WO2022077966A1 - 一种基于自组网的列车群组控制方法与系统 - Google Patents

一种基于自组网的列车群组控制方法与系统 Download PDF

Info

Publication number
WO2022077966A1
WO2022077966A1 PCT/CN2021/105122 CN2021105122W WO2022077966A1 WO 2022077966 A1 WO2022077966 A1 WO 2022077966A1 CN 2021105122 W CN2021105122 W CN 2021105122W WO 2022077966 A1 WO2022077966 A1 WO 2022077966A1
Authority
WO
WIPO (PCT)
Prior art keywords
train
hoc network
trains
vehicle
target
Prior art date
Application number
PCT/CN2021/105122
Other languages
English (en)
French (fr)
Inventor
徐宗奇
姚文华
于晓泉
张文汇
谢迎锋
赵丽
刘鸿飞
张万强
岳朝鹏
刘汉禹
徐世泽
Original Assignee
北京全路通信信号研究设计院集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京全路通信信号研究设计院集团有限公司 filed Critical 北京全路通信信号研究设计院集团有限公司
Priority to EP21879014.5A priority Critical patent/EP4098512A4/en
Publication of WO2022077966A1 publication Critical patent/WO2022077966A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/08Control, warning or like safety means along the route or between vehicles or trains for controlling traffic in one direction only
    • B61L23/14Control, warning or like safety means along the route or between vehicles or trains for controlling traffic in one direction only automatically operated
    • B61L23/18Control, warning or like safety means along the route or between vehicles or trains for controlling traffic in one direction only automatically operated specially adapted for changing lengths of track sections in dependence upon speed and traffic density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0018Communication with or on the vehicle or train
    • B61L15/0027Radio-based, e.g. using GSM-R
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0054Train integrity supervision, e.g. end-of-train [EOT] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0062On-board target speed calculation or supervision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/34Control, warning or like safety means along the route or between vehicles or trains for indicating the distance between vehicles or trains by the transmission of signals therebetween
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/70Details of trackside communication

