WO2022075869A1 - Single-channel or multi-channel vector measurement system with a single receiver per channel - Google Patents

Single-channel or multi-channel vector measurement system with a single receiver per channel Download PDF

Info

Publication number
WO2022075869A1
WO2022075869A1 PCT/PL2021/000074 PL2021000074W WO2022075869A1 WO 2022075869 A1 WO2022075869 A1 WO 2022075869A1 PL 2021000074 W PL2021000074 W PL 2021000074W WO 2022075869 A1 WO2022075869 A1 WO 2022075869A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
port
coupler
frequency signal
signal
Prior art date
Application number
PCT/PL2021/000074
Other languages
French (fr)
Inventor
Maciej GRZEGRZÓŁKA
Igor RUTKOWSKI
Original Assignee
Openrf Spółka Z Ograniczoną Odpowiedzialność
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Openrf Spółka Z Ograniczoną Odpowiedzialność filed Critical Openrf Spółka Z Ograniczoną Odpowiedzialność
Publication of WO2022075869A1 publication Critical patent/WO2022075869A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/28Measuring attenuation, gain, phase shift or derived characteristics of electric four pole networks, i.e. two-port networks; Measuring transient response
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/28Measuring attenuation, gain, phase shift or derived characteristics of electric four pole networks, i.e. two-port networks; Measuring transient response
    • G01R27/32Measuring attenuation, gain, phase shift or derived characteristics of electric four pole networks, i.e. two-port networks; Measuring transient response in circuits having distributed constants, e.g. having very long conductors or involving high frequencies

Definitions

  • the subject of the invention is a single-channel or multi-channel vector measurement system with a single receiver per channel for high-frequency systems.
  • the vector network analyzers are among the basic measuring instruments used in the design of electronic devices operating with high frequency signals. They make it possible to determine the adaptation of an impedance to the inputs and outputs of the devices measured, the transmittance between the ports of the devices measured and their dispersion matrix.
  • Vector measurements mean that an amplitude change as well as a phase shift introduced by the measured object is determined during the measurement. Measurements are made for different frequencies separately. Usually the user specifies a measurement range and a number of points (frequencies) for which the measurement will be made.
  • the meter is responsible for generating an excitation signal of a given frequency and amplitude and transmitting it to its selected port. Then signals are received from all measured ports and device parameters are determined based on them.
  • a dispersion matrix is determined, the number of elements of which is equal to the second power of the number of ports of the measured device.
  • a typical vector network analyzer has one to four identical channels. In order to determine the whole of the dispersion matrix, it is necessary to measure two signals called an incident wave and a reflected wave, in each of the channels. This means that to do this two receivers of high frequency signals are essential.
  • Solutions with one receiver per channel are available on the market, but these devices can only measure one or two elements of the dispersion matrix. Consequently, it becomes necessary to modify a measuring system in such a way that it can include leftover elements, which will considerably reduce the accuracy of the measurement and will require additional actions on the part of the user.
  • An example of such devices are spectrum analyzers with a tracking generator connected to a so-called standing wave ratio, SWR (eng. Standing Wave Ratio).
  • SWR standing Wave Ratio
  • two solutions are used to build typical vector network analyzers. Each of them requires the use of two receivers of high frequency signals, and the main difference lies in the couplers used.
  • the disadvantage of existing solutions is the use of many receivers, which also generates additional costs.
  • a two-output directional coupler or two single-output directional couplers are used.
  • the directional coupler/s allows/attempts to independently measure the incident ground and the reflected ground (see figure n°6).
  • Such a solution guarantees more accurate measurements, but due to a limited band of the directional couplers, it is not suitable for broadband solutions or it requires the use of several couplers for different bands.
  • the single-channel or multi-channel vector measurement system with a single receiver per channel which includes a high signal generator tunable frequency, a coupler as well as a receiver of the high frequency signals, is characterized in that an output of the tunable high frequency signal generator is connected to a main line of the coupler.
  • the second port of the main line of the coupler is connected to a common port of the signal switch. This in turn remains connected by one port to a measured object and by the other to the adapted load.
  • a decoupled port of the coupler is connected to a high frequency signal receiver.
  • a separate tunable high frequency signal generator is used for each channel.
  • a common tunable high-frequency signal generator is used for several channels.
  • one output of the tunable high-frequency signal generator is connected to a port of the common source switch, the other ports of the source switch being connected to the main line ports of the couplers on each of the channels.
  • the multi-channel system uses at least one digital signal processing circuit for each channel.
  • a common digital signal processing circuit is used.
  • Each of the channels consists of a tunable high-frequency signal generator (it can be common to several channels), a coupler (any type of coupler with any directivity), a signal switch, a a high-frequency signal receiver and a digital signal processing circuit (this may be common to several channels).
  • the signal from the tunable high-frequency signal generator is sent to the coupler mainline port, which selects which goes to the signal switch (connected to the second coupler mainline port) and which goes to the high-frequency signal receiver ( connected to port decoupled from the coupler).
  • the signal switch can be in two positions. In the first position (see Figure 1), a signal from the tunable high-frequency signal generator strikes the measured object and is partially deflected therefrom.
  • the reflected signal passes through a signal selector and returns to the coupler, which transfers a portion of the reflected signal to the input of the high frequency signal receiver.
  • the receiver of the high-frequency signals receives a signal which is the sum of a part of the signal from the tunable high-frequency signal generator and a part of the signal reflected by the measured object (return wave).
  • the signal switch can also be set to a suitable load position. In such a situation, there is no reflection and only a part of the output signal from the tunable high-frequency signal generator is sent to the high-frequency signal receiver.
