WO2022078043A1 - Ppg传感器、电子设备和可穿戴设备 - Google Patents

Ppg传感器、电子设备和可穿戴设备 Download PDF

Info

Publication number
WO2022078043A1
WO2022078043A1 PCT/CN2021/112370 CN2021112370W WO2022078043A1 WO 2022078043 A1 WO2022078043 A1 WO 2022078043A1 CN 2021112370 W CN2021112370 W CN 2021112370W WO 2022078043 A1 WO2022078043 A1 WO 2022078043A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting component
ppg sensor
blood oxygen
photoelectric sensors
Prior art date
Application number
PCT/CN2021/112370
Other languages
English (en)
French (fr)
Inventor
颜瑞
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21879090.5A priority Critical patent/EP4218553A4/en
Publication of WO2022078043A1 publication Critical patent/WO2022078043A1/zh
Priority to US18/194,939 priority patent/US20230233094A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02427Details of sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/043Arrangements of multiple sensors of the same type in a linear array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/046Arrangements of multiple sensors of the same type in a matrix array

Definitions

  • the present application relates to wearable devices, in particular to a PPG sensor, electronic device and wearable device.
  • PPG Photo Plethysmo Graphy
  • PPG detection technology is mainly divided into two types: one is transmission detection technology and reflective detection technology.
  • PPG sensors applied to wearable devices generally use reflective detection technology to measure physiological physiology at the wrist. Parameter information.
  • the current PPG sensor has the problem of inaccurate measurement.
  • a PPG sensor an electronic device, and a wearable device are provided.
  • the embodiment of the present application also provides a PPG sensor, and the PPG sensor includes:
  • a first light-emitting component for emitting a first optical signal
  • a second light-emitting component for emitting a second light signal
  • the photoelectric sensors are used for receiving the first optical signal and the second optical signal;
  • the distance between the first light-emitting component and at least one of the photosensors is greater than the minimum distance between the second light-emitting component and each of the photosensors.
  • the above-mentioned PPG sensor by arranging the relative positional relationship between the first light-emitting component, the second light-emitting component and the plurality of photoelectric sensors, and the distance between the first light-emitting component and at least one photoelectric sensor is greater than the distance between the second light-emitting component and each photoelectric sensor
  • the distances between the first light-emitting component, the second light-emitting component and the multiple photoelectric sensors are different, which can meet the distance requirements in application scenarios such as heart rate testing, blood pressure testing, and blood oxygen testing.
  • the first light-emitting component and the second light-emitting component correspond to different physiological parameter measurement channels constructed by each photoelectric sensor, and an appropriate physiological parameter measurement channel can be selected according to the test requirements of the physiological parameters, thereby improving the measurement accuracy of the physiological parameters. Accuracy.
  • the embodiment of the present application also provides an electronic device, the electronic device includes:
  • the shell is provided with a detection window
  • the PPG sensor leaks outside the detection window.
  • the embodiment of the present application also provides a wearable device, and the wearable device includes:
  • the strap assembly is used to fix the electronic device to the human body.
  • the wearable device and the electronic device are all provided with a PPG sensor, which can measure the physiological parameter information of the human body and improve the measurement accuracy.
  • FIG. 1 is a schematic three-dimensional structure diagram of a wearable device in one embodiment
  • FIG. 2 is a plan view of a wearable device in one embodiment
  • Figure 3a is a schematic diagram of the PPG transmission detection technology in one embodiment
  • Figure 3b is a schematic diagram of the PPG reflective detection technology in one embodiment
  • FIG 5 is the second schematic diagram of the frame structure of the PPG sensor in one embodiment
  • FIG. 6 is the third schematic diagram of the frame structure of the PPG sensor in one embodiment
  • FIG. 7 is the fourth schematic diagram of the frame structure of the PPG sensor in one embodiment.
  • FIG. 8 is the fifth schematic diagram of the frame structure of the PPG sensor in one embodiment
  • FIG. 9 is the sixth schematic diagram of the frame structure of the PPG sensor in one embodiment.
  • first, second, etc. used in this application may be used herein to describe various elements, but these elements are not limited by these terms. These terms are only used to distinguish a first element from another element.
  • a first light emitting component may be referred to as a second light emitting component, and similarly, a second light emitting component may be referred to as a first light emitting component, without departing from the scope of this application.
  • Both the first light emitting assembly and the second light emitting assembly are light emitting assemblies, but they are not the same light emitting assembly.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plural means at least two, such as two, three, etc., unless expressly and specifically defined otherwise.
  • severeal means at least one, such as one, two, etc., unless expressly and specifically defined otherwise.
  • the wearable device 10 includes an electronic device 100 and a strap assembly 200 .
  • the electronic device 100 is mounted on the strap assembly 200 and can be worn to a user's wrist through the strap assembly 200 .
  • the electronic device 100 includes a casing 110 and electronic components such as a circuit board and a battery arranged in the casing 110 .
  • the casing 110 is provided with a mounting cavity, and the electronic components such as the circuit board and the battery are arranged in the mounting cavity. inside the cavity.
  • the casing 110 may be made of non-metallic materials such as plastic, rubber, silica gel, wood, ceramics or glass, and the casing 110 may also be made of metal materials such as stainless steel, aluminum alloy or magnesium alloy.
  • the casing 110 can also be a metal injection molded part, that is, the structural rigidity of the casing 110 is ensured by using a metal material, and the inner surface of the metal body is formed with protrusions, grooves, threaded holes and other structures for assembly and positioning by injection molding.
  • the casing 110 is provided with a detection window 111, which is used for light transmission to transmit light signals emitted and reflected by electronic components such as the PPG sensor 120 built in the casing 110, so as to realize the detection of human heart rate, blood oxygen Saturation and other vital sign signals are detected.
  • the PPG detection technology is mainly divided into two types from the perspective of the layout of the PPG sensor 120: one is the transmission detection technology, as shown in Figure 3a, which can trace the change of the blood vessel volume during the cardiac cycle according to the difference of the transmitted light intensity , and obtain the heart rate, blood oxygen saturation, etc.; one is the reflection detection technology, as shown in Figure 3b, which can trace the changes of the blood vessel volume during the cardiac cycle according to the different reflected light intensity, and obtain the heart rate, Vital signs such as blood oxygen saturation.
  • the PPG sensor 120 provided in this application with the wearable device 10
  • the user can conveniently detect the heart rate and blood oxygen saturation, etc. anytime, anywhere, thereby not only enriching the functions of the wearable electronic device, but also greatly satisfying the user's needs. health needs.
  • the housing 110 is further provided with an opaque blocking wall 112 and a transparent opening 113, wherein the opaque blocking wall 112 matches the size of the detection window 111 and can be used to prevent the PPG sensor Cross-lighting occurs between the light-emitting component of 120 and the photoelectric sensor.
  • the transparent opening window 113 covers the detection window 111 to prevent water and dust and increase the light transmittance of the PPG sensor 120 .
  • the wearable device 10 is a smart watch or a bracelet.
  • the installation cavity is provided with electronic components such as battery, circuit board, display module, PPG sensor 120, etc.
  • the circuit board can integrate electronic components such as the processor, storage unit, communication module of the wearable device 10, and the battery can be a circuit board , display module and other electronic components power supply.
  • the casing 110 is roughly in the shape of a rectangular frame, and the four corners of the rectangle can be processed into arc transitions through a chamfering process, so that the wearable device 10 has better appearance characteristics.
  • the housing 110 may also be in the shape of a circular frame.
  • the side surface of the housing 110 may be provided with a matching structure for installing the strap assembly 200, and the strap assembly 200 can form a reliable connection with the housing 110 through the matching structure of the housing 110, so as to reliably wear the electronic device 100 to the user's body. hand.
  • the strap assembly 200 can also be easily detached from the housing 110 , so that the user can easily replace the strap assembly 200 .
  • a user may purchase various styles of strap assemblies 200 and replace the strap assemblies 200 according to usage scenarios, so as to improve the convenience of use. For example, a user may use a more formal strap assembly 200 in a formal occasion, and a casual style strap assembly 200 in a casual entertainment occasion.
  • the PPG sensor includes a first light-emitting component 121 , a plurality of photoelectric sensors 122 and a second light-emitting component 124 .
  • the first light emitting component 121 can be used for receiving the driving signal to transmit the first optical signal
  • the second light emitting component 124 can be used for receiving the driving signal to transmit the second optical signal.
  • the first optical signal and the second optical signal may be the same or different.
  • the PPG sensor can control the types of light signals emitted by the first light emitting component 121 and the second light emitting component 124 according to measurement requirements.
  • both the first optical signal and the second optical signal may include at least one of red light, infrared light and green light.
  • the measurement requirements include but are not limited to heart rate measurement, blood pressure measurement, and blood oxygen saturation measurement.
  • Each photoelectric sensor 122 may operate in a zero-bias state, that is, each photoelectric sensor 122 may be a photodiode PD in a photovoltaic mode. Each photoelectric sensor 122 is used for receiving the first light signal emitted by the first light emitting component 121 and the second light signal emitted by the second light emitting component 124 , and converting the receivable first and second light signals into electrical signals.
  • the distance between the first light-emitting component 121 and the at least one photoelectric sensor 122 is greater than the minimum distance between the second light-emitting component 124 and each photoelectric sensor 122 .
  • the distance between the second light-emitting component 124 and any one of the photosensors 122 may be denoted as q i , wherein the minimum distance between the second light-emitting component 124 and each photoelectric sensor 122 may be denoted as q min .
  • the distance between the first light-emitting component 121 and the at least one photoelectric sensor 122 is also denoted as p 1 -pn . That is, any of the distances p 1 -pn is greater than the minimum distance q min .
  • the distance between the first light-emitting component 121, the second light-emitting component 124 and the plurality of photoelectric sensors 122 can meet the distance requirements in application scenarios such as heart rate test, blood pressure test, blood oxygen test, etc., so as to improve heart rate measurement and blood oxygen saturation The measurement accuracy of the degree measurement.
  • the layout of the first light-emitting component 121 , the second light-emitting component 124 and the plurality of photoelectric sensors 122 of the PPG sensor provided by the embodiment of the present application can satisfy the requirements for each photoelectric sensor 122 , the first light-emitting component 121 , the second light-emitting component 121 and the second light-emitting component in different application scenarios.
