow cylinder]
The characteristics of the hollow cylindrical body produced as described above will be described in detail with reference to FIG. 2 while comparing with reference examples.
<Reference example>
10A and 10B are views showing a hollow tubular member according to a reference example by an X-ray CT photograph, FIG. 10A is a front view, FIG. 10B is a partially enlarged view, and FIG. 10C is a partial enlarged view. It is a DD cross-sectional view. In the figure, the part circled is the corresponding part in each figure.
In the reference example 40 shown in this figure, a metal wire having a wire diameter of φ0.4 mm and rolled so as to have a rolling ratio of 50% (thickness 0.2 mm) is wound spirally and in a multilayer shape to form a hollow cylinder. It is formed in a shape. Since Reference Example 40 has not undergone the compression step (step S3), the metal wire rod 20 is aligned in any of the axial direction, the radial direction, and the circumferential direction. The non-intersecting portion 23 is not curved or twisted, and the non-intersecting portion does not enter another wire layer.
The metal wires in the precursor 30 are also in an aligned state in the same manner as in Reference Example 40 shown in FIG.
<交差部における接触状態の維持>
 図2に示す中空筒状体10、及び図3に示す前駆体30は、隣接する線材層を構成する金属線材同士が径方向に固定的に接触した交差部22を有する。金属線材20、20同士が交差部22において接触した状態は、圧縮工程の前後において維持される。言い換えれば、金属線材20に対する交差部22の長手方向位置は、圧縮工程の前後において維持される。また、中空筒状体10の製造方法においては、交差部22における金属線材同士の接触状態が圧縮工程の前後において維持されるように、制御される。
<Maintaining contact at intersections>
The hollow tubular body 10 shown in FIG. 2 and the precursor 30 shown in FIG. 3 have an intersection 22 in which the metal wires constituting the adjacent wire layers are in fixed contact with each other in the radial direction. The state in which the metal wires 20 and 20 are in contact with each other at the intersection 22 is maintained before and after the compression step. In other words, the longitudinal position of the intersection 22 with respect to the metal wire 20 is maintained before and after the compression step. Further, in the method of manufacturing the hollow cylindrical body 10, the contact state between the metal wires at the intersection 22 is controlled so as to be maintained before and after the compression step.
 ステップS3の圧縮工程前に焼結工程が実施されない製造方法の場合、金属線材20の線材巻付工程(ステップS2)においてテンションユニット120から金属線材20に付与される張力は、圧縮工程の前後において、金属線材20の長手方向に対する交差部22の位置が維持できる程度、即ち、交差部22において金属線材20同士が滑らない(又はずれない)程度の摩擦力を発揮できる大きさに設定される。金属線材20は、上記張力に対して自身の形状を保持できる長手方向強度を有する。交差部22において金属線材20、20同士は面接触しており、上記摩擦力を発揮する。 In the case of a manufacturing method in which the sintering step is not performed before the compression step of step S3, the tension applied to the metal wire 20 from the tension unit 120 in the wire winding step (step S2) of the metal wire 20 is before and after the compression step. The size is set so that the position of the intersection 22 with respect to the longitudinal direction of the metal wire 20 can be maintained, that is, a frictional force can be exerted to the extent that the metal wires 20 do not slip (or shift) at the intersection 22. The metal wire rod 20 has a longitudinal strength capable of maintaining its own shape against the above tension. At the intersection 22, the metal wires 20 and 20 are in surface contact with each other and exert the above frictional force.
 ステップS3の圧縮工程前に焼結工程が実施される製造方法の場合、交差部22は焼結により接合されるため、金属線材20の線材巻付工程において金属線材20に付与される張力は、焼結工程が実施されない製造方法に比べて小さくしてもよい。しかし、交差部22を確実に接合するために、交差部22において金属線材20、20同士は面接触していることが望ましい。交差部22は焼結により接合されるため、前駆体30の軸方向圧縮の前後において、金属線材20の長手方向に対する交差部22の位置は維持される。 In the case of the manufacturing method in which the sintering step is carried out before the compression step of step S3, since the intersection 22 is joined by sintering, the tension applied to the metal wire 20 in the wire winding step of the metal wire 20 is increased. It may be smaller than the manufacturing method in which the sintering step is not carried out. However, in order to reliably join the intersection 22, it is desirable that the metal wires 20 and 20 are in surface contact with each other at the intersection 22. Since the intersection 22 is joined by sintering, the position of the intersection 22 with respect to the longitudinal direction of the metal wire 20 is maintained before and after the axial compression of the precursor 30.
 交差部22においては、金属線材20同士の接触した状態が圧縮工程の前後で維持される。そのため、圧縮工程において非交差部23の変形、具体的には湾曲変形や捩れ変形等が促進される。
 前駆体30中の非交差部23においては、金属線材20同士が接触していないから、圧縮工程における非交差部23の前駆体30からの変形量は交差部22の変形量よりも大きい。なお、変形量は、金属線材20の径方向・軸方向への移動量、捩れ量等を総合的に考慮した指標として示すことが可能である。
 交差部の数量と交差部22同士の相対的な位置関係は、圧縮工程の前後で維持される。従って、交差部22においては、中空筒状体10の径方向における層構造(層構成)が圧縮工程の前後で維持される。また、前駆体30に形成された孔(網目)の数量と孔(網目)同士の相対的な位置関係は、圧縮工程の前後で維持される。
At the intersection 22, the state of contact between the metal wires 20 is maintained before and after the compression step. Therefore, in the compression step, deformation of the non-intersecting portion 23, specifically, bending deformation, torsional deformation, and the like are promoted.
In the non-intersecting portion 23 in the precursor 30, since the metal wires 20 are not in contact with each other, the amount of deformation of the non-intersecting portion 23 from the precursor 30 in the compression step is larger than the amount of deformation of the intersecting portion 22. The amount of deformation can be shown as an index that comprehensively considers the amount of movement of the metal wire 20 in the radial and axial directions, the amount of twist, and the like.
The relative positional relationship between the number of intersections and the intersections 22 is maintained before and after the compression process. Therefore, at the intersection 22, the radial layer structure (layer structure) of the hollow cylindrical body 10 is maintained before and after the compression step. Further, the number of holes (mesh) formed in the precursor 30 and the relative positional relationship between the holes (mesh) are maintained before and after the compression step.
<内外径の変化>
 前駆体30を軸方向に圧縮することにより、隣接する交差部22間の距離が短縮されるため、非交差部23が外径方向又は内径方向に突出するように変形する。図2に示すような非交差部23の変形により、前駆体30の外径と内径の少なくとも一方が変化する。
 但し、交差部22における変形が制限されているため、中空筒状体10の外径がある一定範囲を超えて拡径すること、又は内径がある一定範囲を超えて縮径することはない。
<Changes in inner and outer diameters>
By compressing the precursor 30 in the axial direction, the distance between the adjacent intersecting portions 22 is shortened, so that the non-intersecting portion 23 is deformed so as to project in the outer diameter direction or the inner diameter direction. Due to the deformation of the non-intersecting portion 23 as shown in FIG. 2, at least one of the outer diameter and the inner diameter of the precursor 30 changes.
However, since the deformation at the intersection 22 is limited, the outer diameter of the hollow cylindrical body 10 does not expand beyond a certain range, or the inner diameter does not shrink beyond a certain range.
