WO2022079763A1 - Refrigeration cycle device, air conditioner, and heat exchanger - Google Patents

Refrigeration cycle device, air conditioner, and heat exchanger Download PDF

Info

Publication number
WO2022079763A1
WO2022079763A1 PCT/JP2020/038481 JP2020038481W WO2022079763A1 WO 2022079763 A1 WO2022079763 A1 WO 2022079763A1 JP 2020038481 W JP2020038481 W JP 2020038481W WO 2022079763 A1 WO2022079763 A1 WO 2022079763A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
flow
pipe
heat transfer
Prior art date
Application number
PCT/JP2020/038481
Other languages
French (fr)
Japanese (ja)
Inventor
良太 湯浅
宗希 石山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022557235A priority Critical patent/JPWO2022079763A5/en
Priority to US18/041,592 priority patent/US20230288149A1/en
Priority to CN202080105936.4A priority patent/CN116249870A/en
Priority to EP20957592.7A priority patent/EP4227607A4/en
Priority to PCT/JP2020/038481 priority patent/WO2022079763A1/en
Publication of WO2022079763A1 publication Critical patent/WO2022079763A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures

Definitions

  • This disclosure relates to refrigeration cycle devices, air conditioners, and heat exchangers.
  • Patent Document 1 discloses a heat exchanger used in a refrigeration cycle apparatus.
  • a groove is provided on the inner surface of the heat transfer tube.
  • the surface area on the inner surface of the pipe is increased, the fluid is agitated, and the heat transfer performance of the heat exchanger is improved (see Patent Document 1).
  • Patent Document 2 also discloses such a heat exchanger.
  • this heat exchanger at least two types of spiral grooves having different groove depths are provided on the inner surface of the heat transfer tube, and the groove depth is reduced on the fluid inlet side of the heat transfer tube in consideration of heat transfer performance and pressure loss. , It is enlarged on the exit side (see Patent Document 2).
  • incompatible oil refrigerating machine oil having weak compatibility with liquid refrigerant
  • the incompatible oil is a refrigerating machine oil that has a small amount of mutual dissolution with a refrigerant and is easy to separate into two layers, as opposed to a "phase-dissolved oil” having a large amount of mutual dissolution with a refrigerant.
  • the flow mode of the refrigerant becomes a circular flow or a circular spray flow on the downstream side where the dryness of the refrigerant becomes high, and the liquid phase is pushed by the wall surface and flows along the pipe wall. , The gas phase flows through the center of the tube. Therefore, when incompatible oil is used in the refrigeration cycle apparatus, the oil separated into two layers on the downstream side may form an oil film on the pipe wall and stay there due to its high viscosity. When an oil film is formed on the tube wall, the heat transfer performance of the heat exchanger is lowered and the pressure loss is increased.
  • the present disclosure has been made to solve such a problem, and an object of the present disclosure is to reduce the heat transfer performance of the low pressure side heat exchanger in a refrigeration cycle apparatus in which incompatible oil is used as the refrigerating machine oil. It is to suppress the increase in pressure loss.
  • the refrigerating cycle apparatus of the present disclosure is a refrigerating cycle apparatus in which an incompatible oil is used for the refrigerating machine oil, and includes a compressor that compresses the refrigerant and a first heat exchanger that condenses the refrigerant output from the compressor.
  • a decompression device for depressurizing the refrigerant output from the first heat exchanger and a second heat exchanger for evaporating the refrigerant output from the decompression device and outputting the refrigerant to the compressor are provided.
  • the second heat exchanger includes a heat transfer tube having a groove formed on the inner surface of the tube. The groove of the heat transfer tube is formed so that the surface area inside the tube per unit length on the downstream side of the heat transfer tube is smaller than the surface area inside the tube per unit length on the upstream side of the heat transfer tube.
  • this refrigeration cycle device it is possible to suppress a decrease in heat transfer performance and an increase in pressure loss of the second heat exchanger (low pressure side heat exchanger).
  • FIG. It is an overall block diagram of the air conditioner shown as an example of the refrigeration cycle apparatus according to Embodiment 1.
  • FIG. It is a figure which showed the flow of the refrigerant in an air conditioner. It is a figure which showed the flow of the refrigerant at the time of a heating operation. It is a figure which shows roughly the influence of the oil circulation rate on the capacity ratio of a refrigeration cycle. It is a figure which shows typically the state of the refrigerant and the refrigerating machine oil flowing through the heat transfer tube of a low pressure side heat exchanger when an incompatible oil is used as a refrigerating machine oil. It is a Baker diagram which shows the flow mode of the gas-liquid two-phase refrigerant flowing through a heat transfer tube.
  • FIG. 1 It is a figure which conceptually explains the internal structure of the heat transfer tube in the indoor heat exchanger shown in FIG. 1. It is a figure which shows an example of the cross section in the 1st part of a heat transfer tube. It is a figure which shows an example of the cross section in the 2nd part of a heat transfer tube. It is a figure which shows an example of the specific structure of the room heat exchanger shown in FIG. It is a block diagram which shows an example of the hardware composition of a control device. It is a flowchart explaining an example of the process executed by the control device in Embodiment 2. It is a flowchart explaining an example of the process executed by the control apparatus in the modification 1 of Embodiment 2.
  • FIG. 1 is an overall configuration diagram of an air conditioner shown as an example of a refrigeration cycle apparatus according to the first embodiment.
  • the air conditioner 1 includes an outdoor unit 2 and an indoor unit 3.
  • the indoor unit 3 is installed in a target space (indoor) where air conditioning is performed by the air conditioner 1, and the outdoor unit 2 is installed outside the target space (for example, outdoors).
  • the outdoor unit 2 includes a compressor 10, a four-way valve 20, an outdoor heat exchanger 30, a fan 32, a decompression device 40, pipes 62 to 66, 72, temperature sensors 81 to 84, and a control device 90.
  • the indoor unit 3 includes an indoor heat exchanger 50, a fan 52, and temperature sensors 85 and 86.
  • the outdoor unit 2 and the indoor unit 3 are connected to each other through pipes 68 and 70.
  • the pipe 62 connects the discharge port of the compressor 10 and the port p1 of the four-way valve 20.
  • the pipe 64 connects the port p2 of the four-way valve 20 and the outdoor heat exchanger 30.
  • the pipe 66 connects the outdoor heat exchanger 30 and the decompression device 40.
  • the pipe 68 connects the decompression device 40 and the indoor heat exchanger 50.
  • the pipe 70 connects the indoor heat exchanger 50 and the port p3 of the four-way valve 20.
  • the pipe 72 connects the port p4 of the four-way valve 20 and the suction port of the compressor 10.
  • the compressor 10 compresses the refrigerant sucked from the pipe 72 and outputs it to the pipe 62.
  • the compressor 10 is configured so that the operating frequency can be adjusted according to the control signal from the control device 90.
  • the output of the compressor 10 is adjusted by adjusting the operating frequency of the compressor 10.
  • Various types of compressors 10 can be adopted, and for example, rotary type, reciprocating type, scroll type, screw type and the like can be adopted.
  • the four-way valve 20 communicates port p1 and port p2, and communicates port p3 and port p4. As a result, the pipe 62 and the pipe 64 are connected, and the pipe 70 and the pipe 72 are connected.
  • the four-way valve 20 can switch the connection state of the ports p1 to p4 according to the control signal from the control device 90. That is, during the heating operation, the four-way valve 20 communicates the port p1 and the port p3, and communicates the port p2 and the port p4. As a result, during the heating operation, the pipe 62 and the pipe 70 are connected, and the pipe 64 and the pipe 72 are connected.
  • the outdoor heat exchanger 30 is configured such that the refrigerant flowing through the heat transfer tube provided inside exchanges heat with the outside air.
  • the high-temperature and high-pressure superheated steam (refrigerant) flowing from the pipe 64 is condensed and liquefied by exchanging heat (heat dissipation) with the outside air, and the liquid refrigerant is output to the pipe 66.
  • the refrigerant flowing from the pipe 66 into the outdoor heat exchanger 30 evaporates by exchanging heat (heat absorption) with the outside air in the outdoor heat exchanger 30, and becomes superheated steam, which is output to the pipe 64.
  • the fan 32 is attached to the outdoor heat exchanger 30 and blows outside air to the outdoor heat exchanger 30.
  • the pressure reducing device 40 is composed of, for example, an electronic expansion valve, and the opening degree Op is adjusted according to a control signal from the control device 90.
  • the opening degree Op changes in the closing direction
  • the refrigerant pressure on the exit side of the decompression device 40 decreases, and the dryness of the refrigerant increases.
  • the opening degree Op changes in the opening direction
  • the refrigerant pressure on the exit side of the decompression device 40 increases, and the dryness of the refrigerant decreases.
  • the decompression device 40 decompresses the refrigerant output from the outdoor heat exchanger 30 to the pipe 66 and outputs the refrigerant to the pipe 68.
  • the decompression device 40 decompresses the refrigerant output from the indoor heat exchanger 50 to the pipe 68 and outputs the refrigerant to the pipe 66.
  • the indoor heat exchanger 50 is configured such that the refrigerant flowing through the heat transfer tube provided inside exchanges heat with the air in the target space.
  • the refrigerant flowing from the pipe 68 evaporates by performing heat exchange (endothermic) with the air in the target space to become superheated steam, which is output to the pipe 70.
  • the high-temperature and high-pressure superheated steam (refrigerator) flowing from the pipe 70 into the indoor heat exchanger 50 is condensed by exchanging heat (heat dissipation) with the air in the target space in the indoor heat exchanger 50. And liquefies, and the liquid refrigerant is output to the pipe 68.
  • the fan 52 is attached to the indoor heat exchanger 50 and blows air to the indoor heat exchanger 50.
  • the temperature sensor 81 detects the temperature T1 of the refrigerant on the inlet side (exit side in the heating operation) of the outdoor heat exchanger 30, and outputs the detected value to the control device 90.
  • the temperature sensor 82 detects the temperature T2 of the refrigerant on the outlet side (inside in the heating operation) of the outdoor heat exchanger 30, and outputs the detected value to the control device 90.
  • the temperature sensor 83 detects the temperature T3 (condensation temperature in the cooling operation and evaporation temperature in the heating operation) of the heat transfer tube of the outdoor heat exchanger 30 and outputs the detected value to the control device 90.
  • the temperature sensor 84 detects the temperature T4 (outside air temperature) of the place where the outdoor unit 2 (outdoor heat exchanger 30) is installed, and outputs the detected value to the control device 90.
  • the temperature sensor 85 detects the temperature T5 (evaporation temperature in the cooling operation and the condensation temperature in the heating operation) of the heat transfer tube of the indoor heat exchanger 50, and outputs the detected value to the control device 90.
  • the temperature sensor 86 detects the temperature T6 (indoor temperature) of the target space in which the indoor unit 3 (indoor heat exchanger 50) is installed, and outputs the detected value to the control device 90.
  • the control device 90 controls each device in the air conditioner 1. As the main control executed by the control device 90, the control device 90 sets the operating frequency of the compressor 10 and the operating frequency of the compressor 10 so that the air conditioner 1 performs the desired air conditioning operation based on the detected values of the temperature sensors 81 to 86 and the like. The opening degree Op of the decompression device 40 is controlled. Further, the control device 90 switches the state of the four-way valve 20 depending on whether the cooling operation or the heating operation is executed.
  • FIG. 2 is a diagram showing the flow of the refrigerant in the air conditioner 1.
  • FIG. 2 shows the flow of the refrigerant during the cooling operation.
  • the refrigerant brought into a high-temperature and high-pressure steam state by the compressor 10 is supplied to the outdoor heat exchanger 30 via the four-way valve 20.
  • the refrigerant is condensed (liquefied) by exchanging heat (dissipating) with the outside air in the outdoor heat exchanger 30, and becomes a high-pressure liquid refrigerant.
  • the refrigerant that has passed through the outdoor heat exchanger 30 is decompressed by the decompression device 40, becomes a low-temperature low-pressure refrigerant, and is supplied to the indoor heat exchanger 50. Then, in the indoor heat exchanger 50 (low pressure side heat exchanger), the refrigerant evaporates (vaporizes) by exchanging heat (heat absorption) with the air in the target space to become a low pressure gas refrigerant. After that, the refrigerant is sucked into the compressor 10 again via the four-way valve 20.
  • the four-way valve 20 is switched so that the flow of the refrigerant is in the opposite direction to that during the cooling operation. Therefore, in this case, the indoor heat exchanger 50 is on the high pressure side and the outdoor heat exchanger 30 is on the low pressure side. 1), and the indoor heat exchanger 50 will be referred to as a low pressure side heat exchanger (second heat exchanger).
  • the refrigeration cycle device by providing a groove (unevenness) on the inner surface of the heat transfer tube of the heat exchanger, the surface area per unit length of the tube inner surface (hereinafter referred to as “tube inner surface area”) is increased, and the heat exchanger is used.
  • the heat transfer performance can be improved.
  • oil (refrigerator oil) exists in the compressor in order to ensure the lubricity of the compressor.
  • the refrigerating machine oil is taken out to the refrigerant circuit together with the flow in which the refrigerant is output from the compressor to the refrigerant circuit.
  • the oil taken out to the refrigerant circuit circulates in the refrigerant circuit together with the refrigerant and returns to the compressor.
  • the amount of the refrigerant dissolved in the refrigerating machine oil can be suppressed, and the amount of the refrigerant sealed in the refrigerating cycle device can be reduced. Can be done.
  • FIG. 4 is a diagram schematically showing the effect of the oil circulation rate on the capacity ratio of the refrigeration cycle.
  • the oil circulation rate is an index showing the amount of refrigerating machine oil brought out to the refrigerant circuit. For example, the weight ratio of the refrigerant circulating in the refrigerant circuit to the refrigerating machine oil (the weight of oil with respect to the weight of the refrigerant (wt%)). )). The higher the oil circulation rate, the more oil is taken out from the compressor to the refrigerant circuit.
  • the capacity ratio is an index showing the degree of decrease in the capacity of the refrigeration cycle under certain operating conditions. In this example, the capacity of the refrigeration cycle when the oil circulation rate is 0 is set to 1, and the capacity ratio corresponds to the oil circulation rate. The capacity ratio of the refrigeration cycle is shown.
  • the capacity ratio of the refrigeration cycle decreases.
  • incompatible oil is used as the refrigerating machine oil
  • the oil circulation rate becomes high, so that the refrigerating cycle capacity may decrease.
  • the reason why the capacity ratio of the refrigeration cycle decreases when the oil circulation rate increases and the reason why the oil circulation rate increases when incompatible oil is used will be described later.
  • FIG. 5 is a diagram schematically showing the state of the refrigerant and the refrigerating machine oil flowing through the heat transfer tube of the low pressure side heat exchanger when the incompatible oil is used as the refrigerating machine oil.
  • the refrigerant flows as a gas-liquid two-phase flow of the liquid refrigerant 102 and the gas refrigerant 104.
  • the incompatible refrigerating machine oil becomes oil droplets 106 and exists in the liquid refrigerant 102.
  • the flow mode of the refrigerant is often slag flow or stratified flow.
  • the flow mode represents the form of a flow that is judged to belong to the same category by visually classifying the flow of gas-liquid two-phase flow flowing through a pipe.
  • the flow mode is a slag flow or a stratified flow
  • the oil droplet 106 in the liquid refrigerant 102 is flowed toward the downstream together with the liquid refrigerant 102.
  • the dryness of the refrigerant increases, and the flow mode often changes to a circular flow or a circular spray flow.
  • FIG. 6 is a Baker diagram showing the flow mode of the gas-liquid two-phase refrigerant flowing through the heat transfer tube.
  • the vertical axis indicates the amount corresponding to the flow rate of the refrigerant
  • the horizontal axis indicates the amount corresponding to the ratio of the liquid phase flow to the gas phase flow.
  • typical flow modes include bubble flow, slag flow, stratified flow, circular flow, circular spray flow, and the like.
  • the point cloud 95 is a plot of the state of the refrigerant for each degree of dryness x of the refrigerant flowing through the heat transfer tube. In this example, it can be seen that when the dryness x is low, the refrigerant flows as a slag flow, and when the dryness x is high, the refrigerant flows as a circular flow. Then, in this example, it can be seen that the flow mode changes from the slag flow to the circular flow when the dryness x is about 0.2.
  • the degree of dryness in which the flow mode of the refrigerant changes can be calculated from, for example, the temperature of the heat exchanger (evaporation temperature), the flow rate of the refrigerant, the inner diameter of the heat transfer tube, and the like. Further, from the enthalpies of the saturated liquid and the saturated vapor at the evaporation temperature and the calculated dryness (dryness at which the flow mode changes), the region (position) where the flow mode changes in the heat transfer tube can be estimated. ..
  • the flow mode of the refrigerant becomes a circular flow or a circular spray flow, and the liquid refrigerant 102 is pushed by the wall surface and flows along the pipe wall. Therefore, when an incompatible oil is used as the refrigerating machine oil, the oil separated into two layers on the downstream side may form an oil film 108 on the pipe wall due to its high viscosity. In particular, when the groove provided on the inner surface of the heat transfer tube is deepened in order to enhance the heat transfer performance, the oil film 108 is likely to be formed on the tube wall.
  • the oil film 108 is formed on the pipe wall, so that the oil stays in the heat transfer pipe, and as a result, the amount of oil returned to the compressor decreases and the oil circulation rate increases. Further, the formed oil film 108 increases the pressure loss when the refrigerant flows, hinders the heat transfer property between the refrigerant and the heat transfer tube, and lowers the heat transfer efficiency. Further, since the amount of oil returned to the compressor is reduced, the lubricity and reliability of the compressor may be lowered. As described above, when incompatible oil is used as the refrigerating machine oil, the oil circulation rate becomes high, and as a result, the capacity ratio of the refrigerating cycle may be significantly lowered.
  • incompatible oil is used as the refrigerating machine oil
  • the downstream side (highly dry) of the heat transfer tube is used.