  • Distance requirements between components 124 For example, when the first light-emitting component 121 is an LED component combining red light and infrared light, and the second light-emitting component 124 is a green LED, the emission between the second light-emitting component 124 with the shortest distance and the photoelectric sensor 122 can be measured.
  • the light intensity can measure the heart rate information, and the blood oxygen saturation information can also be measured by measuring the light intensity emitted between the first light-emitting component 121 with the longest distance and the photoelectric sensor 122 . Therefore, the layout of the first light-emitting component 121, the second light-emitting component 124, and the plurality of photoelectric sensors 122 in the PPG sensor provided in the embodiment of the present application can take into account the measurement requirements of heart rate measurement, blood pressure test, and blood oxygen saturation measurement, and further can Improve the measurement accuracy of heart rate measurement and blood oxygen saturation measurement.
  • the plurality of photoelectric sensors 122 can respectively form corresponding physiological parameter measurement paths with the first light-emitting component 121 and the second light-emitting component 124 .
  • each photoelectric sensor 122 corresponds to a different biological skin tissue area
  • the depth of the biological skin tissue penetrated by the first light signal and the second light signal is different
  • the first light collected by each photoelectric sensor 122 The reflected light intensity of the signal and the second light signal are also different. Therefore, the multiple physiological parameter measurement channels of the PPG sensor can measure multiple physiological parameters corresponding to different biological skin tissue positions and depths of the user, thereby improving the testing of physiological parameters. Precision and Accuracy.
  • the first light signal may include red light and/or infrared light.
  • the second optical signal includes green light.
  • the first light-emitting component 121 may include a red light or infrared light LED LED component, a red light and infrared light combined LED component, a green light and infrared light combined LED component, green light and infrared light combined into one , and any one of the three-in-one LED components of green light, red light and infrared light.
  • the second light-emitting component 124 may include a green light LED, a green light and infrared light combination LED component, a green light and external light combination LED component, and a green light, red light and infrared light combination LED component. either.
  • each photoelectric sensor 122 and the first light-emitting element 121 constitute a first blood oxygen measurement channel.
  • Each photoelectric sensor 122 and the second light-emitting element 124 form a heart rate measurement channel. That is, when the number of photosensors 122 is n (n is greater than or equal to 2), and the multiple photosensors 122 are denoted as PD1, PD2, PD3, . . . , PDn, each photosensor 122 may correspond to The first light-emitting component 121 constitutes n first blood oxygen measurement channels. It can be understood that, each first blood oxygen measurement channel corresponds to one photoelectric sensor 122 .
  • each photoelectric sensor 122 may correspond to the second light-emitting component 124 to form n heart rate measurement channels. It can be understood that each heart rate measurement channel corresponds to one photoelectric sensor 122 .
  • the PPG sensor can collect the reflected light intensity based on the shortest distance heart rate measurement channel to realize the heart rate information.
  • the heart rate measurement channel with the shortest distance can be formed by the second light-emitting component 124 and the photoelectric sensor 122 with the shortest distance.
  • the range of the minimum distance q min between the second light-emitting component 124 and each photoelectric sensor 122 is between 4 mm and 5 mm.
  • the PPG sensor can collect reflected light intensity based on a long-distance blood oxygen measurement channel to test blood oxygen saturation information.
  • the long-distance blood oxygen measurement channel can be composed of the first light-emitting component 121 and the photoelectric sensor 122 that are longer than the minimum distance qmin .
  • the distance between the first light-emitting component 121 and the at least one photoelectric sensor 122 is between 7 mm and 9 mm, so as to meet the requirement of being greater than the minimum distance q min .
  • each photoelectric sensor 122 corresponds to a different biological skin tissue area, and when different first blood oxygen measurement channels collect the first optical signal, the depth of the biological skin tissue through which the first optical signal penetrates Different, the light intensity of the first optical signal collected by each photoelectric sensor 122 is also different. Therefore, the multiple first blood oxygen measurement channels of the PPG sensor 120 can correspond to the multiple first blood oxygen test results of different biological skin tissue positions and depths of the user, thereby reducing the influence of venous pulsation on the blood oxygen measurement. In order to reduce the measurement error of blood oxygen saturation information, improve the test precision and accuracy of blood oxygen saturation.
  • the PPG sensor 120 can correspond to multiple heart rate test results of different biological skin tissue positions and depths of the user, thereby improving the test accuracy and accuracy of heart rate information.
  • the layout of the first light-emitting component 121 , the second light-emitting component 124 and the plurality of photoelectric sensors 122 in the PPG sensor 120 provided in the embodiment of the present application can take into account the measurement requirements of heart rate measurement and blood oxygen saturation measurement. There are multiple heart rate measurement channels and first blood oxygen measurement channels, and the reflected light intensity received by each test channel is also different. Therefore, the measurement precision and accuracy of heart rate measurement and blood oxygen saturation measurement can be improved.
  • the PPG sensor can also detect the blood pressure information based on the reflected light intensity collected by each photoelectric sensor 122, so as to expand the function of the PPG sensor.
  • the outline of the PPG sensor 120 is described by taking a circle as an example.
  • the outline of the PPG sensor 120 can also be in other shapes such as an oval shape, a long strip shape, and the like.
  • the distances between the at least two photosensors 122 and the first light-emitting component 121 are different, that is, the distances between the first light-emitting component 121 and the at least two photosensors 122 are different .
  • any two photoelectric sensors 122 are denoted as PDi and PDj, respectively, the distance between the first light-emitting component 121 and any photoelectric sensor PDi and PDj can be denoted as p i , p j , where 1 ⁇ i ⁇ j ⁇ n, then p i ⁇ p j .
  • the distances between the first light-emitting component 121 and the four photosensors 122 may be denoted as p 1 , p 2 , p 3 , and p 4 , wherein the first light-emitting element 121
  • the different distances between the component 121 and the at least two photosensors 122 can be understood as equal to any three distances among p 1 , p 2 , p 3 , and p 4 , or any of p 1 , p 2 , p 3 , and p 4
  • the two distances are equal, or, none of the three distances of p 1 , p 2 , p 3 , and p 4 are equal, or, none of the four distances of p 1 , p 2 , p 3 , and p 4 are equal.
  • the distance between the first light-emitting assembly 121 and any photoelectric sensor 122 can be understood as the distance between the center position of the first light-emitting assembly 121 and the center position of any photoelectric sensor 122, wherein the center position can be understood as the distance between the components and devices. geometric center.
  • each photoelectric sensor 122 corresponds to a different biological skin tissue area, and when different first blood oxygen measurement channels collect the first optical signal, the biological skin tissue through which the first optical signal penetrates The light intensity of the first optical signal collected by each photoelectric sensor 122 is different depending on the depth.
  • the multiple first blood oxygen measurement channels of the PPG sensor 120 can correspond to a plurality of different biological skin tissue positions and depths of the user.
  • the first blood oxygen test result can further reduce the influence of venous pulsation on blood oxygen measurement, so as to reduce the measurement error of blood oxygen saturation information, and improve the test precision and accuracy of blood oxygen saturation.
  • the PPG sensor 120 in the above embodiment can form a plurality of different first blood oxygen measurement channels by setting the layout of the first light-emitting component 121 and the plurality of photoelectric sensors 122, so as to be suitable for the measurement of blood oxygen saturation in different scenarios. At the same time, it can also improve the test accuracy of blood oxygen saturation. In this way, using the multiple first blood oxygen measurement channels (multi-path light intensity) to measure the wearer's physiological parameters can reduce the error of the detection result and improve the accuracy of the detection result.
  • the processing module 123 when the first light-emitting component 121 is a three-in-one LED component of red light, infrared light and green light, a plurality of first blood oxygen measurement channels and a plurality of heart rate measurement channels can be formed, and the processing module 123
  • the blood oxygen saturation information can be obtained according to the first blood oxygen test results measured by the multiple first blood oxygen measurement channels
  • the heart rate information can be obtained according to the heart rate test results measured by the multiple heart rate measurement channels, so as to improve the accuracy of the detection results .
  • a plurality of photoelectric sensors 122 are arranged at intervals on the same straight line; wherein, the first light emitting components 121 and the second light emitting components 124 are distributed on the same side of the straight line.
  • the plurality of photosensors 122 include PD1, PD2, PD3, and PD4, wherein PD1, PD2, PD3, and PD4 may be arranged at intervals on a straight line extending along the first direction, wherein the first light-emitting component 121 and the second The light emitting elements 124 can be distributed on the same side of the straight line.
  • first light emitting components 121 and the second light emitting components 124 may be arranged at intervals on a straight line extending along the second direction.
  • first direction and the second direction are vertically arranged, or, the first direction and the second direction are the same direction, and the straight line extending along the first direction and the straight line extending along the second direction do not overlap, or, the second direction can be an acute angle to the first direction.
  • a plurality of photoelectric sensors 122 are arranged at intervals on the same straight line; wherein, the first light emitting components 121 and the second light emitting components 124 are respectively distributed on both sides of the straight line.
  • the plurality of photosensors 122 include PD1, PD2, PD3, and PD4, wherein PD1, PD2, PD3, and PD4 may be arranged at intervals on a straight line extending along the first direction, and the first light-emitting component 121 may be located on the straight line.
  • the second light emitting element 124 may be located on the second side of the straight line, and the distance between the second light emitting element 124 and the straight line is smaller than the distance between the first light emitting element 121 and the straight line.
  • the first light-emitting element 121 and the second light-emitting element 124 can be arranged on the same straight line at intervals, and the straight line can be perpendicular to the straight line where PD1, PD2, PD3, and PD4 are located, or it can form an inclined angle with the straight line where PD1, PD2, PD3, and PD4 are located. .
  • the plurality of photoelectric sensors 122 may be arranged on the same straight line at equidistant or non-equidistant intervals.
  • the center lines of the plurality of photoelectric sensors 122 may be located on the same straight line, but certain engineering errors may exist.
  • the first light-emitting components 121 and the plurality of photoelectric sensors 122 are arranged in the same line at intervals; wherein, the second light-emitting components 124 are distributed outside the line.
  • the plurality of photosensors 122 may include PD1, PD2, and PD3, wherein the first light-emitting component 121 may be located between PD1 and PD2, or may be located between PD2 and PD3, and the second light-emitting component 124 is distributed outside the straight line.
  • the first light-emitting component 121 and the plurality of photoelectric sensors 122 may be arranged on the same straight line at equidistant or unequal intervals.