 交差部22における変形は、交差部22が固定的であるために制限される。
 交差部22における変形は、前駆体30がその軸線を中心とするねじれ変形に対して大きな抵抗力を有するために制限される。即ち、前駆体30は、S巻きの金属線材20n、20n-2…(第一の方向に螺旋状に巻き付けられた金属線材)とZ巻きの金属線材20n-1、20n-3…(第一の方向とは反対の第二の方向に螺旋状に巻き付けられた金属線材)とが径方向に順次積層された構成を有する。S巻きの金属線材とZ巻きの金属線材は、前駆体30の軸線を中心としたねじれ変形を互いに抑制し合う。このため、圧縮工程における交差部22の周方向移動と径方向移動は抑制される。
 また、圧縮工程では圧縮成形用型300を使用するため、中空筒状体10の外径の拡径と内径の縮径は、圧縮成形用型300の圧縮空間311の大きさによっても制限される。
Deformation at the intersection 22 is limited because the intersection 22 is fixed.
Deformation at the intersection 22 is limited because the precursor 30 has a large resistance to torsional deformation about its axis. That is, the precursor 30 includes S- wound metal wires 20n, 20n-2 ... (Metal wires spirally wound in the first direction) and Z-wound metal wires 20n-1, 20n-3 ... (First). The metal wire rod spirally wound in the second direction opposite to the direction of the above) is sequentially laminated in the radial direction. The S-wound metal wire and the Z-wound metal wire mutually suppress torsional deformation centered on the axis of the precursor 30. Therefore, the circumferential movement and the radial movement of the intersection 22 in the compression step are suppressed.
Further, since the compression molding die 300 is used in the compression step, the expansion of the outer diameter and the reduction of the inner diameter of the hollow tubular body 10 are also limited by the size of the compression space 311 of the compression molding die 300. ..
<軸方向接触部の形成による強度向上>
 中空筒状体10は、金属線材20、20同士が軸方向に接触した軸方向接触部24を有する。
 軸方向接触部24は、圧縮工程により変形した非交差部23の少なくとも一部が、該非交差部23の長手方向の両隣に位置する交差部22、22とは異なる線材層に属する金属線材20(交差部22又は非交差部23)に対して軸方向に接触することにより形成される。軸方向接触部24は、圧縮工程において変形した非交差部23同士により、又は、圧縮工程において変形した非交差部23と交差部22とにより形成される。なお、圧縮工程の前後において、交差部22を構成する金属線材20同士の角度が、軸方向接触部24を形成可能な範囲内で変化することは許容される。
 軸方向接触部24においては、金属線材20、20同士が、中空筒状体10の軸方向強度を向上可能な所定の押圧力で接触する。このような軸方向接触部24を形成することにより、中空筒状体10の軸方向強度が向上する。
<Improved strength by forming axial contact parts>
The hollow cylindrical body 10 has an axial contact portion 24 in which the metal wires 20 and 20 are in axial contact with each other.
The axial contact portion 24 is a metal wire rod 20 in which at least a part of the non-intersection portion 23 deformed by the compression process belongs to a wire rod layer different from the intersection portions 22 and 22 located on both sides of the non-intersection portion 23 in the longitudinal direction. It is formed by making axial contact with the intersecting portion 22 or the non-intersecting portion 23). The axial contact portion 24 is formed by the non-intersecting portions 23 deformed in the compression step, or by the non-intersecting portions 23 and the intersecting portions 22 deformed in the compression step. Before and after the compression step, it is permissible that the angles of the metal wires 20 constituting the intersection 22 change within a range in which the axial contact portion 24 can be formed.
In the axial contact portion 24, the metal wires 20 and 20 come into contact with each other at a predetermined pressing force capable of improving the axial strength of the hollow cylindrical body 10. By forming such an axial contact portion 24, the axial strength of the hollow tubular body 10 is improved.
 非交差部23の径方向位置(又は図3に示す中空筒状体10の中心軸Axからの距離)が、該非交差部23の長手方向の両隣に位置する交差部22の径方向位置と異なる場合に、上記非交差部23が、自身が属する線材層とは異なる線材層に進入していると判断される。「自身が属する線材層」とは、非交差部23の長手方向の両隣に位置する交差部22、22が属する線材層のことである。 The radial position of the non-intersection portion 23 (or the distance from the central axis Ax of the hollow cylindrical body 10 shown in FIG. 3) is different from the radial position of the intersection 22 located on both sides of the non-intersection portion 23 in the longitudinal direction. In this case, it is determined that the non-intersecting portion 23 has entered a wire rod layer different from the wire rod layer to which it belongs. The "wire layer to which it belongs" is a wire layer to which the intersections 22 and 22 located on both sides of the non-intersection portion 23 in the longitudinal direction belong.
 例えば、軸方向接触部24は以下のように形成される。圧縮工程において、まず、少なくとも一部の非交差部23を、該非交差部23の長手方向の両隣に位置する交差部22、22とは異なる線材層Lに進入するように、外径側又は内径側に変形させる。そして、変形した非交差部23の更に少なくとも一部を、自身が属する線材層とは異なる線材層に属する金属線材20と軸方向に所定の押圧力にて接触するように変形させる。 For example, the axial contact portion 24 is formed as follows. In the compression step, first, the outer diameter side or the inner diameter side or the inner diameter side so that at least a part of the non-intersection portion 23 enters the wire rod layer L different from the intersection portions 22 and 22 located on both sides in the longitudinal direction of the non-intersection portion 23. Transform to the side. Then, at least a part of the deformed non-intersecting portion 23 is deformed so as to come into contact with the metal wire rod 20 belonging to the wire rod layer different from the wire rod layer to which it belongs so as to be in contact with the metal wire rod 20 in the axial direction with a predetermined pressing force.
 中空筒状体10において、金属線材20、20同士は交差部22、及び軸方向接触部24において接触する。中空筒状体10において金属線材同士が接触する部分の総面積には、交差部22における接触面積と、軸方向接触部24における接触面積とが含まれる。本実施形態においては、軸方向接触部24が形成されたことにより、中空筒状体10において金属線材同士が接触する部分の総面積が増大したので、中空筒状体10の強度が、特に軸方向において向上する。 In the hollow cylindrical body 10, the metal wires 20 and 20 come into contact with each other at the intersection 22 and the axial contact portion 24. The total area of the portions of the hollow cylindrical body 10 where the metal wires come into contact with each other includes the contact area at the intersection 22 and the contact area at the axial contact portion 24. In the present embodiment, since the axial contact portion 24 is formed, the total area of the portions where the metal wires come into contact with each other in the hollow cylindrical body 10 is increased, so that the strength of the hollow tubular body 10 is particularly high. Improve in direction.
<軸方向に接触する金属線材同士の関係>
 軸方向接触部24は、巻き付け方向が同方向の金属線材20同士によって形成される。即ち、最外の線材層をLnとした場合、線材層Lnを構成する金属線材に対しては、線材層Ln-2、線材層Ln-4…を構成する金属線材が軸方向に接触して、線材層Lnを構成する金属線材との間で軸方向接触部24を形成する。
 中空筒状体10において、軸方向接触部24の数は、内径側から外径側に向かうに連れて増大する。金属線材20の長手方向に隣接する交差部22同士の間隔は、内径側よりも外径側の方が大きい。外径側に位置する非交差部23の方が、内径側に位置する非交差部23よりも、変形により他の線材層Lに進入しやすく、軸方向接触部24が形成されやすい。
<Relationship between metal wires that come into contact with each other in the axial direction>
The axial contact portion 24 is formed by metal wires 20 having the same winding direction. That is, when the outermost wire rod layer is Ln, the metal wire rods constituting the wire rod layer Ln-2, the wire rod layer Ln-4, and the like are in axial contact with the metal wire rod constituting the wire rod layer Ln. , The axial contact portion 24 is formed with the metal wire rod constituting the wire rod layer Ln.