  • Grooves (unevenness) on the inner surface of the pipe are formed so that the inner surface of the pipe on the (degree side) side is smaller than the inner surface surface of the pipe on the upstream side (low dryness side).
  • the heat transfer tube is composed of a first part on the upstream side and a second part on the downstream side, and the surface area inside the tube at the second part is smaller than the surface area inside the tube at the first part.
  • Surface grooves are formed.
  • the boundary between the first portion and the second portion is provided in a region where the flow mode of the refrigerant flowing through the heat transfer tube changes to a circular flow or a circular spray flow.
  • the boundary between the first part and the second part is determined by the APF (Annual Performance Factor, year-round energy consumption efficiency) of the air conditioner 1 in consideration of the heat transfer performance and pressure loss of the indoor heat exchanger 50. It may be set to the maximum position. That is, where the boundary is provided in a region where the flow mode of the refrigerant changes, for example, the APF does not set the position of the boundary from the region when the air conditioner 1 is operated under predetermined outside air conditions. The position of the boundary may be set from the above region when the air conditioner 1 is operated under the maximum condition. This makes it possible to save energy in the air conditioner 1.
  • APF Annual Performance Factor, year-round energy consumption efficiency
  • alkylbenzene oil is used as the incompatible refrigerating machine oil (incompatible oil).
  • the non-phase-dissolved oil that can be used is not limited to this, and other arts that can be understood by those skilled in the art as oils having a clearly smaller amount of mutual dissolution with the refrigerant than the phase-dissolved oil.
  • Refrigerating machine oil may be used.
  • FIG. 7 is a diagram conceptually explaining the internal configuration of the heat transfer tube in the indoor heat exchanger 50 shown in FIG.
  • FIG. 7 schematically shows a cross section of the heat transfer tube 100 along the refrigerant flow direction from the inlet 120 to the outlet 122 of the heat transfer tube 100.
  • the heat transfer tube 100 of the indoor heat exchanger 50 (low pressure side heat exchanger) is connected to the first portion 110 on the upstream side of the boundary 114.
  • a groove is formed on the inner peripheral surface of the heat transfer tube 100 in order to enhance the heat transfer property between the refrigerant flowing through the heat transfer tube 100 and the outside air.
  • FIG. 8 is a diagram showing an example of a cross section of the heat transfer tube 100 at the first portion 110. Further, FIG. 9 is a diagram showing an example of a cross section of the second portion 112 of the heat transfer tube 100.
  • the depth of the groove 118 formed on the inner peripheral surface of the second portion 112 is shallower than the depth of the groove 116 formed on the inner peripheral surface of the first portion 110. ..
  • the surface area of the inner surface of the pipe in the second portion 112 is smaller than the surface area of the inner surface of the pipe in the first portion 110.
  • the depth of the groove 118 formed on the inner peripheral surface of the second portion 112 may be substantially zero.
  • the boundary 114 between the first portion 110 and the second portion 112 is provided in a region where the flow mode of the refrigerant changes from a slag flow, a stratified flow, or the like to a circular flow or a circular spray flow. ..
  • the flow mode of the refrigerant changes from a slag flow, a stratified flow, or the like to a circular flow or a circular spray flow. ..
  • the decrease in the amount of oil returned to the compressor 10 is suppressed, it is possible to suppress the decrease in the lubricity and reliability of the compressor 10.
  • the first portion 110 whose flow mode is a slag flow, a stratified flow, or the like, the heat transfer efficiency can be ensured by
  • the position of the boundary 114 in the heat transfer tube 100 is set in a region where the flow mode of the refrigerant changes from a slag flow, a stratified flow, or the like to a circular flow or a circular spray flow.
  • the region (position) where the flow mode of the refrigerant changes in the heat transfer tube 100 can be estimated as follows, for example. That is, the dryness of the refrigerant whose flow mode changes from the temperature T5 (evaporation temperature) of the heat transfer tube of the indoor heat exchanger 50 detected by the temperature sensor 85, the flow rate of the refrigerant flowing through the refrigerant circuit, the inner diameter of the heat transfer tube 100, and the like. Can be calculated. Then, the region where the flow mode of the refrigerant changes is estimated from the enthalpies of the saturated liquid and the saturated vapor at the temperature T5 (evaporation temperature) and the calculated dryness (dryness at which the flow mode changes). can do.
  • the heat transfer tube 100 is actually composed of a plurality of pipes connected in series, and the first portion 110 and the second portion 112 are composed of pipe units. That is, where the position of the boundary 114 between the first portion 110 and the second portion 112 is set in the region where the flow mode of the refrigerant changes, the piping group constituting the first portion 110 and the second portion A plurality of pipes are configured so that the connection portion (boundary 114) with the pipe group constituting the portion 112 is included in the region where the flow mode of the refrigerant changes. In other words, the plurality of pipes are configured so that the boundary 114 is located at the connection portion of the pipes rather than in the middle of any of the pipes. As a result, it is not necessary to prepare a pipe whose internal surface area changes in the middle of the pipe, and the cost of parts can be suppressed.
  • FIG. 10 is a diagram showing an example of a specific configuration of the indoor heat exchanger 50 shown in FIG. 1.
  • the indoor heat exchanger 50 includes a plurality of pipes 124, 125, a plurality of connecting pipes 126, and a plurality of fins 128.
  • a plurality of pipes 124 and 125 are arranged in parallel at regular intervals.
  • the plurality of fins 128 are formed so as to surround each of the plurality of pipes 124 and 125.
  • the plurality of connecting pipes 126 connect the plurality of pipes 124, 125 arranged side by side in series by connecting the adjacent pipes 124 or 125 alternately on the left and right.
  • the plurality of pipes 124 and 125 correspond to the first portion 110 shown in FIG. 7, and the plurality of pipes 125 on the downstream side correspond to the second portion 110 shown in FIG. Corresponds to 112. That is, the surface area inside the pipe of each pipe 125 is smaller than the surface area inside the pipe of each pipe 124.
  • the connecting pipe 126 connecting the most downstream pipe 124 among the plurality of pipes 124 and the most upstream pipe 125 among the plurality of pipes 125 corresponds to the boundary 114 shown in FIG. 7.
  • the first embodiment it is possible to suppress a decrease in heat transfer performance and an increase in pressure loss of the indoor heat exchanger 50 (low pressure side heat exchanger).
  • Embodiment 2 In the indoor heat exchanger 50 (low pressure side heat exchanger), when the ambient environment such as the outside air temperature changes, the region (position) where the flow mode of the refrigerant changes to the annular flow or the annular spray flow changes. When the region where the flow mode of the refrigerant changes changes, the position of the boundary 114 between the first portion 110 and the second portion 112 of the heat transfer tube 100 becomes inconsistent, and an oil film is formed on the tube wall. Problems can occur.
  • control device 90 controls the air conditioner 1 so that the region (position) where the flow mode of the refrigerant changes approaches the boundary 114 between the first portion 110 and the second portion 112. Control the operating condition.
  • FIG. 11 is a block diagram showing an example of the hardware configuration of the control device 90.
  • the control device 90 includes a CPU (Central Processing Unit) 132, a RAM (Random Access Memory) 134, a ROM (Read Only Memory) 136, an input unit 138, a display unit 140, and I. It is configured to include the / F portion 142.
  • the RAM 134, ROM 136, input unit 138, display unit 140, and I / F unit 142 are connected to the CPU 132 via the bus 144.
  • the CPU 132 expands the program stored in the ROM 136 into the RAM 134 and executes it.
  • the program stored in the ROM 136 is a program in which the processing procedure of the control device 90 is described.
  • the air conditioner 1 executes control of each device in the air conditioner 1 according to these programs. It should be noted that these controls are not limited to processing by software, but can also be processed by dedicated hardware (electronic circuit).
  • FIG. 12 is a flowchart illustrating an example of processing executed by the control device 90.
  • this flowchart an example of a control processing procedure for matching a region where the flow mode of the refrigerant changes with the boundary 114 is shown.
  • the series of processes shown in this flowchart are repeatedly executed at a predetermined cycle during the operation of the air conditioner 1 (during the operation of the compressor 10).
  • control device 90 detects the flow mode of the refrigerant at the boundary 114 shown in FIG. 7 in the heat transfer tube 100 of the indoor heat exchanger 50 which is the heat exchanger on the low pressure side (step S10). ..
  • the flow mode of the refrigerant at the boundary 114 can be detected, for example, as follows.
  • Temperature) the temperature T4 (outside air temperature) of the place where the outdoor unit 2 (outdoor heat exchanger 30) is installed, the temperature T5 (evaporation temperature) of the heat transfer tube 100 of the indoor heat exchanger 50, and the indoor unit 3 (indoor heat).
  • the refrigerating cycle of the air conditioner 1 in the ph diagram (pressure-specific enthalpy diagram) can be obtained.
  • the dryness of the refrigerant at the position of the boundary 114 of the indoor heat exchanger 50 can be obtained. Then, by applying the obtained dryness to the Baker diagram shown in FIG. 6, the flow mode of the refrigerant at the boundary 114 can be detected (estimated).
  • the control device 90 determines whether the detected flow mode is a circular flow or a circular spray flow (step S20). Then, when it is determined that the flow mode is a circular flow or a circular spray flow (YES in step S20), the control device 90 increases the valve opening degree of the decompression device 40 (step S30).
  • the flow mode of the refrigerant at the boundary 114 is a circular flow or a circular spray flow
  • the change point of the flow mode in the indoor heat exchanger 50 is on the upstream side of the boundary 114.
  • step S20 determines whether the flow mode is a circular flow or a circular spray flow (NO in step S20).
  • the control device 90 reduces the valve opening degree of the decompression device 40 (step S40).
  • the change point of the flow mode in the indoor heat exchanger 50 is the boundary. It is on the downstream side of 114.
  • step S20 it may be determined whether the flow mode of the refrigerant is a slag flow or a stratified flow.
  • the process is shifted to step S40 to reduce the valve opening degree of the decompression device 40, and it is determined that the flow mode is not a slag flow or a stratified flow. If so, the process may be shifted to step S30 to increase the valve opening degree of the pressure reducing device 40.
  • the position of the boundary 114 between the first portion 110 and the second portion 112 of the heat transfer tube 100 It is possible to suppress the deviation from the region (position) where the flow mode of the refrigerant changes to the annular flow or the annular spray flow.
  • the region (position) where the flow mode of the refrigerant changes is brought closer to the boundary 114 by adjusting the valve opening degree of the decompression device 40, but instead of the decompression device 40, a compressor is used.
  • the operating frequency of 10 may be adjusted.
  • FIG. 13 is a flowchart illustrating an example of the process executed by the control device 90 of the modified example 1. This flowchart corresponds to the flowchart shown in FIG.
  • steps S110 and S120 are the same as the processes executed in steps S10 and S20 of FIG. 12, respectively.
  • step S120 when it is determined that the flow mode of the refrigerant is a circular flow or a circular spray flow (YES in step S120), the control device 90 lowers the operating frequency of the compressor 10 (step S130). As a result, the flow rate of the refrigerant flowing through the refrigerant circuit is reduced, and in the Baker diagram shown in FIG. 6, the point cloud 95 moves downward as a whole. As a result, the change point of the flow mode in the indoor heat exchanger 50 shifts to the downstream side and approaches the boundary 114.
  • step S120 determines whether the flow mode is a circular flow or a circular spray flow (NO in step S120).
  • the control device 90 raises the operating frequency of the compressor 10 (step S140).
  • the flow rate of the refrigerant flowing through the refrigerant circuit increases, and in the Baker diagram shown in FIG. 6, the point cloud 95 moves upward in the figure as a whole.
  • the change point of the flow mode in the indoor heat exchanger 50 shifts to the upstream side and approaches the boundary 114.
  • step S120 it may be determined whether the flow mode of the refrigerant is a slag flow or a stratified flow.
  • the process is shifted to step S140 to raise the operating frequency of the compressor 10, and it is determined that the flow mode is not a slag flow or a stratified flow. If so, the process may be shifted to step S130 to lower the operating frequency of the compressor 10.
  • the valve opening degree of the pressure reducing device 40 is adjusted, and in the first modification, the operating frequency of the compressor 10 is adjusted in order to bring the region (position) where the flow mode of the refrigerant changes closer to the boundary 114.
  • the capacity (rotational speed) of the fan 52 of the indoor heat exchanger 50 may be adjusted.
  • FIG. 14 is a flowchart illustrating an example of processing executed by the control device 90 of the modification 2. This flowchart also corresponds to the flowchart shown in FIG.
  • steps S210 and S220 are the same as the processes executed in steps S10 and S20 of FIG. 12, respectively.
  • step S220 when it is determined in step S220 that the flow mode of the refrigerant is a circular flow or a circular spray flow (YES in step S220), the control device 90 reduces the rotation speed of the fan 52 of the indoor heat exchanger 50 (YES in step S220).
  • Step S230 When the rotation speed of the fan 52 is lowered, the air volume of the fan 52 decreases.
  • the reduction in the air volume of the fan 52 has the same effect as the reduction in the flow rate of the refrigerant, that is, the reduction in the operating frequency of the compressor 10 has the same effect. Therefore, by lowering the rotation speed of the fan 52, the change point of the flow mode in the indoor heat exchanger 50 shifts to the downstream side and approaches the boundary 114.
  • step S220 determines whether the flow mode is a circular flow or a circular spray flow (NO in step S220). If it is determined in step S220 that the flow mode is not a circular flow or a circular spray flow (NO in step S220), the control device 90 increases the rotation speed of the fan 52 of the indoor heat exchanger 50 (step S240). .. As a result, the change point of the flow mode in the indoor heat exchanger 50 shifts to the upstream side and approaches the boundary 114.
  • step S220 it may be determined whether the flow mode of the refrigerant is a slag flow or a stratified flow.
  • the process was shifted to step S240 to increase the rotation speed of the fan 52, and it was determined that the flow mode was not a slag flow or a stratified flow. In that case, the process may be shifted to step S230 to reduce the rotation speed of the fan 52.
  • Embodiment 3 In the second embodiment and its modifications, the temperatures T1 to T6 detected by the temperature sensors 81 to 86 are used to detect the flow mode of the refrigerant at the boundary 114 of the heat transfer tube 100 of the indoor heat exchanger 50. bottom.
  • a sensor capable of detecting the flow mode of the refrigerant is arranged at the boundary 114, and the flow mode of the refrigerant at the boundary 114 is directly detected.
  • FIG. 15 is a diagram showing an arrangement of sensors for detecting the flow mode of the refrigerant in the indoor heat exchanger 50 in the third embodiment.
  • FIG. 15 corresponds to FIG. 7 described in the first embodiment.
  • the configuration of the heat transfer tube 100 is the same as that of the heat transfer tube shown in FIG. Then, in the third embodiment, the luminous intensity sensor 150 is arranged at the boundary 114 between the first portion 110 and the second portion 112.
  • the luminous intensity sensor 150 is a sensor for detecting the flow mode of the refrigerant flowing through the boundary 114 based on the detected luminous intensity when the refrigerant (gas-liquid two-phase flow) flowing through the boundary 114 is irradiated with light.
  • the detected luminous intensity may be the luminous intensity of transmitted light or the luminous intensity of reflected light. Utilizing the fact that the detected luminous intensity differs depending on the flow mode of the refrigerant, the flow mode of the refrigerant flowing through the boundary 114 is detected based on the detected luminous intensity.
  • the change point of the flow mode of the refrigerant approaches the boundary 114 according to the flowchart shown in FIG. 12, FIG. 13 or FIG. Be done.
  • the flow mode of the refrigerant flowing through the boundary 114 is detected by using the detection value of the luminous intensity sensor 150, and the position of the boundary 114 and the region (position) where the flow mode changes. Can be suppressed from diverging.
  • the sound wave sensor 160 may be arranged at the boundary 114, and the sound wave sensor 160 may detect the flow mode of the refrigerant at the boundary 114.
  • the sound wave sensor 160 is also arranged at the boundary 114 between the first portion 110 and the second portion 112.
  • the sound wave sensor 160 is a sensor for detecting the flow mode of the refrigerant flowing through the boundary 114 based on the detection wave when the sound wave is irradiated toward the refrigerant (gas-liquid two-phase flow) flowing through the boundary 114. Utilizing the fact that the detection wave differs depending on the flow mode of the refrigerant, the flow mode of the refrigerant flowing through the boundary 114 is detected based on sound waves.
  • the flow mode of the refrigerant at the boundary 114 is detected, and the decompression device 40 or the like is controlled so that the region (position) where the flow mode changes approaches the boundary 114.
  • the region (position) where the flow mode changes in the heat transfer tube 100 may be estimated, and the decompression device 40 or the like may be controlled so that the region approaches the boundary 114.
  • the region where the flow mode of the refrigerant changes depends on the enthalpies of the saturated liquid and the saturated vapor at the temperature (evaporation temperature) of the heat transfer tube 100 and the dryness of the refrigerant whose flow mode changes.
  • the changing region can be estimated.
  • the dryness of the refrigerant whose flow mode changes can be calculated from the temperature of the heat transfer tube 100 (evaporation temperature), the flow rate of the refrigerant flowing through the refrigerant circuit, the inner diameter of the heat transfer tube 100, and the like.
  • the air conditioner has been described as an example of the refrigeration cycle device, but the refrigeration cycle device according to the present disclosure is not limited to the air conditioner, and is not limited to the air conditioner, but is not limited to the air conditioner. It can also be applied to refrigeration cycle equipment used for cases and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Air Conditioning Control Device (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

