WO2022077427A1 - Techniques for updating transmission configuration indicator (tci) states for periodic and aperiodic channel state information reference signal (csi-rs) resources - Google Patents

Techniques for updating transmission configuration indicator (tci) states for periodic and aperiodic channel state information reference signal (csi-rs) resources Download PDF

Info

Publication number
WO2022077427A1
WO2022077427A1 PCT/CN2020/121453 CN2020121453W WO2022077427A1 WO 2022077427 A1 WO2022077427 A1 WO 2022077427A1 CN 2020121453 W CN2020121453 W CN 2020121453W WO 2022077427 A1 WO2022077427 A1 WO 2022077427A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
resource
csi measurement
correspondence
subset
Prior art date
Application number
PCT/CN2020/121453
Other languages
French (fr)
Inventor
Mostafa KHOSHNEVISAN
Chenxi HAO
Yu Zhang
Tao Luo
Lei Xiao
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/121453 priority Critical patent/WO2022077427A1/en
Publication of WO2022077427A1 publication Critical patent/WO2022077427A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the following relates to wireless communications, including techniques for updating transmission configuration indicator (TCI) states for periodic and aperiodic channel state information (CSI) reference signal (CSI-RS) resources.
  • TCI transmission configuration indicator
  • CSI-RS channel state information reference signal
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (for example, time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a base station may configure a UE with a one or more channel state information (CSI) reference signal (CSI-RS) resources over which the UE may monitor for one or more CSI-RSs for channel measurement or interference measurement.
  • CSI channel state information
  • CSI-RS channel state information reference signal
  • the method may include receiving, from a base station (BS) , an RRC message indicating a correspondence between a set of channel state information (CSI) measurement resources and a set of transmission configuration indicator (TCI) states, receiving, from the BS, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states, and monitoring over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources for one or more CSI reference signals (CSI-RSs) .
  • CSI-RSs CSI reference signals
  • the apparatus may include a first interface, a second interface, and a processing system.
  • the first interface may be configured to obtain an RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states and obtain a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states.
  • the processing system may be configured to monitor over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources for one or more CSI-RSs.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive, from a BS, an RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states, receive, from the BS, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states, and monitor over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources for one or more CSI-RSs.
  • the apparatus may include means for receiving, from a BS, an RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states, receiving, from the BS, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states, and monitoring over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources for one or more CSI-RSs.
  • the code may include instructions executable by a processor to receive, from a BS, an RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states, receive, from the BS, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states, and monitor over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources for one or more CSI-RSs.
  • receiving the control message indicating the updated correspondence between at least the subset of the set of CSI measurement resources and the set of TCI states can include operations, configurations, features, means, or instructions for receiving the updated correspondence between each CSI measurement resource of a CSI measurement resource set and the set of TCI states.
  • receiving the control message indicating the updated correspondence between at least the subset of the set of CSI measurement resources and the set of TCI states can include operations, configurations, features, means, or instructions for receiving the updated correspondence between a first CSI measurement resource and a first TCI state of the set of TCI states and a second CSI measurement resource and a second TCI state of the set of TCI states.
  • the first CSI measurement resource belongs to a first CSI measurement resource set and the second CSI measurement resource belongs to a second CSI measurement resource set different than the first CSI measurement resource set.
  • receiving the control message indicating the updated correspondence between at least the subset of the set of CSI measurement resources and the set of TCI states can include operations, configurations, features, means, or instructions for receiving the updated correspondence between each CSI measurement resource associated with an aperiodic CSI trigger state and the set of TCI states.
  • the control message indicates the aperiodic CSI trigger state from a set of RRC configured aperiodic CSI trigger states or from a subset of the set of RRC configured aperiodic CSI trigger states indicated by a medium access control (MAC) control element (MAC-CE) .
  • MAC medium access control
  • receiving the control message indicating the updated correspondence between at least the subset of the set of CSI measurement resources and the set of TCI states can include operations, configurations, features, means, or instructions for receiving a MAC-CE that indicates a subset of a set of RRC configured aperiodic CSI trigger states and indicates the updated correspondence between each CSI measurement resource associated with each of the subset of the set of RRC configured aperiodic CSI trigger states and the set of TCI states.
  • each CSI measurement resource of the set of CSI measurement resources may be associated with multiple TCI states.
  • receiving the control message indicating the updated correspondence between at least the subset of the set of CSI measurement resources and the set of TCI states can include operations, configurations, features, means, or instructions for receiving the updated correspondence indicating the multiple TCI states for each CSI measurement resource of at least the subset of the set of CSI measurement resources.
  • the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, configurations, features, means, or instructions for receiving the one or more CSI-RSs within a time period between an application of the updated correspondence and a CSI reference resource based on monitoring over the one or more CSI measurement resources, and transmitting a CSI report, the CSI report based on the one or more CSI-RSs and the updated correspondence.
  • the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, configurations, features, means, or instructions for detecting a failure to receive the one or more CSI-RSs within a time period between an application of the updated correspondence and a CSI reference resource based on monitoring over the one or more CSI measurement resources, and dropping a CSI report based on detecting the failure to receive the one or more CSI-RSs within the time period between the application of the updated correspondence and the CSI reference resource, the CSI report based on the one or more CSI-RSs and the correspondence.
  • the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, configurations, features, means, or instructions for detecting a failure to receive the one or more CSI-RSs within a time period between an application of the updated correspondence and a CSI reference resource based on monitoring over the one or more CSI measurement resources, and refraining from updating a CSI report based on detecting the failure to receive the one or more CSI-RSs within the time period between the application of the updated correspondence and the CSI reference resource, the CSI report based on the one or more CSI-RSs and the correspondence.
  • refraining from updating the CSI report can include operations, configurations, features, means, or instructions for refraining from transmitting an updated CSI report, the updated CSI report based on the one or more CSI-RSs and the updated correspondence.
  • control message includes one or more fields indicating the updated correspondence between at least the subset of the set of CSI measurement resources and the set of TCI states.
  • control message includes a MAC-CE or group-common downlink control information (DCI) .
  • DCI group-common downlink control information
  • the set of CSI measurement resources may be configured for periodic CSI reporting or aperiodic CSI reporting.
  • the method may include transmitting, to a UE, an RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states, transmitting, to the UE, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states, transmitting, to the UE, one or more CSI-RSs over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources, and monitoring for a CSI report based on transmitting the one or more CSI-RSs.
  • the apparatus may include a first interface, a second interface, and a processing system.
  • the first interface may be configured to output an RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states, output a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states, and output one or more CSI-RSs over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources.
  • the processing system may be configured to monitor for a CSI report based on outputting the one or more CSI-RSs
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to transmit, to a UE, an RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states, transmit, to the UE, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states, transmit, to the UE, one or more CSI-RSs over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources, and monitor for a CSI report based on transmitting the one or more CSI-RSs.
  • the apparatus may include means for transmitting, to a UE, an RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states, transmitting, to the UE, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states, transmitting, to the UE, one or more CSI-RSs over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources, and monitoring for a CSI report based on transmitting the one or more CSI-RSs.
  • the code may include instructions executable by a processor to transmit, to a UE, an RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states, transmit, to the UE, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states, transmit, to the UE, one or more CSI-RSs over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources, and monitor for a CSI report based on transmitting the one or more CSI-RSs.
  • transmitting the control message indicating the updated correspondence between at least the subset of the set of CSI measurement resources and the set of TCI states can include operations, configurations, features, means, or instructions for transmitting the updated correspondence between each CSI measurement resource of a CSI measurement resource set and the set of TCI states.
  • transmitting the control message indicating the updated correspondence between at least the subset of the set of CSI measurement resources and the set of TCI states can include operations, configurations, features, means, or instructions for transmitting the updated correspondence between a first CSI measurement resource and a first TCI state of the set of TCI states and a second CSI measurement resource and a second TCI state of the set of TCI states.
  • the first CSI measurement resource belongs to a first CSI measurement resource set and the second CSI measurement resource belongs to a second CSI measurement resource set different than the first CSI measurement resource set.
  • transmitting the control message indicating the updated correspondence between at least the subset of the set of CSI measurement resources and the set of TCI states can include operations, configurations, features, means, or instructions for transmitting the updated correspondence between each CSI measurement resource associated with an aperiodic CSI trigger state and the set of TCI states.
  • the control message indicates the aperiodic CSI trigger state from a set of RRC configured aperiodic CSI trigger states or from a subset of the set of RRC configured aperiodic CSI trigger states indicated by a MAC-CE.
  • transmitting the control message indicating the updated correspondence between at least the subset of the set of CSI measurement resources and the set of TCI states can include operations, configurations, features, means, or instructions for transmitting a MAC-CE that indicates a subset of a set of RRC configured aperiodic CSI trigger states and indicates the updated correspondence between each CSI measurement resource associated with each of the subset of the set of RRC configured aperiodic CSI trigger states and the set of TCI states.
  • each CSI measurement resource of the set of CSI measurement resources may be associated with multiple TCI states.
  • transmitting the control message indicating the updated correspondence between at least the subset of the set of CSI measurement resources and the set of TCI states can include operations, configurations, features, means, or instructions for transmitting the updated correspondence indicating the multiple TCI states for each CSI measurement resource of at least the subset of the set of CSI measurement resources.
  • transmitting the one or more CSI-RSs over the one or more CSI measurement resources can include operations, configurations, features, means, or instructions for transmitting the one or more CSI-RSs within a time period between an application of the updated correspondence at the UE and a CSI reference resource.
  • the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, configurations, features, means, or instructions for receiving, from the UE, the CSI report based on transmitting the one or more CSI-RSs within the time period between the application of the updated correspondence at the UE and the CSI reference resource and based on monitoring for the CSI report, the CSI report based on the one or more CSI-RSs and the updated correspondence.
  • transmitting the one or more CSI-RSs over the one or more CSI measurement resources can include operations, configurations, features, means, or instructions for transmitting the one or more CSI-RSs outside of a time period between an application of the updated correspondence at the UE and a CSI reference resource.
  • the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, configurations, features, means, or instructions for detecting a failure to receive the CSI report based at least in part transmitting the one or more CSI-RSs outside of the time period between the application of the updated correspondence at the UE and the CSI reference resource.
  • transmitting the one or more CSI-RSs over the one or more CSI measurement resources can include operations, configurations, features, means, or instructions for transmitting the one or more CSI-RSs outside of a time period between an application of the updated correspondence at the UE and a CSI reference resource.
  • the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, configurations, features, means, or instructions for receiving the CSI report based on transmitting the one or more CSI-RSs outside of the time period between the application of the updated correspondence at the UE and the CSI reference resource and based on monitoring for the CSI report, the CSI report based on the one or more CSI-RSs and the correspondence.
  • control message includes one or more fields indicating the updated correspondence between at least the subset of the set of CSI measurement resources and the set of TCI states.
  • control message includes a MAC-CE or group-common DCI.
  • the set of CSI measurement resources may be configured for periodic CSI reporting or aperiodic CSI reporting.
  • FIGS 1 and 2 illustrate examples of wireless communications systems that support techniques for updating transmission configuration indicator (TCI) states for periodic and aperiodic channel state information (CSI) reference signal (CSI-RS) resources.
  • TCI transmission configuration indicator
  • CSI-RS channel state information reference signal
  • Figure 3 illustrates an example of a report diagram that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • Figure 4 illustrates an example of a sub-selecting medium access control (MAC) control element (MAC-CE) that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • MAC medium access control
  • Figure 5 illustrates examples of resource schemes that support techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • Figure 6 illustrates an example of a process flow that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • Figures 7 and 8 show block diagrams of example devices that support techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • Figure 9 shows a block diagram of an example communications manager that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • Figure 10 shows a diagram of a system including an example device that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • Figures 11 and 12 show block diagrams of example devices that support techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • Figure 13 shows a block diagram of an example communications manager that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • Figure 14 shows a diagram of a system including an example device that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • Figures 15–19 show flowcharts illustrating methods that support techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • the following description is directed to certain implementations for the purposes of describing the innovative aspects of this disclosure.
  • the teachings herein can be applied in a multitude of different ways.
  • the described implementations may be implemented in any device, system or network that is capable of transmitting and receiving RF signals according to any of the IEEE 16.11 standards, or any of the IEEE 802.11 standards, the standard, code division multiple access (CDMA) , frequency division multiple access (FDMA) , time division multiple access (TDMA) , Global System for Mobile communications (GSM) , GSM/General Packet Radio Service (GPRS) , Enhanced Data GSM Environment (EDGE) , Terrestrial Trunked Radio (TETRA) , Wideband-CDMA (W-CDMA) , Evolution Data Optimized (EV- DO) , 1xEV-DO, EV-DO Rev A, EV-DO Rev B, High Speed Packet Access (HSPA) , High Speed Downlink Packet Access (HSDPA) , High
  • a user equipment may receive a configuration of one or more channel state information (CSI) reference signal (CSI-RS) resources over which the UE may monitor for one or more CSI-RSs for channel measurement or interference measurement.
  • CSI-RS channel state information reference signal
  • a serving base station or a transmission and reception point (TRP) may transmit control signaling to the UE indicating the configuration of the one or more CSI-RS resources.
  • the base station or the TRP may configure the multiple CSI-RS resources over which the UE may monitor based on the type of CSI reporting configured at the UE. For example, if the UE is configured for periodic CSI reporting, the base station or the TRP may configure the UE with one or more periodic CSI-RS resources.
  • the base station or the TRP may configure the UE with one or more aperiodic CSI-RS resources or semi-persistent CSI-RS resources, respectively.
  • Each configured CSI-RS resource may be associated with one or more transmission configuration indicator (TCI) states.
  • TCI transmission configuration indicator
  • the UE may expect to receive a CSI-RS over a CSI-RS resource according to the one or more TCI states associated with the CSI-RS resource and, in some implementations, the UE may generate a CSI report based on the TCI state (or TCI states) associated with the one or more CSI-RS resources over which the UE monitors.
  • Various implementations generally relate to the transmission of a control message, from a serving base station or a TRP to a UE, indicating an updated correspondence between one or more CSI-RS resources and multiple TCI states.
  • Some implementations more specifically relate to a radio resource control (RRC) configuration of multiple CSI-RS resources at the UE such that the RRC configuration provides a first or an initial correspondence between each CSI-RS resource of the multiple RRC configured CSI-RS resources and the multiple TCI states and to updating the first or initial correspondence between at least some of the multiple RRC configured CSI-RS resources and the multiple TCI states via the control message.
  • RRC radio resource control
  • the serving base station or the TRP may transmit a medium access control (MAC) control element (MAC-CE) or downlink control information (DCI) that indicates the updated correspondence between at least some of the multiple RRC configured CSI-RS resources and the multiple TCI states.
  • MAC medium access control
  • DCI downlink control information
  • the serving base station or the TRP may indicate, via the MAC-CE or the DCI, a CSI-RS resource set and an updated correspondence for each CSI-RS resource of the indicated CSI-RS resource set. In some other examples, the serving base station or the TRP may indicate, via the MAC-CE or the DCI, a number of CSI-RS resources regardless of the CSI-RS resource set to which they belong and an updated correspondence for each of the indicated number of CSI-RS resources. In some other examples, the serving base station or the TRP may indicate, via the MAC-CE or the DCI, an CSI trigger state and an updated correspondence for each CSI-RS resources associated with the CSI trigger state.
  • the UE may monitor over one or more CSI-RS resources for one or more CSI-RSs and, in examples in which the UE receives the updated correspondence prior to receiving the one or more CSI-RSs, the UE may generate a CSI report based on the updated correspondence.
  • the described techniques may be implemented to provide additional control signaling (such as a MAC-CE or DCI) for efficiently updating, at the UE, the TCI state (or TCI states) associated with each CSI-RS resource of a set of CSI-RS resources indicated by the control signaling. For instance, based on implementing the described techniques, the serving base station or the TRP may avoid performing an RRC re-configuration to update the TCI states for each of the set of CSI-RS resources.
  • additional control signaling such as a MAC-CE or DCI
  • the serving base station or the TRP may avoid configuring a relatively larger number of CSI trigger states (such that a same CSI-RS resource can be configured with different TCI states in different CSI trigger states) .
  • the serving base station or the TRP based on avoiding RRC re-configuration or the configuration of the relatively larger number of CSI trigger states, may reduce signaling latency, lower overhead (such as RRC overhead or DCI overhead) , or mitigate a frequency of MAC-CE updates, among other benefits.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (for example, mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable for example, mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in Figure 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (for example, core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in Figure 1.
  • network equipment for example, core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (for example, via an S1, N2, N3, or another interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (for example, via an X2, Xn, or other interface) either directly (for example, directly between base stations 105) , or indirectly (for example, via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology.
  • the “device” also may be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 also may include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in Figure 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in Figure 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (for example, a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (for example, LTE, LTE-A, LTE-A Pro, NR) .
  • Each physical layer channel may carry acquisition signaling (for example, synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • a carrier also may have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (for example, an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode in which initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode in which a connection is anchored using a different carrier (for example, of the same or a different radio access technology) .
  • the communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115.
  • Carriers may carry downlink or uplink communications (for example, in an FDD mode) or may be configured to carry downlink and uplink communications (for example, in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (for example, 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 (for example, the base stations 105, the UEs 115, or both) may have hardware configurations that support communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths.
  • the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating over portions (for example, a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (for example, using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • a resource element may include one symbol period (for example, a duration of one modulation symbol) and one subcarrier.
  • the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (for example, the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (for example, spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • a numerology may include a subcarrier spacing ( ⁇ f) and a cyclic prefix.
  • a carrier may be divided into one or more BWPs having the same or different numerologies.
  • a UE 115 may be configured with multiple BWPs.
  • a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (for example, 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (for example, ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (for example, in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (for example, depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (for example, N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (for example, in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration for example, the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (for example, in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region for example, a control resource set (CORESET)
  • CORESET control resource set
  • a control region for example, a control resource set (CORESET) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (for example, CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (for example, control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (for example, over a carrier) and may be associated with an identifier for distinguishing neighboring cells (for example, a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell also may refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (for example, a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (for example, a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (for example, several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (for example, licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (for example, the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and also may support communications over the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (for example, MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • MTC mobile transmission control
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may support synchronous or asynchronous operation.
  • the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time.
  • the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (for example, via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (for example, a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) .
  • half-duplex communications may be performed at a reduced peak rate.
  • Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (for example, according to narrowband communications) , or a combination of these techniques.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (for example, set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • a narrowband protocol type that is associated with a defined portion or range (for example, set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (for example, mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 also may be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (for example, using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications.
  • D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (for example, UEs 115) .
  • vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • a vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system.
  • vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (for example, base stations 105) using vehicle-to-network (V2N) communications, or with both.
  • V2N vehicle-to-network
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (for example, a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (for example, a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to IP services 150 for one or more network operators.
  • the IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (for example, radio heads and ANCs) or consolidated into a single network device (for example, a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, sometimes in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (for example, less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 also may operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (for example, from 30 GHz to 300 GHz) , also known as the millimeter band.
  • SHF super high frequency
  • EHF extremely high frequency
  • the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions.
  • the techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (for example, LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • the base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers.
  • Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (for example, the same codeword) or different data streams (for example, different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , in which multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , in which multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which also may be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (for example, a base station 105, a UE 115) to shape or steer an antenna beam (for example, a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (for example, with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a base station 105 may use multiple antennas or antenna arrays (for example, antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals (for example, synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions.
  • the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (for example, by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
  • Some signals may be transmitted by a base station 105 in a single beam direction (for example, a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (for example, from a base station 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands.
  • the base station 105 may transmit a reference signal (for example, a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal for example, a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (for example, a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback for example, a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (for example, for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (for example, for transmitting data to a receiving device) .
  • a receiving device may try multiple receive configurations (for example, directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (for example, different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • a receiving device may use a single receive configuration to receive along a single beam direction (for example, when receiving a data signal) .
  • the single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (for example, a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • SNR signal-to-noise ratio
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • PDCP Packet Data Convergence Protocol
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a MAC layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer also may use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the RRC protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • transport channels may be mapped to physical channels.
  • Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (for example, using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (for example, automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (for example, low signal-to-noise conditions) .
  • a device may support same-slot HARQ feedback. In such examples, the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In some other implementations, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • a UE 115 and a base station 105 may communicate over a communication link 125 and, in some implementations, the UE 115 may perform one or more channel measurements of the communication link 125 between the UE 115 and the base station 105 to determine a channel quality associated with the communication link 125.
  • the base station 105 may configure a set of CSI measurement resources, such as CSI-RS resources, and the UE 115 may perform the one or more channel measurements over one or more of the configured set of CSI measurement resources.
  • the base station 105 may configure the set of CSI measurement resources such that each CSI measurement resource is associated with one or more TCI states.
  • the base station 105 may transmit an RRC message (for example, a configuration via RRC signaling) indicating a correspondence between the set of CSI measurement resources and multiple TCI states.
  • RRC message for example, a configuration via RRC signaling
  • Such a correspondence may include or refer to a mapping or an association for each of the set of CSI measurement resources to one or more of the multiple TCI states.
  • the RRC configuration of the TCI state (or TCI states) for each of the configured set of CSI measurement resources may vary based on the type of the CSI measurement resources. For instance, in examples in which the CSI measurement resources are periodic CSI measurement resources (for example, the CSI measurement resources are configured for periodic CSI reporting) , the base station 105 may configure, via the RRC message, a TCI state per CSI measurement resource. In other words, the base station 105 may directly configure a TCI state identifier (ID) per CSI measurement resource.
  • ID TCI state identifier
  • the base station 105 may configure, via the RRC message, a TCI state for CSI measurement resources as part of an associated report setting configured for a trigger state (such as an aperiodic CSI trigger state) .
  • the base station 105 may configure a set of trigger states, each trigger state linked to one or more report settings and each report setting associated with a CSI measurement resource set, via the RRC message and may include, within the RRC message, an indication of a TCI state for each CSI measurement resource of the one or more CSI measurement resource sets associated with the one or more linked report settings.
  • the base station 105 may transmit one or more reference signals over at least a subset of the configured set of CSI measurement resources.
  • the UE 115 may receive the one or more reference signals based on monitoring over one or more CSI measurement resources of the set of CSI measurement resources and may generate a CSI report based on the one or more reference signals and the TCI state (or TCI states) associated with the one or more CSI measurement resources over which the UE 115 received the one or more reference signals.
  • the base station 105 may attempt to update the correspondence or association between the set of CSI measurement resources and the multiple TCI states. For example, the base station 105 may configure the set of CSI measurement resources for the transmission of reference signals from one or more other TRPs, and each TRP may apply a different TCI state. As such, the base station 105 may achieve greater scheduling flexibility by updating the correspondence or association between the set of CSI measurement resources and the multiple TCI states. For example, the base station 105 may have more flexibility to allocate different CSI measurement resources to different TRPs by updating the correspondence or association between the set of CSI measurement resources and the multiple TCI states.
  • the base station 105 may use such an updated correspondence or association to switch a first CSI measurement resource from a first TCI state to a second TCI state such that a TRP that applies the second TCI state may transmit a reference signal over the first CSI measurement resource.
  • the base station 105 may transmit a control message, such as a MAC-CE or DCI, to the UE 115 indicating the updated correspondence between at least some of the configured set of CSI measurement resources and the multiple TCI states.
  • a control message such as a MAC-CE or DCI
  • the base station 105 may construct the MAC-CE to include one or more fields indicating the CSI measurement resources that are to be assigned an updated TCI state and one or more fields indicating the new TCI states for each of the indicated CSI measurement resources.
  • the UE 115 may apply the updated correspondence and monitor over one or more CSI measurement resources of the configured set of CSI measurement resources for one or more reference signals.
  • the one or more CSI measurement resources over which the UE 115 may monitor may include a CSI measurement resource that has an updated TCI state and, in examples in which the UE 115 receives the one or more reference signals after applying the updated correspondence and before a CSI reference resource, the UE 115 may generate a CSI report based on the one or more reference signals and the updated correspondence.
  • Figure 2 illustrates an example of a wireless communications system 200 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • the wireless communications system 200 may implement aspects of wireless communications system 100.
  • the wireless communications system 200 may include a base station 105-a and a UE 115-a and the base station 105-a and the UE 115-a may communicate over a communication link 205.
  • the base station 105-a (which may be an example of or function as a TRP as described with reference to Figure 1) may transmit a control message 215 indicating an updated TCI state correspondence for at least a subset of a set of configured CSI-RS resources over which the UE 115-a may monitor for one or more reference signals.
  • the base station 105-a may configure an initial or a first TCI correspondence for the set of configured CSI-RS resources at the UE 115-a via an RRC message 210 and may configure an updated or a second TCI correspondence for at least the subset of the set of configured CSI-RS resources via the control message 215.
  • the base station 105-a may construct or generate the RRC message 210 based on a type of the set of CSI-RS resources configured at the UE 115-a. For instance, the base station 105-a may construct the RRC message 210 differently depending on whether the set of CSI-RS resources configured at the UE 115-a are configured as periodic CSI-RS resources or as aperiodic CSI-RS resources.