In the hollow cylindrical body 10, the number of axial contact portions 24 increases from the inner diameter side to the outer diameter side. The distance between the intersections 22 adjacent to each other in the longitudinal direction of the metal wire 20 is larger on the outer diameter side than on the inner diameter side. The non-intersecting portion 23 located on the outer diameter side is more likely to enter the other wire rod layer L due to deformation than the non-intersecting portion 23 located on the inner diameter side, and the axial contact portion 24 is more likely to be formed.
<多孔性状の均一性>
 図3に示すように、前駆体30は、連続する一本の金属線材20を心棒131(図6、図7参照)の軸線に対して所定角度θだけ傾斜させて螺旋状に巻き付けることにより形成されている。前駆体30の径方向(肉厚内)には複数の孔(網目)が均一に形成される。言い換えれば、前駆体30は、径方向(線材層の重なる方向)に均一な多孔性状(又は、均一な網目構造)を有する(図4参照)。
 上述の通り、前駆体30に形成された交差部22の数量は圧縮工程の前後で変化しない。また、前駆体30に形成された交差部22同士の相対的な位置関係は、圧縮工程の前後で維持される。前駆体30に形成された孔(網目)の数量及び相対的な位置関係も、圧縮工程の前後で維持される。従って、中空筒状体10は径方向(肉厚内)に均一な多孔性状を有する。
<Homogeneity of porosity>
As shown in FIG. 3, the precursor 30 is formed by spirally winding a continuous metal wire 20 at an angle θ with respect to the axis of the mandrel 131 (see FIGS. 6 and 7). Has been done. A plurality of holes (mesh) are uniformly formed in the radial direction (within the wall thickness) of the precursor 30. In other words, the precursor 30 has a uniform porous shape (or uniform network structure) in the radial direction (direction in which the wire rod layers overlap) (see FIG. 4).
As described above, the quantity of the intersection 22 formed on the precursor 30 does not change before and after the compression step. Further, the relative positional relationship between the intersections 22 formed on the precursor 30 is maintained before and after the compression step. The number and relative positional relationship of the holes (mesh) formed in the precursor 30 are also maintained before and after the compression step. Therefore, the hollow cylindrical body 10 has a uniform porous shape in the radial direction (within the wall thickness).
<前駆体と圧縮成形用型のサイズ>
 前駆体30と圧縮成形用型300との間の隙間は、非交差部23を所望の形状に変形させうるように設定される。圧縮成形用型300は、前駆体30との間で、前駆体30の外径の拡大と内径の縮小の少なくとも一方を実行可能な隙間を有した形状に設定される。
 例えば、図9に示す圧縮成形用型300は、柱状体315の外径が前駆体30の内径と略同一に設定されている。ここでいう「略同一」とは、圧縮成形用型300の圧縮空間311内に前駆体30を挿入可能となる程度の隙間の存在を許容するが、前駆体30の径サイズを積極的に変化させることを意図していないことを意味する。
 その一方で、外筒313の内径は前駆体30の外径よりも大きく設定されており、圧縮工程において前駆体30の外径が外筒313の内形状に応じて、ある程度拡径するように意図されている。外筒313は前駆体30との間で前駆体30の外径を拡径可能な隙間を有している。
 なお、圧縮成形用型300と前駆体30の内外径の関係を上記と逆にして、前駆体30の内径を縮小変形させるようにしてもよい。 
<Precursor and compression molding mold size>
The gap between the precursor 30 and the compression molding die 300 is set so that the non-intersecting portion 23 can be deformed into a desired shape. The compression molding die 300 is set to have a shape having a gap between the precursor 30 and the precursor 30 so that at least one of the expansion of the outer diameter and the reduction of the inner diameter of the precursor 30 can be performed.
For example, in the compression molding die 300 shown in FIG. 9, the outer diameter of the columnar body 315 is set to be substantially the same as the inner diameter of the precursor 30. The term "substantially the same" here allows the existence of a gap sufficient to allow the precursor 30 to be inserted into the compression space 311 of the compression molding die 300, but positively changes the diameter size of the precursor 30. It means that it is not intended to be made.
On the other hand, the inner diameter of the outer cylinder 313 is set to be larger than the outer diameter of the precursor 30, so that the outer diameter of the precursor 30 is increased to some extent according to the inner shape of the outer cylinder 313 in the compression step. Intended. The outer cylinder 313 has a gap between the precursor 30 and the precursor 30 so that the outer diameter of the precursor 30 can be increased.
The relationship between the inner and outer diameters of the compression molding die 300 and the precursor 30 may be reversed from the above, and the inner diameter of the precursor 30 may be reduced and deformed.
<金属素線の圧延率又は圧延形状>
 金属素線21の圧延率(又は圧延形状)は、前駆体30の圧縮によって金属線材20同士が軸方向に所定の圧力で接触可能となるように設定される。
 金属線材20として平圧延線を用いる場合、その圧延率は、20~80%、特に20~50%とすることが好ましい。
 また、金属線材20として異形線を用いる場合、金属線材20の幅と厚さの比率は、20~40%の範囲で圧延された平圧延線の幅と厚さの比率と同等となるように設定される。なお、金属線材20の幅と厚さは、図4に示した通りである。
<Rolling rate or rolling shape of metal wire>
The rolling ratio (or rolling shape) of the metal wire 21 is set so that the metal wires 20 can come into contact with each other at a predetermined pressure in the axial direction by compressing the precursor 30.
When a flat rolled wire is used as the metal wire rod 20, the rolling ratio is preferably 20 to 80%, particularly preferably 20 to 50%.
When a deformed wire is used as the metal wire 20, the width-thickness ratio of the metal wire 20 is equal to the width-thickness ratio of the flat-rolled wire rolled in the range of 20 to 40%. Set. The width and thickness of the metal wire 20 are as shown in FIG.
〔効果〕
 本実施形態に係る中空筒状体10においては、長手方向の両隣に位置する交差部22、22と同一の線材層L内に位置していた非交差部23が、変形により他の線材層に属する金属線材20と軸方向に接触している。そのため、中空筒状体10は、軸方向における強度が向上している。
 中空筒状体10の軸方向強度は、圧縮工程において前駆体30を軸方向に圧縮することにより向上させることができる。従って、焼結が困難な金属材料を用いた中空筒状体の軸方向強度を向上させることができる。
 従来、金属線材が螺旋状且つ多層状に巻き付けられた円筒部材には、剛性を高めるために焼結処理が施されることがあった。本実施形態によれば、焼結処理を実施しなくても、中空筒状体の軸方向の強度を向上させることができるので、焼結工程の省略によるコスト削減や製造時間の短縮を図れる。
〔effect〕
In the hollow tubular body 10 according to the present embodiment, the non-intersecting portion 23 located in the same wire rod layer L as the intersecting portions 22 and 22 located on both sides in the longitudinal direction is deformed into another wire rod layer. It is in axial contact with the metal wire 20 to which it belongs. Therefore, the strength of the hollow cylindrical body 10 is improved in the axial direction.
The axial strength of the hollow tubular body 10 can be improved by compressing the precursor 30 in the axial direction in the compression step. Therefore, it is possible to improve the axial strength of the hollow cylindrical body using a metal material that is difficult to sinter.
Conventionally, a cylindrical member in which a metal wire is wound in a spiral and a multilayer shape may be subjected to a sintering process in order to increase the rigidity. According to this embodiment, since the strength in the axial direction of the hollow tubular body can be improved without performing the sintering process, it is possible to reduce the cost and the manufacturing time by omitting the sintering step.