An air conditioner (1) is a refrigeration cycle device in which incompatible oil is used as refrigerator oil, and comprises: a compressor (10) that compresses a refrigerant; a first heat exchanger (30) that condenses the refrigerant output from the compressor; a decompression device (40) that decompresses the refrigerant output from the first heat exchanger; and a second heat exchanger (50) that evaporates the refrigerant output from the decompression device and outputs the evaporated refrigerant to the compressor. The second heat exchanger includes a heat exchanger tube with a groove formed in the inner surface of the tube. The groove in the heat exchanger tube is formed so that the tube inner surface area on the downstream side of the heat exchanger tube is smaller than the tube inner surface area on the upstream side of the heat exchanger tube.

Description

冷凍サイクル装置、空気調和機、及び熱交換器Refrigeration cycle equipment, air conditioners, and heat exchangers
 本開示は、冷凍サイクル装置、空気調和機、及び熱交換器に関する。 This disclosure relates to refrigeration cycle devices, air conditioners, and heat exchangers.
 国際公開第2019/180817号パンフレット(特許文献1)は、冷凍サイクル装置に用いられる熱交換器を開示する。この熱交換器では、伝熱管の管内面に溝が設けられる。これにより、管内面における表面積増加や流体の攪拌等を図り、熱交換器の伝熱性能を高めている(特許文献1参照)。 International Publication No. 2019/180817 (Patent Document 1) discloses a heat exchanger used in a refrigeration cycle apparatus. In this heat exchanger, a groove is provided on the inner surface of the heat transfer tube. As a result, the surface area on the inner surface of the pipe is increased, the fluid is agitated, and the heat transfer performance of the heat exchanger is improved (see Patent Document 1).
 また、特開平4-45753号公報(特許文献2)も、そのような熱交換器を開示する。この熱交換器では、伝熱管の管内面に溝深さが異なる少なくとも2種類のらせん溝が設けられ、伝熱性能及び圧力損失を考慮して、伝熱管の流体入口側で溝深さを小さく、出口側で大きくしている(特許文献2参照)。 Further, Japanese Patent Application Laid-Open No. 4-45753 (Patent Document 2) also discloses such a heat exchanger. In this heat exchanger, at least two types of spiral grooves having different groove depths are provided on the inner surface of the heat transfer tube, and the groove depth is reduced on the fluid inlet side of the heat transfer tube in consideration of heat transfer performance and pressure loss. , It is enlarged on the exit side (see Patent Document 2).
国際公開第2019/180817号パンフレットInternational Publication No. 2019/180817 Pamphlet 特開平4-45753号公報Japanese Unexamined Patent Publication No. 4-45753
 液冷媒に対して弱い相溶性を有する冷凍機油(以下「非相溶油」と称する。)を用いることにより、冷凍機油に溶け込む冷媒量を抑えることで、冷凍サイクルに封入する冷媒量を削減することができる。なお、非相溶油とは、冷媒との相互の溶解量が多い「相溶油」に対して、冷媒との相互の溶解量が少なく二層分離しやすい冷凍機油であり、両者の間に明確な境界を定義することは難しいが、当業者であれば、非相溶油は、相溶油に比べて明らかに冷媒との相互の溶解量が少ない油であると理解できるものである。 By using refrigerating machine oil (hereinafter referred to as "incompatible oil") having weak compatibility with liquid refrigerant, the amount of refrigerant dissolved in the refrigerating machine oil is suppressed, and the amount of refrigerant enclosed in the refrigerating cycle is reduced. be able to. The incompatible oil is a refrigerating machine oil that has a small amount of mutual dissolution with a refrigerant and is easy to separate into two layers, as opposed to a "phase-dissolved oil" having a large amount of mutual dissolution with a refrigerant. Although it is difficult to define a clear boundary, those skilled in the art can understand that an incompatible oil is an oil in which the amount of mutual dissolution with a refrigerant is clearly smaller than that of a compatible oil.
 低圧側の熱交換器(蒸発器)では、冷媒の乾き度が高くなる下流側において、冷媒の流動様式が環状流又は環状噴霧流となり、液相は壁面に押しやられて管壁に沿って流れ、気相は管中心部を流れる。そのため、冷凍サイクル装置に非相溶油が用いられる場合、下流側で二層分離した油が、粘度が高いために管壁に油膜を形成して滞留する可能性がある。そして、管壁に油膜が形成されると、熱交換器の伝熱性能が低下するとともに圧力損失が増大する。 In the heat exchanger (evaporator) on the low pressure side, the flow mode of the refrigerant becomes a circular flow or a circular spray flow on the downstream side where the dryness of the refrigerant becomes high, and the liquid phase is pushed by the wall surface and flows along the pipe wall. , The gas phase flows through the center of the tube. Therefore, when incompatible oil is used in the refrigeration cycle apparatus, the oil separated into two layers on the downstream side may form an oil film on the pipe wall and stay there due to its high viscosity. When an oil film is formed on the tube wall, the heat transfer performance of the heat exchanger is lowered and the pressure loss is increased.
 本開示は、かかる問題を解決するためになされたものであり、本開示の目的は、冷凍機油に非相溶油が用いられる冷凍サイクル装置において、低圧側熱交換器の伝熱性能の低下及び圧力損失の増大を抑制することである。 The present disclosure has been made to solve such a problem, and an object of the present disclosure is to reduce the heat transfer performance of the low pressure side heat exchanger in a refrigeration cycle apparatus in which incompatible oil is used as the refrigerating machine oil. It is to suppress the increase in pressure loss.
 本開示の冷凍サイクル装置は、冷凍機油に非相溶油が用いられる冷凍サイクル装置であって、冷媒を圧縮する圧縮機と、圧縮機から出力される冷媒を凝縮する第1の熱交換器と、第1の熱交換器から出力される冷媒を減圧する減圧装置と、減圧装置から出力される冷媒を蒸発させて圧縮機へ出力する第2の熱交換器とを備える。第2の熱交換器は、管内面に溝が形成された伝熱管を含む。伝熱管の溝は、伝熱管の下流側における単位長さ当たり管内表面積が伝熱管の上流側における単位長さ当たり管内表面積よりも小さくなるように形成されている。 The refrigerating cycle apparatus of the present disclosure is a refrigerating cycle apparatus in which an incompatible oil is used for the refrigerating machine oil, and includes a compressor that compresses the refrigerant and a first heat exchanger that condenses the refrigerant output from the compressor. A decompression device for depressurizing the refrigerant output from the first heat exchanger and a second heat exchanger for evaporating the refrigerant output from the decompression device and outputting the refrigerant to the compressor are provided. The second heat exchanger includes a heat transfer tube having a groove formed on the inner surface of the tube. The groove of the heat transfer tube is formed so that the surface area inside the tube per unit length on the downstream side of the heat transfer tube is smaller than the surface area inside the tube per unit length on the upstream side of the heat transfer tube.
 この冷凍サイクル装置によれば、第2の熱交換器(低圧側熱交換器)の伝熱性能の低下及び圧力損失の増大を抑制することができる。 According to this refrigeration cycle device, it is possible to suppress a decrease in heat transfer performance and an increase in pressure loss of the second heat exchanger (low pressure side heat exchanger).
実施の形態1に従う冷凍サイクル装置の一例として示される空気調和機の全体構成図である。It is an overall block diagram of the air conditioner shown as an example of the refrigeration cycle apparatus according to Embodiment 1. FIG. 空気調和機における冷媒の流れを示した図である。It is a figure which showed the flow of the refrigerant in an air conditioner. 暖房運転時の冷媒の流れを示した図である。It is a figure which showed the flow of the refrigerant at the time of a heating operation. 冷凍サイクルの能力比に対する油循環率の影響を概略的に示す図である。It is a figure which shows roughly the influence of the oil circulation rate on the capacity ratio of a refrigeration cycle. 冷凍機油に非相溶油が用いられる場合において、低圧側熱交換器の伝熱管を流れる冷媒及び冷凍機油の様子を模式的に示す図である。It is a figure which shows typically the state of the refrigerant and the refrigerating machine oil flowing through the heat transfer tube of a low pressure side heat exchanger when an incompatible oil is used as a refrigerating machine oil. 伝熱管を流れる気液二相冷媒の流動様式を示すベーカー線図である。It is a Baker diagram which shows the flow mode of the gas-liquid two-phase refrigerant flowing through a heat transfer tube. 図1に示す室内熱交換器における伝熱管の内部の構成を概念的に説明する図である。It is a figure which conceptually explains the internal structure of the heat transfer tube in the indoor heat exchanger shown in FIG. 1. 伝熱管の第1の部位における断面の一例を示す図である。It is a figure which shows an example of the cross section in the 1st part of a heat transfer tube. 伝熱管の第2の部位における断面の一例を示す図である。It is a figure which shows an example of the cross section in the 2nd part of a heat transfer tube. 図1に示す室内熱交換器の具体的な構成の一例を示す図である。It is a figure which shows an example of the specific structure of the room heat exchanger shown in FIG. 制御装置のハードウェア構成の一例を示すブロック図である。It is a block diagram which shows an example of the hardware composition of a control device. 実施の形態2において制御装置により実行される処理の一例を説明するフローチャートである。It is a flowchart explaining an example of the process executed by the control device in Embodiment 2. 実施の形態2の変形例1において制御装置により実行される処理の一例を説明するフローチャートである。It is a flowchart explaining an example of the process executed by the control apparatus in the modification 1 of Embodiment 2. 実施の形態2の変形例2において制御装置により実行される処理の一例を説明するフローチャートである。It is a flowchart explaining an example of the process executed by the control device in the modification 2 of Embodiment 2. 実施の形態3及びその変形例において、室内熱交換器における冷媒の流動様式を検知するセンサの配置を示す図である。It is a figure which shows the arrangement of the sensor which detects the flow mode of the refrigerant in the room heat exchanger in Embodiment 3 and the variation | embodiment.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一又は相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals and the description thereof will not be repeated.
 実施の形態1.
 図1は、実施の形態1に従う冷凍サイクル装置の一例として示される空気調和機の全体構成図である。図1を参照して、空気調和機1は、室外機2と、室内機3とを備える。室内機3は、空気調和機1により空調を行なう対象空間(室内)に設置され、室外機2は、対象空間の外(例えば屋外)に設置される。
Embodiment 1.
FIG. 1 is an overall configuration diagram of an air conditioner shown as an example of a refrigeration cycle apparatus according to the first embodiment. With reference to FIG. 1, the air conditioner 1 includes an outdoor unit 2 and an indoor unit 3. The indoor unit 3 is installed in a target space (indoor) where air conditioning is performed by the air conditioner 1, and the outdoor unit 2 is installed outside the target space (for example, outdoors).
 室外機2は、圧縮機10と、四方弁20と、室外熱交換器30と、ファン32と、減圧装置40と、配管62~66,72と、温度センサ81~84と、制御装置90とを含む。室内機3は、室内熱交換器50と、ファン52と、温度センサ85,86とを含む。室外機2と室内機3とは、配管68,70を通じて接続されている。 The outdoor unit 2 includes a compressor 10, a four-way valve 20, an outdoor heat exchanger 30, a fan 32, a decompression device 40, pipes 62 to 66, 72, temperature sensors 81 to 84, and a control device 90. including. The indoor unit 3 includes an indoor heat exchanger 50, a fan 52, and temperature sensors 85 and 86. The outdoor unit 2 and the indoor unit 3 are connected to each other through pipes 68 and 70.
 配管62は、圧縮機10の吐出ポートと四方弁20のポートp1とを接続する。配管64は、四方弁20のポートp2と室外熱交換器30とを接続する。配管66は、室外熱交換器30と減圧装置40とを接続する。配管68は、減圧装置40と室内熱交換器50とを接続する。配管70は、室内熱交換器50と四方弁20のポートp3とを接続する。配管72は、四方弁20のポートp4と圧縮機10の吸入ポートとを接続する。 The pipe 62 connects the discharge port of the compressor 10 and the port p1 of the four-way valve 20. The pipe 64 connects the port p2 of the four-way valve 20 and the outdoor heat exchanger 30. The pipe 66 connects the outdoor heat exchanger 30 and the decompression device 40. The pipe 68 connects the decompression device 40 and the indoor heat exchanger 50. The pipe 70 connects the indoor heat exchanger 50 and the port p3 of the four-way valve 20. The pipe 72 connects the port p4 of the four-way valve 20 and the suction port of the compressor 10.
 圧縮機10は、配管72から吸入される冷媒を圧縮して配管62へ出力する。圧縮機10は、制御装置90からの制御信号に従って運転周波数を調整可能に構成される。圧縮機10の運転周波数を調整することで圧縮機10の出力が調整される。圧縮機10には種々のタイプのものを採用可能であり、例えば、ロータリータイプ、往復タイプ、スクロールタイプ、スクリュータイプ等のものを採用し得る。 The compressor 10 compresses the refrigerant sucked from the pipe 72 and outputs it to the pipe 62. The compressor 10 is configured so that the operating frequency can be adjusted according to the control signal from the control device 90. The output of the compressor 10 is adjusted by adjusting the operating frequency of the compressor 10. Various types of compressors 10 can be adopted, and for example, rotary type, reciprocating type, scroll type, screw type and the like can be adopted.
 四方弁20は、ポートp1とポートp2とを連通し、ポートp3とポートp4とを連通する。これにより、配管62と配管64とが接続され、配管70と配管72とが接続される。なお、四方弁20は、制御装置90からの制御信号に従って、ポートp1~p4の接続状態を切替えることができる。すなわち、暖房運転時は、四方弁20は、ポートp1とポートp3とを連通し、ポートp2とポートp4とを連通する。これにより、暖房運転時は、配管62と配管70とが接続され、配管64と配管72とが接続される。 The four-way valve 20 communicates port p1 and port p2, and communicates port p3 and port p4. As a result, the pipe 62 and the pipe 64 are connected, and the pipe 70 and the pipe 72 are connected. The four-way valve 20 can switch the connection state of the ports p1 to p4 according to the control signal from the control device 90. That is, during the heating operation, the four-way valve 20 communicates the port p1 and the port p3, and communicates the port p2 and the port p4. As a result, during the heating operation, the pipe 62 and the pipe 70 are connected, and the pipe 64 and the pipe 72 are connected.
 室外熱交換器30は、内部に設けられた伝熱管を流れる冷媒が外気と熱交換を行なうように構成される。室外熱交換器30では、配管64から流入する高温高圧の過熱蒸気(冷媒)が外気と熱交換(放熱)を行なうことにより凝縮されて液化し、液冷媒が配管66へ出力される。なお、暖房運転時は、配管66から室外熱交換器30に流入する冷媒が、室外熱交換器30において外気と熱交換(吸熱)を行なうことにより蒸発して過熱蒸気となり、配管64へ出力される。ファン32は、室外熱交換器30に併設され、室外熱交換器30へ外気を送風する。 The outdoor heat exchanger 30 is configured such that the refrigerant flowing through the heat transfer tube provided inside exchanges heat with the outside air. In the outdoor heat exchanger 30, the high-temperature and high-pressure superheated steam (refrigerant) flowing from the pipe 64 is condensed and liquefied by exchanging heat (heat dissipation) with the outside air, and the liquid refrigerant is output to the pipe 66. During the heating operation, the refrigerant flowing from the pipe 66 into the outdoor heat exchanger 30 evaporates by exchanging heat (heat absorption) with the outside air in the outdoor heat exchanger 30, and becomes superheated steam, which is output to the pipe 64. To. The fan 32 is attached to the outdoor heat exchanger 30 and blows outside air to the outdoor heat exchanger 30.
 減圧装置40は、例えば電子膨張弁によって構成され、制御装置90からの制御信号に従って開度Opが調整される。開度Opが閉方向に変化すると、減圧装置40出側の冷媒圧力は低下し、冷媒の乾き度は上昇する。開度Opが開方向に変化すると、減圧装置40出側の冷媒圧力は上昇し、冷媒の乾き度は低下する。減圧装置40は、室外熱交換器30から配管66へ出力された冷媒を減圧して配管68へ出力する。なお、暖房運転時は、減圧装置40は、室内熱交換器50から配管68へ出力された冷媒を減圧して配管66へ出力する。 The pressure reducing device 40 is composed of, for example, an electronic expansion valve, and the opening degree Op is adjusted according to a control signal from the control device 90. When the opening degree Op changes in the closing direction, the refrigerant pressure on the exit side of the decompression device 40 decreases, and the dryness of the refrigerant increases. When the opening degree Op changes in the opening direction, the refrigerant pressure on the exit side of the decompression device 40 increases, and the dryness of the refrigerant decreases. The decompression device 40 decompresses the refrigerant output from the outdoor heat exchanger 30 to the pipe 66 and outputs the refrigerant to the pipe 68. During the heating operation, the decompression device 40 decompresses the refrigerant output from the indoor heat exchanger 50 to the pipe 68 and outputs the refrigerant to the pipe 66.
 室内熱交換器50は、内部に設けられた伝熱管を流れる冷媒が対象空間の空気と熱交換を行なうように構成される。室内熱交換器50では、配管68から流入する冷媒が対象空間の空気と熱交換(吸熱)を行なうことにより蒸発して過熱蒸気となり、配管70へ出力される。なお、暖房運転時は、配管70から室内熱交換器50に流入する高温高圧の過熱蒸気(冷媒)が、室内熱交換器50において対象空間の空気と熱交換(放熱)を行なうことにより凝縮されて液化し、液冷媒が配管68へ出力される。ファン52は、室内熱交換器50に併設され、室内熱交換器50へ空気を送風する。 The indoor heat exchanger 50 is configured such that the refrigerant flowing through the heat transfer tube provided inside exchanges heat with the air in the target space. In the indoor heat exchanger 50, the refrigerant flowing from the pipe 68 evaporates by performing heat exchange (endothermic) with the air in the target space to become superheated steam, which is output to the pipe 70. During the heating operation, the high-temperature and high-pressure superheated steam (refrigerator) flowing from the pipe 70 into the indoor heat exchanger 50 is condensed by exchanging heat (heat dissipation) with the air in the target space in the indoor heat exchanger 50. And liquefies, and the liquid refrigerant is output to the pipe 68. The fan 52 is attached to the indoor heat exchanger 50 and blows air to the indoor heat exchanger 50.
 温度センサ81は、室外熱交換器30入側(暖房運転においては出側)の冷媒の温度T1を検出し、その検出値を制御装置90へ出力する。温度センサ82は、室外熱交換器30出側(暖房運転においては入側)の冷媒の温度T2を検出し、その検出値を制御装置90へ出力する。温度センサ83は、室外熱交換器30の伝熱管の温度T3(冷房運転においては凝縮温度、暖房運転においては蒸発温度)を検出し、その検出値を制御装置90へ出力する。 The temperature sensor 81 detects the temperature T1 of the refrigerant on the inlet side (exit side in the heating operation) of the outdoor heat exchanger 30, and outputs the detected value to the control device 90. The temperature sensor 82 detects the temperature T2 of the refrigerant on the outlet side (inside in the heating operation) of the outdoor heat exchanger 30, and outputs the detected value to the control device 90. The temperature sensor 83 detects the temperature T3 (condensation temperature in the cooling operation and evaporation temperature in the heating operation) of the heat transfer tube of the outdoor heat exchanger 30 and outputs the detected value to the control device 90.