  • the type of the set of CSI-RS resources configured at the UE 115-a may correspond to a CSI reporting configuration at the UE 115-a, such that the set of CSI-RS resources may be configured as periodic CSI-RS resources to support periodic CSI reporting or as aperiodic CSI-RS resources to support aperiodic CSI reporting.
  • the base station 105-a may construct the RRC message 210 to configure a TCI state for each CSI-RS resource directly. In other words, the base station 105-a may directly configure a TCI state ID per CSI-RS resource via the RRC message 210.
  • the base station 105-a may construct the RRC message 210 to configure a TCI state for each CSI-RS resource associated with an aperiodic CSI trigger state.
  • the base station 105-a may configure a TCI state ID for CSI-RS resources as part of an associated report setting configured for an aperiodic CSI trigger state.
  • the base station 105-a configures the UE 115-a for aperiodic CSI reporting and the base station 105-a constructs the RRC message 210 to configure a TCI state for each CSI-RS resource associated with an aperiodic CSI trigger state
  • the base station 105-a via the RRC message 210, may configure up to an upper limit of trigger states (such as 128 trigger states) by including a higher layer parameter (such as an AperiodicTriggerStateList parameter or a CSI-AperiodicTriggerStateList parameter) in the RRC message 210.
  • the base station 105-a may include an AperiodicTriggerStateList parameter in the RRC message 210 that indicates a list of trigger states associated with aperiodic CSI reporting.
  • the base station 105-a may link each trigger state in the list of trigger states to one or more (and up to an upper limit, such as 16) report settings via the RRC message 210 and, for each report setting, the base station 105-a may link a configured CSI-RS resource set (such as an NZP CSI-RS resource set) through a CSI-ReportConfigId parameter in the RRC message 210.
  • the RRC message 210 may indicate, for each CSI-RS resource set linked for each report setting, the CSI-RS resources in the CSI-RS resource set and the RRC message 210 may include a TCI state for each of the indicated CSI-RS resources.
  • the base station 105-a may indicate a TCI state for a set of CSI-RS resources as part of the trigger state configuration (for example, within the RRC message 210 indicating the list of trigger states) .
  • the RRC message 210 may include a CSI AperiodicTriggerStateList parameter including a sequence of one or more CSI-AperiodicTriggers of a CSI-AperiodicTriggerState parameter.
  • the CSI-AperiodicTriggerState parameter may include an associatedReportConfigInfoList parameter including a sequence of one or more ReportConfigPerAperiodicTrigger parameters of a CSI-AssociatedReportConfigInfo parameter.
  • the CSI-AssociatedReportConfigInfo parameter may include the reportConfigId parameter and a resourcesForChannel parameter.
  • the resourcesForChannel parameter may include an nzp-CSI-RS parameter that includes a resourceSet parameter and a qcl-info parameter.
  • the resourceSet parameter may include an integer of a maximum number NZP-CSI-RS-ResourceSetsPerConfig and the qcl-info parameter may include a sequence of one or more AP-CSI-RS-ResourcesPerSet of a TCI-StateId parameter. Additional details relating to the linking of one or more CSI-RS resource sets to a report setting are described herein, including with reference to Figure 3.
  • the base station 105-a may additionally transmit a MAC-CE indicating a subset (or a sub-selection) of the list of trigger states configured via the RRC message 210.
  • the MAC-CE may select a subset (and up to an upper limit, such as 63) of trigger states from the RRC configured trigger state list (which can be of size up to 128) .
  • the base station 105-a may trigger a CSI report (an aperiodic CSI report or a semi-persistent CSI report) on a physical uplink shared channel (PUSCH) via a “CSI request” field in uplink DCI.
  • PUSCH physical uplink shared channel
  • the “CSI request” field in the uplink DCI may include a number of bits based on a number of trigger states that are activated (or sub-selected) through the MAC-CE to indicate one of the activated trigger states. For example, if the “CSI request” field has N bits, the base station 105-a may activate (or sub-select) 2 N -1 trigger states through the sub-selecting MAC-CE.
  • the base station 105-a may determine to update the TCI state correspondence for at least a subset of the set of configured CSI-RS resources, which may refer to the set of CSI-RS resources individually configured by the RRC message 210 (in examples of periodic CSI reporting) or the set of CSI-RS resources configured by the RRC message 210 as part of a trigger state configuration (in examples of aperiodic CSI reporting) .
  • the base station 105-a may function as a serving base station for the UE 115-a within a multi-TRP system and may configure CSI-RS resources such that a CSI-RS resource is associated with a same TCI state as may be applied by a TRP (such as the base station 105-a) scheduled to transmit a reference signal over the CSI-RS resource.
  • a TRP such as the base station 105-a
  • the base station 105-a may update the TCI state associated with the first CSI-RS resource from the first TCI state to the second TCI state.
  • configuring an updated TCI state correspondence for a periodic CSI-RS resource or an aperiodic CSI-RS resource may be associated with latency or may increase RRC overhead, or both.
  • the base station 105-a may transmit RRC signaling (in addition to the RRC message 210) to re-configure each CSI-RS resource with an updated TCI state.
  • RRC re-configuration may be relatively slow or increase latency (as compared to a MAC-CE or DCI) .
  • the base station 105-a may RRC re-configure a trigger state (for example, via RRC signaling) , change TCI state correspondence for the CSI-RS resources associated with the trigger state, and indicate that trigger state in DCI (such as in the “CSI request” field in the uplink DCI) , which may be relatively slow or increase latency (as compared to a MAC-CE or DCI) .
  • the base station 105-a may define a relatively larger number of trigger states (and up to an upper limit, such as 128) via RRC signaling such that a same CSI-RS resource may be configured with different TCI states in different trigger states and a sub-selecting MAC-CE can select a subset (and up to an upper limit, such as 63) or DCI could indicate one of the trigger states, or both.
  • a relatively larger number of RRC configured trigger states may result in larger RRC overhead and frequent MAC-CE updates or larger DCI overhead, or both.
  • the base station 105-a may determine that it would be useful to be able to update the TCI state of a CSI-RS resource in examples of either or both of periodic CSI reporting or aperiodic CSI reporting via lower latency signaling, such as a MAC-CE or DCI as may be employed for updating TCI state for semi-persistent CSI-RS resources.
  • lower latency signaling such as a MAC-CE or DCI as may be employed for updating TCI state for semi-persistent CSI-RS resources.
  • the base station 105-a may indicate the TCI state for CSI-RS resources (such as all CSI-RS resources) in a CSI-RS resource set in a MAC-CE that activates a semi-persistent CSI-RS resource set.
  • CSI-RS resources such as all CSI-RS resources
  • Such an activating MAC-CE may include an activation/deactivation field, a serving cell ID field, a BWP ID field, one or more reserved fields, one or more fields indicating a semi-persistent CSI-RS resource set ID for channel measurement or for interference measurement, and one or more fields indicating a TCI state for each CSI-RS resource of the indicated one or more semi-persistent CSI-RS resource set IDs.
  • the MAC-CE may indicate a TCI state ID 0 for a first semi-persistent CSI-RS resource within a semi-persistent CSI-RS resource set indicated by the MAC-CE, a TCI state ID 1 for a second semi-persistent CSI-RS resource within the semi-persistent CSI-RS resource set indicated by the MAC-CE, and a TCI state ID N for an N th semi-persistent CSI-RS resource within the semi-persistent CSI-RS resource set indicated by the MAC-CE.
  • the base station 105-a may use such an activating MAC-CE to update the TCI state for each CSI-RS resource of an indicated semi-persistent CSI-RS resource set.
  • Such an activating MAC-CE that includes one or more fields for indicating a TCI state for one or more CSI-RS resources may not be supported for periodic or aperiodic CSI-RS resources.
  • the base station 105-a may construct and transmit a control message 215 that may convey an updated TCI state correspondence for one or more CSI-RS resources that are configured as periodic CSI-RS resources or as aperiodic CSI-RS resources.
  • the control message 215 may be an example of a MAC-CE or DCI, such as group-common DCI (for example, DCI format 2_x) .
  • the base station 105-a may construct the MAC-CE including a number of fields to indicate information associated with the updated TCI state correspondence.
  • the base station 105-a may configure the UE 115-a (and any other served UEs 115) with a block in the DCI format 2_x and the block may have a number of fields to indicate information associated with the updated TCI state correspondence.
  • the base station 105-a may construct or generate the control message 215 to update the TCI state for each CSI-RS resource within a periodic CSI-RS resource set.
  • the control message 215 may include a field indicating a serving cell ID, a field indicating a BWP ID, a field indicating a periodic CSI-RS resource set, and one or more fields indicating an updated TCI state ID for each CSI-RS resource in the periodic CSI-RS resource set.
  • control message 215 may include a block for the UE 115-a and the block may include at least a field indicating a periodic CSI-RS resource set ID and one or more fields indicating an updated TCI state ID for each CSI-RS resource in the periodic CSI-RS resource set.
  • the base station 105-a may construct or generate the control message 215 to update the TCI state per periodic CSI-RS resource (irrespective of to which resource set a periodic CSI-RS resource belongs) .
  • the base station 105-a may transmit the control message 215 indicating an updated TCI state correspondence between a first periodic CSI-RS resource and a first TCI state and an updated TCI state correspondence between a second periodic CSI-RS resource and a second TCI state such that the first periodic CSI-RS resource and the second periodic CSI-RS resource belong to different periodic CSI-RS resource sets.
  • control message 215 may include a field indicating a serving cell ID, a field indicating a BWP ID, one or more fields indicating one or more periodic CSI-RS resource IDs (for example, one or more NZP CSI-RS resource IDs) , and a corresponding one or more fields indicating an updated TCI state ID for each of the one or more indicated periodic CSI-RS resources.
  • control message 215 may include a block for the UE 115-a and the block may include at least one or more fields indicating one or more periodic CSI-RS resource IDs and a corresponding one or more fields indicating an updated TCI state ID for each of the one or more indicated periodic CSI-RS resources.
  • the base station 105-a may construct or generate the control message 215 to update the TCI state for each aperiodic CSI-RS resource within an aperiodic CSI-RS resource set, as similarly described in the context of constructing the control message 215 for a periodic CSI-RS resource.
  • the control message 215 may include a field indicating a serving cell ID, a field indicating a BWP ID, a field indicating an aperiodic CSI-RS resource set, and one or more fields indicating an updated TCI state ID for each CSI-RS resource in the aperiodic CSI-RS resource set in examples in which the control message 215 is a MAC-CE.
  • control message 215 may include a block for the UE 115-a and the block may include at least a field indicating an aperiodic CSI-RS resource set ID and one or more fields indicating an updated TCI state ID for each CSI-RS resource in the aperiodic CSI-RS resource set in examples in which the control message 215 is group-common DCI.
  • the base station 105-a may construct or generate the control message 215 to update the TCI state per aperiodic CSI-RS resource (irrespective of to which resource set an aperiodic CSI-RS resource belongs or with which aperiodic CSI trigger state an aperiodic CSI-RS is associated) .
  • the base station 105-a may transmit the control message 215 indicating an updated TCI state correspondence between a first aperiodic CSI-RS resource and a first TCI state and an updated TCI state correspondence between a second aperiodic CSI-RS resource and a second TCI state such that the first aperiodic CSI-RS resource and the second aperiodic CSI-RS resource belong to different aperiodic CSI-RS resource sets or are associated with different aperiodic CSI trigger states, or both.
  • control message 215 may include a field indicating a serving cell ID, a field indicating a BWP ID, one or more fields indicating one or more aperiodic CSI-RS resource IDs (for example, one or more NZP CSI-RS resource IDs) , and a corresponding one or more fields indicating an updated TCI state ID for each of the one or more indicated aperiodic CSI-RS resources.
  • control message 215 may include a block for the UE 115-a and the block may include at least one or more fields indicating one or more aperiodic CSI-RS resource IDs and a corresponding one or more fields indicating an updated TCI state ID for each of the one or more indicated aperiodic CSI-RS resources.
  • the base station 105-a may construct or generate the control message 215 to update the TCI state for each CSI-RS resource associated with an aperiodic CSI trigger state.
  • the control message 215 may indicate the aperiodic CSI trigger state to which the updated TCI state correspondence applies, and the aperiodic CSI trigger state may include one or more associated CSI report configuration information in which one CSI-RS resource set includes one or more CSI-RS resources.
  • control message 215 may include a field indicating a serving cell ID, a field indicating a BWP ID, a field indicating the aperiodic CSI trigger state number, and one or more fields indicating an updated TCI state ID for each aperiodic CSI-RS resource associated with the aperiodic CSI trigger state.
  • control message 215 may include a block for the UE 115-a and the block may include at least a field indicating the aperiodic CSI trigger state and one or more fields indicating an updated TCI state ID for each aperiodic CSI-RS resource associated with the aperiodic CSI trigger state.
  • the base station 105-a may convey the aperiodic CSI trigger state number via the control message 215 based on determining a number that identifies a member from the list of RRC configured aperiodic CSI trigger states (irrespective of any sub-selection by a sub-selecting MAC-CE) .
  • the base station 105-a may convey the aperiodic CSI trigger state number via the control message 215 based on determining a number that identifies a codepoint of the CSI request field of the uplink DCI that refers to one of the sub-selected aperiodic CSI trigger states.
  • the sub-selecting MAC-CE may update the TCI state for each CSI-RS resource associated with each sub-selected aperiodic CSI trigger state.
  • the base station 105-a may construct or generate the sub-selecting MAC-CE to include one or more fields that indicate an updated TCI state for each of the aperiodic CSI-RS resources associated with each of the aperiodic CSI trigger states that the MAC-CE sub-selects or activates from the list of RRC configured aperiodic CSI trigger states.
  • the control message 215 may refer to the sub-selecting MAC-CE, as described in more detail with reference to Figure 4.
  • the base station 105-a may transmit the control message 215 to update multiple TCI states for a CSI-RS resource without exceeding the scope of the present disclosure.
  • a CSI-RS resource may be associated with multiple (such as two) TCI states to support non-coherent joint transmission (NCJT) or other single frequency network (SFN) communication schemes.
  • the control message 215 may include one or more fields indicating an updated TCI state correspondence involving multiple TCI states for each CSI-RS resource associated with the updated TCI state correspondence.
  • the wireless communications system 200 may include more than one TRP and all TRPs may transmit reference signals that the UE 115-a may measure for channel measurement or interference measurement. Additional details relating to CSI-RS resources that are associated with multiple TCI states are described herein, including with reference to Figure 5.
  • the UE 115-a may apply the updated TCI state correspondence.
  • the UE 115-a may apply the updated TCI state correspondence according to a timeline based on whether the control message 215 is a MAC-CE or DCI.
  • the UE 115-a may still use the first or initial TCI state correspondence after receiving the control message 215 and before applying the updated TCI state correspondence according to the timeline.
  • the base station 105-a may transmit one or more reference signals over one or more CSI-RS resources of the set of CSI-RS resources configured at the UE 115-a.
  • the UE 115-a may monitor over the one or more CSI-RS resources for the one or more reference signals and, in some examples, may generate a CSI report based on the one or more reference signals, when the UE 115-a receives the one or more reference signals, when the UE 115-a applies the updated TCI state correspondence, and a location of a CSI reference resource.
  • the CSI reference resource may be a time-domain resource defined relative to a time that the UE 115-a is scheduled to transmit the CSI report and may represent how late a measurement of the one or more reference signals can occur prior to the CSI report such that there is sufficient time to measure and prepare the CSI report before the time the UE 115-a transmits the CSI report.
  • the CSI reference resource may be defined in terms of how many slots or symbols prior to the transmission of the CSI report and may depend on whether the CSI report is aperiodic, semi-persistent, or periodic.
  • the UE 115-a may generate a CSI report based on the one or more reference signals and the updated TCI state correspondence and may transmit the CSI report to the base station 105-a.
  • the UE 115-a may generate the CSI report based on the updated TCI state correspondence.
  • the UE 115-a may generate a CSI report based on the one or more reference signals and the first TCI state correspondence. In other words, the UE 115-a may refrain from updating the CSI report (generating an updated CSI report such that the updated CSI report is generated based on the updated TCI state correspondence instead of the first TCI state correspondence) . In some examples, the UE 115-a may transmit the CSI report that was generated based on the first TCI state correspondence. In some other examples, the UE 115-a may refrain from transmitting or may drop the CSI report that was generated based on the first TCI state correspondence.
  • Figure 3 illustrates an example of a report diagram 300 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • the report diagram 300 may be implemented to realize aspects of the wireless communications system 100 or the wireless communications system 200, depicted and described in Figures 1 and 2, respectively.
  • the report diagram 300 may be implemented by a UE 115 and a base station 105 in a CSI reporting procedure, as described with reference to Figures 1 and 2.
  • the report diagram 300 may illustrate a process in which a UE 115 receives a CSI report configuration 305 from the network (for example, from a base station 105) that may indicate one or more resources to use for a CSI measurement.
  • a UE 115 may measure CSI for one or more potential signal paths or channels, such as one or more communication links 125 as described with reference to Figure 1.
  • the UE 115 may measure a CSI-RS and may use the measurements to perform channel estimation.
  • the CSI-RS transmissions that the UE 115 measures may be periodic CSI-RS transmissions, aperiodic CSI-RS transmissions, semi-persistent CSI-RS transmissions, or a combination thereof.
  • the UE 115 may transmit a CSI report to a base station 105 including one or more parameters based on the CSI measurements.
  • the CSI report may include one or more precoding matrix indicators (PMIs) , rank indicators (RIs) , layer indicators (LIs) , channel quality indicators (CQIs) , reference signal received power (RSRP) measurements (for example, Layer 1-RSRPs (L1-RSRPs) ) , signal to interference plus noise (SINR) measurements (for example, L1-SINRs) , or the like.
  • PMIs precoding matrix indicators
  • RIs rank indicators
  • LIs layer indicators
  • CQIs channel quality indicators
  • RSRP reference signal received power
  • SINR signal to interference plus noise
  • the UE 115 may perform periodic CSI reporting (for example, the base station 105 may transmit higher layer signaling scheduling periodic CSI reports) , aperiodic CSI reporting (for example, the base station 105 may dynamically configure a CSI report) , semi-persistent CSI reporting (for example, the base station 105 may transmit higher layer signaling scheduling periodic CSI reports and may use dynamic signaling to trigger the periodic CSI reporting) , or a combination thereof.
  • periodic CSI reporting for example, the base station 105 may transmit higher layer signaling scheduling periodic CSI reports
  • aperiodic CSI reporting for example, the base station 105 may dynamically configure a CSI report
  • semi-persistent CSI reporting for example, the base station 105 may transmit higher layer signaling scheduling periodic CSI reports and may use dynamic signaling to trigger the periodic CSI reporting
  • the UE 115 may receive a control message, such as an RRC message as described with reference to Figure 2, indicating the CSI report configuration 305 corresponding to one or more CSI-RS resources (for example, CSI measurement resources) over which the UE 115 may monitor for one or more reference signals.
  • the UE 115 may receive the control message (for example, via RRC signaling) including the CSI report configuration 305 (which may be equivalently referred to as a “CSI report config” ) that may link to one or more resource settings associated with different measurement types.
  • the CSI report configuration 305 may link to a setting for one or more of a non-zero power (NZP) CSI-RS resource for channel measurement (CMR) 310, a CSI-RS resource for interference measurement (CSI-IM) 315, or an NZP CSI-RS for interference measurement (NZP IMR) 320, or any combination thereof.
  • NZP non-zero power
  • CMR channel measurement
  • CSI-IM CSI-RS resource for interference measurement
  • NZP IMR NZP CSI-RS for interference measurement
  • the NZP-CMR setting 310 may be associated with one or more NZP CMR sets 325.
  • an NZP CMR set 325-a may be the active resource set, while an NZP CMR set 325-b and an NZP CMR set 325-c may be inactive resource sets.
  • the CSI-IM resource setting 315 may be associated with one or more CSI-IM resource set 330.
  • a CSI-IM resource set 330-a may be the active resource set, while a CSI-IM resource set 330-b and a CSI-IM resource sets 330-c may be inactive resource sets.
  • the NZP IMR setting 320 may be associated with one or more NZP IMR sets 335.
  • an NZP IMR set 335-a may be the active resource set, while an NZP IMR set 335-b and an NZP IMR set 335-c may be inactive resource sets.
  • Each resource set may include one or more resources, which may be referred to as CSI-RS resources or CSI measurement resources.
  • the NZP CMR set 325-a may include one or more resources, such as one or more NZP CMRs 340 (for example, an NZP CMR 340-a and an NZP CMR 340-b) .
  • the CSI-IM resource set 330-a may include one or more resources, such as one or more CSI-IM resources 345 (for example, a CSI-IM resource 345-a and a CSI-IM resource 345-b) .
  • the NZP IMR set 335-a may include one or more resources, such as one or more NZP IMRs 350 (for example, an NZP IMR 350-a and an NZP IMR 350-b) .
  • each CSI-RS resource within a resource set may be referred to as a CSI hypothesis.
  • the NZP CMR 340-a may be associated with a TCI state a (for example, a first TCI state) and the NZP CMR 340-b may be associated with a TCI state b (for example, a second TCI state) .
  • the UE 115 may receive an RRC configuration indicating a first or an initial TCI state correspondence for each of the CSI-RS resources configured at the UE 115.
  • the UE 115 may additionally receive a MAC-CE or DCI (such as group-common DCI) indicating an updated TCI state correspondence for at least a subset of the CSI-RS resources configured at the UE 115.
  • the UE 115 may select one NZP CMR 340 out of the one or more NZP-CMRs 340 to use for reporting CSI.
  • the UE 115 may report the selected CMR 340 in a CSI-RS resource indicator (CRI) field as part of the CSI feedback so that a receiving TRP or a serving base station 105 knows to which NZP CMR 340 the reported CSI corresponds.
  • CRI CSI-RS resource indicator
  • the UE 115 Based on the selected NZP CMR 340, the UE 115 also may implicitly select a resource from the one or more CSI-IM resources 345 (for example, the CSI-IM resource 345-a or the CSI-IM resource 345-b) and one or more NZP IMRs 350 (for example, the NZP IMR 350-a, the NZP IMR 350-b, or both) .
  • an NZP CMR 340 may feature a resource-wise association 355 with a CSI-IM resource 345, such that one NZP-CMR 340 is associated with one CSI-IM resource 345.
  • the NZP CMR 340-a may be associated with the CSI-IM resource 345-a and the NZP CMR 340-b may be associated with the CSI-IM resource 345-b.
  • each NZP CMR 340 may feature a resource-wise association 360 with all NZP IMRs 350 collectively, such that the NZP CMR 340-a and the NZP CMR 340-b may both be associated with the NZP IMR 350-a and the NZP IMR 350-b.
  • Figure 4 illustrates an example of a sub-selecting MAC-CE 400 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • the sub-selecting MAC-CE 400 may be implemented to realize aspects of the wireless communications system 100 or the wireless communications system 200, depicted and described in Figures 1 and 2, respectively.
  • a base station 105 may transmit the sub-selecting MAC-CE 400 to a UE 115 to sub-select or activate a subset of a larger set of aperiodic CSI trigger states configured at the UE 115.
  • the base station 105 may generate and transmit the sub-selecting MAC-CE 400 to the UE 115 to additionally indicate an updated TCI state correspondence for each of the CSI-RS resources associated with each of the sub-selected aperiodic CSI trigger states.
  • the sub-selecting MAC-CE 400 may include a reserved field, a field indicating a serving cell ID, a field indicating a BWP ID, and a set of fields indicating the sub-selected aperiodic CSI trigger states from the larger set of aperiodic CSI trigger states configured at the UE 115.
  • the codepoint to which an aperiodic CSI trigger state is mapped may be determined by its ordinal position among all the aperiodic CSI trigger states with a T i field set to 1.
  • the first aperiodic CSI trigger state with a T i field set to 1 may be mapped to a codepoint value of 1 (a codepoint corresponding to a bit-representation of a sub-selected aperiodic CSI trigger state, such as a codepoint that may be indicated via a “CSI request” field of an uplink DCI)
  • the second aperiodic CSI trigger state with a T i field set to 1 may be mapped to a codepoint value of 2, and so on. Additional details relating to a “CSI request” field codepoint and associated report configurations are illustrated by Tale 1.
  • i may refer to each of the larger set of aperiodic CSI trigger states configured at the UE 115 while the value of T i field may indicate whether the corresponding aperiodic CSI trigger state is sub-selected or not. For example, if the value of a T i field is 0, the corresponding aperiodic CSI trigger state may not be sub-selected or may not be activated. Alternatively, if the value of a T i field is 1, the corresponding aperiodic CSI trigger state may be sub-selected or may be activated.
  • the base station 105 may construct or generate the sub-selecting MAC-CE 400 to indicate an updated TCI state correspondence for each of the CSI-RS resources associated with the sub-selected aperiodic CSI trigger states. For example, for each of the aperiodic CSI trigger states that are selected via the sub-selecting MAC-CE 400, the base station 105 may additionally configure the sub-selecting MAC-CE to indicate an updated TCI state for each of the CSI-RS resources associated with the selected aperiodic CSI trigger state.
  • Table 1 illustrates how various “CSI request” field codepoints may be associated with one or multiple CSI-ReportConfigId’s .
  • a “CSI request” field codepoint of 0 may be associated with no CSI report
  • a “CSI request” field codepoint of 1 may be associated with a single CSI-ReportConfigId, a resourceSet of the single CSI-ReportConfigId, and a TCI state associated with each CSI-RS resource in the resourceSet
  • a “CSI request” field codepoint of 63 may be associated with two CSI-ReportConfigId’s , one resourceSet associated with each of the two CSI-ReportConfigId’s, and a TCI state associated with each CSI-RS resource in the two resourceSet’s.
  • Figure 5 illustrates an example of a resource scheme 500 and a resource scheme 501 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • the resource scheme 500 and the resource scheme 501 may be implemented to realize aspects of the wireless communications system 100 or the wireless communications system 200, depicted and described in Figures 1 and 2, respectively.
  • multiple TRPs may transmit one or more reference signals (such as one or more CSI-RSs) to a UE 115 over a single CSI-RS resource associated with multiple port groups, each port group associated with a different TCI state, or over multiple CSI-RS resources, each CSI-RS resource associated with a different TCI state.
  • the UE 115 may receive an indication of an updated correspondence between the single resource or the multiple resources and one or more TCI states based on whether the whether the multiple TRPs transmit the one or more reference signals over the single resource or over the multiple resources.
  • the UE 115 may operate within a multi-TRP system and may receive joint transmissions from multiple TRPs.
  • the UE 115 may receive a reference signal (such as a CSI-RS) from each of two TRPs that each apply a different TCI state.
  • the UE 115 may receive a first reference signal from a first TRP according to a TCI state 505 and may receive a second reference signal from a second TRP according to a TCI state 510.
  • the UE 115 may generate a CSI report, which also may be referred to as a multi-TRP or an mTRP CSI report, that includes CSI associated with more than one TCI state (for example, the TCI state 505 and the TCI state 510) .
  • a CSI report which also may be referred to as a multi-TRP or an mTRP CSI report, that includes CSI associated with more than one TCI state (for example, the TCI state 505 and the TCI state 510) .
  • either of the two TRPs or the UE 115 may select a CSI hypothesis according to which the UE 115 is to generate the CSI report and each CSI hypothesis (and corresponding CSI report) may correspond to two or more TCI states (as opposed to a single TCI state) .
  • selecting the CSI hypothesis may include selecting the CSI hypothesis out of multiple TCI states, which may correspond to multiple CSI-RS resources in a resource set.
  • Such CSI reporting may satisfy an objective of a further
  • the first TRP and the second TRP may employ various approaches to jointly transmit reference signals to the UE 115 such that the UE 115 may generate the CSI report (aCSI report across the first TCI state and the second TCI state) .
  • the first TRP and the second TRP may employ a first approach in which the two TRPs transmit reference signals over a single resource, such as a CSI-RS resource 515 as illustrated by the resource scheme 500.
  • the first TRP and the second TRP may employ a second approach in which the two TRPs transmit reference signals over separate resources, such as a CSI-RS resource 530 and a CSI-RS resource 535 as illustrated by the resource scheme 501.
  • the UE 115 may use the resource or resources over which the multiple TRPs may transmit for channel measurement or interference measurement.
  • the CSI-RS resource 515 may include multiple (such as two) CSI-RS port groups including a port group 520 and a port group 525 that are each associated with one TCI state.
  • the port group 520 may be associated with the TCI state 505 and the port group 525 may be associated with the TCI state 510.
  • a first set of ports of the CSI-RS resource 515 (a CSI-RS resource) may have or otherwise be associated with the TCI state 505 and, as such, may be included within the port group 520.
  • a second set of ports of the CSI-RS resource 515 may have or otherwise be associated with the TCI state 510 and, as such, may be included within the port group 525. Accordingly, in the first approach, the first TRP applying the TCI state 505 and the second TRP applying the TCI state 510 may transmit reference signals over the CSI-RS resource 515 and the UE 115 may generate a CSI report based on receiving or measuring the reference signals received over the CSI-RS resource 515. Further, based on employing the first approach, a quantity of multi-TRP CSI hypotheses may be equal to a quantity of CSI-RS resources with multiple CSI-RS port groups.
  • the CSI-RS resource 530 and the CSI-RS resource 535 may each be associated with a different TCI state.
  • the CSI-RS resource 530 may be associated with the TCI state 505 and the CSI-RS resource 535 may be associated with the TCI state 510.
  • the CSI-RS resource 530 and the CSI-RS resource 535 may be linked as a resource pair (for example, a CSI-RS resource pair) and a CSI hypothesis may correspond to both of the CSI-RS resource 530 and the CSI-RS resource 535. In other words, the CSI hypothesis may correspond to the resource pair.
  • a quantity of multi-TRP CSI hypotheses may be equal to a quantity of CSI-RS resource pairs.
  • the first TRP applying the TCI state 505 may transmit a reference signal over the CSI-RS resource 530 and the second TRP applying the TCI state 510 may transmit a reference signal over the CSI-RS resource 535 and the UE 115 may generate a CSI report based on receiving or measuring the reference signals received over the CSI-RS resource 530 and the CSI-RS resource 535. Details relating to the first approach and the second approach are further illustrated by Table 2, shown below.
  • the UE 115 may receive an updated TCI state correspondence for one or more CSI-RS resources from a serving base station 105 or a TRP based on whether the UE 115 and the multiple TRPs are implementing the first approach or the second approach.
  • a CSI-RS resource 515 (which may be any of a periodic CSI-RS resources, aperiodic CSI-RS resources, or semi-persistent CSI-RS resources) may be associated with both the TCI state 505 and the TCI state 510
  • the control message (which may be a MAC-CE or group-common DCI) indicating the updated TCI state correspondence may indicate two TCI states for each CSI-RS resource associated with a TCI state update.
  • the control message indicating the updated TCI state correspondence may indicate a single TCI state for each CSI-RS resource associated with a TCI state update.
  • Figure 6 illustrates an example of a process flow 600 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • the process flow 600 may implement aspects of the wireless communications system 100 or the wireless communications system 200, depicted and described in Figures 1 and 2, respectively.
  • the process flow 600 may illustrate communication between a UE 115-b and a base station 105-b.
  • the base station 105-b may transmit a control message, such as a MAC-CE or group-common DCI, to indicate an updated TCI state correspondence at the UE 115-b.
  • a control message such as a MAC-CE or group-common DCI
  • the base station 105-b may transmit, to the UE 115-b, an RRC message indicating a correspondence (such as a first or initial correspondence) between a set of CSI-RS resources and a set of TCI states.
  • a correspondence such as a first or initial correspondence
  • Such an RRC configured correspondence may be referred to as a first or initial TCI state correspondence for the set of CSI-RS resources.
  • the RRC message may configure a TCI state (or TCI states) for each CSI-RS resource of the set of CSI-RS resources directly.
  • the RRC message may configure a set of aperiodic CSI trigger states and may configure a TCI state (or TCI states) for each CSI-RS resource associated with each of the set of aperiodic CSI trigger states (for example, by linking one or more CSI report configurations in the RRC message) .
  • the base station 105-b may, in some implementations, transmit, to the UE 115-b, a sub-selecting MAC-CE that indicates a subset of the set of aperiodic CSI trigger states (the set of RRC configured aperiodic CSI trigger states) .
  • the sub-selecting MAC-CE also may indicate an updated correspondence between each CSI-RS resource associated with each of the subset of the set of aperiodic CSI trigger states and the set of TCI states.
  • the sub-selecting MAC-CE may select a subset of the set of aperiodic CSI trigger states and indicate an updated TCI state (or TCI states) for each CSI-RS resource associated with each of the subset of the set of aperiodic CSI trigger states. Further, in such examples in which the sub-selecting MAC-CE additionally indicates the updated correspondence, the sub-selecting MAC-CE and a control message transmitted at 615 may be or refer to the same signaling (for example, the base station 105-b will transmit the sub-selecting MAC-CE and the control message as a single message) .
  • the base station 105-b may transmit the control message indicating the updated correspondence (or a second correspondence) between at least a subset of the set of CSI-RS resources and the set of TCI states.
  • the base station 105-b may transmit the control message as a MAC-CE or DCI (such as group-common DCI) and the UE 115-b may apply the updated correspondence according to a timeline based on whether the control message is a MAC-CE or DCI.
  • the base station 105-b may construct the control message to indicate the CSI-RS resources to which the updated correspondence applies and the UE 115-b may apply the updated correspondence accordingly.
  • the updated correspondence may indicate a single TCI state for a CSI-RS resource or may indicate multiple (such as two) TCI states for a CSI-RS resource (as a CSI-RS resource may be associated with multiple TCI states in some implementations, such as in implementations involving a multi-TRP system) .
  • the base station 105-b may construct the control message to indicate that the updated correspondence is for CSI-RS resources included within a CSI-RS resource set and the UE 115-b may apply the updated correspondence to each CSI- RS resource of the CSI-RS resource set.
  • the base station 105-b may construct the control message to indicate that the updated correspondence is for a number of CSI-RS resources irrespective of the CSI-RS resource set to which they belong and the UE 115-b may apply the updated correspondence to the number of CSI-RS resources irrespective of the CSI-RS resource set to which the number of CSI-RS resources belong.
  • the updated correspondence may indicate a correspondence between a first CSI-RS resource and a first TCI state and may indicate a correspondence between a second CSI-RS resource and a second TCI state, and the first CSI-RS resource and the second CSI-RS resource may belong to different CSI-RS resource sets.