〔変形実施形態〕
 上記実施形態においては、円筒状(軸方向と直交する横断面形状が真円状)の中空筒状体を得る場合示したが、本発明は上記形状以外の中空筒状体を得る場合にも適用可能である。具体的には、本発明は、楕円筒状、角筒状、星型筒状(横断面形状が楕円状、矩形状、星形状)等、様々な横断面形状を有する中空筒状体を得る場合にも適用できる。
 例えば、横断面形状が凸図形状の心棒(例:楕円柱状や角柱状等の心棒)に対して金属線材を螺旋状且つ多層状に巻き付けることによって凸図形状の横断面形状を有する中空筒状の前駆体を得るようにしてもよい。或いは、適当な形状の心棒に対して金属線材を螺旋状且つ多層状に巻き付けると共に、心棒から取り外した中空筒状の部材を径方向に押圧して成形することによって、星形状等の所望の横断面形状を有する中空筒状の前駆体を得るようにしてもよい。これらの場合、圧縮工程にて使用される圧縮成形用型には、前駆体の形状に応じた形状の圧縮空間を有するものが使用される。
[Modification Embodiment]
In the above embodiment, the case of obtaining a hollow cylindrical body having a cylindrical shape (the cross-sectional shape orthogonal to the axial direction is a perfect circle) has been shown, but the present invention also shows the case of obtaining a hollow tubular body having a shape other than the above shape. Applicable. Specifically, the present invention obtains a hollow cylindrical body having various cross-sectional shapes such as an elliptical cylinder, a square cylinder, and a star-shaped cylinder (the cross-sectional shape is elliptical, rectangular, or star-shaped). It can also be applied to cases.
For example, a hollow tubular shape having a convex cross-sectional shape by winding a metal wire spirally and in multiple layers around a mandrel having a convex cross-sectional shape (eg, a mandrel having an elliptical columnar shape or a prismatic shape). You may try to obtain a precursor of. Alternatively, a metal wire is spirally and multi-layered around a mandrel having an appropriate shape, and a hollow cylindrical member removed from the mandrel is pressed in the radial direction to form a desired cross section such as a star shape. A hollow cylindrical precursor having a surface shape may be obtained. In these cases, the compression molding die used in the compression step is one having a compression space having a shape corresponding to the shape of the precursor.
 また、本発明は、内外径が軸方向に一定の中空筒状体の他、内外径が軸方向に変化するテーパー形状(例:錘状、錘台状)の中空筒状体にも適用できる。本発明は、少なくとも軸方向の一端部に、外径方向に突出したフランジ部を備えた中空筒状体にも適用できる。本発明は、少なくとも軸方向の一端面が閉塞した有底筒状の中空筒状体にも適用できる。
 摩擦力を利用して交差部22を固定的に維持するために、金属線材20に対して、金属線材20同士が径方向に接触する面の一方又は双方に、刻み目(ローレット目)を付ける加工を施してもよい。このような加工は、圧延装置110により行うことが可能である。
 また、交差部22を固定的に維持するために、ローラ溶接等を用いて金属線材20、20同士を固着させてもよい。
Further, the present invention can be applied not only to a hollow cylindrical body having a constant inner / outer diameter in the axial direction, but also to a hollow cylindrical body having a tapered shape (eg, a weight shape, a weight base shape) in which the inner / outer diameter changes in the axial direction. .. The present invention can also be applied to a hollow cylindrical body having a flange portion protruding in the outer diameter direction at least at one end in the axial direction. The present invention can also be applied to a hollow cylindrical body having a bottomed cylinder in which at least one end surface in the axial direction is closed.
Processing to make notches (knurled stitches) on one or both of the surfaces where the metal wires 20 come into contact with each other in the radial direction with respect to the metal wire 20 in order to keep the intersection 22 fixed by utilizing the frictional force. May be applied. Such processing can be performed by the rolling apparatus 110.
Further, in order to keep the intersection 22 fixed, the metal wires 20 and 20 may be fixed to each other by using roller welding or the like.
〔試験結果1〕
 軸方向圧縮試験と圧力損失測定を実施するため、中空円筒状の試験体1と中空円筒状の比較例1とを夫々5個ずつ作製した。
 試験体1と比較例1には、SUS304、線径φ0.6mmの金属素線(丸線)を30%圧延して厚さ0.42mmとした金属線材を用いた。試験体1と比較例1は、内径8mm、外径18.1mm、軸方向長35mmの中空円筒形状であり、その重量は19gである。お、試験体1と比較例1に形成された交差部の数量は同数である。また、金属線材の巻き付け時に金属線材に付与した張力は、試験体1と比較例1とで同一である。
 試験体1は、本発明の実施形態に係る方法にて作成された中空筒状体である。即ち、試験体1は、上記金属線材を螺旋状且つ多層状に巻き付けることにより軸方向長55mmの円筒状の前駆体30を作製した後、圧縮工程(ステップS3)において、軸方向長35mmの円筒形状となるように前駆体30を軸方向に圧縮成形したものである。
 比較例1は、上記金属線材を螺旋状且つ多層状に巻き付けて上記円筒形状となるようにしたものである。比較例1は圧縮工程を経ていない。比較例1のような円筒部材の外観は使用する金属素線の線径、圧延率、金属線材の巻き付け角度、及び軸方向における金属線材の離隔等により変わるが、試験に使用した比較例の線材層の状態は概ね図10に示された参考例と同様である。
 なお、試験体1と比較例1には焼結処理は施されていない。
[Test result 1]
In order to carry out the axial compression test and the pressure loss measurement, five hollow cylindrical test pieces 1 and five hollow cylindrical comparative examples 1 were prepared.
For the test body 1 and Comparative Example 1, a metal wire having a thickness of 0.42 mm was used by rolling a metal wire (round wire) having a wire diameter of φ0.6 mm and SUS304 by 30%. The test body 1 and Comparative Example 1 have a hollow cylindrical shape having an inner diameter of 8 mm, an outer diameter of 18.1 mm, and an axial length of 35 mm, and the weight thereof is 19 g. The number of intersections formed in the test body 1 and the comparative example 1 is the same. Further, the tension applied to the metal wire when winding the metal wire is the same in the test piece 1 and the comparative example 1.
The test body 1 is a hollow cylindrical body produced by the method according to the embodiment of the present invention. That is, the test body 1 prepares a cylindrical precursor 30 having an axial length of 55 mm by winding the metal wire in a spiral and multilayer shape, and then in a compression step (step S3), a cylinder having an axial length of 35 mm. The precursor 30 is compression-molded in the axial direction so as to have a shape.
In Comparative Example 1, the metal wire is spirally and multi-layered so as to have a cylindrical shape. Comparative Example 1 has not undergone a compression step. The appearance of the cylindrical member as in Comparative Example 1 varies depending on the wire diameter of the metal wire used, the rolling ratio, the winding angle of the metal wire, the separation of the metal wire in the axial direction, etc., but the wire of the comparative example used in the test The state of the layer is almost the same as the reference example shown in FIG.
The test piece 1 and Comparative Example 1 were not sintered.
 以下の試験結果には、試験体1と比較例1の夫々の平均値を示している。
<軸方向圧縮試験>
 図11は、軸方向圧縮試験の結果を示す図である。図11(a)は変位と荷重との関係を示す表であり、(b)は変位-荷重曲線である。
 軸方向圧縮試験においては、試験体1と比較例1の夫々に対して軸方向への圧縮荷重を加えた場合の軸方向への変位量を測定した。
 図11からわかるように、変位6mm以上では、試験体1は比較例1に比べて約2倍程度の軸方向強度を有していることがわかった。
The following test results show the average values of Test Body 1 and Comparative Example 1.