 また、温度センサ84は、室外機2(室外熱交換器30)が設置される場所の温度T4(外気温度)を検出し、その検出値を制御装置90へ出力する。温度センサ85は、室内熱交換器50の伝熱管の温度T5(冷房運転においては蒸発温度、暖房運転においては凝縮温度)を検出し、その検出値を制御装置90へ出力する。温度センサ86は、室内機3(室内熱交換器50)が設置される対象空間の温度T6(室内温度)を検出し、その検出値を制御装置90へ出力する。 Further, the temperature sensor 84 detects the temperature T4 (outside air temperature) of the place where the outdoor unit 2 (outdoor heat exchanger 30) is installed, and outputs the detected value to the control device 90. The temperature sensor 85 detects the temperature T5 (evaporation temperature in the cooling operation and the condensation temperature in the heating operation) of the heat transfer tube of the indoor heat exchanger 50, and outputs the detected value to the control device 90. The temperature sensor 86 detects the temperature T6 (indoor temperature) of the target space in which the indoor unit 3 (indoor heat exchanger 50) is installed, and outputs the detected value to the control device 90.
 制御装置90は、空気調和機1における各機器の制御を行なう。制御装置90により実行される主要な制御として、制御装置90は、温度センサ81~86の検出値等に基づいて、空気調和機1が所望の空調運転を行なうように圧縮機10の運転周波数及び減圧装置40の開度Opを制御する。また、制御装置90は、冷房運転を実行するか暖房運転を実行するかによって、四方弁20の状態を切替える。 The control device 90 controls each device in the air conditioner 1. As the main control executed by the control device 90, the control device 90 sets the operating frequency of the compressor 10 and the operating frequency of the compressor 10 so that the air conditioner 1 performs the desired air conditioning operation based on the detected values of the temperature sensors 81 to 86 and the like. The opening degree Op of the decompression device 40 is controlled. Further, the control device 90 switches the state of the four-way valve 20 depending on whether the cooling operation or the heating operation is executed.
 図2は、空気調和機1における冷媒の流れを示した図である。この図2では、冷房運転中の冷媒の流れが示されている。図2を参照して、圧縮機10によって高温高圧の蒸気状態とされた冷媒は、四方弁20を経由して室外熱交換器30へ供給される。そして、冷媒は、室外熱交換器30において外気と熱交換(放熱)することにより凝縮(液化)され、高圧の液冷媒となる。 FIG. 2 is a diagram showing the flow of the refrigerant in the air conditioner 1. FIG. 2 shows the flow of the refrigerant during the cooling operation. With reference to FIG. 2, the refrigerant brought into a high-temperature and high-pressure steam state by the compressor 10 is supplied to the outdoor heat exchanger 30 via the four-way valve 20. Then, the refrigerant is condensed (liquefied) by exchanging heat (dissipating) with the outside air in the outdoor heat exchanger 30, and becomes a high-pressure liquid refrigerant.
 室外熱交換器30を通過した冷媒は、減圧装置40において減圧され、低温低圧の冷媒となって室内熱交換器50へ供給される。そして、室内熱交換器50(低圧側熱交換器)において、冷媒は、対象空間の空気と熱交換(吸熱)することにより蒸発(気化)して低圧のガス冷媒となる。その後、冷媒は、四方弁20を経由して圧縮機10に再び吸入される。 The refrigerant that has passed through the outdoor heat exchanger 30 is decompressed by the decompression device 40, becomes a low-temperature low-pressure refrigerant, and is supplied to the indoor heat exchanger 50. Then, in the indoor heat exchanger 50 (low pressure side heat exchanger), the refrigerant evaporates (vaporizes) by exchanging heat (heat absorption) with the air in the target space to become a low pressure gas refrigerant. After that, the refrigerant is sucked into the compressor 10 again via the four-way valve 20.
 なお、暖房運転時は、図3に示されるように、四方弁20が切替えられることにより、冷媒の流れが冷房運転時と逆方向になる。したがって、この場合は、室内熱交換器50が高圧側となり、室外熱交換器30が低圧側となるが、以下では、冷房運転を対象として、室外熱交換器30を高圧側熱交換器(第1の熱交換器)とし、室内熱交換器50を低圧側熱交換器(第2の熱交換器)として、説明を行なう。 During the heating operation, as shown in FIG. 3, the four-way valve 20 is switched so that the flow of the refrigerant is in the opposite direction to that during the cooling operation. Therefore, in this case, the indoor heat exchanger 50 is on the high pressure side and the outdoor heat exchanger 30 is on the low pressure side. 1), and the indoor heat exchanger 50 will be referred to as a low pressure side heat exchanger (second heat exchanger).
 冷凍サイクル装置においては、熱交換器の伝熱管の内面に溝(凹凸)を設けることで、管内面の管単位長さ当たり表面積(以下「管内表面積」と称する。)を大きくし、熱交換器の伝熱性能を高めることができる。 In the refrigeration cycle device, by providing a groove (unevenness) on the inner surface of the heat transfer tube of the heat exchanger, the surface area per unit length of the tube inner surface (hereinafter referred to as "tube inner surface area") is increased, and the heat exchanger is used. The heat transfer performance can be improved.
 また、冷凍サイクル装置においては、圧縮機の潤滑性を確保するために、圧縮機内に油(冷凍機油)が存在する。冷凍機油は、圧縮機の運転中、冷媒が圧縮機から冷媒回路へ出力される流れとともに冷媒回路へ持ち出される。冷媒回路へ持ち出された油は、冷媒とともに冷媒回路を循環して圧縮機へ戻る。 Further, in the refrigeration cycle device, oil (refrigerator oil) exists in the compressor in order to ensure the lubricity of the compressor. During the operation of the compressor, the refrigerating machine oil is taken out to the refrigerant circuit together with the flow in which the refrigerant is output from the compressor to the refrigerant circuit. The oil taken out to the refrigerant circuit circulates in the refrigerant circuit together with the refrigerant and returns to the compressor.
 この冷凍機油に、液冷媒に対して弱い相溶性を有する非相溶油を用いることにより、冷凍機油に溶け込む冷媒の量を抑制することで、冷凍サイクル装置に封入される冷媒量を削減することができる。 By using an incompatible oil having a weak compatibility with the liquid refrigerant as this refrigerating machine oil, the amount of the refrigerant dissolved in the refrigerating machine oil can be suppressed, and the amount of the refrigerant sealed in the refrigerating cycle device can be reduced. Can be done.
 しかしながら、冷凍機油に非相溶油を用いる場合、低圧側の熱交換器では、冷媒の乾き度が高くなる下流側において、冷媒回路に持ち出された油が、粘度が高いために管壁に油膜を形成して滞留し、その結果、熱交換器の伝熱性能が低下するとともに圧力損失が増大する可能性がある。以下、この点について詳しく説明する。 However, when incompatible oil is used as the refrigerating machine oil, in the heat exchanger on the low pressure side, the oil brought out to the refrigerant circuit on the downstream side where the dryness of the refrigerant becomes high has an oil film on the pipe wall due to its high viscosity. As a result, the heat transfer performance of the heat exchanger may decrease and the pressure loss may increase. This point will be described in detail below.
 図4は、冷凍サイクルの能力比に対する油循環率の影響を概略的に示す図である。油循環率とは、冷媒回路に持ち出される冷凍機油の量を示す指標であって、例えば、冷媒回路を循環している冷媒と冷凍機油との重量比(冷媒の重量に対する油の重量(wt%))である。油循環率が高いほど、圧縮機から冷媒回路へ持ち出されている油量が多いことを意味する。能力比は、一定の運転条件下における冷凍サイクルの能力の低下度合いを示す指標であって、この例では、油循環率が0であるときの冷凍サイクルの能力を1として、油循環率に応じた冷凍サイクルの能力比を示す。 FIG. 4 is a diagram schematically showing the effect of the oil circulation rate on the capacity ratio of the refrigeration cycle. The oil circulation rate is an index showing the amount of refrigerating machine oil brought out to the refrigerant circuit. For example, the weight ratio of the refrigerant circulating in the refrigerant circuit to the refrigerating machine oil (the weight of oil with respect to the weight of the refrigerant (wt%)). )). The higher the oil circulation rate, the more oil is taken out from the compressor to the refrigerant circuit. The capacity ratio is an index showing the degree of decrease in the capacity of the refrigeration cycle under certain operating conditions. In this example, the capacity of the refrigeration cycle when the oil circulation rate is 0 is set to 1, and the capacity ratio corresponds to the oil circulation rate. The capacity ratio of the refrigeration cycle is shown.
 図4を参照して、油循環率が高くなると、冷凍サイクルの能力比は低下する。そして、冷凍機油に非相溶油が用いられる場合、油循環率が高くなるため、冷凍サイクルの能力が低下する可能性がある。なお、油循環率が高くなると冷凍サイクルの能力比が低下する理由、及び非相溶油が用いられる場合に油循環率が高くなる理由については、後ほど説明する。 With reference to FIG. 4, as the oil circulation rate increases, the capacity ratio of the refrigeration cycle decreases. When incompatible oil is used as the refrigerating machine oil, the oil circulation rate becomes high, so that the refrigerating cycle capacity may decrease. The reason why the capacity ratio of the refrigeration cycle decreases when the oil circulation rate increases and the reason why the oil circulation rate increases when incompatible oil is used will be described later.
 図5は、冷凍機油に非相溶油が用いられる場合において、低圧側熱交換器の伝熱管を流れる冷媒及び冷凍機油の様子を模式的に示す図である。図5を参照して、低圧側熱交換器の伝熱管内では、冷媒は、液冷媒102とガス冷媒104との気液二相流となって流れる。非相溶性の冷凍機油は、油滴106となって液冷媒102中に存在している。 FIG. 5 is a diagram schematically showing the state of the refrigerant and the refrigerating machine oil flowing through the heat transfer tube of the low pressure side heat exchanger when the incompatible oil is used as the refrigerating machine oil. With reference to FIG. 5, in the heat transfer tube of the low pressure side heat exchanger, the refrigerant flows as a gas-liquid two-phase flow of the liquid refrigerant 102 and the gas refrigerant 104. The incompatible refrigerating machine oil becomes oil droplets 106 and exists in the liquid refrigerant 102.
 伝熱管の上流側では、冷媒と外気との熱交換はあまり進行しておらず、冷媒の乾き度は低い。そして、冷媒は、伝熱管を流れる際に外気と熱交換(吸熱)を行なって蒸発(ガス化)し、伝熱管の下流側では、冷媒の乾き度は高い。 On the upstream side of the heat transfer tube, heat exchange between the refrigerant and the outside air has not progressed so much, and the dryness of the refrigerant is low. When the refrigerant flows through the heat transfer tube, it exchanges heat (endothermic) with the outside air and evaporates (gasifies), and the dryness of the refrigerant is high on the downstream side of the heat transfer tube.
 伝熱管の上流側(乾き度低)では、冷媒の流動様式は、スラグ流又は成層流であることが多い。流動様式とは、配管を流れる気液二相流の流れを視覚的に分類して、同じ範疇に属すると判断される流れの形を表す。流動様式がスラグ流や成層流のときは、液冷媒102中の油滴106は、液冷媒102とともに下流に向けて流される。そして、伝熱管の下流側では、冷媒の乾き度が増し、流動様式は、環状流又は環状噴霧流に変化することが多い。 On the upstream side of the heat transfer tube (low dryness), the flow mode of the refrigerant is often slag flow or stratified flow. The flow mode represents the form of a flow that is judged to belong to the same category by visually classifying the flow of gas-liquid two-phase flow flowing through a pipe. When the flow mode is a slag flow or a stratified flow, the oil droplet 106 in the liquid refrigerant 102 is flowed toward the downstream together with the liquid refrigerant 102. Then, on the downstream side of the heat transfer tube, the dryness of the refrigerant increases, and the flow mode often changes to a circular flow or a circular spray flow.
 図6は、伝熱管を流れる気液二相冷媒の流動様式を示すベーカー(Baker)線図である。図6において、縦軸は、冷媒の流量に相当する量を示し、横軸は、気相流に対する液相流の比に相当する量を示す。 FIG. 6 is a Baker diagram showing the flow mode of the gas-liquid two-phase refrigerant flowing through the heat transfer tube. In FIG. 6, the vertical axis indicates the amount corresponding to the flow rate of the refrigerant, and the horizontal axis indicates the amount corresponding to the ratio of the liquid phase flow to the gas phase flow.
 図6を参照して、流動様式には、代表的には、気泡流、スラグ流、成層流、環状流、環状噴霧流等がある。点群95は、伝熱管を流れる冷媒について、冷媒の乾き度x毎に冷媒の状態をプロットしたものである。この例では、乾き度xが低いときは、冷媒はスラグ流となって流れ、乾き度xが高くなると、冷媒は環状流となって流れることが分かる。そして、この例では、乾き度xが約0.2のときに、流動様式がスラグ流から環状流に変化することが分かる。 With reference to FIG. 6, typical flow modes include bubble flow, slag flow, stratified flow, circular flow, circular spray flow, and the like. The point cloud 95 is a plot of the state of the refrigerant for each degree of dryness x of the refrigerant flowing through the heat transfer tube. In this example, it can be seen that when the dryness x is low, the refrigerant flows as a slag flow, and when the dryness x is high, the refrigerant flows as a circular flow. Then, in this example, it can be seen that the flow mode changes from the slag flow to the circular flow when the dryness x is about 0.2.
 なお、冷媒の流動様式が変化する乾き度は、例えば、熱交換器の温度(蒸発温度)、冷媒の流量、伝熱管の内径等から算出することができる。また、蒸発温度における飽和液及び飽和蒸気の各エンタルピと、算出された乾き度(流動様式が変化する乾き度)とから、伝熱管において流動様式が変化する領域(位置)を推測することができる。 The degree of dryness in which the flow mode of the refrigerant changes can be calculated from, for example, the temperature of the heat exchanger (evaporation temperature), the flow rate of the refrigerant, the inner diameter of the heat transfer tube, and the like. Further, from the enthalpies of the saturated liquid and the saturated vapor at the evaporation temperature and the calculated dryness (dryness at which the flow mode changes), the region (position) where the flow mode changes in the heat transfer tube can be estimated. ..
 再び図5を参照して、冷媒の乾き度が高くなる下流側において、冷媒の流動様式が環状流又は環状噴霧流となり、液冷媒102は壁面に押しやられて管壁に沿って流れる。そのため、冷凍機油に非相溶油が用いられる場合、下流側で二層分離した油が、粘度が高いために管壁に油膜108を形成する可能性がある。特に、伝熱性能を高めるために伝熱管の内面に設けられる溝を深くしている場合には、管壁に油膜108が形成されやすい。 With reference to FIG. 5 again, on the downstream side where the dryness of the refrigerant becomes high, the flow mode of the refrigerant becomes a circular flow or a circular spray flow, and the liquid refrigerant 102 is pushed by the wall surface and flows along the pipe wall. Therefore, when an incompatible oil is used as the refrigerating machine oil, the oil separated into two layers on the downstream side may form an oil film 108 on the pipe wall due to its high viscosity. In particular, when the groove provided on the inner surface of the heat transfer tube is deepened in order to enhance the heat transfer performance, the oil film 108 is likely to be formed on the tube wall.
 管壁に油膜108が形成されることで油が伝熱管内に滞留し、その結果、圧縮機への返油量は減少し、油循環率は高くなる。また、形成された油膜108により、冷媒が流れる際の圧力損失が増大し、冷媒と伝熱管との伝熱性が阻害されて伝熱効率も低下する。さらに、圧縮機への返油量が減少するため、圧縮機の潤滑性及び信頼性も低下し得る。このように、冷凍機油に非相溶油が用いられる場合、油循環率が高くなる結果、冷凍サイクルの能力比が著しく低下する可能性がある。 The oil film 108 is formed on the pipe wall, so that the oil stays in the heat transfer pipe, and as a result, the amount of oil returned to the compressor decreases and the oil circulation rate increases. Further, the formed oil film 108 increases the pressure loss when the refrigerant flows, hinders the heat transfer property between the refrigerant and the heat transfer tube, and lowers the heat transfer efficiency. Further, since the amount of oil returned to the compressor is reduced, the lubricity and reliability of the compressor may be lowered. As described above, when incompatible oil is used as the refrigerating machine oil, the oil circulation rate becomes high, and as a result, the capacity ratio of the refrigerating cycle may be significantly lowered.
 そこで、本実施の形態1に従う空気調和機1では、冷凍機油に非相溶油が用いられ、室内熱交換器50(低圧側熱交換器)の伝熱管において、伝熱管の下流側(高乾き度側)における管内表面積が上流側(低乾き度側)における管内表面積よりも小さくなるように、管内面の溝(凹凸)が形成される。 Therefore, in the air conditioner 1 according to the first embodiment, incompatible oil is used as the refrigerating machine oil, and in the heat transfer tube of the indoor heat exchanger 50 (low pressure side heat exchanger), the downstream side (highly dry) of the heat transfer tube is used. Grooves (unevenness) on the inner surface of the pipe are formed so that the inner surface of the pipe on the (degree side) side is smaller than the inner surface surface of the pipe on the upstream side (low dryness side).
 より詳しくは、伝熱管が上流側の第1の部位と下流側の第2の部位とによって構成され、第2の部位における管内表面積が第1の部位における管内表面積よりも小さくなるように、管内面の溝が形成される。そして、第1の部位と第2の部位との境界は、伝熱管を流れる冷媒の流動様式が環状流又は環状噴霧流に変化する領域に設けられる。これにより、冷凍機油に非相溶油を用いても、室内熱交換器50において、二層分離した油が管壁に油膜を形成するのを抑制することができる。また、伝熱管の上流側では、管内表面積を確保することで伝熱効率を確保することが可能となる。 More specifically, the heat transfer tube is composed of a first part on the upstream side and a second part on the downstream side, and the surface area inside the tube at the second part is smaller than the surface area inside the tube at the first part. Surface grooves are formed. The boundary between the first portion and the second portion is provided in a region where the flow mode of the refrigerant flowing through the heat transfer tube changes to a circular flow or a circular spray flow. As a result, even if an incompatible oil is used as the refrigerating machine oil, it is possible to prevent the oil separated into two layers from forming an oil film on the pipe wall in the indoor heat exchanger 50. Further, on the upstream side of the heat transfer tube, it is possible to secure the heat transfer efficiency by securing the surface area inside the tube.
 なお、第1の部位と第2の部位との境界は、室内熱交換器50の伝熱性能及び圧力損失を考慮して、空気調和機1のAPF(Annual Performance Factor、通年エネルギ消費効率)が最大となる位置に設定してもよい。すなわち、上記の境界は、冷媒の流動様式が変化する領域に設けられるところ、例えば所定の外気条件において空気調和機1を運転したときの上記領域から境界の位置を設定するのではなく、APFが最大となる条件で空気調和機1を運転したときの上記領域から境界の位置を設定してもよい。これにより、空気調和機1の省エネルギ化を図ることができる。 The boundary between the first part and the second part is determined by the APF (Annual Performance Factor, year-round energy consumption efficiency) of the air conditioner 1 in consideration of the heat transfer performance and pressure loss of the indoor heat exchanger 50. It may be set to the maximum position. That is, where the boundary is provided in a region where the flow mode of the refrigerant changes, for example, the APF does not set the position of the boundary from the region when the air conditioner 1 is operated under predetermined outside air conditions. The position of the boundary may be set from the above region when the air conditioner 1 is operated under the maximum condition. This makes it possible to save energy in the air conditioner 1.