Definitions

  • the invention belongs to the field of transportation technology, and particularly relates to a method and system for controlling a train group based on an ad hoc network.
  • the point-to-point communication method is as follows:
  • Vehicle A receives the command from the ground control center and needs to conduct point-to-point communication with vehicle B. Then vehicle A establishes a communication connection with vehicle B through point-to-point communication. Vehicle A provides speed and position coordinate information to vehicle B, and vehicle B receives The A car information combined with its own position and speed information generates the B car control curve to control the train operation. By analogy, cars C and D also generate their own control curves to control the operation of their respective trains.
  • This method relies on the ground center equipment, and each train must first receive the control command of which train to communicate with, and then can establish a communication connection, and cannot form a formation by itself.
  • the train cannot directly obtain the number of trains in the group and the number of the train itself.
  • Each train needs to calculate its own mobility authorization in real time.
  • the vehicle-to-vehicle communication method is as follows:
  • the point-to-point communication between car A and car B is carried out through the ground base station.
  • Car A provides speed and position coordinate information to the base station, and the base station forwards the information to car B.
  • Car B combines its own position and location according to the received car A information.
  • the speed information generates B-car control curve to control the train running.
  • cars C and D also generate their own control curves to control the operation of their respective trains.
  • each train must first provide which train to communicate with through the ground central control device, and then establish a communication connection with the target vehicle through the ground base station.
  • Each train needs to calculate its own mobility authorization in real time. Wireless coverage is required across the line. It is necessary to set up a central device to manage all train positions, states, etc.
  • ground train management center on the ground, continuous coverage of the ground wireless network, and high requirements for network indicators.
  • Each train communicates with the designated train according to the command provided by the ground, and each train needs to calculate the movement authorization of its own train in real time, and the functions of autonomous train management and autonomous networking cannot be realized.
  • the ground train management center fails, it cannot operate normally, and the construction cost is high, the system is complex, the reliability is low, and the maintenance cost is high.
  • the present invention proposes a train group control method based on an ad hoc network, the method comprising:
  • the train self-organizing network equipment searches for the communication equipment of other trains within the preset distance; judges whether it is on the same track as other trains;
  • the train group in the ad hoc network controls the train operation in the ad hoc network through the ad hoc network.
  • networking conditions include:
  • the target vehicle is provided with an ad hoc network device
  • the target vehicle is allowed to form or join an ad hoc network
  • the communication between the target vehicle and the own vehicle is stable.
  • control method also includes:
  • the train receives line condition information, where the line condition information includes: route information, line information, temporary speed limit information and travel permission.
  • control of the train operation in the ad hoc network by the train group in the ad hoc network includes:
  • the first vehicle control is used in the ad hoc network by the first vehicle to control the operation of other vehicles in the ad hoc network;
  • the following vehicle control is used for the following vehicle to control itself to follow the preceding vehicle in the ad hoc network.
  • the first vehicle control includes:
  • the first train receives the train data information transmitted by the following train, the data information includes: speed, position, acceleration, braking performance and working condition;
  • the first train calculates the target speed of the following trains in the ad hoc network according to the data information, the line information of the current position of each train in the ad hoc network, and the position and speed relationship between each train in the group and the preceding train;
  • the first train notifies the corresponding train to monitor and run at the target speed through ad hoc network communication
  • the first train periodically receives real-time train data information from other trains;
  • the data information includes: speed, position, acceleration, braking performance and working conditions;
  • the first vehicle control also includes:
  • the first train calculates the target distance between other trains and the preceding train in the ad hoc network
  • the first train calculates the target parking points of other trains in the ad hoc network
  • the first train sends the target distance, control mode curve and target parking point to the corresponding following train through ad hoc network communication;
  • car control includes:
  • the first train periodically transmits its own train data information to the following trains, and the data information includes: speed, position, acceleration, braking performance, working condition;
  • the data information includes: speed, position, acceleration, braking performance, working condition;
  • vehicle control also includes:
  • the present invention also provides a train group control system based on an ad hoc network, the system includes an ad hoc network device,
  • the ad hoc network equipment is used for:
  • the train self-organizing network equipment searches for the communication equipment of other trains within the preset distance; judges whether it is on the same track as other trains;
  • the train group in the ad hoc network controls the train operation in the ad hoc network through the ad hoc network.
  • networking conditions include:
  • the target vehicle is provided with an ad hoc network device
  • the target vehicle is allowed to form or join an ad hoc network
  • the communication between the target vehicle and the own vehicle is stable.
  • system also includes:
  • Vehicle ATP equipment station data server, track circuit
  • the vehicle-mounted ATP device is used for receiving line condition information, and the line condition information includes: route information, line information, temporary speed limit information, and driving permit;
  • the station data server is used for sending route information, route information and temporary speed limit information
  • the track circuit is used to send traffic permits.
  • control of the train operation in the ad hoc network by the train group in the ad hoc network includes:
  • the first vehicle control is used in the ad hoc network by the first vehicle to control the operation of other vehicles in the ad hoc network;
  • the following vehicle control is used for the following vehicle to control itself to follow the preceding vehicle in the ad hoc network.
  • the first vehicle control includes:
  • the first train receives the train data information transmitted by the following train, the data information includes: speed, position, acceleration, braking performance and working condition;
  • the first train calculates the target speed of the following trains in the ad hoc network according to the data information, the line information of the current position of each train in the ad hoc network, and the position and speed relationship between each train in the group and the preceding train;
  • the first train notifies the corresponding train to monitor and run at the target speed through ad hoc network communication
  • the first train periodically receives real-time train data information from other trains;
  • the data information includes: speed, position, acceleration, braking performance and working conditions;
  • the first vehicle control also includes:
  • the first train calculates the target distance between other trains and the preceding train in the ad hoc network
  • the first train calculates the target parking points of other trains in the ad hoc network
  • the first train sends the target distance, control mode curve and target parking point to the corresponding following train through ad hoc network communication;
  • car control includes:
  • the first train periodically transmits its own train data information to the following trains, and the data information includes: speed, position, acceleration, braking performance, working condition;
  • the data information includes: speed, position, acceleration, braking performance and working conditions;
  • vehicle control also includes:
  • the following train also calculates the target distance between itself and the preceding train in the ad hoc network
  • the following train also calculates its own control mode curve in the ad hoc network
  • the following train also calculates its own target parking point within the ad hoc network.
  • a train group control method and system based on an ad hoc network designed by the present invention realizes the train group control based on the ad hoc network vehicle-vehicle communication technology.
  • the trains meet the conditions to automatically form a network, and the data between the trains is transmitted to each other without going through the ground base station. There is no need to set up central control equipment on the ground, and there is no need for wireless network coverage in the ground area.
  • the train interval is dynamically adjusted according to line conditions, temporary speed limit and the status of each train between groups.
  • FIG. 1 shows a schematic flowchart of a method for controlling a train group based on an ad hoc network according to an embodiment of the present invention
  • FIG. 2 shows a schematic structural diagram of a train group control system based on an ad hoc network according to an embodiment of the present invention.
  • An embodiment of the present invention discloses a train group control method based on an ad hoc network.
  • the method includes: a train ad hoc network device searches for communication devices of other trains within a preset distance; The same track; if the same, judge whether the network conditions are met; if so, the trains that meet the network conditions establish an ad hoc network; the train groups in the ad hoc network control the trains in the ad hoc network through the ad hoc network.
  • the networking conditions include: the target vehicle is provided with an ad hoc network device; the target vehicle is allowed to form an ad hoc network; and the communication between the target vehicle and the vehicle is stable.
  • the train receives line condition information, where the line condition information includes: route information, line information, temporary speed limit information, and traffic permission.
  • the current train communication methods include vehicle-ground communication and vehicle-to-vehicle communication.
  • Vehicle-ground communication means that the train communicates with ground equipment.
  • Vehicle-to-vehicle communication is further divided into vehicle-to-vehicle communication and vehicle-to-vehicle communication.
  • Vehicle-to-train communication means that multiple trains communicate through ground equipment or rely on information from ground equipment to communicate. The train obtains other train information through ground equipment, such as the data exchange center, and then communicates with other trains according to the obtained information, which belongs to the train-ground-vehicle communication.
  • Vehicle-to-vehicle communication that is, the establishment of a communication connection between trains for communication and disconnection of communication does not depend on ground equipment, and is all completed by train equipment.
  • the communication involved in the present invention is vehicle-to-vehicle communication; ground equipment is not required for establishing an ad hoc network, using an ad hoc network for communication, and disconnecting communication, and all are completed by on-board equipment.
  • the present invention is mainly used in the field of heavy goods vehicles, but can also be used in other fields of trains.
  • the present invention controls all the trains in the ad hoc network through the ad hoc network, and all the trains in the ad hoc network are called group trains, also called train sets.
  • a group train is a train group composed of two or more physical trains.
  • the ground equipment controls the train group according to one train, and the trains in the train group are controlled in coordination.
  • the train receives line condition information, where the line condition information includes: route information, line information, temporary speed limit information, and travel permission.
  • train operation requires a series of permits and related data, and can only be operated after obtaining these permits and data.
  • These data include: route information, temporary speed limit information, and line information.
  • Permits include driving permits. It can be transmitted to the train in but not limited to the following ways, and the train uses the on-board ATP (train control on-board equipment) to receive: the station data server (SDS, Station Data Server) has the function of storing the basic data of the station and the interval line, which can be stored according to its own storage function.
  • Line information and information provided by CBI (computer interlocking), TSRS (temporary speed limit server) and other equipment complete the real-time framing and verification of wireless messages.
  • CBI computer interlocking