<Axial compression test>
FIG. 11 is a diagram showing the results of the axial compression test. FIG. 11A is a table showing the relationship between displacement and load, and FIG. 11B is a displacement-load curve.
In the axial compression test, the amount of axial displacement was measured when an axial compressive load was applied to each of the test piece 1 and Comparative Example 1.
As can be seen from FIG. 11, when the displacement is 6 mm or more, the test piece 1 has about twice the axial strength as that of Comparative Example 1.
<圧力損失測定>
 図12は、圧力損失測定の結果を示す図である。図12(a)は体積流量と圧力損失との関係を示す表であり、(b)はその関係を示したグラフである。
 図12からわかるように、試験体1と比較例1とでは、圧力損失に大きな差異は見られなかった。
 試験体1と比較例1とでは交差部の数量が同一であり、試験体1では交差部同士の相対的な位置関係が圧縮後も維持されている。従って、試験体1と比較例1の肉厚内において金属線材同士が交差することにより形成される孔(網目)の数量は、試験体1と比較例1とで同じである。このような理由から、試験体1と比較例1との間で圧力損失に大きな差が生じなかったものと考えられる。
<Pressure loss measurement>
FIG. 12 is a diagram showing the results of pressure loss measurement. FIG. 12A is a table showing the relationship between the volumetric flow rate and the pressure loss, and FIG. 12B is a graph showing the relationship.
As can be seen from FIG. 12, no significant difference was observed in the pressure loss between the test piece 1 and the comparative example 1.
The number of intersections is the same in the test body 1 and the comparative example 1, and in the test body 1, the relative positional relationship between the intersections is maintained even after compression. Therefore, the number of holes (mesh) formed by the crossing of the metal wires within the wall thickness of the test body 1 and the comparative example 1 is the same in the test body 1 and the comparative example 1. For this reason, it is probable that there was no significant difference in pressure loss between the test piece 1 and Comparative Example 1.
<結論>
 以上のように、本実施形態によれば、中空筒状の前駆体30を軸方向に圧縮することにより、軸方向への圧縮が行われていない円筒部材と内外径、重量、交差部の数、及び圧力損失を同一又は同等としながら、軸方向強度を向上させた中空筒状体を得られる。即ち、本実施形態によれば、形状、機能、及び原材料コストが同一でありながら、軸方向強度を向上させた中空筒状体を得ることができる。
<Conclusion>
As described above, according to the present embodiment, by compressing the hollow tubular precursor 30 in the axial direction, the cylindrical member not compressed in the axial direction and the inner / outer diameter, the weight, and the number of intersections are present. , And a hollow cylinder with improved axial strength can be obtained while having the same or equivalent pressure loss. That is, according to the present embodiment, it is possible to obtain a hollow cylindrical body having the same shape, function, and raw material cost, but with improved axial strength.
〔本発明の実施態様例と作用、効果のまとめ〕
<第一の実施態様>
 本実施態様に係る中空筒状体10は、金属線材20が螺旋状、且つ多層状に巻き付けられており、隣接する線材層Lを構成する金属線材同士が径方向に固定的に接触した交差部22と、金属線材の長手方向に沿って隣接して離間配置された2つの交差部間に位置する非交差部23とが形成された中空筒状部材(前駆体30)を変形させて得られる。
 本態様に係る中空筒状体において、少なくとも一部の非交差部は、該非交差部の長手方向の両隣に位置する交差部とは異なる線材層に進入しており、該非交差部が属する線材層とは異なる線材層に属する金属線材と軸方向に接触するように変形されていることを特徴とする。
[Summary of Examples of Embodiments of the Present Invention, Actions, and Effects]
<First embodiment>
In the hollow cylindrical body 10 according to the present embodiment, the metal wire 20 is spirally and multi-layered, and the metal wires constituting the adjacent wire layer L are in fixed contact with each other in the radial direction. It is obtained by deforming a hollow cylindrical member (precursor 30) in which 22 and a non-intersection portion 23 located between two intersections arranged adjacent to each other along the longitudinal direction of a metal wire are formed. ..
In the hollow tubular body according to this embodiment, at least a part of the non-intersecting portion has entered a wire rod layer different from the intersecting portions located on both sides in the longitudinal direction of the non-intersecting portion, and the wire rod layer to which the non-intersecting portion belongs. It is characterized in that it is deformed so as to come into contact with a metal wire belonging to a wire layer different from that in the axial direction.
 交差部においては、金属線材同士が固定的に接触しているため、交差部における金属線材の変形は制限されている。ここに言う固定的とは、交差部を構成する金属線材同士が分離可能な場合と分離不能な場合の双方を含む。分離可能とは例えば金属線材同士が摩擦力によりその移動が制限されている場合であり、分離不能とは例えば交差部が焼結等により一体化されている場合である。交差部が固定的であるため、主として交差部間にある非交差部が中空筒状部材の変形に応じて変形する。
 本実施態様においては、長手方向の両隣に位置する交差部と同一の線材層に属する非交差部が、他の線材層に属する金属線材と軸方向に接触している。このように、本実施形態においては、異なる線材層を構成する金属線材同士を軸方向に接触させたので、中空筒状体の軸方向における強度が向上する。
At the intersection, the metal wires are in fixed contact with each other, so that the deformation of the metal wire at the intersection is limited. The term "fixed" as used herein includes both cases where the metal wires constituting the intersection are separable and non-separable. Separable means, for example, the movement of metal wires is restricted by frictional force, and inseparable means, for example, the case where the intersections are integrated by sintering or the like. Since the intersection is fixed, the non-intersection mainly between the intersections is deformed according to the deformation of the hollow cylindrical member.
In the present embodiment, the non-intersection portion belonging to the same wire rod layer as the intersection located on both sides in the longitudinal direction is in axial contact with the metal wire rod belonging to the other wire rod layer. As described above, in the present embodiment, since the metal wires constituting the different wire rod layers are brought into contact with each other in the axial direction, the strength of the hollow tubular body in the axial direction is improved.
<第二の実施態様>
 本態様に係る中空筒状体10において、交差部22における金属線材20同士の接触状態は変形の前後において維持されていることを特徴とする。
 本態様において、中空筒状部材(前駆体30)に形成された交差部は、金属線材同士が接触した状態を、中空筒状部材の変形の前後で維持する。即ち、交差部を形成する金属線材同士は、金属線材の長手方向に対する交差部の位置が中空筒状部材の変形の前後で移動しないように、互いに拘束されている。但し、交差部における金属線材同士の交差角度が中空筒状部材の変形に応じて変化することは、異なる線材層を構成する金属線材同士が軸方向に接触する限りにおいて許容される。
 本態様によれば、中空筒状部材の変形の前後において、交差部における金属線材同士の接触状態が維持されることから、中空筒状部材の変形に応じた非交差部の変形が促進される。
<Second embodiment>
The hollow cylindrical body 10 according to this aspect is characterized in that the contact state between the metal wires 20 at the intersection 22 is maintained before and after the deformation.
In this embodiment, the intersection formed in the hollow tubular member (precursor 30) maintains a state in which the metal wires are in contact with each other before and after the deformation of the hollow tubular member. That is, the metal wires forming the intersection are restrained from each other so that the position of the intersection with respect to the longitudinal direction of the metal wire does not move before and after the deformation of the hollow tubular member. However, it is permissible that the crossing angle between the metal wires at the intersection changes according to the deformation of the hollow tubular member as long as the metal wires constituting the different wire layers come into contact with each other in the axial direction.