 なお、本実施の形態1では、非相溶性の冷凍機油(非相溶油)として、例えばアルキルベンゼン油が用いられる。ただし、使用可能な非相溶油は、これに限定されるものではなく、当業者であれば相溶油に比べて明らかに冷媒との相互の溶解量が少ない油であると理解できるその他の冷凍機油を用いてもよい。 In the first embodiment, for example, alkylbenzene oil is used as the incompatible refrigerating machine oil (incompatible oil). However, the non-phase-dissolved oil that can be used is not limited to this, and other arts that can be understood by those skilled in the art as oils having a clearly smaller amount of mutual dissolution with the refrigerant than the phase-dissolved oil. Refrigerating machine oil may be used.
 図7は、図1に示した室内熱交換器50における伝熱管の内部の構成を概念的に説明する図である。この図7は、伝熱管100の入口120から出口122までの冷媒流れ方向に沿った伝熱管100の断面を概略的に示したものである。 FIG. 7 is a diagram conceptually explaining the internal configuration of the heat transfer tube in the indoor heat exchanger 50 shown in FIG. FIG. 7 schematically shows a cross section of the heat transfer tube 100 along the refrigerant flow direction from the inlet 120 to the outlet 122 of the heat transfer tube 100.
 図7を参照して、本実施の形態1に従う空気調和機1では、室内熱交換器50(低圧側熱交換器)の伝熱管100は、境界114よりも上流側の第1の部位110と、境界114よりも下流側の第2の部位112とを含む。そして、伝熱管100の内周面には、伝熱管100を流れる冷媒と外気との伝熱性を高めるために、溝が形成されている。 With reference to FIG. 7, in the air conditioner 1 according to the first embodiment, the heat transfer tube 100 of the indoor heat exchanger 50 (low pressure side heat exchanger) is connected to the first portion 110 on the upstream side of the boundary 114. , A second site 112 downstream of the boundary 114. A groove is formed on the inner peripheral surface of the heat transfer tube 100 in order to enhance the heat transfer property between the refrigerant flowing through the heat transfer tube 100 and the outside air.
 図8は、伝熱管100の第1の部位110における断面の一例を示す図である。また、図9は、伝熱管100の第2の部位112における断面の一例を示す図である。 FIG. 8 is a diagram showing an example of a cross section of the heat transfer tube 100 at the first portion 110. Further, FIG. 9 is a diagram showing an example of a cross section of the second portion 112 of the heat transfer tube 100.
 図8及び図9を参照して、第2の部位112の内周面に形成される溝118の深さは、第1の部位110の内周面に形成される溝116の深さよりも浅い。このような溝116,118が形成されることにより、第2の部位112における管内面の表面積は、第1の部位110における管内面の表面積よりも小さい。なお、第2の部位112の内周面に形成される溝118の深さは、実質的に0であってもよい。 With reference to FIGS. 8 and 9, the depth of the groove 118 formed on the inner peripheral surface of the second portion 112 is shallower than the depth of the groove 116 formed on the inner peripheral surface of the first portion 110. .. By forming such grooves 116 and 118, the surface area of the inner surface of the pipe in the second portion 112 is smaller than the surface area of the inner surface of the pipe in the first portion 110. The depth of the groove 118 formed on the inner peripheral surface of the second portion 112 may be substantially zero.
 再び図7を参照して、第1の部位110と第2の部位112との境界114は、冷媒の流動様式がスラグ流や成層流等から環状流又は環状噴霧流に変化する領域に設けられる。これにより、流動様式が環状流又は環状噴霧流に変化することにより二層分離した油が第2の部位112において管壁に油膜を形成するのを抑制することができる。その結果、油膜による圧力損失の増大及び伝熱効率の低下を抑制することができる。また、圧縮機10への返油量の減少も抑制されるので、圧縮機10の潤滑性及び信頼性が低下するのも抑制することができる。一方、流動様式がスラグ流や成層流等である第1の部位110においては、管内面の表面積を確保することで伝熱効率を確保することができる。 With reference to FIG. 7 again, the boundary 114 between the first portion 110 and the second portion 112 is provided in a region where the flow mode of the refrigerant changes from a slag flow, a stratified flow, or the like to a circular flow or a circular spray flow. .. As a result, it is possible to prevent the oil separated into two layers from forming an oil film on the pipe wall at the second portion 112 by changing the flow mode to a circular flow or a circular spray flow. As a result, it is possible to suppress an increase in pressure loss and a decrease in heat transfer efficiency due to the oil film. Further, since the decrease in the amount of oil returned to the compressor 10 is suppressed, it is possible to suppress the decrease in the lubricity and reliability of the compressor 10. On the other hand, in the first portion 110 whose flow mode is a slag flow, a stratified flow, or the like, the heat transfer efficiency can be ensured by securing the surface area of the inner surface of the pipe.
 なお、伝熱管100における境界114の位置は、冷媒の流動様式がスラグ流や成層流等から環状流又は環状噴霧流に変化する領域に設定される。伝熱管100において冷媒の流動様式が変化する領域(位置)は、例えば以下のように推定することができる。すなわち、温度センサ85により検出される室内熱交換器50の伝熱管の温度T5(蒸発温度)、冷媒回路を流れる冷媒の流量、伝熱管100の内径等から、流動様式が変化する冷媒の乾き度を算出することができる。そして、上記の温度T5(蒸発温度)における飽和液及び飽和蒸気の各エンタルピと、算出された上記の乾き度(流動様式が変化する乾き度)とから、冷媒の流動様式が変化する領域を推定することができる。 The position of the boundary 114 in the heat transfer tube 100 is set in a region where the flow mode of the refrigerant changes from a slag flow, a stratified flow, or the like to a circular flow or a circular spray flow. The region (position) where the flow mode of the refrigerant changes in the heat transfer tube 100 can be estimated as follows, for example. That is, the dryness of the refrigerant whose flow mode changes from the temperature T5 (evaporation temperature) of the heat transfer tube of the indoor heat exchanger 50 detected by the temperature sensor 85, the flow rate of the refrigerant flowing through the refrigerant circuit, the inner diameter of the heat transfer tube 100, and the like. Can be calculated. Then, the region where the flow mode of the refrigerant changes is estimated from the enthalpies of the saturated liquid and the saturated vapor at the temperature T5 (evaporation temperature) and the calculated dryness (dryness at which the flow mode changes). can do.
 なお、伝熱管100は、実際には、直列に接続された複数の配管によって構成され、第1の部位110及び第2の部位112は、配管単位で構成される。すなわち、第1の部位110と第2の部位112との境界114の位置は、冷媒の流動様式が変化する領域に設定されるところ、第1の部位110を構成する配管群と、第2の部位112を構成する配管群との接続部(境界114)が、冷媒の流動様式が変化する領域に含まれるように、複数の配管が構成される。言い換えると、境界114が、いずれかの配管の途中ではなく配管の接続部に位置するように、複数の配管が構成される。これにより、配管の途中で管内表面積が変化する配管を用意する必要はなく、部品コストを抑えることができる。 The heat transfer tube 100 is actually composed of a plurality of pipes connected in series, and the first portion 110 and the second portion 112 are composed of pipe units. That is, where the position of the boundary 114 between the first portion 110 and the second portion 112 is set in the region where the flow mode of the refrigerant changes, the piping group constituting the first portion 110 and the second portion A plurality of pipes are configured so that the connection portion (boundary 114) with the pipe group constituting the portion 112 is included in the region where the flow mode of the refrigerant changes. In other words, the plurality of pipes are configured so that the boundary 114 is located at the connection portion of the pipes rather than in the middle of any of the pipes. As a result, it is not necessary to prepare a pipe whose internal surface area changes in the middle of the pipe, and the cost of parts can be suppressed.
 図10は、図1に示した室内熱交換器50の具体的な構成の一例を示す図である。図10を参照して、室内熱交換器50は、複数の配管124,125と、複数の接続管126と、複数のフィン128とを含む。 FIG. 10 is a diagram showing an example of a specific configuration of the indoor heat exchanger 50 shown in FIG. 1. With reference to FIG. 10, the indoor heat exchanger 50 includes a plurality of pipes 124, 125, a plurality of connecting pipes 126, and a plurality of fins 128.
 複数の配管124,125は、一定間隔で並列に配設される。複数のフィン128は、複数の配管124,125の各々を取り囲むように形成されている。複数の接続管126は、隣接する配管124又は125を左右交互に接続することで、並設して配置される複数の配管124,125を直列に接続する。 A plurality of pipes 124 and 125 are arranged in parallel at regular intervals. The plurality of fins 128 are formed so as to surround each of the plurality of pipes 124 and 125. The plurality of connecting pipes 126 connect the plurality of pipes 124, 125 arranged side by side in series by connecting the adjacent pipes 124 or 125 alternately on the left and right.
 複数の配管124,125のうち、上流側の複数の配管124は、図7に示した第1の部位110に対応し、下流側の複数の配管125は、図7に示した第2の部位112に対応する。すなわち、各配管125の管内表面積は、各配管124の管内表面積よりも小さい。そして、複数の配管124のうち最下流の配管124と、複数の配管125のうち最上流の配管125とを接続する接続管126が、図7に示した境界114に対応する。 Of the plurality of pipes 124 and 125, the plurality of pipes 124 on the upstream side correspond to the first portion 110 shown in FIG. 7, and the plurality of pipes 125 on the downstream side correspond to the second portion 110 shown in FIG. Corresponds to 112. That is, the surface area inside the pipe of each pipe 125 is smaller than the surface area inside the pipe of each pipe 124. The connecting pipe 126 connecting the most downstream pipe 124 among the plurality of pipes 124 and the most upstream pipe 125 among the plurality of pipes 125 corresponds to the boundary 114 shown in FIG. 7.
 このような構成とすることで、室内熱交換器50を構成する伝熱管100において、配管の途中で管内表面積が変化する配管を用意する必要はなく、第1の部位110及び第2の部位112を容易に形成することができる。 With such a configuration, in the heat transfer tube 100 constituting the indoor heat exchanger 50, it is not necessary to prepare a pipe whose internal surface area changes in the middle of the pipe, and the first portion 110 and the second portion 112 do not need to be prepared. Can be easily formed.
 以上のように、この実施の形態1によれば、室内熱交換器50(低圧側熱交換器)の伝熱性能の低下及び圧力損失の増大を抑制することができる。 As described above, according to the first embodiment, it is possible to suppress a decrease in heat transfer performance and an increase in pressure loss of the indoor heat exchanger 50 (low pressure side heat exchanger).
 実施の形態2.
 室内熱交換器50(低圧側熱交換器)において、外気温度等の周囲環境が変化すると、冷媒の流動様式が環状流又は環状噴霧流に変化する領域(位置)が変化する。冷媒の流動様式が変化する領域が変化すると、伝熱管100の第1の部位110と第2の部位112との境界114の位置との不一致が生じ、管壁に油膜が形成されてしまう等の問題が生じる可能性がある。
Embodiment 2.
In the indoor heat exchanger 50 (low pressure side heat exchanger), when the ambient environment such as the outside air temperature changes, the region (position) where the flow mode of the refrigerant changes to the annular flow or the annular spray flow changes. When the region where the flow mode of the refrigerant changes changes, the position of the boundary 114 between the first portion 110 and the second portion 112 of the heat transfer tube 100 becomes inconsistent, and an oil film is formed on the tube wall. Problems can occur.
 そこで、この実施の形態2では、冷媒の流動様式が変化する領域(位置)が第1の部位110と第2の部位112との境界114に近づくように、制御装置90により空気調和機1の運転状態を制御する。 Therefore, in the second embodiment, the control device 90 controls the air conditioner 1 so that the region (position) where the flow mode of the refrigerant changes approaches the boundary 114 between the first portion 110 and the second portion 112. Control the operating condition.
 図11は、制御装置90のハードウェア構成の一例を示すブロック図である。図11を参照して、制御装置90は、CPU(Central Processing Unit)132と、RAM(Random Access Memory)134と、ROM(Read Only Memory)136と、入力部138と、表示部140と、I/F部142とを含んで構成される。RAM134、ROM136、入力部138、表示部140、及びI/F部142は、バス144を通じてCPU132に接続されている。 FIG. 11 is a block diagram showing an example of the hardware configuration of the control device 90. With reference to FIG. 11, the control device 90 includes a CPU (Central Processing Unit) 132, a RAM (Random Access Memory) 134, a ROM (Read Only Memory) 136, an input unit 138, a display unit 140, and I. It is configured to include the / F portion 142. The RAM 134, ROM 136, input unit 138, display unit 140, and I / F unit 142 are connected to the CPU 132 via the bus 144.
 CPU132は、ROM136に格納されているプログラムをRAM134に展開して実行する。ROM136に格納されているプログラムは、制御装置90の処理手順が記されたプログラムである。この空気調和機1では、これらのプログラムに従って、空気調和機1における各機器の制御を実行する。なお、これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 The CPU 132 expands the program stored in the ROM 136 into the RAM 134 and executes it. The program stored in the ROM 136 is a program in which the processing procedure of the control device 90 is described. The air conditioner 1 executes control of each device in the air conditioner 1 according to these programs. It should be noted that these controls are not limited to processing by software, but can also be processed by dedicated hardware (electronic circuit).
 図12は、制御装置90により実行される処理の一例を説明するフローチャートである。このフローチャートでは、冷媒の流動様式が変化する領域を境界114に一致させる制御の処理手順の一例が示される。このフローチャートに示される一連の処理は、空気調和機1の運転中(圧縮機10の作動中)に所定の周期で繰り返し実行される。 FIG. 12 is a flowchart illustrating an example of processing executed by the control device 90. In this flowchart, an example of a control processing procedure for matching a region where the flow mode of the refrigerant changes with the boundary 114 is shown. The series of processes shown in this flowchart are repeatedly executed at a predetermined cycle during the operation of the air conditioner 1 (during the operation of the compressor 10).
 図12を参照して、制御装置90は、低圧側の熱交換器である室内熱交換器50の伝熱管100において、図7に示した境界114における冷媒の流動様式を検知する(ステップS10)。 With reference to FIG. 12, the control device 90 detects the flow mode of the refrigerant at the boundary 114 shown in FIG. 7 in the heat transfer tube 100 of the indoor heat exchanger 50 which is the heat exchanger on the low pressure side (step S10). ..
 境界114における冷媒の流動様式は、例えば以下のようにして検知することができる。温度センサ81~86によりそれぞれ検知される、室外熱交換器30入側の冷媒の温度T1、室外熱交換器30出側の冷媒の温度T2、室外熱交換器30の伝熱管の温度T3(凝縮温度)、室外機2(室外熱交換器30)が設置される場所の温度T4(外気温度)、室内熱交換器50の伝熱管100の温度T5(蒸発温度)、及び室内機3(室内熱交換器50)が設置される対象空間の温度T6(室内温度)から、p-h線図(圧力-比エンタルピ線図)における空気調和機1の冷凍サイクルを求めることができる。この冷凍サイクル(p-h線図)から、室内熱交換器50の境界114の位置における冷媒の乾き度を求めることができる。そして、その求められた乾き度を図6に示したベーカー線図に当てはめることにより、境界114における冷媒の流動様式を検知(推定)することができる。 The flow mode of the refrigerant at the boundary 114 can be detected, for example, as follows. The temperature T1 of the refrigerant on the inlet side of the outdoor heat exchanger 30, the temperature T2 of the refrigerant on the outlet side of the outdoor heat exchanger 30, and the temperature T3 of the heat transfer tube of the outdoor heat exchanger 30 (condensation), which are detected by the temperature sensors 81 to 86, respectively. Temperature), the temperature T4 (outside air temperature) of the place where the outdoor unit 2 (outdoor heat exchanger 30) is installed, the temperature T5 (evaporation temperature) of the heat transfer tube 100 of the indoor heat exchanger 50, and the indoor unit 3 (indoor heat). From the temperature T6 (indoor temperature) of the target space in which the exchanger 50) is installed, the refrigerating cycle of the air conditioner 1 in the ph diagram (pressure-specific enthalpy diagram) can be obtained. From this refrigeration cycle (ph-h diagram), the dryness of the refrigerant at the position of the boundary 114 of the indoor heat exchanger 50 can be obtained. Then, by applying the obtained dryness to the Baker diagram shown in FIG. 6, the flow mode of the refrigerant at the boundary 114 can be detected (estimated).
 ステップS10において境界114における冷媒の流動様式が検知されると、制御装置90は、検知された流動様式が環状流又は環状噴霧流であるか判定する(ステップS20)。そして、流動様式が環状流又は環状噴霧流であると判定されると(ステップS20においてYES)、制御装置90は、減圧装置40の弁開度を増加させる(ステップS30)。境界114における冷媒の流動様式が環状流又は環状噴霧流である場合、室内熱交換器50内での流動様式の変化点は、境界114よりも上流側にある。この場合、減圧装置40の弁開度を増加させることで、室内熱交換器50での蒸発圧力が上昇し、室内熱交換器50入口での冷媒の乾き度が低下する。その結果、室内熱交換器50内での流動様式の変化点は、下流側へシフトし、境界114へ近づく。 When the flow mode of the refrigerant at the boundary 114 is detected in step S10, the control device 90 determines whether the detected flow mode is a circular flow or a circular spray flow (step S20). Then, when it is determined that the flow mode is a circular flow or a circular spray flow (YES in step S20), the control device 90 increases the valve opening degree of the decompression device 40 (step S30). When the flow mode of the refrigerant at the boundary 114 is a circular flow or a circular spray flow, the change point of the flow mode in the indoor heat exchanger 50 is on the upstream side of the boundary 114. In this case, by increasing the valve opening degree of the decompression device 40, the evaporation pressure in the indoor heat exchanger 50 increases, and the dryness of the refrigerant at the inlet of the indoor heat exchanger 50 decreases. As a result, the change point of the flow mode in the indoor heat exchanger 50 shifts to the downstream side and approaches the boundary 114.
 一方、ステップS20において流動様式は環状流又は環状噴霧流ではないと判定されると(ステップS20においてNO)、制御装置90は、減圧装置40の弁開度を減少させる(ステップS40)。境界114における冷媒の流動様式が環状流又は環状噴霧流ではない場合(すなわち、流動様式がスラグ流や成層流等である場合)、室内熱交換器50内での流動様式の変化点は、境界114よりも下流側にある。この場合、減圧装置40の弁開度を減少させることで、室内熱交換器50での蒸発圧力が低下し、室内熱交換器50入口での冷媒の乾き度が上昇する。その結果、室内熱交換器50内での流動様式の変化点は、上流側へシフトし、境界114へ近づく。 On the other hand, if it is determined in step S20 that the flow mode is not a circular flow or a circular spray flow (NO in step S20), the control device 90 reduces the valve opening degree of the decompression device 40 (step S40). When the flow mode of the refrigerant at the boundary 114 is not a circular flow or a circular spray flow (that is, when the flow mode is a slag flow, a stratified flow, etc.), the change point of the flow mode in the indoor heat exchanger 50 is the boundary. It is on the downstream side of 114. In this case, by reducing the valve opening degree of the decompression device 40, the evaporation pressure in the indoor heat exchanger 50 decreases, and the dryness of the refrigerant at the inlet of the indoor heat exchanger 50 increases. As a result, the change point of the flow mode in the indoor heat exchanger 50 shifts to the upstream side and approaches the boundary 114.