  • TSRS temporary speed limit server
  • the station data server sends information to all trains within the wireless coverage area through train-ground communication, and can also send information to designated trains as needed.
  • the station data server receives the interlocking route information, the temporary speed limit information of the temporary speed limit server and the line information, generates messages such as the approach, line information and temporary speed limit, and provides the station and interval messages within the station range.
  • the track circuit (TC Track Circuit) sends the driving permission information to the on-board ATP. In this way, the train receives line condition information.
  • the train self-organizing network device searches for communication devices of other trains within a preset distance, and determines whether it is on the same track as other trains.
  • the train ad hoc network device searches for communication devices of other trains within a preset distance.
  • the communication range of the train ad hoc network equipment is large enough to enable the front car and the rear car to communicate normally.
  • the vehicle-to-vehicle communication of the ad hoc network equipment adopts two radios. Both radios are the original train equipment, and no additional hardware equipment is required. One of the radios is used for long-distance communication, and the other is used for short- and medium-distance communication. The switching of the two radio stations is completed by the self-organized network equipment.
  • a local wireless broadband communication private network can be established in a short time in an ad hoc manner. All ad hoc network devices in the wireless broadband communication private network communicate with each other using the wireless broadband communication private network. After the wireless broadband communication private network has been established, the new ad hoc network device will automatically connect to any ad hoc network device under the jurisdiction of the wireless broadband communication private network, and the networking conditions are met, the new ad hoc network device will automatically Join the wireless broadband communication private network to form a new wireless broadband communication private network.
  • the communication between the new ad hoc network equipment and all the ad hoc network equipment under the original wireless broadband communication private network is realized through the new wireless broadband communication private network.
  • the train ad hoc network equipment searches for the communication equipment of other trains within a preset distance.
  • the preset distance can be agreed in advance, such as the shortest distance between the preceding and following vehicles in normal tracking operation, such as the longest distance for long-distance communication of radio stations, etc.
  • the self-organizing network equipment is set at the head of the train, and the train's self-organizing network equipment sends wireless signals to the surrounding, then the communication equipment at the end of the train, the communication equipment at the head of other trains within the preset distance, the communication equipment at the tail of other trains, and other
  • the train's ad hoc network equipment can receive the signal.
  • the self-organized network equipment has the function of identifying the head and tail communication equipment of adjacent trains, avoiding the inclusion of the head or tail group of adjacent trains into the wireless communication network.
  • the self-organizing network device sends the requested networking information to the surrounding area and informs itself of the track; trains on the same track reply to their own corresponding information after receiving the requested networking information, and trains on different tracks are not allowed. Reply or reply with your own track information.
  • the ad hoc network device can determine which trains are on the same track as itself based on the information it receives.
  • the networking conditions include: the target vehicle is provided with an ad hoc network device; the target vehicle is allowed to form an ad hoc network; and the communication between the target vehicle and the vehicle is stable.
  • the establishment of an ad hoc network between trains needs to meet networking conditions, and the networking conditions include: an ad hoc network device is installed in the target vehicle; the target vehicle allows the establishment of an ad hoc network; communication between the target vehicle and the vehicle Stablize. Only when the ad hoc network equipment is installed on the train can the train join the ad hoc network. Any train equipped with self-organizing network equipment has the function of permitting or prohibiting the establishment or joining of the self-organizing network. After requesting to join the ad hoc network or requesting to join the ad hoc network, when all the networking conditions are met, the train forms the ad hoc network or joins the ad hoc network.
  • a train that establishes an ad hoc network needs to maintain stable communication.
  • the communication equipment at the rear of the train has the function of communication relay.
  • the train head can communicate with other trains through the train tail communication device, and other trains can also communicate with the train head through the train tail of the train.
  • an ad hoc network is established, two ad hoc network devices can be connected through the end of the train for communication, and the communication stability is also considered to be the stable communication between the target vehicle and the vehicle.
  • any train in the ad hoc network communicates with the target train, whether it is direct communication or through the ad hoc network
  • the communication between the target vehicle and the own vehicle is considered to be stable as long as the communication is stable.
  • the train self-organizing network equipment determines whether there is an ad-hoc network currently. If an ad hoc network already exists, all trains that meet the networking conditions will join the original ad hoc network to form a new ad hoc network.
  • the train groups in the ad hoc network control the operation of the trains in the ad hoc network through the ad hoc network.
  • control of the train operation in the ad hoc network by the train group in the ad hoc network includes: first train control and follower train control; the first train control is used for the first train to control the ad hoc network in the ad hoc network Other vehicles in the network run; the following vehicle control is used for the following vehicle to control itself to follow the preceding vehicle to run in the ad hoc network.
  • the train group in the ad hoc network to control the operation of the trains in the ad hoc network through the ad hoc network.
  • the first train control includes: all trains in the ad hoc network determine their positions in the ad hoc network. If it is the first train, the first train receives the train data information transmitted by the following train, the data information includes: speed, position, acceleration, braking performance and working conditions; The line information of the current position of the train, the position and speed relationship between each train in the group and the preceding train calculate the target speed of the following train in the ad hoc network; the first train informs the corresponding train to monitor the running at the target speed through the ad hoc network communication; The train periodically receives real-time train data information from other trains.
  • the follower train sends data information to the first train, the data information includes: speed, position, acceleration, braking performance and working conditions; the follower train receives the target speed transmitted by the first train through the self-organized network. , run at the target speed, and periodically send real-time train data information of the current train to the first train.
  • the first train also calculates the target distance between other trains in the ad hoc network and the preceding vehicle; the first train also calculates the control mode curves of other trains in the ad hoc network; the first train also calculates the target parking points of other trains in the ad hoc network; The first train sends the target distance, control mode curve and target parking point to the corresponding following train through ad hoc network communication; the following train receives the target distance, control mode curve and target parking point.
  • all trains in the ad hoc network are on the same track.
  • the train at the front of the ad hoc network is the first train of the group, also known as the first train, the trains other than the first train. It is the group that follows the train.
  • All trains in the ad hoc network can use, but are not limited to, the following methods to determine their position in the ad hoc network: all trains in the ad hoc network send their location information to other trains, use all train location information combined with the current train direction information, The line information can get its own position in the ad hoc network.
  • the train can obtain the following information when judging its position in the ad hoc network: whether it is the first train or following the train, and if it is the following train, it ranks first. If there are four trains in the ad hoc network, the train after the first train is the second train (the second train), and the last train is the fourth train (the fourth train).
  • the first train in the self-organized network receives the train data information transmitted by other trains, and the data information includes: speed, position, acceleration, braking performance and working condition;
  • the first train calculates the target speed of the following trains in the ad hoc network according to the data information, the line information of the current position of each train in the ad hoc network, and the position and speed relationship between each train in the group and the preceding train.
  • the working conditions refer to the different states of the train in operation.
  • the train drawn by the locomotive includes five types of traction inertia, air brake, electric brake and air-electric combined brake. Different working conditions of the train affect the parameter values of the train braking model and the determination of the target speed.
  • the target speed is the maximum speed allowed by the target point in front of the train.
  • the first train notifies the corresponding train to run at the target speed through the ad hoc network communication.
  • the first train is controlled by ground equipment. In this way, all trains in the ad hoc network can run at the maximum speed.
  • the following train When the following train is running in the ad hoc network, it periodically sends its own real-time train data information to the first train; the data information includes: speed, position, acceleration, braking performance and working conditions; the period is based on the train target speed, Calculated from the location of the previous train, braking performance, line conditions, etc., the period is less than the safe braking time, and the safe braking time is the maximum time for one braking to ensure that the current train can run safely at the target speed .
  • the first train follows the train to receive the target speed sent by the first train through the self-organized network, and run at the target speed.
  • the first train periodically receives the real-time train data information of the following trains.
  • the first train recalculates the new target speed according to the real-time train data information and sends it to the corresponding train, and the following trains run at the new target speed.
  • the first car monitors the actual speed and target speed of the following train in real time, and combines the traction model and braking model of the train to control the traction and braking of the following train.
  • the closed-loop supervision of the first train to other trains is completed.
  • the first train can use but not limited to the following methods to calculate the target speed: During the driving process, the rear train should maintain a safe distance S from the preceding train to ensure the safety of the driving.
  • the first car judges the distance L from itself according to the position sent by the rear car (second car) through ad hoc network communication, and obtains the most unfavorable braking distance D under the reaction time according to its own speed, acceleration, braking performance and other information ( Including the safety protection distance); the sum of the safety interval S of the rear car, L and D; the first car calculates the target speed of the rear car according to the safety interval S data and the safety braking model of the rear car. Similarly, the first car can calculate the target speed of the third car, the fourth car, etc.
  • the first train also calculates the target distance between other trains in the ad hoc network and the preceding train, the target distance, the distance from the front end of the train to the target point in front of the train.
  • the target distance is the safety interval S, that is, L+D.
  • the calculation method of the safety interval S has already appeared in how to calculate the target speed.
  • the first train also calculates the control mode curves of other trains in the ad hoc network.
  • Control mode curve (distance-to-go curve): a braking mode curve generated based on target speed, target distance, line conditions, and train characteristics to ensure the safe operation of the train.
  • the control mode curve can be calculated in but not limited to the following ways: the first car obtains the relevant parameters of the trains in the group, and the first car calculates the maximum speed according to the train line information, fixed speed limit, temporary speed limit of the line, train structure speed limit and mode speed limit, etc. Limit Speed Profile (MRSP).