  • the digital signal processing circuit is used to analyze the receiver data from the high frequency signals. It is also responsible for monitoring the state of the signal switch and for setting parameters of the tunable high-frequency signal generator, such as frequency and output power.
  • the matching factors are measured for each port of the measured object and the transmission between each of the two ports. For this, it is necessary to make more measurements.
  • the tunable high-frequency signal generator only works on one channel. This will be referred to below as an active channel.
  • the common tunable high-frequency signal generator operates all the time and the active channel is selected by changing the position of the source. To measure all matching and transmission factors between all channel pairs, each channel must operate in turn as active.
  • the signal switch in the active channel is placed in the position of the measured object. Similar to single channel system in such a position, in the active channel the signal receiver measures the sum of the incident wave and the reflected background.
  • the signal switches in the remaining channels are also set to the measured object.
  • the back ground (with the tunable high frequency signal generators on these channels disabled) is measured by the receivers in the remaining channels. From incident background measurements in the active channel and return wave measurements in the remaining channels, it is possible to determine the value of a transmission between the active channel and each of the other channels. Then the signal switch in the active channel is set to the position of the matched load (the position of the signal switches in the other channels does not matter). In such a situation, the signal receiver in the active channel only measures incident ground. Based on the incoming background measurements as well as a sum of the incoming background and return background in the active channel, it is possible to determine the matching factor for the port of an object to which the active channel was connected .
  • the presented system can also be used as a spectrum analyzer or a tunable high-frequency signal generator.
  • the tunable high-frequency signal generator is disabled and the signal selector is set to the object being measured.
  • the signal going to the device port through the signal switch and coupler goes to the receiver of high frequency signals, where it is possible to determine the spectrum of an input signal.
  • a multi-channel system it is possible to obtain a multi-channel spectrum analyzer (each channel can operate independently with different settings).
  • the signal selector is also positioned toward the object being measured.
  • An output signal from the tunable high-frequency signal generator through the coupler and the signal switch is transmitted to the port of the object.
  • a multi-channel tunable high-frequency signal generator (each channel can operate independently with settings different). It is also possible to work in mixed mode, i.e. some channels can work as a network vector analyzer, some as a spectrum analyzer and others as a high signal generator. tunable frequency.
  • the solution proposed by means of this invention aims to simplify the vector measurements of high frequency signals, in particular the measurements making it possible to establish a dispersion matrix. Using this system, it must be possible to determine the incident ground and the reflected ground, which then makes it possible to define the parameters of the device under test (Device under test, DUT in English).
  • its advantage consists in that thanks to the use of a single receiver, the system is resistant to errors resulting from the differences between the channels and the phase shifts between them.
  • Frequency synchronization between the tunable high-frequency signal generator and the receiver is no longer required, further simplifying the system.
  • the proposed solution allows the use of only one receiver of the high frequency signals per channel; the measurement of a complete dispersion matrix without the need to change the connections in the measurement system is always feasible.
  • FIG. 1 A diagram of the single-channel system in accordance with this invention is presented in figure n°2 and n°3.
  • Figures 2 and 3 show example configurations for a two-channel system.
  • the tunable high-frequency signal generator is shared between the channels using an additional switch. This solution leads to an even more considerable reduction in the costs of the system presented.
  • the example schematic of an 8-channel system is shown in Figure 4. Variants with a different number of channels can be obtained by duplicating the one- or two-channel solution.
  • Figures 5 and 6 show the state of the art.
  • the system can have more than one measurement channel.
  • multi-channel solutions it is possible to measure the adjustment of each port of the measured object and to determine the transmission between all measured ports.
  • Figures 2 and 4 show sample configurations for a two- and eight-channel system. Variants with a different number of channels are obtained by duplicating the one- or two-channel solution.
  • multi-channel solutions it is possible to share the tunable high frequency signal generator as in an example shown in drawing n°3. In such a situation, a tunable high-frequency signal generator is used, the output of which is connected to a common port of the source switch. The other source switch ports are connected to the trunk line ports of the splitters on each channel.
  • the signal switch In order to perform the first measurement, the signal switch must be set to the measured object. Here, a sum of signals from the tunable high-frequency signal generator (incident wave) and reflected by the device (return wave) is measured. For the second measurement, the signal switch is set to a suitable load position. In this situation, only the output signal of the tunable high-frequency signal generator (incident wave) is measured.
  • the output of tunable high-frequency generator 1 is connected to one port of the main line of coupler 2.
  • the second port of the main line of coupler 2 is connected to a common port of signal switch 3.
  • Signal switch 3 has two other ports in addition to the common port.
  • the first port is connected to the output port 4 of the device to which the measured object 5 is in turn connected.
  • the second port of the signal switch 3 is connected to the matched load 6.
  • the decoupled port of the coupler 2 is connected to a receiver of the high frequency signals 7, which converts the data from analog form to digital form and sends it to the system of digital signal processing 8.
  • the digital signal processing system 8 in addition to data processing, is also responsible for tuning the frequency generator and controlling the signal switch.
  • the system consists of two identical channels and a digital signal processing system 8.
  • Each of the channels contains: a tunable high frequency generator 1, a coupler 2, a signal selector 3, a matched load 6 and a receiver of the high frequency signals 7.
  • a connection of the elements in each of the channels is as follows: the output of the tunable high frequency signal generator 1 is connected to the main line port of the coupler 2; the second port of the trunk line of coupler 2 is connected to the common port of signal switch 3.
  • Signal switch 3 has two other ports in addition to the common port. One is connected to the output port of the device to which the measured object 5 is connected. The second port of signal switch 3 is connected to matched load 6.
  • the decoupled port of coupler 2 is connected to a high frequency signal receiver 7 which converts the data from analog to digital form.
