WO2022077390A1 - 一种卫星信号处理方法及卫星定位装置 - Google Patents

一种卫星信号处理方法及卫星定位装置 Download PDF

Info

Publication number
WO2022077390A1
WO2022077390A1 PCT/CN2020/121306 CN2020121306W WO2022077390A1 WO 2022077390 A1 WO2022077390 A1 WO 2022077390A1 CN 2020121306 W CN2020121306 W CN 2020121306W WO 2022077390 A1 WO2022077390 A1 WO 2022077390A1
Authority
WO
WIPO (PCT)
Prior art keywords
rdss
offset value
rnss
frequency offset
signal
Prior art date
Application number
PCT/CN2020/121306
Other languages
English (en)
French (fr)
Inventor
黄威
刘翔飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080105558.XA priority Critical patent/CN116249916A/zh
Priority to PCT/CN2020/121306 priority patent/WO2022077390A1/zh
Priority to EP20957169.4A priority patent/EP4220232A4/en
Publication of WO2022077390A1 publication Critical patent/WO2022077390A1/zh
Priority to US18/300,441 priority patent/US20230258825A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/421Determining position by combining or switching between position solutions or signals derived from different satellite radio beacon positioning systems; by combining or switching between position solutions or signals derived from different modes of operation in a single system
    • G01S19/425Determining position by combining or switching between position solutions or signals derived from different satellite radio beacon positioning systems; by combining or switching between position solutions or signals derived from different modes of operation in a single system by combining or switching between signals derived from different satellite radio beacon positioning systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/256Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to timing, e.g. time of week, code phase, timing offset