  • MRSP Limit Speed Profile
  • the line information, fixed speed limit, temporary line speed limit, train structure speed limit and mode speed limit are provided by ground equipment.
  • the first vehicle recalculates the most limited speed curve.
  • the safety braking model takes into account the uncertainty of train position, train initial speed, train initial acceleration, speed measurement error, line gradient, braking delay, train action delay and other factors.
  • the initial speed of the train is obtained by the speed sensor; the initial acceleration of the train is calculated from the traction force and mass according to the "Train Traction Calculation Regulations"; the slope of the line is provided by the ground equipment; the uncertainty of the train position, braking delay, speed
  • the measurement error and train action delay are specified by the system.
  • the first train monitors the difference between the actual speed of the train in the group and the current speed limit in real time, and calculates the control mode curve of the train according to the current positioning information and the train safety braking model. The first train also calculates the target stopping points of other trains in the ad hoc network.
  • the first car calculates the position range of the rear of the train when it stops according to its own relevant parameters, and the distance between the rear of the first car and the rear car after the first car stops as the target parking point of the rear car, and then According to the relevant parameters of the rear car, the level and timing of the braking measures that the rear car should take is calculated, so as to ensure that the rear car does not pass the target parking point of the rear car after parking.
  • the first car can calculate the target distance, control mode curve and target parking point of all trains in the ad hoc network, and send these information to the corresponding trains.
  • follow the train to receive the target distance, control mode curve and target stopping point. In the event of an emergency, such as the inability to communicate, the following train can safely stop or run based on this information.
  • the following car control includes: all trains in the ad hoc network determine their positions in the ad hoc network; if it is the first train, the first train periodically transmits its own train data information to the following train, and the data information includes : speed, position, acceleration, braking performance, working conditions; if it is a following train, if it is not the last train in the self-organized network, it will receive the train data information from the preceding car in the self-organized network, and calculate its own target speed.
  • the train data information from the car calculates its own target speed, and runs at the target speed.
  • the following car control further includes: following the train also calculates the target distance between itself and the preceding vehicle in the ad hoc network; following the train also calculates its own control mode curve in the ad hoc network; following the train also calculates its own target parking in the ad hoc network point.
  • using the following vehicle control mode also requires all trains in the ad hoc network to determine their own positions in the ad hoc network, and the method used is the same as the first vehicle control.
  • all trains periodically transmit their own train data information to the following trains, and the data information includes: speed, position, acceleration, braking performance, and working conditions; except for the first train, all trains receive Based on the train data information from the preceding car, it calculates its own target speed and runs at the target speed.
  • the first train is controlled by ground equipment.
  • the rear car periodically receives the train data information of the preceding car, recalculates the new target speed, and runs at the new target speed.
  • follow the train to monitor its actual speed and target speed in real time, and combine the train traction model and braking model to control the traction and braking of the train.
  • the following trains can calculate their own target speed in but not limited to the following ways: During the driving process, the following train should maintain a safe distance S from the preceding train to ensure the safety of driving.
  • the following train judges the distance L to itself according to the position sent by the preceding vehicle through the ad hoc network communication, and obtains the most unfavorable braking distance D (including the safety protection distance) under the reaction time according to the speed, acceleration, braking performance and other information of the preceding vehicle. ); the safety interval S of the vehicle is equal to the sum of L and D; the vehicle calculates its own target speed according to the safety interval S and its own safe braking model.
  • the following train also calculates the target distance between itself and the preceding vehicle in the ad hoc network, namely L+D; the following train also calculates its own control mode curve in the ad hoc network; the following train also calculates its own target parking point in the ad hoc network.
  • the control mode curve can be calculated in but not limited to the following ways: follow the train to calculate its own maximum speed limit curve according to its own relevant parameters, combined with train line information, fixed speed limit, temporary line speed limit, train structure speed limit and mode speed limit, etc. When the components of the maximum speed limit curve are changed, the maximum limit speed curve is recalculated.
  • the safety braking model takes into account the uncertainty of train position, train initial speed, train initial acceleration, speed measurement error, line gradient, braking delay, train action delay and other factors.
  • follow the train to monitor the difference between its actual speed and the current speed limit in real time, and calculate its own control mode curve based on the current positioning information and the train safety braking model.
  • follow the train also calculates its own target stopping point.
  • the rear car calculates the position range of the rear of the train when the preceding car stops according to the relevant parameters of the preceding car, and the distance between the rear of the preceding car and the rear car is the closest distance to the rear car as its own target parking point, and then according to Calculate the level and timing of braking measures that you should take based on your own parameters, so as to ensure that you do not cross your target parking point after parking. All following trains have calculated their own target distance, control mode curve and target stopping point. In the event of an emergency, such as the inability to communicate, the following train can safely stop or run based on this information.
  • the embodiment of the present invention also discloses a train group control system based on an ad hoc network.
  • the system includes an ad hoc network device, a vehicle-mounted ATP device, a station data server and a track circuit.
  • the ad hoc network equipment is used for: the train ad hoc network equipment searches for the communication equipment of other trains within a preset distance; judges whether it is on the same track as other trains; if it is the same, judges whether the networking conditions are met; if so, judges whether Whether there is an ad hoc network; if there is no ad hoc network, other trains that meet the networking conditions will form an ad hoc network with the original train; if there is an ad hoc network, other trains that meet the networking conditions will join the ad hoc network;
  • the train set in the network controls the train operation in the self-organizing network through the self-organizing network.
  • the networking conditions include: the target vehicle is provided with an ad hoc network device; the target vehicle is allowed to form or join the ad hoc network; and the communication between the target vehicle and the vehicle is stable.
  • the vehicle-mounted ATP device is used for receiving line condition information, where the line condition information includes: route information, line information, temporary speed limit information, and driving permission.
  • the station data server is used for sending route information, line information and temporary speed limit information.
  • the station data server has the function of storing the basic data of the station and section lines, and can complete the real-time framing and verification of wireless messages according to the line information stored by itself and the information provided by CBI, TSRS and other equipment.
  • the station data server sends information to all trains within the wireless coverage area through train-ground communication, and can also send information to designated trains as needed.
  • the station data server receives the interlocking route information, the temporary speed limit information of the temporary speed limit server and the line information, generates messages such as the approach, line information and temporary speed limit, and provides the station and interval messages within the station range. Give on-board ATP.
  • the track circuit is used to send traffic permits.
  • the train group in the ad hoc network controls the operation of the trains in the ad hoc network through the ad hoc network, including: first car control and following car control; the first car control is used in the ad hoc network by the first car to control other vehicles in the ad hoc network Running; the following vehicle control is used for the following vehicle to control itself to follow the preceding vehicle to run in the ad hoc network.
  • the first train control includes: all trains in the ad hoc network determine their own positions in the ad hoc network; if it is the first train, the first train receives the train data information transmitted by the following trains, and the data information includes: speed, Position, acceleration, braking performance, working conditions; the first train calculates the speed of the following train in the ad hoc network based on the data information, the line information of the current position of each train in the ad hoc network, and the position and speed relationship between each train in the group and the preceding train.
  • the first train informs the corresponding train to monitor the operation at the target speed through ad hoc network communication; the first train periodically receives real-time train data information from other trains; if it is a follower train, the follower train sends data information to the first train,
  • the data information includes: speed, position, acceleration, braking performance, working conditions; follow the train to receive the target speed transmitted by the first train through the self-organized network, run at the target speed, and periodically send real-time train data of the current train to the first train information.
  • the first train control further includes: the first train also calculates the target distance between other trains in the ad hoc network and the preceding vehicle; the first train also calculates the control mode curves of other trains in the ad hoc network; the first train also calculates the ad hoc network
  • the first train sends the target distance, control mode curve and target parking point to the corresponding follower train through ad hoc network communication; the follower train receives the target distance, control mode curve and target parking point.
  • the following car control includes: all trains in the ad hoc network determine their position in the ad hoc network; if it is the first train, the first train periodically transmits its own train data information to the following trains, and the data information includes: speed, position, acceleration, braking performance, working conditions; if it is a following train, if it is not the last train in the self-organized network, it will periodically receive the train data information from the preceding car in the self-organized network, calculate its own target speed, and press Running at the target speed; periodically transmits its own train data information to the following car, the data information includes: speed, position, acceleration, braking performance, working condition; if it is the last train in the ad hoc network, it is periodically received in the ad hoc network. Based on the train data information from the preceding car, it calculates its own target speed and runs at the target speed.
  • the following car control further includes: following the train also calculates the target distance between itself and the preceding vehicle in the ad hoc network; following the train also calculates its own control mode curve in the ad hoc network; following the train also calculates its own target parking in the ad hoc network point.
  • a train group control method and system based on an ad hoc network designed by the present invention realizes the train group control based on the ad hoc network vehicle-vehicle communication technology.
  • the trains meet the conditions to automatically form a network, and the data between the trains is transmitted to each other without going through the ground base station. There is no need to set up central control equipment on the ground, and there is no need for wireless network coverage in the ground area.
  • the train interval is dynamically adjusted according to line conditions, temporary speed limit and the status of each train between groups.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种基于自组网的列车群组控制方法包括:列车自组网设备搜寻预设距离内其他列车的通信设备;判断与其他列车是否在相同轨道;若相同,则判断是否满足组网条件;若满足,则判断是否存在自组网;若不存在自组网,则满足组网条件的其他列车与原列车组建自组网;若存在自组网,则满足组网条件的其他列车加入自组网;自组网内列车组通过自组网控制自组网内列车运行。还公开了一种基于自组网的列车群组控制系统。控制方法和控制系统基于自组网车车通信技术实现列车群组控制。列车满足条件自动组网,列车间数据不经地面基站而在列车间互传。地面不需要设置中心控制设备,地面区间无需无线网络覆盖。列车间隔根据线路条件、临时限速及群组间各列车状态进行动态调整。