  • the base station 105-b may construct the control message to indicate that the updated correspondence is for CSI-RS resources associated with an aperiodic CSI trigger state and the UE 115-b may apply the updated correspondence to each CSI-RS resource associated with the aperiodic CSI trigger state.
  • the UE 115-b may apply the updated correspondence to a number of CSI-RS resources that are associated with a same aperiodic CSI trigger state (as linked through one or more report settings or CSI report configurations) .
  • the aperiodic CSI trigger state to which the UE 115-b may apply the updated correspondence may be included within the subset of the set of aperiodic CSI trigger states (as indicated by the sub-selecting MAC-CE) or may be included within the set of aperiodic CSI trigger states (as configured by the RRC message) .
  • the base station 105-b may construct the sub-selecting MAC-CE to also indicate an updated TCI state for each CSI-RS resource associated with each aperiodic CSI trigger state selected ( “sub-selected” ) or otherwise indicated by the sub-selecting MAC-CE and the UE 115-b may apply the updated correspondence to each CSI-RS resource associated with each aperiodic CSI trigger state indicated by the sub-selecting MAC-CE.
  • the base station 105-b may transmit, to the UE 115-b, one or more CSI-RSs over one or more CSI-RS resources of at least the subset of the set of CSI-RS resources that have an updated TCI state indicated by the control message.
  • the UE 115-b may monitor over the one or more CSI-RS resources of at least the subset of the set of CSI- RS resources that have an updated TCI state indicated by the control message.
  • the base station 105-b may transmit one or more CSI-RSs over any CSI-RS resource configured at the UE 115-b (such that the one or more CSI-RS resources may have an updated TCI state or an originally configured TCI state.
  • the UE 115-b may receive the one or more CSI-RSs within a time period between an application of the updated correspondence and a CSI reference resource. In some other examples, the UE 115-b may receive the one or more CSI-RSs outside of a time period between the application of the updated correspondence and the CSI reference resource.
  • the UE 115-b may generate a CSI report based on the one or more CSI-RSs and either the first TCI state correspondence or the updated TCI state correspondence. In some examples, the UE 115-b may generate the CSI report based on either the first TCI state correspondence or the updated TCI state correspondence based on whether the UE 115-b receives the one or more CSI-RSs within or outside of the time period between the application of the updated TCI state correspondence and the CSI reference resource.
  • the UE 115-b may generate the CSI report based on the one or more CSI-RSs and the updated correspondence.
  • the UE 115-b may drop or refrain from updating the CSI report.
  • the UE 115-b may generate the CSI report based on the one or more CSI-RSs and the first correspondence (not the updated correspondence, such that the UE 115-b may refrain from generating an updated CSI report based on the one or more CSI-RSs and the updated correspondence) .
  • the UE 115-b may, in some implementations, transmit the CSI report to the base station 105-b.
  • the UE 115-b may transmit the CSI report to the base station 105-b that is based on the one or more CSI-RSs and either of the updated correspondence (such as in examples in which the UE 115-b receives the one or more reference signals within the time period between the application of the updated correspondence and the CSI reference resource) or the first correspondence (such as in examples in which the UE 115-b receives the one or more reference signals outside of the time period between the application of the updated correspondence and the CSI reference resource) .
  • the UE 115-b may refrain from transmitting the CSI report (a CSI report based on the one or more CSI-RSs and the first TCI state correspondence) .
  • Figure 7 shows a block diagram 700 of an example device 705 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • the device 705 may be an example of aspects of a UE 115 as described herein.
  • the device 705 may include a receiver 710, a communications manager 715, and a transmitter 720.
  • the device 705 also may include a processor. Each of these components may be in communication with one another (for example, via one or more buses) .
  • the receiver 710 may receive information such as packets, user data, or control information associated with various information channels (for example, control channels, data channels, and information related to techniques for updating TCI states for periodic and aperiodic CSI-RS resources) . Information may be passed on to other components of the device 705.
  • the receiver 710 may be an example of aspects of the transceiver 1020 described with reference to Figure 10.
  • the receiver 710 may utilize a single antenna or a set of antennas.
  • the communications manager 715 may receive, from a base station, a RRC message indicating a correspondence between a set of CSI measurement resources and a set of transmission configuration indicator (TCI) states, receive, from the base station, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states, and monitor over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources for one or more CSI reference signals (CSI-RSs) .
  • TCI transmission configuration indicator
  • CSI-RSs CSI reference signals
  • the communications manager 715 may function as a processor or a chip and the communications manager 715 may include a first interface configured to obtain, from a base station, a RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states, and obtain, from the base station, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states.
  • the communications manager 715 also may include a second interface configured to output signaling for transmission (such as by an antenna array of the device 705) and a processing system configured to perform one or more processing operations (such as calculations) .
  • the processing system may be configured to monitor or to detect reception (or a failure to receive) one or more transmissions.
  • the processing system may be configured to monitor over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources for one or more CSI-RSs.
  • the communications manager 715 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 715, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 715, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 720 may transmit signals generated by other components of the device 705.
  • the transmitter 720 may be collocated with a receiver 710 in a transceiver module.
  • the transmitter 720 may be an example of aspects of the transceiver 1020 described with reference to Figure 10.
  • the transmitter 720 may utilize a single antenna or a set of antennas.
  • Figure 8 shows a block diagram 800 of an example device 805 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • the device 805 may be an example of aspects of a device 705, or a UE 115 as described herein.
  • the device 805 may include a receiver 810, a communications manager 815, and a transmitter 835.
  • the device 805 also may include a processor. Each of these components may be in communication with one another (for example, via one or more buses) .
  • the receiver 810 may receive information such as packets, user data, or control information associated with various information channels (for example, control channels, data channels, and information related to techniques for updating TCI states for periodic and aperiodic CSI-RS resources) . Information may be passed on to other components of the device 805.
  • the receiver 810 may be an example of aspects of the transceiver 1020 described with reference to Figure 10.
  • the receiver 810 may utilize a single antenna or a set of antennas.
  • the communications manager 815 may be an example of aspects of the communications manager 715 as described herein.
  • the communications manager 815 may include a RRC signaling component 820, a TCI state updating component 825, and a monitoring component 830.
  • the communications manager 815 may be an example of aspects of the communications manager 1010 described herein.
  • the RRC signaling component 820 may receive, from a base station, a RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states.
  • the TCI state updating component 825 may receive, from the base station, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states.
  • the monitoring component 830 may monitor over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources for one or more CSI-RSs.
  • the transmitter 835 may transmit signals generated by other components of the device 805.
  • the transmitter 835 may be collocated with a receiver 810 in a transceiver module.
  • the transmitter 835 may be an example of aspects of the transceiver 1020 described with reference to Figure 10.
  • the transmitter 835 may utilize a single antenna or a set of antennas.
  • FIG. 9 shows a block diagram 900 of an example communications manager 905 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • the communications manager 905 may be an example of aspects of a communications manager 715, a communications manager 815, or a communications manager 1010 described herein.
  • the communications manager 905 may include a RRC signaling component 910, a TCI state updating component 915, a monitoring component 920, a CSI-RS component 925, and a CSI reporting component 930. Each of these modules may communicate, directly or indirectly, with one another (for example, via one or more buses) .
  • the RRC signaling component 910 may receive, from a base station, a RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states.
  • the TCI state updating component 915 may receive, from the base station, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states. In some examples, the TCI state updating component 915 may receive the updated correspondence between each CSI measurement resource of a CSI measurement resource set and the set of TCI states.
  • the TCI state updating component 915 may receive the updated correspondence between a first CSI measurement resource and a first TCI state of the set of TCI states and a second CSI measurement resource and a second TCI state of the set of TCI states, and the first CSI measurement resource may belong to a first CSI measurement resource set and the second CSI measurement resource belongs to a second CSI measurement resource set different than the first CSI measurement resource set. In some examples, the TCI state updating component 915 may receive the updated correspondence between each CSI measurement resource associated with an aperiodic CSI trigger state and the set of TCI states.
  • the TCI state updating component 915 may receive a MAC-CE that indicates a subset of a set of RRC configured aperiodic CSI trigger states and indicates the updated correspondence between each CSI measurement resource associated with each of the subset of the set of RRC configured aperiodic CSI trigger states and the set of TCI states. In some examples, the TCI state updating component 915 may receive the updated correspondence indicating the multiple TCI states for each CSI measurement resource of at least the subset of the set of CSI measurement resources.
  • control message indicates the aperiodic CSI trigger state from a set of RRC configured aperiodic CSI trigger states or from a subset of the set of RRC configured aperiodic CSI trigger states indicated by a MAC-CE.
  • control message includes one or more fields indicating the updated correspondence between at least the subset of the set of CSI measurement resources and the set of TCI states.
  • control message includes a MAC-CE or group-common DCI.
  • the monitoring component 920 may monitor over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources for one or more CSI-RSs.
  • the CSI-RS component 925 may receive the one or more CSI-RSs within a time period between an application of the updated correspondence and a CSI reference resource based on monitoring over the one or more CSI measurement resources. In some examples, the CSI-RS component 925 may detect a failure to receive the one or more CSI-RSs within a time period between an application of the updated correspondence and a CSI reference resource based on monitoring over the one or more CSI measurement resources.
  • the CSI reporting component 930 may transmit a CSI report, the CSI report based on the one or more CSI-RSs and the updated correspondence. In some examples, the CSI reporting component 930 may drop a CSI report based on detecting the failure to receive the one or more CSI-RSs within the time period between the application of the updated correspondence and the CSI reference resource, the CSI report based on the one or more CSI-RSs and the correspondence.
  • the CSI reporting component 930 may refrain from updating a CSI report based on detecting the failure to receive the one or more CSI-RSs within the time period between the application of the updated correspondence and the CSI reference resource, the CSI report based on the one or more CSI-RSs and the correspondence. In some examples, the CSI reporting component 930 may refrain from transmitting an updated CSI report, the updated CSI report based on the one or more CSI-RSs and the updated correspondence. In some implementations, the set of CSI measurement resources are configured for periodic CSI reporting or aperiodic CSI reporting.
  • Figure 10 shows a diagram of a system 1000 including an example device 1005 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • the device 1005 may be an example of or include the components of device 705, device 805, or a UE 115 as described herein.
  • the device 1005 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1010, an I/O controller 1015, a transceiver 1020, an antenna 1025, memory 1030, and a processor 1040. These components may be in electronic communication via one or more buses (for example, bus 1045) .
  • buses for example, bus 1045
  • the communications manager 1010 may receive, from a base station, a RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states, receive, from the base station, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states, and monitor over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources for one or more CSI-RSs.
  • the I/O controller 1015 may manage input and output signals for the device 1005.
  • the I/O controller 1015 also may manage peripherals not integrated into the device 1005.
  • the I/O controller 1015 may represent a physical connection or port to an external peripheral.
  • the I/O controller 1015 may utilize an operating system such as or another known operating system.
  • the I/O controller 1015 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 1015 may be implemented as part of a processor.
  • a user may interact with the device 1005 via the I/O controller 1015 or via hardware components controlled by the I/O controller 1015.
  • the transceiver 1020 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described herein.
  • the transceiver 1020 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1020 also may include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1025. However, in some implementations, the device may have more than one antenna 1025, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1030 may include random-access memory (RAM) and read-only memory (ROM) .
  • the memory 1030 may store computer-readable, computer-executable code 1035 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 1030 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic I/O system
  • the processor 1040 may include an intelligent hardware device, (for example, a general-purpose processor, a digital signal processor (DSP) , a central processing unit (CPU) , a microcontroller, an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) , a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1040 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1040.
  • the processor 1040 may be configured to execute computer-readable instructions stored in a memory (for example, the memory 1030) to cause the device 1005 to perform various functions (for example, functions or tasks supporting techniques for updating TCI states for periodic and aperiodic CSI-RS resources) .
  • a memory for example, the memory 1030
  • functions for example, functions or tasks supporting techniques for updating TCI states for periodic and aperiodic CSI-RS resources
  • the code 1035 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1035 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory.
  • the code 1035 may not be directly executable by the processor 1040 but may cause a computer (for example, when compiled and executed) to perform functions described herein.
  • Figure 11 shows a block diagram 1100 of an example device 1105 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • the device 1105 may be an example of aspects of a base station 105 as described herein.
  • the device 1105 may include a receiver 1110, a communications manager 1115, and a transmitter 1120.
  • the device 1105 also may include a processor. Each of these components may be in communication with one another (for example, via one or more buses) .
  • the receiver 1110 may receive information such as packets, user data, or control information associated with various information channels (for example, control channels, data channels, and information related to techniques for updating TCI states for periodic and aperiodic CSI-RS resources) . Information may be passed on to other components of the device 1105.
  • the receiver 1110 may be an example of aspects of the transceiver 1420 described with reference to Figure 14.
  • the receiver 1110 may utilize a single antenna or a set of antennas.
  • the communications manager 1115 may transmit, to a UE, a RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states, transmit, to the UE, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states, transmit, to the UE, one or more CSI-RSs over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources, and monitor for a CSI report based on transmitting the one or more CSI-RSs.
  • the communications manager 1115 may be an example of aspects of the communications manager 1410 described herein.
  • the communications manager 1115 when functioning as or implemented by a processor or a processing system, may obtain signaling from the receiver 1110, using a first interface and may output signaling for transmission via the transmitter 1120 using the first interface or a second interface.
  • the communications manager 1115 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 1115, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 1115, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 1120 may transmit signals generated by other components of the device 1105.
  • the transmitter 1120 may be collocated with a receiver 1110 in a transceiver module.
  • the transmitter 1120 may be an example of aspects of the transceiver 1420 described with reference to Figure 14.
  • the transmitter 1120 may utilize a single antenna or a set of antennas.
  • Figure 12 shows a block diagram 1200 of an example device 1205 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • the device 1205 may be an example of aspects of a device 1105, or a base station 105 as described herein.
  • the device 1205 may include a receiver 1210, a communications manager 1215, and a transmitter 1240.
  • the device 1205 also may include a processor. Each of these components may be in communication with one another (for example, via one or more buses) .
  • the receiver 1210 may receive information such as packets, user data, or control information associated with various information channels (for example, control channels, data channels, and information related to techniques for updating TCI states for periodic and aperiodic CSI-RS resources) . Information may be passed on to other components of the device 1205.
  • the receiver 1210 may be an example of aspects of the transceiver 1420 described with reference to Figure 14.
  • the receiver 1210 may utilize a single antenna or a set of antennas.
  • the communications manager 1215 may be an example of aspects of the communications manager 1115 as described herein.
  • the communications manager 1215 may include a RRC signaling component 1220, a TCI state updating component 1225, a CSI-RS component 1230, and a CSI reporting component 1235.
  • the communications manager 1215 may be an example of aspects of the communications manager 1410 described herein.
  • the RRC signaling component 1220 may transmit, to a UE, a RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states.
  • the TCI state updating component 1225 may transmit, to the UE, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states.
  • the CSI-RS component 1230 may transmit, to the UE, one or more CSI-RSs over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources.
  • the CSI reporting component 1235 may monitor for a CSI report based on transmitting the one or more CSI-RSs.
  • the transmitter 1240 may transmit signals generated by other components of the device 1205.
  • the transmitter 1240 may be collocated with a receiver 1210 in a transceiver module.
  • the transmitter 1240 may be an example of aspects of the transceiver 1420 described with reference to Figure 14.
  • the transmitter 1240 may utilize a single antenna or a set of antennas.
  • FIG. 13 shows a block diagram 1300 of a communications manager 1305 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • the communications manager 1305 may be an example of aspects of a communications manager 1115, a communications manager 1215, or a communications manager 1410 described herein.
  • the communications manager 1305 may include a RRC signaling component 1310, a TCI state updating component 1315, a CSI-RS component 1320, and a CSI reporting component 1325. Each of these modules may communicate, directly or indirectly, with one another (for example, via one or more buses) .
  • the RRC signaling component 1310 may transmit, to a UE, a RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states.
  • the TCI state updating component 1315 may transmit, to the UE, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states. In some examples, the TCI state updating component 1315 may transmit the updated correspondence between each CSI measurement resource of a CSI measurement resource set and the set of TCI states.
  • the TCI state updating component 1315 may transmit the updated correspondence between a first CSI measurement resource and a first TCI state of the set of TCI states and a second CSI measurement resource and a second TCI state of the set of TCI states, and the first CSI measurement resource may belong to a first CSI measurement resource set and the second CSI measurement resource belongs to a second CSI measurement resource set different than the first CSI measurement resource set. In some examples, the TCI state updating component 1315 may transmit the updated correspondence between each CSI measurement resource associated with an aperiodic CSI trigger state and the set of TCI states.
  • the TCI state updating component 1315 may transmit a MAC-CE that indicates a subset of a set of RRC configured aperiodic CSI trigger states and indicates the updated correspondence between each CSI measurement resource associated with each of the subset of the set of RRC configured aperiodic CSI trigger states and the set of TCI states. In some examples, the TCI state updating component 1315 may transmit the updated correspondence indicating the multiple TCI states for each CSI measurement resource of at least the subset of the set of CSI measurement resources.
  • control message indicates the aperiodic CSI trigger state from a set of RRC configured aperiodic CSI trigger states or from a subset of the set of RRC configured aperiodic CSI trigger states indicated by a MAC-CE.
  • control message includes one or more fields indicating the updated correspondence between at least the subset of the set of CSI measurement resources and the set of TCI states.
  • control message includes a MAC-CE or group-common DCI.
  • the CSI-RS component 1320 may transmit, to the UE, one or more CSI-RSs over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources.
  • the CSI reporting component 1325 may monitor for a CSI report based on transmitting the one or more CSI-RSs.
  • the CSI reporting component 1325 may receive, from the UE, the CSI report based on transmitting the one or more CSI-RSs within the time period between the application of the updated correspondence at the UE and the CSI reference resource and based on monitoring for the CSI report, the CSI report based on the one or more CSI-RSs and the updated correspondence.
  • the CSI reporting component 1325 may detect a failure to receive the CSI report based on transmitting the one or more CSI-RSs outside of the time period between the application of the updated correspondence at the UE and the CSI reference resource. In some examples, the CSI reporting component 1325 may receive the CSI report based on transmitting the one or more CSI-RSs outside of the time period between the application of the updated correspondence at the UE and the CSI reference resource and based on monitoring for the CSI report, the CSI report based on the one or more CSI-RSs and the correspondence. In some implementations, the set of CSI measurement resources are configured for periodic CSI reporting or aperiodic CSI reporting.
  • Figure 14 shows a diagram of a system 1400 including an example device 1405 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • the device 1405 may be an example of or include the components of device 1105, device 1205, or a base station 105 as described herein.
  • the device 1405 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1410, a network communications manager 1415, a transceiver 1420, an antenna 1425, memory 1430, a processor 1440, and an inter-station communications manager 1445. These components may be in electronic communication via one or more buses (for example, bus 1450) .
  • buses for example, bus 1450
  • the communications manager 1410 may transmit, to a UE, a RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states, transmit, to the UE, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states, transmit, to the UE, one or more CSI-RSs over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources, and monitor for a CSI report based on transmitting the one or more CSI-RSs.
  • the network communications manager 1415 may manage communications with the core network (for example, via one or more wired backhaul links) .
  • the network communications manager 1415 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 1420 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described herein.
  • the transceiver 1420 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1420 also may include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1425. However, in some implementations the device may have more than one antenna 1425, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1430 may include RAM, ROM, or a combination thereof.
  • the memory 1430 may store computer-readable code 1435 including instructions that, when executed by a processor (for example, the processor 1440) cause the device to perform various functions described herein.
  • the memory 1430 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1440 may include an intelligent hardware device, (for example, a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1440 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 1440.
  • the processor 1440 may be configured to execute computer-readable instructions stored in a memory (for example, the memory 1430) to cause the device 1405 to perform various functions (for example, functions or tasks supporting techniques for updating TCI states for periodic and aperiodic CSI-RS resources) .
  • the inter-station communications manager 1445 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1445 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1445 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
  • the code 1435 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1435 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory.
  • the code 1435 may not be directly executable by the processor 1440 but may cause a computer (for example, when compiled and executed) to perform functions described herein.
  • Figure 15 shows a flowchart illustrating a method 1500 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • the operations of method 1500 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1500 may be performed by a communications manager as described with reference to Figures 7–10.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein.
  • a UE may perform aspects of the functions described herein using special-purpose hardware.
  • the UE may receive, from a base station, an RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states.
  • the operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a RRC signaling component as described with reference to Figures 7–10.
  • the UE may receive, from the base station, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states.
  • the operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a TCI state updating component as described with reference to Figures 7–10.
  • the UE may monitor over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources for one or more CSI-RSs.
  • the operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a monitoring component as described with reference to Figures 7–10.
  • Figure 16 shows a flowchart illustrating a method 1600 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • the operations of method 1600 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1600 may be performed by a communications manager as described with reference to Figures 7–10.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein.
  • a UE may perform aspects of the functions described herein using special-purpose hardware.
  • the UE may receive, from a base station, an RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states.
  • the operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a RRC signaling component as described with reference to Figures 7–10.
  • the UE may receive, from the base station, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states.
  • the operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a TCI state updating component as described with reference to Figures 7–10.
  • the UE may monitor over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources for one or more CSI-RSs.
  • the operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a monitoring component as described with reference to Figures 7–10.
  • the UE may receive the one or more CSI-RSs within a time period between an application of the updated correspondence and a CSI reference resource based on monitoring over the one or more CSI measurement resources.
  • the operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by a CSI-RS component as described with reference to Figures 7–10.
  • the UE may transmit a CSI report, the CSI report based on the one or more CSI-RSs and the updated correspondence.
  • the operations of 1625 may be performed according to the methods described herein. In some examples, aspects of the operations of 1625 may be performed by a CSI reporting component as described with reference to Figures 7–10.
  • Figure 17 shows a flowchart illustrating a method 1700 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • the operations of method 1700 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1700 may be performed by a communications manager as described with reference to Figures 7–10.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein.
  • a UE may perform aspects of the functions described herein using special-purpose hardware.
  • the UE may receive, from a base station, an RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states.
  • the operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a RRC signaling component as described with reference to Figures 7–10.
  • the UE may receive, from the base station, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states.
  • the operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a TCI state updating component as described with reference to Figures 7–10.
  • the UE may monitor over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources for one or more CSI-RSs.
  • the operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a monitoring component as described with reference to Figures 7–10.
  • the UE may detect a failure to receive the one or more CSI-RSs within a time period between an application of the updated correspondence and a CSI reference resource based on monitoring over the one or more CSI measurement resources.
  • the operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by a CSI-RS component as described with reference to Figures 7–10.
  • the UE may drop a CSI report based on detecting the failure to receive the one or more CSI-RSs within the time period between the application of the updated correspondence and the CSI reference resource, the CSI report based on the one or more CSI-RSs and the correspondence.
  • the operations of 1725 may be performed according to the methods described herein. In some examples, aspects of the operations of 1725 may be performed by a CSI reporting component as described with reference to Figures 7–10.
  • Figure 18 shows a flowchart illustrating a method 1800 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • the operations of method 1800 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1800 may be performed by a communications manager as described with reference to Figures 7–10.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein.
  • a UE may perform aspects of the functions described herein using special-purpose hardware.
  • the UE may receive, from a base station, an RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states.
  • the operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by a RRC signaling component as described with reference to Figures 7–10.
  • the UE may receive, from the base station, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states.
  • the operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by a TCI state updating component as described with reference to Figures 7–10.
  • the UE may monitor over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources for one or more CSI-RSs.
  • the operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by a monitoring component as described with reference to Figures 7–10.
  • the UE may detect a failure to receive the one or more CSI-RSs within a time period between an application of the updated correspondence and a CSI reference resource based on monitoring over the one or more CSI measurement resources.
  • the operations of 1820 may be performed according to the methods described herein. In some examples, aspects of the operations of 1820 may be performed by a CSI-RS component as described with reference to Figures 7–10.
  • the UE may refrain from updating a CSI report based on detecting the failure to receive the one or more CSI-RSs within the time period between the application of the updated correspondence and the CSI reference resource, the CSI report based on the one or more CSI-RSs and the correspondence.
  • the operations of 1825 may be performed according to the methods described herein. In some examples, aspects of the operations of 1825 may be performed by a CSI reporting component as described with reference to Figures 7–10.
  • Figure 19 shows a flowchart illustrating a method 1900 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
  • the operations of method 1900 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1900 may be performed by a communications manager as described with reference to Figures 11–14.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described herein. Additionally, or alternatively, a base station may perform aspects of the functions described herein using special-purpose hardware.
  • the base station may transmit, to a UE, an RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states.
  • the operations of 1905 may be performed according to the methods described herein. In some examples, aspects of the operations of 1905 may be performed by a RRC signaling component as described with reference to Figures 11–14.
  • the base station may transmit, to the UE, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states.
  • the operations of 1910 may be performed according to the methods described herein. In some examples, aspects of the operations of 1910 may be performed by a TCI state updating component as described with reference to Figures 11–14.
  • the base station may transmit, to the UE, one or more CSI-RSs over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources.
  • the operations of 1915 may be performed according to the methods described herein. In some examples, aspects of the operations of 1915 may be performed by a CSI-RS component as described with reference to Figures 11–14.
  • the base station may monitor for a CSI report based on transmitting the one or more CSI-RSs.
  • the operations of 1920 may be performed according to the methods described herein. In some examples, aspects of the operations of 1920 may be performed by a CSI reporting component as described with reference to Figures 11–14.
  • a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members.
  • “at least one of: a, b, or c” is intended to cover: a, b, c, a-b, a-c, b-c, and a-b-c.
  • a general-purpose processor may be a microprocessor, or any conventional processor, controller, microcontroller, or state machine.
  • a processor also may be implemented as a combination of computing devices, such as, a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. In some implementations, particular processes and methods may be performed by circuitry that is specific to a given function.
  • the functions described may be implemented in hardware, digital electronic circuitry, computer software, firmware, including the structures disclosed in this specification and their structural equivalents thereof, or in any combination thereof. Implementations of the subject matter described in this specification also can be implemented as one or more computer programs, i.e., one or more modules of computer program instructions, encoded on a computer storage media for execution by, or to control the operation of, data processing apparatus.
  • Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program from one place to another.
  • a storage media may be any available media that may be accessed by a computer.
  • such computer-readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer.
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and instructions on a machine readable medium and computer-readable medium, which may be incorporated into a computer program product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for updating a transmission configuration indicator (TCI) state for one or more channel state information (CSI) reference signal (CSI-RS) resources that are configured for periodic CSI reporting or aperiodic CSI reporting. In one aspect, a base station (BS) may configure a user equipment (UE) with a first correspondence between a set of configured CSI-RS resources and a set of TCI states and may indicate an updated correspondence between at least a subset of the set of configured CSI-RS resources and the set of TCI states via a control message. The BS may construct the control message, which may be a medium access control (MAC) control element (MAC-CE) or downlink control information (DCI), to include one or more fields indicating the subset of CSI-RS resources to which the updated correspondence applies.