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a satellite signal processing method and a satellite positioning device.
  • GNSS Global Navigation Satellite System
  • RNSS radio navigation satellite system
  • RDSS radio determination satellite system
  • a method for realizing fast positioning of a user machine based on the integration of RNSS and RDSS is provided. Specifically, after the RDSS module completes the acquisition, tracking and positioning calculation of the RDSS signal, the calculated time information is transmitted to the RNSS module for auxiliary positioning use, so that the RNSS module can reduce the time information required for navigation based on the time information. The uncertainty is greatly reduced, and the first acquisition time of the RNSS signal is greatly reduced, thereby realizing the rapid positioning of the RNSS.
  • the RDSS signal acquisition and tracking may not be achieved due to the low received power of the RDSS signal, resulting in RNSS signals.
  • Low performance integration with RDSS since the receiving sensitivity of the RDSS signal is significantly lower than that of the RNSS signal, in some complex signal scenarios with severe occlusion, the RDSS signal acquisition and tracking may not be achieved due to the low received power of the RDSS signal, resulting in RNSS signals. Low performance integration with RDSS.
  • the present application provides a satellite signal processing method and a satellite positioning device, which are used to improve system performance and user experience when RNSS and RDSS are integrated.
  • a satellite positioning device supports a satellite radio navigation system RNSS and a satellite radio determination system RDSS
  • the device includes: an RNSS radio frequency channel for receiving an RNSS received signal, and the RNSS received signal may refer to the device
  • the received RNSS signal from the satellite, the RNSS signal may refer to the signal corresponding to the RNSS
  • the RNSS baseband processor coupled to the RNSS radio frequency channel, is used to perform position velocity and time PVT calculation on the RNSS received signal to obtain PVT information
  • the RDSS baseband processor is used to determine the carrier frequency of the RDSS received signal according to the carrier frequency offset value.
  • the carrier frequency offset value is generated based on the PVT information.
  • the carrier frequency offset value refers to the carrier frequency of the RDSS received signal relative to that sent by the satellite.
  • the frequency offset value of the carrier frequency of the RDSS signal; the RDSS radio frequency channel is coupled to the RDSS baseband processor for receiving the RDSS received signal based on the carrier frequency of the RDSS received signal.
  • the carrier frequency offset value of the RDSS signal can be obtained based on the PVT information determined by the RNSS received signal, so that the carrier frequency of the RDSS received signal can be determined based on the carrier frequency offset value, that is, the carrier frequency offset value can be used for the RDSS.
  • the carrier frequency of the received signal is locked in a small frequency range to pre-detect the RDSS received signal in a small frequency range, thereby shortening the search time of the carrier frequency uncertainty and realizing the fast locking of the RDSS received signal, thereby
  • the hardware design complexity and cost of the device can be reduced, and at the same time, the power consumption of the device can be further reduced.
  • the RDSS baseband processor is further configured to determine a code phase of the RDSS received signal according to a code phase offset value, where the code phase offset value is generated based on the PVT information;
  • the RDSS radio frequency channel is further configured to receive the RDSS received signal based on the code phase of the RDSS received signal and the carrier frequency.
  • the code phase offset value can be used to lock the phase of the symbol (or chip) of the RDSS received signal in a smaller phase range, and pre-detect in the smaller phase range.
  • the RDSS receives the signal, thereby shortening the search time for symbol (or chip) phase uncertainty.
  • the PVT information includes at least one of the following: position information, moving speed, and estimated clock frequency offset; wherein, the estimated clock frequency offset is the difference between the measured clock frequency of the device and the Difference between base clock frequencies.
  • the position information can refer to the position when the device receives the RNSS signal;
  • the moving speed can refer to the moving speed when the device receives the RNSS signal;
  • the time information can refer to the time information when the satellite sends the RNSS signal, It can also be called an observation moment;
  • the estimated clock frequency offset value can refer to an estimated offset value when the clock frequency of the device is offset.
  • the RNSS baseband processor or the RDSS baseband processor is further configured to: determine a Doppler frequency offset value according to the moving speed, and determine a Doppler frequency offset value according to the Doppler frequency offset value and The clock frequency offset estimate determines the carrier frequency offset value.
  • the sum of the Doppler frequency offset value and the estimated clock frequency offset value is the carrier offset value.
  • the RNSS baseband processor or the RDSS baseband processor is further configured to: determine a signal propagation delay according to the location information, and determine a code phase offset according to the signal propagation delay value.
  • the code phase offset value is the product of the signal propagation delay and the code frequency.
  • the method further includes: an RDSS baseband processor, further configured to correct the carrier frequency of the RDSS transmit signal according to the carrier frequency offset value to obtain the RDSS transmit signal; an RDSS radio frequency channel , and is also used to send the RDSS transmit signal.
  • the carrier frequency of the RDSS transmission signal is corrected by the carrier frequency offset value, so that the frequency accuracy of the RDSS transmission signal can be improved, so that after the device sends the RDSS transmission signal, the RDSS central station receives the RDSS transmission.
  • the RDSS central station can be made to perform pre-detection near the nominal value of the system, so that the central station can complete the acquisition of the RDSS transmitted signal with minimum resources and improve the success rate of communication.
  • the apparatus is a satellite positioning chip or a satellite positioning device.
  • a satellite positioning device supports a satellite radio navigation system RNSS and a satellite radio determination system RDSS
  • the device includes: an RNSS radio frequency channel for receiving an RNSS received signal, and the RNSS received signal may refer to the device
  • the received RNSS signal from the satellite, the RNSS signal may refer to the signal corresponding to the RNSS
  • the RNSS baseband processor coupled to the RNSS radio frequency channel, is used to perform position velocity and time PVT calculation on the RNSS received signal to obtain PVT information
  • the RDSS baseband processor is used to correct the carrier frequency of the RDSS transmitted signal according to the carrier frequency offset value to obtain the RDSS transmitted signal.
  • the carrier frequency offset value is generated based on the PVT information, and the carrier frequency offset value refers to the RDSS received signal.
  • the frequency offset value of the carrier frequency relative to the carrier frequency of the RDSS signal sent by the satellite; the RDSS radio frequency channel, coupled to the RDSS baseband processor, is used for sending the RDSS transmit signal.
  • the carrier frequency offset value is determined based on the RNSS received signal, the carrier frequency of the RDSS transmission signal is corrected by the carrier frequency offset value, so that the frequency accuracy of the RDSS transmission signal can be improved, thereby sending the RDSS at the device.
  • the RDSS central station After the signal is transmitted, when the RDSS central station receives the RDSS transmitted signal, the RDSS central station can be made to perform pre-detection near the system nominal value, so that the central station can complete the acquisition of the RDSS transmitted signal with minimum resources and improve the communication success rate.
  • the PVT information includes at least one of the following: a moving speed, an estimated clock frequency offset value; wherein the estimated clock frequency offset value is a measured clock frequency and a reference clock frequency of the device difference between.
  • the moving speed may refer to the moving speed when the device receives the RNSS signal;
  • the time information may refer to the time information when the satellite sends the RNSS signal, which may also be referred to as the observation moment;
  • the clock frequency offset estimate may refer to The estimated offset value when the clock frequency of this device is offset.
  • the RNSS baseband processor or the RDSS baseband processor is further configured to: determine a Doppler frequency offset value according to the moving speed, and determine a Doppler frequency offset value according to the Doppler frequency offset value and the clock The frequency offset estimate determines the carrier frequency offset value.
  • the sum of the Doppler frequency offset value and the estimated clock frequency offset value is the carrier offset value.
  • the apparatus is a satellite positioning chip or a satellite positioning device.
  • a satellite signal processing method is provided, the method is applied to a device supporting a satellite radio navigation system RNSS and a satellite radio determination system RDSS, the method includes: receiving an RNSS received signal, and the RNSS received signal may refer to the device
  • the received RNSS signal from the satellite, the RNSS signal can refer to the signal corresponding to the RNSS; the position velocity and time PVT calculation is performed on the RNSS received signal to obtain the PVT information; the carrier frequency of the RDSS received signal is determined according to the carrier frequency offset value, The carrier frequency offset value is generated based on the PVT information, and the carrier frequency offset value refers to the frequency offset value of the carrier frequency of the RDSS received signal relative to the carrier frequency of the RDSS signal sent by the satellite; based on the carrier frequency of the RDSS received signal frequency to receive the RDSS received signal.
  • the method further includes: determining a code phase of the RDSS received signal according to a code phase offset value, where the code phase offset value is generated based on the PVT information; based on the RDSS The code phase of the received signal and the carrier frequency are used to receive the RDSS received signal.
  • the PVT information includes at least one of the following: position information, moving speed, and estimated clock frequency offset; wherein, the estimated clock frequency offset is the difference between the measured clock frequency of the device and the Difference between base clock frequencies.
  • the position information can refer to the position when the device receives the RNSS signal;
  • the moving speed can refer to the moving speed when the device receives the RNSS signal;
  • the time information can refer to the time information when the satellite sends the RNSS signal, It can also be called an observation moment;
  • the estimated clock frequency offset value can refer to an estimated offset value when the clock frequency of the device is offset.
  • the method further includes: determining a Doppler frequency offset value according to the moving speed, and determining the carrier frequency according to the Doppler frequency offset value and the estimated clock frequency offset value Bias value.
  • the sum of the Doppler frequency offset value and the estimated clock frequency offset value is the carrier offset value.
  • the method further includes: determining a signal propagation delay according to the location information, and determining the code phase offset value according to the signal propagation delay.
  • the code phase offset value is the product of the signal propagation delay and the code frequency.
  • the method further includes: correcting the carrier frequency of the RDSS transmission signal according to the carrier frequency offset value to obtain the RDSS transmission signal; and sending the RDSS transmission signal.
  • the apparatus is a satellite positioning chip or a satellite positioning device.
  • a satellite signal processing method is provided, the method is applied to a device supporting a satellite radio navigation system RNSS and a satellite radio determination system RDSS, the method includes: receiving an RNSS received signal, and the RNSS received signal may refer to the device
  • the received RNSS signal from the satellite, the RNSS signal can refer to the signal corresponding to the RNSS; the position velocity and time PVT calculation is performed on the RNSS received signal to obtain the PVT information; the carrier frequency of the RDSS transmitted signal is corrected according to the carrier frequency offset value,
  • the carrier frequency offset value is generated based on the PVT information, and the carrier frequency offset value refers to the frequency offset value of the carrier frequency of the RDSS received signal relative to the carrier frequency of the RDSS signal sent by the satellite; RDSS transmits signals.
  • the PVT information includes at least one of the following: a moving speed, an estimated clock frequency offset value; wherein the estimated clock frequency offset value is a measurement clock frequency and a reference clock frequency of the device difference between.
  • the moving speed may refer to the moving speed when the device receives the RNSS signal;
  • the time information may refer to the time information when the satellite sends the RNSS signal, which may also be referred to as the observation moment;
  • the clock frequency offset estimate may refer to The estimated offset value when the clock frequency of this device is offset.
  • the method further includes: determining a Doppler frequency offset value according to the moving speed, and determining the carrier according to the Doppler frequency offset value and the estimated clock frequency offset value Frequency offset value.
  • the sum of the Doppler frequency offset value and the estimated clock frequency offset value is the carrier offset value.
  • the apparatus is a satellite positioning chip or a satellite positioning device.
  • a satellite positioning system in a fifth aspect, includes an antenna, and the satellite positioning system provided by the first aspect or any possible implementation manner of the first aspect.
  • a satellite positioning system in a sixth aspect, includes an antenna, and the satellite positioning system provided by the second aspect or any possible implementation manner of the second aspect.
  • a computer-readable storage medium for storing a computer program, which, when the computer program runs on a computer, enables the computer to execute the third aspect or any of the third aspects.
  • the satellite signal processing method provided by the implementation.
  • a computer-readable storage medium for storing a computer program, which, when the computer program runs on a computer, enables the computer to execute the fourth aspect or any of the fourth aspects.
  • the satellite signal processing method provided by the implementation.
  • a computer program product which, when the computer program product runs on a computer, enables the computer to execute the satellite provided by the third aspect or any possible implementation manner of the third aspect. signal processing method.
  • a computer program product which, when the computer program product runs on a computer, enables the computer to execute the satellite provided by the fourth aspect or any possible implementation manner of the fourth aspect. signal processing method.
  • any satellite signal processing method, satellite positioning system, computer-readable storage medium or computer program product provided above all include the functions of the satellite positioning device provided above, and therefore, it can achieve beneficial effects.
  • the effects reference may be made to the beneficial effects in the satellite positioning device provided above, and details are not repeated here.
  • FIG. 1 is a schematic diagram of the architecture of a GNSS provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a mobile phone according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a satellite signal processing method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a satellite positioning device provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another satellite signal processing method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another satellite positioning device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural flowchart of another satellite signal processing method provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another satellite positioning device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another satellite positioning device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a satellite positioning system according to an embodiment of the present application.
  • “at least one” means one or more, and “plurality” means two or more.
  • “And/or”, which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an "or” relationship.
  • words such as “first” and “second” do not limit the quantity and execution order.
  • the Global Navigation Satellite System is a satellite-based radio navigation system that uses artificial earth satellites as a navigation station to provide all-weather, high-precision positions for various military and civilian carriers in the world's land, sea, air, and sky.
  • (position, P) velocity (velocity, V) and time (time, T) information the position velocity and time information may be referred to as PVT information for short.
  • RNSS radio navigation satellite system
  • RDSS radio determination satellite system
  • FIG. 1 is a schematic diagram of the architecture of a GNSS provided by an embodiment of the present application.
  • the GNSS may include: a space part 101 , a ground control part 102 and a user part 103 .
  • the space part 101 may include a constellation of satellites flying around the earth in the air, and the satellite constellation may include a plurality of satellites, which may be used to provide ephemeris and time information, transmit pseudorange and carrier signals, and provide other service information, etc.
  • the plurality of satellites may include a plurality of geostationary earth orbits (GEO) satellites.
  • GEO geostationary earth orbits
  • the ground control part 102 may include a central station and the like for realizing time synchronization, tracking satellites for orbit determination, and the like.
  • the user part 103 may include user machines such as a user navigation terminal and a navigation receiver, which are used to realize the reception, measurement and calculation of satellite navigation signals.
  • the embodiments of the present application can be applied to a user machine of a global navigation satellite system (GNSS), and the user machine can support both a radio determination satellite system (RDSS) and a radio navigation system (radio navigation) at the same time.
  • satellite system, RNSS), the RNSS and the RDSS share the same clock.
  • the user terminal can be a multi-mode multi-frequency receiver, that is, the user terminal can be used to receive GNSS navigation signals in multiple different modes, and can also be used to receive GNSS navigation signals at multiple different frequencies in the same mode.
  • the user machine is a multi-frequency receiver of the Beidou satellite navigation system, which can be used to receive GNSS navigation signals of one or more frequencies in B1I, B1C, B2a or B2b.
  • the multi-mode may include one or more global positioning system modes such as Beidou satellite navigation system, global positioning system (GPS), GLONASS (GLONASS) and Galileo (GALILEO), etc.