  • the center lines of the multiple photoelectric sensors 122 may be located on the same straight line, but certain engineering errors may exist.
  • the plurality of photosensors 122 are arranged in an array, and the array can be a rectangular array or a circular array.
  • the second light-emitting components 124 are located in the middle of the array, and the first light-emitting components 121 are distributed outside the area S where the array is located.
  • the plurality of photosensors 122 may include four photosensors 122 , which may be denoted as PD1 , PD2 , PD3 , and PD4 respectively, wherein PD1 , PD2 , PD3 , and PD4 are arranged in a circular array.
  • the first light emitting element 121 is located outside the area S where the array is located, and the second light emitting element 124 is located in the middle of the array. That is, the distances between the second light emitting element 124 and each of the PD1, PD2, PD3, and PD4 are equal. The distances between the first light-emitting element 121 and PD2 and PD3 are equal.
  • the distance between the second light-emitting component 124 and each PD1, PD2, PD3, and PD4 ranges from 4 mm to 5 mm, and the heart rate information is tested based on the heart rate measurement channel constructed based on the second light-emitting component 124 and each PD, thereby improving the Heart rate information tests the accuracy and reduces the power consumption of the PPG sensor 120 .
  • the distance between the first light-emitting component 121 and the PD2 and PD3 is between 7 mm and 9 mm, so as to test the blood oxygen saturation information based on the blood oxygen measurement channel constructed by the first light-emitting component 121 and each PD, thereby improving the blood oxygen saturation information Test accuracy.
  • the first light-emitting component 121 and the plurality of photoelectric sensors 122 are arranged in an array; wherein, the second light-emitting component 124 is located in the middle of the array. That is, the first light-emitting component 121 and each photoelectric sensor 122 are all part of the array.
  • the relative positions of the first light-emitting component 121 and each photoelectric sensor 122 are not further limited.
  • the plurality of photosensors 122 may include four photosensors 122, which may be denoted as PD1, PD2, PD3, and PD4, respectively, wherein PD1, PD2, PD3, PD4 and the first light-emitting components 121 are arranged in a circular array, wherein the first The two light-emitting elements 124 are located in the middle of the annular array, so that the distances between the second light-emitting elements 124 and each of PD1, PD2, PD3, and PD4 are equal.
  • the plurality of photosensors 122 may include four photosensors 122, which may be denoted as PD1, PD2, PD3, and PD4, respectively, wherein PD1, PD2, PD3, PD4 and the first light-emitting components 121 are arranged in a rectangular array. , wherein the second light-emitting element 124 is located in the middle of the rectangular array, so that the distances between the second light-emitting element 124 and each of PD1 , PD2 , PD3 and PD4 are equal.
  • first blood oxygen measurement channels and heart rate measurement channels can be formed, It is suitable for the test requirements of blood oxygen saturation and heart rate in different scenarios, and can also improve the test accuracy of blood oxygen saturation and heart rate.
  • using multiple first blood oxygen measurement channels (multi-channel light intensity) and multiple heart rate measurement channels (multi-channel light intensity) to measure the wearer's physiological parameters can reduce the error of the detection result and improve the accuracy of the detection result sex.
  • the second light-emitting component 124 may emit a first light signal for measuring blood oxygen saturation information and a second light signal for measuring heart rate information, where the first light signal includes red light and infrared light of at least one light.
  • the second light-emitting component 124 may include an LED component combining green light and infrared light, an LED component combining green light and external light, and an LED component combining green light, red light, and infrared light. any of the.
  • each photoelectric sensor 122 and the second light-emitting element 124 form a heart rate measurement channel
  • each photoelectric sensor 122 and the second light-emitting element 124 form a second blood oxygen measurement channel.
  • the number of the plurality of photoelectric sensors 122 is n
  • the number of corresponding first blood oxygen measurement channels is n
  • the number of second blood oxygen measurement channels is n
  • the number of heart rate measurement channels is n. That is, the number of measurement channels for testing blood oxygen saturation is 2n.
  • the first light-emitting component 121 is an LED component combining red light and infrared light
  • the second light-emitting component 124 is a green LED
  • the plurality of photoelectric sensors 122 include PD1, PD2, PD3, and PD4.
  • a plurality of first blood oxygen measurement channels and heart rate measurement channels can be formed, as follows:
  • the first blood oxygen measurement channel 1 the first light-emitting component 121 is combined with the PD1;
  • the first blood oxygen measurement channel 2 the first light-emitting component 121 is combined with the PD2;
  • the first blood oxygen measurement channel 3 the first light-emitting component 121 is combined with the PD3;
  • the first blood oxygen measurement channel 4 the first light-emitting component 121 is combined with the PD4;
  • Heart rate measurement channel 1 the second light-emitting component 124 is combined with PD1;
  • Heart rate measurement channel 2 the second light-emitting component 124 is combined with PD2;
  • Heart rate measurement channel 3 the second light-emitting component 124 is combined with PD3;
  • Heart rate measurement channel 4 The second light-emitting component 124 is combined with PD4.
  • the PPG sensor 120 can construct four first blood oxygen measurement channels and four heart rate measurement channels.
  • the PPG sensor 120 may further include a processing module, and the processing module is respectively connected with the first light-emitting component 121 , the second light-emitting component 124 and each photoelectric sensor 122 .
  • the processing module may acquire blood oxygen test results based on the test results of each of the first blood oxygen measurement channels, and acquire heart rate test results based on the test results of the heart rate measurement channels.
  • the processing module may specifically include an analog front-end processing unit and a processor, and the analog front-end unit may be connected to the first light-emitting component 121 , the second light-emitting component 124 , and each photoelectric sensor 122 respectively.
  • the analog front-end unit can drive the first light-emitting component 121 and the second light-emitting component 124 to emit the first optical signal, and correspondingly receive the photocurrent signals collected by the photoelectric sensors 122, and process the received photocurrent signals to obtain the corresponding photocurrent signals.
  • the test results corresponding to the blood oxygen measurement channel and the heart rate measurement channel.
  • the processor is connected to the analog front-end processing unit, and can obtain corresponding blood oxygen test results according to the test results corresponding to each blood oxygen measurement channel, and can also obtain corresponding heart rate test results according to the test results corresponding to the heart rate measurement channels.
  • the processor can obtain the test result with the maximum value according to the four test results of the four first blood oxygen test paths, and obtain the blood oxygen test result according to the test result with the maximum value, so that the blood oxygen test result can be removed.
  • the blood oxygen test results that are affected by pulsation and other influences make the test results low, thereby reducing the occurrence probability of the measurement results affected by venous pulsation and improving the measurement accuracy.
  • the processor can obtain the heart rate test result according to the average value of the four test results of the four heart rate measurement channels, which can reduce the error of the test result and improve the accuracy of the test result.
  • the blood oxygen test result may be understood as blood oxygen saturation information
  • the heart rate test result may be understood as heart rate information
  • the first light-emitting component 121 is an LED component combining red light and infrared light
  • the second light-emitting component 124 is a three-in-one LED component for red light, infrared light and green light
  • the plurality of photoelectric sensors 122 include PD1, PD2, PD3, and PD4 are taken as examples for description.
  • a plurality of first blood oxygen measurement channels and heart rate measurement channels can be formed, as follows:
  • the first blood oxygen measurement channel 1 the first light-emitting component 121 is combined with the PD1;
  • the first blood oxygen measurement channel 2 the first light-emitting component 121 is combined with the PD2;
  • the first blood oxygen measurement channel 3 the first light-emitting component 121 is combined with the PD3;
  • the first blood oxygen measurement channel 4 the first light-emitting component 121 is combined with the PD4;
  • Second blood oxygen measurement channel 1 the combination of red light, infrared light and PD1 of the second light-emitting component 124;
  • Second blood oxygen measurement channel 2 the combination of red light, infrared light and PD2 of the second light-emitting component 124;
  • Second blood oxygen measurement channel 3 the combination of red light, infrared light and PD3 of the second light-emitting component 124;
  • the second blood oxygen measurement channel 4 the combination of red light, infrared light and PD4 of the second light-emitting component 124;
  • Heart rate measurement channel 1 the green light of the second light-emitting component 124 is combined with PD1;
  • Heart rate measurement channel 2 the green light of the second light-emitting component 124 is combined with PD2;
  • Heart rate measurement channel 3 the green light of the second light-emitting component 124 is combined with PD3;
  • Heart rate measurement channel 4 the green light of the second light-emitting component 124 is combined with PD4.
  • the PPG sensor 120 can construct four heart rate test paths, four first blood oxygen test paths, and four second blood oxygen test paths. That is, eight blood oxygen test paths can be constructed, and the measurement accuracy and precision of heart rate information and blood oxygen saturation information can be improved based on four heart rate test paths and eight blood oxygen test paths.
  • the processing module may first obtain the test result with the maximum value among the eight blood oxygen test paths, and obtain the blood oxygen test result according to the test result with the maximum value.
  • the PPG sensor by arranging the relative positional relationship of the first light-emitting component 121, the second light-emitting component 124 and the plurality of photoelectric sensors 122, corresponds to the same first light-emitting component 121 or the second light-emitting component 124.
  • the light fluxes received by the sensor 122 are also different, that is, the light fluxes received by the different first blood oxygen measurement channels and heart rate measurement channels on the PPG sensor 120 are also different.
  • each photoelectric sensor 122 corresponds to a different biological skin tissue area
  • first blood oxygen measurement channels collect the first light signal
  • different heart rate measurement channels collect the second light signal
  • the depth of the biological skin tissue penetrated by the first optical signal and the second optical signal is different
  • the luminous flux of the first optical signal and the second optical signal collected by each photoelectric sensor 122 is also different. Therefore, the multiple heart rate measurements of the PPG sensor 120
  • the channels may correspond to multiple first blood oxygen measurement channels and heart rate test results for measuring different positions and depths of different biological skin tissues of the user.
  • An embodiment of the present application further provides an electronic device, which may include the PPG sensor in any of the above embodiments, and can measure the physiological parameter information of the human body, thereby improving the measurement accuracy.
  • Embodiments of the present application further provide a wearable device, the wearable device may include a strap assembly and the electronic device in any of the above embodiments, and can measure the physiological parameter information of the human body, thereby improving the measurement accuracy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physiology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