 なお、ステップS20において、冷媒の流動様式がスラグ流又は成層流であるか判定してもよい。そして、流動様式がスラグ流又は成層流であると判定された場合は、ステップS40へ処理を移行して減圧装置40の弁開度を減少させ、流動様式がスラグ流又は成層流ではないと判定された場合は、ステップS30へ処理を移行して減圧装置40の弁開度を上昇させるようにしてもよい。 In step S20, it may be determined whether the flow mode of the refrigerant is a slag flow or a stratified flow. When it is determined that the flow mode is a slag flow or a stratified flow, the process is shifted to step S40 to reduce the valve opening degree of the decompression device 40, and it is determined that the flow mode is not a slag flow or a stratified flow. If so, the process may be shifted to step S30 to increase the valve opening degree of the pressure reducing device 40.
 以上のように、この実施の形態2によれば、室内熱交換器50(低圧側熱交換器)において、伝熱管100の第1の部位110と第2の部位112との境界114の位置と、冷媒の流動様式が環状流又は環状噴霧流に変化する領域(位置)とが乖離するのを抑制することができる。 As described above, according to the second embodiment, in the indoor heat exchanger 50 (low pressure side heat exchanger), the position of the boundary 114 between the first portion 110 and the second portion 112 of the heat transfer tube 100 , It is possible to suppress the deviation from the region (position) where the flow mode of the refrigerant changes to the annular flow or the annular spray flow.
 実施の形態2の変形例1.
 上記の実施の形態2では、減圧装置40の弁開度を調整することによって、冷媒の流動様式が変化する領域(位置)を境界114に近づけるものとしたが、減圧装置40に代えて圧縮機10の運転周波数を調整してもよい。
Modification example of the second embodiment 1.
In the second embodiment described above, the region (position) where the flow mode of the refrigerant changes is brought closer to the boundary 114 by adjusting the valve opening degree of the decompression device 40, but instead of the decompression device 40, a compressor is used. The operating frequency of 10 may be adjusted.
 図13は、この変形例1の制御装置90により実行される処理の一例を説明するフローチャートである。このフローチャートは、図12に示したフローチャートに対応するものである。 FIG. 13 is a flowchart illustrating an example of the process executed by the control device 90 of the modified example 1. This flowchart corresponds to the flowchart shown in FIG.
 図13を参照して、ステップS110,S120において実行される処理は、それぞれ図12のステップS10,S20において実行される処理と同じである。 With reference to FIG. 13, the processes executed in steps S110 and S120 are the same as the processes executed in steps S10 and S20 of FIG. 12, respectively.
 そして、ステップS120において、冷媒の流動様式が環状流又は環状噴霧流であると判定されると(ステップS120においてYES)、制御装置90は、圧縮機10の運転周波数を下げる(ステップS130)。これにより、冷媒回路を流れる冷媒の流量が減少し、図6に示したベーカー線図において、点群95が全体的に図の下方向に移動する。その結果、室内熱交換器50内での流動様式の変化点は、下流側へシフトし、境界114へ近づく。 Then, in step S120, when it is determined that the flow mode of the refrigerant is a circular flow or a circular spray flow (YES in step S120), the control device 90 lowers the operating frequency of the compressor 10 (step S130). As a result, the flow rate of the refrigerant flowing through the refrigerant circuit is reduced, and in the Baker diagram shown in FIG. 6, the point cloud 95 moves downward as a whole. As a result, the change point of the flow mode in the indoor heat exchanger 50 shifts to the downstream side and approaches the boundary 114.
 一方、ステップS120において流動様式は環状流又は環状噴霧流ではないと判定されると(ステップS120においてNO)、制御装置90は、圧縮機10の運転周波数を上げる(ステップS140)。これにより、冷媒回路を流れる冷媒の流量が増加し、図6に示したベーカー線図において、点群95が全体的に図の上方向に移動する。その結果、室内熱交換器50内での流動様式の変化点は、上流側へシフトし、境界114へ近づく。 On the other hand, if it is determined in step S120 that the flow mode is not a circular flow or a circular spray flow (NO in step S120), the control device 90 raises the operating frequency of the compressor 10 (step S140). As a result, the flow rate of the refrigerant flowing through the refrigerant circuit increases, and in the Baker diagram shown in FIG. 6, the point cloud 95 moves upward in the figure as a whole. As a result, the change point of the flow mode in the indoor heat exchanger 50 shifts to the upstream side and approaches the boundary 114.
 なお、この変形例1についても、ステップS120において、冷媒の流動様式がスラグ流又は成層流であるか判定してもよい。そして、流動様式がスラグ流又は成層流であると判定された場合は、ステップS140へ処理を移行して圧縮機10の運転周波数を上昇させ、流動様式がスラグ流又は成層流ではないと判定された場合は、ステップS130へ処理を移行して圧縮機10の運転周波数を低下させるようにしてもよい。 Also for this modification 1, in step S120, it may be determined whether the flow mode of the refrigerant is a slag flow or a stratified flow. When it is determined that the flow mode is a slag flow or a stratified flow, the process is shifted to step S140 to raise the operating frequency of the compressor 10, and it is determined that the flow mode is not a slag flow or a stratified flow. If so, the process may be shifted to step S130 to lower the operating frequency of the compressor 10.
 実施の形態2の変形例2.
 冷媒の流動様式が変化する領域(位置)を境界114に近づけるために、実施の形態2では、減圧装置40の弁開度を調整し、変形例1では、圧縮機10の運転周波数を調整するものとしたが、これらに代えて、室内熱交換器50のファン52の能力(回転速度)を調整してもよい。
Modification example of the second embodiment 2.
In the second embodiment, the valve opening degree of the pressure reducing device 40 is adjusted, and in the first modification, the operating frequency of the compressor 10 is adjusted in order to bring the region (position) where the flow mode of the refrigerant changes closer to the boundary 114. However, instead of these, the capacity (rotational speed) of the fan 52 of the indoor heat exchanger 50 may be adjusted.
 図14は、この変形例2の制御装置90により実行される処理の一例を説明するフローチャートである。このフローチャートも、図12に示したフローチャートに対応するものである。 FIG. 14 is a flowchart illustrating an example of processing executed by the control device 90 of the modification 2. This flowchart also corresponds to the flowchart shown in FIG.
 図14を参照して、ステップS210,S220において実行される処理は、それぞれ図12のステップS10,S20において実行される処理と同じである。 With reference to FIG. 14, the processes executed in steps S210 and S220 are the same as the processes executed in steps S10 and S20 of FIG. 12, respectively.
 そして、ステップS220において、冷媒の流動様式が環状流又は環状噴霧流であると判定されると(ステップS220においてYES)、制御装置90は、室内熱交換器50のファン52の回転速度を下げる(ステップS230)。ファン52の回転速度を下げると、ファン52の風量が減少する。ファン52の風量減は、冷媒の流量減と同様の効果を奏し、すなわち圧縮機10の運転周波数の低下と同様の効果を奏する。したがって、ファン52の回転速度を下げることで、室内熱交換器50内での流動様式の変化点は、下流側へシフトし、境界114へ近づく。 Then, when it is determined in step S220 that the flow mode of the refrigerant is a circular flow or a circular spray flow (YES in step S220), the control device 90 reduces the rotation speed of the fan 52 of the indoor heat exchanger 50 (YES in step S220). Step S230). When the rotation speed of the fan 52 is lowered, the air volume of the fan 52 decreases. The reduction in the air volume of the fan 52 has the same effect as the reduction in the flow rate of the refrigerant, that is, the reduction in the operating frequency of the compressor 10 has the same effect. Therefore, by lowering the rotation speed of the fan 52, the change point of the flow mode in the indoor heat exchanger 50 shifts to the downstream side and approaches the boundary 114.
 一方、ステップS220において流動様式は環状流又は環状噴霧流ではないと判定されると(ステップS220においてNO)、制御装置90は、室内熱交換器50のファン52の回転速度を上げる(ステップS240)。これにより、室内熱交換器50内での流動様式の変化点は、上流側へシフトし、境界114へ近づく。 On the other hand, if it is determined in step S220 that the flow mode is not a circular flow or a circular spray flow (NO in step S220), the control device 90 increases the rotation speed of the fan 52 of the indoor heat exchanger 50 (step S240). .. As a result, the change point of the flow mode in the indoor heat exchanger 50 shifts to the upstream side and approaches the boundary 114.
 なお、この変形例2についても、ステップS220において、冷媒の流動様式がスラグ流又は成層流であるか判定してもよい。そして、流動様式がスラグ流又は成層流であると判定された場合は、ステップS240へ処理を移行してファン52の回転速度を上昇させ、流動様式がスラグ流又は成層流ではないと判定された場合は、ステップS230へ処理を移行してファン52の回転速度を低下させるようにしてもよい。 Also for this modification 2, in step S220, it may be determined whether the flow mode of the refrigerant is a slag flow or a stratified flow. When it was determined that the flow mode was a slag flow or a stratified flow, the process was shifted to step S240 to increase the rotation speed of the fan 52, and it was determined that the flow mode was not a slag flow or a stratified flow. In that case, the process may be shifted to step S230 to reduce the rotation speed of the fan 52.
 実施の形態3.
 実施の形態2及びその変形例では、温度センサ81~86によりそれぞれ検出される温度T1~T6を用いて、室内熱交換器50の伝熱管100の境界114における冷媒の流動様式を検知するものとした。この実施の形態3では、冷媒の流動様式を検知可能なセンサを境界114に配設し、境界114における冷媒の流動様式が直接検知される。
Embodiment 3.
In the second embodiment and its modifications, the temperatures T1 to T6 detected by the temperature sensors 81 to 86 are used to detect the flow mode of the refrigerant at the boundary 114 of the heat transfer tube 100 of the indoor heat exchanger 50. bottom. In the third embodiment, a sensor capable of detecting the flow mode of the refrigerant is arranged at the boundary 114, and the flow mode of the refrigerant at the boundary 114 is directly detected.
 図15は、実施の形態3において、室内熱交換器50における冷媒の流動様式を検知するセンサの配置を示す図である。この図15は、実施の形態1で説明した図7に対応するものである。 FIG. 15 is a diagram showing an arrangement of sensors for detecting the flow mode of the refrigerant in the indoor heat exchanger 50 in the third embodiment. FIG. 15 corresponds to FIG. 7 described in the first embodiment.
 図15を参照して、伝熱管100の構成は、図7に示した伝熱管と同じである。そして、この実施の形態3では、第1の部位110と第2の部位112との境界114に、光度センサ150が配設される。 With reference to FIG. 15, the configuration of the heat transfer tube 100 is the same as that of the heat transfer tube shown in FIG. Then, in the third embodiment, the luminous intensity sensor 150 is arranged at the boundary 114 between the first portion 110 and the second portion 112.
 光度センサ150は、境界114を流れる冷媒(気液二相流)に光を照射したときの検出光度に基づいて、境界114を流れる冷媒の流動様式を検知するためのセンサである。検出光度は、透過光の光度でもよいし、反射光の光度でもよい。冷媒の流動様式によって検出光度が異なることを利用し、境界114を流れる冷媒の流動様式を検出光度に基づき検知するものである。検出光度と流動様式との関係を事前の実験等により予め評価しておき、光度センサ150の検出値と境界114を流れる冷媒の流動様式との関係をマップ等でROM136に記憶しておくことで、境界114を流れる冷媒の流動様式を光度センサ150の検出値から容易に求めることができる。 The luminous intensity sensor 150 is a sensor for detecting the flow mode of the refrigerant flowing through the boundary 114 based on the detected luminous intensity when the refrigerant (gas-liquid two-phase flow) flowing through the boundary 114 is irradiated with light. The detected luminous intensity may be the luminous intensity of transmitted light or the luminous intensity of reflected light. Utilizing the fact that the detected luminous intensity differs depending on the flow mode of the refrigerant, the flow mode of the refrigerant flowing through the boundary 114 is detected based on the detected luminous intensity. By evaluating the relationship between the detected luminous intensity and the flow mode in advance by experiments or the like in advance, and storing the relationship between the detected value of the luminous intensity sensor 150 and the flow mode of the refrigerant flowing through the boundary 114 in ROM 136 with a map or the like. , The flow mode of the refrigerant flowing through the boundary 114 can be easily obtained from the detection value of the luminous intensity sensor 150.
 そして、光度センサ150を用いて検知された、境界114を流れる冷媒の流動様式に基づいて、図12、図13又は図14に示したフローチャートに従って、冷媒の流動様式の変化点が境界114に近づけられる。 Then, based on the flow mode of the refrigerant flowing through the boundary 114 detected by using the luminous intensity sensor 150, the change point of the flow mode of the refrigerant approaches the boundary 114 according to the flowchart shown in FIG. 12, FIG. 13 or FIG. Be done.
 以上のように、この実施の形態3によっても、光度センサ150の検出値を用いて、境界114を流れる冷媒の流動様式を検知し、境界114の位置と流動様式が変化する領域(位置)とが乖離するのを抑制することができる。 As described above, also in the third embodiment, the flow mode of the refrigerant flowing through the boundary 114 is detected by using the detection value of the luminous intensity sensor 150, and the position of the boundary 114 and the region (position) where the flow mode changes. Can be suppressed from diverging.
 実施の形態3の変形例1.
 光度センサ150に代えて、音波センサ160を境界114に配置し、音波センサ160によって境界114における冷媒の流動様式を検知してもよい。
Modification example of the third embodiment 1.
Instead of the luminous intensity sensor 150, the sound wave sensor 160 may be arranged at the boundary 114, and the sound wave sensor 160 may detect the flow mode of the refrigerant at the boundary 114.
 再び図15を参照して、音波センサ160も、第1の部位110と第2の部位112との境界114に配設される。音波センサ160は、境界114を流れる冷媒(気液二相流)に向けて音波を照射したときの検出波に基づいて、境界114を流れる冷媒の流動様式を検知するためのセンサである。冷媒の流動様式によって検出波が異なることを利用し、境界114を流れる冷媒の流動様式を音波に基づき検知するものである。検出波と流動様式との関係を事前の実験等により予め評価しておき、音波センサ160の検出値と境界114を流れる冷媒の流動様式との関係をマップ等でROM136に記憶しておくことで、境界114を流れる冷媒の流動様式を音波センサ160の検出値から容易に求めることができる。 With reference to FIG. 15 again, the sound wave sensor 160 is also arranged at the boundary 114 between the first portion 110 and the second portion 112. The sound wave sensor 160 is a sensor for detecting the flow mode of the refrigerant flowing through the boundary 114 based on the detection wave when the sound wave is irradiated toward the refrigerant (gas-liquid two-phase flow) flowing through the boundary 114. Utilizing the fact that the detection wave differs depending on the flow mode of the refrigerant, the flow mode of the refrigerant flowing through the boundary 114 is detected based on sound waves. By evaluating the relationship between the detected wave and the flow mode in advance by experiments or the like in advance, and storing the relationship between the detected value of the sound wave sensor 160 and the flow mode of the refrigerant flowing through the boundary 114 in ROM 136 with a map or the like. , The flow mode of the refrigerant flowing through the boundary 114 can be easily obtained from the detection value of the sound wave sensor 160.
 なお、実施の形態2及びその変形例では、境界114における冷媒の流動様式を検知し、流動様式が変化する領域(位置)が境界114に近づくように減圧装置40等を制御するものとしたが、伝熱管100において流動様式が変化する領域(位置)を推定し、当該領域が境界114に近づくように減圧装置40等を制御してもよい。冷媒の流動様式が変化する領域は、上述のように、伝熱管100の温度(蒸発温度)における飽和液及び飽和蒸気の各エンタルピと、流動様式が変化する冷媒の乾き度とから、流動様式が変化する領域を推定することができる。流動様式が変化する冷媒の乾き度は、伝熱管100の温度(蒸発温度)、冷媒回路を流れる冷媒の流量、伝熱管100の内径等から算出することができる。 In the second embodiment and its modification, the flow mode of the refrigerant at the boundary 114 is detected, and the decompression device 40 or the like is controlled so that the region (position) where the flow mode changes approaches the boundary 114. , The region (position) where the flow mode changes in the heat transfer tube 100 may be estimated, and the decompression device 40 or the like may be controlled so that the region approaches the boundary 114. As described above, the region where the flow mode of the refrigerant changes depends on the enthalpies of the saturated liquid and the saturated vapor at the temperature (evaporation temperature) of the heat transfer tube 100 and the dryness of the refrigerant whose flow mode changes. The changing region can be estimated. The dryness of the refrigerant whose flow mode changes can be calculated from the temperature of the heat transfer tube 100 (evaporation temperature), the flow rate of the refrigerant flowing through the refrigerant circuit, the inner diameter of the heat transfer tube 100, and the like.
 また、上記の各実施の形態及び各変形例では、冷凍サイクル装置の一例として空気調和機について説明したが、本開示に従う冷凍サイクル装置は、空気調和機に限定されるものではなく、倉庫やショーケース等に用いられる冷凍サイクル装置にも適用可能である。 Further, in each of the above embodiments and modifications, the air conditioner has been described as an example of the refrigeration cycle device, but the refrigeration cycle device according to the present disclosure is not limited to the air conditioner, and is not limited to the air conditioner, but is not limited to the air conditioner. It can also be applied to refrigeration cycle equipment used for cases and the like.
 今回開示された実施の形態は、全ての点で例示であって制限的なものではないと考えられるべきである。本開示により示される技術的範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The technical scope set forth in the present disclosure is set forth by the claims rather than the description of the embodiments described above, and is intended to include all modifications within the meaning and scope of the claims. ..
 1 空気調和機、2 室外機、3 室内機、10 圧縮機、20 四方弁、30 室外熱交換器、32,52 ファン、40 減圧装置、50 室内熱交換器、62~72,124,125 配管、81~86 温度センサ、90 制御装置、95 点群、100 伝熱管、102 液冷媒、104 ガス冷媒、106 油滴、108 油膜、110 第1の部位、112 第2の部位、114 境界、116,118 溝、120 入口
122 出口、126 接続管、128 フィン、132 CPU、134 RAM、136 ROM、138 入力部、140 表示部、142 I/F部、144 バス、150 光度センサ、160 音波センサ。
1 air conditioner, 2 outdoor unit, 3 indoor unit, 10 compressor, 20 four-way valve, 30 outdoor heat exchanger, 32,52 fan, 40 decompression device, 50 indoor heat exchanger, 62-72, 124, 125 piping , 81-86 temperature sensor, 90 controller, 95 point group, 100 heat transfer tube, 102 liquid refrigerant, 104 gas refrigerant, 106 oil droplets, 108 oil film, 110 first part, 112 second part, 114 boundary, 116 , 118 groove, 120 inlet 122 exit, 126 connection tube, 128 fins, 132 CPU, 134 RAM, 136 ROM, 138 input section, 140 display section, 142 I / F section, 144 bus, 150 luminous sensor, 160 sonic sensor.