Description

一种基于自组网的列车群组控制方法与系统 技术领域
本发明属于交通技术领域,特别涉及一种基于自组网的列车群组控制方法与系统。
背景技术
当前列车常使用编组方式进行运行,通信方式常使用点对点通信方式或车地车通信方式。
点对点通信方式如下:
A车接收地面控制中心命令,需要与B车之间进行点对点通信,则A车通过点对点通信方式与B车建立通信连接,A车将速度、位置坐标信息提供给B车,B车根据收到的A车信息结合自己的位置及速度信息生成B车控车曲线控制列车运行。以此类推,C车和D车也生成各自的控车曲线控制各自列车运行。
该方法依赖于地面中心设备,每列车必须首先要收到与哪列车通信的控制命令,然后才可以建立通信连接,无法自行组成编队。列车无法直接获得该群组内有几列车、自己是第几列车。每列车均需实时计算自己的移动授权。
车地车通信方式如下:
A车与B车之间通过地面基站进行点对点通信,A车将速度、位置坐标信息提供给基站,基站再将这些信息转发给B车,B车根据收到的A车信息结合自己的位置及速度信息生成B车控车曲线控制列车运行。以此类推,C车和D车也生成各自的控车曲线控制各自列车运行。
该方法每列车必须首先要通过地面中心控制设备提供要与哪列车通信,然后才可通过地面基站与目标车建立通信连接。每列车均需实时计算自己的移动授权。全线需要无线覆盖。需要设置中心设备对所有列车位置、状态等进行管理。
使用点对点通信方式或车地车通信方式都需要地面设置列车管理中心,需要地面无线网络连续覆盖,且对网络指标要求很高。每列车根据地面提供的命令与指定列车进行通信连接,每列车需要实时计算本车的移动授权,且无法实现列车自主管理、自主组网的功能。当地面列车管理中心出现故障则无法正常运行,建设成本高、系统庞杂、可靠性低、维护成本高。
发明内容
针对上述问题,本发明提出一种基于自组网的列车群组控制方法,所述方法包括:
列车自组网设备搜寻预设距离内其他列车的通信设备;判断与其他列车是否在相同轨道;
若相同,则判断是否满足组网条件;
若满足,则判断是否存在自组网;
若不存在自组网,则满足组网条件的其他列车与原列车组建自组网;
若存在自组网,则满足组网条件的其他列车加入自组网;
自组网内列车组通过自组网控制自组网内列车运行。
进一步地,所述组网条件包括:
目标车内设置有自组网设备;
目标车允许组建或加入自组网;
目标车与本车之间通信稳定。
进一步地,所述控制方法还包括:
列车接收线路条件信息,所述线路条件信息包括:进路信息、线路信息、临时限速信息和行车许可。
进一步地,所述自组网内列车组通过自组网控制自组网内列车运行包括:
首车控制与跟随车控制;
所述首车控制用于自组网内由首车控制自组网内其他车辆运行;
所述跟随车控制用于自组网内由跟随车控制自身跟随前车运行。
进一步地,所述首车控制包括:
自组网内所有列车判断自己在自组网中的位置;
如为首列列车,
则首列列车接收跟随列车传递来的列车数据信息,所述数据信息包括:速度、位置、加速度、制动性能和工况;
首列列车根据数据信息、自组网中各列车当前位置的线路信息、群组中各列车与前车的位置速度关系计算自组网中跟随列车的目标速度;
首列列车通过自组网通信通知对应的列车按目标速度监控运行;
首列列车周期性接收其他列车实时列车数据信息;
如为跟随列车,
则跟随列车向首列列车发送数据信息,所述数据信息包括:速度、位置、加速度、制动性能和工况;
跟随列车接收首列列车通过自组网传来的目标速度,按目标速度运行,周期性向首车发送当前列车实时列车数据信息。
进一步地,所述首车控制还包括:
首列列车计算自组网内其他列车与前车的目标距离;
首列列车计算自组网内其他列车的控制模式曲线;
首列列车计算自组网内其他列车的目标停车点;
首列列车向通过自组网通信向对应的跟随列车发送目标距离、控制模式曲线和目标停车点;
跟随列车接收目标距离、控制模式曲线和目标停车点。
进一步地,所述跟随车控制包括:
自组网内所有列车判断自己在自组网中的位置;
如为首列列车,
则首列列车周期性向后车传送自身列车数据信息,所述数据信息包括:速度、位置、加速度、制动性能、工况;
如为跟随列车,
如不是自组网内最后一列列车,
则周期性接收自组网内前车传来的列车数据信息,计算自己的目标速度,按目标速度运行;
周期性向后车传送自身列车数据信息,所述数据信息包括:速度、位置、加速度、制动性能、工况;
如是自组网内最后一列列车,
则周期性接收自组网内前车传来的列车数据信息,计算自己的目标速度,按目标速度运行。
进一步地,所述跟随车控制还包括:
跟随列车计算自组网内自己与前车的目标距离;
跟随列车计算自组网内自己的控制模式曲线;
跟随列车计算自组网内自己的目标停车点。
本发明还提出一种基于自组网的列车群组控制系统,所述系统包括自组网设备,
所述自组网设备用于:
列车自组网设备搜寻预设距离内其他列车的通信设备;判断与其他列车是否在相同轨道;
若相同,则判断是否满足组网条件;
若满足,则判断是否存在自组网;
若不存在自组网,则满足组网条件的其他列车与原列车组建自组网;
若存在自组网,则满足组网条件的其他列车加入自组网;
自组网内列车组通过自组网控制自组网内列车运行。
进一步地,所述组网条件包括:
目标车内设置有自组网设备;
目标车允许组建或加入自组网;
目标车与本车之间通信稳定。
进一步地,所述系统还包括:
车载ATP设备、车站数据服务器、轨道电路;
所述车载ATP设备用于接收线路条件信息,所述线路条件信息包括:进路信息、线路信息、临时限速信息、行车许可;
所述车站数据服务器用于发送进路信息、线路信息、临时限速信息;
所述轨道电路用于发送行车许可。
进一步地,所述自组网内列车组通过自组网控制自组网内列车运行包括:
首车控制与跟随车控制;
所述首车控制用于自组网内由首车控制自组网内其他车辆运行;
所述跟随车控制用于自组网内由跟随车控制自身跟随前车运行。
进一步地,所述首车控制包括:
自组网内所有列车判断自己在自组网中的位置;
如为首列列车,
则首列列车接收跟随列车传递来的列车数据信息,所述数据信息包括:速度、位置、加速度、制动性能和工况;
首列列车根据数据信息、自组网中各列车当前位置的线路信息、群组中各列车与前车的位置速度关系计算自组网中跟随列车的目标速度;
首列列车通过自组网通信通知对应的列车按目标速度监控运行;
首列列车周期性接收其他列车实时列车数据信息;
如为跟随列车,
则跟随列车向首列列车发送数据信息,所述数据信息包括:速度、位置、加速度、制动性能和工况;
跟随列车接收首列列车通过自组网传来的目标速度,按目标速度运行,周期性向首车发送当前列车实时列车数据信息。
进一步地,所述首车控制还包括:
首列列车计算自组网内其他列车与前车的目标距离;
首列列车计算自组网内其他列车的控制模式曲线;
首列列车计算自组网内其他列车的目标停车点;
首列列车向通过自组网通信向对应的跟随列车发送目标距离、控制模式曲线和目标停车点;
跟随列车接收目标距离、控制模式曲线和目标停车点。
进一步地,所述跟随车控制包括:
自组网内所有列车判断自己在自组网中的位置;
如为首列列车,
则首列列车周期性向后车传送自身列车数据信息,所述数据信息包括:速度、位置、加速度、制动性能、工况;
如为跟随列车,
如不是自组网内最后一列列车,
则周期性接收自组网内前车传来的列车数据信息,计算自己的目标速度,按目标速度运行;
周期性向后车传送自身列车数据信息,所述数据信息包括:速度、位置、加速度、制动性能和工况;
如是自组网内最后一列列车,
则周期性接收自组网内前车传来的列车数据信息,计算自己的目标速度,按目标速度运行。
进一步地,所述跟随车控制还包括:
跟随列车还计算自组网内自己与前车的目标距离;
跟随列车还计算自组网内自己的控制模式曲线;
跟随列车还计算自组网内自己的目标停车点。
本发明设计的一种基于自组网的列车群组控制方法与系统,基于自组网车车通信技术实现列车群组控制。列车满足条件自动组网,列车间数据不经地面基站而在列车间互传。地面不需要设置中心控制设备,地面区间无需无线网络覆盖。列车间隔根据线路条件、临时限速及群组间各列车状态进行动态调整。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所指出的结构来实现和获得。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了根据本发明实施例的一种基于自组网的列车群组控制方法流程示意图;
图2示出了根据本发明实施例的一种基于自组网的列车群组控制系统结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地说明,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开了一种基于自组网的列车群组控制方法,如图1所示,方法包括:列车自组网设备搜寻预设距离内其他列车的通信设备;判断与其他列车是否在相同轨道;若相同,则判断是否满足组网条件;若满足,则满足组网条件的列车建立自组网;自组网内列车组通过自组网控制自组网内列车运行。所述组网条件包括:目标车内设置有自组网设备;目标车允许组建自组网;目标车与本车之间通信稳定。列车接收线路条件信息,所述线路条件信息包括:进路信息、线路信息、临时限速信息、行车许可。
当前列车通信方式有车地通信、车车通信。车地通信即列车与地面设备进行通信。其中车车通信又分为车地车通信与车与车通信。车地车通信即多辆列车通过地面设备进行通信或依靠地面设备的信息进行通信。列车通过地面设备,如数据交互中心得到其他列车信息,然后根据得到的信息再与其他列车通信,这属于车地车通信。车与车通信,即列车与列车之间建立通信连接进行通信断开通信均不依靠地面设备,全部由列车设备完成。本发明所涉及到的通信为车与车通信;建立自组网、使用自组网通信、断开通信均不需要地面设备,全部由车载设备完成。本发明主要用于重货车领域,但也可以用于其他列车领域。本发明通过自组网来控制自组网内的所有列车,自组网内所有列车称为群组列车,也称列车组。群组列车是由两列或者多列实体列车组成的一个列车群,地面设备按一列车对列车群进行控制,列车群内各列车协同控制。
具体的,列车接收线路条件信息,所述线路条件信息包括:进路信息、线路信息、临时限速信息和行车许可。
示例性的,列车运行需要得到一系列许可和相关数据,只有得到这些许可和数据后才可以运行。这些数据包括:进路信息、临时限速信息、线路信息。许可包括行车许可。可以使用但不限以下方式向列车传送,列车使用车载ATP(列控车载设备)进行接收:车站数据服务器(SDS,Station Data Server)有车站及区间线路基础数据的存储功能,可根据自身存储的线路信息及CBI(计算机联锁)、TSRS(临时限速服务器)等设备提供的信息完成无线报文的实时组帧、校验。车站数据服务器通过车地通信将信息发送给无线覆盖范围内的所有列车,也可根据需要发送给指定列车。车站数据服务器接收联锁进路信息、临时限速服务器的临时限速信息以及线路信息,生成进路、线路信息和临时限速等报文,并在车站范围内,将站内及区间报文提供给车载ATP。轨道电路(TC Track Circuit)发送将行车许可信息提供给车载ATP。通过这种方式,列车接收线路条件信息。
具体的,列车自组网设备搜寻预设距离内其他列车的通信设备,判断与其他列车是否在相同轨道。
示例性的,列车自组网设备搜寻预设距离内其他列车的通信设备。当前车与后车按正常追踪运行时,列车自组网设备的通信范围足够大,能够使得前车与后车正常通信。自组网设备车车通信采用两个电台方式,两个电台均为原列车设备,不需要增加硬件设备,其中一个电台用于长距离通信,另一个电台用于中短距离通信。两个电台的切换由自组网设备来完成。当两个或多个自组网设备之间建立通信后且满足组网条件,可在短时间内通过自组织方式建立起一个本地无线宽带通信专网。该无线宽带通信专网内所有的自组网设备使用该无线宽带通信专网相互通信。当已经建立好无线宽带通信专网后,新的自组网设备通信连接到该无线宽带通信专网所辖任一自组网设备后,且满足组网条件,新的自组网设备会自动加入到该无线宽带通信专网,形成新的无线宽带通信专网。新的自组网设备与原该无线宽带通信专网所辖所有自组网设备通信通过新的无线宽带通信专网实现。列车自组网设备搜寻预设距离内其他列车的通信设备,所述预设距离可以事先约定,如前车与后车按正常追踪运行时最短距离,如电台长距离通信的最长距离等。
自组网设备设置在列首,列车自组网设备向四周发送无线信号,则本车的列尾通信设备、预设距离内其他列车的列首通信设备、其他列车的列尾通信设 备、其他列车的自组网设备均能接收到信号。自组网设备具有识别邻线列车的列首及列尾通信设备功能,避免将邻线列车列首或列尾组纳入无线通信网络。可以使用但不限于以下方式识别:自组网设备向四周发送请求组网信息,并告知自己所在轨道;相同轨道的列车接到请求组网信息后回复自己的相应信息,不同轨道的列车不予回复或回复信息中包括自己的轨道信息。自组网设备根据自己接收到的信息即可判断哪些列车和自己在相同的轨道。
具体的,判断是否满足组网条件;若满足,则满足组网条件的列车建立自组网;自组网内列车组通过自组网控制自组网内列车运行。所述组网条件包括:目标车内设置有自组网设备;目标车允许组建自组网;目标车与本车之间通信稳定。