According to this aspect, since the contact state between the metal wires at the intersection is maintained before and after the deformation of the hollow tubular member, the deformation of the non-intersection portion according to the deformation of the hollow tubular member is promoted. ..
<第三の実施態様>
 本態様に係る中空筒状体10において、異なる線材層Lを構成する金属線材20同士が軸方向に接触した軸方向接触部24の数は、内径側から外径側に向かうに連れて増大することを特徴とする。
 金属線材の長手方向に隣接する交差部同士の間隔は、内径側よりも外径側の方が大きい。従って、外径側に位置する非交差部の方が、内径側に位置する非交差部よりも、変形により他の線材層に進入しやすく、軸方向接触部が形成されやすい。
<Third embodiment>
In the hollow cylindrical body 10 according to this embodiment, the number of axial contact portions 24 in which the metal wire rods 20 constituting the different wire rod layers L are in axial contact with each other increases from the inner diameter side to the outer diameter side. It is characterized by that.
The distance between the intersections adjacent to each other in the longitudinal direction of the metal wire is larger on the outer diameter side than on the inner diameter side. Therefore, the non-intersecting portion located on the outer diameter side is more likely to enter another wire layer due to deformation than the non-intersecting portion located on the inner diameter side, and the axial contact portion is more likely to be formed.
<第四の実施態様>
 本態様に係る中空筒状体10において、異なる線材層Lを構成する金属線材20同士が軸方向に接触した軸方向接触部24は、巻き付け方向が同方向の金属線材同士により形成されていることを特徴とする。
 本態様においては、螺旋空間S内に、この螺旋空間と同方向に伸び、且つ該螺旋空間が属する線材層とは異なる線材層を構成する金属線材を進入させる。これにより、異なる線材層を構成する金属線材同士を軸方向に接触させて中空筒状体の軸方向強度を向上させる。
<Fourth embodiment>
In the hollow tubular body 10 according to this embodiment, the axial contact portion 24 in which the metal wires 20 constituting the different wire layers L are in contact with each other in the axial direction is formed by the metal wires having the same winding direction. It is characterized by.
In this embodiment, a metal wire that extends in the same direction as the spiral space and constitutes a wire layer different from the wire layer to which the spiral space belongs is made to enter into the spiral space S. As a result, the metal wires constituting the different wire layers are brought into axial contact with each other to improve the axial strength of the hollow cylindrical body.
<第五の実施態様>
 本態様に係る中空筒状体10の製造方法は、金属線材20を、螺旋状、且つ多層状に巻き付けて、隣接する線材層Lを構成する金属線材同士が径方向に接触した交差部22と、金属線材の長手方向に沿って隣接して離間配置された2つの交差部間に位置する非交差部23とが形成された中空筒状部材(前駆体30)を形成する線材巻付工程(ステップS2)と、交差部を構成する金属線材同士が固定的に接触した中空筒状部材を軸方向に圧縮する圧縮工程(ステップS3)と、を含む。
 圧縮工程では、少なくとも一部の非交差部23を、該非交差部の長手方向の両隣に位置する交差部22とは異なる線材層に属する金属線材と軸方向に接触するように変形させることを特徴とする。
<Fifth Embodiment>
In the method for manufacturing the hollow cylindrical body 10 according to this aspect, the metal wire 20 is wound spirally and in a multilayer shape, and the metal wires constituting the adjacent wire layer L are radially contacted with the intersection 22. , A wire winding step of forming a hollow cylindrical member (precursor 30) in which a non-intersecting portion 23 located between two intersecting portions arranged adjacent to each other along the longitudinal direction of the metal wire is formed. A step S2) and a compression step (step S3) of axially compressing the hollow cylindrical member in which the metal wires constituting the intersection are in fixed contact with each other are included.
The compression step is characterized in that at least a part of the non-intersection portion 23 is deformed so as to be in axial contact with a metal wire material belonging to a wire rod layer different from the intersection portion 22 located on both sides of the non-intersection portion in the longitudinal direction. And.
 中空筒状部材(前駆体30)に形成される交差部は、第一の実施態様に示したように、金属線材同士の摩擦力を利用して固定的に構成したものでもよいし、圧縮工程の前に実施する焼結等により金属線材同士を一体化することによって固定的に構成したものでもよい。
 仮に、焼結工程(ステップS4)を経ずに中空筒状体を作製する場合は、焼結工程を省略することによって、中空筒状体の製造コストが低減され、製造時間が短縮される。また、軸方向の強度を向上させた中空筒状体を、焼結が困難な金属によって作製することが可能である。
 本態様によれば、異なる線材層を構成する金属線材同士を軸方向に接触させたので、中空筒状体の軸方向における強度が向上する。
As shown in the first embodiment, the intersection formed in the hollow tubular member (precursor 30) may be fixedly configured by utilizing the frictional force between the metal wires, or may be a compression step. It may be fixedly configured by integrating the metal wires with each other by sintering or the like performed before the above.
If the hollow tubular body is manufactured without going through the sintering step (step S4), the manufacturing cost of the hollow tubular body is reduced and the manufacturing time is shortened by omitting the sintering step. Further, it is possible to fabricate a hollow cylindrical body having improved axial strength from a metal that is difficult to sinter.
According to this aspect, since the metal wires constituting the different wire rod layers are brought into contact with each other in the axial direction, the strength of the hollow tubular body in the axial direction is improved.
<第六の実施態様>
 本態様に係る中空筒状体10の製造方法において、圧縮工程(ステップS3)では、少なくとも一部の非交差部23が該非交差部の長手方向の両隣に位置する交差部22とは異なる線材層Lに進入するように変形させることを特徴とする。
 本態様においては、非交差部を該非交差部が属する線材層とは異なる線材層に進入するように変形させて、異なる線材層を構成する金属線材20同士を軸方向に接触させたので、中空筒状体の軸方向における強度が向上する。
<Sixth Embodiment>
In the method for manufacturing the hollow tubular body 10 according to this aspect, in the compression step (step S3), at least a part of the non-intersection portion 23 is a wire rod layer different from the intersection portion 22 located on both sides in the longitudinal direction of the non-intersection portion. It is characterized in that it is deformed so as to enter L.
In this embodiment, the non-intersection portion is deformed so as to enter a wire rod layer different from the wire rod layer to which the non-intersection portion belongs, and the metal wire rods 20 constituting the different wire rod layers are brought into axial contact with each other. The strength of the tubular body in the axial direction is improved.
<第七の実施態様>
 本態様に係る中空筒状体10の製造方法の線材巻付工程(ステップS2)において金属線材20に付与される張力は、圧縮工程(ステップS3)の前後において、金属線材同士が交差部22において接触した状態を維持できる大きさに設定されることを特徴とする。
 本態様における中空筒状部材(前駆体30)に形成される交差部は、金属線材同士の摩擦力を利用して固定的に構成される。中空筒状体の製造工程中に焼結工程(ステップS4)を含まなくても、軸方向における強度を向上させた中空筒状体を得ることができる。焼結工程を省略すれば、中空筒状体の製造コストが低減され、製造時間が短縮されるという効果を得られる。また、焼結が困難な金属から、軸方向の強度を向上させた中空筒状体を作製することが可能である。
<Seventh Embodiment>
The tension applied to the metal wire 20 in the wire winding step (step S2) of the method for manufacturing the hollow tubular body 10 according to this embodiment is such that the metal wires meet each other at the intersection 22 before and after the compression step (step S3). It is characterized in that it is set to a size that can maintain a contact state.