提供了一种PPG传感器、一种电子设备和一种可穿戴设备。PPG传感器包括第一发光组件(121),用于发射第一光信号;第二发光组件(124),用于发射第二光信号;多个光电传感器(122),光电传感器(122)用于接收第一光信号和第二光信号;其中第一发光组件(121)与至少一个光电传感器(122)之间的距离大于第二发光组件(124)与各光电传感器(122)之间的最小距离。

Description

PPG传感器、电子设备和可穿戴设备
相关申请的交叉引用
本申请要求于2020年10月15日提交中国专利局、申请号为2020223015977发明名称为“PPG传感器、电子设备和可穿戴设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及可穿戴设备,特别是涉及一种PPG传感器、电子设备和可穿戴设备。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有示例性技术。
可穿戴设备可通过设置PPG(光电容积脉搏波标记法,Photo Plethysmo Graphy)传感器,并基于PPG技术来测量心率、血氧饱和度等生理参数信息。PPG检测技术从PPG传感器布局开看主要分为两种:一种是透射式检测技术和反射式检测技术,其中,应用在可穿戴设备上的PPG传感器一般采用反射式检测技术在手腕处测量生理参数信息。目前的PPG传感器,存在测量不准确的问题。
发明内容
根据本申请的各种实施例,提供一种PPG传感器、电子设备和可穿戴设备。
本申请实施例还提供一种PPG传感器,PPG传感器包括:
第一发光组件,用于发射第一光信号;
第二发光组件,用于发射第二光信号;
多个光电传感器,所述光电传感器用于接收所述第一光信号和所述第二光信号;其中,
所述第一发光组件与至少一个所述光电传感器之间的距离大于所述第二发光组件与各所述光电传感器之间的最小距离。
上述PPG传感器,通过布局第一发光组件、第二发光组件和多个光电传感器的相对位置关系,且第一发光组件与至少一个光电传感器之间的距离大于第二发光组件与各光电传感器之间的最小距离,第一发光组件、第二发光组件与多个光电传感器之间的距离不同,可以满足心率测试、血压测试、血氧测试等应用场景下的距离要求。同时第一发光组件、第二发光组件分别对应与各光电传感器构建的生理参数测量通道各不相同,可以根据生理参数的测试需求来选择合适的生理参数测量通道,进而提高生理参数的测量精度和准确度。
本申请实施例还提供一种电子设备,电子设备包括:
壳体,开设有检测窗口;
如上述的PPG传感器,所述PPG传感器外漏于所述检测窗口。
本申请实施例还提供一种可穿戴设备,可穿戴设备包括:
绑带组件;
如上述的电子设备,所述绑带组件用于将所述电子设备固定至人体。
上述可穿戴设备和电子设备中均设置有PPG传感器,可以对人体的生理参数信息进行测量,提高了其测量准确度。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中可穿戴设备的立体结构示意图;
图2为一个实施例中可穿戴设备的平面结构视图;
图3a为一个实施例中PPG透射式检测技术的原理图;
图3b为一个实施例中PPG反射式检测技术的原理图;
图4为一个实施例中PPG传感器的框架结构示意图之一;
图5为一个实施例中PPG传感器的框架结构示意图之二;
图6为一个实施例中PPG传感器的框架结构示意图之三;
图7为一个实施例中PPG传感器的框架结构示意图之四;
图8为一个实施例中PPG传感器的框架结构示意图之五;
图9为一个实施例中PPG传感器的框架结构示意图之六。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一发光组件称为第二发光组件,且类似地,可将第二发光组件称为第一发光组件。第一发光组件和第二发光组件两者都是发光组件,但其不是同一发光组件。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。在本申请的描述中,“若干”的含义是至少一个,例如一个,两个等,除非另有明确具体的限定。
如图1所示,在其中一个实施例中,可穿戴设备10包括电子设备100和绑带组件200,电子设备100安装于绑带组件200且能够通过绑带组件200佩戴至用户的手腕。如图2所示,电子设备100包括壳体110及设于壳体110内的电路板、电池等电子元器件,壳体110设有安装空腔,电路板、电池等电子元器件设于安装空腔内。壳体110可以由塑胶、橡胶、硅胶、木材、陶瓷或玻璃等非金属材质制成,壳体110也可以由不锈钢、铝合金或镁合金等金属材质制成。壳体110还可以为金属注塑件,即利用金属材质保证壳体110的结构刚性,金属体的内表面则通过注塑形成凸起、凹槽、螺纹孔等用于装配定位的结构。
该壳体110开设有检测窗口111,该检测窗口111用于透光,以传输内置在壳体110内的PPG传感器120等电子元器件发射和反射的光信号,以实现对人体心率、血氧饱和度等生命体征信号进行检测。其中,PPG检测技术从PPG传感器120布局开看主要分为两种:一种是透射式检测技术,如图3a所示,可根据透射光强度的不同,描记出血管容积在心动周期内的变化,并从得到心率、血氧饱和度等;一种是反射式检测技术,如图 3b所示,可根据反射光强度的不同,描记出血管容积在心动周期内的变化,并从得到心率、血氧饱和度等生命体征信号。将本申请中提供的PPG传感器120结合到可穿戴设备10上,用户可以随时随地方便地检测心率和血氧饱和度等,从而不仅丰富了可穿戴电子设备的功能,而且极大地满足了用户的健康需求。
在其中一个实施例中,该壳体110内还设置有不透光挡墙112和透明开窗113,其中,不透光挡墙112与检测窗口111的大小相匹配,可以用于防止PPG传感器120的发光组件与光电传感器之间发生串光。透明开窗113覆盖在检测窗口111上,以防水、防尘并增加PPG传感器120的透光率。
在其中一个实施例中,可穿戴设备10为智能手表或手环。安装空腔设有电池、电路板、显示屏模组、PPG传感器120等电子元器件,电路板可以集成可穿戴设备10的处理器、存储单元、通信模块等电子元器件,电池可以为电路板、显示屏模组及其他电子元器件供电。
壳体110大致呈矩形框状,矩形的四个角可以经过倒角工艺处理成圆弧过渡,以使可穿戴设备10具有较好的外观特性。在其中一个实施例中,壳体110也可以呈圆形框状。壳体110的侧面可以设有用于安装绑带组件200的配合结构,绑带组件200能够通过壳体110的配合结构与壳体110形成可靠的连接,以将电子设备100可靠地佩戴至用户的手部。在其中一个实施例中,绑带组件200还能够比较便捷地从壳体110拆离,以使用户能够方便地更换绑带组件200。例如,用户可以购买多种款式的绑带组件200,并根据使用场景更换绑带组件200,以提升使用的便利性。例如,在正式场合时用户可以使用较为正式的绑带组件200,在休闲娱乐的场合则使用休闲款式的绑带组件200。
如图4所示,在其中一个实施例中,PPG传感器包括第一发光组件121、多个光电传感器122和第二发光组件124。其中,第一发光组件121可以用于接收驱动信号以发射第一光信号,第二发光组件124可以用于接收驱动信号以发射第二光信号。其中,第一光信号和第二光信号可以相同,也可以不同。PPG传感器可以根据测量需求来控制第一发光组件121和第二发光组件124发射的光信号的类型。其中,第一光信号和第二光信号均可以包括红光、红外光和绿光中的至少一种。需要说明的是,该测量需求包括但不限定于心率测量、血压测量和血氧饱和度测量。
各光电传感器122可工作于零偏置状态,也即,各光电传感器122可均为光伏模式的光电二极管PD。各光电传感器122用于接收第一发光组件121发射的第一光信号和第二发光组件124发射的第二光信号,并可接收的第一光信号和第二光信号转换为电信号。
第一发光组件121与至少一个光电传感器122之间的距离大于第二发光组件124与各光电传感器122之间的最小距离。具体的,第二发光组件124与任意一光电传感器122之间的距离可以记为q i,其中,第二发光组件124与各光电传感器122之间的最小距离可以记为q min。第一发光组件121与至少一个光电传感器122之间的距离,也记为p 1-p n。也即,距离p 1-p n中任一距离大于最小距离q min。该第一发光组件121、第二发光组件124与多个光电传感器122之间的距离,可以满足心率测试、血压测试、血氧测试等应用场景下的距离要求,以提高心率测量和血氧饱和度测量的测量准确度。