示例性的,列车之间建立自组网需要满足组网条件,所述组网条件包括:目标车内设置有自组网设备;目标车允许组建自组网;目标车与本车之间通信稳定。只有列车上设置了自组网设备,这辆列车才能加入到自组网中。任一设置有自组网设备的列车均具有许可或禁止自己建立或加入自组网的功能,当某列车设置为许可自己组建或加入自组网时,其他列车即向此列车发出组建自组网或请求加入自组网请求后,当满足所有的组网条件时,该列车即组建自组网或加入到自组网中。建立自组网的列车需要保持通信稳定。列车列尾通信设备具有通信中继作用。当列车处于如隧道或山洞时,列首能够通过列尾通信设备与其他列车进行通信,其他列车也能通过该列车的列尾与列首进行通信。组建自组网时,两个自组网设备能够通过列尾通信设备进行通信联接且通信稳定也认为是目标车与本车之间通信稳定。组建自组网时,自组网内可能存在多列列车,自组网设备同样具有通信中继作用,当自组网内任一列车与目标列车进行通信,无论是直接通信还是通过自组网内其他单个或多个列车中继方式进行通信,只要通信稳定,均认为目标车与本车之间通信稳定。
当满足组网条件后,列车自组网设备判断当前是否已经存在自组网,如果不存在自组网,则满足组网条件的所有列车和原列车组建自组网。如果已经存在自组网,则满足组网条件的所有列车加入到原先的自组网,形成新的自组网。
建立自组网后,自组网内列车组通过自组网控制自组网内列车运行。
具体的,所述自组网内列车组通过自组网控制自组网内列车运行包括:首车控制与跟随车控制;所述首车控制用于自组网内由首车控制自组网内其他车辆运行;所述跟随车控制用于自组网内由跟随车控制自身跟随前车运行。
示例性的,自组网内列车组通过自组网控制自组网内列车运行有两种方式, 一种为首车控制,即自组网内由首车控制自组网内其他车辆运行;一种为跟随车控制,即自组网内由跟随车控制自身跟随前车运行。操作人员可以根据实际情况来选择具体的控制方式。
具体的,所述首车控制包括:自组网内所有列车判断自己在自组网中的位置。如为首列列车,则首列列车接收跟随列车传递来的列车数据信息,所述数据信息包括:速度、位置、加速度、制动性能和工况;首列列车根据数据信息、自组网中各列车当前位置的线路信息、群组中各列车与前车的位置速度关系计算自组网中跟随列车的目标速度;首列列车通过自组网通信通知对应的列车按目标速度监控运行;首列列车周期性接收其他列车实时列车数据信息。如为跟随列车,则跟随列车向首列列车发送数据信息,所述数据信息包括:速度、位置、加速度、制动性能和工况;跟随列车接收首列列车通过自组网传来的目标速度,按目标速度运行,周期性向首车发送当前列车实时列车数据信息。首列列车还计算自组网内其他列车与前车的目标距离;首列列车还计算自组网内其他列车的控制模式曲线;首列列车还计算自组网内其他列车的目标停车点;首列列车向通过自组网通信向对应的跟随列车发送目标距离、控制模式曲线和目标停车点;跟随列车接收目标距离、控制模式曲线和目标停车点。
示例性的,自组网中的所有列车均在同一轨道上,按列车运行方向,处于自组网中最前面的列车是群组首列列车,又称首车,除首车之外的列车是群组跟随列车。自组网内所有列车判断自己在自组网中的位置可以使用但不限于以下方式:自组网内所有列车均向其他列车发送自己位置信息,使用所有列车位置信息结合当前列车行车方向信息、线路信息即能得到自己在自组网内的位置。列车判断自己在自组网中的位置能得到如下信息:自己是首车还是跟随列车,如是跟随车辆,则自己排在第几位。如自组网内共有四列列车,则首车之后的列车为第2位(第二车),最后一列列车为第4位(第四车)。
自组网内的首列列车接收其他列车传递来的列车数据信息,所述数据信息包括:速度、位置、加速度、制动性能和工况;
首列列车根据数据信息、自组网中各列车当前位置的线路信息、群组中各列车与前车的位置速度关系计算自组网中跟随列车的目标速度。
工况是指列车在运行中的不同状态,机车牵引的列车包含牵引惰性、空气制动、电制动和空电联合制动五种。列车不同工况影响列车制动模型参数取值,影响目标速度的确定。
目标速度(target speed),即列车运行前方目标点允许的最高速度。首列 列车通过自组网通信通知对应的列车按目标速度运行。首列列车则按地面设备控制运行。通过这样的方式,使得自组网内的列车均能够以最大速度运行。自组网内跟随列车在运行时,周期性向首车发送自身的实时列车数据信息;所述数据信息包括:速度、位置、加速度、制动性能和工况;所述周期,根据列车目标速度、以前一列车所在位置、制动性能、线路条件等计算,所述周期小于安全制动时间,所述安全制动时间为保证当前列车按目标速度运行后,能够安全运行的一次制动的最大时间。
跟随列车接收首列列车通过自组网传来的目标速度,按目标速度运行。首列列车周期性接收跟随列车实时列车数据信息。首列列车根据实时列车数据信息重新算出新的目标速度,并发给对应的列车,跟随列车则按新的目标速度运行。首车实时监控跟随列车实际速度和目标速度,结合列车牵引模型和制动模型控制跟随列车牵引与制动。最终完成首车对其他列车的闭环监督。
首列列车可以使用但不限于以下方式计算目标速度:行车过程中,后车要与前车保持一个安全间隔S,确保行车的安全。首车根据后车(第二车)通过自组网通信发送的位置,判断与自己的距离L,根据自身的速度、加速度、制动性能等信息得到反应时间下最不利的制动距离D(含安全防护距离);后车的安全间隔S于L和D的和;首车根据安全间隔S数据以及后车的安全制动模型,计算后车的目标速度。同理,首车可以计算第三车、第四车等的目标速度。
首列列车还计算自组网内其他列车与前车的目标距离,目标距离(target distance),列车前端至运行前方目标点的距离。目标距离即安全间隔S,即L+D,安全间隔S的计算方式已经在如何计算目标速度中出现。首列列车还计算自组网内其他列车的控制模式曲线。
控制模式曲线(distance-to-go curve):以目标速度、目标距离、线路条件、列车特性为基础生成的保证列车安全运行的一次制动模式曲线。可以使用但不限于以下方式计算控制模式曲线:首车获得组内列车相关参数,首车根据组内列车线路信息、固定限速、线路临时限速、列车构造限速及模式限速等计算最限制速度曲线(MRSP)。所述线路信息、固定限速、线路临时限速、列车构造限速及模式限速由地面设备提供。当最限制速度曲线的构成要素发生变化时,首车重新计算最限制速度曲线。安全制动模型考虑列车位置的不确定性、列车初始速度、列车初始加速度、速度测量误差、线路坡度、制动延时、列车的动作延时等因素的影响。
所述列车初始速度由速度传感器得到;所述列车初始加速度由牵引力、质 量,依据《列车牵引计算规程》计算所得;线路坡度由地面设备提供;列车位置的不确定性、制动延时、速度测量误差、列车动作延时由系统规定误差。首车实时监控组内列车实际速度和当前限速之间的差值,根据当前定位信息,结合列车安全制动模型,计算该列车的控制模式曲线。首列列车还计算自组网内其他列车的目标停车点。可以使用但是不限于以下方式计算:首车根据自己的相关参数,计算出自己停车时列车尾部所在的位置范围,以首车停车后尾部距离后车最近的距离作为后车的目标停车点,再根据后车相关参数计算出后车应该采取的制动措施等级、时机等,以便保证后车停车后不越过后车的目标停车点。同理,首车可以计算出自组网内所有列车的目标距离、控制模式曲线和目标停车点,并向对应的列车发送这些信息。跟随列车接收目标距离、控制模式曲线和目标停车点。当出现紧急情况时,如无法通信,跟随列车根据这些信息能够安全停车或运行。
具体的,所述跟随车控制包括:自组网内所有列车判断自己在自组网中的位置;如为首列列车,则首列列车周期性向后车传送自身列车数据信息,所述数据信息包括:速度、位置、加速度、制动性能、工况;如为跟随列车,如不是自组网内最后一列列车,则接收自组网内前车传来的列车数据信息,计算自己的目标速度,按目标速度运行;周期性向后车传送自身列车数据信息,所述数据信息包括:速度、位置、加速度、制动性能、工况;如是自组网内最后一列列车,则接收自组网内前车传来的列车数据信息,计算自己的目标速度,按目标速度运行。所述跟随车控制还包括:跟随列车还计算自组网内自己与前车的目标距离;跟随列车还计算自组网内自己的控制模式曲线;跟随列车还计算自组网内自己的目标停车点。
示例性的,使用跟随车控制模式同样也需要自组网内所有列车判断自己在自组网中的位置,所使用的方式与首车控制相同。
自组网内除最后一列列车外,所有列车周期性向后车传送自身列车数据信息,所述数据信息包括:速度、位置、加速度、制动性能、工况;除首列列车外,所有列车接收前车传来的列车数据信息,计算自己的目标速度,按目标速度运行。首列列车则按地面设备控制运行。后车周期性接收前车的列车数据信息并重新算出新的目标速度,并按新的目标速度运行。跟随列车实时监控自身实际速度和目标速度,结合列车牵引模型和制动模型控制列车牵引与制动。
跟随列车可以使用但不限于以下方式计算自己的目标速度:行车过程中,后车要与前车保持一个安全间隔S,确保行车的安全。跟随列车根据前车通过 自组网通信发送的位置,判断与自己的距离L,根据前车的速度、加速度、制动性能等信息得到反应时间下最不利的制动距离D(含安全防护距离);本车的安全间隔S等于L和D的和;本车根据安全间隔S以及自己的安全制动模型,计算自己的目标速度。
跟随列车还计算自组网内自己与前车的目标距离,即L+D;跟随列车还计算自组网内自己的控制模式曲线;跟随列车还计算自组网内自己的目标停车点。可以使用但不限于以下方式计算控制模式曲线:跟随列车根据自己相关参数,结合列车线路信息、固定限速、线路临时限速、列车构造限速及模式限速等计算自己的最限制速度曲线。当最限制速度曲线的构成要素发生变化时,重新计算最限制速度曲线。安全制动模型考虑列车位置的不确定性、列车初始速度、列车初始加速度、速度测量误差、线路坡度、制动延时、列车的动作延时等因素的影响。跟随列车实时监控自己实际速度和当前限速之间的差值,根据当前定位信息,结合列车安全制动模型,计算自己的控制模式曲线。跟随列车还计算自己的目标停车点。可以使用但是不限于以下方式计算:后车根据前车的相关参数,计算出前车停车时列车尾部所在的位置范围,以前车停车后尾部距离后车最近的距离作为自己的目标停车点,再根据自己相关参数计算出自己应该采取的制动措施等级、时机等,以便保证自己停车后不越过自己的目标停车点。所有跟随列车都计算了自己的目标距离、控制模式曲线和目标停车点。当出现紧急情况时,如无法通信,跟随列车根据这些信息能够安全停车或运行。
本发明实施例还公开一种基于自组网的列车群组控制系统,如图2所示,系统包括自组网设备、车载ATP设备、车站数据服务器和轨道电路。
所述自组网设备用于:列车自组网设备搜寻预设距离内其他列车的通信设备;判断与其他列车是否在相同轨道;若相同,则判断是否满足组网条件;若满足,则判断是否存在自组网;若不存在自组网,则满足组网条件的其他列车与原列车组建自组网;若存在自组网,则满足组网条件的其他列车加入自组网;自组网内列车组通过自组网控制自组网内列车运行。所述组网条件包括:目标车内设置有自组网设备;目标车允许组建或加入自组网;目标车与本车之间通信稳定。
所述车载ATP设备用于接收线路条件信息,所述线路条件信息包括:进路信息、线路信息、临时限速信息、行车许可。
所述车站数据服务器用于发送进路信息、线路信息、临时限速信息。车站数据服务器有车站及区间线路基础数据的存储功能,可根据自身存储的线路信 息及CBI、TSRS等设备提供的信息完成无线报文的实时组帧、校验。车站数据服务器通过车地通信将信息发送给无线覆盖范围内的所有列车,也可根据需要发送给指定列车。车站数据服务器接收联锁进路信息、临时限速服务器的临时限速信息以及线路信息,生成进路、线路信息和临时限速等报文,并在车站范围内,将站内及区间报文提供给车载ATP。
所述轨道电路用于发送行车许可。
所述自组网内列车组通过自组网控制自组网内列车运行包括:首车控制与跟随车控制;所述首车控制用于自组网内由首车控制自组网内其他车辆运行;所述跟随车控制用于自组网内由跟随车控制自身跟随前车运行。
所述首车控制包括:自组网内所有列车判断自己在自组网中的位置;如为首列列车,则首列列车接收跟随列车传递来的列车数据信息,所述数据信息包括:速度、位置、加速度、制动性能、工况;首列列车根据数据信息、自组网中各列车当前位置的线路信息、群组中各列车与前车的位置速度关系计算自组网中跟随列车的目标速度;首列列车通过自组网通信通知对应的列车按目标速度监控运行;首列列车周期性接收其他列车实时列车数据信息;如为跟随列车,则跟随列车向首列列车发送数据信息,所述数据信息包括:速度、位置、加速度、制动性能、工况;跟随列车接收首列列车通过自组网传来的目标速度,按目标速度运行,周期性向首车发送当前列车实时列车数据信息。
所述首车控制还包括:首列列车还计算自组网内其他列车与前车的目标距离;首列列车还计算自组网内其他列车的控制模式曲线;首列列车还计算自组网内其他列车的目标停车点;首列列车向通过自组网通信向对应的跟随列车发送目标距离、控制模式曲线和目标停车点;跟随列车接收目标距离、控制模式曲线和目标停车点。
所述跟随车控制包括:自组网内所有列车判断自己在自组网中的位置;如为首列列车,则首列列车周期性向后车传送自身列车数据信息,所述数据信息包括:速度、位置、加速度、制动性能、工况;如为跟随列车,如不是自组网内最后一列列车,则周期性接收自组网内前车传来的列车数据信息,计算自己的目标速度,按目标速度运行;周期性向后车传送自身列车数据信息,所述数据信息包括:速度、位置、加速度、制动性能、工况;如是自组网内最后一列列车,则周期性接收自组网内前车传来的列车数据信息,计算自己的目标速度,按目标速度运行。
所述跟随车控制还包括:跟随列车还计算自组网内自己与前车的目标距离; 跟随列车还计算自组网内自己的控制模式曲线;跟随列车还计算自组网内自己的目标停车点。
本发明设计的一种基于自组网的列车群组控制方法与系统,基于自组网车车通信技术实现列车群组控制。列车满足条件自动组网,列车间数据不经地面基站而在列车间互传。地面不需要设置中心控制设备,地面区间无需无线网络覆盖。列车间隔根据线路条件、临时限速及群组间各列车状态进行动态调整。
尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (16)