The intersection formed in the hollow tubular member (precursor 30) in this embodiment is fixedly formed by utilizing the frictional force between the metal wires. Even if the sintering step (step S4) is not included in the manufacturing process of the hollow tubular body, the hollow tubular body having improved strength in the axial direction can be obtained. If the sintering step is omitted, the manufacturing cost of the hollow cylindrical body can be reduced, and the manufacturing time can be shortened. In addition, it is possible to produce a hollow cylindrical body having improved axial strength from a metal that is difficult to sinter.
<第八の実施態様>
 本態様に係る中空筒状体10の製造方法において、中空筒状部材(前駆体30)からの変形量は、交差部22よりも非交差部23の方が大きいことを特徴とする。
 中空筒状体は、中空筒状部材の圧縮変形時に変形が制限される交差部と、中空筒状部材の圧縮変形によって大きく変形可能な非交差部とを有する。非交差部は変形による中空筒状体の性状改変に大きく寄与する。本態様においては非交差部を変形させることによって、異なる線材層Lを構成する金属線材同士が軸方向に接触した軸方向接触部24を形成する。軸方向接触部を形成することによって中空筒状体の軸方向強度を向上させている。
<Eighth embodiment>
In the method for manufacturing a hollow tubular body 10 according to this aspect, the amount of deformation from the hollow tubular member (precursor 30) is larger in the non-intersection portion 23 than in the intersection portion 22.
The hollow cylindrical body has an intersecting portion whose deformation is limited when the hollow tubular member is compressively deformed, and a non-intersecting portion which is largely deformable by the compressive deformation of the hollow tubular member. The non-intersecting portion greatly contributes to the modification of the properties of the hollow cylindrical body due to deformation. In this embodiment, by deforming the non-intersecting portion, the axial contact portion 24 in which the metal wires constituting the different wire rod layers L are in axial contact with each other is formed. By forming the axial contact portion, the axial strength of the hollow cylindrical body is improved.
<第九の実施態様>
 本態様に係る中空筒状体10の製造方法の圧縮工程(ステップS3)において中空筒状部材(前駆体30)を成形する圧縮成形用型300は、中空筒状部材の外径の拡大と内径の縮小の少なくとも一方を実行可能な形状を有することを特徴とする。
 即ち、圧縮成形用型は、中空筒状部材との間で、中空筒状部材の外径の拡大と内径の縮小の少なくとも一方を実行可能な隙間を有している。圧縮成形用型は、単に内外径の変化量を制御するだけではなく、非交差部23の変形態様を制御する手段として機能する。
 本態様によれば、非交差部の変形態様を適宜に制御して、所望の性状を有する中空筒状部材を得ることができる。
<Ninth embodiment>
In the compression step (step S3) of the method for manufacturing the hollow tubular body 10 according to this embodiment, the compression molding mold 300 for molding the hollow tubular member (precursor 30) has an enlarged outer diameter and an inner diameter of the hollow tubular member. It is characterized by having a shape capable of performing at least one of the reductions of.
That is, the compression molding die has a gap between the hollow cylindrical member and the hollow tubular member that can perform at least one of expansion of the outer diameter and reduction of the inner diameter of the hollow tubular member. The compression molding mold not only controls the amount of change in the inner and outer diameters, but also functions as a means for controlling the deformation mode of the non-intersecting portion 23.
According to this aspect, it is possible to obtain a hollow cylindrical member having desired properties by appropriately controlling the deformation mode of the non-intersecting portion.
 L…線材層、S…螺旋空間、10…中空筒状体、11…中空部、20…金属線材、21…金属素線、22…交差部、23…非交差部、24…軸方向接触部、30…前駆体(中空筒状部材)、31…中空部、40…参考例、100…製造装置、110…圧延装置、111a、111b…圧延ローラ、112…加圧部、120…テンションユニット、121…固定ローラ、122…可動ローラ、130…巻付装置、131…心棒、132…ガイド部材、140…搬送ローラ、150…バッファユニット、151…固定ローラ、152…可動ローラ、200…ガス発生器、201…ハウジング、203…点火器、205…燃焼室、207…ガス発生剤、209…カップ部材、211…ガス通過孔、213…開口部、215…ディフューザ、217…ケース、217a…底面、219…ガス放出孔、300…圧縮成形用型、310…キャビティ、311…圧縮空間、313…外筒、315…柱状体、317…底板、320…押型、321…挿通部 L ... Wire layer, S ... Spiral space, 10 ... Hollow cylinder, 11 ... Hollow part, 20 ... Metal wire, 21 ... Metal wire, 22 ... Crossed part, 23 ... Non-crossed part, 24 ... Axial contact part , 30 ... precursor (hollow tubular member), 31 ... hollow portion, 40 ... reference example, 100 ... manufacturing apparatus, 110 ... rolling apparatus, 111a, 111b ... rolling roller, 112 ... pressurizing portion, 120 ... tension unit, 121 ... fixed roller, 122 ... movable roller, 130 ... winding device, 131 ... mandrel, 132 ... guide member, 140 ... transfer roller, 150 ... buffer unit, 151 ... fixed roller, 152 ... movable roller, 200 ... gas generator , 201 ... housing, 203 ... igniter, 205 ... combustion chamber, 207 ... gas generator, 209 ... cup member, 211 ... gas passage hole, 213 ... opening, 215 ... diffuser, 217 ... case, 217a ... bottom surface, 219. ... gas discharge hole, 300 ... compression molding mold, 310 ... cavity, 311 ... compression space, 313 ... outer cylinder, 315 ... columnar body, 317 ... bottom plate, 320 ... stamp, 321 ... insertion part

Claims (9)

  1.  金属線材が螺旋状、且つ多層状に巻き付けられており、隣接する線材層を構成する前記金属線材同士が径方向に固定的に接触した交差部と、前記金属線材の長手方向に沿って隣接して離間配置された2つの前記交差部間に位置する非交差部とが形成された中空筒状部材を変形させて得られる中空筒状体であって、
     少なくとも一部の前記非交差部は、該非交差部の長手方向の両隣に位置する前記交差部とは異なる線材層に進入しており、該非交差部が属する線材層とは異なる線材層に属する前記金属線材と軸方向に接触するように変形されていることを特徴とする中空筒状体。
    The metal wire is spirally and multi-layered, and is adjacent to the intersection where the metal wires constituting the adjacent wire layers are in fixed contact with each other in the radial direction along the longitudinal direction of the metal wire. It is a hollow cylindrical body obtained by deforming a hollow cylindrical member in which a non-intersecting portion located between the two intersecting portions arranged apart from each other is formed.
    The at least a part of the non-intersection portion has entered a wire rod layer different from the intersection portion located on both sides in the longitudinal direction of the non-intersection portion, and belongs to a wire rod layer different from the wire rod layer to which the non-intersection portion belongs. A hollow cylindrical body characterized in that it is deformed so as to be in axial contact with a metal wire.
  2.  前記交差部における金属線材同士の接触状態は前記変形の前後において維持されていることを特徴とする請求項1に記載の中空筒状体。 The hollow cylindrical body according to claim 1, wherein the contact state between the metal wires at the intersection is maintained before and after the deformation.
  3.  異なる前記線材層を構成する前記金属線材同士が軸方向に接触した軸方向接触部の数は、内径側から外径側に向かうに連れて増大することを特徴とする請求項1又は2に記載の中空筒状体。 The invention according to claim 1 or 2, wherein the number of axial contact portions in which the metal wire rods constituting the different wire rod layers are in axial contact with each other increases from the inner diameter side to the outer diameter side. Hollow tubular body.