Description

TECHNIQUES FOR UPDATING TRANSMISSION CONFIGURATION INDICATOR (TCI) STATES FOR PERIODIC AND APERIODIC CHANNEL STATE INFORMATION REFERENCE SIGNAL (CSI-RS) RESOURCES TECHNICAL FIELD
The following relates to wireless communications, including techniques for updating transmission configuration indicator (TCI) states for periodic and aperiodic channel state information (CSI) reference signal (CSI-RS) resources.
DESCRIPTION OF THE RELATED TECHNOLOGY
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (for example, time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
A base station may configure a UE with a one or more channel state information (CSI) reference signal (CSI-RS) resources over which the UE may monitor for one or more CSI-RSs for channel measurement or interference measurement.
SUMMARY
The systems, methods and devices of this disclosure each have several innovative aspects, no single one of which is solely responsible for the desirable attributes disclosed herein.
One innovative aspect of the subject matter described in this disclosure can be implemented in a method for wireless communications at a user equipment (UE) . The method may include receiving, from a base station (BS) , an RRC message indicating a correspondence between a set of channel state information (CSI) measurement resources and a set of transmission configuration indicator (TCI) states, receiving, from the BS, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states, and monitoring over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources for one or more CSI reference signals (CSI-RSs) .
Another innovative aspect of the subject matter described in this disclosure can be implemented in an apparatus of a UE for wireless communications. The apparatus may include a first interface, a second interface, and a processing system. The first interface may be configured to obtain an RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states and obtain a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states. The processing system may be configured to monitor over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources for one or more CSI-RSs.
Another innovative aspect of the subject matter described in this disclosure can be implemented in another apparatus for wireless communications at a UE. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive, from a BS, an RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states, receive, from the BS, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states, and monitor over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources for one or more CSI-RSs.
Another innovative aspect of the subject matter described in this disclosure can be implemented in another apparatus for wireless communications at a UE. The apparatus may include means for receiving, from a BS, an RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states, receiving, from the BS, a  control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states, and monitoring over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources for one or more CSI-RSs.
Another innovative aspect of the subject matter described in this disclosure can be implemented in a non-transitory computer-readable medium storing code for wireless communications at a UE. The code may include instructions executable by a processor to receive, from a BS, an RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states, receive, from the BS, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states, and monitor over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources for one or more CSI-RSs.
In some implementations, receiving the control message indicating the updated correspondence between at least the subset of the set of CSI measurement resources and the set of TCI states, as implemented in the method, apparatuses, and non-transitory computer-readable medium described herein, can include operations, configurations, features, means, or instructions for receiving the updated correspondence between each CSI measurement resource of a CSI measurement resource set and the set of TCI states.
In some implementations, receiving the control message indicating the updated correspondence between at least the subset of the set of CSI measurement resources and the set of TCI states, as implemented in the method, apparatuses, and non-transitory computer-readable medium described herein, can include operations, configurations, features, means, or instructions for receiving the updated correspondence between a first CSI measurement resource and a first TCI state of the set of TCI states and a second CSI measurement resource and a second TCI state of the set of TCI states. In some implementations, the first CSI measurement resource belongs to a first CSI measurement resource set and the second CSI measurement resource belongs to a second CSI measurement resource set different than the first CSI measurement resource set.
In some implementations, receiving the control message indicating the updated correspondence between at least the subset of the set of CSI measurement resources and the set of TCI states, as implemented in the method, apparatuses, and non-transitory computer- readable medium described herein, can include operations, configurations, features, means, or instructions for receiving the updated correspondence between each CSI measurement resource associated with an aperiodic CSI trigger state and the set of TCI states.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the control message indicates the aperiodic CSI trigger state from a set of RRC configured aperiodic CSI trigger states or from a subset of the set of RRC configured aperiodic CSI trigger states indicated by a medium access control (MAC) control element (MAC-CE) .
In some implementations, receiving the control message indicating the updated correspondence between at least the subset of the set of CSI measurement resources and the set of TCI states, as implemented in the method, apparatuses, and non-transitory computer-readable medium described herein, can include operations, configurations, features, means, or instructions for receiving a MAC-CE that indicates a subset of a set of RRC configured aperiodic CSI trigger states and indicates the updated correspondence between each CSI measurement resource associated with each of the subset of the set of RRC configured aperiodic CSI trigger states and the set of TCI states.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, each CSI measurement resource of the set of CSI measurement resources may be associated with multiple TCI states. In some implementations, receiving the control message indicating the updated correspondence between at least the subset of the set of CSI measurement resources and the set of TCI states, as implemented in the method, apparatuses, and non-transitory computer-readable medium described herein, can include operations, configurations, features, means, or instructions for receiving the updated correspondence indicating the multiple TCI states for each CSI measurement resource of at least the subset of the set of CSI measurement resources.
In some implementations, the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, configurations, features, means, or instructions for receiving the one or more CSI-RSs within a time period between an application of the updated correspondence and a CSI reference resource based on monitoring over the one or more CSI measurement resources, and transmitting a CSI report, the CSI report based on the one or more CSI-RSs and the updated correspondence.
In some implementations, the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, configurations, features, means, or instructions for detecting a failure to receive the one or more CSI-RSs within a time period between an application of the updated correspondence and a CSI reference resource based on monitoring over the one or more CSI measurement resources, and dropping a CSI report based on detecting the failure to receive the one or more CSI-RSs within the time period between the application of the updated correspondence and the CSI reference resource, the CSI report based on the one or more CSI-RSs and the correspondence.
In some implementations, the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, configurations, features, means, or instructions for detecting a failure to receive the one or more CSI-RSs within a time period between an application of the updated correspondence and a CSI reference resource based on monitoring over the one or more CSI measurement resources, and refraining from updating a CSI report based on detecting the failure to receive the one or more CSI-RSs within the time period between the application of the updated correspondence and the CSI reference resource, the CSI report based on the one or more CSI-RSs and the correspondence.
In some implementations, refraining from updating the CSI report, as implemented in the method, apparatuses, and non-transitory computer-readable medium described herein, can include operations, configurations, features, means, or instructions for refraining from transmitting an updated CSI report, the updated CSI report based on the one or more CSI-RSs and the updated correspondence.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the control message includes one or more fields indicating the updated correspondence between at least the subset of the set of CSI measurement resources and the set of TCI states.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the control message includes a MAC-CE or group-common downlink control information (DCI) .
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the set of CSI measurement resources may be configured for periodic CSI reporting or aperiodic CSI reporting.
Another innovative aspect of the subject matter described in this disclosure can be implemented in a method for wireless communications at a BS. The method may include transmitting, to a UE, an RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states, transmitting, to the UE, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states, transmitting, to the UE, one or more CSI-RSs over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources, and monitoring for a CSI report based on transmitting the one or more CSI-RSs.
Another innovative aspect of the subject matter described in this disclosure can be implemented in an apparatus of a BS for wireless communications. The apparatus may include a first interface, a second interface, and a processing system. The first interface may be configured to output an RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states, output a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states, and output one or more CSI-RSs over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources. The processing system may be configured to monitor for a CSI report based on outputting the one or more CSI-RSs
Another innovative aspect of the subject matter described in this disclosure can be implemented in an apparatus for wireless communications at a BS. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to transmit, to a UE, an RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states, transmit, to the UE, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states, transmit, to the UE, one or more CSI-RSs over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources, and monitor for a CSI report based on transmitting the one or more CSI-RSs.
Another innovative aspect of the subject matter described in this disclosure can be implemented in another apparatus for wireless communications at a BS. The apparatus may include means for transmitting, to a UE, an RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states, transmitting, to the UE, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states, transmitting, to the UE, one or more CSI-RSs over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources, and monitoring for a CSI report based on transmitting the one or more CSI-RSs.
Another innovative aspect of the subject matter described in this disclosure can be implemented in a non-transitory computer-readable medium storing code for wireless communications at a BS. The code may include instructions executable by a processor to transmit, to a UE, an RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states, transmit, to the UE, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states, transmit, to the UE, one or more CSI-RSs over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources, and monitor for a CSI report based on transmitting the one or more CSI-RSs.
In some implementations, transmitting the control message indicating the updated correspondence between at least the subset of the set of CSI measurement resources and the set of TCI states, as implemented in the method, apparatuses, and non-transitory computer-readable medium described herein, can include operations, configurations, features, means, or instructions for transmitting the updated correspondence between each CSI measurement resource of a CSI measurement resource set and the set of TCI states.
In some implementations, transmitting the control message indicating the updated correspondence between at least the subset of the set of CSI measurement resources and the set of TCI states, as implemented in the method, apparatuses, and non-transitory computer-readable medium described herein, can include operations, configurations, features, means, or instructions for transmitting the updated correspondence between a first CSI measurement resource and a first TCI state of the set of TCI states and a second CSI measurement resource and a second TCI state of the set of TCI states. In some examples, the first CSI measurement  resource belongs to a first CSI measurement resource set and the second CSI measurement resource belongs to a second CSI measurement resource set different than the first CSI measurement resource set.
In some implementations, transmitting the control message indicating the updated correspondence between at least the subset of the set of CSI measurement resources and the set of TCI states, as implemented in the method, apparatuses, and non-transitory computer-readable medium described herein, can include operations, configurations, features, means, or instructions for transmitting the updated correspondence between each CSI measurement resource associated with an aperiodic CSI trigger state and the set of TCI states.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the control message indicates the aperiodic CSI trigger state from a set of RRC configured aperiodic CSI trigger states or from a subset of the set of RRC configured aperiodic CSI trigger states indicated by a MAC-CE.
In some implementations, transmitting the control message indicating the updated correspondence between at least the subset of the set of CSI measurement resources and the set of TCI states, as implemented in the method, apparatuses, and non-transitory computer-readable medium described herein, can include operations, configurations, features, means, or instructions for transmitting a MAC-CE that indicates a subset of a set of RRC configured aperiodic CSI trigger states and indicates the updated correspondence between each CSI measurement resource associated with each of the subset of the set of RRC configured aperiodic CSI trigger states and the set of TCI states.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, each CSI measurement resource of the set of CSI measurement resources may be associated with multiple TCI states. In some implementations, transmitting the control message indicating the updated correspondence between at least the subset of the set of CSI measurement resources and the set of TCI states, as implemented in the method, apparatuses, and non-transitory computer-readable medium described herein, can include operations, configurations, features, means, or instructions for transmitting the updated correspondence indicating the multiple TCI states for each CSI measurement resource of at least the subset of the set of CSI measurement resources.
In some implementations, transmitting the one or more CSI-RSs over the one or more CSI measurement resources, as implemented in the method, apparatuses, and non-transitory computer-readable medium described herein, can include operations, configurations, features, means, or instructions for transmitting the one or more CSI-RSs within a time period between an application of the updated correspondence at the UE and a CSI reference resource. In such implementations, the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, configurations, features, means, or instructions for receiving, from the UE, the CSI report based on transmitting the one or more CSI-RSs within the time period between the application of the updated correspondence at the UE and the CSI reference resource and based on monitoring for the CSI report, the CSI report based on the one or more CSI-RSs and the updated correspondence.
In some implementations, transmitting the one or more CSI-RSs over the one or more CSI measurement resources, as implemented in the method, apparatuses, and non-transitory computer-readable medium described herein, can include operations, configurations, features, means, or instructions for transmitting the one or more CSI-RSs outside of a time period between an application of the updated correspondence at the UE and a CSI reference resource. In such implementations, the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, configurations, features, means, or instructions for detecting a failure to receive the CSI report based at least in part transmitting the one or more CSI-RSs outside of the time period between the application of the updated correspondence at the UE and the CSI reference resource.
In some implementations, transmitting the one or more CSI-RSs over the one or more CSI measurement resources, as implemented in the method, apparatuses, and non-transitory computer-readable medium described herein, can include operations, configurations, features, means, or instructions for transmitting the one or more CSI-RSs outside of a time period between an application of the updated correspondence at the UE and a CSI reference resource. In such implementations, the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, configurations, features, means, or instructions for receiving the CSI report based on transmitting the one or more CSI-RSs outside of the time period between the application of  the updated correspondence at the UE and the CSI reference resource and based on monitoring for the CSI report, the CSI report based on the one or more CSI-RSs and the correspondence.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the control message includes one or more fields indicating the updated correspondence between at least the subset of the set of CSI measurement resources and the set of TCI states.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the control message includes a MAC-CE or group-common DCI.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the set of CSI measurement resources may be configured for periodic CSI reporting or aperiodic CSI reporting.
Details of one or more implementations of the subject matter described in this disclosure are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages will become apparent from the description, the drawings and the claims. Note that the relative dimensions of the following figures may not be drawn to scale.
BRIEF DESCRIPTION OF THE DRAWINGS
Figures 1 and 2 illustrate examples of wireless communications systems that support techniques for updating transmission configuration indicator (TCI) states for periodic and aperiodic channel state information (CSI) reference signal (CSI-RS) resources.
Figure 3 illustrates an example of a report diagram that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
Figure 4 illustrates an example of a sub-selecting medium access control (MAC) control element (MAC-CE) that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
Figure 5 illustrates examples of resource schemes that support techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
Figure 6 illustrates an example of a process flow that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
Figures 7 and 8 show block diagrams of example devices that support techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
Figure 9 shows a block diagram of an example communications manager that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
Figure 10 shows a diagram of a system including an example device that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
Figures 11 and 12 show block diagrams of example devices that support techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
Figure 13 shows a block diagram of an example communications manager that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
Figure 14 shows a diagram of a system including an example device that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
Figures 15–19 show flowcharts illustrating methods that support techniques for updating TCI states for periodic and aperiodic CSI-RS resources.
Like reference numbers and designations in the various drawings indicate like elements.
DETAILED DESCRIPTION
The following description is directed to certain implementations for the purposes of describing the innovative aspects of this disclosure. However, a person having ordinary skill in the art will readily recognize that the teachings herein can be applied in a multitude of different ways. The described implementations may be implemented in any device, system or network that is capable of transmitting and receiving RF signals according to any of the IEEE 16.11 standards, or any of the IEEE 802.11 standards, the
Figure PCTCN2020121453-appb-000001
standard, code division multiple access (CDMA) , frequency division multiple access (FDMA) , time division multiple access (TDMA) , Global System for Mobile communications (GSM) , GSM/General Packet Radio Service (GPRS) , Enhanced Data GSM Environment (EDGE) , Terrestrial Trunked Radio (TETRA) , Wideband-CDMA (W-CDMA) , Evolution Data Optimized (EV- DO) , 1xEV-DO, EV-DO Rev A, EV-DO Rev B, High Speed Packet Access (HSPA) , High Speed Downlink Packet Access (HSDPA) , High Speed Uplink Packet Access (HSUPA) , Evolved High Speed Packet Access (HSPA+) , Long Term Evolution (LTE) , AMPS, or other known signals that are used to communicate within a wireless, cellular or internet of things (IOT) network, such as a system utilizing 3G, 4G or 5G, or further implementations thereof, technology.
In some implementations, a user equipment (UE) may receive a configuration of one or more channel state information (CSI) reference signal (CSI-RS) resources over which the UE may monitor for one or more CSI-RSs for channel measurement or interference measurement. For example, a serving base station or a transmission and reception point (TRP) may transmit control signaling to the UE indicating the configuration of the one or more CSI-RS resources. In some implementations, the base station or the TRP may configure the multiple CSI-RS resources over which the UE may monitor based on the type of CSI reporting configured at the UE. For example, if the UE is configured for periodic CSI reporting, the base station or the TRP may configure the UE with one or more periodic CSI-RS resources. Similarly, if the UE is configured for aperiodic or semi-persistent CSI reporting, the base station or the TRP may configure the UE with one or more aperiodic CSI-RS resources or semi-persistent CSI-RS resources, respectively.
Each configured CSI-RS resource, regardless of whether the CSI-RS resource is configured for periodic, aperiodic, or semi-persistent CSI reporting, may be associated with one or more transmission configuration indicator (TCI) states. As such, the UE may expect to receive a CSI-RS over a CSI-RS resource according to the one or more TCI states associated with the CSI-RS resource and, in some implementations, the UE may generate a CSI report based on the TCI state (or TCI states) associated with the one or more CSI-RS resources over which the UE monitors.
Various implementations generally relate to the transmission of a control message, from a serving base station or a TRP to a UE, indicating an updated correspondence between one or more CSI-RS resources and multiple TCI states. Some implementations more specifically relate to a radio resource control (RRC) configuration of multiple CSI-RS resources at the UE such that the RRC configuration provides a first or an initial correspondence between each CSI-RS resource of the multiple RRC configured CSI-RS  resources and the multiple TCI states and to updating the first or initial correspondence between at least some of the multiple RRC configured CSI-RS resources and the multiple TCI states via the control message. For example, the serving base station or the TRP may transmit a medium access control (MAC) control element (MAC-CE) or downlink control information (DCI) that indicates the updated correspondence between at least some of the multiple RRC configured CSI-RS resources and the multiple TCI states.
In some examples, the serving base station or the TRP may indicate, via the MAC-CE or the DCI, a CSI-RS resource set and an updated correspondence for each CSI-RS resource of the indicated CSI-RS resource set. In some other examples, the serving base station or the TRP may indicate, via the MAC-CE or the DCI, a number of CSI-RS resources regardless of the CSI-RS resource set to which they belong and an updated correspondence for each of the indicated number of CSI-RS resources. In some other examples, the serving base station or the TRP may indicate, via the MAC-CE or the DCI, an CSI trigger state and an updated correspondence for each CSI-RS resources associated with the CSI trigger state. The UE may monitor over one or more CSI-RS resources for one or more CSI-RSs and, in examples in which the UE receives the updated correspondence prior to receiving the one or more CSI-RSs, the UE may generate a CSI report based on the updated correspondence.
Particular aspects of the subject matter described in this disclosure can be implemented to realize one or more of the following potential advantages. The described techniques may be implemented to provide additional control signaling (such as a MAC-CE or DCI) for efficiently updating, at the UE, the TCI state (or TCI states) associated with each CSI-RS resource of a set of CSI-RS resources indicated by the control signaling. For instance, based on implementing the described techniques, the serving base station or the TRP may avoid performing an RRC re-configuration to update the TCI states for each of the set of CSI-RS resources. Additionally, or alternatively, the serving base station or the TRP may avoid configuring a relatively larger number of CSI trigger states (such that a same CSI-RS resource can be configured with different TCI states in different CSI trigger states) . The serving base station or the TRP, based on avoiding RRC re-configuration or the configuration of the relatively larger number of CSI trigger states, may reduce signaling latency, lower overhead (such as RRC overhead or DCI overhead) , or mitigate a frequency of MAC-CE updates, among other benefits.
Figure 1 illustrates an example of a wireless communications system 100 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (for example, mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in Figure 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (for example, core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in Figure 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (for example, via an S1, N2, N3, or another interface) . The base stations 105 may communicate with one another over the backhaul links 120 (for example, via an X2, Xn, or other interface) either directly (for example, directly  between base stations 105) , or indirectly (for example, via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology. The “device” also may be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 also may include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in Figure 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (for example, a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (for example, LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (for example, synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support  communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
In some examples (for example, in a carrier aggregation configuration) , a carrier also may have acquisition signaling or control signaling that coordinates operations for other carriers. A carrier may be associated with a frequency channel (for example, an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115. A carrier may be operated in a standalone mode in which initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode in which a connection is anchored using a different carrier (for example, of the same or a different radio access technology) .
The communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Carriers may carry downlink or uplink communications (for example, in an FDD mode) or may be configured to carry downlink and uplink communications (for example, in a TDD mode) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (for example, 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) . Devices of the wireless communications system 100 (for example, the base stations 105, the UEs 115, or both) may have hardware configurations that support communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths. In some examples, each served UE 115  may be configured for operating over portions (for example, a sub-band, a BWP) or all of a carrier bandwidth.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (for example, using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may include one symbol period (for example, a duration of one modulation symbol) and one subcarrier. In some aspects, the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (for example, the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (for example, spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
One or more numerologies for a carrier may be supported. A numerology may include a subcarrier spacing (Δf) and a cyclic prefix. A carrier may be divided into one or more BWPs having the same or different numerologies. In some examples, a UE 115 may be configured with multiple BWPs. In some examples, a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s= 1/ (Δf max·N f) seconds, in which Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (for example, 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (for example, ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (for example, in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (for example, depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (for example, N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (for example, in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (for example, the number of symbol periods in a TTI) may be variable. Additionally, or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (for example, in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (for example, a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (for example, CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (for example, control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information  to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a base station 105 (for example, over a carrier) and may be associated with an identifier for distinguishing neighboring cells (for example, a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell also may refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (for example, a sector) over which the logical communication entity operates. Such cells may range from smaller areas (for example, a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (for example, several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (for example, licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (for example, the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A base station 105 may support one or multiple cells and also may support communications over the one or more cells using one or multiple component carriers.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (for example, MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples,  different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may support synchronous or asynchronous operation. For synchronous operation, the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time. For asynchronous operation, the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices and may provide for automated communication between machines (for example, via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program. Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (for example, a mode that supports one-way communication via transmission or reception, but not transmission and reception  simultaneously) . In some examples, half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (for example, according to narrowband communications) , or a combination of these techniques. For example, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (for example, set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (for example, mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 also may be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (for example, using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In some other implementations, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