  • the data from the two receivers of the high-frequency signals 7 (both channels) are sent to the digital signal processing system 8.
  • the digital signal processing system 8 in addition to data processing, is also responsible for a control of the signal switches and a modification of the settings of the tunable high-frequency signal generators 1.
  • the system consists of a tunable high frequency generator 1, a signal source switch 9, two identical channels and a digital processing system 8.
  • the tunable high frequency generator 1 is connected to the port of the common switch source 3 switch.
  • the source 3 switch In addition to the shared port, the source 3 switch has two other ports.
  • a coupler 2 In each of the channels there is: a coupler 2, a signal switch 3, a matched load 6 and a receiver of the high frequency signals 7.
  • the connection of the elements in each of the channels is as follows: the first port of the main line of coupler 2 is connected to a source switch port (each channel to a different port).
  • the second trunk line port of coupler 2 is connected to the common port of signal switch 3.
  • Signal switch 3 has two other ports in addition to the common port.
  • the digital signal processing system 8 in addition to data processing, is also responsible for a control of the signal switches 3 and the signal source switch 9 as well as a modification of the settings of the tunable high frequency generator 1.
  • the system consists of eight identical channels and a digital signal processing system 8.
  • Each of the channels comprises: a tunable high-frequency signal generator 1, a coupler 2, a signal selector 3, a matched load 6 and a receiver of high-frequency signals 7.
  • the connection of the elements on each channel is as follows: the output of the tunable high-frequency signal generator 1 is connected to the port of the main line of coupler 2. The second port of the main line of coupler 2 is connected to the common port of signal switch 3.
  • Signal switch 3 has two other ports in addition to the common port. One is connected to output port 4 of the device to which the measured object 5 is connected. The other port of the signal switch 3 is connected to the matched load 6.
  • the decoupled port of the coupler 2 is connected to a receiver of the high frequency signals 7 which converts the data from analog form in digital form.
  • Data from eight receivers of high-frequency signals (from eight channels) is sent to the digital signal processing system 8.
  • the digital signal processing system 8 in addition to data processing, is also responsible for controlling the switches signal 3 and modify the parameters of the tunable high-frequency signal generators 1.
  • the presented solution can consist of any number of channels, but in practice solutions with a maximum of eight channels will mainly be used.
  • the number of channels needed to determine the complete S-matrix of a given object depends on a number of its inputs and outputs. Examples of elements whose parameters can be determined using a given number of channels are shown below:
  • 2 channels wires, transmission lines, power amplifiers, filters, attenuators;
  • 3 channels power dividers, couplers, mixers, circulators;

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

A single-channel or multi-channel vector measurement system with a single receiver per channel comprising a tunable high-frequency signal generator, a coupler and a high-frequency signal receiver, characterized in that an output of the tunable high-frequency signal generator (1) is connected to a main line of the coupler (2) but it should be noted that the second port of the main line of the coupler (2) is connected to a common port of the signal switcher (3) which remains in turn connected by one port to a measured object (5) and by the other to the matched load (6) while a port that is uncoupled from the coupler (2) is connected to a high-frequency signal receiver (7).

Description

Système de mesures vectorielles monocanal ou multicanal avec un seul récepteur par canal Single-channel or multi-channel vector measurement system with a single receiver per channel
L'invention a pour objet un système monocanal ou multicanal de mesures vectorielles avec un seul récepteur par canal pour les systèmes à haute fréquence. The subject of the invention is a single-channel or multi-channel vector measurement system with a single receiver per channel for high-frequency systems.
Les analyseurs de réseaux vectoriels (eng. Vector Network Analyzers, VNA) se trouvent parmi des instruments de mesure de base utilisés dans la conception des appareils électroniques opérant avec les signaux à haute fréquence. Ils permettent de déterminer l'adaptation d'une impédance aux entrées et sorties des appareils mesurés, la transmittance entre les ports des appareils mesurés et leur matrice de dispersion. Les mesures vectorielles signifient qu’un changement d'amplitude aussi bien qu’un déphasage introduits par l'objet mesuré sont déterminés pendant la mesure. Les mesures sont effectuées pour différentes fréquences séparément. Habituellement, l'utilisateur spécifie une plage de mesure et un nombre de points (fréquences) pour lesquels la mesure sera effectuée. Le dispositif de mesure est chargé de générer un signal d'excitation d'une fréquence et d'une amplitude données et de le transmettre à son port sélectionné. Ensuite, les signaux sont reçus depuis tous les ports mesurés et les paramètres de l'appareil sont déterminés sur leur base. The vector network analyzers (eng. Vector Network Analyzers, VNA) are among the basic measuring instruments used in the design of electronic devices operating with high frequency signals. They make it possible to determine the adaptation of an impedance to the inputs and outputs of the devices measured, the transmittance between the ports of the devices measured and their dispersion matrix. Vector measurements mean that an amplitude change as well as a phase shift introduced by the measured object is determined during the measurement. Measurements are made for different frequencies separately. Usually the user specifies a measurement range and a number of points (frequencies) for which the measurement will be made. The meter is responsible for generating an excitation signal of a given frequency and amplitude and transmitting it to its selected port. Then signals are received from all measured ports and device parameters are determined based on them.
Pour chaque fréquence à laquelle une mesure est effectuée, une matrice de dispersion est déterminée, dont le nombre d'éléments est égal à la deuxième puissance du nombre de ports de l'appareil mesuré. Un analyseur de réseau vectoriel typique possède de un à quatre canaux identiques. Afin de déterminer l'ensemble de la matrice de dispersion, il faut mesurer deux signaux dites une onde incidente et une onde réfléchie, dans chacun des canaux. Cela signifie que pour le faire deux récepteurs des signaux haute fréquence sont indispensables.