Claims (14)

  1.  冷凍機油に非相溶油が用いられる冷凍サイクル装置であって、
     冷媒を圧縮する圧縮機と、
     前記圧縮機から出力される冷媒を凝縮する第1の熱交換器と、
     前記第1の熱交換器から出力される冷媒を減圧する減圧装置と、
     前記減圧装置から出力される冷媒を蒸発させて前記圧縮機へ出力する第2の熱交換器とを備え、
     前記第2の熱交換器は、管内面に溝が形成された伝熱管を含み、
     前記溝は、前記伝熱管の下流側における単位長さ当たり管内表面積が前記伝熱管の上流側における前記管内表面積よりも小さくなるように形成されている、冷凍サイクル装置。
    A refrigeration cycle device that uses incompatible oil as refrigerating machine oil.
    A compressor that compresses the refrigerant and
    A first heat exchanger that condenses the refrigerant output from the compressor,
    A decompression device that decompresses the refrigerant output from the first heat exchanger, and
    A second heat exchanger that evaporates the refrigerant output from the decompression device and outputs the refrigerant to the compressor is provided.
    The second heat exchanger includes a heat transfer tube having a groove formed on the inner surface of the tube.
    The groove is formed so that the surface area inside the tube per unit length on the downstream side of the heat transfer tube is smaller than the surface area inside the tube on the upstream side of the heat transfer tube.
  2.  前記伝熱管は、
     第1の部位と、
     前記第1の部位よりも下流の第2の部位とを含み、
     前記溝は、前記第2の部位における前記管内表面積が前記第1の部位における前記管内表面積よりも小さくなるように形成されており、
     前記第1の部位と前記第2の部位との境界は、前記伝熱管を流れる冷媒の流動様式が変化する領域に設けられる、請求項1に記載の冷凍サイクル装置。
    The heat transfer tube is
    The first part and
    Includes a second site downstream of the first site, including
    The groove is formed so that the surface area inside the pipe at the second portion is smaller than the surface area inside the pipe at the first portion.
    The refrigerating cycle apparatus according to claim 1, wherein the boundary between the first portion and the second portion is provided in a region where the flow mode of the refrigerant flowing through the heat transfer tube changes.
  3.  前記第1の部位は、直列に接続された少なくとも1つの第1の配管を含み、
     前記第2の部位は、直列に接続された少なくとも1つの第2の配管を含み、
     前記少なくとも1つの第1の配管及び前記少なくとも1つの第2の配管は、前記少なくとも1つの第1の配管と前記少なくとも1つの第2の配管との接続部が前記領域に含まれるように形成される、請求項2に記載の冷凍サイクル装置。
    The first portion comprises at least one first pipe connected in series.
    The second portion comprises at least one second pipe connected in series.
    The at least one first pipe and the at least one second pipe are formed so that a connection portion between the at least one first pipe and the at least one second pipe is included in the region. The refrigeration cycle apparatus according to claim 2.
  4.  前記冷媒の状態を検出するための温度センサと、
     前記温度センサの検出値を用いて、前記境界における冷媒の流動様式を検知する検知部とをさらに備える、請求項2又は請求項3に記載の冷凍サイクル装置。
    A temperature sensor for detecting the state of the refrigerant and
    The refrigeration cycle apparatus according to claim 2 or 3, further comprising a detection unit that detects the flow mode of the refrigerant at the boundary by using the detection value of the temperature sensor.
  5.  前記温度センサは、前記第1の熱交換器の入側冷媒温度、出側冷媒温度、伝熱管温度及び周囲温度、並びに前記第2の熱交換器の周囲温度及び伝熱管温度を検出する、請求項4に記載の冷凍サイクル装置。 The temperature sensor detects the inlet refrigerant temperature, the outlet refrigerant temperature, the heat transfer tube temperature and the ambient temperature of the first heat exchanger, and the ambient temperature and the heat transfer tube temperature of the second heat exchanger. Item 4. The refrigeration cycle apparatus according to Item 4.
  6.  前記境界に配置され、前記境界における冷媒の流動様式を検知するためのセンサをさらに備える、請求項2又は請求項3に記載の冷凍サイクル装置。 The refrigerating cycle apparatus according to claim 2 or 3, further comprising a sensor arranged at the boundary and for detecting the flow mode of the refrigerant at the boundary.
  7.  前記センサは、前記境界における冷媒の状態を検知する光度センサを含む、請求項6に記載の冷凍サイクル装置。 The refrigeration cycle device according to claim 6, wherein the sensor includes a luminous intensity sensor that detects the state of the refrigerant at the boundary.
  8.  前記センサは、前記境界における冷媒の状態を検知する音波センサを含む、請求項6に記載の冷凍サイクル装置。 The refrigeration cycle device according to claim 6, wherein the sensor includes a sound wave sensor for detecting the state of the refrigerant at the boundary.
  9.  前記減圧装置は、減圧弁を含み、
     前記冷凍サイクル装置は、前記減圧弁の開度を制御する制御装置をさらに備え、
     前記制御装置は、
     検知された前記流動様式が環状流又は環状噴霧流である場合に、前記開度を増加させ、
     検知された前記流動様式が環状流又は環状噴霧流でない場合に、前記開度を減少させる、請求項4から請求項8のいずれか1項に記載の冷凍サイクル装置。
    The pressure reducing device includes a pressure reducing valve, and the pressure reducing device includes a pressure reducing valve.
    The refrigeration cycle device further includes a control device for controlling the opening degree of the pressure reducing valve.
    The control device is
    When the detected flow mode is a circular flow or a circular spray flow, the opening degree is increased.
    The refrigeration cycle apparatus according to any one of claims 4 to 8, wherein the opening degree is reduced when the detected flow mode is not a circular flow or a circular spray flow.
  10.  前記圧縮機の運転周波数を制御する制御装置をさらに備え、
     前記制御装置は、
     検知された前記流動様式が環状流又は環状噴霧流である場合に、前記運転周波数を低下させ、
     検知された前記流動様式が環状流又は環状噴霧流でない場合に、前記運転周波数を上昇させる、請求項4から請求項8のいずれか1項に記載の冷凍サイクル装置。
    Further equipped with a control device for controlling the operating frequency of the compressor,
    The control device is
    When the detected flow mode is a circular flow or a circular spray flow, the operating frequency is lowered.
    The refrigeration cycle apparatus according to any one of claims 4 to 8, wherein the operating frequency is increased when the detected flow mode is not a circular flow or a circular spray flow.
  11.  前記第2の熱交換器に設けられるファンと、
     前記ファンの回転速度を制御する制御装置をさらに備え、
     前記制御装置は、
     検知された前記流動様式が環状流又は環状噴霧流である場合に、前記回転速度を低下させ、
     検知された前記流動様式が環状流又は環状噴霧流でない場合に、前記回転速度を上昇させる、請求項4から請求項8のいずれか1項に記載の冷凍サイクル装置。
    The fan provided in the second heat exchanger and
    Further equipped with a control device for controlling the rotation speed of the fan,
    The control device is
    When the detected flow mode is a circular flow or a circular spray flow, the rotation speed is reduced.
    The refrigerating cycle apparatus according to any one of claims 4 to 8, wherein the rotational speed is increased when the detected flow mode is not a circular flow or a circular spray flow.
  12.  請求項1から請求項11のいずれか1項に記載の冷凍サイクル装置を備える空気調和機。 An air conditioner including the refrigeration cycle apparatus according to any one of claims 1 to 11.
  13.  冷凍機油に非相溶油が用いられる冷凍サイクル装置の熱交換器であって、
     管内面に溝が形成された伝熱管を備え、
     前記伝熱管は、
     第1の部位と、
     前記第1の部位よりも下流の第2の部位とを含み、
     前記溝は、前記第2の部位における単位長さ当たり管内表面積が前記第1の部位における前記管内表面積よりも小さくなるように形成されており、
     前記第1の部位と前記第2の部位との境界は、前記伝熱管を流れる冷媒の流動様式が変化する領域に設けられる、熱交換器。
    A heat exchanger for refrigeration cycle equipment that uses incompatible oil as refrigerating machine oil.
    Equipped with a heat transfer tube with a groove formed on the inner surface of the tube
    The heat transfer tube is
    The first part and
    Includes a second site downstream of the first site, including
    The groove is formed so that the surface area in the pipe per unit length at the second portion is smaller than the surface area inside the pipe at the first portion.
    The boundary between the first portion and the second portion is a heat exchanger provided in a region where the flow mode of the refrigerant flowing through the heat transfer tube changes.
  14.  前記第1の部位は、直列に接続された少なくとも1つの第1の配管を含み、
     前記第2の部位は、直列に接続された少なくとも1つの第2の配管を含み、
     前記少なくとも1つの第1の配管及び前記少なくとも1つの第2の配管は、前記少なくとも1つの第1の配管と前記少なくとも1つの第2の配管との接続部が前記領域に含まれるように形成される、請求項13に記載の熱交換器。
    The first portion comprises at least one first pipe connected in series.
    The second portion comprises at least one second pipe connected in series.
    The at least one first pipe and the at least one second pipe are formed so that a connection portion between the at least one first pipe and the at least one second pipe is included in the region. The heat exchanger according to claim 13.
PCT/JP2020/038481 2020-10-12 2020-10-12 Refrigeration cycle device, air conditioner, and heat exchanger WO2022079763A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022557235A JPWO2022079763A5 (en) 2020-10-12 Refrigeration cycle device and air conditioner
US18/041,592 US20230288149A1 (en) 2020-10-12 2020-10-12 Refrigeration cycle apparatus and air conditioner (as amended)
CN202080105936.4A CN116249870A (en) 2020-10-12 2020-10-12 Refrigeration cycle device, air conditioner, and heat exchanger
EP20957592.7A EP4227607A4 (en) 2020-10-12 2020-10-12 Refrigeration cycle device, air conditioner, and heat exchanger
PCT/JP2020/038481 WO2022079763A1 (en) 2020-10-12 2020-10-12 Refrigeration cycle device, air conditioner, and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/038481 WO2022079763A1 (en) 2020-10-12 2020-10-12 Refrigeration cycle device, air conditioner, and heat exchanger