In some systems, the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (for example, UEs 115) . In some examples, vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these. A vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system. In some examples, vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (for example, base stations 105) using vehicle-to-network (V2N) communications, or with both.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (for example, a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (for example, a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to IP services 150 for one or more network operators. The IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (for example, radio heads and ANCs) or consolidated into a single network device (for example, a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, sometimes in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (for example, less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 also may operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (for example, from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device. The propagation of EHF transmissions, however, may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. The techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (for example, LAA) . Operations in unlicensed spectrum may  include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally, or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
The base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (for example, the same codeword) or different data streams (for example, different codewords) . Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) , in which multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , in which multiple spatial layers are transmitted to multiple devices.
Beamforming, which also may be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (for example, a base station 105, a UE 115) to shape  or steer an antenna beam (for example, a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (for example, with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations. For example, a base station 105 may use multiple antennas or antenna arrays (for example, antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (for example, synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions. For example, the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (for example, by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (for example, a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
In some examples, transmissions by a device (for example, by a base station 105 or a UE 115) may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (for example, from a base station 105 to a UE 115) . The UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands. The base station 105 may transmit a reference signal (for example, a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded. The UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (for example, a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) . Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (for example, for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (for example, for transmitting data to a receiving device) .
A receiving device (for example, a UE 115) may try multiple receive configurations (for example, directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (for example, different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions. In some examples, a receiving device may use a single receive configuration to receive along a single beam direction (for example, when receiving a data signal) . The single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (for example, a beam direction determined to have a highest signal strength,  highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A MAC layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer also may use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency. In the control plane, the RRC protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data. At the physical layer, transport channels may be mapped to physical channels.
The UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (for example, using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (for example, automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (for example, low signal-to-noise conditions) . In some examples, a device may support same-slot HARQ feedback. In such examples, the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In some other implementations, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
UE 115 and a base station 105 may communicate over a communication link 125 and, in some implementations, the UE 115 may perform one or more channel measurements of the communication link 125 between the UE 115 and the base station 105 to determine a channel quality associated with the communication link 125. In some examples, the base station 105 may configure a set of CSI measurement resources, such as CSI-RS resources, and the UE 115 may perform the one or more channel measurements over one or more of the configured set of CSI measurement resources. In some aspects, the base station  105 may configure the set of CSI measurement resources such that each CSI measurement resource is associated with one or more TCI states. For example, the base station 105 may transmit an RRC message (for example, a configuration via RRC signaling) indicating a correspondence between the set of CSI measurement resources and multiple TCI states. Such a correspondence may include or refer to a mapping or an association for each of the set of CSI measurement resources to one or more of the multiple TCI states.
In some implementations, the RRC configuration of the TCI state (or TCI states) for each of the configured set of CSI measurement resources may vary based on the type of the CSI measurement resources. For instance, in examples in which the CSI measurement resources are periodic CSI measurement resources (for example, the CSI measurement resources are configured for periodic CSI reporting) , the base station 105 may configure, via the RRC message, a TCI state per CSI measurement resource. In other words, the base station 105 may directly configure a TCI state identifier (ID) per CSI measurement resource. Alternatively, in examples in which the CSI measurement resources are aperiodic CSI measurement resources (for example, the CSI measurement resources are configured for aperiodic CSI reporting) , the base station 105 may configure, via the RRC message, a TCI state for CSI measurement resources as part of an associated report setting configured for a trigger state (such as an aperiodic CSI trigger state) . In other words, the base station 105 may configure a set of trigger states, each trigger state linked to one or more report settings and each report setting associated with a CSI measurement resource set, via the RRC message and may include, within the RRC message, an indication of a TCI state for each CSI measurement resource of the one or more CSI measurement resource sets associated with the one or more linked report settings.
The base station 105, based on configuring the set of CSI measurement resources, may transmit one or more reference signals over at least a subset of the configured set of CSI measurement resources. The UE 115 may receive the one or more reference signals based on monitoring over one or more CSI measurement resources of the set of CSI measurement resources and may generate a CSI report based on the one or more reference signals and the TCI state (or TCI states) associated with the one or more CSI measurement resources over which the UE 115 received the one or more reference signals.
In some implementations, the base station 105 may attempt to update the correspondence or association between the set of CSI measurement resources and the multiple TCI states. For example, the base station 105 may configure the set of CSI measurement resources for the transmission of reference signals from one or more other TRPs, and each TRP may apply a different TCI state. As such, the base station 105 may achieve greater scheduling flexibility by updating the correspondence or association between the set of CSI measurement resources and the multiple TCI states. For example, the base station 105 may have more flexibility to allocate different CSI measurement resources to different TRPs by updating the correspondence or association between the set of CSI measurement resources and the multiple TCI states. In other words, the base station 105 may use such an updated correspondence or association to switch a first CSI measurement resource from a first TCI state to a second TCI state such that a TRP that applies the second TCI state may transmit a reference signal over the first CSI measurement resource.
In some implementations of the present disclosure, the base station 105 may transmit a control message, such as a MAC-CE or DCI, to the UE 115 indicating the updated correspondence between at least some of the configured set of CSI measurement resources and the multiple TCI states. For instance, in examples in which the control message is a MAC-CE, the base station 105 may construct the MAC-CE to include one or more fields indicating the CSI measurement resources that are to be assigned an updated TCI state and one or more fields indicating the new TCI states for each of the indicated CSI measurement resources. Accordingly, based on receiving the control message indicating the updated correspondence, the UE 115 may apply the updated correspondence and monitor over one or more CSI measurement resources of the configured set of CSI measurement resources for one or more reference signals. In some implementations, the one or more CSI measurement resources over which the UE 115 may monitor may include a CSI measurement resource that has an updated TCI state and, in examples in which the UE 115 receives the one or more reference signals after applying the updated correspondence and before a CSI reference resource, the UE 115 may generate a CSI report based on the one or more reference signals and the updated correspondence.
Figure 2 illustrates an example of a wireless communications system 200 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources. In some examples, the wireless communications system 200 may implement aspects of wireless  communications system 100. For example, the wireless communications system 200 may include a base station 105-a and a UE 115-a and the base station 105-a and the UE 115-a may communicate over a communication link 205. In some implementations, the base station 105-a (which may be an example of or function as a TRP as described with reference to Figure 1) may transmit a control message 215 indicating an updated TCI state correspondence for at least a subset of a set of configured CSI-RS resources over which the UE 115-a may monitor for one or more reference signals.
For example, the base station 105-a may configure an initial or a first TCI correspondence for the set of configured CSI-RS resources at the UE 115-a via an RRC message 210 and may configure an updated or a second TCI correspondence for at least the subset of the set of configured CSI-RS resources via the control message 215. In some implementations, the base station 105-a may construct or generate the RRC message 210 based on a type of the set of CSI-RS resources configured at the UE 115-a. For instance, the base station 105-a may construct the RRC message 210 differently depending on whether the set of CSI-RS resources configured at the UE 115-a are configured as periodic CSI-RS resources or as aperiodic CSI-RS resources. The type of the set of CSI-RS resources configured at the UE 115-a may correspond to a CSI reporting configuration at the UE 115-a, such that the set of CSI-RS resources may be configured as periodic CSI-RS resources to support periodic CSI reporting or as aperiodic CSI-RS resources to support aperiodic CSI reporting.
In examples in which the set of CSI-RS resources configured at the UE 115-a are configured as periodic CSI-RS resources (which may correspond to examples in which the base station 105-a configures the UE 115-a for periodic CSI reporting) , the base station 105-a may construct the RRC message 210 to configure a TCI state for each CSI-RS resource directly. In other words, the base station 105-a may directly configure a TCI state ID per CSI-RS resource via the RRC message 210. Alternatively, in examples in which the set of CSI-RS resources configured at the UE 115-a are configured as aperiodic CSI-RS resources (which may correspond to examples in which the base station 105-a configures the UE 115-a for aperiodic CSI reporting) , the base station 105-a may construct the RRC message 210 to configure a TCI state for each CSI-RS resource associated with an aperiodic CSI trigger state. For example, the base station 105-a may configure a TCI state ID for CSI-RS resources as part of an associated report setting configured for an aperiodic CSI trigger state.
In such examples in which the base station 105-a configures the UE 115-a for aperiodic CSI reporting and the base station 105-a constructs the RRC message 210 to configure a TCI state for each CSI-RS resource associated with an aperiodic CSI trigger state, the base station 105-a, via the RRC message 210, may configure up to an upper limit of trigger states (such as 128 trigger states) by including a higher layer parameter (such as an AperiodicTriggerStateList parameter or a CSI-AperiodicTriggerStateList parameter) in the RRC message 210. For example, the base station 105-a may include an AperiodicTriggerStateList parameter in the RRC message 210 that indicates a list of trigger states associated with aperiodic CSI reporting. The base station 105-a may link each trigger state in the list of trigger states to one or more (and up to an upper limit, such as 16) report settings via the RRC message 210 and, for each report setting, the base station 105-a may link a configured CSI-RS resource set (such as an NZP CSI-RS resource set) through a CSI-ReportConfigId parameter in the RRC message 210. In some aspects, the RRC message 210 may indicate, for each CSI-RS resource set linked for each report setting, the CSI-RS resources in the CSI-RS resource set and the RRC message 210 may include a TCI state for each of the indicated CSI-RS resources. In other words, the base station 105-a may indicate a TCI state for a set of CSI-RS resources as part of the trigger state configuration (for example, within the RRC message 210 indicating the list of trigger states) .
For instance, the RRC message 210 may include a CSI AperiodicTriggerStateList parameter including a sequence of one or more CSI-AperiodicTriggers of a CSI-AperiodicTriggerState parameter. The CSI-AperiodicTriggerState parameter may include an associatedReportConfigInfoList parameter including a sequence of one or more ReportConfigPerAperiodicTrigger parameters of a CSI-AssociatedReportConfigInfo parameter. The CSI-AssociatedReportConfigInfo parameter may include the reportConfigId parameter and a resourcesForChannel parameter. The resourcesForChannel parameter may include an nzp-CSI-RS parameter that includes a resourceSet parameter and a qcl-info parameter. The resourceSet parameter may include an integer of a maximum number NZP-CSI-RS-ResourceSetsPerConfig and the qcl-info parameter may include a sequence of one or more AP-CSI-RS-ResourcesPerSet of a TCI-StateId parameter. Additional details relating to the linking of one or more CSI-RS resource sets to a report setting are described herein, including with reference to Figure 3.
In some examples, the base station 105-a may additionally transmit a MAC-CE indicating a subset (or a sub-selection) of the list of trigger states configured via the RRC message 210. For example, the MAC-CE may select a subset (and up to an upper limit, such as 63) of trigger states from the RRC configured trigger state list (which can be of size up to 128) . In such examples, the base station 105-a may trigger a CSI report (an aperiodic CSI report or a semi-persistent CSI report) on a physical uplink shared channel (PUSCH) via a “CSI request” field in uplink DCI. The “CSI request” field in the uplink DCI may include a number of bits based on a number of trigger states that are activated (or sub-selected) through the MAC-CE to indicate one of the activated trigger states. For example, if the “CSI request” field has N bits, the base station 105-a may activate (or sub-select) 2 N-1 trigger states through the sub-selecting MAC-CE. As such, if the MAC-CE selects 63 trigger states from the RRC configured trigger state list, the “CSI request” field in the uplink DCI may include N=6 bits such that each unique permutation (or codepoint) of the 6 bits corresponds to a different trigger state from the 63 activated trigger states (in examples in which a “CSI request” field of all zeros corresponds to no CSI report triggered) . Additional details relating to such a sub-selecting MAC-CE and an uplink DCI triggering a CSI report are described herein, including with reference to Figure 4.
In some implementations, the base station 105-a may determine to update the TCI state correspondence for at least a subset of the set of configured CSI-RS resources, which may refer to the set of CSI-RS resources individually configured by the RRC message 210 (in examples of periodic CSI reporting) or the set of CSI-RS resources configured by the RRC message 210 as part of a trigger state configuration (in examples of aperiodic CSI reporting) . For example, the base station 105-a may function as a serving base station for the UE 115-a within a multi-TRP system and may configure CSI-RS resources such that a CSI-RS resource is associated with a same TCI state as may be applied by a TRP (such as the base station 105-a) scheduled to transmit a reference signal over the CSI-RS resource. As such, in examples in which the base station 105-a configures a first CSI-RS resource with a first TCI state such that a first TRP that applies the first TCI state is able to transmit a reference signal over the first CSI-RS resource and determines to instead schedule a second TRP that applies a second TCI state different from the first TCI state to transmit a reference signal over the first CSI-RS resource, the base station 105-a may update the TCI state associated with the first CSI-RS resource from the first TCI state to the second TCI state. In some  implementations, however, configuring an updated TCI state correspondence for a periodic CSI-RS resource or an aperiodic CSI-RS resource may be associated with latency or may increase RRC overhead, or both.
For example, to change the TCI state associated with a periodic CSI-RS resource, the base station 105-a may transmit RRC signaling (in addition to the RRC message 210) to re-configure each CSI-RS resource with an updated TCI state. In some implementations, such RRC re-configuration may be relatively slow or increase latency (as compared to a MAC-CE or DCI) . Further, to change the TCI state associated with an aperiodic CSI-RS resource, the base station 105-a may RRC re-configure a trigger state (for example, via RRC signaling) , change TCI state correspondence for the CSI-RS resources associated with the trigger state, and indicate that trigger state in DCI (such as in the “CSI request” field in the uplink DCI) , which may be relatively slow or increase latency (as compared to a MAC-CE or DCI) . Additionally, or alternatively, the base station 105-a may define a relatively larger number of trigger states (and up to an upper limit, such as 128) via RRC signaling such that a same CSI-RS resource may be configured with different TCI states in different trigger states and a sub-selecting MAC-CE can select a subset (and up to an upper limit, such as 63) or DCI could indicate one of the trigger states, or both. Such a relatively larger number of RRC configured trigger states may result in larger RRC overhead and frequent MAC-CE updates or larger DCI overhead, or both. Accordingly, the base station 105-a may determine that it would be useful to be able to update the TCI state of a CSI-RS resource in examples of either or both of periodic CSI reporting or aperiodic CSI reporting via lower latency signaling, such as a MAC-CE or DCI as may be employed for updating TCI state for semi-persistent CSI-RS resources.
For instance, for semi-persistent CSI-RS resources, the base station 105-a may indicate the TCI state for CSI-RS resources (such as all CSI-RS resources) in a CSI-RS resource set in a MAC-CE that activates a semi-persistent CSI-RS resource set. Such an activating MAC-CE may include an activation/deactivation field, a serving cell ID field, a BWP ID field, one or more reserved fields, one or more fields indicating a semi-persistent CSI-RS resource set ID for channel measurement or for interference measurement, and one or more fields indicating a TCI state for each CSI-RS resource of the indicated one or more semi-persistent CSI-RS resource set IDs. For example, the MAC-CE may indicate a TCI state ID 0 for a first semi-persistent CSI-RS resource within a semi-persistent CSI-RS resource  set indicated by the MAC-CE, a TCI state ID 1 for a second semi-persistent CSI-RS resource within the semi-persistent CSI-RS resource set indicated by the MAC-CE, and a TCI state ID N for an N th semi-persistent CSI-RS resource within the semi-persistent CSI-RS resource set indicated by the MAC-CE. As such, the base station 105-a may use such an activating MAC-CE to update the TCI state for each CSI-RS resource of an indicated semi-persistent CSI-RS resource set. Such an activating MAC-CE that includes one or more fields for indicating a TCI state for one or more CSI-RS resources, however, may not be supported for periodic or aperiodic CSI-RS resources.
In some implementations of the present disclosure, the base station 105-a may construct and transmit a control message 215 that may convey an updated TCI state correspondence for one or more CSI-RS resources that are configured as periodic CSI-RS resources or as aperiodic CSI-RS resources. In some aspects, the control message 215 may be an example of a MAC-CE or DCI, such as group-common DCI (for example, DCI format 2_x) . In examples in which the control message 215 is a MAC-CE, the base station 105-a may construct the MAC-CE including a number of fields to indicate information associated with the updated TCI state correspondence. Alternatively, in examples in which the control message 215 is DCI format 2_x, the base station 105-a may configure the UE 115-a (and any other served UEs 115) with a block in the DCI format 2_x and the block may have a number of fields to indicate information associated with the updated TCI state correspondence.
In some examples, for a periodic CSI-RS resource, the base station 105-a may construct or generate the control message 215 to update the TCI state for each CSI-RS resource within a periodic CSI-RS resource set. As such, in examples in which the control message 215 is a MAC-CE, the control message 215 may include a field indicating a serving cell ID, a field indicating a BWP ID, a field indicating a periodic CSI-RS resource set, and one or more fields indicating an updated TCI state ID for each CSI-RS resource in the periodic CSI-RS resource set. Such a MAC-CE construction may be similar to an activating MAC-CE used to activate or deactivate a semi-persistent CSI-RS resource set except that there is not activation/deactivation field. In examples in which the control message 215 is group-common DCI, the control message 215 may include a block for the UE 115-a and the block may include at least a field indicating a periodic CSI-RS resource set ID and one or more fields indicating an updated TCI state ID for each CSI-RS resource in the periodic CSI-RS resource set.
In some other examples, the base station 105-a may construct or generate the control message 215 to update the TCI state per periodic CSI-RS resource (irrespective of to which resource set a periodic CSI-RS resource belongs) . For example, the base station 105-a may transmit the control message 215 indicating an updated TCI state correspondence between a first periodic CSI-RS resource and a first TCI state and an updated TCI state correspondence between a second periodic CSI-RS resource and a second TCI state such that the first periodic CSI-RS resource and the second periodic CSI-RS resource belong to different periodic CSI-RS resource sets. In examples in which the control message 215 is a MAC-CE, the control message 215 may include a field indicating a serving cell ID, a field indicating a BWP ID, one or more fields indicating one or more periodic CSI-RS resource IDs (for example, one or more NZP CSI-RS resource IDs) , and a corresponding one or more fields indicating an updated TCI state ID for each of the one or more indicated periodic CSI-RS resources. In examples in which the control message 215 is group-common DCI, the control message 215 may include a block for the UE 115-a and the block may include at least one or more fields indicating one or more periodic CSI-RS resource IDs and a corresponding one or more fields indicating an updated TCI state ID for each of the one or more indicated periodic CSI-RS resources.
In some examples, for an aperiodic CSI-RS resource, the base station 105-a may construct or generate the control message 215 to update the TCI state for each aperiodic CSI-RS resource within an aperiodic CSI-RS resource set, as similarly described in the context of constructing the control message 215 for a periodic CSI-RS resource. For instance, the control message 215 may include a field indicating a serving cell ID, a field indicating a BWP ID, a field indicating an aperiodic CSI-RS resource set, and one or more fields indicating an updated TCI state ID for each CSI-RS resource in the aperiodic CSI-RS resource set in examples in which the control message 215 is a MAC-CE. Alternatively, the control message 215 may include a block for the UE 115-a and the block may include at least a field indicating an aperiodic CSI-RS resource set ID and one or more fields indicating an updated TCI state ID for each CSI-RS resource in the aperiodic CSI-RS resource set in examples in which the control message 215 is group-common DCI.
In some other examples, the base station 105-a may construct or generate the control message 215 to update the TCI state per aperiodic CSI-RS resource (irrespective of to which resource set an aperiodic CSI-RS resource belongs or with which aperiodic CSI trigger  state an aperiodic CSI-RS is associated) . For example, the base station 105-a may transmit the control message 215 indicating an updated TCI state correspondence between a first aperiodic CSI-RS resource and a first TCI state and an updated TCI state correspondence between a second aperiodic CSI-RS resource and a second TCI state such that the first aperiodic CSI-RS resource and the second aperiodic CSI-RS resource belong to different aperiodic CSI-RS resource sets or are associated with different aperiodic CSI trigger states, or both. In examples in which the control message 215 is a MAC-CE, the control message 215 may include a field indicating a serving cell ID, a field indicating a BWP ID, one or more fields indicating one or more aperiodic CSI-RS resource IDs (for example, one or more NZP CSI-RS resource IDs) , and a corresponding one or more fields indicating an updated TCI state ID for each of the one or more indicated aperiodic CSI-RS resources. In examples in which the control message 215 is group-common DCI, the control message 215 may include a block for the UE 115-a and the block may include at least one or more fields indicating one or more aperiodic CSI-RS resource IDs and a corresponding one or more fields indicating an updated TCI state ID for each of the one or more indicated aperiodic CSI-RS resources.
In some other examples, for an aperiodic CSI-RS resource, the base station 105-a may construct or generate the control message 215 to update the TCI state for each CSI-RS resource associated with an aperiodic CSI trigger state. In such examples, the control message 215 may indicate the aperiodic CSI trigger state to which the updated TCI state correspondence applies, and the aperiodic CSI trigger state may include one or more associated CSI report configuration information in which one CSI-RS resource set includes one or more CSI-RS resources. As such, in examples in which the control message 215 is a MAC-CE, the control message 215 may include a field indicating a serving cell ID, a field indicating a BWP ID, a field indicating the aperiodic CSI trigger state number, and one or more fields indicating an updated TCI state ID for each aperiodic CSI-RS resource associated with the aperiodic CSI trigger state. Alternatively, in examples in which the control message 215 is group-common DCI, the control message 215 may include a block for the UE 115-a and the block may include at least a field indicating the aperiodic CSI trigger state and one or more fields indicating an updated TCI state ID for each aperiodic CSI-RS resource associated with the aperiodic CSI trigger state.
In some implementations (for either the examples in which the control message
215 is a MAC-CE and the examples in which the control message 215 is group-common  DCI) , the base station 105-a may convey the aperiodic CSI trigger state number via the control message 215 based on determining a number that identifies a member from the list of RRC configured aperiodic CSI trigger states (irrespective of any sub-selection by a sub-selecting MAC-CE) . In some other implementations, the base station 105-a may convey the aperiodic CSI trigger state number via the control message 215 based on determining a number that identifies a codepoint of the CSI request field of the uplink DCI that refers to one of the sub-selected aperiodic CSI trigger states.
In some other examples, for an aperiodic CSI-RS resource, the sub-selecting MAC-CE (for example, the aperiodic CSI trigger state sub-selection MAC-CE) may update the TCI state for each CSI-RS resource associated with each sub-selected aperiodic CSI trigger state. For example, the base station 105-a may construct or generate the sub-selecting MAC-CE to include one or more fields that indicate an updated TCI state for each of the aperiodic CSI-RS resources associated with each of the aperiodic CSI trigger states that the MAC-CE sub-selects or activates from the list of RRC configured aperiodic CSI trigger states. Accordingly, the control message 215 may refer to the sub-selecting MAC-CE, as described in more detail with reference to Figure 4.
Further, although described herein as updating a single TCI state for a CSI-RS resource (either a periodic CSI-RS resource or an aperiodic CSI-RS resource) , the base station 105-a may transmit the control message 215 to update multiple TCI states for a CSI-RS resource without exceeding the scope of the present disclosure. For example, for CSI reporting in some multi-TRP systems, a CSI-RS resource may be associated with multiple (such as two) TCI states to support non-coherent joint transmission (NCJT) or other single frequency network (SFN) communication schemes. As such, the control message 215 may include one or more fields indicating an updated TCI state correspondence involving multiple TCI states for each CSI-RS resource associated with the updated TCI state correspondence. Likewise, although shown as including the base station 105-a and the UE 115-a, the wireless communications system 200 may include more than one TRP and all TRPs may transmit reference signals that the UE 115-a may measure for channel measurement or interference measurement. Additional details relating to CSI-RS resources that are associated with multiple TCI states are described herein, including with reference to Figure 5.
The UE 115-a, based on receiving the control message 215, may apply the updated TCI state correspondence. In some examples, the UE 115-a may apply the updated TCI state correspondence according to a timeline based on whether the control message 215 is a MAC-CE or DCI. For example, the UE 115-a may still use the first or initial TCI state correspondence after receiving the control message 215 and before applying the updated TCI state correspondence according to the timeline. In some implementations, the base station 105-a may transmit one or more reference signals over one or more CSI-RS resources of the set of CSI-RS resources configured at the UE 115-a. Likewise, the UE 115-a may monitor over the one or more CSI-RS resources for the one or more reference signals and, in some examples, may generate a CSI report based on the one or more reference signals, when the UE 115-a receives the one or more reference signals, when the UE 115-a applies the updated TCI state correspondence, and a location of a CSI reference resource.
The CSI reference resource may be a time-domain resource defined relative to a time that the UE 115-a is scheduled to transmit the CSI report and may represent how late a measurement of the one or more reference signals can occur prior to the CSI report such that there is sufficient time to measure and prepare the CSI report before the time the UE 115-a transmits the CSI report. For example, the CSI reference resource may be defined in terms of how many slots or symbols prior to the transmission of the CSI report and may depend on whether the CSI report is aperiodic, semi-persistent, or periodic.
