WO2022077901A1 - Procédé de diagnostic de mode de défaillance de palier utilisant de petits ensembles de données d'échantillon, et système - Google Patents

Procédé de diagnostic de mode de défaillance de palier utilisant de petits ensembles de données d'échantillon, et système Download PDF

Info

Publication number
WO2022077901A1
WO2022077901A1 PCT/CN2021/093451 CN2021093451W WO2022077901A1 WO 2022077901 A1 WO2022077901 A1 WO 2022077901A1 CN 2021093451 W CN2021093451 W CN 2021093451W WO 2022077901 A1 WO2022077901 A1 WO 2022077901A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
matching
small sample
failure mode
dimensional
Prior art date
Application number
PCT/CN2021/093451
Other languages
English (en)
Chinese (zh)
Inventor
徐高威
蒋卓甫
秦泰春
李鹏
刘敏
王子淳
Original Assignee
同济大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同济大学 filed Critical 同济大学
Publication of WO2022077901A1 publication Critical patent/WO2022077901A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • G01M13/045Acoustic or vibration analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/50Information retrieval; Database structures therefor; File system structures therefor of still image data
    • G06F16/58Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
    • G06F16/583Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/02Preprocessing

Definitions

  • the invention relates to the technical field of fault diagnosis of high-end equipment structures, in particular to a bearing fault mode diagnosis method and system for small sample data sets.
  • rolling bearings As a key component in modern high-end equipment, rolling bearings have a weak ability to withstand shocks and are extremely prone to fatigue and damage. Once a failure occurs, it will have a huge negative impact on the entire production process, not only causing serious economic losses, but even endangering the lives of relevant personnel. Therefore, it is extremely necessary to carry out fault diagnosis technology research on rolling bearings, which is of great significance for the predictive maintenance of high-end equipment.
  • Meta-learning is mainly used to solve the problem of learning to learn. Different from previous machine learning and deep learning methods, meta-learning pays more attention to how to use known knowledge to quickly adapt to the learning of new tasks, so it can effectively solve the above two problems. In recent years, meta-learning has emerged and has played a significant role in solving the learning problem of a small number of labeled samples or even unlabeled sample data. However, the application of this method in the field of high-end equipment fault diagnosis is very lacking at present.
  • the purpose of the present invention is to provide a bearing failure mode diagnosis method and system for small sample data sets in order to overcome the above-mentioned defects of the prior art. In addition, it can also alleviate the performance degradation problem caused by the inconsistency of the sample distribution of the training set and the test set to a certain extent.
  • a bearing failure mode diagnosis method for small sample data set includes the following steps:
  • Step 1 Collect the vibration signal data of the bearing under different operating conditions of different equipment through the acceleration sensor, and store it in the server;
  • Step 2 Preprocess the signal in the server, convert the original one-dimensional signal into a two-dimensional signal through the continuous wavelet transform algorithm, and store it in the database in the form of an image;
  • Step 3 Construct a bearing fault diagnosis model framework based on convolutional neural network, including encoding module and matching module, and randomly sample from the image data in the database to construct a learning task of multiple small sample data sets to diagnose bearing faults model for training;
  • Step 4 Collect the vibration signal of the target bearing, diagnose it according to the preprocessing method in the step 2 and the bearing fault diagnosis model framework in the step 3, and obtain the bearing failure mode.
  • step 2 comprises the following sub-steps:
  • Step 201 The vibration data collected by the acceleration sensor is a one-dimensional continuous time series signal, and the signal is preprocessed by a continuous wavelet transform algorithm to obtain a two-dimensional signal;
  • Step 202 The two-dimensional signal is converted into image gray value and stored in the database in the form of image gray value conversion.
  • CWT f (a, b) is a two-dimensional signal
  • f(t) is a one-dimensional vibration signal
  • ⁇ (t) is the complex conjugate of the wavelet function ⁇ (t)
  • a and b represent the scaling and translation factors, respectively;
  • the two-dimensional signal is converted into an image gray value, and the description formula is as follows:
  • image(CWT f (a,b)) is the image data after the two-dimensional signal is converted into gray value
  • max( ⁇ ) is the maximum value function
  • min( ⁇ ) is the minimum value function
  • step 3 comprises the following sub-steps:
  • Step 301 randomly select l-type samples from all images as a small sample set for training, and construct a learning task
  • Step 302 Pass the sampling set and the query set in each learning task through the coding module to obtain a high-dimensional coding expression, and after averaging the coding values of the obtained sampling sets of the same type, perform the query set on the feature dimension. Splicing processing to form matching pairs;
  • Step 303 Pass each matching pair through the matching module to obtain a matching score
  • Step 304 use the mean variance quantification model to predict the error between the matching score and the actual matching score;
  • Step 305 Use the back-propagation algorithm in deep learning to optimize the model parameters until the final training is completed.
  • Task i is the learning task, is the sampling set, is the query set, m is the number of samples in the sampling set, n is the number of samples in the query set, k and j are both natural numbers;
  • Pair(l,k) is the matching pair
  • Cat( ) is the splicing function in the feature dimension
  • M i,l is the average value of the coded value of the l-th sample sample in the ith task
  • r l,k ⁇ [0,1] is the matching score between the kth query set and the lth class
  • g ⁇ ( ) is the function map of the matching module
  • the matching score predicted by the model in the step 304 and the actual matching score error is:
  • Loss is the error between the matching score predicted by the model and the actual matching score
  • the back-propagation algorithm in deep learning is used to optimize the model parameters, and its description formula is:
  • step 4 comprises the following sub-steps:
  • Step 401 Pass all the samples of known categories in the database through the encoding module, and store the output high-dimensional encoded expression in the database;
  • Step 402 After the vibration signal of the target bearing passes through the preprocessing and encoding module, it is then simultaneously used as the input of the matching module with the high-dimensional encoding of the known category in the database, so as to obtain a matching score with each category in the known category;
  • Step 403 Take the maximum value among all matching scores of each category in the known categories, and its corresponding category is the failure mode of the target bearing.
  • step 403 the maximum value of the matching scores of all and each category in the known categories is taken, and the description formula is:
  • class is the class corresponding to the maximum matching score, that is, the failure mode of the target bearing.
  • the convolutional neural network adopts a deep neural network with sparse connection and parameter sharing characteristics.
  • the present invention also provides a system for the aforementioned method for diagnosing bearing failure modes oriented to small sample data sets, the system comprising:
  • the preprocessing module is used to convert the one-dimensional vibration signal of the bearing into a two-dimensional signal through continuous wavelet transformation, and perform image gray value conversion on it;
  • the task generation module is used to randomly sample from the preprocessed image data to construct a learning task of multiple small sample sets, wherein each small sample set includes a sampling set and a query set;
  • an encoding module configured to perform function mapping on the samples of the sampling set and the query set to obtain an encoded expression in a higher dimensional space
  • the matching module is used to match the coding of the query set samples with the coding of each category in the sampling set, so as to obtain the corresponding categories of the query set samples;
  • the diagnosis module is used for collecting the vibration signal of the target bearing, and diagnosing the bearing failure mode according to the vibration signal of the target bearing and the bearing failure diagnosis model.
  • the basic structures of the encoding module and the matching module are both convolutional neural networks, and the convolutional neural networks use deep neural networks with sparse connection and parameter sharing characteristics.
  • the present invention has the following advantages:
  • Both the coding module and the matching module in the present invention are based on the convolutional neural network and have two characteristics of sparse connection and parameter sharing, which are extremely suitable for deep feature expression mining of image data.
  • the preprocessing module in the present invention can process non-stationary and nonlinear signals through the continuous wavelet transform method, so as to obtain a more robust feature expression.
  • the task generation module in the present invention can construct learning tasks of multiple small sample sets through image data, so that the model can learn transferable knowledge between different tasks and help the model to quickly adapt to new tasks.
  • FIG. 1 is a partial bearing signal preprocessing image of the present invention.
  • FIG. 2 is a schematic diagram of the bearing failure mode diagnosis framework of the present invention.
  • FIG. 3 is a schematic diagram of the model structure of the present invention.
  • FIG. 4 is a flow chart of the method of the present invention.
  • FIG. 5 is a schematic diagram of the fault diagnosis system of the present invention.
  • the present invention provides a bearing failure mode diagnosis method oriented to small sample data sets, as shown in FIG. 4 , including the following steps:
  • the bearing vibration timing signal collected in this example has four different working conditions. Each working condition includes 10 bearing failure modes. In addition to normal, there are 9 fault types, including three different faults. Locations: inner ring fault, ball fault, and outer ring fault, with three different fault sizes for each fault location.
  • the bearing fault feature map is formed, part of which is shown in Figure 1, and finally stored in the database of the server.
  • Step 2) specifically includes:
  • Step 201 The vibration data collected by the acceleration sensor is a one-dimensional continuous time series signal, and the signal is preprocessed by a continuous wavelet transform algorithm to obtain a two-dimensional signal;
  • Step 202 The two-dimensional signal is converted into image gray value and stored in the database in the form of image gray value conversion.
  • the description formula of the two-dimensional signal in step 201 is:
  • CWT f (a, b) is a two-dimensional signal
  • f(t) is a one-dimensional vibration signal
  • ⁇ (t) is the complex conjugate of the wavelet function ⁇ (t)
  • a and b represent the scaling and translation factors, respectively;
  • step 202 the two-dimensional signal is converted into an image gray value, and its description formula is:
  • image(CWT f (a,b)) is the image data after the two-dimensional signal is converted into gray value
  • max( ⁇ ) is the maximum value function
  • min( ⁇ ) is the minimum value function
  • Task i is the learning task, is the sampling set, is the query set, m is the number of samples in the sampling set, n is the number of samples in the query set, k and j are both natural numbers, and each sample in the sampling set and the query set is composed of a pair of fault features and fault modes;
  • sampling samples and query samples of each task pass through the encoding module to obtain high-dimensional encoded representations. After the coding values of the samples of the same class are averaged, they are spliced with the query samples in the feature dimension to form matching pairs:
  • Pair(l,k) is the matching pair
  • Cat( ) is the splicing function in the feature dimension
  • M i,l is the average value of the coded value of the l-th sample sample in the ith task, is the parameter of the encoding module
  • Each matching pair passes through the matching module to obtain a matching score:
  • r l,k ⁇ [0,1] is the matching score between the kth query set and the lth class
  • g ⁇ ( ) is the function map of the matching module
  • is the parameter of the matching module
  • Loss is the error between the matching score predicted by the model and the actual matching score
  • the category corresponding to the maximum matching score is the failure mode of the target bearing:
  • class is the class corresponding to the maximum matching score, that is, the failure mode of the target bearing.
  • FIG. 5 is a schematic structural diagram of a bearing failure mode diagnosis system oriented to a small sample data set according to the present invention.
  • the bearing failure mode diagnosis system 10 for small sample data sets includes: a preprocessing module 100 , a task generation module 200 , an encoding module 300 , a matching module 400 , and a diagnosis module 500 .
  • the preprocessing module 100 converts the one-dimensional vibration signal of the bearing into a two-dimensional signal through continuous wavelet transformation, and performs image gray value conversion on it.
  • the task generation module 200 randomly samples from the preprocessed image data, so as to construct a learning task of multiple small sample sets, wherein each small sample set includes a sampling set and a query set.
  • the encoding module 300 performs functional mapping on the samples of the sample set and the query set to obtain the encoded expression in a higher dimensional space.
  • the matching module 400 matches the codes of the query set samples with the codes of various categories in the sample set, so as to obtain the corresponding categories of the query set samples.
  • the diagnosis model 500 is used to collect the vibration signal of the target bearing, and diagnose the bearing failure mode according to the vibration signal of the bearing and the bearing failure diagnosis model.
  • the system 10 of the embodiment of the present invention combines deep learning and meta-learning algorithms to improve diagnostic accuracy in small sample data sets.
  • the preprocessing module 100 can process non-stationary and nonlinear signals through the continuous wavelet transform method to obtain a more robust feature expression.
  • the task generation module 200 can construct learning tasks of multiple small sample sets through image data, so that the model can learn transferable knowledge between different tasks and help the model quickly adapt to new tasks.
  • both the encoding module 300 and the matching module 400 are based on a convolutional neural network, with two characteristics of sparse connection and parameter sharing, which are extremely suitable for deep feature expression mining of image data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Library & Information Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Signal Processing (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Evolutionary Biology (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Databases & Information Systems (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

Un procédé de diagnostic de mode de défaillance de palier utilisant de petits ensembles de données d'échantillon, et un système. Le procédé comprend les étapes suivantes consistant : 1) à collecter, au moyen d'un capteur d'accélération, des données de signal de vibration d'un palier fonctionnant dans différentes conditions de travail de différents dispositifs ; 2) à prétraiter les signaux, à convertir les signaux unidimensionnels originaux en signaux bidimensionnels au moyen d'un algorithme de transformée en ondelettes continue, et à former des données d'image ; 3) à construire un cadre de modèle de diagnostic de défaillance de palier sur la base d'un réseau neuronal convolutif et comprenant un module de codage et un module d'adaptation, et à échantillonner de manière aléatoire les données d'image pour construire une tâche d'apprentissage de multiples petits ensembles d'échantillons, de façon à entraîner le modèle ; et 4) à acquérir des signaux de vibration d'un palier cible, et à diagnostiquer le mode de défaillance de palier selon le procédé de prétraitement et le modèle de diagnostic de défaillance de palier. En combinant des algorithmes d'apprentissage profond et de méta-apprentissage, la précision de diagnostic peut être améliorée lorsque le volume de données est insuffisant.
PCT/CN2021/093451 2020-10-13 2021-05-12 Procédé de diagnostic de mode de défaillance de palier utilisant de petits ensembles de données d'échantillon, et système WO2022077901A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011091094.X 2020-10-13
CN202011091094.XA CN112417954B (zh) 2020-10-13 2020-10-13 一种面向小样本数据集的轴承故障模式诊断方法及系统

Publications (1)

Publication Number Publication Date
WO2022077901A1 true WO2022077901A1 (fr) 2022-04-21

Family

ID=74854429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093451 WO2022077901A1 (fr) 2020-10-13 2021-05-12 Procédé de diagnostic de mode de défaillance de palier utilisant de petits ensembles de données d'échantillon, et système

Country Status (2)

Country Link
CN (1) CN112417954B (fr)
WO (1) WO2022077901A1 (fr)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114896733A (zh) * 2022-05-20 2022-08-12 合肥工业大学 一种基于深度强化学习的滚动轴承故障类型识别方法
CN114993677A (zh) * 2022-05-11 2022-09-02 山东大学 不平衡小样本数据的滚动轴承故障诊断方法及系统
CN115424053A (zh) * 2022-07-25 2022-12-02 北京邮电大学 小样本图像识别方法、装置、设备及存储介质
CN115952408A (zh) * 2023-01-05 2023-04-11 东北大学 多通道跨域少样本的冲压生产线轴承故障诊断方法
CN116127279A (zh) * 2023-02-24 2023-05-16 上海师范大学 一种小样本液压泵气蚀诊断方法及装置
CN116558828A (zh) * 2023-07-10 2023-08-08 昆明理工大学 基于自相关系数稀疏度特征的滚动轴承健康状态评估方法
CN116701912A (zh) * 2023-06-14 2023-09-05 盐城工学院 基于一维卷积神经网络的轴承故障诊断方法及系统
CN116728291A (zh) * 2023-08-16 2023-09-12 湖南大学 基于边缘计算的机器人打磨系统状态监测方法和装置
CN116821697A (zh) * 2023-08-30 2023-09-29 聊城莱柯智能机器人有限公司 一种基于小样本学习的机械设备故障诊断方法
CN116894190A (zh) * 2023-09-11 2023-10-17 江西南昌济生制药有限责任公司 轴承故障诊断方法、装置、电子设备和存储介质
CN116994076A (zh) * 2023-09-28 2023-11-03 中国海洋大学 一种基于双分支相互学习特征生成的小样本图像识别方法
CN117407796A (zh) * 2023-12-15 2024-01-16 合肥工业大学 一种跨部件小样本故障诊断方法、系统和存储介质
WO2024045555A1 (fr) * 2022-08-30 2024-03-07 山东建筑大学 Système et procédé de diagnostic de défaut basés sur une amélioration de données d'auto-apprentissage standard
CN118013289A (zh) * 2024-04-09 2024-05-10 北京理工大学 一种基于信息融合元迁移学习的变工况小样本故障诊断方法、装置、介质及产品

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112417954B (zh) * 2020-10-13 2022-12-16 同济大学 一种面向小样本数据集的轴承故障模式诊断方法及系统
CN113128561A (zh) * 2021-03-22 2021-07-16 南京航空航天大学 一种机床轴承故障诊断方法
CN113758709A (zh) * 2021-09-30 2021-12-07 河南科技大学 结合边缘计算和深度学习的滚动轴承故障诊断方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200050667A1 (en) * 2018-08-09 2020-02-13 CloudMinds Technology, Inc. Intent Classification Method and System
CN110823574A (zh) * 2019-09-30 2020-02-21 安徽富煌科技股份有限公司 一种基于半监督学习深度对抗网络的故障诊断方法
CN111597948A (zh) * 2020-05-11 2020-08-28 苏州求臻智能科技有限公司 一种轴承振动信号的故障检测和分类方法
CN111721535A (zh) * 2020-06-23 2020-09-29 中国人民解放军战略支援部队航天工程大学 一种基于卷积多头自注意力机制的轴承故障检测方法
CN112417954A (zh) * 2020-10-13 2021-02-26 同济大学 一种面向小样本数据集的轴承故障模式诊断方法及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100468263C (zh) * 2007-09-05 2009-03-11 东北大学 连采机远程实时故障预测及诊断方法与装置
WO2018128927A1 (fr) * 2017-01-05 2018-07-12 The Trustees Of Princeton University Système et procédé de support de décision de santé hiérarchique
CN109271936B (zh) * 2018-09-18 2021-09-24 哈尔滨工程大学 基于感知哈希算法的飞机振动故障数据库构建与检索方法
CN109633369B (zh) * 2018-12-08 2020-12-04 国网山东省电力公司德州供电公司 一种基于多维数据相似性匹配的电网故障诊断方法
CN109682596B (zh) * 2018-12-20 2020-11-13 南京航空航天大学 非均衡样本下高速重载输入级故障诊断方法
CN110516305B (zh) * 2019-07-26 2021-02-12 西安交通大学 基于注意机制元学习模型的小样本下故障智能诊断方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200050667A1 (en) * 2018-08-09 2020-02-13 CloudMinds Technology, Inc. Intent Classification Method and System
CN110823574A (zh) * 2019-09-30 2020-02-21 安徽富煌科技股份有限公司 一种基于半监督学习深度对抗网络的故障诊断方法
CN111597948A (zh) * 2020-05-11 2020-08-28 苏州求臻智能科技有限公司 一种轴承振动信号的故障检测和分类方法
CN111721535A (zh) * 2020-06-23 2020-09-29 中国人民解放军战略支援部队航天工程大学 一种基于卷积多头自注意力机制的轴承故障检测方法
CN112417954A (zh) * 2020-10-13 2021-02-26 同济大学 一种面向小样本数据集的轴承故障模式诊断方法及系统

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114993677A (zh) * 2022-05-11 2022-09-02 山东大学 不平衡小样本数据的滚动轴承故障诊断方法及系统
CN114896733A (zh) * 2022-05-20 2022-08-12 合肥工业大学 一种基于深度强化学习的滚动轴承故障类型识别方法
CN114896733B (zh) * 2022-05-20 2024-02-13 合肥工业大学 一种基于深度强化学习的滚动轴承故障类型识别方法
CN115424053A (zh) * 2022-07-25 2022-12-02 北京邮电大学 小样本图像识别方法、装置、设备及存储介质
WO2024045555A1 (fr) * 2022-08-30 2024-03-07 山东建筑大学 Système et procédé de diagnostic de défaut basés sur une amélioration de données d'auto-apprentissage standard
CN115952408A (zh) * 2023-01-05 2023-04-11 东北大学 多通道跨域少样本的冲压生产线轴承故障诊断方法
CN116127279A (zh) * 2023-02-24 2023-05-16 上海师范大学 一种小样本液压泵气蚀诊断方法及装置
CN116127279B (zh) * 2023-02-24 2024-04-19 上海师范大学 一种小样本液压泵气蚀诊断方法及装置
CN116701912A (zh) * 2023-06-14 2023-09-05 盐城工学院 基于一维卷积神经网络的轴承故障诊断方法及系统
CN116701912B (zh) * 2023-06-14 2023-11-14 盐城工学院 基于一维卷积神经网络的轴承故障诊断方法及系统
CN116558828B (zh) * 2023-07-10 2023-09-15 昆明理工大学 基于自相关系数稀疏度特征的滚动轴承健康状态评估方法
CN116558828A (zh) * 2023-07-10 2023-08-08 昆明理工大学 基于自相关系数稀疏度特征的滚动轴承健康状态评估方法
CN116728291B (zh) * 2023-08-16 2023-10-31 湖南大学 基于边缘计算的机器人打磨系统状态监测方法和装置
CN116728291A (zh) * 2023-08-16 2023-09-12 湖南大学 基于边缘计算的机器人打磨系统状态监测方法和装置
CN116821697B (zh) * 2023-08-30 2024-05-28 聊城莱柯智能机器人有限公司 一种基于小样本学习的机械设备故障诊断方法
CN116821697A (zh) * 2023-08-30 2023-09-29 聊城莱柯智能机器人有限公司 一种基于小样本学习的机械设备故障诊断方法
CN116894190A (zh) * 2023-09-11 2023-10-17 江西南昌济生制药有限责任公司 轴承故障诊断方法、装置、电子设备和存储介质
CN116894190B (zh) * 2023-09-11 2023-11-28 江西南昌济生制药有限责任公司 轴承故障诊断方法、装置、电子设备和存储介质
CN116994076B (zh) * 2023-09-28 2024-01-19 中国海洋大学 一种基于双分支相互学习特征生成的小样本图像识别方法
CN116994076A (zh) * 2023-09-28 2023-11-03 中国海洋大学 一种基于双分支相互学习特征生成的小样本图像识别方法
CN117407796B (zh) * 2023-12-15 2024-03-01 合肥工业大学 一种跨部件小样本故障诊断方法、系统和存储介质
CN117407796A (zh) * 2023-12-15 2024-01-16 合肥工业大学 一种跨部件小样本故障诊断方法、系统和存储介质
CN118013289A (zh) * 2024-04-09 2024-05-10 北京理工大学 一种基于信息融合元迁移学习的变工况小样本故障诊断方法、装置、介质及产品

Also Published As

Publication number Publication date
CN112417954B (zh) 2022-12-16
CN112417954A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2022077901A1 (fr) Procédé de diagnostic de mode de défaillance de palier utilisant de petits ensembles de données d'échantillon, et système
WO2022037068A1 (fr) Procédé de diagnostic de défaut dans un palier de machine-outil
WO2021042935A1 (fr) Procédé de prédiction de durée de vie de service de palier basé sur un modèle de markov caché et apprentissage par transfert
CN110109015B (zh) 一种基于深度学习的异步电动机故障监测与诊断方法
CN109782603A (zh) 旋转机械耦合故障的检测方法及监测系统
CN111523081B (zh) 一种基于增强门控循环神经网络的航空发动机故障诊断方法
CN110929765A (zh) 一种基于批次图像化的卷积自编码故障监测方法
CN113203566B (zh) 一种基于一维数据增强和cnn的电机轴承故障诊断方法
CN111855816A (zh) 一种综合概率模型和cnn网络的风叶故障识别方法
CN114297918A (zh) 基于全注意力深度网络和动态集成学习的航空发动机剩余寿命预测方法
CN116593157A (zh) 少样本下基于匹配元学习的复杂工况齿轮故障诊断方法
CN112488179A (zh) 一种基于gru的旋转机械故障诊断方法
CN115774851B (zh) 基于分级知识蒸馏的曲轴内部缺陷检测方法及其检测系统
CN115290326A (zh) 一种滚动轴承故障智能诊断方法
CN115204272A (zh) 基于多采样率数据的工业系统故障诊断方法与设备
CN116842379A (zh) 一种基于DRSN-CS和BiGRU+MLP模型的机械轴承剩余使用寿命预测方法
CN115587290A (zh) 基于变分自编码生成对抗网络的航空发动机故障诊断方法
CN116610940A (zh) 一种基于小波变换与深度神经网络的装备故障诊断系统
CN115640531A (zh) 一种基于残差学习与注意力机制融合的故障诊断方法
Zhang et al. A flexible monitoring framework via dynamic-multilayer graph convolution network
CN114048762B (zh) 双注意力引导的旋转机械健康评估方法
CN114877925B (zh) 一种基于极限学习机的综合能源系统传感器故障诊断方法
Wen et al. Application of Denoising Autoencoder in Intelligent Fault Diagnosis for Bearings under Varying Working Conditions
Ke et al. Time-frequency Hypergraph Neural Network for Rotating Machinery Fault Diagnosis with Limited Data
Jiang et al. AI-Based Structural Defects Detection of Offshore Wind Turbines for Automatical Operation and Maintenance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21878955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21878955

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21878955

Country of ref document: EP

Kind code of ref document: A1