Figure imgf000004_0001
For each frequency at which a measurement is made, a dispersion matrix is determined, the number of elements of which is equal to the second power of the number of ports of the measured device. A typical vector network analyzer has one to four identical channels. In order to determine the whole of the dispersion matrix, it is necessary to measure two signals called an incident wave and a reflected wave, in each of the channels. This means that to do this two receivers of high frequency signals are essential.
Figure imgf000004_0001
Sont accessibles sur le marché des solutions avec un récepteur par canal, mais ces dispositifs ne peuvent mesurer qu'un ou deux éléments de la matrice de dispersion. Conséquemment, il devient nécessaire de modifier un système de mesure de manière à ce qu’il puisse comprendre des éléments restants, ce qui réduira considérablement la précision de la mesure et exigera des actions supplémentaires de la part de l'utilisateur. Un exemple de tels dispositifs sont les analyseurs de spectre avec un générateur de poursuite connecté à ce que l'on appelle un taux d'ondes stationnaire, SWR (eng. Standing Wave Ratio). À l’heure actuelle, on recourt à deux solutions pour construire des analyseurs de réseaux vectoriels typiques. Chacune d'elles nécessite l'utilisation de deux récepteurs de signaux haute fréquence, et la principale différence réside dans des coupleurs utilisés. L'inconvénient des solutions existantes consiste en l’utilisation de nombreux récepteurs, par ailleurs cela génère des coûts en plus. Solutions with one receiver per channel are available on the market, but these devices can only measure one or two elements of the dispersion matrix. Consequently, it becomes necessary to modify a measuring system in such a way that it can include leftover elements, which will considerably reduce the accuracy of the measurement and will require additional actions on the part of the user. An example of such devices are spectrum analyzers with a tracking generator connected to a so-called standing wave ratio, SWR (eng. Standing Wave Ratio). Currently, two solutions are used to build typical vector network analyzers. Each of them requires the use of two receivers of high frequency signals, and the main difference lies in the couplers used. The disadvantage of existing solutions is the use of many receivers, which also generates additional costs.
Dans le premier cas, deux coupleurs à résistance différents sont utilisés. Dans l’ensemble les deux mesurent la somme de fonde incidente et de fonde réfléchie, mais dans chaque cas avec un rapport légèrement différent. Sur cette base, les valeurs d'une amplitude et d’une phase des deux ondes peuvent être lues. Le schéma d’une telle solution est illustré dans la figure n°5. In the first case, two different resistance couplers are used. Both generally measure the sum of incident background and reflected background, but in each case with a slightly different ratio. Based on this, the values of an amplitude and a phase of the two waves can be read. The diagram of such a solution is shown in Figure 5.
Dans la deuxième solution on emploie un coupleur directionnel à deux sorties ou deux coupleurs directionnels à sortie unique. Le/s/ coupleur/s/ directionnel/s permet/tent de mesurer indépendamment fonde incidente et fonde réfléchie (voir la figure n°6). Une telle solution garantit des mesures plus précises, mais en raison d’une bande limitée des coupleurs directionnels, elle n'est pas adaptée aux solutions à large bande ou elle nécessite l'utilisation de plusieurs coupleurs pour différentes bandes. In the second solution, a two-output directional coupler or two single-output directional couplers are used. The directional coupler/s allows/attempts to independently measure the incident ground and the reflected ground (see figure n°6). Such a solution guarantees more accurate measurements, but due to a limited band of the directional couplers, it is not suitable for broadband solutions or it requires the use of several couplers for different bands.
Le système de mesures vectorielles monocanal ou multicanal avec un seul récepteur par canal qui comprend un générateur des signaux haute
Figure imgf000005_0001
fréquence accordable, un coupleur ainsi qu’un récepteur des signaux haute fréquence, se caractérise par ce qu’une sortie du générateur des signaux haute fréquence accordable est connectée à une ligne principale du coupleur. Il est à noter que le deuxième port de la ligne principale du coupleur est connecté à un port commun du commutateur de signal. Celui-ci reste à son tour connecté par un port à un objet mesuré et par l'autre à la charge adaptée. Enfin un port découplé du coupleur est connecté à un récepteur de signaux haute fréquence.
The single-channel or multi-channel vector measurement system with a single receiver per channel which includes a high signal generator
Figure imgf000005_0001
tunable frequency, a coupler as well as a receiver of the high frequency signals, is characterized in that an output of the tunable high frequency signal generator is connected to a main line of the coupler. Note that the second port of the main line of the coupler is connected to a common port of the signal switch. This in turn remains connected by one port to a measured object and by the other to the adapted load. Finally, a decoupled port of the coupler is connected to a high frequency signal receiver.
Préférablement, dans le système multicanal, un générateur des signaux haute fréquence accordable séparé est utilisé pour chaque canal. Preferably, in the multi-channel system, a separate tunable high frequency signal generator is used for each channel.
Préférablement, dans le système multicanal, un générateur des signaux haute fréquence accordable commun est utilisé pour plusieurs canaux. Preferably, in the multi-channel system, a common tunable high-frequency signal generator is used for several channels.
Préférablement, une sortie du générateur des signaux haute fréquence accordable est connectée à un port du commutateur de source commun, les autres ports du commutateur de source étant connectés aux ports de la ligne principale des coupleurs sur chacun des canaux. Preferably, one output of the tunable high-frequency signal generator is connected to a port of the common source switch, the other ports of the source switch being connected to the main line ports of the couplers on each of the channels.