  • GPS global positioning system
  • GLONASS GLONASS
  • GALILEO Galileo
  • QZSS quasi-zenith satellite system
  • IRNSS Indian Regional Navigation Satellite System
  • the user machine may be a navigator, a mobile phone, a tablet computer, a computer, a smart wearable device, a vehicle-mounted device or a portable device, etc., or the user machine may be a built-in chip in the above-mentioned device.
  • the The devices and chips mentioned above are collectively referred to as satellite positioning devices.
  • the satellite positioning device is described by taking a mobile phone as an example.
  • the mobile phone includes: a radio frequency (RF) circuit 210, a memory 220, an input unit 230, The display unit 240, the sensor assembly 250, the audio circuit 260, the processor 270, the power supply 280 and other components.
  • RF radio frequency
  • the structure of the mobile phone shown in FIG. 2 does not constitute a limitation on the mobile phone, and may include more or less components than shown, or combine some components, or arrange different components.
  • the RF circuit 210 can be used to send and receive information or to receive and send signals during a call.
  • the RF circuit 210 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, an LNA (low noise amplifier), a duplexer, and the like.
  • the antenna may include multiple receive antennas and multiple transmit antennas.
  • the RF circuit 210 may also communicate with the network and other devices via wireless communication.
  • the wireless communication can use any communication standard or protocol, including but not limited to global system of mobile communication (GSM), general packet radio service (GPRS), code division multiple access (code division multiple access) division multiple access, CDMA), wideband code division multiple access (wideband code division multiple access, WCDMA), long term evolution (long term evolution, LTE) and so on.
  • GSM global system of mobile communication
  • GPRS general packet radio service
  • code division multiple access code division multiple access
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • the memory 220 can be used to store software programs and modules, and the processor 270 executes various functional applications and data processing of the mobile phone by running the software programs and modules stored in the memory 220 .
  • the memory 220 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function, and the like; the storage data area may store data (such as audio) created according to the use of the mobile phone. data, image data, phone book, etc.). Additionally, memory 220 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 230 can be used for receiving inputted numerical or character information, and generating key signal input related to user setting and function control of the mobile phone.
  • the input unit 230 may include a touch screen 231 and other input devices 232 .
  • the touch screen 231 also referred to as a touch panel, can collect the user's touch operations on or near it (such as the user's operations on or near the touch screen 231 using a finger, a stylus, or any suitable object or near the touch screen 231), and Drive the corresponding connection device according to the preset program.
  • Other input devices 232 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control keys, power switch keys, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 240 may be used to display information input by the user or information provided to the user and various menus of the mobile phone.
  • the display unit 240 may include a display panel 241.
  • the display panel 241 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the touch screen 231 can cover the display panel 241, and when the touch screen 231 detects a touch operation on or near it, it transmits it to the processor 270 to determine the type of the touch event, and then the processor 270 displays the touch event on the display panel according to the type of the touch event. 241 provides the corresponding visual output.
  • the touch screen 231 and the display panel 241 are used as two independent components to realize the input and input functions of the mobile phone, but in some embodiments, the touch screen 231 and the display panel 241 can be integrated to realize the function of the mobile phone. Input and output functions.
  • Sensor assembly 250 includes one or more sensors for providing status assessments of various aspects of the handset.
  • the sensor component 250 may include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor, and the sensor component 250 may detect the acceleration/deceleration, orientation, opening/closing state of the mobile phone, relative positioning of the components, or Changes in the temperature of the phone, etc.
  • sensor assembly 250 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the audio circuit 260, the speaker 261, and the microphone 262 can provide an audio interface between the user and the mobile phone.
  • the audio circuit 260 can transmit the received audio data converted electrical signal to the speaker 261, and the speaker 261 converts it into a sound signal for output; on the other hand, the microphone 262 converts the collected sound signal into an electrical signal, which is converted by the audio circuit 260 After receiving, it is converted into audio data, and then the audio data is output to the RF circuit 210 for transmission to, for example, another mobile phone, or the audio data is output to the memory 220 for further processing.
  • the processor 270 is the control center of the mobile phone, using various interfaces and lines to connect various parts of the entire mobile phone, by running or executing the software programs and/or modules stored in the memory 220, and calling the data stored in the memory 220, Execute various functions of the mobile phone and process data to monitor the mobile phone as a whole.
  • the processor 270 may include one or more processing units; preferably, the processor 270 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs, etc. , the modem processor mainly deals with wireless communication. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 270.
  • the mobile phone also includes a power supply 280 (such as a battery) for supplying power to various components.
  • a power supply 280 (such as a battery) for supplying power to various components.
  • the power supply can be logically connected to the processor 270 through a power management system, so as to manage charging, discharging, and power consumption management functions through the power management system.
  • the mobile phone may further include a connectivity chip 290, in which a GNSS module supporting both RDSS and RNSS may be integrated.
  • the connection chip 290 can also integrate one of a wireless fidelity (wireless fidelity, WiFi) module, a Bluetooth module, a near field communication (near field communication, NFC) module or a frequency modulation (frequency modulation, FM) module or more, which will not be repeated in this application.
  • FIG. 3 is a schematic flowchart of a satellite signal processing method provided by an embodiment of the present application.
  • the method can be applied to a satellite positioning device supporting RNSS and RDSS.
  • the RNSS and the RDSS share the same clock, and the device can be a user machine or A chip built into the user's computer.
  • the method includes the following steps.
  • S301 Determine PVT information according to a signal received by the RNSS.
  • the RNSS signal may refer to a signal corresponding to the RNSS
  • the RNSS received signal may refer to an RNSS signal from a satellite received by the satellite positioning apparatus.
  • the RNSS received signal can be the signal of each frequency point such as B1I, B1C, B2a or B2b corresponding to the RNSS sent by the satellite
  • the RNSS sent signal can be the B1I corresponding to the RNSS sent by the satellite positioning device.
  • B1C, B2a or B2b and other frequency signals can be used to the RNSS sent by the satellite positioning device.
  • the RDSS signal in the following may refer to the signal corresponding to RDSS
  • the RDSS receiving signal may refer to the RDSS signal from the satellite received by the satellite positioning device
  • the RDSS transmitting signal may refer to the RDSS signal sent by the satellite positioning device to the satellite.
  • the PVT information refers to the position velocity and time (position velocity and time, PVT) information
  • the PVT information may include one of the position information of the device, the moving speed of the device, time information, and clock frequency offset estimation value and other information or more.
  • the location information of the device may refer to the position when the satellite positioning device receives the RNSS signal;
  • the moving speed of the device may refer to the moving speed when the satellite positioning device receives the RNSS signal;
  • the time information may refer to the satellite sending the RNSS signal.
  • the time information of the RNSS signal may also be referred to as the observation moment;
  • the estimated clock frequency offset value may refer to the estimated offset value when the clock frequency of the device is offset, wherein the estimated clock frequency offset value is the value of the clock frequency offset of the device. Measure the difference between the clock frequency and the reference clock frequency.
  • the satellite positioning device may include an RNSS receiver (receive, RX), and the device may receive and process the RNSS received signal through the RNSS RX to obtain the PVT information.
  • the RNSS RX can be used to perform front-end processing on the RNSS received signal, for example, the front-end processing can include radio frequency reception, analog to digital (analog to digital, AD) conversion, filtering, frequency down-conversion and other processing;
  • the RNSS receives the signal and performs processing such as acquisition, tracking, synchronization, decoding, and PVT calculation to obtain the PVT information.
  • the apparatus includes an RNSS RX
  • the RNSS RX includes: an RNSS RX front-end module, an RNSS acquisition module, an RNSS tracking module, an RNSS synchronization module, an RNSS decoding module, and a PVT calculation module.
  • the RNSS RX front-end module can also be called the RNSS radio frequency channel; the RNSS acquisition module, the RNSS tracking module, the RNSS synchronization module, the RNSS decoding module and the PVT solution module are integrated together, and can also be called the RNSS baseband processor.
  • the RNSS RX front-end module is used to implement processing such as radio frequency reception, AD conversion, filtering, and down-conversion of the RNSS received signal, and transmit the processed RNSS received signal to the RNSS capture module.
  • the RNSS acquisition module performs a binary search based on the uncertainty of the RNSS received signal in carrier frequency and code phase, detects the validity of the RNSS received signal, and determines the specific carrier frequency offset and code phase offset.
  • the RNSS tracking module is used to realize real-time tracking of changes in carrier frequency and code phase of the RNSS received signal, and to complete the despreading and demodulation of the RNSS received signal.
  • the RNSS synchronization module performs bit synchronization and frame synchronization processing based on the demodulated data of the RNSS tracking module to find the bit boundary and frame header of the demodulated data to determine the navigation message.
  • the RNSS decoding module is used to complete the analysis of the navigation message, the calculation of the satellite position, and the calculation of the pseudorange.
  • the PVT calculation module realizes the calculation of the position, speed and time of the device based on the calculation result of the RNSS decoding module.
  • S302 Determine the carrier frequency offset value and the code phase offset value according to the PVT information.
  • the carrier frequency offset and the code phase offset are a manifestation of the Doppler effect in the radio field, which are caused by the relative motion between the transmitter and the receiver.
  • the carrier frequency offset can refer to the offset between the carrier frequency of the signal received by the receiver and the carrier frequency of the signal sent by the transmitter, and the carrier frequency offset value refers to the frequency offset value when the offset occurs.
  • the code phase offset can refer to the offset between the signal symbol (or chip) received by the receiver and the signal symbol (or chip) sent by the transmitter, and the code phase offset value refers to the offset.
  • the carrier frequency offset value refers to the carrier frequency offset value of the RDSS received signal, and specifically refers to the frequency offset value of the carrier frequency of the RDSS received signal relative to the carrier frequency of the RDSS signal sent by the satellite.
  • the code phase offset value refers to the code phase offset value of the RDSS received signal, and specifically refers to the offset value of the code phase of the RDSS received signal relative to the code phase of the RDSS signal sent by the satellite.
  • the apparatus may also include a prediction unit, and the prediction unit receives the PVT information transmitted by the RNSS RX, and determines the carrier frequency offset value and the code phase offset value based on the following implementation manner.
  • the prediction unit may also be integrated in the RNSS baseband processor, or in the RDSS baseband processor described below.
  • the PVT information may include the moving speed of the device and an estimated clock frequency offset value
  • the carrier frequency offset value may be determined according to the moving speed and the estimated clock frequency offset value. Specifically, according to the moving speed and the motion state of the GEO satellite providing the RNSS service, determine the Doppler frequency offset value caused by the relative movement of the device and the GEO satellite; according to the Doppler frequency offset value and the estimated clock frequency offset value Determine the carrier frequency offset value.
  • the Doppler frequency offset value f d may satisfy the following formula (1), where ⁇ represents the moving speed of the device, ⁇ (n) represents the running speed of the nth GEO satellite, and I(n) represents The unit observation vector of the nth GEO satellite at the device.
  • the carrier frequency offset value f c_offset may satisfy the following formula (2), where f d represents a Doppler frequency offset value, and ⁇ f ⁇ represents an estimated clock frequency offset value.
  • the PVT information may further include location information of the apparatus, and the code phase offset value may be determined according to the location information. Specifically, according to the position information and the position coordinates of the GEO satellite providing the RNSS service, the propagation distance between the device and the GEO satellite is determined, and the signal transmission delay is determined based on the propagation distance; the RDSS signal is determined according to the signal propagation delay. The code phase offset value when it arrives at this device.
  • the RDSS signal is sent by the central station to the satellite, and then forwarded by the satellite, while the RNSS signal is directly generated and broadcast on the satellite, so the total delay of RDSS signal propagation should also consider the uplink propagation from the central station to the satellite. Delay and on-board forwarding delay. Since the position of the central station is relatively fixed, and the orbit of the GEO satellite is also fixed, both the uplink propagation delay and the on-satellite forwarding delay can be estimated and compensated. Finally, the code phase offset of the RDSS signal can be specifically determined by the position of the GEO satellite, the signal propagation delay, the uplink propagation delay and the on-satellite forwarding delay.
  • the total delay ⁇ of the RDSS signal propagation may satisfy the following formula (3), where ⁇ up represents the uplink propagation delay, ⁇ down represents the signal propagation delay, and ⁇ tran represents the on-board forwarding delay .
  • the code phase offset It can be achieved by satisfying the following formula (4), where ⁇ represents the total time delay of the RDSS signal propagation, and f code represents the code frequency.
  • S303 Receive and lock the RDSS received signal according to the carrier frequency offset value and the code phase offset value.
  • the carrier frequency offset value can be used to lock the carrier frequency of the RDSS received signal within a smaller frequency range, so as to pre-detect the RDSS received signal within the smaller frequency range, thereby shortening the carrier frequency uncertainty search time.
  • the code phase offset value can be used to lock the phase of the symbol (or chip) of the RDSS received signal in a smaller phase range, and pre-detect the RDSS received signal in the smaller phase range, thereby shortening the The search duration for symbol (or chip) phase uncertainty.
  • the satellite positioning device may include an RDSS receiver (receiver, RX), and the device may receive and lock the RDSS received signal through the RDSS RX.
  • the RDSS RX can be used to perform front-end processing on the RDSS received signal.
  • the front-end processing can include radio frequency reception, AD conversion, filtering, and down-conversion processing; after that, according to the carrier frequency offset value and the code phase offset value, determine the frequency range of the RDSS received signal and the phase range of the symbol (or chip), so as to track, synchronize and decode the RDSS received signal within the corresponding range, and obtain the data information of the RDSS received signal .
  • the apparatus may further include an RDSS RX, where the RDSS RX includes: an RDSS RX front-end module, an RDSS tracking module, an RDSS synchronization module, and an RDSS decoding module.
  • the RDSS RX front-end module can also be called the RDSS radio frequency channel;
  • the RDSS tracking module, the RDSS synchronization module and the RDSS decoding module are integrated together, and can also be called the RDSS baseband processor.
  • the functions of the RDSS RX front-end module, the RDSS synchronization module, and the RDSS decoding module are similar to those of the RNSS RX front-end module, the RNSS synchronization module, and the RNSS decoding module corresponding to the RNSS RX in FIG. Repeat.
  • the function of the RDSS tracking module is slightly different from that of the RNSS tracking module.
  • the RDSS tracking module can quickly realize the real-time tracking of the RDSS received signal according to the carrier frequency offset value and the code phase offset value determined in S302, thereby The time period for locking the received signal of the RDSS can be shortened.
  • the RDSS RX may also include an RDSS capture module.
  • the function of the RDSS acquisition module is similar to the function of the corresponding RNSS acquisition module in the RNSS RX in FIG.
  • the carrier frequency offset value and the code phase offset value of the RDSS signal can be obtained, so that RDSS reception can be realized based on the carrier frequency offset value and the code phase offset value.
  • the fast locking of the signal that is, the carrier frequency offset value can be used to lock the carrier frequency of the RDSS received signal in a small frequency range
  • the code phase offset value can be used to the RDSS received signal symbol (or The phase of the chip) is locked in a small phase range, thereby reducing the search time of the carrier frequency and the code phase, thereby reducing the hardware design complexity and cost of the satellite positioning device, and can further reduce the device. power consumption.
  • the method further includes: S304.
  • S303 and S304 may be in no particular order.
  • S304 is located after S303 as an example for description.
  • the RDSS transmission signal may refer to the RDSS signal sent by the device to the satellite. Due to the relative motion between the device and the satellite, there will also be a deviation between the carrier frequency of the transmitted signal and the carrier frequency of the RDSS signal received by the satellite, so that the device can correct the carrier of the RDSS transmitted signal according to the carrier frequency offset value frequency, so that the carrier frequency of the corrected RDSS transmission signal is near the system nominal value, and the system nominal value is the reference frequency defined by the system; after that, when the satellite receives the RDSS transmission signal sent by the device, the satellite The transmitted signal can be forwarded to the central station, and the central station can perform pre-detection near the nominal value of the system, so that the central station can complete the acquisition of the RDSS transmitted signal with minimum resources and reduce the signal acquisition time.
  • the apparatus may further include an RDSS transmitter (transmitter, TX), and the apparatus may generate and transmit the RDSS transmit signal through the RDSS TX.
  • TX transmitter
  • the RDSS TX can be used to perform RDSS channel coding, RDSS modulation, and RDSS shaping filtering processing on the original bit stream information to obtain an RDSS baseband signal; then, perform RDSS TX carrier modulation on the RDSS baseband signal according to the carrier frequency offset value , and a series of RDSS TX front-end processing such as digital to analog (DA) conversion, up-conversion and amplification are performed on the modulated signal to obtain the RDSS transmit signal.
  • DA digital to analog
  • the apparatus may also transmit the RDSS transmission signal through an antenna.
  • the apparatus may include an RDSS TX, and the RDSS TX includes: an RDSS TX front-end module, an RDSS TX carrier modulation module, an RDSS shaping filter module, an RDSS modulation module, and an RDSS channel coding module.
  • the RDSS TX front-end module can also be called the RDSS radio frequency channel;
  • the RDSS TX carrier modulation module, the RDSS shaping filter module, the RDSS modulation module and the RDSS channel coding module are integrated together, and can also be called the RDSS baseband processor.
  • the RDSS channel coding module is configured to perform channel coding on the original bit stream information, so as to ensure that a preset channel coding gain is obtained through corresponding decoding at the receiving end of the RDSS central station.
  • the RDSS modulation module is used to perform spread spectrum modulation on the encoded symbol data.
  • the RDSS shaping and filtering module is used for shaping and filtering the modulated signal spectrum and eliminating inter-symbol interference to obtain the RDSS baseband signal.
  • the RDSS TX carrier modulation module is used to perform carrier modulation on the RDSS baseband signal according to the carrier frequency offset value to ensure that the carrier frequency of the RDSS intermediate frequency signal obtained after modulation is near the system nominal value.
  • the RDSS TX front-end module is used to perform a series of processing such as DA conversion, up-conversion and amplification on the RDSS intermediate frequency signal, so as to obtain the RDSS transmit signal that meets the predetermined power intensity. Afterwards, the device may transmit the RDSS transmit signal through the antenna.
  • the carrier frequency of the RDSS transmission signal is corrected by the carrier frequency offset value, so that the frequency accuracy of the RDSS transmission signal can be improved, so that the device sends the RDSS transmission signal Afterwards, when the RDSS central station receives the RDSS transmitted signal, the RDSS central station can be made to perform pre-detection near the nominal value of the system, so that the central station can complete the acquisition of the RDSS transmitted signal with minimum resources and improve the communication success rate.
  • FIG. 7 is a schematic flowchart of another signal processing method provided by an embodiment of the present application.
  • the method can be applied to a satellite positioning device supporting RNSS and RDSS, where the RNSS and the RDSS share the same clock, and the device can be a user machine or A chip built into the user's computer.
  • the method includes the following steps.
  • S401 Determine PVT information according to a signal received by the RNSS.
  • the RNSS signal may refer to a signal corresponding to the RNSS
  • the RNSS received signal may refer to an RNSS signal from a satellite received by the satellite positioning apparatus.
  • the RDSS signal in the following may refer to the signal corresponding to RDSS
  • the RDSS receiving signal may refer to the RDSS signal from the satellite received by the satellite positioning device
  • the RDSS transmitting signal may refer to the RDSS signal sent by the satellite positioning device to the satellite. .
  • the PVT information may include one or more of information such as the location information of the device, the moving speed of the device, time information, and an estimated clock frequency offset value.
  • the location information of the device may refer to the position when the satellite positioning device receives the RNSS signal; the moving speed of the device may refer to the moving speed when the satellite positioning device receives the RNSS signal; the time information may refer to the satellite sending the RNSS signal.
  • the time information of the RNSS signal may also be referred to as the observation moment;
  • the estimated clock frequency offset value may refer to the estimated offset value when the clock of the device is offset, wherein the estimated clock frequency offset value is the measurement of the device The difference between the clock frequency and the base clock frequency.
  • the satellite positioning device may include an RNSS receiver (receive, RX), and the device may receive and process the RNSS received signal through the RNSS RX to obtain the PVT information.
  • RX RNSS receiver
  • the apparatus includes an RNSS RX, and the RNSS RX includes: an RNSS RX front-end module, an RNSS acquisition module, an RNSS tracking module, an RNSS synchronization module, an RNSS decoding module, and a PVT calculation module.
  • the RNSS RX front-end module can also be called the RNSS radio frequency channel; the RNSS acquisition module, the RNSS tracking module, the RNSS synchronization module, the RNSS decoding module and the PVT solution module are integrated together, and can also be called the RNSS baseband processor.
  • the RNSS RX front-end module is used to implement processing such as radio frequency reception, AD conversion, filtering, and down-conversion of the RNSS received signal, and transmit the processed RNSS received signal to the RNSS capture module.
  • the RNSS acquisition module performs a binary search based on the uncertainty of the RNSS received signal in carrier frequency and code phase, detects the validity of the RNSS received signal, and determines the specific carrier frequency offset and code phase offset.
  • the RNSS tracking module is used to realize real-time tracking of changes in carrier frequency and code phase of the RNSS received signal, and to complete the despreading and demodulation of the RNSS received signal.
  • the RNSS synchronization module performs bit synchronization and frame synchronization processing based on the demodulated data of the RNSS tracking module to find the bit boundary and frame header of the demodulated data to determine the navigation message.
  • the RNSS decoding module is used to complete the analysis of the navigation message, the calculation of the satellite position, and the calculation of the pseudorange.
  • the PVT calculation module realizes the calculation of the position, moving speed and time of the device based on the calculation result of the RNSS decoding module.
  • S402 Determine a carrier frequency offset value according to the PVT information.
  • the carrier frequency offset is a manifestation of the Doppler effect in the radio field, which is caused by the relative motion between the transmitter and the receiver.
  • the carrier frequency offset may refer to an offset between the carrier frequency of the signal received by the receiver and the carrier frequency of the signal sent by the transmitter, and the carrier frequency offset value refers to the frequency offset value when the offset occurs.
  • the carrier frequency offset value refers to the carrier frequency offset value of the RDSS received signal, and specifically refers to the frequency offset value of the carrier frequency of the RDSS received signal relative to the carrier frequency of the RDSS signal sent by the satellite.
  • the apparatus may further include a prediction unit, the prediction unit receives the PVT information transmitted by the RNSS RX, and determines the carrier frequency offset value based on the following possible implementations.
  • the prediction unit may also be integrated in the RNSS baseband processor, or in the RDSS baseband processor described below.
  • the PVT may include a moving speed of the device and an estimated clock frequency offset value, and the carrier frequency offset value may be determined according to the moving speed and the estimated clock frequency offset value.
  • the Doppler frequency offset value caused by the relative movement of the device and the GEO satellite; according to the Doppler frequency offset value and the estimated clock frequency offset value Determine the carrier frequency offset value.
  • the RDSS transmission signal may refer to the RDSS signal sent by the device to the satellite. Due to the relative motion between the device and the satellite, there will also be a deviation between the carrier frequency of the transmitted signal and the carrier frequency of the RDSS signal received by the satellite, so that the device can correct the carrier of the RDSS transmitted signal according to the carrier frequency offset value frequency, so that the carrier frequency of the corrected RDSS transmission signal is near the system nominal value, and the system nominal value is the reference frequency defined by the system; after that, when the satellite receives the RDSS transmission signal sent by the device, the satellite The transmitted signal can be forwarded to the central station, and the central station can perform pre-detection near the nominal value of the system, so that the central station can complete the acquisition of the RDSS transmitted signal with minimum resources and reduce the signal acquisition time.
  • the apparatus may further include an RDSS transmitter (transmitter, TX), and the apparatus may generate and transmit the RDSS transmit signal through the RDSS TX.
  • TX transmitter
  • the apparatus may include an RDSS TX, and the RDSS TX includes: an RDSS TX front-end module, an RDSS TX carrier modulation module, an RDSS shaping filter module, an RDSS modulation module, and an RDSS channel coding module.
  • the RDSS TX front-end module can also be called the RDSS radio frequency channel; the RDSS TX carrier modulation module, the RDSS shaping filter module, the RDSS modulation module and the RDSS channel coding module are integrated together, and can also be called the RDSS baseband processor.
  • the RDSS channel coding module is configured to perform channel coding on the original bit stream information, so as to ensure that a preset channel coding gain is obtained through corresponding decoding at the receiving end of the RDSS central station.
  • the RDSS modulation module is used to perform spread spectrum modulation on the encoded symbol data.
  • the RDSS shaping and filtering module is used for shaping and filtering the modulated signal spectrum and eliminating inter-symbol interference to obtain the RDSS baseband signal.
  • the RDSS TX carrier modulation module is used to perform carrier modulation on the RDSS baseband signal according to the carrier frequency offset value to ensure that the carrier frequency of the RDSS intermediate frequency signal obtained after modulation is near the system nominal value.
  • the RDSS TX front-end module is used to perform a series of processing such as DA conversion, up-conversion and amplification on the RDSS intermediate frequency signal, so as to obtain the RDSS transmit signal that meets the predetermined power intensity. Afterwards, the device may transmit the RDSS transmit signal through the antenna.
  • the carrier frequency of the RDSS transmission signal is corrected by the carrier frequency offset value, so that the RDSS transmission signal can be improved Therefore, after the device sends the RDSS transmission signal, when the RDSS central station receives the RDSS transmission signal, the RDSS central station can be made to perform pre-detection near the system nominal value, so that the central station can complete the RDSS with minimum resources.
  • the acquisition of transmitted signals improves the success rate of communication, thereby improving the performance and user experience of the integration of RNSS and RDSS.
  • each device such as a satellite positioning apparatus
  • each device includes corresponding hardware structures and/or software modules for performing each function in order to implement the above-mentioned functions.
  • Those skilled in the art should easily realize that the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the satellite positioning apparatus may be divided into functional modules according to the above method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned functional modules can be implemented in the form of hardware, and can also be implemented in the form of software functional modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation. The following is an example of using corresponding functions to divide each functional module:
  • FIG. 8 shows a possible structural schematic diagram of the satellite positioning device involved in the above embodiment.
  • the apparatus may be a user machine, or a chip built into the user machine, and the apparatus includes an RNSS receiver 501 , a prediction unit 502 and an RDSS receiver 503 . Further, the apparatus further includes: an RDSS transmitter 504 .
  • the RNSS receiver 501 is used to support the apparatus to perform S301 in the above method embodiment; the prediction unit 502 is used to support the apparatus to perform S302 in the above method embodiment; the RDSS receiver 503 is used to The apparatus is supported to perform S303 in the above method embodiments; the RDSS transmitter 504 is configured to support the apparatus to perform S304 in the above method embodiments.
  • the RNSS receiver 501 is used to support the apparatus to perform S401 in the above method embodiments; the prediction unit 502 is used to support the apparatus to perform S402 in the above method embodiments; the RDSS transmitter 504 uses To support the device to perform S404 in the above method embodiments.
  • the above-mentioned RNSS receiver 501, prediction unit 502, RDSS receiver 503 and RDSS transmitter 504 may be part of the functions of the processor, and the RNSS receiver 501 and RDSS receiver 503 may be part of the receiver Function, the RDSS transmitter 504 may be a part of the function of the transmitter, the receiver and the transmitter may be integrated into a transceiver, and the transceiver may also be referred to as a communication interface.
  • FIG. 9 is a structural diagram of a possible product form of the satellite positioning device involved in the embodiment of the application.
  • the satellite positioning device can be a satellite positioning device, and the satellite positioning device includes a processor 602 and a transceiver 603; the processor 602 is used to control and manage the actions of the satellite positioning device, For example, it is used to support the apparatus to perform one or more steps of S301 to S304 in the above method embodiments, or one or more steps of S401 to S403 in the above method embodiments, and/or used in the method described herein. Other technical processes described; the transceiver 603 is configured to support the apparatus to perform the steps of receiving RNSS signals and/or RDSS signals, or the steps of sending RDSS signals in the foregoing method embodiments.
  • the satellite positioning device may further include a memory 601 .
  • the satellite positioning device may be a satellite positioning single board, and the satellite positioning single board includes a processor 602 and a transceiver 603; the processor 602 is used to control the action of the device Management, for example, is used to support the apparatus to perform one or more steps in S301 to S304 in the above method embodiments, or one or more steps in S401 to S403 in the above method embodiments, and/or for Other technical processes described herein; the transceiver 603 is used for the apparatus to perform the steps of receiving RNSS signals and/or RDSS signals, or the steps of sending RDSS signals in the foregoing method embodiments.
  • the satellite positioning board may further include a memory 601 .
  • the satellite positioning device is also implemented by a general-purpose processor, which is commonly known as a chip.
  • the processor includes: a processor 602 and a communication interface 603 ; optionally, the general-purpose processor may further include a memory 601 .
  • the satellite positioning device can also be implemented using the following: one or more field-programmable gate arrays (FPGA), programmable logic devices (PLDs) ), controllers, state machines, gate logic, discrete hardware components, any other suitable circuits, or any combination of circuits capable of performing the various functions described throughout this application.
  • FPGA field-programmable gate arrays
  • PLDs programmable logic devices
  • controllers state machines
  • gate logic discrete hardware components
  • any other suitable circuits any combination of circuits capable of performing the various functions described throughout this application.
  • the aforementioned processor 602 may be a central processing unit, a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • the processor may also be a combination that performs computing functions, such as a combination comprising one or more microprocessors, a combination of a digital signal processor and a microprocessor, and the like. In FIG.
  • the processor 602, the communication interface/transceiver 603 and the memory 601 can be connected by a bus 604, and the bus 604 can be a peripheral component interconnect (PCI) bus or an extended industry standard structure (extended industry standard) architecture, EISA) bus, etc.
  • the bus 604 can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 9, but it does not mean that there is only one bus or one type of bus.
  • An embodiment of the present application also provides a satellite positioning system.
  • the system includes a processor 701, a memory 702, and an antenna 703.
  • the processor 701, the memory 702, and the antenna 703 are connected through a bus 704;
  • the memory 702 is used to store executable instructions, and the processor 701 executes the executable instructions to enable the system to perform the satellite signal processing provided by the above method embodiments. one or more steps in a method.
  • an embodiment of the present application also provides a readable storage medium, where computer-executed instructions are stored in the readable storage medium, when a device (may be a single-chip microcomputer, a chip, a controller, etc.) or a processor executes the Steps in an antenna switching method.
  • a device may be a single-chip microcomputer, a chip, a controller, etc.
  • a processor executes the Steps in an antenna switching method.
  • an embodiment of the present application further provides a computer program product, the computer program product includes computer-executable instructions, and the computer-executable instructions are stored in a computer-readable storage medium; at least one processor of the device can be obtained from the computer-readable storage medium.
  • the computer-executable instruction is read, and at least one processor executes the computer-executable instruction to cause the device to perform the steps in the antenna switching method provided in this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种卫星信号处理方法及卫星定位装置,涉及通信技术领域,用于在RNSS与RDSS集成时提高系统性能和用户体验。卫星定位装置包括:RNSS射频通道,用于接收RNSS接收信号;RNSS基带处理器,耦合至RNSS射频通道,用于对RNSS接收信号进行位置速度和时间PVT解算,得到PVT信息;RDSS基带处理器,用于根据载波频偏值确定RDSS接收信号的载波频率,载波频偏值是基于PVT信息生成的;RDSS射频通道,耦合至RDSS基带处理器,用于基于RDSS接收信号的载波频率,接收RDSS接收信号。

Description

一种卫星信号处理方法及卫星定位装置 技术领域
本申请涉及通信技术领域,尤其涉及一种卫星信号处理方法及卫星定位装置。
背景技术
在全球导航卫星系统(global navigation satellite system,GNSS)中,服务于用户机位置确定的卫星无线电业务有两种。一种是卫星无线电导航系统(radio navigation satellite system,RNSS),由用户机接收卫星信号,自主完成至少到4颗卫星的距离测量,进行用户机位置、速度和时间计算。另一种是卫星无线电测定系统(radio determination satellite system,RDSS),用户机至卫星的距离测量和位置计算无法由用户机自身独立完成,必须由外部系统通过用户机的应答来完成。通过RNSS与RDSS的集成,可用于为用户机提供更稳定、更可靠的接收信号,同时提供低功耗、低成本、高精度的定位和通信能力。
现有技术中,提供了一种基于RNSS与RDSS的集成实现用户机快速定位的方法。具体的,在RDSS模块完成RDSS信号的捕获、跟踪和定位解算后,将解算出的时间信息传输给RNSS模块做辅助定位使用,从而该RNSS模块可以基于该时间信息降低导航所需时间信息的不确定度,从而大幅降低RNSS信号的首次捕获时间,从而实现RNSS的快速定位。
但是,由于RDSS信号的接收灵敏度要显著低于RNSS信号的接收灵敏度,在一些遮挡严重的复杂信号场景下,可能会因为RDSS信号的接收功率低而无法实现RDSS信号的捕获和跟踪,从而导致RNSS与RDSS集成的性能较低。
发明内容
本申请提供一种卫星信号处理方法及卫星定位装置,用于在RNSS与RDSS集成时提高系统性能和用户体验。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供一种卫星定位装置,该装置支持卫星无线电导航系统RNSS和卫星无线电测定系统RDSS,该装置包括:RNSS射频通道,用于接收RNSS接收信号,该RNSS接收信号可以是指该装置接收的来自卫星的RNSS信号,该RNSS信号可以是指RNSS对应的信号;RNSS基带处理器,耦合至RNSS射频通道,用于对该RNSS接收信号进行位置速度和时间PVT解算,得到PVT信息;RDSS基带处理器,用于根据载波频偏值确定RDSS接收信号的载波频率,该载波频偏值是基于该PVT信息生成的,该载波频偏值是指RDSS接收信号载波频率相对于卫星发送的RDSS信号的载波频率的频率偏移值;RDSS射频通道,耦合至RDSS基带处理器,用于基于该RDSS接收信号的载波频率,接收该RDSS接收信号。
上述技术方案中,基于RNSS接收信号确定的PVT信息可以获得RDSS信号的载波频偏值,从而基于该载波频偏值可以确定RDSS接收信号的载波频率,即该载波频偏值可用于将该RDSS接收信号的载波频率锁定在一个较小的频率范围内,以在较小 的频率范围内预检测该RDSS接收信号,从而缩短载波频率不确定度的搜索时长,实现RDSS接收信号的快速锁定,从而可以减少该装置的硬件设计复杂度、降低成本,同时还可以进一步降低该装置的功耗。
在第一方面的一种可能的实现方式中,RDSS基带处理器,还用于根据码相位偏移值确定该RDSS接收信号的码相位,该码相位偏移值是基于该PVT信息生成的;RDSS射频通道,还用于基于该RDSS接收信号的码相位和该载频频率,接收该RDSS接收信号。上述可能的实现方式中,该码相位偏移值可以用于将该RDSS接收信号的码元(或码片)的相位锁定在一个较小的相位范围内,在较小的相位范围内预检测该RDSS接收信号,从而缩短码元(或码片)相位不确定度的搜索时长。
在第一方面的一种可能的实现方式中,该PVT信息包括以下至少一项:位置信息,移动速度,时钟频偏估计值;其中,该时钟频偏估计值为该装置的测量时钟频率与基准时钟频率之间的差值。其中,该位置信息可以是指该装置接收该RNSS信号时的位置;该移动速度可以是指该装置接收该RNSS信号时的移动速度;该时间信息可以是指卫星发送该RNSS信号的时间信息,也可以称为观测时刻;该时钟频偏估计值可以是指估计的该装置的时钟频率发生偏移时的偏移值。
在第一方面的一种可能的实现方式中,RNSS基带处理器或所述RDSS基带处理器还用于:根据该移动速度确定多普勒频偏值,并根据该多普勒频偏值和该时钟频偏估计值确定该载波频偏值。可选的,该多普勒频偏值与该时钟频偏估计值之和为该载波偏移值。上述可能的实现方式中,通过确定该载波频偏值,可以使得该装置在较小的频率范围内预检测该RDSS接收信号,从而缩短频率不确定度的搜索时长。
在第一方面的一种可能的实现方式中,该RNSS基带处理器或该RDSS基带处理器还用于:根据该位置信息确定信号传播时延,并根据该信号传播时延确定码相位偏移值。可选的,该码相位偏移值为该信号传播时延与码频率的乘积。上述可能的实现方式中,通过确定该码相位偏移值,可以使得该装置在较小的相位范围内预检测该RDSS接收信号,从而缩短码元(或码片)相位不确定度的搜索时长。
在第一方面的一种可能的实现方式中,该方法还包括:RDSS基带处理器,还用于根据该载波频偏值校正RDSS发射信号的载波频率,以得到该RDSS发射信号;RDSS射频通道,还用于发送该RDSS发射信号。上述可能的实现方式中,通过该载波频偏值校正RDSS发射信号的载波频率,可以使得提升该RDSS发射信号的频率精度,从而在该装置发送该RDSS发射信号后,RDSS中心站接收该RDSS发射信号时,可以使得RDSS中心站在系统标称值附近进行预检测,从而中心站能够以最小资源完成该RDSS发射信号的捕获,提高通信成功率。
在第一方面的一种可能的实现方式中,该装置为卫星定位芯片或者卫星定位设备。
第二方面,提供一种卫星定位装置,该装置支持卫星无线电导航系统RNSS和卫星无线电测定系统RDSS,该装置包括:RNSS射频通道,用于接收RNSS接收信号,该RNSS接收信号可以是指该装置接收的来自卫星的RNSS信号,该RNSS信号可以是指RNSS对应的信号;RNSS基带处理器,耦合至RNSS射频通道,用于对该RNSS接收信号进行位置速度和时间PVT解算,得到PVT信息;RDSS基带处理器,用于根据载波频偏值校正RDSS发射信号的载波频率,以得到该RDSS发射信号,该载波频 偏值是基于该PVT信息生成的,该载波频偏值是指RDSS接收信号载波频率相对于卫星发送的RDSS信号的载波频率的频率偏移值;RDSS射频通道,耦合至RDSS基带处理器,用于发送该RDSS发射信号。上述技术方案中,在基于RNSS接收信号确定该载波频偏值之后,通过该载波频偏值校正RDSS发射信号的载波频率,可以使得提升该RDSS发射信号的频率精度,从而在该装置发送该RDSS发射信号后,RDSS中心站接收该RDSS发射信号时,可以使得RDSS中心站在系统标称值附近进行预检测,从而中心站能够以最小资源完成该RDSS发射信号的捕获,提高通信成功率。
在第二方面的一种可能的实现方式中,该PVT信息包括以下至少一项:移动速度,时钟频偏估计值;其中,该时钟频偏估计值为该装置的测量时钟频率与基准时钟频率之间的差值。其中,该移动速度可以是指该装置接收该RNSS信号时的移动速度;该时间信息可以是指卫星发送该RNSS信号的时间信息,也可以称为观测时刻;该时钟频偏估计值可以是指估计的该装置的时钟频率发生偏移时的偏移值。
在第二方面的一种可能的实现方式中,RNSS基带处理器或RDSS基带处理器还用于:根据该移动速度确定多普勒频偏值,并根据该多普勒频偏值和该时钟频偏估计值确定该载波频偏值。可选的,该多普勒频偏值与该时钟频偏估计值之和为该载波偏移值。上述可能的实现方式在,通过该载波频偏值校正RDSS发射信号的载波频率,可以使得提升该RDSS发射信号的频率精度,从而在该装置发送该RDSS发射信号后,RDSS中心站接收该RDSS发射信号时,可以使得RDSS中心站在系统标称值附近进行预检测,从而中心站能够以最小资源完成该RDSS发射信号的捕获,提高通信成功率。
在第二方面的一种可能的实现方式中,该装置为卫星定位芯片或者卫星定位设备。
第三方面,提供一种卫星信号处理方法,该方法应用于支持卫星无线电导航系统RNSS和卫星无线电测定系统RDSS的装置中,该方法包括:接收RNSS接收信号,该RNSS接收信号可以是指该装置接收的来自卫星的RNSS信号,该RNSS信号可以是指RNSS对应的信号;对该RNSS接收信号进行位置速度和时间PVT解算,得到PVT信息;根据载波频偏值确定RDSS接收信号的载波频率,其中,该载波频偏值是基于该PVT信息生成的,该载波频偏值是指RDSS接收信号载波频率相对于卫星发送的RDSS信号的载波频率的频率偏移值;基于该RDSS接收信号的载波频率,接收该RDSS接收信号。
在第三方面的一种可能的实现方式中,该方法还包括:根据码相位偏移值确定该RDSS接收信号的码相位,该码相位偏移值是基于该PVT信息生成的;基于该RDSS接收信号的码相位和该载波频率,接收该RDSS接收信号。
在第三方面的一种可能的实现方式中,该PVT信息包括以下至少一项:位置信息,移动速度,时钟频偏估计值;其中,该时钟频偏估计值为该装置的测量时钟频率与基准时钟频率之间的差值。其中,该位置信息可以是指该装置接收该RNSS信号时的位置;该移动速度可以是指该装置接收该RNSS信号时的移动速度;该时间信息可以是指卫星发送该RNSS信号的时间信息,也可以称为观测时刻;该时钟频偏估计值可以是指估计的该装置的时钟频率发生偏移时的偏移值。
在第三方面的一种可能的实现方式中,该方法还包括:根据该移动速度确定多普 勒频偏值,并根据该多普勒频偏值和该时钟频偏估计值确定该载波频偏值。可选的,该多普勒频偏值与该时钟频偏估计值之和为该载波偏移值。
在第三方面的一种可能的实现方式中,该方法还包括:根据该位置信息确定信号传播时延,并根据该信号传播时延确定该码相位偏移值。可选的,该码相位偏移值为该信号传播时延与码频率的乘积。
在第三方面的一种可能的实现方式中,该方法还包括:根据该载波频偏值校正RDSS发射信号的载波频率,以得到该RDSS发射信号;发送该RDSS发射信号。
在第三方面的一种可能的实现方式中,该装置为卫星定位芯片或者卫星定位设备。
第四方面,提供一种卫星信号处理方法,该方法应用于支持卫星无线电导航系统RNSS和卫星无线电测定系统RDSS的装置中,该方法包括:接收RNSS接收信号,该RNSS接收信号可以是指该装置接收的来自卫星的RNSS信号,该RNSS信号可以是指RNSS对应的信号;对该RNSS接收信号进行位置速度和时间PVT解算,得到PVT信息;根据载波频偏值校正RDSS发射信号的载波频率,以得到该RDSS发射信号,该载波频偏值是基于该PVT信息生成的,该载波频偏值是指RDSS接收信号载波频率相对于卫星发送的RDSS信号的载波频率的频率偏移值;发送该RDSS发射信号。
在第四方面的一种可能的实现方式中,该PVT信息包括以下至少一项:移动速度,时钟频偏估计值;其中,该时钟频偏估计值为该装置的测量时钟频率与基准时钟频率之间的差值。其中,该移动速度可以是指该装置接收该RNSS信号时的移动速度;该时间信息可以是指卫星发送该RNSS信号的时间信息,也可以称为观测时刻;该时钟频偏估计值可以是指估计的该装置的时钟频率发生偏移时的偏移值。
在第四方面的一种可能的实现方式中,该方法还包括:根据该移动速度确定多普勒频偏值,并根据该多普勒频偏值和该时钟频偏估计值确定所述载波频偏值。可选的,该多普勒频偏值与该时钟频偏估计值之和为该载波偏移值。
在第四方面的一种可能的实现方式中,该装置为卫星定位芯片或者卫星定位设备。
第五方面,提供一种卫星定位系统,该系统包括天线,以及如第一方面或第一方面的任一种可能的实现方式所提供的卫星定位系统。
第六方面,提供一种卫星定位系统,该系统包括天线,以及如第二方面或第二方面的任一种可能的实现方式所提供的卫星定位系统。
在本申请的另一方面,提供一种计算机可读存储介质,用于存储计算机程序,当该计算机程序在计算机上运行时,使得该计算机执行上述第三方面或第三方面的任一种可能的实现方式所提供的卫星信号处理方法。
在本申请的另一方面,提供一种计算机可读存储介质,用于存储计算机程序,当该计算机程序在计算机上运行时,使得该计算机执行上述第四方面或第四方面的任一种可能的实现方式所提供的卫星信号处理方法。
在本申请的另一方面,提供一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得该计算机执行上述第三方面或第三方面的任一种可能的实现方式所提供的卫星信号处理方法。
在本申请的另一方面,提供一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得该计算机执行上述第四方面或第四方面的任一种可能的实现方式所提 供的卫星信号处理方法。
可以理解地,上述提供的任一种卫星信号处理方法、卫星定位系统、计算机可读存储介质或者计算机程序产品均包含上上文所提供的卫星定位装置的功能,因此,其所能达到的有益效果可参考上文所提供的卫星定位装置中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种GNSS的架构示意图;
图2为本申请实施例提供的一种手机的结构示意图;
图3为本申请实施例提供的一种卫星信号处理方法的流程示意图;
图4为本申请实施例提供的一种卫星定位装置的示意图;
图5为本申请实施例提供的另一种卫星信号处理方法的流程示意图;
图6为本申请实施例提供的另一种卫星定位装置的示意图;
图7为本申请实施例提供的又一种卫星信号处理方法的结构流程示意图;
图8为本申请实施例提供的又一种卫星定位装置的结构示意图;
图9为本申请实施例提供的另一种卫星定位装置的结构示意图;
图10为本申请实施例提供的一种卫星定位系统的结构示意图。
具体实施方式
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。另外,在本申请的实施例中,“第一”、“第二”等字样并不对数量和执行次序进行限定。
在介绍本申请实施例之前,首先对本申请所涉及的相关技术名词进行介绍说明。
全球导航卫星系统(global navigation satellite system,GNSS),是以人造地球卫星作为导航台的星基无线电导航系统,为全球陆、海、空、天的各类军民载体提供全天候的、高精度的位置(position,P)速度(velocity,V)和时间(time,T)信息,该位置速度和时间信息可以简称为PVT信息。
在GNSS中,服务于用户机位置确定的卫星无线电业务有两种。一种是卫星无线电导航系统(radio navigation satellite system,RNSS),由用户机接收卫星信号,自主完成至少到4颗卫星的距离测量,进行用户机位置、速度和时间计算。另一种是卫星无线电测定系统(radio determination satellite system,RDSS),用户机至卫星的距离测量和位置计算无法由用户机自身独立完成,必须由外部系统通过用户机的应答来完成。通过RNSS与RDSS的集成,可用于为用户机提供更稳定、更可靠的接收信号,同时提供低功耗、低成本、高精度的定位和通信能力。
图1为本申请实施例提供的一种GNSS的架构示意图,该GNSS可以包括:空间部分101、地面控制部分102和用户部分103。其中,空间部分101中可以包括在空中绕地球飞行的卫星群,该卫星群中可以包括多颗卫星,可用于提供星历和时间信息、发射伪距和载波信号、以及提供其他服务信息等,比如,该多颗卫星可以包括多颗地球静止轨道(geostationary earth orbits,GEO)卫星。地面控制部分102可以包括中心站等,用于实现时间同步、以及跟踪卫星进行定轨等。用户部分103可以包括用户导 航终端和导航接收机等用户机,用于实现卫星导航信号的接收、测量及解算等。
本申请实施例可适用于全球导航卫星系统(global navigation satellite system,GNSS)的用户机中,该用户机可同时支持卫星无线电测定系统(radio determination satellite system,RDSS)和卫星无线电导航系统(radio navigation satellite system,RNSS),该RNSS和该RDSS共用同一时钟。可选的,该用户机可以为多模多频接收机,即该用户机可用于接收多个不同模式下的GNSS导航信号,还可以用于接收同一模式下多个不同频点的GNSS导航信号,比如,该用户机为北斗卫星导航系统的多频接收机,可用于接收B1I、B1C、B2a或者B2b中的一个或者多个频点的GNSS导航信号。其中,该多模可以包括北斗卫星导航系统、全球定位系统(global positioning system,GPS)、格洛纳斯(GLONASS)和伽利略(GALILEO)等一个或者多个全球范围内的定位系统模式,还可以包括准天顶卫星系统(quasi-zenith satellite system,QZSS)和印度区域导航卫星系统(India RNSS,IRNSS)等一个或者多个区域范围内的定位系统模式。在实际应用中,该用户机可以为导航仪、手机、平板电脑、计算机、智能穿戴设备、车载设备或便携式设备等,或者该用户机可以为上述设备中内置的芯片,为方便描述,可以将上面提到的设备及芯片统称为卫星定位装置。
图2为本申请实施例提供的一种卫星定位装置的结构示意图,该卫星定位装置以手机为例进行说明,该手机包括:射频(radio frequency,RF)电路210、存储器220、输入单元230、显示单元240、传感器组件250、音频电路260、处理器270、以及电源280等部件。本领域技术人员可以理解,图2中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图2对该手机的各个构成部件进行具体的介绍:
RF电路210可用于收发信息或通话过程中信号的接收和发送。通常,RF电路210包括但不限于天线、至少一个放大器、收发信机、耦合器、LNA(low noise amplifier,低噪声放大器)、双工器等。可选的,所述天线可以包括多个接收天线和多个发射天线。此外,RF电路210还可以通过无线通信与网络和其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(global system of mobile communication,GSM)、通用分组无线服务(general packet radio service,GPRS)、码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、长期演进(long term evolution,LTE)等。
存储器220可用于存储软件程序以及模块,处理器270通过运行存储在存储器220的软件程序以及模块,从而执行该手机的各种功能应用以及数据处理。存储器220可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等;存储数据区可存储根据该手机的使用所创建的数据(比如音频数据、图像数据、电话本等)等。此外,存储器220可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元230可用于接收输入的数字或字符信息,以及产生与该手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元230可包括触摸屏231以及其他输入设备232。触摸屏231,也称为触控面板,可收集用户在其上或附近的触摸操作(比 如用户使用手指、触笔等任何适合的物体或附近在触摸屏231上或在触摸屏231附近的操作),并根据预先设定的程式驱动相应的连接装置。其他输入设备232可包括但不限于物理键盘、功能键(比如音量控制按键、电源开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元240可用于显示由用户输入的信息或提供给用户的信息以及该手机的各种菜单。显示单元240可包括显示面板241,可选的,可以采用液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light-emitting diode,OLED)等形式来配置显示面板241。进一步地,触摸屏231可覆盖显示面板241,当触摸屏231检测到在其上或附近的触摸操作后,传送给处理器270以确定触摸事件的类型,随后处理器270根据触摸事件的类型在显示面板241上提供相应的视觉输出。虽然在图2中,触摸屏231与显示面板241是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触摸屏231与显示面板241集成而实现该手机的输入和输出功能。
传感器组件250包括一个或多个传感器,用于为该手机提供各个方面的状态评估。其中,传感器组件250可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器,通过传感器组件250可以检测到该手机的加速/减速、方位、打开/关闭状态,组件的相对定位,或该手机的温度变化等。此外,传感器组件250还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。
音频电路260、扬声器261、麦克风262可提供用户与该手机之间的音频接口。音频电路260可将接收到的音频数据转换后的电信号,传输到扬声器261,由扬声器261转换为声音信号输出;另一方面,麦克风262将收集的声音信号转换为电信号,由音频电路260接收后转换为音频数据,再将音频数据输出至RF电路210以发送给比如另一手机,或者将音频数据输出至存储器220以便进一步处理。
处理器270是该手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器220内的软件程序和/或模块,以及调用存储在存储器220内的数据,执行该手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器270可包括一个或多个处理单元;优选的,处理器270可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器270中。
该手机还包括给各个部件供电的电源280(比如电池),优选的,电源可以通过电源管理系统与处理器270逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
进一步地,该手机还可以包括连接(connectivity)芯片290,该连接芯片290中可以集成同时支持RDSS和RNSS的GNSS模块。可选,该连接芯片290中还可以集成无线保真(wireless fidelity,WiFi)模块、蓝牙模块、近距离无线通信(near field communication,NFC)模块或调频(frequency modulation,FM)模块中的一种或多种,本申请在此不再赘述。
图3为本申请实施例提供的一种卫星信号处理方法的流程示意图,该方法可应用于支持RNSS和RDSS的卫星定位装置中,该RNSS和该RDSS共用同一时钟,该装 置可以为用户机或者用户机内置的芯片。参见图3,该方法包括以下几个步骤。
S301:根据RNSS接收信号,确定PVT信息。
其中,RNSS信号可以是指RNSS对应的信号,该RNSS接收信号可以是指该卫星定位装置接收的来自卫星的RNSS信号。以北斗卫星导航系统为例,该RNSS接收信号可以是卫星发送的RNSS对应的B1I、B1C、B2a或者B2b等各频点的信号,该RNSS发送信号可以是该卫星定位装置发送的RNSS对应的B1I、B1C、B2a或者B2b等各频点的信号。类似的,下文中的RDSS信号可以是指RDSS对应的信号,RDSS接收信号可以是指该卫星定位装置接收的来自卫星的RDSS信号,RDSS发射信号可以是指该卫星定位装置向卫星发送的RDSS信号。
另外,该PVT信息是指位置速度时间(position velocity and time,PVT)信息,该PVT信息可以包括该装置的位置信息、该装置的移动速度、时间信息和时钟频偏估计值等信息中的一个或者多个。该装置的位置信息可以是指该卫星定位装置接收该RNSS信号时的位置;该装置的移动速度可以是指该卫星定位装置接收该RNSS信号时的移动速度;该时间信息可以是指卫星发送该RNSS信号的时间信息,也可以称为观测时刻;该时钟频偏估计值可以是指估计的该装置的时钟频率发生偏移时的偏移值,其中,该时钟频偏估计值为该装置的测量时钟频率与基准时钟频率之间的差值。
具体的,该卫星定位装置中可以包括RNSS接收器(receive,RX),该装置可以通过该RNSS RX接收并处理该RNSS接收信号,以得到该PVT信息。比如,该RNSS RX可用于对该RNSS接收信号进行前端处理,比如,该前端处理可以包括射频接收、模数(analog to digital,AD)转换、滤波和下变频等处理;之后,对处理后的RNSS接收信号进行捕获、跟踪、同步、解码、以及PVT解算等处理,以得到该PVT信息。
示例性的,如图4所示,该装置包括RNSS RX,该RNSS RX包括:RNSS RX前端模块、RNSS捕获模块、RNSS跟踪模块、RNSS同步模块、RNSS解码模块和PVT解算模块。其中,RNSS RX前端模块也可以称为RNSS射频通道;RNSS捕获模块、RNSS跟踪模块、RNSS同步模块、RNSS解码模块和PVT解算模块集成在一起,也可以称为RNSS基带处理器。具体的,RNSS RX前端模块用于实现对该RNSS接收信号的射频接收、AD转换、滤波和下变频等处理,并将处理后的RNSS接收信号传输至RNSS捕获模块。RNSS捕获模块基于该RNSS接收信号在载波频率和码相位上的不确定性进行二位搜索,检测该RNSS接收信号的有效性,并确定具体的载波频偏和码相位偏移量等。RNSS跟踪模块用于实现对该RNSS接收信号的载波频率和码相位变化的实时跟踪,以及完成该对RNSS接收信号的解扩和解调。RNSS同步模块基于RNSS跟踪模块的解调数据进行位同步、帧同步处理,以找到解调数据的比特(bit)边界和帧头,以确定导航电文。RNSS解码模块用于完成导航电文的解析、卫星位置计算、伪距计算等。PVT解算模块基于RNSS解码模块的计算结果实现该装置的位置、速度和时间等信息的解算。
S302:根据该PVT信息,确定载波频偏值和码相位偏移值。
其中,载波频偏和码相位偏移是多普勒效应在无线电领域的一种体现,都是由于发射机和接收机间的相对运动引起的。载波频偏可以是指接收机接收到的信号载波频率与发射机发出的信号载波频率之间发生了偏移,该载波频偏值是指发生偏移时的频 率偏移值。码相位偏移可以是指接收机接收到的信号码元(或码片)与发射机发出的信号码元(或码片)之间发生了偏移,该码相位偏移值是指发生偏移时的码元(或码片)的相位偏移值。
另外,该载波频偏值是指RDSS接收信号的载波频偏值,具体是指该RDSS接收信号载波频率相对于卫星发送的RDSS信号的载波频率的频率偏移值。该码相位偏移值是指RDSS接收信号的码相位偏移值,具体是指该RDSS接收信号的码相位相对于卫星发送的RDSS信号的码相位的偏移值。
示例性的,如图4所示,该装置中还可以包括预测单元,由预测单元接收RNSS RX传输的PVT信息,并基于下述实现方式来确定该载波频偏值和该码相位偏移值。可选的,该预测单元也可以集成在RNSS基带处理器中,或者集成在下文所述的RDSS基带处理器中。
在一种可能的实现方式中,该PVT信息中可以包括该装置的移动速度和时钟频偏估计值,根据该移动速度和该时钟频偏估计值可以确定该载波频偏值。具体的,根据该移动速度和提供RNSS服务的GEO卫星运动状态,确定该装置与该GEO卫星相对运动引起的多普勒频偏值;根据该多普勒频偏值和该时钟频偏估计值确定该载波频偏值。
示例性的,该多普勒频偏值f d可以满足如下公式(1),式中ν表示该装置的移动速度,ν (n)表示第n个GEO卫星的运行速度,I(n)表示第n个GEO卫星在该装置出的单位观测矢量。
Figure PCTCN2020121306-appb-000001
示例性的,该载波频偏值f c_offset可以满足如下公式(2),式中f d表示多普勒频偏值,δ·f μ表示时钟频偏估计值。
f c_offset=f d+δ·f μ      (2)
在另一可能的实现方式中,该PVT信息中还可以包括该装置的位置信息,根据该位置信息可以确定该码相位偏移值。具体的,根据该位置信息和提供RNSS服务的GEO卫星的位置坐标,确定该装置与该GEO卫星之间的传播距离,基于该传播距离确定信号传输时延;根据该信号传播时延确定RDSS信号到达该装置时的码相位偏移值。
其中,RDSS信号是由中心站发送给卫星,然后由卫星转发的,而RNSS信号是在卫星上直接产生并广播发射的,所以RDSS信号传播的总时延还要考虑中心站到卫星的上行传播时延和星上转发时延。由于中心站位置相对固定,GEO卫星的轨道也是固定的,故上行传播时延和星上转发时延都可以估计并进行补偿。最终,RDSS信号的码相位偏移可以通过GEO卫星的位置、信号传播时延、以及上行传播时延和星上转发时延来具体确定。
示例性的,该RDSS信号传播的总时延Δτ可以满足如下公式(3),式中Δτ up表示该上行传播时延,Δτ down表示该信号传播时延,Δτ tran表示该星上转发时延。示例性的,该码相位偏移
Figure PCTCN2020121306-appb-000002
可以通过满足如下公式(4),式中Δτ表示该RDSS信号传播的总时延,f code表示码频率。
Δτ=Δτ up+Δτ down+Δτ tran      (3)
Figure PCTCN2020121306-appb-000003
S303:根据该载波频偏值和该码相位偏移值,接收并锁定RDSS接收信号。
其中,该载波频偏值可以用于将该RDSS接收信号的载波频率锁定在一个较小的频率范围内,以在较小的频率范围内预检测该RDSS接收信号,从而缩短载波频率不确定度的搜索时长。该码相位偏移值可以用于将该RDSS接收信号的码元(或码片)的相位锁定在一个较小的相位范围内,在较小的相位范围内预检测该RDSS接收信号,从而缩短码元(或码片)相位不确定度的搜索时长。
具体的,该卫星定位装置中可以包括RDSS接收器(receiver,RX),该装置可以通过该RDSS RX接收并锁定RDSS接收信号。比如,该RDSS RX可用于对该RDSS接收信号进行前端处理,比如,该前端处理可以包括射频接收、AD转换、滤波和下变频等处理;之后,根据该载波频偏值和该码相位偏移值,确定该RDSS接收信号的频率范围和码元(或码片)的相位范围,以在对应的范围内对该RDSS接收信号进行跟踪、同步和解码等处理,得到该RDSS接收信号的数据信息。
示例性的,如图4所示,该装置还可以包括RDSS RX,该RDSS RX包括:RDSS RX前端模块、RDSS跟踪模块、RDSS同步模块和RDSS解码模块。其中,RDSS RX前端模块也可以称为RDSS射频通道;RDSS跟踪模块、RDSS同步模块和RDSS解码模块集成在一起,也可以称为RDSS基带处理器。具体的,RDSS RX前端模块、RDSS同步模块和RDSS解码模块的功能与图4中RNSS RX中对应的RNSS RX前端模块、RNSS同步模块和RNSS解码模块的功能类似,本申请实施例在此不再赘述。该RDSS跟踪模块的功能与RNSS跟踪模块的功能略有不同,该RDSS跟踪模块可以根据S302中确定的载波频偏值和码相位偏移值,快速地实现对该RDSS接收信号的实时跟踪,从而可以缩短锁定该RDSS接收信号的时长。可选的,该RDSS RX中也可以包括RDSS捕获模块。该RDSS捕获模块的功能与图4中RNSS RX中对应的RNSS捕获模块的功能类似,本申请实施例在此不再赘述。
在本申请实施例中,基于RNSS接收信号确定的PVT信息,可以获得RDSS信号的载波频偏值和码相位偏移值,从而基于该载波频偏值和该码相位偏移值可以实现RDSS接收信号的快速锁定,即该载波频偏值可用于将该RDSS接收信号的载波频率锁定在一个较小的频率范围内,该码相位偏移值可以用于将该RDSS接收信号的码元(或码片)的相位锁定在一个较小的相位范围内,从而减小载频频率和码相位的搜索时长,进而减少该卫星定位装置的硬件设计复杂度、降低成本,同时还可以进一步降低该装置的功耗。
进一步的,如图5所示,在S302之后,该方法还包括:S304。其中,S303与S304可以不分先后顺序,图5中以S304位于S303之后为例进行说明。
S304:根据该载波频偏值校正RDSS发射信号的载波频率,以得到该RDSS发射信号。
其中,该RDSS发射信号可以是指该装置发送给卫星的RDSS信号。由于该装置与卫星之间存在相对运动,该发射信号的载波频率与卫星接收到的RDSS信号的载波频率之间也会存在偏差,从而该装置可以根据该载波频偏值校正RDSS发射信号的载 波频率,以使校正后的RDSS发射信号的载波频率在系统标称值附近,该系统标称值即为系统定义的基准频率;之后,当卫星接收到该装置发送的该RDSS发射信号后,卫星可以将该发射信号转发给中心站,中心站在系统标称值附近进行预检测,从而可以使得中心站能够以最小资源完成该RDSS发射信号的捕获,减小信号捕获时长。
具体的,该装置还可以包括RDSS发射器(transmitter,TX),该装置可以通过该RDSS TX生成并发送该RDSS发射信号。比如,该RDSS TX可用于对原始的比特流信息进行RDSS信道编码、RDSS调制和RDSS整形滤波处理,以得到RDSS基带信号;之后,根据该载波频偏值对该RDSS基带信号进行RDSS TX载波调制,以及对调制后的信号进行数模(digital to analog,DA)转换、上变频和放大等一系列RDSS TX前端处理后,得到该RDSS发射信号。进一步的,该装置还可以通过天线发送该RDSS发射信号。
示例性的,结合图4,如图6所示,该装置可以包括RDSS TX,该RDSS TX包括:RDSS TX前端模块、RDSS TX载波调制模块、RDSS整形滤波模块、RDSS调制模块和RDSS信道编码模块。其中,RDSS TX前端模块也可以称为RDSS射频通道;RDSS TX载波调制模块、RDSS整形滤波模块、RDSS调制模块和RDSS信道编码模块集成在一起,也可以称为RDSS基带处理器。具体的,RDSS信道编码模块用于对原始的比特流信息进行信道编码,以确保在RDSS中心站接收端通过对应译码获得预设的信道编码增益。RDSS调制模块用于对编码后的符号数据进行扩频调制处理。RDSS整形滤波模块用于对调制后的信号频谱进行整形滤波,并消除码间干扰,以得到RDSS基带信号。RDSS TX载波调制模块用于根据该载波频偏值,对该RDSS基带信号进行载波调制,以保证调制后得到的RDSS中频信号的载波频率在系统标称值附近。RDSS TX前端模块用于对该RDSS中频信号进行DA转换、上变频和放大等一系列处理,以得到满足预定功率强度的RDSS发射信号。之后,该装置可以通过天线发送该RDSS发射信号。
在本申请实施例中,在确定该载波频偏值之后,通过该载波频偏值校正RDSS发射信号的载波频率,可以使得提升该RDSS发射信号的频率精度,从而在该装置发送该RDSS发射信号后,RDSS中心站接收该RDSS发射信号时,可以使得RDSS中心站在系统标称值附近进行预检测,从而中心站能够以最小资源完成该RDSS发射信号的捕获,提高通信成功率。
图7为本申请实施例提供的另一种信号处理方法的流程示意图,该方法可应用于支持RNSS和RDSS的卫星定位装置中,该RNSS和该RDSS共用同一时钟,该装置可以为用户机或者用户机内置的芯片。参见图7,该方法包括以下几个步骤。
S401:根据RNSS接收信号,确定PVT信息。
其中,RNSS信号可以是指RNSS对应的信号,该RNSS接收信号可以是指该卫星定位装置接收的来自卫星的RNSS信号。类似的,下文中的RDSS信号可以是指RDSS对应的信号,RDSS接收信号可以是指该卫星定位装置接收的来自卫星的RDSS信号,RDSS发射信号可以是指该卫星定位装置向卫星发送的RDSS信号。
另外,该PVT信息可以包括该装置的位置信息、该装置的移动速度、时间信息和时钟频偏估计值等信息中的一个或者多个。该装置的位置信息可以是指该卫星定位装 置接收该RNSS信号时的位置;该装置的移动速度可以是指该卫星定位装置接收该RNSS信号时的移动速度;该时间信息可以是指卫星发送该RNSS信号的时间信息,也可以称为观测时刻;该时钟频偏估计值可以是指估计的该装置的时钟发生偏移时的偏移值,其中,该时钟频偏估计值为该装置的测量时钟频率与基准时钟频率之间的差值。
具体的,该卫星定位装置中可以包括RNSS接收器(receive,RX),该装置可以通过该RNSS RX接收并处理该RNSS接收信号,以得到该PVT信息。示例性的,如图6所示,该装置包括RNSS RX,该RNSS RX包括:RNSS RX前端模块、RNSS捕获模块、RNSS跟踪模块、RNSS同步模块、RNSS解码模块和PVT解算模块。其中,RNSS RX前端模块也可以称为RNSS射频通道;RNSS捕获模块、RNSS跟踪模块、RNSS同步模块、RNSS解码模块和PVT解算模块集成在一起,也可以称为RNSS基带处理器。具体的,RNSS RX前端模块用于实现对该RNSS接收信号的射频接收、AD转换、滤波和下变频等处理,并将处理后的RNSS接收信号传输至RNSS捕获模块。RNSS捕获模块基于该RNSS接收信号在载波频率和码相位上的不确定性进行二位搜索,检测该RNSS接收信号的有效性,并确定具体的载波频偏和码相位偏移量等。RNSS跟踪模块用于实现对该RNSS接收信号的载波频率和码相位变化的实时跟踪,以及完成该对RNSS接收信号的解扩和解调。RNSS同步模块基于RNSS跟踪模块的解调数据进行位同步、帧同步处理,以找到解调数据的比特(bit)边界和帧头,以确定导航电文。RNSS解码模块用于完成导航电文的解析、卫星位置计算、伪距计算等。PVT解算模块基于RNSS解码模块的计算结果实现该装置的位置、移动速度和时间等信息的解算。
S402:根据该PVT信息,确定载波频偏值。
其中,载波频偏是多普勒效应在无线电领域的一种体现,是由于发射机和接收机间的相对运动引起的。载波频偏可以是指接收机接收到的信号载波频率与发射机发出的信号载波频率之间发生了偏移,该载波频偏值是指发生偏移时的频率偏移值。该载波频偏值是指RDSS接收信号的载波频偏值,具体是指该RDSS接收信号载波频率相对于卫星发送的RDSS信号的载波频率的频率偏移值。
示例性的,如图6所示,该装置中还可以包括预测单元,由预测单元接收RNSS RX传输的PVT信息,并基于下述可能的实现方式来确定该载波频偏值。可选的,该预测单元也可以集成在RNSS基带处理器中,或者集成在下文所述的RDSS基带处理器中。在一种可能的实现方式中,该PVT中可以包括该装置的移动速度和时钟频偏估计值,根据该移动速度和该时钟频偏估计值可以确定该载波频偏值。具体的,根据该移动速度和提供RNSS服务的GEO卫星运动状态,确定该装置与该GEO卫星相对运动引起的多普勒频偏值;根据该多普勒频偏值和该时钟频偏估计值确定该载波频偏值。具体过程可以参见上文所提供的公式(1)和公式(2)的相关描述,本申请实施例在此不再赘述。
S403:根据该载波频偏值校正RDSS发射信号的载波频率,以得到该RDSS发射信号。
其中,该RDSS发射信号可以是指该装置发送给卫星的RDSS信号。由于该装置 与卫星之间存在相对运动,该发射信号的载波频率与卫星接收到的RDSS信号的载波频率之间也会存在偏差,从而该装置可以根据该载波频偏值校正RDSS发射信号的载波频率,以使校正后的RDSS发射信号的载波频率在系统标称值附近,该系统标称值即为系统定义的基准频率;之后,当卫星接收到该装置发送的该RDSS发射信号后,卫星可以将该发射信号转发给中心站,中心站在系统标称值附近进行预检测,从而可以使得中心站能够以最小资源完成该RDSS发射信号的捕获,减小信号捕获时长。
具体的,该装置还可以包括RDSS发射器(transmitter,TX),该装置可以通过该RDSS TX生成并发送该RDSS发射信号。示例性的,如图6所示,该装置可以包括RDSS TX,该RDSS TX包括:RDSS TX前端模块、RDSS TX载波调制模块、RDSS整形滤波模块、RDSS调制模块和RDSS信道编码模块。其中,RDSS TX前端模块也可以称为RDSS射频通道;RDSS TX载波调制模块、RDSS整形滤波模块、RDSS调制模块和RDSS信道编码模块集成在一起,也可以称为RDSS基带处理器。具体的,RDSS信道编码模块用于对原始的比特流信息进行信道编码,以确保在RDSS中心站接收端通过对应译码获得预设的信道编码增益。RDSS调制模块用于对编码后的符号数据进行扩频调制处理。RDSS整形滤波模块用于对调制后的信号频谱进行整形滤波,并消除码间干扰,以得到RDSS基带信号。RDSS TX载波调制模块用于根据该载波频偏值,对该RDSS基带信号进行载波调制,以保证调制后得到的RDSS中频信号的载波频率在系统标称值附近。RDSS TX前端模块用于对该RDSS中频信号进行DA转换、上变频和放大等一系列处理,以得到满足预定功率强度的RDSS发射信号。之后,该装置可以通过天线发送该RDSS发射信号。
在本申请实施例中,在基于RNSS接收信号确定PVT信息,并基于该PVT信息确定该载波频偏值之后,通过该载波频偏值校正RDSS发射信号的载波频率,可以使得提升该RDSS发射信号的频率精度,从而在该装置发送该RDSS发射信号后,RDSS中心站接收该RDSS发射信号时,可以使得RDSS中心站在系统标称值附近进行预检测,从而中心站能够以最小资源完成该RDSS发射信号的捕获,提高通信成功率,进而提升RNSS与RDSS集成的性能和用户体验。
上述主要从卫星定位装置的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个设备,例如卫星定位装置,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对卫星定位装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述功能模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应功能划分各个功能模块为例进行说明:
在采用集成的单元的情况下,图8示出了上述实施例中所涉及的卫星定位装置的一种可能的结构示意图。该装置可以为用户机,或者内置于用户机的芯片,该装置包括:RNSS接收器501、预测单元502和RDSS接收器503。进一步的,该装置还包括:RDSS发送器504。
在一种可能的实施例中,RNSS接收器501用于支持该装置执行上述方法实施例中的S301;预测单元502用于支持该装置执行上述方法实施例中的S302;RDSS接收器503用于支持该装置执行上述方法实施例中的S303;RDSS发送器504用于支持该装置执行上述方法实施例中的S304。在另一种可能的实施例中,RNSS接收器501用于支持该装置执行上述方法实施例中的S401;预测单元502用于支持该装置执行上述方法实施例中的S402;RDSS发送器504用于支持该装置执行上述方法实施例中的S404。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用硬件实现的基础上,上述RNSS接收器501、预测单元502、RDSS接收器503和RDSS发送器504可以为处理器的部分功能,RNSS接收器501和RDSS接收器503可以为接收器的部分功能,RDSS发送器504可以为发送器的部分功能,接收器和发送器可以集成为收发器,该收发器也可以称为通信接口。
图9为本申请实施例所涉及的卫星定位装置可能的产品形态的结构图。
作为一种可能的产品形态,该卫星定位装置可以为卫星定位设备,所述卫星定位设备包括处理器602和收发器603;所述处理器602,用于对卫星定位设备的动作进行控制管理,例如,用于支持该装置执行上述方法实施例中的S301至S304中的一个或者多个步骤、或者上述方法实施例中的S401至S403中的一个或者多个步骤,和/或用于本文所描述的其他技术过程;所述收发器603,用于支持该装置执行上述方法实施例中接收RNSS信号和/或RDSS信号的步骤,或者发送RDSS信号的步骤。可选地,所述卫星定位设备还可以包括存储器601。
作为另一种可能的产品形态,该卫星定位装置可以为卫星定位单板,所述卫星定位单板包括处理器602和收发器603;所述处理器602,用于对该装置的动作进行控制管理,例如,用于支持该装置执行上述方法实施例中的S301至S304中的一个或者多个步骤、或者上述方法实施例中的S401至S403中的一个或者多个步骤,和/或用于本文所描述的其他技术过程;所述收发器603,用于该装置执行上述方法实施例中接收RNSS信号和/或RDSS信号的步骤,或者发送RDSS信号的步骤。可选地,所述卫星定位单板还可以包括存储器601。
作为另一种可能的产品形态,该卫星定位装置也由通用处理器来实现,即俗称的芯片来实现。该处理器包括:处理器602和通信接口603;可选地,该通用处理器还可以包括存储器601。
作为另一种可能的产品形态,该卫星定位装置也可以使用下述来实现:一个或多个现场可编程门阵列(field-programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
上述处理器602可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。图9中,处理器602、通信接口/收发器603和存储器601可通过总线604连接,总线604可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线604可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请实施例还提供一种卫星定位系统,如图10所示,该系统包括处理器701、存储器702和天线703,处理器701、存储器702和天线703通过总线704连接;其中,天线703用于接收RNSS信号和/或RDSS信号、或者发送RDSS信号的步骤,存储器702用于存储可执行指令,处理器701执行所述可执行指令以使该系统执行上述方法实施例所提供的卫星信号处理方法中的一个或者多个步骤。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序指令可以存储于计算机可读取存储介质中,该程序指令在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
一方面,本申请实施例还提供一种可读存储介质,可读存储介质中存储有计算机执行指令,当一个设备(可以是单片机,芯片、控制器等)或者处理器执行本申请所提供的天线切换方法中的步骤。
一方面,本申请实施例还提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中;设备的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,至少一个处理器执行该计算机执行指令使得设备执行本申请所提供的天线切换方法中的步骤。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种卫星定位装置,其特征在于,所述装置包括:
    卫星无线电导航系统RNSS射频通道,用于接收RNSS接收信号;
    RNSS基带处理器,耦合至所述RNSS射频通道,用于对所述RNSS接收信号进行位置速度和时间PVT解算,得到PVT信息;
    卫星无线电测定系统RDSS基带处理器,用于根据载波频偏值确定载波频率,其中,所述载波频偏值是基于所述PVT信息生成的;
    RDSS射频通道,耦合至所述RDSS基带处理器,用于基于所述载波频率,接收RDSS接收信号。
  2. 根据权利要求1所述的装置,其特征在于,
    所述RDSS基带处理器,还用于根据码相位偏移值确定所述RDSS接收信号的码相位,其中,所述码相位偏移值是基于所述PVT信息生成的;
    所述RDSS射频通道,还用于基于所述码相位和所述载波频率,接收所述RDSS接收信号。
  3. 根据权利要求1或2所述的装置,其特征在于,所述PVT信息包括以下至少一项:位置信息,移动速度,时钟频偏估计值;其中,所述时钟频偏估计值为所述装置的测量时钟频率与基准时钟频率之间的差值。
  4. 根据权利要求3所述的装置,其特征在于,所述RNSS基带处理器或所述RDSS基带处理器还用于:
    根据所述移动速度确定多普勒频偏值,并根据所述多普勒频偏值和所述时钟频偏估计值确定所述载波频偏值。
  5. 根据权利要求4所述的装置,其特征在于,所述多普勒频偏值与所述时钟频偏估计值之和为所述载波偏移值。
  6. 根据权利要求3-5任一项所述的装置,其特征在于,所述RNSS基带处理器或所述RDSS基带处理器还用于:
    根据所述位置信息确定信号传播时延,并根据所述信号传播时延确定码相位偏移值。
  7. 根据权利要求6所述的装置,其特征在于,所述码相位偏移值为所述信号传播时延与码频率的乘积。
  8. 根据权利要求1-7任一项所述的装置,其特征在于,
    所述RDSS基带处理器,还用于根据所述载波频偏值校正RDSS发射信号的载波频率,以得到所述RDSS发射信号;
    所述RDSS射频通道,还用于发送所述RDSS发射信号。
  9. 根据权利要求1-8任一项所述的装置,其特征在于,所述装置为卫星定位芯片或者卫星定位设备。
  10. 一种卫星定位装置,其特征在于,所述装置包括:
    卫星无线电导航系统RNSS射频通道,用于接收RNSS接收信号;
    RNSS基带处理器,耦合至所述RNSS射频通道,用于对所述RNSS接收信号进 行位置速度和时间PVT解算,得到PVT信息;
    卫星无线电测定系统RDSS基带处理器,用于根据载波频偏值校正RDSS发射信号的载波频率,以得到所述RDSS发射信号,其中,所述载波频偏值是基于所述PVT信息生成的;
    所述RDSS射频通道,耦合至所述RDSS基带处理器,用于发送所述RDSS发射信号。
  11. 根据权利要求10所述的装置,其特征在于,所述PVT信息包括以下至少一项:移动速度,时钟频偏估计值;其中,所述时钟频偏估计值为所述装置的测量时钟频率与基准时钟频率之间的差值。
  12. 根据权利要求11所述的装置,其特征在于,所述RNSS基带处理器或所述RDSS基带处理器还用于:
    根据所述移动速度确定多普勒频偏值,并根据所述多普勒频偏值和所述时钟频偏估计值确定所述载波频偏值。
  13. 根据权利要求12所述的装置,其特征在于,所述多普勒频偏值与所述时钟频偏估计值之和为所述载波偏移值。
  14. 根据权利要求10-13任一项所述的装置,其特征在于,所述装置为卫星定位芯片或者卫星定位设备。
  15. 一种卫星信号处理方法,其特征在于,所述方法包括:
    接收卫星无线电导航系统RNSS接收信号;
    对所述RNSS接收信号进行位置速度和时间PVT解算,得到PVT信息;
    根据载波频偏值确定卫星无线电测定系统RDSS接收信号的载波频率,其中,所述载波频偏值是基于所述PVT信息生成的;
    基于所述RDSS接收信号的载波频率,接收所述RDSS接收信号。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    根据码相位偏移值确定所述RDSS接收信号的码相位,其中,所述码相位偏移值是基于所述PVT信息生成的;
    基于所述RDSS接收信号的码相位和所述载波频率,接收所述RDSS接收信号。
  17. 根据权利要求15或16所述的方法,其特征在于,所述PVT信息包括以下至少一项:位置信息,移动速度,时钟频偏估计值;其中,所述时钟频偏估计值为所述方法的测量时钟频率与基准时钟频率之间的差值。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    根据所述移动速度确定多普勒频偏值,并根据所述多普勒频偏值和所述时钟频偏估计值确定所述载波频偏值。
  19. 根据权利要求18所述的方法,其特征在于,所述多普勒频偏值与所述时钟频偏估计值之和为所述RDSS的载波偏移值。
  20. 根据权利要求17-19任一项所述的方法,其特征在于,所述方法还包括:
    根据所述位置信息确定信号传播时延,并根据所述信号传播时延确定码相位偏移值。
  21. 根据权利要求20所述的方法,其特征在于,所述码相位偏移值为所述信号传 播时延与码频率的乘积。
  22. 根据权利要求15-21任一项所述的方法,其特征在于,所述方法还包括:
    根据所述载波频偏值校正RDSS发射信号的载波频率,以得到所述RDSS发射信号;
    发送所述RDSS发射信号。
  23. 一种卫星信号处理方法,其特征在于,所述方法包括:
    接收卫星无线电导航系统RNSS接收信号;
    对所述RNSS接收信号进行位置速度和时间PVT解算,得到PVT信息;
    根据载波频偏值校正卫星无线电测定系统RDSS发射信号的载波频率,以得到所述RDSS发射信号,其中,所述载波频偏值是基于所述PVT信息生成的;
    发送所述RDSS发射信号。
  24. 根据权利要求23所述的方法,其特征在于,所述PVT信息包括以下至少一项:移动速度,时钟频偏估计值;其中,所述时钟频偏估计值为所述方法的测量时钟频率与基准时钟频率之间的差值。
  25. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    根据所述移动速度确定多普勒频偏值,并根据所述多普勒频偏值和所述时钟频偏估计值确定所述载波频偏值。
  26. 根据权利要求25所述的方法,其特征在于,所述多普勒频偏值与所述时钟频偏估计值之和为所述载波偏移值。
  27. 一种卫星定位系统,其特征在于,所述系统包括天线、以及如权利要求1-9任一项所述的卫星定位装置。
  28. 一种卫星定位系统,其特征在于,所述系统包括天线、以及如权利要求10-14任一项所述的卫星定位装置。
PCT/CN2020/121306 2020-10-15 2020-10-15 一种卫星信号处理方法及卫星定位装置 WO2022077390A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080105558.XA CN116249916A (zh) 2020-10-15 2020-10-15 一种卫星信号处理方法及卫星定位装置
PCT/CN2020/121306 WO2022077390A1 (zh) 2020-10-15 2020-10-15 一种卫星信号处理方法及卫星定位装置
EP20957169.4A EP4220232A4 (en) 2020-10-15 2020-10-15 SATELLITE SIGNAL PROCESSING METHOD AND SATELLITE POSITIONING APPARATUS
US18/300,441 US20230258825A1 (en) 2020-10-15 2023-04-14 Satellite signal processing method and satellite positioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/121306 WO2022077390A1 (zh) 2020-10-15 2020-10-15 一种卫星信号处理方法及卫星定位装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/300,441 Continuation US20230258825A1 (en) 2020-10-15 2023-04-14 Satellite signal processing method and satellite positioning apparatus