  1. 一种基于自组网的列车群组控制方法,其特征在于,
    所述方法包括:列车自组网设备搜寻预设距离内其他列车的通信设备;判断与其他列车是否在相同轨道;
    若相同,则判断是否满足组网条件;
    若满足,则判断是否存在自组网;
    若不存在自组网,则满足组网条件的其他列车与原列车组建自组网;
    若存在自组网,则满足组网条件的其他列车加入自组网;
    自组网内列车组通过自组网控制自组网内列车运行。
  2. 根据权利要求1所述的控制方法,其特征在于,
    所述组网条件包括:
    目标车内设置有自组网设备;
    目标车允许组建或加入自组网;
    目标车与本车之间通信稳定。
  3. 根据权利要求1所述的控制方法,其特征在于,
    所述控制方法还包括:
    列车接收线路条件信息,所述线路条件信息包括:进路信息、线路信息、临时限速信息和行车许可。
  4. 根据权利要求1所述的控制方法,其特征在于,
    所述自组网内列车组通过自组网控制自组网内列车运行包括:
    首车控制与跟随车控制;
    所述首车控制用于自组网内由首车控制自组网内其他车辆运行;
    所述跟随车控制用于自组网内由跟随车控制自身跟随前车运行。
  5. 根据权利要求4所述的控制方法,其特征在于,
    所述首车控制包括:
    自组网内所有列车判断自己在自组网中的位置;
    如为首列列车,
    则首列列车接收跟随列车传递来的列车数据信息,所述数据信息包括: 速度、位置、加速度、制动性能和工况;
    首列列车根据数据信息、自组网中各列车当前位置的线路信息、群组中各列车与前车的位置速度关系计算自组网中跟随列车的目标速度;
    首列列车通过自组网通信通知对应的列车按目标速度监控运行;
    首列列车周期性接收其他列车实时列车数据信息;
    如为跟随列车,
    则跟随列车向首列列车发送数据信息,所述数据信息包括:速度、位置、加速度、制动性能和工况;
    跟随列车接收首列列车通过自组网传来的目标速度,按目标速度运行,周期性向首车发送当前列车实时列车数据信息。
  6. 根据权利要求5所述的控制方法,其特征在于,
    所述首车控制还包括:
    首列列车计算自组网内其他列车与前车的目标距离;
    首列列车计算自组网内其他列车的控制模式曲线;
    首列列车计算自组网内其他列车的目标停车点;
    首列列车向通过自组网通信向对应的跟随列车发送目标距离、控制模式曲线和目标停车点;
    跟随列车接收目标距离、控制模式曲线和目标停车点。
  7. 根据权利要求4所述的控制方法,其特征在于,
    所述跟随车控制包括:
    自组网内所有列车判断自己在自组网中的位置;
    如为首列列车,
    则首列列车周期性向后车传送自身列车数据信息,所述数据信息包括:速度、位置、加速度、制动性能、工况;
    如为跟随列车,
    如不是自组网内最后一列列车,
    则周期性接收自组网内前车传来的列车数据信息,计算自己的目标速度,按目标速度运行;
    周期性向后车传送自身列车数据信息,所述数据信息包括:速度、位置、加速度、制动性能、工况;
    如是自组网内最后一列列车,
    则周期性接收自组网内前车传来的列车数据信息,计算自己的目标速度,按目标速度运行。
  8. 根据权利要求7所述的控制方法,其特征在于,
    所述跟随车控制还包括:
    跟随列车计算自组网内自己与前车的目标距离;
    跟随列车计算自组网内自己的控制模式曲线;
    跟随列车计算自组网内自己的目标停车点。
  9. 一种基于自组网的列车群组控制系统,其特征在于,
    所述系统包括自组网设备,
    所述自组网设备用于:
    列车自组网设备搜寻预设距离内其他列车的通信设备;判断与其他列车是否在相同轨道;
    若相同,则判断是否满足组网条件;
    若满足,则判断是否存在自组网;
    若不存在自组网,则满足组网条件的其他列车与原列车组建自组网;
    若存在自组网,则满足组网条件的其他列车加入自组网;
    自组网内列车组通过自组网控制自组网内列车运行。
  10. 根据权利要求9所述的控制系统,其特征在于,
    所述组网条件包括:
    目标车内设置有自组网设备;
    目标车允许组建或加入自组网;
    目标车与本车之间通信稳定。
  11. 根据权利要求9所述的控制系统,其特征在于,
    所述系统还包括:
    车载ATP设备、车站数据服务器、轨道电路;
    所述车载ATP设备用于接收线路条件信息,所述线路条件信息包括:进路信息、线路信息、临时限速信息和行车许可;
    所述车站数据服务器用于发送进路信息、线路信息、临时限速信息;
    所述轨道电路用于发送行车许可。
  12. 根据权利要求9所述的控制系统,其特征在于,
    所述自组网内列车组通过自组网控制自组网内列车运行包括:
    首车控制与跟随车控制;
    所述首车控制用于自组网内由首车控制自组网内其他车辆运行;
    所述跟随车控制用于自组网内由跟随车控制自身跟随前车运行。
  13. 根据权利要求12所述的控制系统,其特征在于,
    所述首车控制包括:
    自组网内所有列车判断自己在自组网中的位置;
    如为首列列车,
    则首列列车接收跟随列车传递来的列车数据信息,所述数据信息包括:速度、位置、加速度、制动性能和工况;
    首列列车根据数据信息、自组网中各列车当前位置的线路信息、群组中各列车与前车的位置速度关系计算自组网中跟随列车的目标速度;
    首列列车通过自组网通信通知对应的列车按目标速度监控运行;
    首列列车周期性接收其他列车实时列车数据信息;
    如为跟随列车,
    则跟随列车向首列列车发送数据信息,所述数据信息包括:速度、位置、加速度、制动性能和工况;
    跟随列车接收首列列车通过自组网传来的目标速度,按目标速度运行,周期性向首车发送当前列车实时列车数据信息。
  14. 根据权利要求13所述的控制系统,其特征在于,
    所述首车控制还包括:
    首列列车计算自组网内其他列车与前车的目标距离;
    首列列车计算自组网内其他列车的控制模式曲线;
    首列列车计算自组网内其他列车的目标停车点;
    首列列车向通过自组网通信向对应的跟随列车发送目标距离、控制模式曲线和目标停车点;
    跟随列车接收目标距离、控制模式曲线和目标停车点。
  15. 根据权利要求12所述的控制系统,其特征在于,
    所述跟随车控制包括:
    自组网内所有列车判断自己在自组网中的位置;
    如为首列列车,
    则首列列车周期性向后车传送自身列车数据信息,所述数据信息包括:速度、位置、加速度、制动性能和工况;
    如为跟随列车,
    如不是自组网内最后一列列车,
    则周期性接收自组网内前车传来的列车数据信息,计算自己的目标速度,按目标速度运行;
    周期性向后车传送自身列车数据信息,所述数据信息包括:速度、位置、加速度、制动性能和工况;
    如是自组网内最后一列列车,
    则周期性接收自组网内前车传来的列车数据信息,计算自己的目标速度,按目标速度运行。
  16. 根据权利要求12所述的控制系统,其特征在于,
    所述跟随车控制还包括:
    跟随列车计算自组网内自己与前车的目标距离;
    跟随列车计算自组网内自己的控制模式曲线;
    跟随列车计算自组网内自己的目标停车点。
PCT/CN2021/105122 2020-10-15 2021-07-08 一种基于自组网的列车群组控制方法与系统 WO2022077966A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21879014.5A EP4098512A4 (en) 2020-10-15 2021-07-08 TRAIN GROUP CONTROL METHOD AND SYSTEM BASED ON AN AD-HOC NETWORK