Préférablement, le système multicanal utilise au moins un circuit de traitement de signaux numérique pour chaque canal. Preferably, the multi-channel system uses at least one digital signal processing circuit for each channel.
Préférablement, ce qui constitue un autre avantage, dans le système multicanal, un circuit de traitement de signaux numérique commun est utilisé. Preferably, as a further advantage, in the multi-channel system a common digital signal processing circuit is used.
Chacun des canaux se compose d'un générateur des signaux haute fréquence accordable (il peut être commun à plusieurs canaux), d'un coupleur (tout type de coupleur avec n'importe quelle directivité), d'un commutateur de signal, d'un récepteur de signaux haute fréquence et d'un circuit de traitement numérique du signal (celui-ci peut être commun à plusieurs canaux). Le signal provenant du générateur des signaux haute fréquence accordable est envoyé au port de ligne principale du coupleur, qui sélectionne celui allant au commutateur de signal (connecté au deuxième port de la ligne principale du coupleur) et celui allant au récepteur des signaux haute fréquence (connecté au
Figure imgf000006_0001
port découplé du coupleur). Le commutateur de signal peut se trouver dans deux positions. Dans la première position (voir la figure n°l), un signal du générateur des signaux haute fréquence accordable frappe l'objet mesuré et en est partiellement dévié. Le signal réfléchi passe par un sélecteur des signaux et retourne au coupleur, qui transfère une partie de signal réfléchi à l'entrée du récepteur des signaux haute fréquence. Dans une telle situation, le récepteur des signaux haute fréquence reçoit un signal qui est la somme d'une partie de signal du générateur des signaux haute fréquence accordable et d’une partie de signal réfléchi par l'objet mesuré (onde de retour). Le commutateur de signal peut également être réglé sur une position de charge adaptée. Dans une telle situation, il n'y a pas de réflexion et seule une partie de signal de sortie du générateur des signaux haute fréquence accordable est envoyée au récepteur des signaux haute fréquence. Le circuit de traitement des signaux numérique est utilisé pour analyser les données du récepteur des signaux haute fréquence. Il est également responsable du contrôle de l'état du commutateur de signal et d’un réglage des paramètres du générateur des signaux haute fréquence accordable, tels que la fréquence et la puissance de sortie.
Each of the channels consists of a tunable high-frequency signal generator (it can be common to several channels), a coupler (any type of coupler with any directivity), a signal switch, a a high-frequency signal receiver and a digital signal processing circuit (this may be common to several channels). The signal from the tunable high-frequency signal generator is sent to the coupler mainline port, which selects which goes to the signal switch (connected to the second coupler mainline port) and which goes to the high-frequency signal receiver ( connected to
Figure imgf000006_0001
port decoupled from the coupler). The signal switch can be in two positions. In the first position (see Figure 1), a signal from the tunable high-frequency signal generator strikes the measured object and is partially deflected therefrom. The reflected signal passes through a signal selector and returns to the coupler, which transfers a portion of the reflected signal to the input of the high frequency signal receiver. In such a situation, the receiver of the high-frequency signals receives a signal which is the sum of a part of the signal from the tunable high-frequency signal generator and a part of the signal reflected by the measured object (return wave). The signal switch can also be set to a suitable load position. In such a situation, there is no reflection and only a part of the output signal from the tunable high-frequency signal generator is sent to the high-frequency signal receiver. The digital signal processing circuit is used to analyze the receiver data from the high frequency signals. It is also responsible for monitoring the state of the signal switch and for setting parameters of the tunable high-frequency signal generator, such as frequency and output power.
Dans le cas des systèmes multicanaux, les facteurs d'appariement sont mesurés pour chaque port de l'objet mesuré et la transmission entre chacun des deux ports. Pour cela, il est necessaire de faire plus de mesures. En même temps, le générateur de signaux haute fréquence accordable ne fonctionne que sur un seul canal. Celui-ci sera appelé ci-après un canal actif. Dans le cas d’un système conforme à une revendication 3 (en voir un exemple sur la figure n° 3), le générateur des signaux haute fréquence accordable commun fonctionne tout le temps et le canal actif est sélectionné en changeant la position du commutateur de source. Pour mesurer tous les facteurs d’appariement et de transmission entre toutes les paires des canaux, chaque canal doit fonctionner tour à tour comme actif. Le commutateur de signal dans le canal actif est placé dans la position de l'objet mesuré. De manière similaire au système monocanal
Figure imgf000007_0001
dans une telle position, dans le canal actif le récepteur de signal mesure la somme de l'onde incidente et de fonde réfléchie. Les commutateurs de signaux dans les canaux restants sont également réglés sur l'objet mesuré. Dans une telle situation, fonde de retour (les générateurs des signaux haute fréquence accordables sur ces canaux étant désactivés) est mesurée par les récepteurs dans les canaux restants. À partir de mesures de fonde incidente dans le canal actif et de mesures des ondes de retour dans les canaux restants, il est possible de déterminer la valeur d’une transmission entre le canal actif et chacun des autres canaux. Ensuite, le commutateur de signal dans le canal actif est réglé sur la position de la charge adaptée (la position des commutateurs de signal dans les autres canaux n'a pas d'importance). Dans une telle situation, le récepteur de signaux dans le canal actif ne mesure que fonde incidente. À la base des mesures de fonde incidente ainsi que d’une somme de fonde incidente et de fonde de retour dans le canal actif, il est possible de déterminer le facteur d’appariement pour le port d’un objet auquel le canal actif était connecté. Aussi bien dans le cas d'une solution monocanale que d’une solution multicanale, il est nécessaire d'effectuer des mesures pour chaque fréquence définie par l'utilisateur. Le système présenté peut également servir d'analyseur du spectre ou du générateur des signaux haute fréquence accordable. Lorsque le système se trouve en mode d’analyseur du spectre, le générateur des signaux haute fréquence accordable est désactivé et le sélecteur des signaux est réglé sur l'objet mesuré. Le signal allant au port de l'appareil via le commutateur de signal et le coupleur va au récepteur des signaux haute fréquence, où il est possible de déterminer le spectre d’un signal d'entrée. Dans le cas d'un système multicanal, il est possible d'obtenir un analyseur du spectre multicanal (chaque canal peut fonctionner indépendamment avec des réglages différents).