本申请实施例提供的PPG传感器的第一发光组件121、第二发光组件124与多个光电传感器122的布局,可以满足不同应用场景下对各光电传感器122与第一发光组件121、第二发光组件124之间的距离要求。例如,当第一发光组件121为红光和红外光二合一的LED组件,第二发光组件124为绿光LED时,可以通过测量距离最短的第二发光组件124与光电传感器122之间的发射光线强度实现对心率信息的测量,还可以通过测量距离最长的第一发光组件121与光电传感器122之间的发射光线强度实现对血氧饱和度信息的测 量。因此,本申请实施例中提供的PPG传感器内第一发光组件121、第二发光组件124与多个光电传感器122的布局能够兼顾心率测量、血压测试和血氧饱和度测量的测量需求,进而可以提高心率测量和血氧饱和度测量的测量准确度。
同时,由于该光电传感器122的数量为多个,多个光电传感器122可以分别与第一发光组件121、第二发光组件124构成相应的生理参数测量通路。当该PPG传感器120被佩戴时,每个光电传感器122对应于不同的生物皮肤组织区域,第一光信号和第二光信号穿透的生物皮肤组织深度不同,各光电传感器122采集的第一光信号和第二光信号的反射光强也就不同,因此,该PPG传感器的多个生理参数测量通道可以对应测量用户不同生物皮肤组织位置和不同深度的多个生理参数,进而提高生理参数的测试精度和准确度。
在其中一个实施例中,该第一光信号可包括红光和/或红外光。第二光信号包括绿光。具体的,该第一发光组件121可以包括红光或红外光LED的LED组件,红光和红外光二合一的LED组件,绿光和红外光二合一的LED组件,绿光和红外光二合一的LED组件,以及绿光、红光和红外光三合一的LED组件中的任一种。第二发光组件124可以包括绿光LED,绿光和红外光二合一的LED组件,绿光和外光二合一的LED组件,以及绿光、红光和红外光三合一的LED组件中的任一种。
其中,每一光电传感器122与第一发光组件121构成一第一血氧测量通道。每一光电传感器122与第二发光组件124构成一心率测量通道。也即,当光电传感器122的数量为n个(n大于或等于2)时,并将多个光电传感器122分别记为PD1、PD2、PD3、…、PDn,每个光电传感器122可以分别对应与第一发光组件121构成n个第一血氧测量通道。可以理解的是,每个第一血氧测量通道对应一个光电传感器122。相应的,每个光电传感器122可以分别对应与第二发光组件124构成n个心率测量通道。可以理解的是,每个心率测量通道对应一个光电传感器122。
当第一发光组件121为红光和红外光二合一的LED组件,第二发光组件124为绿光LED时,PPG传感器可基于最短距离的心率测量通道来采集反射光线强度以实现对心率信息的测试,其中,最小距离的心率测量通道可由相距最短距离的第二发光组件124和光电传感器122构成。具体的,第二发光组件124与各光电传感器122之间的最小距离q min的范围在4mm~5mm之间。PPG传感器可基于长距离的血氧测量通道来采集反射光线强度以实现对血氧饱和度信息的测试。其中,长距离的血氧测量通道可由大于最小距离q min的第一发光组件121和光电传感器122构成。具体的,第一发光组件121与至少一个光电传感器122之间的距离在7mm~9mm之间,以满足大于最小距离q min的需求。
当该PPG传感器120被佩戴时,每个光电传感器122对应于不同的生物皮肤组织区域,不同的第一血氧测量通道采集第一光信号时,其第一光信号穿透的生物皮肤组织深度不同,各光电传感器122采集的第一光信号的光强也就不同。因此,该PPG传感器120的多个第一血氧测量通道可以对应测量用户不同生物皮肤组织位置和不同深度的多个第一血氧测试结果,进而可以减弱静脉搏动等对血氧测量的影响,以降低血氧饱和度信息的测量误差,提高血氧饱和度的测试精度和准确度。同时,不同心率测量通道采集第二光信号时,其第二光信号穿透的生物皮肤组织深度不同,各光电传感器122采集的第二光信号的光强也就不同,因此,该PPG传感器120的多个心率测量通道可以对应测量用户不同生物皮肤组织位置和不同深度的多个心率测试结果,进而提高心率信息的测试精度和准确度。
本申请实施例提供的PPG传感器120内的第一发光组件121、第二发光组件124与多个光电传感器122的布局能够兼顾心率测量和血氧饱和度测量的测量需求,同时,该PPG传感器中的心率测量通道和第一血氧测量通道均为多个,且各测试通路的接收的反射光强也不相同,因此,可以提高心率测量和血氧饱和度测量的测量精度和准确度。
在其中一个实施例中,当第一发光组件121为红光和/或红外光二合一的LED组件, 和/或,第二发光组件122为红光和/或红外光二合一的LED组件时,PPG传感器还可以基于各光电传感器122采集的反射光线强度以实现对血压信息的检测,以拓展该PPG传感器的功能。
下面结合附图对本申请实施例提供的PPG传感器120的具体排布方式进行详细描述。需要说明,在本申请实施例中,PPG传感器120的轮廓以圆形作为示例进行说明。实际上,PPG传感器120的轮廓还可以为椭圆形、长条形等其他形状。
参考图4,在其中一个实施例中,至少两个光电传感器122分别与第一发光组件121之间的距离不同,也即,第一发光组件121与至少两个光电传感器122之间的距离不同。若任意两个光电传感器122分别记为PDi、PDj,第一发光组件121与任一光电传感器PDi、PDj的距离可记为p i、p j,其中,1≤i≠j≤n,则p i≠p j。示例性的,若多个光电传感器122的数量为4个,第一发光组件121与四个光电传感器122的距离可分别记为p 1、p 2、p 3、p 4,其中,第一发光组件121与至少两个光电传感器122之间的距离不同可以理解为p 1、p 2、p 3、p 4中任意三个距离相等,或,p 1、p 2、p 3、p 4中任意两个距离相等,或,p 1、p 2、p 3、p 4中三个距离均不相等或,p 1、p 2、p 3、p 4中四个距离均不不相等。其中,第一发光组件121距离任一光电传感器122的距离可以理解为第一发光组件121的中心位置距离任一光电传感器122的中心位置的距离,其中,中心位置可以理解为各组件、器件的几何中心。
由于第一发光组件121与至少两个光电传感器122的距离不同,对应同一光信号,不同距离的光电传感器122接收的光强(或光通量)也就不同,也即,其对应的第一血氧测量通道在该PPG传感器120上的接收的光强也就不同。另外,当该PPG传感器120被佩戴时,每个光电传感器122对应于不同的生物皮肤组织区域,不同第一血氧测量通道采集第一光信号时,其第一光信号穿透的生物皮肤组织深度不同,各光电传感器122采集的第一光信号的光强也就不同,因此,该PPG传感器120的多个第一血氧测量通道可以对应测量用户不同生物皮肤组织位置和不同深度的多个第一血氧测试结果,进而可以减弱静脉搏动等对血氧测量的影响,以降低血氧饱和度信息的测量误差,提高血氧饱和度的测试精度和准确度。
上述实施例中的PPG传感器120,通过设置第一发光组件121和多个光电传感器122的布局方式,可以形成多个不同的第一血氧测量通道,以适用于不同场景的血氧饱和度的测试需求,同时也可以提高血氧饱和度的测试准确度。如此,利用多个第一血氧测量通道(多路光线强度)对佩戴者的生理参数进行测量,可以降低检测结果的误差,提高检测结果的准确性。
在其中一个实施例中,当第一发光组件121为红光、红外光和绿光三合一的LED组件时,可以形成多个第一血氧测量通道以及多个心率测量通道,处理模块123可以根据多个第一血氧测量通道测量的第一血氧测试结果来获取血氧饱和度信息以及可以根据多个心率测量通道测量的心率测试结果来获取心率信息,以提高检测结果的准确性。
如图5所示,在其中一个实施例中,多个光电传感器122间隔排列于同一直线;其中,第一发光组件121和第二发光组件124均分布在直线的同一侧。示例性的,多个光电传感器122包括PD1、PD2、PD3、PD4,其中,PD1、PD2、PD3、PD4可间隔排列于沿第一方向延伸的直线上,其中,第一发光组件121和第二发光组件124均可分布于该直线的同一侧。例如,第一发光组件121和第二发光组件124可以间隔排列于沿第二方向延伸的直线上。其中,第一方向和第二方向垂直设置,或,第一方向和第二方向为同方向,且沿第一方向延伸的直线和沿第二方向延伸的直线不重合,或,第二方向可以和第一方向呈锐角。