As such, in examples in which the UE 115-a receives the one or more reference signals within a time period between an application of the updated TCI state correspondence and the CSI reference resource, the UE 115-a may generate a CSI report based on the one or more reference signals and the updated TCI state correspondence and may transmit the CSI report to the base station 105-a. In other words, if the UE 115-a receives the one or more reference signals from the base station 105-a after applying the updated TCI state correspondence received in the control message 215 and prior to the CSI reference resource, the UE 115-a may generate the CSI report based on the updated TCI state correspondence. In examples in which the UE 115-a detects a failure to receive the one or more reference signals within the time period between the application of the updated TCI state correspondence and the CSI reference resource (for example, in examples in which the UE 115-a receives the one or more reference signals outside of the time period) , the UE 115-a may generate a CSI report based on the one or more reference signals and the first TCI state correspondence. In other  words, the UE 115-a may refrain from updating the CSI report (generating an updated CSI report such that the updated CSI report is generated based on the updated TCI state correspondence instead of the first TCI state correspondence) . In some examples, the UE 115-a may transmit the CSI report that was generated based on the first TCI state correspondence. In some other examples, the UE 115-a may refrain from transmitting or may drop the CSI report that was generated based on the first TCI state correspondence.
Figure 3 illustrates an example of a report diagram 300 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources. In some examples, the report diagram 300 may be implemented to realize aspects of the wireless communications system 100 or the wireless communications system 200, depicted and described in Figures 1 and 2, respectively. For example, the report diagram 300 may be implemented by a UE 115 and a base station 105 in a CSI reporting procedure, as described with reference to Figures 1 and 2. The report diagram 300 may illustrate a process in which a UE 115 receives a CSI report configuration 305 from the network (for example, from a base station 105) that may indicate one or more resources to use for a CSI measurement.
In some examples, a UE 115 may measure CSI for one or more potential signal paths or channels, such as one or more communication links 125 as described with reference to Figure 1. For example, the UE 115 may measure a CSI-RS and may use the measurements to perform channel estimation. The CSI-RS transmissions that the UE 115 measures may be periodic CSI-RS transmissions, aperiodic CSI-RS transmissions, semi-persistent CSI-RS transmissions, or a combination thereof. The UE 115 may transmit a CSI report to a base station 105 including one or more parameters based on the CSI measurements. In some examples, the CSI report may include one or more precoding matrix indicators (PMIs) , rank indicators (RIs) , layer indicators (LIs) , channel quality indicators (CQIs) , reference signal received power (RSRP) measurements (for example, Layer 1-RSRPs (L1-RSRPs) ) , signal to interference plus noise (SINR) measurements (for example, L1-SINRs) , or the like. In some examples, the UE 115 may perform periodic CSI reporting (for example, the base station 105 may transmit higher layer signaling scheduling periodic CSI reports) , aperiodic CSI reporting (for example, the base station 105 may dynamically configure a CSI report) , semi-persistent CSI reporting (for example, the base station 105 may transmit higher layer signaling scheduling periodic CSI reports and may use dynamic signaling to trigger the periodic CSI reporting) , or a combination thereof.
In some implementations, the UE 115 may receive a control message, such as an RRC message as described with reference to Figure 2, indicating the CSI report configuration 305 corresponding to one or more CSI-RS resources (for example, CSI measurement resources) over which the UE 115 may monitor for one or more reference signals. For example, the UE 115 may receive the control message (for example, via RRC signaling) including the CSI report configuration 305 (which may be equivalently referred to as a “CSI report config” ) that may link to one or more resource settings associated with different measurement types. The CSI report configuration 305 may link to a setting for one or more of a non-zero power (NZP) CSI-RS resource for channel measurement (CMR) 310, a CSI-RS resource for interference measurement (CSI-IM) 315, or an NZP CSI-RS for interference measurement (NZP IMR) 320, or any combination thereof. Each resource setting of the one or more resource settings to which the CSI report configuration 305 links may be associated with multiple resources sets, but one active resource set (for example, one active resource set) .
The NZP-CMR setting 310 may be associated with one or more NZP CMR sets 325. For example, an NZP CMR set 325-a may be the active resource set, while an NZP CMR set 325-b and an NZP CMR set 325-c may be inactive resource sets. Similarly, the CSI-IM resource setting 315 may be associated with one or more CSI-IM resource set 330. For example, a CSI-IM resource set 330-a may be the active resource set, while a CSI-IM resource set 330-b and a CSI-IM resource sets 330-c may be inactive resource sets. Similarly, the NZP IMR setting 320 may be associated with one or more NZP IMR sets 335. For example, an NZP IMR set 335-a may be the active resource set, while an NZP IMR set 335-b and an NZP IMR set 335-c may be inactive resource sets.
Each resource set may include one or more resources, which may be referred to as CSI-RS resources or CSI measurement resources. For example, the NZP CMR set 325-a may include one or more resources, such as one or more NZP CMRs 340 (for example, an NZP CMR 340-a and an NZP CMR 340-b) . Similarly, the CSI-IM resource set 330-a may include one or more resources, such as one or more CSI-IM resources 345 (for example, a CSI-IM resource 345-a and a CSI-IM resource 345-b) . Similarly, the NZP IMR set 335-a may include one or more resources, such as one or more NZP IMRs 350 (for example, an NZP IMR 350-a and an NZP IMR 350-b) . In some examples, each CSI-RS resource within a resource set may be referred to as a CSI hypothesis. In some aspects, the NZP CMR 340-a  may be associated with a TCI state a (for example, a first TCI state) and the NZP CMR 340-b may be associated with a TCI state b (for example, a second TCI state) . For example, the UE 115 may receive an RRC configuration indicating a first or an initial TCI state correspondence for each of the CSI-RS resources configured at the UE 115. In some implementations of the present disclosure, the UE 115 may additionally receive a MAC-CE or DCI (such as group-common DCI) indicating an updated TCI state correspondence for at least a subset of the CSI-RS resources configured at the UE 115.
In some examples, the UE 115 may select one NZP CMR 340 out of the one or more NZP-CMRs 340 to use for reporting CSI. In such examples, the UE 115 may report the selected CMR 340 in a CSI-RS resource indicator (CRI) field as part of the CSI feedback so that a receiving TRP or a serving base station 105 knows to which NZP CMR 340 the reported CSI corresponds. Based on the selected NZP CMR 340, the UE 115 also may implicitly select a resource from the one or more CSI-IM resources 345 (for example, the CSI-IM resource 345-a or the CSI-IM resource 345-b) and one or more NZP IMRs 350 (for example, the NZP IMR 350-a, the NZP IMR 350-b, or both) . For example, an NZP CMR 340 may feature a resource-wise association 355 with a CSI-IM resource 345, such that one NZP-CMR 340 is associated with one CSI-IM resource 345. For instance, the NZP CMR 340-a may be associated with the CSI-IM resource 345-a and the NZP CMR 340-b may be associated with the CSI-IM resource 345-b. Additionally, each NZP CMR 340 may feature a resource-wise association 360 with all NZP IMRs 350 collectively, such that the NZP CMR 340-a and the NZP CMR 340-b may both be associated with the NZP IMR 350-a and the NZP IMR 350-b.
Figure 4 illustrates an example of a sub-selecting MAC-CE 400 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources. In some examples, the sub-selecting MAC-CE 400 may be implemented to realize aspects of the wireless communications system 100 or the wireless communications system 200, depicted and described in Figures 1 and 2, respectively. For example, a base station 105 may transmit the sub-selecting MAC-CE 400 to a UE 115 to sub-select or activate a subset of a larger set of aperiodic CSI trigger states configured at the UE 115. In some implementations of the present disclosure, the base station 105 may generate and transmit the sub-selecting MAC-CE 400 to the UE 115 to additionally indicate an updated TCI state correspondence for each of the CSI-RS resources associated with each of the sub-selected aperiodic CSI trigger states.
As shown in Figure 4, the sub-selecting MAC-CE 400 may include a reserved field, a field indicating a serving cell ID, a field indicating a BWP ID, and a set of fields indicating the sub-selected aperiodic CSI trigger states from the larger set of aperiodic CSI trigger states configured at the UE 115. In some examples, the codepoint to which an aperiodic CSI trigger state is mapped may be determined by its ordinal position among all the aperiodic CSI trigger states with a T i field set to 1. For example, the first aperiodic CSI trigger state with a T i field set to 1 may be mapped to a codepoint value of 1 (a codepoint corresponding to a bit-representation of a sub-selected aperiodic CSI trigger state, such as a codepoint that may be indicated via a “CSI request” field of an uplink DCI) , the second aperiodic CSI trigger state with a T i field set to 1 may be mapped to a codepoint value of 2, and so on. Additional details relating to a “CSI request” field codepoint and associated report configurations are illustrated by Tale 1. Further, i may refer to each of the larger set of aperiodic CSI trigger states configured at the UE 115 while the value of T i field may indicate whether the corresponding aperiodic CSI trigger state is sub-selected or not. For example, if the value of a T i field is 0, the corresponding aperiodic CSI trigger state may not be sub-selected or may not be activated. Alternatively, if the value of a T i field is 1, the corresponding aperiodic CSI trigger state may be sub-selected or may be activated.
In some implementations of the present disclosure, the base station 105 may construct or generate the sub-selecting MAC-CE 400 to indicate an updated TCI state correspondence for each of the CSI-RS resources associated with the sub-selected aperiodic CSI trigger states. For example, for each of the aperiodic CSI trigger states that are selected via the sub-selecting MAC-CE 400, the base station 105 may additionally configure the sub-selecting MAC-CE to indicate an updated TCI state for each of the CSI-RS resources associated with the selected aperiodic CSI trigger state.
A shown below, Table 1 illustrates how various “CSI request” field codepoints may be associated with one or multiple CSI-ReportConfigId’s . For example, a “CSI request” field codepoint of 0 may be associated with no CSI report, a “CSI request” field codepoint of 1 may be associated with a single CSI-ReportConfigId, a resourceSet of the single CSI-ReportConfigId, and a TCI state associated with each CSI-RS resource in the resourceSet, and a “CSI request” field codepoint of 63 may be associated with two CSI-ReportConfigId’s , one resourceSet associated with each of the two CSI-ReportConfigId’s, and a TCI state associated with each CSI-RS resource in the two resourceSet’s.
Figure PCTCN2020121453-appb-000002
TABLE 1
Figure 5 illustrates an example of a resource scheme 500 and a resource scheme 501 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources. In some examples, the resource scheme 500 and the resource scheme 501 may be implemented to realize aspects of the wireless communications system 100 or the wireless communications system 200, depicted and described in Figures 1 and 2, respectively. For example, multiple TRPs may transmit one or more reference signals (such as one or more CSI-RSs) to a UE 115 over a single CSI-RS resource associated with multiple port groups, each port group associated with a different TCI state, or over multiple CSI-RS resources, each CSI-RS resource associated with a different TCI state. In some implementations, the UE 115 may receive an indication of an updated correspondence between the single resource or the multiple resources and one or more TCI states based on whether the whether the multiple TRPs transmit the one or more reference signals over the single resource or over the multiple resources.
In some examples, for instance, the UE 115 may operate within a multi-TRP system and may receive joint transmissions from multiple TRPs. In some aspects, the UE 115 may receive a reference signal (such as a CSI-RS) from each of two TRPs that each apply a different TCI state. For example, the UE 115 may receive a first reference signal from a first TRP according to a TCI state 505 and may receive a second reference signal from a second TRP according to a TCI state 510. In such examples, the UE 115 may generate a CSI report, which also may be referred to as a multi-TRP or an mTRP CSI report, that includes CSI associated with more than one TCI state (for example, the TCI state 505 and the TCI state 510) . In some examples, either of the two TRPs or the UE 115 may select a CSI hypothesis according to which the UE 115 is to generate the CSI report and each CSI hypothesis (and corresponding CSI report) may correspond to two or more TCI states (as opposed to a single TCI state) . In some aspects, selecting the CSI hypothesis may include selecting the CSI hypothesis out of multiple TCI states, which may correspond to multiple CSI-RS resources in a resource set. Such CSI reporting may satisfy an objective of a further enhanced MIMO (FeMIMO) work item that is associated with beamforming and beam steering.
The first TRP and the second TRP may employ various approaches to jointly transmit reference signals to the UE 115 such that the UE 115 may generate the CSI report (aCSI report across the first TCI state and the second TCI state) . For example, the first TRP and the second TRP may employ a first approach in which the two TRPs transmit reference signals over a single resource, such as a CSI-RS resource 515 as illustrated by the resource scheme 500. Alternatively, the first TRP and the second TRP may employ a second approach in which the two TRPs transmit reference signals over separate resources, such as a CSI-RS resource 530 and a CSI-RS resource 535 as illustrated by the resource scheme 501. In either approach, the UE 115 may use the resource or resources over which the multiple TRPs may transmit for channel measurement or interference measurement.
In the first approach, as illustrated by the resource scheme 500, the CSI-RS resource 515 may include multiple (such as two) CSI-RS port groups including a port group 520 and a port group 525 that are each associated with one TCI state. For example, the port group 520 may be associated with the TCI state 505 and the port group 525 may be associated with the TCI state 510. In other words, a first set of ports of the CSI-RS resource 515 (a CSI-RS resource) may have or otherwise be associated with the TCI state 505 and, as  such, may be included within the port group 520. Similarly, a second set of ports of the CSI-RS resource 515 may have or otherwise be associated with the TCI state 510 and, as such, may be included within the port group 525. Accordingly, in the first approach, the first TRP applying the TCI state 505 and the second TRP applying the TCI state 510 may transmit reference signals over the CSI-RS resource 515 and the UE 115 may generate a CSI report based on receiving or measuring the reference signals received over the CSI-RS resource 515. Further, based on employing the first approach, a quantity of multi-TRP CSI hypotheses may be equal to a quantity of CSI-RS resources with multiple CSI-RS port groups.
In the second approach, as illustrated by the resource scheme 501, the CSI-RS resource 530 and the CSI-RS resource 535 may each be associated with a different TCI state. For example, the CSI-RS resource 530 may be associated with the TCI state 505 and the CSI-RS resource 535 may be associated with the TCI state 510. In some aspects, the CSI-RS resource 530 and the CSI-RS resource 535 may be linked as a resource pair (for example, a CSI-RS resource pair) and a CSI hypothesis may correspond to both of the CSI-RS resource 530 and the CSI-RS resource 535. In other words, the CSI hypothesis may correspond to the resource pair. As such, in the second approach, a quantity of multi-TRP CSI hypotheses may be equal to a quantity of CSI-RS resource pairs. Accordingly, in the second approach, the first TRP applying the TCI state 505 may transmit a reference signal over the CSI-RS resource 530 and the second TRP applying the TCI state 510 may transmit a reference signal over the CSI-RS resource 535 and the UE 115 may generate a CSI report based on receiving or measuring the reference signals received over the CSI-RS resource 530 and the CSI-RS resource 535. Details relating to the first approach and the second approach are further illustrated by Table 2, shown below.
Figure PCTCN2020121453-appb-000003
TABLE 2
In some implementations of the present disclosure, the UE 115 may receive an updated TCI state correspondence for one or more CSI-RS resources from a serving base station 105 or a TRP based on whether the UE 115 and the multiple TRPs are implementing the first approach or the second approach. In examples in which the UE 115 and the multiple TRPs implement the first approach in which a CSI-RS resource 515 (which may be any of a periodic CSI-RS resources, aperiodic CSI-RS resources, or semi-persistent CSI-RS resources) may be associated with both the TCI state 505 and the TCI state 510, the control message (which may be a MAC-CE or group-common DCI) indicating the updated TCI state correspondence may indicate two TCI states for each CSI-RS resource associated with a TCI state update. Alternatively, in examples in which the UE 115 and the multiple TRPs implement the second approach in which each CSI-RS resource (which may be any of a periodic CSI-RS resources, aperiodic CSI-RS resources, or semi-persistent CSI-RS resources) is associated with a single TCI state, the control message indicating the updated TCI state correspondence may indicate a single TCI state for each CSI-RS resource associated with a TCI state update.
Figure 6 illustrates an example of a process flow 600 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources. In some examples, the process flow 600 may implement aspects of the wireless communications system 100 or the wireless communications system 200, depicted and described in Figures 1 and 2, respectively. For example, the process flow 600 may illustrate communication between a UE 115-b and a base station 105-b. In some implementations, the base station 105-b may transmit a control message, such as a MAC-CE or group-common DCI, to indicate an updated TCI state correspondence at the UE 115-b.
At 605, the base station 105-b may transmit, to the UE 115-b, an RRC message indicating a correspondence (such as a first or initial correspondence) between a set of CSI-RS resources and a set of TCI states. Such an RRC configured correspondence may be referred to as a first or initial TCI state correspondence for the set of CSI-RS resources. In some examples, such as in examples in which the base station 105-b configures the UE 115-b for periodic CSI reporting, the RRC message may configure a TCI state (or TCI states) for each CSI-RS resource of the set of CSI-RS resources directly. In some other examples, such  as in examples in which the base station 105-b configures the UE 115-b for aperiodic CSI reporting, the RRC message may configure a set of aperiodic CSI trigger states and may configure a TCI state (or TCI states) for each CSI-RS resource associated with each of the set of aperiodic CSI trigger states (for example, by linking one or more CSI report configurations in the RRC message) .
At 610, the base station 105-b may, in some implementations, transmit, to the UE 115-b, a sub-selecting MAC-CE that indicates a subset of the set of aperiodic CSI trigger states (the set of RRC configured aperiodic CSI trigger states) . In some examples, the sub-selecting MAC-CE also may indicate an updated correspondence between each CSI-RS resource associated with each of the subset of the set of aperiodic CSI trigger states and the set of TCI states. In such examples, the sub-selecting MAC-CE may select a subset of the set of aperiodic CSI trigger states and indicate an updated TCI state (or TCI states) for each CSI-RS resource associated with each of the subset of the set of aperiodic CSI trigger states. Further, in such examples in which the sub-selecting MAC-CE additionally indicates the updated correspondence, the sub-selecting MAC-CE and a control message transmitted at 615 may be or refer to the same signaling (for example, the base station 105-b will transmit the sub-selecting MAC-CE and the control message as a single message) .
At 615, the base station 105-b may transmit the control message indicating the updated correspondence (or a second correspondence) between at least a subset of the set of CSI-RS resources and the set of TCI states. The base station 105-b may transmit the control message as a MAC-CE or DCI (such as group-common DCI) and the UE 115-b may apply the updated correspondence according to a timeline based on whether the control message is a MAC-CE or DCI. The base station 105-b may construct the control message to indicate the CSI-RS resources to which the updated correspondence applies and the UE 115-b may apply the updated correspondence accordingly. Further, the updated correspondence may indicate a single TCI state for a CSI-RS resource or may indicate multiple (such as two) TCI states for a CSI-RS resource (as a CSI-RS resource may be associated with multiple TCI states in some implementations, such as in implementations involving a multi-TRP system) .
In some examples, for instance, the base station 105-b may construct the control message to indicate that the updated correspondence is for CSI-RS resources included within a CSI-RS resource set and the UE 115-b may apply the updated correspondence to each CSI- RS resource of the CSI-RS resource set. In some other examples, the base station 105-b may construct the control message to indicate that the updated correspondence is for a number of CSI-RS resources irrespective of the CSI-RS resource set to which they belong and the UE 115-b may apply the updated correspondence to the number of CSI-RS resources irrespective of the CSI-RS resource set to which the number of CSI-RS resources belong. For example, the updated correspondence may indicate a correspondence between a first CSI-RS resource and a first TCI state and may indicate a correspondence between a second CSI-RS resource and a second TCI state, and the first CSI-RS resource and the second CSI-RS resource may belong to different CSI-RS resource sets.
In some other examples, such as in examples in which the base station 105-b configures the UE 115-b for aperiodic CSI reporting, the base station 105-b may construct the control message to indicate that the updated correspondence is for CSI-RS resources associated with an aperiodic CSI trigger state and the UE 115-b may apply the updated correspondence to each CSI-RS resource associated with the aperiodic CSI trigger state. For example, the UE 115-b may apply the updated correspondence to a number of CSI-RS resources that are associated with a same aperiodic CSI trigger state (as linked through one or more report settings or CSI report configurations) . In such examples, the aperiodic CSI trigger state to which the UE 115-b may apply the updated correspondence may be included within the subset of the set of aperiodic CSI trigger states (as indicated by the sub-selecting MAC-CE) or may be included within the set of aperiodic CSI trigger states (as configured by the RRC message) . In some other examples, such as in examples in which the base station 105-b configures the UE 115-b for aperiodic CSI reporting and in which the sub-selecting MAC-CE indicates the updated correspondence, the base station 105-b may construct the sub-selecting MAC-CE to also indicate an updated TCI state for each CSI-RS resource associated with each aperiodic CSI trigger state selected ( “sub-selected” ) or otherwise indicated by the sub-selecting MAC-CE and the UE 115-b may apply the updated correspondence to each CSI-RS resource associated with each aperiodic CSI trigger state indicated by the sub-selecting MAC-CE.
At 620, the base station 105-b may transmit, to the UE 115-b, one or more CSI-RSs over one or more CSI-RS resources of at least the subset of the set of CSI-RS resources that have an updated TCI state indicated by the control message. Likewise, the UE 115-b may monitor over the one or more CSI-RS resources of at least the subset of the set of CSI- RS resources that have an updated TCI state indicated by the control message. Alternatively, the base station 105-b may transmit one or more CSI-RSs over any CSI-RS resource configured at the UE 115-b (such that the one or more CSI-RS resources may have an updated TCI state or an originally configured TCI state. Further, while described in the context of being transmitted by the base station 105-b, multiple base stations 105 or multiple TRPs may transmit the one or more CSI-RSs without exceeding the scope of the present disclosure. In some examples, the UE 115-b may receive the one or more CSI-RSs within a time period between an application of the updated correspondence and a CSI reference resource. In some other examples, the UE 115-b may receive the one or more CSI-RSs outside of a time period between the application of the updated correspondence and the CSI reference resource.
At 625, the UE 115-b may generate a CSI report based on the one or more CSI-RSs and either the first TCI state correspondence or the updated TCI state correspondence. In some examples, the UE 115-b may generate the CSI report based on either the first TCI state correspondence or the updated TCI state correspondence based on whether the UE 115-b receives the one or more CSI-RSs within or outside of the time period between the application of the updated TCI state correspondence and the CSI reference resource. For instance, in examples in which the UE 115-b receives the one or more CSI-RSs within the time period between the application of the updated TCI state correspondence and the CSI reference resource, the UE 115-b may generate the CSI report based on the one or more CSI-RSs and the updated correspondence.
Alternatively, in examples in which the UE 115-b receives the one or more CSI-RSs outside of the time period between the application of the updated TCI state correspondence and the CSI reference resource, the UE 115-b may drop or refrain from updating the CSI report. In examples in which the UE 115-b refrains from updating the CSI report, the UE 115-b may generate the CSI report based on the one or more CSI-RSs and the first correspondence (not the updated correspondence, such that the UE 115-b may refrain from generating an updated CSI report based on the one or more CSI-RSs and the updated correspondence) .
At 630, the UE 115-b may, in some implementations, transmit the CSI report to the base station 105-b. For example, the UE 115-b may transmit the CSI report to the base  station 105-b that is based on the one or more CSI-RSs and either of the updated correspondence (such as in examples in which the UE 115-b receives the one or more reference signals within the time period between the application of the updated correspondence and the CSI reference resource) or the first correspondence (such as in examples in which the UE 115-b receives the one or more reference signals outside of the time period between the application of the updated correspondence and the CSI reference resource) . In examples in which the UE 115-b receives the one or more reference signals outside of the time period between the application of the updated correspondence and the CSI reference resource and determines to drop the CSI report, the UE 115-b may refrain from transmitting the CSI report (a CSI report based on the one or more CSI-RSs and the first TCI state correspondence) .
Figure 7 shows a block diagram 700 of an example device 705 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources. The device 705 may be an example of aspects of a UE 115 as described herein. The device 705 may include a receiver 710, a communications manager 715, and a transmitter 720. The device 705 also may include a processor. Each of these components may be in communication with one another (for example, via one or more buses) .
The receiver 710 may receive information such as packets, user data, or control information associated with various information channels (for example, control channels, data channels, and information related to techniques for updating TCI states for periodic and aperiodic CSI-RS resources) . Information may be passed on to other components of the device 705. The receiver 710 may be an example of aspects of the transceiver 1020 described with reference to Figure 10. The receiver 710 may utilize a single antenna or a set of antennas.
The communications manager 715 may receive, from a base station, a RRC message indicating a correspondence between a set of CSI measurement resources and a set of transmission configuration indicator (TCI) states, receive, from the base station, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states, and monitor over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources for one  or more CSI reference signals (CSI-RSs) . The communications manager 715 may be an example of aspects of the communications manager 1010 described herein.
In some examples, the communications manager 715 may function as a processor or a chip and the communications manager 715 may include a first interface configured to obtain, from a base station, a RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states, and obtain, from the base station, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states. The communications manager 715 also may include a second interface configured to output signaling for transmission (such as by an antenna array of the device 705) and a processing system configured to perform one or more processing operations (such as calculations) . For example, the processing system may be configured to monitor or to detect reception (or a failure to receive) one or more transmissions. For instance, the processing system may be configured to monitor over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources for one or more CSI-RSs.
The communications manager 715, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 715, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 715, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 720 may transmit signals generated by other components of the device 705. In some examples, the transmitter 720 may be collocated with a receiver 710 in a transceiver module. For example, the transmitter 720 may be an example of aspects of the transceiver 1020 described with reference to Figure 10. The transmitter 720 may utilize a single antenna or a set of antennas.
Figure 8 shows a block diagram 800 of an example device 805 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources. The device 805 may be an example of aspects of a device 705, or a UE 115 as described herein. The device 805 may include a receiver 810, a communications manager 815, and a transmitter 835. The device 805 also may include a processor. Each of these components may be in communication with one another (for example, via one or more buses) .
The receiver 810 may receive information such as packets, user data, or control information associated with various information channels (for example, control channels, data channels, and information related to techniques for updating TCI states for periodic and aperiodic CSI-RS resources) . Information may be passed on to other components of the device 805. The receiver 810 may be an example of aspects of the transceiver 1020 described with reference to Figure 10. The receiver 810 may utilize a single antenna or a set of antennas.
The communications manager 815 may be an example of aspects of the communications manager 715 as described herein. The communications manager 815 may include a RRC signaling component 820, a TCI state updating component 825, and a monitoring component 830. The communications manager 815 may be an example of aspects of the communications manager 1010 described herein.
The RRC signaling component 820 may receive, from a base station, a RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states. The TCI state updating component 825 may receive, from the base station, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states. The monitoring component 830 may monitor over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources for one or more CSI-RSs.
The transmitter 835 may transmit signals generated by other components of the device 805. In some examples, the transmitter 835 may be collocated with a receiver 810 in a transceiver module. For example, the transmitter 835 may be an example of aspects of the transceiver 1020 described with reference to Figure 10. The transmitter 835 may utilize a single antenna or a set of antennas.