Publications (1)

Publication Number Publication Date
WO2022077390A1 true WO2022077390A1 (zh) 2022-04-21

Family

ID=81208746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121306 WO2022077390A1 (zh) 2020-10-15 2020-10-15 一种卫星信号处理方法及卫星定位装置

Country Status (4)

Country Link
US (1) US20230258825A1 (zh)
EP (1) EP4220232A4 (zh)
CN (1) CN116249916A (zh)
WO (1) WO2022077390A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118112624A (zh) * 2024-04-25 2024-05-31 江西省军民融合研究院 一种基于北斗定位的无人机位置通信方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12007487B1 (en) * 2020-12-31 2024-06-11 Waymo Llc Global positioning system time verification for autonomous vehicles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105099498A (zh) * 2014-05-20 2015-11-25 中国科学院国家天文台 扩频信号捕获系统和方法
CN105871495A (zh) * 2015-12-29 2016-08-17 中国科学院国家天文台 一种时间同步方法、通信地面站和用户终端
CN108761506A (zh) * 2018-08-31 2018-11-06 北京星地恒通信息科技有限公司 一种北斗rnss、rdss双模用户机快速定位系统
CN109143285A (zh) * 2017-06-27 2019-01-04 航天恒星科技有限公司 应用于姿态多变高动态目标的定位通报系统
CN209545592U (zh) * 2018-07-26 2019-10-25 陕西凌云科技有限责任公司 高动态下短报文入站信号多普勒频率补偿控制系统
WO2020117301A1 (en) * 2018-12-06 2020-06-11 Aero5G, Inc. Gnss-assisted wireless communication

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103698773A (zh) * 2014-01-13 2014-04-02 北京北斗星通导航技术股份有限公司 一种北斗多频点卫星导航接收机及其板卡
CN105629271B (zh) * 2015-12-28 2018-05-08 重庆九洲星熠导航设备有限公司 基于通航ads-b应用的北斗双模终端设备的控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105099498A (zh) * 2014-05-20 2015-11-25 中国科学院国家天文台 扩频信号捕获系统和方法
CN105871495A (zh) * 2015-12-29 2016-08-17 中国科学院国家天文台 一种时间同步方法、通信地面站和用户终端
CN109143285A (zh) * 2017-06-27 2019-01-04 航天恒星科技有限公司 应用于姿态多变高动态目标的定位通报系统
CN209545592U (zh) * 2018-07-26 2019-10-25 陕西凌云科技有限责任公司 高动态下短报文入站信号多普勒频率补偿控制系统
CN108761506A (zh) * 2018-08-31 2018-11-06 北京星地恒通信息科技有限公司 一种北斗rnss、rdss双模用户机快速定位系统
WO2020117301A1 (en) * 2018-12-06 2020-06-11 Aero5G, Inc. Gnss-assisted wireless communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4220232A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118112624A (zh) * 2024-04-25 2024-05-31 江西省军民融合研究院 一种基于北斗定位的无人机位置通信方法及系统

Also Published As

Publication number Publication date
EP4220232A4 (en) 2023-11-29
CN116249916A (zh) 2023-06-09
US20230258825A1 (en) 2023-08-17
EP4220232A1 (en) 2023-08-02

Similar Documents

Publication Publication Date Title
US8108143B1 (en) Navigation system enabled wireless headset
TWI421526B (zh) 一種通信方法和通信系統
US9151844B2 (en) Accurate GNSS time handling in dual/multi-SIM terminals
US6738013B2 (en) Generic satellite positioning system receivers with selective inputs and outputs
US20230258825A1 (en) Satellite signal processing method and satellite positioning apparatus
US20030234738A1 (en) Generic satellite positioning system receivers with programmable inputs
EP2356829B1 (en) Mobile receiver with location services capability
US11442176B2 (en) Inertial sensor calibration based on power budget
US9363633B2 (en) Accurate GNSS time handling in dual/multi-SIM terminals
WO2022143746A1 (zh) 非陆地网络定位方法、装置、设备及存储介质
US20150133171A1 (en) Method and system for implementing a dual-mode dual-band gnss/m-lms pseudolites receiver
WO2014163837A1 (en) Method and apparatus for receiving navigation satellite signals from two bands
WO2014149595A1 (en) Concurrent multi-system satellite navigation receiver with real signaling output
CN115336296A (zh) 定位辅助终端设备的确定方法、装置
WO2011056879A2 (en) Methods and apparatuses using mixed navigation system constellation sources for time setting
WO2024015144A1 (en) Accuracy-based gnss band selection
KR101077553B1 (ko) 근거리 무선통신을 이용한 위성항법 수신 장치 및 그 방법
CN112703426B (zh) 一种卫星信号处理方法及装置
US7545319B2 (en) Configurable satellite positioning system receivers with programmable inputs
CN108183742B (zh) 卫星通讯方法及装置
CN217062492U (zh) 天线系统及通信设备
WO2024055896A1 (zh) 一种芯片、电路板组件及通信装置
US20230179245A1 (en) Controlling remote antenna systems
KR20120008543A (ko) 위치 이용 방법
KR20080070272A (ko) 위치정보의 선택적 이용 기능이 구비된 무선단말과 이를위한 프로그램 기록매체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957169

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020957169

Country of ref document: EP

Effective date: 20230426

NENP Non-entry into the national phase

Ref country code: DE