如图6所示,在其中一个实施例中,多个光电传感器122间隔排列于同一直线;其中,第一发光组件121和第二发光组件124分别分布在直线的两侧。示例性的,多个光电传感器122包括PD1、PD2、PD3、PD4,其中,PD1、PD2、PD3、PD4可间隔排列于沿第一 方向延伸的直线上,第一发光组件121可以位于该直线的第一侧,第二发光组件124可位于该直线的第二侧,且第二发光组件124与该直线的距离小于第一发光组件121与该直线的距离。第一发光组件121和第二发光组件124可以间隔排列于同一直线,该直线可以垂直于PD1、PD2、PD3、PD4所在直线,也可以与PD1、PD2、PD3、PD4所在直线呈一倾斜夹角。
需要说明的是,多个光电传感器122可等间距或非等间距的间隔排列于同一直线。多个光电传感器122的中心连线可以位于同一直线,但可以允许一定的工程误差存在。
如图7所示,在其中一个实施例中,第一发光组件121和多个光电传感器122间隔排列于同一直线;其中,第二发光组件124分布于直线外。示例性的,多个光电传感器122可包括PD1、PD2、PD3,其中,第一发光组件121可以位于PD1与PD2之间,也可以位于PD2与PD3之间,第二发光组件124分布于直线外。需要说明的是,第一发光组件121和多个光电传感器122可等间距或非等间距的间隔排列于同一直线。多个光电传感器122的中心连线可以位于同一直线,但可以允许一定的工程误差存在。
在其中一个实施例中,多个光电传感器122呈阵列排布,该阵列可以矩形阵列也可以为环形阵列。其中,第二发光组件124位于阵列的中间位置,第一发光组件121分布在阵列所在区域S的外侧。示例性的,如图8所述,多个光电传感器122包括可包括四个光电传感器122,可分别记为PD1、PD2、PD3、PD4,其中,PD1、PD2、PD3、PD4呈环形阵列排布,且第一发光组件121位于阵列所在区域S的外侧,第二发光组件124位于阵列的中间位置。也即,第二发光组件124距离各PD1、PD2、PD3、PD4的距离均相等。其第一发光组件121距离PD2、PD3的距离相等。具体的,第二发光组件124距离各PD1、PD2、PD3、PD4的距离范围在4mm~5mm之间,以基于该第二发光组件124和各PD构建的心率测量通道来测试心率信息,进而提升心率信息测试的准确性和降低该PPG传感器120的功耗。第一发光组件121距离PD2、PD3的距离在7mm~9mm之间,以基于该第一发光组件121和各PD构建的血氧测量通道来测试血氧饱和度信息,进而提升血氧饱和度信息测试的准确性。
如图9所示,在其中一个实施例中,第一发光组件121和多个光电传感器122呈阵列排布;其中,第二发光组件124位于阵列的中间位置。也即,第一发光组件121、各光电传感器122均作为该阵列的一部分。其中,该第一发光组件121和各光电传感器122的相对位置不做进一步的限定。多个光电传感器122包括可包括四个光电传感器122,可分别记为PD1、PD2、PD3、PD4,其中,PD1、PD2、PD3、PD4和第一发光组件121呈环形阵列排布,其中,第二发光组件124位于该环形阵列的中间位置,以使第二发光组件124距离各PD1、PD2、PD3、PD4的距离均相等。
可选的,多个光电传感器122包括可包括四个光电传感器122,可分别记为PD1、PD2、PD3、PD4,其中,PD1、PD2、PD3、PD4和第一发光组件121呈矩形阵列排布,其中,第二发光组件124位于该矩形阵列的中间位置,以使第二发光组件124距离各PD1、PD2、PD3、PD4的距离均相等。
在前述实施例中的PPG传感器120,通过设置第一发光组件121、第二发光组件124和多个光电传感器122的布局方式,可以形成多个不同的第一血氧测量通道和心率测量通道,以适用于不同场景的血氧饱和度和心率的测试需求,同时也可以提高血氧饱和度和心率的测试准确度。如此,利用多个第一血氧测量通道(多路光线强度)和多个心率测量通道(多路光线强度)对佩戴者的生理参数进行测量,可以降低检测结果的误差,提高检测结果的准确性。
在其中一个实施例中,第二发光组件124可发射用于测量血氧饱和度信息的第一光信号和用于测量心率信息的第二光信号,第一光信号包括红光和红外光中的至少一种光。示例性的,该第二发光组件124可以包括绿光和红外光二合一的LED组件,绿光和外光二 合一的LED组件,以及绿光、红光和红外光三合一的LED组件中的任一种。其中,每一光电传感器122与第二发光组件124构成一心率测量通道,每一光电传感器122与第二发光组件124构成一第二血氧测量通道。也即,当多个光电传感器122的数量为n时,其对应的第一血氧测量通道的数量为n,第二血氧测量通道的数量为n,心率测量通道的数量为n。也即,用于测试血氧饱和度的测量通道的数量为2n。
示例性的,以第一发光组件121为红光和红外光二合一的LED组件,第二发光组件124为绿光LED,多个光电传感器122包括PD1、PD2、PD3、PD4为例进行说明。基于第一发光组件121、第二发光组件124、PD1、PD2、PD3和PD4,可以构成多条第一血氧测量通道和心率测量通道,具体如下:
第一血氧测量通道1:第一发光组件121与PD1组合;
第一血氧测量通道2:第一发光组件121与PD2组合;
第一血氧测量通道3:第一发光组件121与PD3组合;
第一血氧测量通道4:第一发光组件121与PD4组合;
心率测量通道1:第二发光组件124与PD1组合;
心率测量通道2:第二发光组件124与PD2组合;
心率测量通道3:第二发光组件124与PD3组合;
心率测量通道4:第二发光组件124与PD4组合。
基于此,PPG传感器120可以构建四条第一血氧测量通道和四条心率测量通道。具体的,该PPG传感器120还可包括处理模块,该处理模块分别与第一发光组件121、第二发光组件124及各光电传感器122连接。处理模块可基于各所述第一血氧测量通道的测试结果获取血氧测试结果,并基于所述心率测量通道的测试结果获取心率测试结果。
在其中一个实施例中,处理模块具体可包括模拟前端处理单元和处理器,模拟前端单元可分别与第一发光组件121、第二发光组件124、各光电传感器122连接。模拟前端单元可驱动第一发光组件121、第二发光组件124发射第一光信号,并对应接收各光电传感器122采集的光电流信号,并对接收的多个光电流信号进行处理以对应获取各血氧测量通道、心率测量通道对应的测试结果。处理器与该模拟前端处理单元连接,可以根据各血氧测量通道对应的测试结果获取相应的血氧测试结果,也可根据心率测量通道对应的测试结果获取相应的心率测试结果。具体的,处理器可根据四条第一血氧测试通路的四个测试结果获取具有最大值的测试结果,并根据该具有最大值的测试结果来获取血氧测试结果,这样就可以去除到因静脉搏动等影响使测试结果偏低的血氧测试结果,进而可以降低静脉搏动影响的测量结果的发生概率,提高测量精度。处理器可根据四条心率测量通道的四个测试结果的平均值来获取心率测试结果,可以降低检测结果的误差,提高检测结果的准确性。
需要说明的是,在本申请实施例中,血氧测试结果可以理解为血氧饱和度信息,心率测试结果可以了解为心率信息。
示例性的,以第一发光组件121为红光和红外光二合一的LED组件,第二发光组件124为红光、红外光和绿光LED三合一的LED组件,多个光电传感器122包括PD1、PD2、PD3、PD4为例进行说明。基于第一发光组件121、第二发光组件124、PD1、PD2、PD3和PD4,可以构成多条第一血氧测量通道和心率测量通道,具体如下:
第一血氧测量通道1:第一发光组件121与PD1组合;
第一血氧测量通道2:第一发光组件121与PD2组合;
第一血氧测量通道3:第一发光组件121与PD3组合;
第一血氧测量通道4:第一发光组件121与PD4组合;
第二血氧测量通道1:第二发光组件124的红光、红外光与PD1组合;
第二血氧测量通道2:第二发光组件124的红光、红外光与PD2组合;
第二血氧测量通道3:第二发光组件124的红光、红外光与PD3组合;
第二血氧测量通道4:第二发光组件124的红光、红外光与PD4组合;
心率测量通道1:第二发光组件124的绿光与PD1组合;
心率测量通道2:第二发光组件124的绿光与PD2组合;
心率测量通道3:第二发光组件124的绿光与PD3组合;
心率测量通道4:第二发光组件124的绿光与PD4组合。
基于此,PPG传感器120可以构建四条心率测试通路、四条第一血氧测试通路和四条第二血氧测试通路。也即,可以构建八条血氧测试通路,基于四条心率测试通路和八条血氧测试通路可以提高心率信息和血氧饱和度信息的测量准确定和精度。其中,处理模块在获取血氧测试结果的过程中,处理模块可先获取八条血氧测试通路中具有最大值的测试结果,并根据该具有最大值的测试结果的来获取血氧测试结果。
本申请实施例中,PPG传感器通过布局第一发光组件121、第二发光组件124和多个光电传感器122的相对位置关系,对应同一第一发光组件121或第二发光组件124,不同距离的光电传感器122接收的光通量也就不同,也即,其不同的第一血氧测量通道、心率测量通道在该PPG传感器120上的接收的光通量也就不同。另外,当该PPG传感器120被佩戴时,每个光电传感器122对应于不同的生物皮肤组织区域,不同第一血氧测量通道采集第一光信号和不同心率测量通道采集第二光信号时,其第一光信号、第二光信号穿透的生物皮肤组织深度不同,各光电传感器122采集的第一光信号、第二光信号的光通量也就不同,因此,该PPG传感器120的多个心率测量通道可以对应测量用户不同生物皮肤组织位置和不同深度的多个第一血氧测量通道和心率测试结果。
本申请实施例还提供一种电子设备,该电子设备可包括上述任一实施例中的PPG传感器,可以对人体的生理参数信息进行测量,提高了其测量准确度。
本申请实施例还提供一种可穿戴设备,该可穿戴设备可包括绑带组件和上述任一实施例中的电子设备,可以对人体的生理参数信息进行测量,提高了其测量准确度。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种PPG传感器,包括:
    第一发光组件,用于发射第一光信号;
    第二发光组件,用于发射第二光信号;
    多个光电传感器,所述光电传感器用于接收所述第一光信号和所述第二光信号;其中,
    所述第一发光组件与至少一个所述光电传感器之间的距离大于所述第二发光组件与各所述光电传感器之间的最小距离。
  2. 根据权利要求1所述的PPG传感器,其特征在于,至少两个所述光电传感器分别与所述第一发光组件之间的距离不同。
  3. 根据权利要求1所述的PPG传感器,其特征在于,多个所述光电传感器间隔排列于同一直线;其中,所述第一发光组件和第二发光组件均分布在所述直线的同一侧。
  4. 根据权利要求1所述的PPG传感器,其特征在于,多个所述光电传感器间隔排列于同一直线;其中,所述第一发光组件和第二发光组件分别分布在所述直线的两侧。
  5. 根据权利要求1所述的PPG传感器,其特征在于,所述第一发光组件和多个所述光电传感器间隔排列于同一直线;其中,所述第二发光组件分布于所述直线外。
  6. 根据权利要求1所述的PPG传感器,其特征在于,多个所述光电传感器呈阵列排布;其中,所述第二发光组件位于所述阵列的中间位置,所述第一发光组件分布在所述阵列所在区域的外侧。
  7. 根据权利要求1所述的PPG传感器,其特征在于,所述第一发光组件和多个所述光电传感器呈阵列排布;其中,所述第二发光组件位于所述阵列的中间位置。
  8. 根据权利要求6或7所述的PPG传感器,其特征在于,所述阵列包括矩形阵列或环形阵列。
  9. 根据权利要求1所述的PPG传感器,其特征在于,所述第二发光组件还用于发射所述第一光信号,所述第一光信号包括红光和红外光中的至少一种光。
  10. 根据权利要求1所述的PPG传感器,其特征在于,每一所述光电传感器与所述第一发光组件构成一第一血氧测量通道;每一所述光电传感器与所述第二发光组件构成一心率测量通道;其中,所述PPG传感器还包括:
    处理模块,分别与所述第一发光组件、第二发光组件、各所述光电传感器连接,用于基于各所述第一血氧测量通道的测试结果获取血氧测试结果,并基于所述心率测量通道的测试结果获取心率测试结果。
  11. 根据权利要求10所述的PPG传感器,其特征在于,所述处理模块还用于驱动第二发光组件发射所述第一光信号;其中,每一所述光电传感器与所述第二发光组件构成第二血氧测量通道,其中,所述处理模块还用于基于各所述第一血氧测量通道和各所述第二血氧测量通道的最大测试结果,获取血氧测试结果。
  12. 根据权利要求10所述的PPG传感器,其特征在于,所述处理模块还用于获取每一所述心率测量通道测量的测试结果,并根据多个所述测试结果的平均值获取心率测试结果。
  13. 根据权利要求10所述的PPG传感器,其特征在于,处理模块包括:
    模拟前端处理单元,分别与所述第一发光组件、所述第二发光组件、各所述光电传感器连接,用于驱动所述第一发光组件、所述第二发光组件发射所述第一光信号,并对应接收各所述光电传感器采集的光电流信号以对应获取各所述血氧测量通道、所述心率测量通道对应的测试结果;
    处理器,与所述模拟前端处理单元连接,用于根据所述血氧测量通道对应的测试结果获取相应的血氧测试结果,以及根据所述心率测量通道对应的测试结果获取相应的心率测试结果。
  14. 根据权利要求1所述的PPG传感器,其特征在于,所述第一发光组件为红光和红外光二合一的LED组件,第二发光组件为绿光LED。
  15. 根据权利要求14所述的PPG传感器,其特征在于,所述光电传感器的数量为4个,其中,所述第一发光组件、第二发光组件和四个所述光电传感器构成四条第一血氧测量通道和四条心率测量通道。
  16. 根据权利要求1所述的PPG传感器,其特征在于,所述第一发光组件为红光和红外光二合一的LED组件,所述第二发光组件为红光、红外光和绿光LED三合一的LED组件。
  17. 根据权利要求16所述的PPG传感器,其特征在于,所述光电传感器的数量为4个,其中,所述第一发光组件、第二发光组件和四个所述光电传感器构成八条血氧测量通道和四条心率测量通道。
  18. 根据权利要求1所述的PPG传感器,其特征在于,所述第二发光组件与各所述光电传感器之间的最小距离的范围在4mm~5mm之间,所述第一发光组件与至少一个所述光电传感器之间的距离在7mm~9mm之间。
  19. 一种电子设备,包括:
    壳体,开设有检测窗口;
    如权利要求1-18任一项所述的PPG传感器,所述PPG传感器外漏于所述检测窗口。
  20. 一种可穿戴设备,包括:
    绑带组件;
    如权利要求19所述的电子设备,所述绑带组件用于将所述电子设备固定至人体。
PCT/CN2021/112370 2020-10-15 2021-08-13 Ppg传感器、电子设备和可穿戴设备 WO2022078043A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21879090.5A EP4218553A4 (en) 2020-10-15 2021-08-13 PPG SENSOR, ELECTRONIC DEVICE AND WEARABLE DEVICE
US18/194,939 US20230233094A1 (en) 2020-10-15 2023-04-03 Ppg sensor, electronic device, and wearable device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202022301597.7 2020-10-15
CN202022301597.7U CN215457944U (zh) 2020-10-15 2020-10-15 Ppg传感器、电子设备和可穿戴设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/194,939 Continuation US20230233094A1 (en) 2020-10-15 2023-04-03 Ppg sensor, electronic device, and wearable device