Publications (1)

Publication Number Publication Date
WO2022079763A1 true WO2022079763A1 (en) 2022-04-21

Family

ID=81207779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038481 WO2022079763A1 (en) 2020-10-12 2020-10-12 Refrigeration cycle device, air conditioner, and heat exchanger

Country Status (4)

Country Link
US (1) US20230288149A1 (en)
EP (1) EP4227607A4 (en)
CN (1) CN116249870A (en)
WO (1) WO2022079763A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243022A1 (en) * 2022-06-16 2023-12-21 三菱電機株式会社 Heat pump device

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666690U (en) * 1979-10-22 1981-06-03
JPS58174668U (en) * 1982-05-17 1983-11-22 三菱重工業株式会社 Evaporator
JPH0445753A (en) 1990-06-11 1992-02-14 Fuji Capsule Kk Jelly product and production thereof
JPH04316962A (en) * 1991-04-15 1992-11-09 Nippondenso Co Ltd Refrigeration cycle
JPH05133692A (en) * 1991-11-11 1993-05-28 Matsushita Refrig Co Ltd Evaporator
JPH06281293A (en) * 1993-03-31 1994-10-07 Toshiba Corp Heat exchanger
JPH0931450A (en) * 1995-07-18 1997-02-04 Daikin Ind Ltd Refrigerator
JPH09133433A (en) * 1995-11-07 1997-05-20 Sanyo Electric Co Ltd Heat exchanger
JP2001272117A (en) * 2000-03-29 2001-10-05 Mitsubishi Electric Corp Refrigerating and air-conditioning cycle device
JP2007248030A (en) * 2006-03-20 2007-09-27 Matsushita Electric Ind Co Ltd Refrigeration cycle device
JP2008151380A (en) * 2006-12-15 2008-07-03 Mitsubishi Electric Corp Refrigerating cycle device and its control method
JP2009002564A (en) * 2007-06-21 2009-01-08 Fuji Electric Holdings Co Ltd Refrigerant cooling circuit
JP2009257742A (en) * 2008-03-25 2009-11-05 Daikin Ind Ltd Refrigerating device and manufacturing method therefor
WO2016181529A1 (en) * 2015-05-13 2016-11-17 三菱電機株式会社 Refrigeration cycle device
WO2018173256A1 (en) * 2017-03-24 2018-09-27 三菱電機株式会社 Air conditioning device
WO2019180817A1 (en) 2018-03-20 2019-09-26 三菱電機株式会社 Heat exchanger, refrigeration cycle device, and air conditioning device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016006481B4 (en) * 2016-05-25 2019-03-21 Audi Ag Evaporator injection pipe for a vehicle air conditioning system
US11892206B2 (en) * 2019-03-26 2024-02-06 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666690U (en) * 1979-10-22 1981-06-03
JPS58174668U (en) * 1982-05-17 1983-11-22 三菱重工業株式会社 Evaporator
JPH0445753A (en) 1990-06-11 1992-02-14 Fuji Capsule Kk Jelly product and production thereof
JPH04316962A (en) * 1991-04-15 1992-11-09 Nippondenso Co Ltd Refrigeration cycle
JPH05133692A (en) * 1991-11-11 1993-05-28 Matsushita Refrig Co Ltd Evaporator
JPH06281293A (en) * 1993-03-31 1994-10-07 Toshiba Corp Heat exchanger
JPH0931450A (en) * 1995-07-18 1997-02-04 Daikin Ind Ltd Refrigerator
JPH09133433A (en) * 1995-11-07 1997-05-20 Sanyo Electric Co Ltd Heat exchanger
JP2001272117A (en) * 2000-03-29 2001-10-05 Mitsubishi Electric Corp Refrigerating and air-conditioning cycle device
JP2007248030A (en) * 2006-03-20 2007-09-27 Matsushita Electric Ind Co Ltd Refrigeration cycle device
JP2008151380A (en) * 2006-12-15 2008-07-03 Mitsubishi Electric Corp Refrigerating cycle device and its control method
JP2009002564A (en) * 2007-06-21 2009-01-08 Fuji Electric Holdings Co Ltd Refrigerant cooling circuit
JP2009257742A (en) * 2008-03-25 2009-11-05 Daikin Ind Ltd Refrigerating device and manufacturing method therefor
WO2016181529A1 (en) * 2015-05-13 2016-11-17 三菱電機株式会社 Refrigeration cycle device
WO2018173256A1 (en) * 2017-03-24 2018-09-27 三菱電機株式会社 Air conditioning device
WO2019180817A1 (en) 2018-03-20 2019-09-26 三菱電機株式会社 Heat exchanger, refrigeration cycle device, and air conditioning device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243022A1 (en) * 2022-06-16 2023-12-21 三菱電機株式会社 Heat pump device

Also Published As

Publication number Publication date
EP4227607A1 (en) 2023-08-16
US20230288149A1 (en) 2023-09-14
JPWO2022079763A1 (en) 2022-04-21
CN116249870A (en) 2023-06-09
EP4227607A4 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
JP5241872B2 (en) Refrigeration cycle equipment
JP4999529B2 (en) Heat source machine and refrigeration air conditioner
WO2018155056A1 (en) Air conditioner
JP2007147218A (en) Refrigerating device
JP4550153B2 (en) Heat pump device and outdoor unit of heat pump device
JP4966601B2 (en) Air conditioner
WO2022079763A1 (en) Refrigeration cycle device, air conditioner, and heat exchanger
KR20140048620A (en) Turbo chiller
JP2010127481A (en) Air conditioner
JP2007155143A (en) Refrigerating device
JP4767340B2 (en) Heat pump control device
JP2010159967A (en) Heat pump device and outdoor unit for the heat pump device
WO2015121992A1 (en) Refrigeration cycle device
JP2000283568A (en) Refrigerating device and control method therefor
JP2013053849A (en) Heat pump device, and outdoor unit thereof
JP4522962B2 (en) Refrigeration cycle equipment
Ceylan Review on the two-stage vapor injection heat pump with a flash tank
JP7448848B2 (en) air conditioner
WO2023199381A1 (en) Refrigeration cycle device
EP3492844B1 (en) Air conditioner
KR200362720Y1 (en) Refrigerant cycle system
KR200362722Y1 (en) Refrigerant cycle system
KR200362726Y1 (en) Refrigerant cycle system
KR100639984B1 (en) Refrigerant cycle system
KR200362729Y1 (en) Refrigerant cycle system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957592

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022557235

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020957592

Country of ref document: EP

Effective date: 20230512