  4.  異なる前記線材層を構成する前記金属線材同士が軸方向に接触した軸方向接触部は、巻き付け方向が同方向の前記金属線材同士により形成されていることを特徴とする請求項1乃至3の何れか一項に記載の中空筒状体。 Any of claims 1 to 3, wherein the axial contact portion in which the metal wires constituting the different wire layer are in contact with each other in the axial direction is formed by the metal wires having the same winding direction. The hollow tubular body according to item 1.
  5.  金属線材を、螺旋状、且つ多層状に巻き付けて、隣接する線材層を構成する前記金属線材同士が径方向に接触した交差部と、前記金属線材の長手方向に沿って隣接して離間配置された2つの前記交差部間に位置する非交差部とが形成された中空筒状部材を形成する線材巻付工程と、
     前記交差部を構成する前記金属線材同士が固定的に接触した前記中空筒状部材を軸方向に圧縮する圧縮工程と、を含み、
     前記圧縮工程では、少なくとも一部の前記非交差部を、該非交差部の長手方向の両隣に位置する前記交差部とは異なる線材層に属する前記金属線材と軸方向に接触するように変形させることを特徴とする中空筒状体の製造方法。
    The metal wire is wound spirally and in a multi-layered manner, and is arranged adjacently and separately along the longitudinal direction of the metal wire from the intersection where the metal wires constituting the adjacent wire layers are in contact with each other in the radial direction. A wire winding step of forming a hollow tubular member in which a non-intersection portion located between the two intersections is formed, and a wire winding step.
    A compression step of axially compressing the hollow tubular member in which the metal wires constituting the intersection are in fixed contact with each other is included.
    In the compression step, at least a part of the non-intersection portion is deformed so as to be in axial contact with the metal wire rod belonging to a wire rod layer different from the intersection portion located on both sides of the non-intersection portion in the longitudinal direction. A method for manufacturing a hollow tubular body.
  6.  前記圧縮工程では、少なくとも一部の前記非交差部が該非交差部の長手方向の両隣に位置する前記交差部とは異なる線材層に進入するように変形させることを特徴とする請求項5に記載の中空筒状体の製造方法。 The fifth aspect of the present invention is characterized in that, in the compression step, at least a part of the non-intersections is deformed so as to enter a wire rod layer different from the intersections located on both sides of the non-intersections in the longitudinal direction. How to manufacture a hollow tubular body.
  7.  前記線材巻付工程において前記金属線材に付与される張力は、前記圧縮工程の前後において、前記金属線材同士が前記交差部において接触した状態を維持できる大きさに設定されることを特徴とする請求項5又は6に記載の中空筒状体の製造方法。 A claim characterized in that the tension applied to the metal wire in the wire winding step is set to a size capable of maintaining a state in which the metal wires are in contact with each other at the intersection before and after the compression step. Item 5. The method for manufacturing a hollow tubular body according to Item 5 or 6.
  8.  前記中空筒状部材からの変形量は、前記交差部よりも前記非交差部の方が大きいことを特徴とする請求項5乃至7の何れか一項に記載の中空筒状体の製造方法。 The method for manufacturing a hollow tubular body according to any one of claims 5 to 7, wherein the amount of deformation from the hollow tubular member is larger in the non-intersecting portion than in the intersecting portion.
  9.  前記圧縮工程において前記中空筒状部材を成形する圧縮成形用型は、前記中空筒状部材の外径の拡大と内径の縮小の少なくとも一方を実行可能な形状を有することを特徴とする請求項5乃至8の何れか一項に記載の中空筒状体の製造方法。 5. The compression molding mold for forming the hollow tubular member in the compression step is characterized by having a shape capable of at least one of expansion of the outer diameter and reduction of the inner diameter of the hollow tubular member. The method for producing a hollow cylindrical body according to any one of 8 to 8.
PCT/JP2020/039046 2020-10-16 2020-10-16 Hollow cylindrical body and method for manufacturing hollow cylindrical body WO2022079883A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/039046 WO2022079883A1 (en) 2020-10-16 2020-10-16 Hollow cylindrical body and method for manufacturing hollow cylindrical body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/039046 WO2022079883A1 (en) 2020-10-16 2020-10-16 Hollow cylindrical body and method for manufacturing hollow cylindrical body

Publications (1)

Publication Number Publication Date
WO2022079883A1 true WO2022079883A1 (en) 2022-04-21

Family

ID=81208963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039046 WO2022079883A1 (en) 2020-10-16 2020-10-16 Hollow cylindrical body and method for manufacturing hollow cylindrical body

Country Status (1)

Country Link
WO (1) WO2022079883A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136729A (en) * 1993-11-19 1995-05-30 Shinko Kosen Kogyo Kk Air permeable compression molding and its production
JP2005193138A (en) * 2004-01-07 2005-07-21 Daicel Chem Ind Ltd Filter for gas generator
JP2005212606A (en) * 2004-01-29 2005-08-11 Chuo Spring Co Ltd Filtering member for inflator, and method for manufacturing the same
JP2006110459A (en) * 2004-10-14 2006-04-27 Mitsui Eng & Shipbuild Co Ltd Exhaust gas filter
JP2008272746A (en) * 2007-04-26 2008-11-13 Mitsui Eng & Shipbuild Co Ltd Method for manufacturing filter for exhaust gas, and filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136729A (en) * 1993-11-19 1995-05-30 Shinko Kosen Kogyo Kk Air permeable compression molding and its production
JP2005193138A (en) * 2004-01-07 2005-07-21 Daicel Chem Ind Ltd Filter for gas generator
JP2005212606A (en) * 2004-01-29 2005-08-11 Chuo Spring Co Ltd Filtering member for inflator, and method for manufacturing the same
JP2006110459A (en) * 2004-10-14 2006-04-27 Mitsui Eng & Shipbuild Co Ltd Exhaust gas filter
JP2008272746A (en) * 2007-04-26 2008-11-13 Mitsui Eng & Shipbuild Co Ltd Method for manufacturing filter for exhaust gas, and filter

Similar Documents

Publication Publication Date Title
JP6541865B2 (en) Rolling apparatus and manufacturing apparatus for hollow cylindrical body
JP4731497B2 (en) Camshaft and manufacturing method thereof
JP2008509005A (en) Method and apparatus for manufacturing a rim bed by cold forming
WO2022079883A1 (en) Hollow cylindrical body and method for manufacturing hollow cylindrical body
JP4370177B2 (en) Filtration member for inflator and method for producing filtration member for inflator
WO2002024366A1 (en) Method of forming cold diametrally reducing roll for metal pipe and metal pipe formed by the method
JP7313681B2 (en) HOLLOW CYLINDER AND METHOD FOR MANUFACTURING HOLLOW CYLINDER
US5407120A (en) Rotary swaging of gas generator filters
EP1889669B1 (en) Drawing rolling method by mandrel mill
US20150322842A1 (en) Sub-muffler and manufacturing method of sub-muffler
US9968984B2 (en) Porous metal body manufacturing method and porous metal body
EP2942121B1 (en) Sub-muffler and manufacturing method of sub-muffler
JP4199048B2 (en) Filtration member manufacturing method
JP4282084B2 (en) Method for manufacturing sintered parts
JP2001047127A (en) Manufacture of intermediate drawn tube
JP3217178U (en) Titanium tube
JPS63286220A (en) Production of electric resistance welded tube
JP5559515B2 (en) Metal wire manufacturing method
JP2004202554A (en) Method for straightening metallic tube, straightening roll and manufacturing apparatus
JP2023040669A (en) Hollow cylindrical filter, and manufacturing method
JP2020001037A (en) Metallic porous body, metallic filter and manufacturing method of metallic porous body
JP2021030270A (en) Manufacturing method of gear with crowning and manufacturing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20957712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP