WO2022077999A1 - 激光雷达系统及自主移动设备 - Google Patents

激光雷达系统及自主移动设备 Download PDF

Info

Publication number
WO2022077999A1
WO2022077999A1 PCT/CN2021/108336 CN2021108336W WO2022077999A1 WO 2022077999 A1 WO2022077999 A1 WO 2022077999A1 CN 2021108336 W CN2021108336 W CN 2021108336W WO 2022077999 A1 WO2022077999 A1 WO 2022077999A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
lidar system
emitting
array
light
Prior art date
Application number
PCT/CN2021/108336
Other languages
English (en)
French (fr)
Inventor
常新伟
Original Assignee
追觅创新科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011107870.0A external-priority patent/CN112130157A/zh
Priority claimed from CN202022305567.3U external-priority patent/CN214585981U/zh
Application filed by 追觅创新科技(苏州)有限公司 filed Critical 追觅创新科技(苏州)有限公司
Publication of WO2022077999A1 publication Critical patent/WO2022077999A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • the present application relates to the field of lidar, in particular to a lidar system and an autonomous mobile device applying the lidar system.
  • the autonomous mobile device can perceive the external environment and interact with the external environment, which is the basis for the autonomous mobile device to move autonomously and perform tasks.
  • most autonomous mobile devices perceive the external environment through sensors such as single-line lidar, multi-line lidar, and image sensors to meet the autonomy requirements such as obstacle recognition and positioning.
  • the current solutions for sensing the external environment based on sensors such as single-line laser light sensors, multi-line laser light sensors, and image sensors all have certain defects.
  • the perception scheme based on image sensor has high computational complexity and low real-time performance.
  • the perception scheme based on single-line or multi-line lidar has a certain limit in spatial understanding.
  • Existing radar solutions generally use a single-point TOF (Time of Flight) sensor for 360° rotation, or use multiple area array TOF sensors to stitch together to achieve rapid positioning and mapping of autonomous mobile devices. In this way, autonomous mobile devices Rotating parts need to be provided, the overall structure is complex, the cost is high, and equipment damage is easily caused.
  • TOF Time of Flight
  • the present application provides a lidar system and an autonomous mobile device.
  • An embodiment of the present application provides a lidar system, including a laser sensor and a reflection device, the laser sensor includes a laser emission array, and the reflection device is located on a laser light path of the laser emission array; a reflection surface of the reflection device facing the light emitting surface of the laser emitting array; the reflective surface of the reflective device and the light emitting surface of the laser emitting array form a preset angle, and the preset angle is greater than 0 and less than 90 degrees.
  • the reflective device is an optical element, and the optical element includes at least one reflective surface.
  • the at least one reflecting surface is configured as a conical surface or a pyramidal surface.
  • the laser sensor is an area array laser sensor.
  • the laser sensor is a time-of-flight laser sensor.
  • the laser emitting array forms a linear, arc-shaped or annular emitting array.
  • the laser emitting array is formed as at least two concentric annular emitting arrays, and the at least two annular emitting arrays have different radii.
  • the laser sensor further includes an information collection module, the information collection module and the light-emitting surface are located on the same side of the reflective device, and the information collection module and the light-emitting surface are approximately parallel or coplanar.
  • the lidar system further includes an information processing module, the information processing module is electrically connected to the information collection module, and the information processing module is based on the environment collected by the information collection module Information to perform processing operations.
  • Embodiments of the present application further provide an autonomous mobile device, including a device body, and also the lidar system according to any one of the above, where the lidar system is electrically connected to the device body.
  • the beneficial effects of the present application are: in the laser radar system and the autonomous mobile device provided by the present application, since the light-emitting surface of the laser emitting array and the reflective surface of the reflective device form a preset angle, that is, the reflective surface of the reflective device is relative to the luminous surface of the laser emitting array.
  • the inclined setting makes it possible to collect environmental information in 360 degrees through only one laser emission array, which is conducive to the realization of processing operations such as rapid positioning and/or mapping, and rapid identification of obstacle information. Compared with the traditional lidar solution, the structure Simple and low cost.
  • FIG. 1 is a schematic structural diagram of an automatic mobile device in an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a lidar system in an embodiment of the present application.
  • an embodiment of the present application provides an autonomous mobile device, and the autonomous mobile device includes: a device body 3 and a lidar system (not marked).
  • the lidar system is arranged on the device body 3 , and the lidar system is electrically connected to the device body 3 .
  • the lidar system can collect environmental information based on the emission and reception of laser light and transmit the environmental information to the device body 3.
  • the device body 3 can implement various processing operations based on the received environmental information, such as positioning and/or mapping, identifying obstacles material information, etc.
  • the autonomous mobile device in this embodiment can be any mechanical device that can move in space with a high degree of autonomy in its working environment, for example, it can be an unmanned vehicle, an unmanned aerial vehicle, a robot, and the like.
  • the autonomous mobile device may be various robots such as cleaning robots and other service robots.
  • Cleaning robots refer to robots that can autonomously perform cleaning tasks in their operating environment, including sweeping robots, glass cleaning robots, etc.
  • Other service robots refer to robots that can move autonomously in their operating environment and provide non-cleaning services, including air purification robots, home escort robots, and welcome robots.
  • the shape of the autonomous mobile device will also be different.
  • This embodiment does not limit the form of the autonomous mobile device.
  • the outer contour shape of the autonomous mobile device may be an irregular shape or a regular shape.
  • the outer contour shape of the autonomous mobile device may be a regular shape such as a circle, an ellipse, a square, a triangle, a teardrop shape or a D shape.
  • the shapes other than regular shapes are called irregular shapes.
  • the outer contour of a humanoid robot, the outer contour of an unmanned vehicle, and the outer contour of an unmanned aerial vehicle belong to irregular shapes.
  • the lidar system includes a laser sensor 2 and a reflection device 1 , and the laser sensor 2 includes a laser emission array 21 .
  • the reflecting device 1 is located on the laser light path of the laser emitting array 21 .
  • the reflection surface 11 of the reflection device 1 faces the light-emitting surface of the laser emitting array 21 .
  • the reflective surface 11 of the reflective device 1 forms a preset angle with the light-emitting surface of the laser emitting array 21 , and the preset angle is greater than 0 and less than 90 degrees.
  • the reflective surface 11 of the reflective device 1 is arranged at an angle with the light-emitting surface of the laser emitting array 21, so that the light emitted by the laser emitting array 21 turns the light path through the reflective device 1 and diverges around, enabling 360° laser divergence and collection , which is conducive to more effective perception of the operating environment. It can be seen that the laser emitting array 21 can obtain 360° environmental information without rotating.
  • the reflective surface 11 of the reflective device 1 is inclined relative to the light-emitting surface of the laser emitting array 21 . It is set so that environmental information can be collected in 360 degrees only through a fixed laser emission array 21, which is conducive to the realization of processing operations such as rapid positioning and/or mapping, and rapid identification of obstacle information. Compared with the traditional laser radar The scheme is simple in structure and low in cost.
  • the lidar system is arranged on the upper part of the device body 3 .
  • the laser emitting array 21 may be arranged inside the device body 3 , and the reflective device 2 may partially extend from the top surface of the device body 3 , so that the laser light emitted by the laser emitting array 21 generates an optical path through the reflective device 1 It turns and diverges around, that is, through the laser emission array arranged inside the device body 3, the environmental information outside the device body 3 can be collected 360 degrees, which is conducive to the realization of rapid positioning and/or mapping, rapid identification of obstacle information, etc. Handling operations.
  • the laser emitting array 21 emits laser light in the second direction perpendicular to the plane where the device body 3 is located, and the laser light in the second direction emitted by the laser emitting array 21 is reflected by the reflective device 2 to form the laser light in the first direction. That is, the laser emitting array 21 can reflect the laser light in the vertical direction to form the laser light in the horizontal direction.
  • the autonomous mobile device in this embodiment only uses a laser emitting array 21 and a reflective device to rotate the laser emitted in the vertical direction into an omnidirectional laser in the horizontal direction, which makes the structure of the autonomous mobile device simpler. components, which can make the overall structure of autonomous mobile devices more reliable and have a longer lifespan.
  • the reflection device 1 is an optical element, and the optical element includes at least one reflection surface 11 .
  • at least one reflecting surface 11 of the optical element is configured as a conical or pyramidal surface.
  • the reflective surface 11 arranged obliquely with respect to the light-emitting surface of the laser emitting array 21 forms a conical surface around a center line, or three, four or more reflection surfaces 11 arranged obliquely with respect to the light-emitting surface of the laser emitting array 21
  • the faces 11 constitute triangular pyramids, quadrangular pyramids or more pyramidal faces. In this way, the light emitted by the laser emitting array 21 can form a 360° omnidirectional divergence through the optical element.
  • the optical element may be a lens, a mirror, or the like, an element having a light reflecting function.
  • the laser sensor 2 is an area array laser sensor.
  • the environmental information collected by the area array laser sensor not only includes the direction and distance information, but also adds the reflectivity information of the object surface, supplemented by the deep learning technology in the three-dimensional scene, which can realize the cognitive ability of environmental elements.
  • the data composed of reflectivity information can be regarded as a kind of texture information, from which environmental features with matching and identification value can be obtained, and it has strong environmental identification ability. Take advantage of visual algorithms and texture information.
  • the area array laser sensor has the following advantages: 1) The area array laser sensor has the advantages of solid state, low cost and miniaturization; 2) The area array laser sensor does not require rotating parts during installation and use, which can greatly compress the structure of the sensor and size, improve the service life, and reduce the cost; 3) The viewing angle of the area array laser sensor can be adjusted, which can be adapted to different autonomous mobile devices, which is conducive to speeding up the scanning speed and accuracy; 4) The area array laser sensor can collect horizontal and vertical data at the same time. The environmental information in the vertical direction can be built into a 3D map, which is beneficial to improve the accuracy of functions such as map-based positioning and navigation planning.
  • the laser sensor 2 is a time-of-flight laser sensor.
  • the laser sensor 2 further includes an information collection module 22 .
  • the information collection module 22 and the light-emitting surface are located on the same side of the reflective device 1 , and the information collection module 22 and the light-emitting surface are substantially parallel or coplanar.
  • the working principle of the time-of-flight laser sensor 2 is: the laser emitting array 21 emits a light source through the optical element in front of it, and after the emitted light source reaches the surface of the object, a part of the emitted light source is reflected back and an image is formed by the optical element in front of the information acquisition module 22 pixels on the .
  • the time of flight (TOF) of the reflected light is different.
  • TOF time of flight
  • each pixel point can obtain independent distance information.
  • the detection range of the time-of-flight laser sensor 2 can reach more than 100 meters.
  • the information collection module 22 of the area array laser sensor 2 can also collect images of the surrounding environment to achieve fast 3D imaging with a resolution of megapixel level, and the imaging frequency is over 30 frames per second.
  • the laser emitting array 21 forms a linear, circular or circular emitting array.
  • the laser emitting array 21 can emit a circular ring-shaped laser and form a horizontal ring-shaped laser network after being reflected by the reflective device 1 , so that it can be uniformly scattered around, and the surrounding images can also be quickly collected by the information collection module 22 .
  • the laser emitting array 21 is formed as at least two concentric annular emitting arrays, and the at least two annular emitting arrays have different radii.
  • the laser light emitted by the two or more emission arrays can form a three-dimensional annular laser network in space after being reflected by the reflection device 1 .
  • the lidar system also includes an information processing module (not shown), the information processing module is electrically connected to the information acquisition module 22, and the information processing module performs processing operations based on the environmental information collected by the information acquisition module 22.
  • the information processing module can be based on the environment information to quickly locate and/or map, identify obstacle information, etc.
  • the lidar system may not include an information processing module, the information processing module is arranged inside the device body 3 of the autonomous mobile device, and the environmental information collected by the lidar system can be sent to the information processing module, and the information processing module Process the collected environmental information.
  • an embodiment of the present application provides a lidar system.
  • the lidar system includes a laser sensor 2 and a reflection device 1 , and the laser sensor 2 includes a laser emission array 21 .
  • the reflecting device 1 is located on the laser light path of the laser emitting array 21 .
  • the reflection surface 11 of the reflection device 1 faces the light-emitting surface of the laser emitting array 21 .
  • the reflective surface 11 of the reflective device 1 forms a preset angle with the light-emitting surface of the laser emitting array 21 , and the preset angle is greater than 0 and less than 90 degrees.
  • the reflective surface 11 of the reflective device 1 is arranged at an angle with the light-emitting surface of the laser emitting array 21, so that the light emitted by the laser emitting array 21 turns the light path through the reflective device 1 and diverges around, enabling 360° laser divergence and collection , which is conducive to more effective perception of the operating environment. It can be seen that the laser emitting array 21 in the embodiment of the present application can obtain 360° environmental information without being rotated.
  • the reflective surface 11 of the reflective device 1 is inclined relative to the light-emitting surface of the laser emitting array 21 . It is set so that environmental information can be collected 360 degrees only through a fixed laser emission array 21, which is conducive to the realization of processing operations such as rapid positioning and/or mapping, and rapid identification of obstacle information. Compared with the traditional lidar solution , simple structure and low cost.
  • the reflection device 1 is an optical element, and the optical element includes at least one reflection surface 11 .
  • at least one reflecting surface 11 of the optical element is configured as a conical or pyramidal surface.
  • the reflective surface 11 arranged obliquely with respect to the light-emitting surface of the laser emitting array 21 forms a conical surface around a center line, or three, four or more reflection surfaces 11 arranged obliquely with respect to the light-emitting surface of the laser emitting array 21
  • the faces 11 constitute triangular pyramids, quadrangular pyramids or more pyramidal faces. In this way, the light emitted by the laser emitting array 21 can form a 360° omnidirectional divergence through the optical element.
  • the optical element may be a lens, a mirror, or the like, an element having a light reflecting function.
  • the laser sensor 2 is an area array laser sensor.
  • the environmental information collected by the area array laser sensor not only includes the direction and distance information, but also adds the reflectivity information of the object surface, supplemented by the deep learning technology in the three-dimensional scene, which can realize the cognitive ability of environmental elements.
  • the data composed of reflectivity information can be regarded as a kind of texture information, from which environmental features with matching and identification value can be obtained, and it has strong environmental identification ability. Take advantage of visual algorithms and texture information.
  • the area array laser sensor has the following advantages: 1) The area array laser sensor has the advantages of solid state, low cost and miniaturization; 2) The area array laser sensor does not require rotating parts during installation and use, which can greatly compress the structure of the sensor and size, improve the service life, and reduce the cost; 3) The viewing angle of the area array laser sensor can be adjusted, which can be adapted to different autonomous mobile devices, which is conducive to speeding up the scanning speed and accuracy; 4) The area array laser sensor can collect horizontal and vertical data at the same time. The environmental information in the vertical direction can be built into a 3D map, which is conducive to improving the accuracy of functions such as map-based positioning and navigation planning.
  • the laser sensor 2 is a time-of-flight laser sensor.
  • the laser sensor 2 further includes an information collection module 22 .
  • the information collection module 22 and the light-emitting surface are located on the same side of the reflective device 1 , and the information collection module 22 and the light-emitting surface are substantially parallel or coplanar.
  • the working principle of the time-of-flight laser sensor 2 is: the laser emitting array 21 emits a light source through the optical element in front of it, and after the emitted light source reaches the surface of the object, a part of the emitted light source is reflected back and an image is formed by the optical element in front of the information acquisition module 22 pixels on the .
  • the time of flight (TOF) of the reflected light is different.
  • TOF time of flight
  • each pixel point can obtain independent distance information.
  • the detection range of the time-of-flight laser sensor 2 can reach more than 100 meters.
  • the information collection module 22 of the area array laser sensor 2 can also collect images of the surrounding environment to achieve fast 3D imaging with a resolution of megapixel level, and the imaging frequency is over 30 frames per second.
  • the laser emitting array 21 forms a linear, circular or circular emitting array.
  • the laser emitting array 21 can emit a circular ring-shaped laser and form a horizontal ring-shaped laser network after being reflected by the reflective device 1 , so that it can be uniformly scattered around, and the surrounding images can also be quickly collected by the information collection module 22 .
  • the laser emitting array 21 is formed as at least two concentric annular emitting arrays, and the at least two annular emitting arrays have different radii.
  • the laser light emitted by the two or more emission arrays can form a three-dimensional annular laser network in space after being reflected by the reflection device 1 .
  • the lidar system also includes an information processing module (not shown), the information processing module is electrically connected to the information acquisition module 22, and the information processing module performs processing operations based on the environmental information collected by the information acquisition module 22.
  • the information processing module can be based on the environment information to quickly locate and/or map, identify obstacle information, etc.
  • the lidar system may not include an information processing module, and the environmental information collected by the lidar system may be sent to other devices, such as autonomous mobile devices, and other devices process the collected environmental information.
  • the reflective surface 11 of the reflective device 1 is at a relative angle to the laser emitting array 21 .
  • the light-emitting surface is inclined, so that only one laser emitting array 21 can collect environmental information in 360 degrees, which is conducive to the realization of rapid positioning and/or mapping, and rapid identification of obstacle information. Compared with the traditional lidar solution, Simple structure and low cost.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光雷达系统,包括激光传感器(2)和反射器件(1),激光传感器(2)包括激光发射阵列(21),反射器件(1)位于激光发射阵列(21)的激光光路上;反射器件(1)的反射面(11)朝向激光发射阵列(21)的发光面;反射器件(1)的反射面(11)与激光发射阵列(21)的发光面成预设角度,预设角度大于0且小于90度。该激光雷达系统由于激光发射阵列(21)的发光面和反射器件(1)的反射面(11)成预设角度,即反射器件(1)的反射面(11)相对于激光发射阵列(21)的发光面呈倾斜设置,使得仅通过一激光发射阵列(21)即可360度地采集环境信息,从而有利于实现快速定位和/或建图、快速识别障碍物信息等处理操作,相比传统的激光雷达方案,结构简单,成本较低。

Description

激光雷达系统及自主移动设备 技术领域
本申请涉及激光雷达领域,特别是涉及一种激光雷达系统及应用该激光雷达系统的自主移动设备。
背景技术
随着AI的高速发展,越来越多的自主移动设备应用在大型商场,医院,工厂等场所,以代替人的工作。其中,自主移动设备能够感知外部环境并可与外部环境进行交互,是自主移动设备能够自主移动并执行任务的基础。目前,自主移动设备大多是通过单线激光雷达、多线激光雷达、图像传感器等传感器来感知外部环境,来满足障物识别和定位等自主性需求。
但是,目前基于单线激光达、多线激光达、图像传感器等传感器对外部环境进行感知的方案,均存在一定缺陷。例如,基于图像传感器的感知方案,运算复杂度较高,实时性低。基于单线或多线激光雷达的感知方案,在空间理解能力有一定限度。现有雷达方案一般为单点的TOF(Time of Flight,飞行时间)传感器进行360°旋转,或者使用多个面阵的TOF传感器拼接实现自主移动设备的快速定位和建图,如此,自主移动设备需要设置旋转部件,整体结构复杂,成本较高,且易造成设备损坏。
因此,有必要针对自主移动设备提供一种新的感知方案。
发明内容
针对上述技术中存在的不足之处,本申请提供了一种激光雷达系统及自主移动设备。
本申请实施例提供了一种激光雷达系统,包括激光传感器和反射器件,所述激光传感器包括激光发射阵列,所述反射器件位于所述激光发射阵列的激光光路上;所述反射器件的反射面朝向激光发射阵列的发光面;所述反射器件的反射面与所述激光发射阵列的发光面成预设角度,所述预设角度大于0且小于90度。
在一种可能的实现方式中,所述反射器件为光学元件,所述光学元件包括 至少一个反射面。
在一种可能的实现方式中,所述至少一个反射面构造成圆锥面或棱锥面。
在一种可能的实现方式中,所述激光传感器为面阵激光传感器。
在一种可能的实现方式中,所述激光传感器为飞行时间激光传感器。
在一种可能的实现方式中,所述激光发射阵列构成直线型、圆弧型或圆环型发射阵列。
在一种可能的实现方式中,所述激光发射阵列形成为至少两个同心的圆环型发射阵列,所述至少两个圆环型发射阵列具有不同的半径。
在一种可能的实现方式中,所述激光传感器还包括信息采集模块,所述信息采集模块与所述发光面位于所述反射器件的同一侧,且所述信息采集模块与所述发光面大致平行或共面。
在一种可能的实现方式中,所述激光雷达系统还包括信息处理模块,所述信息处理模块与所述信息采集模块电性连接,所述信息处理模块基于所述信息采集模块采集到的环境信息执行处理操作。
本申请实施例还提供了一种自主移动设备,包括设备本体,还包括如上任一项所述的激光雷达系统,所述激光雷达系统与所述设备本体电性连接。
本申请的有益效果是:本申请提供的激光雷达系统及自主移动设备,由于激光发射阵列的发光面和反射器件的反射面成预设角度,即反射器件的反射面相对于激光发射阵列的发光面呈倾斜设置,使得仅通过一激光发射阵列即可360度地采集环境信息,从而有利于实现快速定位和/或建图、快速识别障碍物信息等处理操作,相比传统的激光雷达方案,结构简单,成本较低。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本申请实施例中的自动移动设备的结构示意图;
图2是本申请实施例中的激光雷达系统的结构示意图。
具体实施方式
为使本申请的上述目的、特征和优点能够更为明显易懂,下面结合附图,对本申请的具体实施方式做详细的说明。可以理解的是,此处所描述的具体实施例仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
本申请中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
参见图1所示,本申请实施例提供了一种自主移动设备,该自主移动设备包括:设备本体3和激光雷达系统(未标示)。激光雷达系统设置在设备本体3上,激光雷达系统与设备本体3电性连接。激光雷达系统可以基于激光的发射和接收来采集环境信息并向设备本体3传递环境信息,设备本体3可以基于接收到的环境信息来实现各种处理操作,例如定位和/或建图、识别障碍物信息等。
本实施例的自主移动设备可以是任何能够在其作业环境中高度自主地进行空间移动的机械设备,例如,可以是无人车、无人机、机器人等。其中,自主移动设备可以是清扫型机器人、其它服务型机器人等各类机器人。清扫型机器人是指能够在其作业环境中自主执行清扫任务的机器人,包括扫地机器人、擦玻璃机器人等。其它服务型机器人是指能够在其作业环境中自主移动并提供非清扫服务的机器人,包括空气净化机器人、家庭陪护机器人、迎宾机器人等。
根据自主移动设备实现形态的不同,自主移动设备的形状也会有所不同。本实施例并不限定自主移动设备的形态,以自主移动设备的外轮廓形状为例, 自主移动设备的外轮廓形状可以是不规则形状,也可以是规则形状。例如,自主移动设备的外轮廓形状可以是圆形、椭圆形、方形、三角形、水滴形或D形等规则形状。相应地,规则形状之外的称为不规则形状,例如人形机器人的外轮廓、无人车的外轮廓以及无人机的外轮廓等属于不规则形状。
激光雷达系统包括激光传感器2和反射器件1,激光传感器2包括激光发射阵列21。反射器件1位于激光发射阵列21的激光光路上。反射器件1的反射面11朝向激光发射阵列21的发光面。反射器件1的反射面11与激光发射阵列21的发光面成预设角度,预设角度大于0且小于90度。
反射器件1的反射面11与激光发射阵列21的发光面成角度的设置,使得经由激光发射阵列21发出的光通过反射器件1发生光路的转向并四周发散,能够实现360°的激光发散和收集,有利于更有效地感知作业环境。可见,激光发射阵列21不需要旋转即可获得360°的环境信息。
本申请实施例提供的自主移动设备,由于激光发射阵列21的发光面和反射器件1的反射面11成预设角度,即反射器件1的反射面11相对于激光发射阵列21的发光面呈倾斜设置,使得仅通过一固定设置的激光发射阵列21即可360度地采集环境信息,从而有利于实现快速定位和/或建图、快速识别障碍物信息等处理操作,相比采用传统的激光雷达方案,结构简单,成本较低。
在一实施例中,激光雷达系统设于设备本体3的上部。在一种可能的实现方式中,激光发射阵列21可以设置在设备本体3内部,反射器件2可以部分地伸出设备本体3的顶面,从而激光发射阵列21发射的激光经由反射器件1发生光路的转向并向四周发散,即通过设置于设备本体3内部的激光发射阵列可以360度地采集设备本体3外部的环境信息,从而有利于实现快速定位和/或建图、快速识别障碍物信息等处理操作。
在一实施例中,激光发射阵列21发射与设备本体3所在平面垂直的第二方向的激光,激光发射阵列21发射的第二方向的激光经由反射器件2反射后形成第一方向的激光。即,激光发射阵列21可以将垂直方向的激光反射形成水平方向的激光。本实施例的自主移动设备仅通过一激光发射阵列21和一反射器件就实现了将垂直方向发射的激光旋转成水平方向的全向激光,使得自主移动设备 的结构更加简单,由于不需要使用旋转部件,可以使自主移动设备的整体结构更加可靠,寿命更长。
在一种可能的实现方式中,反射器件1为光学元件,光学元件包括至少一个反射面11。在一实施例中,光学元件的至少一个反射面11构造成圆锥面或棱锥面。例如,相对于激光发射阵列21的发光面倾斜设置的反射面11形成围绕一中心线的圆锥面,或相对于激光发射阵列21的发光面倾斜设置的3个、4个或更多个的反射面11构成三棱锥、四棱锥或更多棱锥面。如此,激光发射阵列21发出的光经过光学元件可形成360°的全向发散。
在一实施例中,光学元件可以是透镜、反射镜等具有光反射功能的元件。
在一种可能的实现方式中,激光传感器2为面阵激光传感器。面阵激光传感器采集到的环境信息不仅包含方向和距离信息,还加入了物体表面的反射率信息,辅以三维场景下的深度学习技术,能实现环境要素的认知能力。当激光线数较多且较密时,由反射率信息构成的数据可以视为一种纹理信息,可以从中获取具有匹配和识别价值的环境特征,具有较强的环境辨识能力,在一定程度上可以享受视觉算法和纹理信息带来的优势。另外,面阵激光传感器还有以下优势:1)面阵激光传感器具有固态化、低成本化、小型化优势;2)面阵激光传感器在安装使用时不需要旋转部件,可以大大压缩传感器的结构和尺寸,提高使用寿命,并降低成本;3)面阵激光传感器的视角可以调节,可适配不同自主移动设备,有利于加快扫描速度与精度;4)面阵激光传感器可以同时采集水平和竖直方向上的环境信息,可以建成3D地图,有利于提高基于地图的定位、导航规划等功能的准确性。
在一种可能的实现方式中,激光传感器2为飞行时间激光传感器。
参见图2所示,激光传感器2还包括信息采集模块22,信息采集模块22与发光面位于反射器件1的同一侧,且信息采集模块22与发光面大致平行或共面。
飞行时间激光传感器2的工作原理是:激光发射阵列21经其前方的光学元件向外发射光源,发射出的光源在到达物体表面后,一部分反射回来并经信息采集模块22前方的光学元件形成图像上的像素点。而由于物体表面到返回点的距离不同,其反射光飞行时间(TOF)不同,通过对反射光飞行时间的测量,每个像素点就可获得独立的距离信息。飞行时间激光传感器2的探测范围可以达到 百米以上。另外,面阵激光传感器2的信息采集模块22还可以采集周围环境的图像,实现百万像素级别的分辨率的快速3D成像,其成像频率在每秒30帧以上。
在一种可能的实现方式中,激光发射阵列21构成直线型、圆弧型或圆环型发射阵列。激光发射阵列21能够发射出圆环状激光并经由反射器件1反射后形成水平环状激光网,从而能够均匀地散射到四周,进而也能通过信息采集模块22快速采集到周围的图像。
在一种可能的实现方式中,激光发射阵列21形成为至少两个同心的圆环型发射阵列,至少两个圆环型发射阵列具有不同的半径。两个以上的发射阵列发射的激光经由反射器件1反射后能够在空间上形成三维圆环状激光网。
激光雷达系统还包括信息处理模块(未图示),信息处理模块与信息采集模块22电性连接,信息处理模块基于信息采集模块22采集到的环境信息执行处理操作,例如信息处理模块可以基于环境信息进行快速定位和/或建图、识别障碍物信息等。
在一种可能的实现方式中,激光雷达系统可不包括信息处理模块,信息处理模块设置在自主移动设备的设备本体3内部,激光雷达系统采集到的环境信息可发送给信息处理模块,信息处理模块对采集到的环境信息进行处理。
结合图1、图2所示,本申请实施例提供一种激光雷达系统。激光雷达系统包括激光传感器2和反射器件1,激光传感器2包括激光发射阵列21。反射器件1位于激光发射阵列21的激光光路上。反射器件1的反射面11朝向激光发射阵列21的发光面。反射器件1的反射面11与激光发射阵列21的发光面成预设角度,预设角度大于0且小于90度。
反射器件1的反射面11与激光发射阵列21的发光面成角度的设置,使得经由激光发射阵列21发出的光通过反射器件1发生光路的转向并四周发散,能够实现360°的激光发散和收集,有利于更有效地感知作业环境。可见,本申请实施例的激光发射阵列21不需要旋转即可获得360°的环境信息。
本申请实施例提供的激光雷达系统,由于激光发射阵列21的发光面和反射器件1的反射面11成预设角度,即反射器件1的反射面11相对于激光发射阵列21的发光面呈倾斜设置,使得仅通过一固定设置的激光发射阵列21即可360 度地采集环境信息,从而有利于实现快速定位和/或建图、快速识别障碍物信息等处理操作,相比传统的激光雷达方案,结构简单,成本较低。
在一种可能的实现方式中,反射器件1为光学元件,光学元件包括至少一个反射面11。在一实施例中,光学元件的至少一个反射面11构造成圆锥面或棱锥面。例如,相对于激光发射阵列21的发光面倾斜设置的反射面11形成围绕一中心线的圆锥面,或相对于激光发射阵列21的发光面倾斜设置的3个、4个或更多个的反射面11构成三棱锥、四棱锥或更多棱锥面。如此,激光发射阵列21发出的光经过光学元件可形成360°的全向发散。
在一实施例中,光学元件可以是透镜、反射镜等具有光反射功能的元件。
在一种可能的实现方式中,激光传感器2为面阵激光传感器。面阵激光传感器采集到的环境信息不仅包含方向和距离信息,还加入了物体表面的反射率信息,辅以三维场景下的深度学习技术,能实现环境要素的认知能力。当激光线数较多且较密时,由反射率信息构成的数据可以视为一种纹理信息,可以从中获取具有匹配和识别价值的环境特征,具有较强的环境辨识能力,在一定程度上可以享受视觉算法和纹理信息带来的优势。另外,面阵激光传感器还有以下优势:1)面阵激光传感器具有固态化、低成本化、小型化优势;2)面阵激光传感器在安装使用时不需要旋转部件,可以大大压缩传感器的结构和尺寸,提高使用寿命,并降低成本;3)面阵激光传感器的视角可以调节,可适配不同自主移动设备,有利于加快扫描速度与精度;4)面阵激光传感器可以同时采集水平和竖直方向上的环境信息,可以建成3D地图,有利于提高基于地图的定位、导航规划等功能的准确性。
在一种可能的实现方式中,激光传感器2为飞行时间激光传感器。
参见图2所示,激光传感器2还包括信息采集模块22,信息采集模块22与发光面位于反射器件1的同一侧,且信息采集模块22与发光面大致平行或共面。
飞行时间激光传感器2的工作原理是:激光发射阵列21经其前方的光学元件向外发射光源,发射出的光源在到达物体表面后,一部分反射回来并经信息采集模块22前方的光学元件形成图像上的像素点。而由于物体表面到返回点的距离不同,其反射光飞行时间(TOF)不同,通过对反射光飞行时间的测量,每个像素点就可获得独立的距离信息。飞行时间激光传感器2的探测范围可以达到 百米以上。另外,面阵激光传感器2的信息采集模块22还可以采集周围环境的图像,实现百万像素级别的分辨率的快速3D成像,其成像频率在每秒30帧以上。
在一种可能的实现方式中,激光发射阵列21构成直线型、圆弧型或圆环型发射阵列。激光发射阵列21能够发射出圆环状激光并经由反射器件1反射后形成水平环状激光网,从而能够均匀地散射到四周,进而也能通过信息采集模块22快速采集到周围的图像。
在一种可能的实现方式中,激光发射阵列21形成为至少两个同心的圆环型发射阵列,至少两个圆环型发射阵列具有不同的半径。两个以上的发射阵列发射的激光经由反射器件1反射后能够在空间上形成三维圆环状激光网。
激光雷达系统还包括信息处理模块(未图示),信息处理模块与信息采集模块22电性连接,信息处理模块基于信息采集模块22采集到的环境信息执行处理操作,例如信息处理模块可以基于环境信息进行快速定位和/或建图、识别障碍物信息等。
在一种可能的实现方式中,激光雷达系统可不包括信息处理模块,激光雷达系统采集到的环境信息可发送给其他设备,例如自主移动设备,由其他设备对采集到的环境信息进行处理。
本申请实施例提供的激光雷达系统及自主移动设备,由于激光发射阵列21的发光面和反射器件1的反射面11成预设角度,即反射器件1的反射面11相对于激光发射阵列21的发光面呈倾斜设置,使得仅通过一激光发射阵列21即可360度地采集环境信息,从而有利于实现快速定位和/建图、快速识别障碍物信息等操作,相比传统的激光雷达方案,结构简单,成本较低。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (11)

  1. 一种激光雷达系统,其特征在于:包括激光传感器和反射器件,所述激光传感器包括激光发射阵列,所述反射器件位于所述激光发射阵列的激光光路上;所述反射器件的反射面朝向激光发射阵列的发光面;所述反射器件的反射面与所述激光发射阵列的发光面成预设角度,所述预设角度大于0且小于90度。
  2. 如权利要求1所述的激光雷达系统,其特征在于,所述反射器件为光学元件,所述光学元件包括至少一个反射面。
  3. 如权利要求2所述的激光雷达系统,其特征在于:所述至少一个反射面构造成圆锥面或棱锥面。
  4. 如权利要求1所述的激光雷达系统,其特征在于,所述激光传感器为面阵激光传感器。
  5. 如权利要求1所述的激光雷达系统,其特征在于,所述激光传感器为飞行时间激光传感器。
  6. 如权利要求1所述的激光雷达系统,其特征在于:所述激光发射阵列构成直线型、圆弧型或圆环型发射阵列。
  7. 如权利要求6所述的激光雷达系统,其特征在于:所述激光发射阵列形成为至少两个同心的圆环型发射阵列,所述至少两个圆环型发射阵列具有不同的半径。
  8. 如权利要求1所述的激光雷达系统,其特征在于:所述激光传感器还包括信息采集模块,所述信息采集模块与所述发光面位于所述反射器件的同一侧,且所述信息采集模块与所述发光面大致平行或共面。
  9. 如权利要求8所述的激光雷达系统,其特征在于:所述激光雷达系统还包括信息处理模块,所述信息处理模块与所述信息采集模块电性连接,所述信息处理模块基于所述信息采集模块采集到的环境信息执行处理操作。
  10. 一种自主移动设备,包括设备本体,其特征在于:还包括如权利要求1-9任一项所述的激光雷达系统,所述激光雷达系统与所述设备本体电性连接。
  11. 如权利要求10所述的自主移动设备,其特征在于,所述激光雷达系统设置于所述设备本体的上部,所述激光发射阵列设置在所述设备本体内部,所述反射器件部分伸出所述设备本体的顶面。
PCT/CN2021/108336 2020-10-16 2021-07-26 激光雷达系统及自主移动设备 WO2022077999A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011107870.0A CN112130157A (zh) 2020-10-16 2020-10-16 激光雷达系统及自主移动设备
CN202022305567.3U CN214585981U (zh) 2020-10-16 2020-10-16 激光雷达系统及自主移动设备
CN202022305567.3 2020-10-16
CN202011107870.0 2020-10-16

Publications (1)

Publication Number Publication Date
WO2022077999A1 true WO2022077999A1 (zh) 2022-04-21

Family

ID=81207665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108336 WO2022077999A1 (zh) 2020-10-16 2021-07-26 激光雷达系统及自主移动设备

Country Status (1)

Country Link
WO (1) WO2022077999A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173912A (ja) * 2013-03-07 2014-09-22 Non-Profit Organization Npo 3D Associates 形状測定装置
CN105301600A (zh) * 2015-11-06 2016-02-03 中国人民解放军空军装备研究院雷达与电子对抗研究所 一种基于锥形反射镜的无扫描激光三维成像装置
CN105572683A (zh) * 2016-02-03 2016-05-11 深圳市镭神智能系统有限公司 一种激光雷达采集、测距设备及其工作方法
CN106842228A (zh) * 2017-01-19 2017-06-13 北京飞思迈尔光电科技有限公司 一种光学扫描传感器
CN106959451A (zh) * 2017-03-17 2017-07-18 深圳大学 一种激光雷达和激光雷达的探测方法
CN208283559U (zh) * 2018-06-04 2018-12-25 驭势科技(浙江)有限公司 激光雷达探测装置以及智能驾驶汽车
CN109716161A (zh) * 2016-07-20 2019-05-03 深圳市大疆创新科技有限公司 用于障碍物检测的圆形光源
CN112130157A (zh) * 2020-10-16 2020-12-25 追创科技(苏州)有限公司 激光雷达系统及自主移动设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173912A (ja) * 2013-03-07 2014-09-22 Non-Profit Organization Npo 3D Associates 形状測定装置
CN105301600A (zh) * 2015-11-06 2016-02-03 中国人民解放军空军装备研究院雷达与电子对抗研究所 一种基于锥形反射镜的无扫描激光三维成像装置
CN105572683A (zh) * 2016-02-03 2016-05-11 深圳市镭神智能系统有限公司 一种激光雷达采集、测距设备及其工作方法
CN109716161A (zh) * 2016-07-20 2019-05-03 深圳市大疆创新科技有限公司 用于障碍物检测的圆形光源
CN106842228A (zh) * 2017-01-19 2017-06-13 北京飞思迈尔光电科技有限公司 一种光学扫描传感器
CN106959451A (zh) * 2017-03-17 2017-07-18 深圳大学 一种激光雷达和激光雷达的探测方法
CN208283559U (zh) * 2018-06-04 2018-12-25 驭势科技(浙江)有限公司 激光雷达探测装置以及智能驾驶汽车
CN112130157A (zh) * 2020-10-16 2020-12-25 追创科技(苏州)有限公司 激光雷达系统及自主移动设备

Similar Documents

Publication Publication Date Title
US11620835B2 (en) Obstacle recognition method and apparatus, storage medium, and electronic device
US20130245937A1 (en) Methods and apparatus for position estimation using reflected light sources
CN205982639U (zh) 扫描装置及无人驾驶设备
CN110966921B (zh) 室内三维扫描设备及方法
CN112130157A (zh) 激光雷达系统及自主移动设备
JP2024014877A (ja) Lidarの視野を変更するためのシステムおよび方法
WO2020038155A1 (zh) 自主移动设备、控制方法及存储介质
WO2022077999A1 (zh) 激光雷达系统及自主移动设备
CN113498667A (zh) 一种基于全景机器视觉的智能割草机器人
Everett et al. Modeling the environment of a mobile security robot
CN211905686U (zh) 一种基于激光雷达和全景视觉的环境感知系统
CN210931169U (zh) 一种机器人
Kim et al. LiDAR configuration comparison for urban mapping system
CN214585981U (zh) 激光雷达系统及自主移动设备
CN215897823U (zh) 结构光模组及自移动设备
US10983528B2 (en) Systems and methods for orienting a robot in a space
Kerstens et al. 3D point cloud data acquisition using a synchronized in-air imaging sonar sensor network
WO2023019441A1 (zh) 一种收发光学系统、激光雷达、终端设备、方法及装置
CN113960562A (zh) 结构光模组及自移动设备
US8830484B2 (en) Device and method for object detection and location
Li et al. Mobile robot map building based on laser ranging and kinect
CN212623088U (zh) 一种基于图像识别和激光测距的铁塔姿态预警装置
CN210294530U (zh) 一种自动行走装置和机器人
CN112338908B (zh) 自主移动设备
CN113376658A (zh) 一种基于单线激光雷达的无人机自主避障方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21879046

Country of ref document: EP

Kind code of ref document: A1