Figure imgf000008_0001
In the case of multi-channel systems, the matching factors are measured for each port of the measured object and the transmission between each of the two ports. For this, it is necessary to make more measurements. At the same time, the tunable high-frequency signal generator only works on one channel. This will be referred to below as an active channel. In the case of a system according to claim 3 (see an example in Figure 3), the common tunable high-frequency signal generator operates all the time and the active channel is selected by changing the position of the source. To measure all matching and transmission factors between all channel pairs, each channel must operate in turn as active. The signal switch in the active channel is placed in the position of the measured object. Similar to single channel system
Figure imgf000007_0001
in such a position, in the active channel the signal receiver measures the sum of the incident wave and the reflected background. The signal switches in the remaining channels are also set to the measured object. In such a situation, the back ground (with the tunable high frequency signal generators on these channels disabled) is measured by the receivers in the remaining channels. From incident background measurements in the active channel and return wave measurements in the remaining channels, it is possible to determine the value of a transmission between the active channel and each of the other channels. Then the signal switch in the active channel is set to the position of the matched load (the position of the signal switches in the other channels does not matter). In such a situation, the signal receiver in the active channel only measures incident ground. Based on the incoming background measurements as well as a sum of the incoming background and return background in the active channel, it is possible to determine the matching factor for the port of an object to which the active channel was connected . Both in the case of a single-channel solution and a multi-channel solution, it is necessary to perform measurements for each frequency defined by the user. The presented system can also be used as a spectrum analyzer or a tunable high-frequency signal generator. When the system is in spectrum analyzer mode, the tunable high-frequency signal generator is disabled and the signal selector is set to the object being measured. The signal going to the device port through the signal switch and coupler goes to the receiver of high frequency signals, where it is possible to determine the spectrum of an input signal. In the case of a multi-channel system, it is possible to obtain a multi-channel spectrum analyzer (each channel can operate independently with different settings).
Figure imgf000008_0001
Lorsque le système se trouve en mode de générateur des signaux haute fréquence accordable, le sélecteur des signaux est également positionné vers l'objet mesuré. When the system is in tunable high-frequency signal generator mode, the signal selector is also positioned toward the object being measured.
Un signal de sortie du générateur des signaux haute fréquence accordable à travers le coupleur et le commutateur de signal est transmis au port de l’objet. An output signal from the tunable high-frequency signal generator through the coupler and the signal switch is transmitted to the port of the object.
Dans le cas d'un système multicanal (à l'exception toutefois du système avec un générateur des signaux haute fréquence accordable partagé), il est possible d'obtenir un générateur des signaux haute fréquence accordable multicanal (chaque canal pouvant fonctionner indépendamment avec des réglages differents). Il est également possible de travailler en mode mixte, c'est-à-dire que certains canaux peuvent fonctionner en tant qu'analyseur vectoriel du réseau, certains en tant qu'analyseur du spectre et d'autres en tant que générateur des signaux haute fréquence accordable. In the case of a multi-channel system (except for the system with a shared tunable high-frequency signal generator), it is possible to obtain a multi-channel tunable high-frequency signal generator (each channel can operate independently with settings different). It is also possible to work in mixed mode, i.e. some channels can work as a network vector analyzer, some as a spectrum analyzer and others as a high signal generator. tunable frequency.
La solution proposée au moyen de cette invention a pour but de simplifier les mesures vectorielles des signaux haute fréquence, notamment les mesures permettant d’établir une matrice de dispersion. À l’aide de ce système on doit pouvoir déterminer fonde incidente et fonde réfléchie ce qui rend possible ensuite de définir les paramètres de l'appareil soumis à mesure (Device under test, DUT en anglais). The solution proposed by means of this invention aims to simplify the vector measurements of high frequency signals, in particular the measurements making it possible to establish a dispersion matrix. Using this system, it must be possible to determine the incident ground and the reflected ground, which then makes it possible to define the parameters of the device under test (Device under test, DUT in English).
La solution proposée dans cette invention nécessite l'utilisation d'un seul récepteur. Ainsi réduit-on considérablement le coût de la construction du système. The solution proposed in this invention requires the use of a single receiver. This considerably reduces the cost of building the system.
Selon l’inventeur, son avantage consiste en ce que grâce à l'utilisation d'un seul récepteur, le système résiste aux erreurs résultant des différences entre les canaux et des déphasages entre eux. According to the inventor, its advantage consists in that thanks to the use of a single receiver, the system is resistant to errors resulting from the differences between the channels and the phase shifts between them.
La synchronisation des fréquences entre le générateur des signaux haute fréquence accordable et le récepteur n’est plus requise, ce qui simplifie le système davantage.
Figure imgf000009_0001
Frequency synchronization between the tunable high-frequency signal generator and the receiver is no longer required, further simplifying the system.
Figure imgf000009_0001
La solution proposée permet l'utilisation d'un seul récepteur des signaux haute fréquence par canal;la mesure d’une matrice de dispersion complète sans avoir besoin de changer les connexions dans le système de mesures est toujours faisable. The proposed solution allows the use of only one receiver of the high frequency signals per channel; the measurement of a complete dispersion matrix without the need to change the connections in the measurement system is always feasible.