Figure 9 shows a block diagram 900 of an example communications manager 905 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources. The communications manager 905 may be an example of aspects of a communications manager 715, a communications manager 815, or a communications manager 1010 described herein. The communications manager 905 may include a RRC signaling component 910, a TCI state updating component 915, a monitoring component 920, a CSI-RS component 925, and a CSI reporting component 930. Each of these modules may communicate, directly or indirectly, with one another (for example, via one or more buses) .
The RRC signaling component 910 may receive, from a base station, a RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states.
The TCI state updating component 915 may receive, from the base station, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states. In some examples, the TCI state updating component 915 may receive the updated correspondence between each CSI measurement resource of a CSI measurement resource set and the set of TCI states.
In some examples, the TCI state updating component 915 may receive the updated correspondence between a first CSI measurement resource and a first TCI state of the set of TCI states and a second CSI measurement resource and a second TCI state of the set of TCI states, and the first CSI measurement resource may belong to a first CSI measurement resource set and the second CSI measurement resource belongs to a second CSI measurement resource set different than the first CSI measurement resource set. In some examples, the TCI state updating component 915 may receive the updated correspondence between each CSI measurement resource associated with an aperiodic CSI trigger state and the set of TCI states.
In some examples, the TCI state updating component 915 may receive a MAC-CE that indicates a subset of a set of RRC configured aperiodic CSI trigger states and indicates the updated correspondence between each CSI measurement resource associated with each of the subset of the set of RRC configured aperiodic CSI trigger states and the set of TCI states. In some examples, the TCI state updating component 915 may receive the updated  correspondence indicating the multiple TCI states for each CSI measurement resource of at least the subset of the set of CSI measurement resources.
In some implementations, the control message indicates the aperiodic CSI trigger state from a set of RRC configured aperiodic CSI trigger states or from a subset of the set of RRC configured aperiodic CSI trigger states indicated by a MAC-CE. In some implementations, the control message includes one or more fields indicating the updated correspondence between at least the subset of the set of CSI measurement resources and the set of TCI states. In some implementations, the control message includes a MAC-CE or group-common DCI.
The monitoring component 920 may monitor over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources for one or more CSI-RSs.
The CSI-RS component 925 may receive the one or more CSI-RSs within a time period between an application of the updated correspondence and a CSI reference resource based on monitoring over the one or more CSI measurement resources. In some examples, the CSI-RS component 925 may detect a failure to receive the one or more CSI-RSs within a time period between an application of the updated correspondence and a CSI reference resource based on monitoring over the one or more CSI measurement resources.
The CSI reporting component 930 may transmit a CSI report, the CSI report based on the one or more CSI-RSs and the updated correspondence. In some examples, the CSI reporting component 930 may drop a CSI report based on detecting the failure to receive the one or more CSI-RSs within the time period between the application of the updated correspondence and the CSI reference resource, the CSI report based on the one or more CSI-RSs and the correspondence.
In some examples, the CSI reporting component 930 may refrain from updating a CSI report based on detecting the failure to receive the one or more CSI-RSs within the time period between the application of the updated correspondence and the CSI reference resource, the CSI report based on the one or more CSI-RSs and the correspondence. In some examples, the CSI reporting component 930 may refrain from transmitting an updated CSI report, the updated CSI report based on the one or more CSI-RSs and the updated  correspondence. In some implementations, the set of CSI measurement resources are configured for periodic CSI reporting or aperiodic CSI reporting.
Figure 10 shows a diagram of a system 1000 including an example device 1005 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources. The device 1005 may be an example of or include the components of device 705, device 805, or a UE 115 as described herein. The device 1005 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1010, an I/O controller 1015, a transceiver 1020, an antenna 1025, memory 1030, and a processor 1040. These components may be in electronic communication via one or more buses (for example, bus 1045) .
The communications manager 1010 may receive, from a base station, a RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states, receive, from the base station, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states, and monitor over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources for one or more CSI-RSs.
The I/O controller 1015 may manage input and output signals for the device 1005. The I/O controller 1015 also may manage peripherals not integrated into the device 1005. In some implementations, the I/O controller 1015 may represent a physical connection or port to an external peripheral. In some implementations, the I/O controller 1015 may utilize an operating system such as
Figure PCTCN2020121453-appb-000004
Figure PCTCN2020121453-appb-000005
or another known operating system. In some other implementations, the I/O controller 1015 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some implementations, the I/O controller 1015 may be implemented as part of a processor. In some implementations, a user may interact with the device 1005 via the I/O controller 1015 or via hardware components controlled by the I/O controller 1015.
The transceiver 1020 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described herein. For example, the transceiver 1020 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1020 also may include a modem to modulate the packets and  provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some implementations, the wireless device may include a single antenna 1025. However, in some implementations, the device may have more than one antenna 1025, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1030 may include random-access memory (RAM) and read-only memory (ROM) . The memory 1030 may store computer-readable, computer-executable code 1035 including instructions that, when executed, cause the processor to perform various functions described herein. In some implementations, the memory 1030 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1040 may include an intelligent hardware device, (for example, a general-purpose processor, a digital signal processor (DSP) , a central processing unit (CPU) , a microcontroller, an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) , a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some implementations, the processor 1040 may be configured to operate a memory array using a memory controller. In some other implementations, a memory controller may be integrated into the processor 1040. The processor 1040 may be configured to execute computer-readable instructions stored in a memory (for example, the memory 1030) to cause the device 1005 to perform various functions (for example, functions or tasks supporting techniques for updating TCI states for periodic and aperiodic CSI-RS resources) .
The code 1035 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1035 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some implementations, the code 1035 may not be directly executable by the processor 1040 but may cause a computer (for example, when compiled and executed) to perform functions described herein.
Figure 11 shows a block diagram 1100 of an example device 1105 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources. The device 1105 may be an example of aspects of a base station 105 as described herein. The device  1105 may include a receiver 1110, a communications manager 1115, and a transmitter 1120. The device 1105 also may include a processor. Each of these components may be in communication with one another (for example, via one or more buses) .
The receiver 1110 may receive information such as packets, user data, or control information associated with various information channels (for example, control channels, data channels, and information related to techniques for updating TCI states for periodic and aperiodic CSI-RS resources) . Information may be passed on to other components of the device 1105. The receiver 1110 may be an example of aspects of the transceiver 1420 described with reference to Figure 14. The receiver 1110 may utilize a single antenna or a set of antennas.
The communications manager 1115 may transmit, to a UE, a RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states, transmit, to the UE, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states, transmit, to the UE, one or more CSI-RSs over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources, and monitor for a CSI report based on transmitting the one or more CSI-RSs. The communications manager 1115 may be an example of aspects of the communications manager 1410 described herein.
In some implementations, the communications manager 1115, when functioning as or implemented by a processor or a processing system, may obtain signaling from the receiver 1110, using a first interface and may output signaling for transmission via the transmitter 1120 using the first interface or a second interface.
The communications manager 1115, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 1115, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 1115, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other  components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 1120 may transmit signals generated by other components of the device 1105. In some examples, the transmitter 1120 may be collocated with a receiver 1110 in a transceiver module. For example, the transmitter 1120 may be an example of aspects of the transceiver 1420 described with reference to Figure 14. The transmitter 1120 may utilize a single antenna or a set of antennas.
Figure 12 shows a block diagram 1200 of an example device 1205 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources. The device 1205 may be an example of aspects of a device 1105, or a base station 105 as described herein. The device 1205 may include a receiver 1210, a communications manager 1215, and a transmitter 1240. The device 1205 also may include a processor. Each of these components may be in communication with one another (for example, via one or more buses) .
The receiver 1210 may receive information such as packets, user data, or control information associated with various information channels (for example, control channels, data channels, and information related to techniques for updating TCI states for periodic and aperiodic CSI-RS resources) . Information may be passed on to other components of the device 1205. The receiver 1210 may be an example of aspects of the transceiver 1420 described with reference to Figure 14. The receiver 1210 may utilize a single antenna or a set of antennas.
The communications manager 1215 may be an example of aspects of the communications manager 1115 as described herein. The communications manager 1215 may include a RRC signaling component 1220, a TCI state updating component 1225, a CSI-RS component 1230, and a CSI reporting component 1235. The communications manager 1215 may be an example of aspects of the communications manager 1410 described herein.
The RRC signaling component 1220 may transmit, to a UE, a RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states. The TCI state updating component 1225 may transmit, to the UE, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states. The CSI-RS component 1230 may transmit, to the UE,  one or more CSI-RSs over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources. The CSI reporting component 1235 may monitor for a CSI report based on transmitting the one or more CSI-RSs.
The transmitter 1240 may transmit signals generated by other components of the device 1205. In some examples, the transmitter 1240 may be collocated with a receiver 1210 in a transceiver module. For example, the transmitter 1240 may be an example of aspects of the transceiver 1420 described with reference to Figure 14. The transmitter 1240 may utilize a single antenna or a set of antennas.
Figure 13 shows a block diagram 1300 of a communications manager 1305 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources. The communications manager 1305 may be an example of aspects of a communications manager 1115, a communications manager 1215, or a communications manager 1410 described herein. The communications manager 1305 may include a RRC signaling component 1310, a TCI state updating component 1315, a CSI-RS component 1320, and a CSI reporting component 1325. Each of these modules may communicate, directly or indirectly, with one another (for example, via one or more buses) .
The RRC signaling component 1310 may transmit, to a UE, a RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states.
The TCI state updating component 1315 may transmit, to the UE, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states. In some examples, the TCI state updating component 1315 may transmit the updated correspondence between each CSI measurement resource of a CSI measurement resource set and the set of TCI states.
In some examples, the TCI state updating component 1315 may transmit the updated correspondence between a first CSI measurement resource and a first TCI state of the set of TCI states and a second CSI measurement resource and a second TCI state of the set of TCI states, and the first CSI measurement resource may belong to a first CSI measurement resource set and the second CSI measurement resource belongs to a second CSI measurement resource set different than the first CSI measurement resource set. In some examples, the TCI state updating component 1315 may transmit the updated correspondence between each  CSI measurement resource associated with an aperiodic CSI trigger state and the set of TCI states.
In some examples, the TCI state updating component 1315 may transmit a MAC-CE that indicates a subset of a set of RRC configured aperiodic CSI trigger states and indicates the updated correspondence between each CSI measurement resource associated with each of the subset of the set of RRC configured aperiodic CSI trigger states and the set of TCI states. In some examples, the TCI state updating component 1315 may transmit the updated correspondence indicating the multiple TCI states for each CSI measurement resource of at least the subset of the set of CSI measurement resources.
In some implementations, the control message indicates the aperiodic CSI trigger state from a set of RRC configured aperiodic CSI trigger states or from a subset of the set of RRC configured aperiodic CSI trigger states indicated by a MAC-CE. In some implementations, the control message includes one or more fields indicating the updated correspondence between at least the subset of the set of CSI measurement resources and the set of TCI states. In some implementations, the control message includes a MAC-CE or group-common DCI.
The CSI-RS component 1320 may transmit, to the UE, one or more CSI-RSs over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources.
The CSI reporting component 1325 may monitor for a CSI report based on transmitting the one or more CSI-RSs. In some examples, the CSI reporting component 1325 may receive, from the UE, the CSI report based on transmitting the one or more CSI-RSs within the time period between the application of the updated correspondence at the UE and the CSI reference resource and based on monitoring for the CSI report, the CSI report based on the one or more CSI-RSs and the updated correspondence.
In some examples, the CSI reporting component 1325 may detect a failure to receive the CSI report based on transmitting the one or more CSI-RSs outside of the time period between the application of the updated correspondence at the UE and the CSI reference resource. In some examples, the CSI reporting component 1325 may receive the CSI report based on transmitting the one or more CSI-RSs outside of the time period between the application of the updated correspondence at the UE and the CSI reference resource and  based on monitoring for the CSI report, the CSI report based on the one or more CSI-RSs and the correspondence. In some implementations, the set of CSI measurement resources are configured for periodic CSI reporting or aperiodic CSI reporting.
Figure 14 shows a diagram of a system 1400 including an example device 1405 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources. The device 1405 may be an example of or include the components of device 1105, device 1205, or a base station 105 as described herein. The device 1405 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1410, a network communications manager 1415, a transceiver 1420, an antenna 1425, memory 1430, a processor 1440, and an inter-station communications manager 1445. These components may be in electronic communication via one or more buses (for example, bus 1450) .
The communications manager 1410 may transmit, to a UE, a RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states, transmit, to the UE, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states, transmit, to the UE, one or more CSI-RSs over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources, and monitor for a CSI report based on transmitting the one or more CSI-RSs.
The network communications manager 1415 may manage communications with the core network (for example, via one or more wired backhaul links) . For example, the network communications manager 1415 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 1420 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described herein. For example, the transceiver 1420 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1420 also may include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some implementations, the wireless device may include a single antenna 1425. However, in some implementations the device may have more than one antenna 1425, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1430 may include RAM, ROM, or a combination thereof. The memory 1430 may store computer-readable code 1435 including instructions that, when executed by a processor (for example, the processor 1440) cause the device to perform various functions described herein. In some implementations, the memory 1430 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1440 may include an intelligent hardware device, (for example, a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some implementations, the processor 1440 may be configured to operate a memory array using a memory controller. In some implementations, a memory controller may be integrated into processor 1440. The processor 1440 may be configured to execute computer-readable instructions stored in a memory (for example, the memory 1430) to cause the device 1405 to perform various functions (for example, functions or tasks supporting techniques for updating TCI states for periodic and aperiodic CSI-RS resources) .
The inter-station communications manager 1445 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1445 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1445 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
The code 1435 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1435 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some implementations, the code 1435 may not be directly executable by  the processor 1440 but may cause a computer (for example, when compiled and executed) to perform functions described herein.
Figure 15 shows a flowchart illustrating a method 1500 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources. The operations of method 1500 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1500 may be performed by a communications manager as described with reference to Figures 7–10. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein. Additionally, or alternatively, a UE may perform aspects of the functions described herein using special-purpose hardware.
At 1505, the UE may receive, from a base station, an RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states. The operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a RRC signaling component as described with reference to Figures 7–10.
At 1510, the UE may receive, from the base station, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states. The operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a TCI state updating component as described with reference to Figures 7–10.
At 1515, the UE may monitor over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources for one or more CSI-RSs. The operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a monitoring component as described with reference to Figures 7–10.
Figure 16 shows a flowchart illustrating a method 1600 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources. The operations of method 1600 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1600 may be performed by a communications manager as described with reference to Figures 7–10. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described  herein. Additionally, or alternatively, a UE may perform aspects of the functions described herein using special-purpose hardware.
At 1605, the UE may receive, from a base station, an RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states. The operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a RRC signaling component as described with reference to Figures 7–10.
At 1610, the UE may receive, from the base station, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states. The operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a TCI state updating component as described with reference to Figures 7–10.
At 1615, the UE may monitor over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources for one or more CSI-RSs. The operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a monitoring component as described with reference to Figures 7–10.
At 1620, the UE may receive the one or more CSI-RSs within a time period between an application of the updated correspondence and a CSI reference resource based on monitoring over the one or more CSI measurement resources. The operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by a CSI-RS component as described with reference to Figures 7–10.
At 1625, the UE may transmit a CSI report, the CSI report based on the one or more CSI-RSs and the updated correspondence. The operations of 1625 may be performed according to the methods described herein. In some examples, aspects of the operations of 1625 may be performed by a CSI reporting component as described with reference to Figures 7–10.
Figure 17 shows a flowchart illustrating a method 1700 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources. The operations of  method 1700 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1700 may be performed by a communications manager as described with reference to Figures 7–10. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein. Additionally, or alternatively, a UE may perform aspects of the functions described herein using special-purpose hardware.
At 1705, the UE may receive, from a base station, an RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states. The operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a RRC signaling component as described with reference to Figures 7–10.
At 1710, the UE may receive, from the base station, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states. The operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a TCI state updating component as described with reference to Figures 7–10.
At 1715, the UE may monitor over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources for one or more CSI-RSs. The operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a monitoring component as described with reference to Figures 7–10.
At 1720, the UE may detect a failure to receive the one or more CSI-RSs within a time period between an application of the updated correspondence and a CSI reference resource based on monitoring over the one or more CSI measurement resources. The operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by a CSI-RS component as described with reference to Figures 7–10.
At 1725, the UE may drop a CSI report based on detecting the failure to receive the one or more CSI-RSs within the time period between the application of the updated correspondence and the CSI reference resource, the CSI report based on the one or more CSI-RSs and the correspondence. The operations of 1725 may be performed according to the  methods described herein. In some examples, aspects of the operations of 1725 may be performed by a CSI reporting component as described with reference to Figures 7–10.
Figure 18 shows a flowchart illustrating a method 1800 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources. The operations of method 1800 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1800 may be performed by a communications manager as described with reference to Figures 7–10. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein. Additionally, or alternatively, a UE may perform aspects of the functions described herein using special-purpose hardware.
At 1805, the UE may receive, from a base station, an RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states. The operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by a RRC signaling component as described with reference to Figures 7–10.
At 1810, the UE may receive, from the base station, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states. The operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by a TCI state updating component as described with reference to Figures 7–10.
At 1815, the UE may monitor over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources for one or more CSI-RSs. The operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by a monitoring component as described with reference to Figures 7–10.
At 1820, the UE may detect a failure to receive the one or more CSI-RSs within a time period between an application of the updated correspondence and a CSI reference resource based on monitoring over the one or more CSI measurement resources. The operations of 1820 may be performed according to the methods described herein. In some examples, aspects of the operations of 1820 may be performed by a CSI-RS component as described with reference to Figures 7–10.
At 1825, the UE may refrain from updating a CSI report based on detecting the failure to receive the one or more CSI-RSs within the time period between the application of the updated correspondence and the CSI reference resource, the CSI report based on the one or more CSI-RSs and the correspondence. The operations of 1825 may be performed according to the methods described herein. In some examples, aspects of the operations of 1825 may be performed by a CSI reporting component as described with reference to Figures 7–10.
Figure 19 shows a flowchart illustrating a method 1900 that supports techniques for updating TCI states for periodic and aperiodic CSI-RS resources. The operations of method 1900 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1900 may be performed by a communications manager as described with reference to Figures 11–14. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described herein. Additionally, or alternatively, a base station may perform aspects of the functions described herein using special-purpose hardware.
At 1905, the base station may transmit, to a UE, an RRC message indicating a correspondence between a set of CSI measurement resources and a set of TCI states. The operations of 1905 may be performed according to the methods described herein. In some examples, aspects of the operations of 1905 may be performed by a RRC signaling component as described with reference to Figures 11–14.
At 1910, the base station may transmit, to the UE, a control message indicating an updated correspondence between at least a subset of the set of CSI measurement resources and the set of TCI states. The operations of 1910 may be performed according to the methods described herein. In some examples, aspects of the operations of 1910 may be performed by a TCI state updating component as described with reference to Figures 11–14.
At 1915, the base station may transmit, to the UE, one or more CSI-RSs over one or more CSI measurement resources of at least the subset of the set of CSI measurement resources. The operations of 1915 may be performed according to the methods described herein. In some examples, aspects of the operations of 1915 may be performed by a CSI-RS component as described with reference to Figures 11–14.
At 1920, the base station may monitor for a CSI report based on transmitting the one or more CSI-RSs. The operations of 1920 may be performed according to the methods described herein. In some examples, aspects of the operations of 1920 may be performed by a CSI reporting component as described with reference to Figures 11–14.
As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover: a, b, c, a-b, a-c, b-c, and a-b-c.
The various illustrative logics, logical blocks, modules, circuits and algorithm processes described in connection with the implementations disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. The interchangeability of hardware and software has been described generally, in terms of functionality, and illustrated in the various illustrative components, blocks, modules, circuits and processes described herein. Whether such functionality is implemented in hardware or software depends upon the particular application and design constraints imposed on the overall system.
The hardware and data processing apparatus used to implement the various illustrative logics, logical blocks, modules and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose single-or multi-chip processor, a DSP, an ASIC, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, or any conventional processor, controller, microcontroller, or state machine. A processor also may be implemented as a combination of computing devices, such as, a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. In some implementations, particular processes and methods may be performed by circuitry that is specific to a given function.
In one or more aspects, the functions described may be implemented in hardware, digital electronic circuitry, computer software, firmware, including the structures disclosed in this specification and their structural equivalents thereof, or in any combination thereof. Implementations of the subject matter described in this specification also can be implemented  as one or more computer programs, i.e., one or more modules of computer program instructions, encoded on a computer storage media for execution by, or to control the operation of, data processing apparatus.
If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. The processes of a method or algorithm disclosed herein may be implemented in a processor-executable software module which may reside on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program from one place to another. A storage media may be any available media that may be accessed by a computer. By way of example, and not limitation, such computer-readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer. Also, any connection can be properly termed a computer-readable medium. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and instructions on a machine readable medium and computer-readable medium, which may be incorporated into a computer program product.
Various modifications to the implementations described in this disclosure may be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other implementations without departing from the spirit or scope of this disclosure. Thus, the claims are not intended to be limited to the implementations shown herein, but are to be accorded the widest scope consistent with this disclosure, the principles and the novel features disclosed herein.
Additionally, a person having ordinary skill in the art will readily appreciate, the terms “upper” and “lower” are sometimes used for ease of describing the figures, and indicate  relative positions corresponding to the orientation of the figure on a properly oriented page, and may not reflect the proper orientation of any device as implemented.
Certain features that are described in this specification in the context of separate implementations also can be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation also can be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Further, the drawings may schematically depict one more example processes in the form of a flow diagram. However, other operations that are not depicted can be incorporated in the example processes that are schematically illustrated. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the illustrated operations. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products. Additionally, other implementations are within the scope of the following claims. In some implementations, the actions recited in the claims can be performed in a different order and still achieve desirable results.

Claims (58)

  1. A method for wireless communication at an apparatus of a user equipment (UE) , comprising:
    receiving, from a base station (BS) , a radio resource control (RRC) message indicating a correspondence between a plurality of channel state information (CSI) measurement resources and a plurality of transmission configuration indicator (TCI) states;
    receiving, from the BS, a control message indicating an updated correspondence between at least a subset of the plurality of CSI measurement resources and the plurality of TCI states; and
    monitoring over one or more CSI measurement resources of at least the subset of the plurality of CSI measurement resources for one or more CSI reference signals (CSI-RSs) .
  2. The method of claim 1, wherein receiving the control message indicating the updated correspondence between at least the subset of the plurality of CSI measurement resources and the plurality of TCI states comprises:
    receiving the updated correspondence between each CSI measurement resource of a CSI measurement resource set and the plurality of TCI states.
  3. The method of claim 1, wherein receiving the control message indicating the updated correspondence between at least the subset of the plurality of CSI measurement resources and the plurality of TCI states comprises:
    receiving the updated correspondence between a first CSI measurement resource and a first TCI state of the plurality of TCI states and a second CSI measurement resource and a second TCI state of the plurality of TCI states, wherein the first CSI measurement resource belongs to a first CSI measurement resource set and the second CSI measurement resource belongs to a second CSI measurement resource set different than the first CSI measurement resource set.
  4. The method of claim 1, wherein receiving the control message indicating the updated correspondence between at least the subset of the plurality of CSI measurement resources and the plurality of TCI states comprises:
    receiving the updated correspondence between each CSI measurement resource associated with an aperiodic CSI trigger state and the plurality of TCI states.
  5. The method of claim 4, wherein the control message indicates the aperiodic CSI trigger state from a set of RRC configured aperiodic CSI trigger states or from a subset of the set of RRC configured aperiodic CSI trigger states indicated by a medium access control (MAC) control element (MAC-CE) .
  6. The method of claim 1, wherein receiving the control message indicating the updated correspondence between at least the subset of the plurality of CSI measurement resources and the plurality of TCI states comprises:
    receiving a medium access control (MAC) control element (MAC-CE) that indicates a subset of a set of RRC configured aperiodic CSI trigger states and indicates the updated correspondence between each CSI measurement resource associated with each of the subset of the set of RRC configured aperiodic CSI trigger states and the plurality of TCI states.
  7. The method of claim 1, wherein each CSI measurement resource of the plurality of CSI measurement resources is associated with multiple TCI states, and wherein receiving the control message indicating the updated correspondence between at least the subset of the plurality of CSI measurement resources and the plurality of TCI states comprises:
    receiving the updated correspondence indicating the multiple TCI states for each CSI measurement resource of at least the subset of the plurality of CSI measurement resources.
  8. The method of claim 1, further comprising:
    receiving the one or more CSI-RSs within a time period between an application of the updated correspondence and a CSI reference resource based at least in part on monitoring over the one or more CSI measurement resources; and
    transmitting a CSI report, the CSI report based at least in part on the one or more CSI-RSs and the updated correspondence.
  9. The method of claim 1, further comprising:
    detecting a failure to receive the one or more CSI-RSs within a time period between an application of the updated correspondence and a CSI reference resource based at least in part on monitoring over the one or more CSI measurement resources; and
    dropping a CSI report based at least in part on detecting the failure to receive the one or more CSI-RSs within the time period between the application of the updated correspondence and the CSI reference resource, the CSI report based at least in part on the one or more CSI-RSs and the correspondence.
  10. The method of claim 1, further comprising:
    detecting a failure to receive the one or more CSI-RSs within a time period between an application of the updated correspondence and a CSI reference resource based at least in part on monitoring over the one or more CSI measurement resources; and
    refraining from updating a CSI report based at least in part on detecting the failure to receive the one or more CSI-RSs within the time period between the application of the updated correspondence and the CSI reference resource, the CSI report based at least in part on the one or more CSI-RSs and the correspondence.
  11. The method of claim 10, wherein refraining from updating the CSI report comprises:
    refraining from transmitting an updated CSI report, the updated CSI report based at least in part on the one or more CSI-RSs and the updated correspondence.
  12. The method of claim 1, wherein the control message includes one or more fields indicating the updated correspondence between at least the subset of the plurality of CSI measurement resources and the plurality of TCI states.
  13. The method of claim 1, wherein the control message comprises a medium access control (MAC) control element (MAC-CE) or group-common downlink control information (DCI) .
  14. The method of claim 1, wherein the plurality of CSI measurement resources are configured for periodic CSI reporting or aperiodic CSI reporting.
  15. A method for wireless communication at an apparatus of a base station (BS) , comprising:
    transmitting, to a user equipment (UE) , a radio resource control (RRC) message indicating a correspondence between a plurality of channel state information (CSI) measurement resources and a plurality of transmission configuration indicator (TCI) states;
    transmitting, to the UE, a control message indicating an updated correspondence between at least a subset of the plurality of CSI measurement resources and the plurality of TCI states;
    transmitting, to the UE, one or more CSI reference signals (CSI-RSs) over one or more CSI measurement resources of at least the subset of the plurality of CSI measurement resources; and
    monitoring for a CSI report based at least in part on transmitting the one or more CSI-RSs.
  16. The method of claim 15, wherein transmitting the control message indicating the updated correspondence between at least the subset of the plurality of CSI measurement resources and the plurality of TCI states comprises:
    transmitting the updated correspondence between each CSI measurement resource of a CSI measurement resource set and the plurality of TCI states.
  17. The method of claim 15, wherein transmitting the control message indicating the updated correspondence between at least the subset of the plurality of CSI measurement resources and the plurality of TCI states comprises:
    transmitting the updated correspondence between a first CSI measurement resource and a first TCI state of the plurality of TCI states and a second CSI measurement resource and a second TCI state of the plurality of TCI states, wherein the first CSI measurement resource belongs to a first CSI measurement resource set and the second CSI measurement resource belongs to a second CSI measurement resource set different than the first CSI measurement resource set.
  18. The method of claim 15, wherein transmitting the control message indicating the updated correspondence between at least the subset of the plurality of CSI measurement resources and the plurality of TCI states comprises:
    transmitting the updated correspondence between each CSI measurement resource associated with an aperiodic CSI trigger state and the plurality of TCI states.
  19. The method of claim 18, wherein the control message indicates the aperiodic CSI trigger state from a set of RRC configured aperiodic CSI trigger states or from a subset of the set of RRC configured aperiodic CSI trigger states indicated by a medium access control (MAC) control element (MAC-CE) .
  20. The method of claim 15, wherein transmitting the control message indicating the updated correspondence between at least the subset of the plurality of CSI measurement resources and the plurality of TCI states comprises:
    transmitting a medium access control (MAC) control element (MAC-CE) that indicates a subset of a set of RRC configured aperiodic CSI trigger states and indicates the updated correspondence between each CSI measurement resource associated with each of the subset of the set of RRC configured aperiodic CSI trigger states and the plurality of TCI states.
  21. The method of claim 15, wherein each CSI measurement resource of the plurality of CSI measurement resources is associated with multiple TCI states, and wherein transmitting the control message indicating the updated correspondence between at least the subset of the plurality of CSI measurement resources and the plurality of TCI states comprises:
    transmitting the updated correspondence indicating the multiple TCI states for each CSI measurement resource of at least the subset of the plurality of CSI measurement resources.
  22. The method of claim 15, wherein transmitting the one or more CSI-RSs over the one or more CSI measurement resources comprises transmitting the one or more CSI-RSs within a time period between an application of the updated correspondence at the UE and a CSI reference resource, the method further comprising:
    receiving, from the UE, the CSI report based at least in part on transmitting the one or more CSI-RSs within the time period between the application of the updated correspondence at the UE and the CSI reference resource and based at least in part on monitoring for the CSI report, the CSI report based at least in part on the one or more CSI-RSs and the updated correspondence.
  23. The method of claim 15, wherein transmitting the one or more CSI-RSs over the one or more CSI measurement resources comprises transmitting the one or more CSI-RSs outside of a time period between an application of the updated correspondence at the UE and a CSI reference resource, the method further comprising:
    detecting a failure to receive the CSI report based at least in part on transmitting the one or more CSI-RSs outside of the time period between the application of the updated correspondence at the UE and the CSI reference resource.
  24. The method of claim 15, wherein transmitting the one or more CSI-RSs over the one or more CSI measurement resources comprises transmitting the one or more CSI-RSs outside of a time period between an application of the updated correspondence at the UE and a CSI reference resource, the method further comprising:
    receiving the CSI report based at least in part on transmitting the one or more CSI-RSs outside of the time period between the application of the updated correspondence at the UE and the CSI reference resource and based at least in part on monitoring for the CSI report, the CSI report based at least in part on the one or more CSI-RSs and the correspondence.
  25. The method of claim 15, wherein the control message includes one or more fields indicating the updated correspondence between at least the subset of the plurality of CSI measurement resources and the plurality of TCI states.
  26. The method of claim 15, wherein the control message comprises a medium access control (MAC) control element (MAC-CE) or group-common downlink control information (DCI) .
  27. The method of claim 15, wherein the plurality of CSI measurement resources are configured for periodic CSI reporting or aperiodic CSI reporting.
  28. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a first interface configured to:
    obtain a radio resource control (RRC) message indicating a correspondence between a plurality of channel state information (CSI) measurement resources and a plurality of transmission configuration indicator (TCI) states;
    obtain a control message indicating an updated correspondence between at least a subset of the plurality of CSI measurement resources and the plurality of TCI states; and
    a processing system configured to:
    monitor over one or more CSI measurement resources of at least the subset of the plurality of CSI measurement resources for one or more CSI reference signals (CSI-RSs) .
  29. The apparatus of claim 28, wherein obtaining the control message indicating the updated correspondence between at least the subset of the plurality of CSI measurement resources and the plurality of TCI states comprises:
    obtaining the updated correspondence between each CSI measurement resource of a CSI measurement resource set and the plurality of TCI states.
  30. The apparatus of claim 28, wherein obtaining the control message indicating the updated correspondence between at least the subset of the plurality of CSI measurement resources and the plurality of TCI states comprises:
    obtaining the updated correspondence between a first CSI measurement resource and a first TCI state of the plurality of TCI states and a second CSI measurement resource and a second TCI state of the plurality of TCI states, wherein the first CSI measurement resource belongs to a first CSI measurement resource set and the second CSI measurement resource belongs to a second CSI measurement resource set different than the first CSI measurement resource set.
  31. The apparatus of claim 28, wherein obtaining the control message indicating the updated correspondence between at least the subset of the plurality of CSI measurement resources and the plurality of TCI states comprises:
    obtaining the updated correspondence between each CSI measurement resource associated with an aperiodic CSI trigger state and the plurality of TCI states.
  32. The apparatus of claim 31, wherein the control message indicates the aperiodic CSI trigger state from a set of RRC configured aperiodic CSI trigger states or from a subset of the set of RRC configured aperiodic CSI trigger states indicated by a medium access control (MAC) control element (MAC-CE) .
  33. The apparatus of claim 28, wherein obtaining the control message indicating the updated correspondence between at least the subset of the plurality of CSI measurement resources and the plurality of TCI states comprises:
    obtaining a medium access control (MAC) control element (MAC-CE) that indicates a subset of a set of RRC configured aperiodic CSI trigger states and indicates the updated correspondence between each CSI measurement resource associated with each of the subset of the set of RRC configured aperiodic CSI trigger states and the plurality of TCI states.
  34. The apparatus of claim 28, wherein each CSI measurement resource of the plurality of CSI measurement resources is associated with multiple TCI states, and wherein obtaining the control message indicating the updated correspondence between at least the subset of the plurality of CSI measurement resources and the plurality of TCI states comprises:
    obtaining the updated correspondence indicating the multiple TCI states for each CSI measurement resource of at least the subset of the plurality of CSI measurement resources.
  35. The apparatus of claim 28, wherein:
    the first interface or a second interface is configured to:
    obtain the one or more CSI-RSs within a time period between an application of the updated correspondence and a CSI reference resource based at least in part on monitoring over the one or more CSI measurement resources; and
    the first interface or the second interface is configured to:
    output a CSI report, the CSI report based at least in part on the one or more CSI-RSs and the updated correspondence.
  36. The apparatus of claim 28, wherein:
    the processing system is configured to:
    detect a failure to obtain the one or more CSI-RSs within a time period between an application of the updated correspondence and a CSI reference resource based at least in part on monitoring over the one or more CSI measurement resources; and
    drop a CSI report based at least in part on detecting the failure to obtain the one or more CSI-RSs within the time period between the application of the updated correspondence and the CSI reference resource, the CSI report based at least in part on the one or more CSI-RSs and the correspondence.
  37. The apparatus of claim 28, wherein:
    the processing system is configured to:
    detect a failure to obtain the one or more CSI-RSs within a time period between an application of the updated correspondence and a CSI reference resource based at least in part on monitoring over the one or more CSI measurement resources; and
    refrain from updating a CSI report based at least in part on detecting the failure to obtain the one or more CSI-RSs within the time period between the application of the updated correspondence and the CSI reference resource, the CSI report based at least in part on the one or more CSI-RSs and the correspondence.
  38. The apparatus of claim 37, wherein the processing system is configured to:
    refrain from outputting an updated CSI report, the updated CSI report based at least in part on the one or more CSI-RSs and the updated correspondence.
  39. The apparatus of claim 28, wherein the control message includes one or more fields indicating the updated correspondence between at least the subset of the plurality of CSI measurement resources and the plurality of TCI states.
  40. The apparatus of claim 28, wherein the control message comprises a medium access control (MAC) control element (MAC-CE) or group-common downlink control information (DCI) .
  41. The apparatus of claim 28, wherein the plurality of CSI measurement resources are configured for periodic CSI reporting or aperiodic CSI reporting.
  42. An apparatus for wireless communication at a base station (BS) , comprising:
    a first interface configured to:
    output a radio resource control (RRC) message indicating a correspondence between a plurality of channel state information (CSI) measurement resources and a plurality of transmission configuration indicator (TCI) states;
    output a control message indicating an updated correspondence between at least a subset of the plurality of CSI measurement resources and the plurality of TCI states; and
    output one or more CSI reference signals (CSI-RSs) over one or more CSI measurement resources of at least the subset of the plurality of CSI measurement resources; and
    a processing system configured to:
    monitor for a CSI report based at least in part on outputting the one or more CSI-RSs.
  43. The apparatus of claim 42, wherein outputting the control message indicating the updated correspondence between at least the subset of the plurality of CSI measurement resources and the plurality of TCI states comprises:
    outputting the updated correspondence between each CSI measurement resource of a CSI measurement resource set and the plurality of TCI states.
  44. The apparatus of claim 42, wherein outputting the control message indicating the updated correspondence between at least the subset of the plurality of CSI measurement resources and the plurality of TCI states comprises:
    outputting the updated correspondence between a first CSI measurement resource and a first TCI state of the plurality of TCI states and a second CSI measurement resource and a second TCI state of the plurality of TCI states, wherein the first CSI measurement resource belongs to a first CSI measurement resource set and the second CSI measurement resource belongs to a second CSI measurement resource set different than the first CSI measurement resource set.
  45. The apparatus of claim 42, wherein outputting the control message indicating the updated correspondence between at least the subset of the plurality of CSI measurement resources and the plurality of TCI states comprises:
    outputting the updated correspondence between each CSI measurement resource associated with an aperiodic CSI trigger state and the plurality of TCI states.
  46. The apparatus of claim 45, wherein the control message indicates the aperiodic CSI trigger state from a set of RRC configured aperiodic CSI trigger states or from a subset of the set of RRC configured aperiodic CSI trigger states indicated by a medium access control (MAC) control element (MAC-CE) .
  47. The apparatus of claim 42, wherein outputting the control message indicating the updated correspondence between at least the subset of the plurality of CSI measurement resources and the plurality of TCI states comprises:
    outputting a medium access control (MAC) control element (MAC-CE) that indicates a subset of a set of RRC configured aperiodic CSI trigger states and indicates the updated correspondence between each CSI measurement resource associated with each of the subset of the set of RRC configured aperiodic CSI trigger states and the plurality of TCI states.
  48. The apparatus of claim 42, wherein each CSI measurement resource of the plurality of CSI measurement resources is associated with multiple TCI states, and wherein outputting the control message indicating the updated correspondence between at least the subset of the plurality of CSI measurement resources and the plurality of TCI states comprises:
    outputting the updated correspondence indicating the multiple TCI states for each CSI measurement resource of at least the subset of the plurality of CSI measurement resources.
  49. The apparatus of claim 42, wherein outputting the one or more CSI-RSs over the one or more CSI measurement resources comprises outputting the one or more CSI-RSs within a time period between an application of the updated correspondence at the UE and a CSI reference resource, and wherein the first interface or the second interface is further configured to:
    obtain the CSI report based at least in part on outputting the one or more CSI-RSs within the time period between the application of the updated correspondence at the UE and the CSI reference resource and based at least in part on monitoring for the CSI report, the CSI report based at least in part on the one or more CSI-RSs and the updated correspondence.
  50. The apparatus of claim 42, wherein outputting the one or more CSI-RSs over the one or more CSI measurement resources comprises outputting the one or more CSI-RSs outside of a time period between an application of the updated correspondence at the UE and a CSI reference resource, and wherein the processing system is configured to:
    detect a failure to obtain the CSI report based at least in part outputting the one or more CSI-RSs outside of the time period between the application of the updated correspondence at the UE and the CSI reference resource.
  51. The apparatus of claim 42, wherein outputting the one or more CSI-RSs over the one or more CSI measurement resources comprises outputting the one or more CSI-RSs outside of a time period between an application of the updated correspondence at the UE and a CSI reference resource, and wherein the first interface or the second interface is further configured to:
    obtain the CSI report based at least in part on outputting the one or more CSI-RSs outside of the time period between the application of the updated correspondence at the UE and the CSI reference resource and based at least in part on monitoring for the CSI report, the CSI report based at least in part on the one or more CSI-RSs and the correspondence.
  52. The apparatus of claim 42, wherein the control message includes one or more fields indicating the updated correspondence between at least the subset of the plurality of CSI measurement resources and the plurality of TCI states.
  53. The apparatus of claim 42, wherein the control message comprises a medium access control (MAC) control element (MAC-CE) or group-common downlink control information (DCI) .
  54. The apparatus of claim 42, wherein the plurality of CSI measurement resources are configured for periodic CSI reporting or aperiodic CSI reporting.
  55. An apparatus for wireless communication at a user equipment (UE) , comprising:
    means for receiving, from a base station (BS) , a radio resource control (RRC) message indicating a correspondence between a plurality of channel state information (CSI) measurement resources and a plurality of transmission configuration indicator (TCI) states;
    means for receiving, from the BS, a control message indicating an updated correspondence between at least a subset of the plurality of CSI measurement resources and the plurality of TCI states; and
    means for monitoring over one or more CSI measurement resources of at least the subset of the plurality of CSI measurement resources for one or more CSI reference signals (CSI-RSs) .
  56. An apparatus for wireless communication at a base station (BS) , comprising:
    means for transmitting, to a user equipment (UE) , a radio resource control (RRC) message indicating a correspondence between a plurality of channel state information (CSI) measurement resources and a plurality of transmission configuration indicator (TCI) states;
    means for transmitting, to the UE, a control message indicating an updated correspondence between at least a subset of the plurality of CSI measurement resources and the plurality of TCI states;
    means for transmitting, to the UE, one or more CSI reference signals (CSI-RSs) over one or more CSI measurement resources of at least the subset of the plurality of CSI measurement resources; and
    means for monitoring for a CSI report based at least in part on transmitting the one or more CSI-RSs.
  57. A non-transitory computer-readable medium storing code for wireless communication at an apparatus of a user equipment (UE) , the code comprising instructions executable by a processor to:
    receive, from a base station (BS) , a radio resource control (RRC) message indicating a correspondence between a plurality of channel state information (CSI) measurement resources and a plurality of transmission configuration indicator (TCI) states;
    receive, from the BS, a control message indicating an updated correspondence between at least a subset of the plurality of CSI measurement resources and the plurality of TCI states; and
    monitor over one or more CSI measurement resources of at least the subset of the plurality of CSI measurement resources for one or more CSI reference signals (CSI-RSs) .
  58. A non-transitory computer-readable medium storing code for wireless communication at an apparatus of a base station (BS) , the code comprising instructions executable by a processor to:
    transmit, to a user equipment (UE) , a radio resource control (RRC) message indicating a correspondence between a plurality of channel state information (CSI) measurement resources and a plurality of transmission configuration indicator (TCI) states;
    transmit, to the UE, a control message indicating an updated correspondence between at least a subset of the plurality of CSI measurement resources and the plurality of TCI states;
    transmit, to the UE, one or more CSI reference signals (CSI-RSs) over one or more CSI measurement resources of at least the subset of the plurality of CSI measurement resources; and
    monitor for a CSI report based at least in part on transmitting the one or more CSI-RSs.
PCT/CN2020/121453 2020-10-16 2020-10-16 Techniques for updating transmission configuration indicator (tci) states for periodic and aperiodic channel state information reference signal (csi-rs) resources WO2022077427A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/121453 WO2022077427A1 (en) 2020-10-16 2020-10-16 Techniques for updating transmission configuration indicator (tci) states for periodic and aperiodic channel state information reference signal (csi-rs) resources

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/121453 WO2022077427A1 (en) 2020-10-16 2020-10-16 Techniques for updating transmission configuration indicator (tci) states for periodic and aperiodic channel state information reference signal (csi-rs) resources

Publications (1)

Publication Number Publication Date
WO2022077427A1 true WO2022077427A1 (en) 2022-04-21

Family

ID=81208755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121453 WO2022077427A1 (en) 2020-10-16 2020-10-16 Techniques for updating transmission configuration indicator (tci) states for periodic and aperiodic channel state information reference signal (csi-rs) resources

Country Status (1)

Country Link
WO (1) WO2022077427A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023206434A1 (en) * 2022-04-29 2023-11-02 Qualcomm Incorporated Unified transmission configuration indicator for a single frequency network
WO2024067140A1 (en) * 2022-09-30 2024-04-04 华为技术有限公司 Measurement resource indication method and apparatus
WO2024173007A1 (en) * 2023-02-16 2024-08-22 Apple Inc. Fast channel state information reporting configuration updates for neighbor cells

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110637419A (en) * 2017-05-17 2019-12-31 高通股份有限公司 CSI-RS configuration for partial band retuning
EP3696991A1 (en) * 2019-02-14 2020-08-19 Comcast Cable Communications LLC Transmission/reception management in wireless communication

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110637419A (en) * 2017-05-17 2019-12-31 高通股份有限公司 CSI-RS configuration for partial band retuning
EP3696991A1 (en) * 2019-02-14 2020-08-19 Comcast Cable Communications LLC Transmission/reception management in wireless communication

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On beam indication, measurement, and reporting", 3GPP DRAFT; R1-1716350 ON BEAM INDICATION, MEASUREMENT, AND REPORTING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Nagoya, Japan; 20170918 - 20170921, 17 September 2017 (2017-09-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051339805 *
QUALCOMM INCORPORATED: "CSI enhancements: MTRP and FR1 FDD reciprocity", 3GPP DRAFT; R1-2006796, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051918246 *
ZTE: "Feature lead summary on CSI measurement", 3GPP DRAFT; R1-1811858 FEATURE LEAD SUMMARY ON CSI MEASUREMENT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chengdu, China; 20181008 - 20181012, 9 October 2018 (2018-10-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051519182 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023206434A1 (en) * 2022-04-29 2023-11-02 Qualcomm Incorporated Unified transmission configuration indicator for a single frequency network
WO2024067140A1 (en) * 2022-09-30 2024-04-04 华为技术有限公司 Measurement resource indication method and apparatus
WO2024173007A1 (en) * 2023-02-16 2024-08-22 Apple Inc. Fast channel state information reporting configuration updates for neighbor cells

Similar Documents

Publication Publication Date Title
US11539415B2 (en) On demand channel state information measurement and reporting with adaptive receive antennas
WO2022077427A1 (en) Techniques for updating transmission configuration indicator (tci) states for periodic and aperiodic channel state information reference signal (csi-rs) resources
US11627581B2 (en) Rank indicator and layer indicator signaling in non-coherent joint transmission channel state information
US20220078656A1 (en) Resource set configuration reporting with multiple channel and interference measurements
US20240015551A1 (en) Resource selection for single and multiple transmit/receive points (trp) channel state information (csi) reporting
US20230344578A1 (en) Channel state information reference signal (csi-rs) resource activation or deactivation within a resource set
US20230189040A1 (en) Reporting neighboring cell interference due to beam jamming
US20220294503A1 (en) Techniques for indicating preferred beams in multi-transmission and reception point (multi-trp) systems based on default operating frequency (dof) mismatch
US11683711B2 (en) Measurement report with nested indexing
US11956044B2 (en) Dynamic adaptation of semi-persistent CSI report setting
US20240214172A1 (en) Beam configuration activation and deactivation under multiple transmit receive point (trp) operation
US20230171067A1 (en) Support of flexible sounding reference signal switching capability
US20240113834A1 (en) Signaling of sounding reference signal grouping
US20230396301A1 (en) Common beam indication techniques for multi-beam operation
US11800412B2 (en) Techniques for channel measurement reporting across different distributed units (DUS) of a base station (BS)
US12082167B2 (en) Transmission continuity capability reporting
WO2023272711A1 (en) Sounding reference signal (srs) resource set configuration for asymmetric panels
WO2023087238A1 (en) Dynamic switching between communications schemes for uplink communications
WO2022087948A1 (en) Techniques for mapping sounding reference signal resources
US20240306023A1 (en) Uplink control information payload and ordering for non-coherent joint transmission and single transmission reception point channel state information
US20230361821A1 (en) Layer-specific feedback periodicity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20957205

Country of ref document: EP

Kind code of ref document: A1