Publications (1)

Publication Number Publication Date
WO2022078043A1 true WO2022078043A1 (zh) 2022-04-21

Family

ID=79716507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112370 WO2022078043A1 (zh) 2020-10-15 2021-08-13 Ppg传感器、电子设备和可穿戴设备

Country Status (4)

Country Link
US (1) US20230233094A1 (zh)
EP (1) EP4218553A4 (zh)
CN (1) CN215457944U (zh)
WO (1) WO2022078043A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114366043A (zh) * 2020-10-15 2022-04-19 Oppo广东移动通信有限公司 Ppg传感器、ppg测试方法、电子设备和可穿戴设备
CN218128505U (zh) * 2022-06-09 2022-12-27 华为技术有限公司 光电检测模组及电子设备
CN116584912A (zh) * 2022-12-30 2023-08-15 北京津发科技股份有限公司 一种多光源心率检测装置、方法和可穿戴设备
CN116269365B (zh) * 2023-01-04 2024-03-12 中科搏锐(北京)科技有限公司 脑血氧监测探头、头戴设备以及脑氧监测系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170273576A1 (en) * 2016-03-28 2017-09-28 Fuji Xerox Co., Ltd. Living-body information measuring device
CN109924960A (zh) * 2019-01-31 2019-06-25 深圳市爱都科技有限公司 一种血氧饱和度、心率值和压力等级的计算方法和穿戴设备
CN110432868A (zh) * 2019-08-12 2019-11-12 深圳市爱都科技有限公司 一种人体生理参数监测组件和穿戴设备
WO2019237281A1 (zh) * 2018-06-13 2019-12-19 华为技术有限公司 一种ppg传感器、智能手表或手环
CN211094019U (zh) * 2019-08-12 2020-07-28 深圳市爱都科技有限公司 一种人体生理参数监测组件和穿戴设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102434698B1 (ko) * 2015-07-03 2022-08-22 삼성전자주식회사 생체 정보 검출 장치 및 방법
US10732574B2 (en) * 2016-04-28 2020-08-04 Lg Electronics Inc. Watch type terminal and method for controlling the same
US11272846B2 (en) * 2016-11-02 2022-03-15 Huawei Technologies Co., Ltd. Smart wearable device
CN111050637B (zh) * 2017-09-26 2023-02-10 苹果公司 用于光学感测的同心结构
KR102599772B1 (ko) * 2018-06-19 2023-11-08 삼성전자주식회사 생체 정보 감지 장치 및 그 제어 방법
US11806119B2 (en) * 2019-03-18 2023-11-07 Garmin Switzerland Gmbh Electronic device with optical heart rate monitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170273576A1 (en) * 2016-03-28 2017-09-28 Fuji Xerox Co., Ltd. Living-body information measuring device
WO2019237281A1 (zh) * 2018-06-13 2019-12-19 华为技术有限公司 一种ppg传感器、智能手表或手环
CN109924960A (zh) * 2019-01-31 2019-06-25 深圳市爱都科技有限公司 一种血氧饱和度、心率值和压力等级的计算方法和穿戴设备
CN110432868A (zh) * 2019-08-12 2019-11-12 深圳市爱都科技有限公司 一种人体生理参数监测组件和穿戴设备
CN211094019U (zh) * 2019-08-12 2020-07-28 深圳市爱都科技有限公司 一种人体生理参数监测组件和穿戴设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4218553A4 *

Also Published As

Publication number Publication date
US20230233094A1 (en) 2023-07-27
EP4218553A4 (en) 2024-03-27
EP4218553A1 (en) 2023-08-02
CN215457944U (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
WO2022078043A1 (zh) Ppg传感器、电子设备和可穿戴设备
US10058254B2 (en) Systems and methods for optical sensor arrangements
US20220218219A1 (en) Smart Wearable Device
CN105997103A (zh) 一种腕式无附件血氧测量设备及其制造方法
CN115363539A (zh) Ppg传感模组、电子设备、可穿戴设备及生理信息检测方法
CN216724540U (zh) 电子设备及可穿戴设备
US20230248252A1 (en) Ppg sensor, ppg detection method, and electronic device
CN109363656B (zh) 一种健康监测装置及穿戴式设备
US11432730B2 (en) Biosensor
CN211094019U (zh) 一种人体生理参数监测组件和穿戴设备
CN216933195U (zh) 一种智能穿戴设备
WO2022116687A1 (zh) 血压检测模块、绑带组件及可穿戴设备
CN209847153U (zh) 一种穿戴式设备
CN210961952U (zh) 一种穿戴式设备、生理参数监测装置及生理参数监测模组
JP2016096977A (ja) 光学センサモジュール
WO2023279788A1 (zh) 电子设备及可穿戴设备
CN219609456U (zh) 一种手表主体及手表
CN210784322U (zh) 一种穿戴式设备及其生理参数监测模组
CN211740426U (zh) 一种用于温度测量智能设备的导热透光结构
CN218128538U (zh) 一种电子设备
CN220442651U (zh) 一种智能穿戴设备
CN216257071U (zh) 电子设备及可穿戴设备
CN211015889U (zh) 一种激光测距控制系统
CN215874639U (zh) 生物特征信息的检测装置和电子设备
CN216933198U (zh) 智能穿戴设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021879090

Country of ref document: EP

Effective date: 20230426

NENP Non-entry into the national phase

Ref country code: DE