Un schéma du système monocanal conforme à cette invention est présenté sur la figure n°2 et n°3. Les figures n°2 et n°3 montrent des exemples de configurations pour un système à deux canaux. Dans une solution présentée sur la figure 3, le générateur des signaux haute fréquence accordable est partagé entre les canaux à l’aide d'un commutateur supplémentaire. Cette solution entraîne une réduction encore plus considérable des coûts du système présenté. L’exemple de schéma d’un système à 8 canaux est montré sur la figure n°4. Des variantes avec un nombre différent de canaux peuvent être obtenues en dupliquant la solution à un ou à deux canaux. Les figures n°5 et n°6 en montrent l'état de la technique. A diagram of the single-channel system in accordance with this invention is presented in figure n°2 and n°3. Figures 2 and 3 show example configurations for a two-channel system. In a solution shown in Figure 3, the tunable high-frequency signal generator is shared between the channels using an additional switch. This solution leads to an even more considerable reduction in the costs of the system presented. The example schematic of an 8-channel system is shown in Figure 4. Variants with a different number of channels can be obtained by duplicating the one- or two-channel solution. Figures 5 and 6 show the state of the art.
Le système peut posséder plus d'un canal de mesure. Dans les solutions multicanales, il est possible de mesurer l'ajustement de chaque port de l'objet mesuré et de déterminer la transmission entre tous les ports mesurés. Les figures n°2 et n°4 montrent des exemples de configurations pour un système à deux et à huit canaux. Des variantes avec un nombre différent de canaux sont obtenues en dupliquant la solution à un ou à deux canaux. Pour les solutions multicanales, il est possible de partager le générateur des signaux haute fréquence accordable comme dans un exemple présenté sur le dessin n°3. Dans une telle situation, un générateur des signaux haute fréquence accordable est utilisé, dont la sortie est connectée à un port commun du commutateur de source. Les autres ports du commutateur de source sont connectés aux ports de la ligne principale des coupleurs sur chaque canal.
Figure imgf000010_0001
The system can have more than one measurement channel. In multi-channel solutions, it is possible to measure the adjustment of each port of the measured object and to determine the transmission between all measured ports. Figures 2 and 4 show sample configurations for a two- and eight-channel system. Variants with a different number of channels are obtained by duplicating the one- or two-channel solution. For multi-channel solutions, it is possible to share the tunable high frequency signal generator as in an example shown in drawing n°3. In such a situation, a tunable high-frequency signal generator is used, the output of which is connected to a common port of the source switch. The other source switch ports are connected to the trunk line ports of the splitters on each channel.
Figure imgf000010_0001
Dans le cas d'un système monocanal, seules des mesures d’une réflectance ainsi que d’une matrice de dispersion monoélément sont possibles. Pour y parvenir, il faut opérer deux mesures (pour chaque fréquence). Afin d’effectuer la première mesure, le commutateur de signal doit être réglé sur l'objet mesuré. Ici, une somme de signaux provenant du générateur des signaux haute fréquence accordable (onde incidente) et réfléchis par l'appareil (onde de retour) est mesurée. Pour ce qui est de la deuxième mesure, le commutateur de signal est réglé sur une position de la charge adaptée. Dans cette situation, seul le signal de sortie du générateur des signaux haute fréquence accordable (onde incidente) est mesuré. Connaissant les valeurs d’une phase et d’une amplitude de fonde incidente ainsi que d’une somme de fonde incidente et de fonde de retour, il est possible de calculer une valeur de l'amplitude et de la phase de fonde de retour et le rapport des deux ondes, c'est-à-dire un coefficient de réflectance. In the case of a single-channel system, only measurements of a reflectance as well as a single-element dispersion matrix are possible. To achieve this, two measurements must be made (for each frequency). In order to perform the first measurement, the signal switch must be set to the measured object. Here, a sum of signals from the tunable high-frequency signal generator (incident wave) and reflected by the device (return wave) is measured. For the second measurement, the signal switch is set to a suitable load position. In this situation, only the output signal of the tunable high-frequency signal generator (incident wave) is measured. Knowing the values of a phase and an amplitude of the incident background as well as of a sum of the incident background and of the return background, it is possible to calculate a value of the amplitude and of the phase of the return background and the ratio of the two waves, i.e. a reflectance coefficient.
Exemple n°l Example #1
La sortie du générateur haute fréquence accordable 1 est connectée à un port de la ligne principale du coupleur 2. Le deuxième port de la ligne principale du coupleur 2 est connecté à un port commun du commutateur de signal 3. Le commutateur de signal 3 possède deux autres ports en plus du port commun. Le premier port est connecté au port de sortie 4 de l'appareil auquel l'objet mesuré 5 est à son tour connecté. Le deuxième port du commutateur de signal 3 est connecté à la charge adaptée 6. Le port découplé du coupleur 2 est connecté à un récepteur des signaux haute fréquence 7, qui convertit les données de la forme analogique en forme numérique et les envoie au système de traitement des signaux numérique 8. Le système de traitement des signaux numérique 8, en plus du traitement des données, est également responsable de l'accord du générateur de fréquence et de la commande du commutateur de signal.
Figure imgf000011_0001
The output of tunable high-frequency generator 1 is connected to one port of the main line of coupler 2. The second port of the main line of coupler 2 is connected to a common port of signal switch 3. Signal switch 3 has two other ports in addition to the common port. The first port is connected to the output port 4 of the device to which the measured object 5 is in turn connected. The second port of the signal switch 3 is connected to the matched load 6. The decoupled port of the coupler 2 is connected to a receiver of the high frequency signals 7, which converts the data from analog form to digital form and sends it to the system of digital signal processing 8. The digital signal processing system 8, in addition to data processing, is also responsible for tuning the frequency generator and controlling the signal switch.