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011099742.6A CN112009526B (zh) 2020-10-15 2020-10-15 一种基于自组网的列车群组控制方法与系统
CN202011099742.6 2020-10-15

Publications (1)

Publication Number Publication Date
WO2022077966A1 true WO2022077966A1 (zh) 2022-04-21

Family

ID=73527296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105122 WO2022077966A1 (zh) 2020-10-15 2021-07-08 一种基于自组网的列车群组控制方法与系统

Country Status (3)

Country Link
EP (1) EP4098512A4 (zh)
CN (1) CN112009526B (zh)
WO (1) WO2022077966A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112009526B (zh) * 2020-10-15 2021-02-19 北京全路通信信号研究设计院集团有限公司 一种基于自组网的列车群组控制方法与系统
CN112477929B (zh) * 2020-12-10 2023-04-07 中国铁路设计集团有限公司 列车运行控制方法、装置和电子设备
CN112758140B (zh) * 2021-04-08 2021-07-06 北京全路通信信号研究设计院集团有限公司 一种基于车车及车地通信的列车运行控制系统及方法
CN113525461B (zh) * 2021-08-06 2022-04-22 北京交通大学 面向虚拟编队的列车运行控制方法
CN113411774B (zh) * 2021-08-17 2021-11-19 深圳电通信息技术有限公司 基于自组网的列车群组控制方法及装置
CN114162179A (zh) * 2021-12-03 2022-03-11 中车唐山机车车辆有限公司 一种灵活编组的建立方法、系统、设备和存储介质
CN116080716B (zh) * 2023-03-03 2023-06-02 北京全路通信信号研究设计院集团有限公司 一种列车自动驾驶协同控制方法、系统和计算机存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104442933A (zh) * 2014-10-09 2015-03-25 兰州交通大学 一种列车编队运行组织的方法
CN104583053A (zh) * 2012-06-30 2015-04-29 科尔达软件有限公司 车列自动编组的铁道运输系统
JP2018107940A (ja) * 2016-12-27 2018-07-05 日本車輌製造株式会社 鉄道車両
CN108919799A (zh) * 2018-06-10 2018-11-30 同济大学 一种网联智能车辆协作换道方法
CN110682943A (zh) * 2019-10-12 2020-01-14 中车工业研究院有限公司 列车编组方法及装置
CN110962888A (zh) * 2019-12-09 2020-04-07 中南大学 列车的实时动态编组方法及系统
CN111273675A (zh) * 2020-03-24 2020-06-12 陕西铁鹰特种车有限公司 一种编队驾驶系统
CN111376950A (zh) * 2018-12-27 2020-07-07 交控科技股份有限公司 一种基于仿生雁群的列车群控制方法和列车控制系统
CN111516735A (zh) * 2020-05-14 2020-08-11 重庆交通大学 虚拟重联小编组列车自动驾驶的控制系统及其控制方法
CN112009526A (zh) * 2020-10-15 2020-12-01 北京全路通信信号研究设计院集团有限公司 一种基于自组网的列车群组控制方法与系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6158103B2 (ja) * 2014-01-22 2017-07-05 株式会社東芝 列車制御システム
FR3041311B1 (fr) * 2015-09-22 2019-03-22 Sncf Mobilites Procede et systeme de controle de vehicules ferroviaires circulant sur une voie ferree.
KR102096963B1 (ko) * 2017-07-26 2020-04-03 한국철도기술연구원 열차 간 가상 연결 방법 및 이를 위한 열차 제어 장치
KR102097420B1 (ko) * 2017-12-26 2020-04-07 한국철도기술연구원 가상열차편성의 열차무결성 확인시스템 및 이를 이용한 열차무결성 확인방법
CN108466637B (zh) * 2018-01-03 2021-12-10 中车工业研究院有限公司 列车控制方法
AU2019100007A4 (en) * 2018-01-08 2019-02-14 4AI Systems Holdings Pty Ltd A system of transmitting information between trains
CN108725517A (zh) * 2018-03-13 2018-11-02 中车工业研究院有限公司 列车协同运行控制系统、控制方法及列车车载设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104583053A (zh) * 2012-06-30 2015-04-29 科尔达软件有限公司 车列自动编组的铁道运输系统
CN104442933A (zh) * 2014-10-09 2015-03-25 兰州交通大学 一种列车编队运行组织的方法
JP2018107940A (ja) * 2016-12-27 2018-07-05 日本車輌製造株式会社 鉄道車両
CN108919799A (zh) * 2018-06-10 2018-11-30 同济大学 一种网联智能车辆协作换道方法
CN111376950A (zh) * 2018-12-27 2020-07-07 交控科技股份有限公司 一种基于仿生雁群的列车群控制方法和列车控制系统
CN110682943A (zh) * 2019-10-12 2020-01-14 中车工业研究院有限公司 列车编组方法及装置
CN110962888A (zh) * 2019-12-09 2020-04-07 中南大学 列车的实时动态编组方法及系统
CN111273675A (zh) * 2020-03-24 2020-06-12 陕西铁鹰特种车有限公司 一种编队驾驶系统
CN111516735A (zh) * 2020-05-14 2020-08-11 重庆交通大学 虚拟重联小编组列车自动驾驶的控制系统及其控制方法
CN112009526A (zh) * 2020-10-15 2020-12-01 北京全路通信信号研究设计院集团有限公司 一种基于自组网的列车群组控制方法与系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4098512A4 *

Also Published As

Publication number Publication date
EP4098512A4 (en) 2023-12-06
CN112009526B (zh) 2021-02-19
CN112009526A (zh) 2020-12-01
EP4098512A1 (en) 2022-12-07

Similar Documents

Publication Publication Date Title
WO2022077966A1 (zh) 一种基于自组网的列车群组控制方法与系统
CN111923931B (zh) 一种基于自组网的列车动态编组解编方法与系统
CN106314487B (zh) 基于动态间隔的运能可配置列车运行控制系统及方法
US10259478B1 (en) Vehicle-vehicle communication based urban train control system
CN106515797B (zh) 无次级轨道检测设备的列车追踪运行方法及cbtc系统
CN108466637B (zh) 列车控制方法
CN110126882B (zh) 列车控制方法和系统及移动授权的计算方法
CN111994131B (zh) 一种基于自组网的接车方法、系统及群组计算机联锁
CN109625027B (zh) 一种列车群作业组织与运行控制系统
US7263415B2 (en) Electronic drawbar
CN110126883B (zh) 列车行车路径的规划方法和车载控制器
CN110803194A (zh) 一种虚拟联挂模式下的列车控制方法
CN111994130B (zh) 一种基于自组网的发车方法、系统及群组计算机联锁
CN109910957A (zh) 一种基于混合闭塞生成行车许可的方法及系统
CN114655276B (zh) 一种轨道交通运行系统
WO2022198836A1 (zh) 一种基于车车通信的多列车控制系统及方法
WO2023098885A1 (zh) 一种制动曲线切换控制方法及轨道车辆
CN113954910A (zh) 一种tacs系统的列车通信管理方法
CN102811415B (zh) 城市轨道交通的车地通信方法
CN206704213U (zh) 一种基于车‑车通信的有轨电车运行控制系统
RU2411147C2 (ru) Способ и система для вождения составов
CN109367583B (zh) 一种有轨电车进路防错办系统及方法
CN114394128B (zh) 列车控制方法及系统、车载子系统和轨旁资源管理子系统
CN203805889U (zh) 一种地铁列车自动控制系统的布置结构
CN115535037A (zh) 重载铁路虚拟编组列控系统的互联互通方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879014

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021879014

Country of ref document: EP

Effective date: 20220902

NENP Non-entry into the national phase

Ref country code: DE