Figure imgf000011_0001
Exemple n°2 Example 2
Le système se compose de deux canaux identiques et d’un système de traitement des signaux numériques 8. Chacun des canaux contient : un générateur haute fréquence accordable 1, un coupleur 2, un sélecteur des signaux 3, une charge adaptée 6 et un récepteur des signaux haute fréquence 7. Une connextion des éléments dans chacun des canaux est comme suit: la sortie du générateur des signaux haute fréquence accordable 1 est connectée au port de la ligne principale du coupleur 2; le deuxième port de la ligne principale du coupleur 2 est connecté au port commun du commutateur de signal 3. Le commutateur de signal 3 est doté de deux autres ports en plus du port commun. L'un est connecté au port de sortie de l'appareil auquel l'objet mesuré 5 est connecté. Le deuxième port du commutateur de signal 3 est connecté à la charge adaptée 6. Le port découplé du coupleur 2 est connecté à un récepteur des signaux haute fréquence 7 qui convertit les données de la forme analogique en forme numérique. Les données des deux récepteurs des signaux haute fréquence 7 (les deux canaux) sont envoyées au système de traitement des signaux numérique 8. Le système de traitement des signaux numérique 8, en plus du traitement des données, est également responsable d’une commande des commutateurs de signal et d’une modification des réglages des générateurs des signaux haute fréquence accordables 1. The system consists of two identical channels and a digital signal processing system 8. Each of the channels contains: a tunable high frequency generator 1, a coupler 2, a signal selector 3, a matched load 6 and a receiver of the high frequency signals 7. A connection of the elements in each of the channels is as follows: the output of the tunable high frequency signal generator 1 is connected to the main line port of the coupler 2; the second port of the trunk line of coupler 2 is connected to the common port of signal switch 3. Signal switch 3 has two other ports in addition to the common port. One is connected to the output port of the device to which the measured object 5 is connected. The second port of signal switch 3 is connected to matched load 6. The decoupled port of coupler 2 is connected to a high frequency signal receiver 7 which converts the data from analog to digital form. The data from the two receivers of the high-frequency signals 7 (both channels) are sent to the digital signal processing system 8. The digital signal processing system 8, in addition to data processing, is also responsible for a control of the signal switches and a modification of the settings of the tunable high-frequency signal generators 1.
Exemple n°3 Example #3
Le système se compose d'un générateur haute fréquence accordable 1, d'un commutateur de source des signaux 9, de deux canaux identiques et d'un système de traitement numérique 8. Le générateur haute fréquence accordable 1 est connecté au port du commutateur commun de source 3. Outre le port partagé, le commutateur de source 3 possède deux autres ports. Dans chacun des canaux il y a : un coupleur 2, un commutateur de signal 3, une charge adaptée 6 et un récepteur des signaux haute fréquence 7. La
Figure imgf000012_0001
connextion des éléments dans chacun des canaux est comme suit: le premier port de la linge principale du coupleur 2 est connecté à un port de commutateur de source (chaque canal à un port différent). Le deuxième port de la ligne principale du coupleur 2 est connecté au port commun du commutateur de signal 3. Le commutateur de signal 3 a deux autres ports en plus du port commun. L'un d’eux est connecté au port de sortie 4 de l'appareil auquel l’objet mesuré 5 est connecté. Le deuxième port du commutateur de signal 3 est connecté à la charge adaptée 6. Le port découplé du coupleur 2 est connecté à un récepteur des signaux haute fréquence 7 qui convertit les données de la forme analogique en forme numérique. Les données des deux récepteurs de signaux haute fréquence 7 (des deux canaux) sont envoyées au système de traitement des signaux numérique 8. Le système de traitement des signaux numérique 8, en plus du traitement des données, est également responsable d’une commande des commutateurs de signal 3 et du commutateur de source des signaux 9 ainsi que d’une modification des réglages du générateur haute fréquence accordable 1.
The system consists of a tunable high frequency generator 1, a signal source switch 9, two identical channels and a digital processing system 8. The tunable high frequency generator 1 is connected to the port of the common switch source 3 switch. In addition to the shared port, the source 3 switch has two other ports. In each of the channels there is: a coupler 2, a signal switch 3, a matched load 6 and a receiver of the high frequency signals 7. The
Figure imgf000012_0001
The connection of the elements in each of the channels is as follows: the first port of the main line of coupler 2 is connected to a source switch port (each channel to a different port). The second trunk line port of coupler 2 is connected to the common port of signal switch 3. Signal switch 3 has two other ports in addition to the common port. One of them is connected to the output port 4 of the device to which the measured object 5 is connected. The second port of signal switch 3 is connected to matched load 6. The decoupled port of coupler 2 is connected to a high frequency signal receiver 7 which converts the data from analog to digital form. The data from the two high-frequency signal receivers 7 (of both channels) is sent to the digital signal processing system 8. The digital signal processing system 8, in addition to data processing, is also responsible for a control of the signal switches 3 and the signal source switch 9 as well as a modification of the settings of the tunable high frequency generator 1.
Exemple n°4 Example #4
Le système se compose de huit canaux identiques et d'un système de traitement des signaux numérique 8. Chacun des canaux comprend : un générateur des signaux haute fréquence accordable 1, un coupleur 2, un sélecteur des signaux 3, une charge adaptée 6 et un récepteur des signaux haute fréquence 7. La connexion des éléments sur chaque canal est la suivante : la sortie du générateur des signaux haute fréquence accordable 1 est connectée au port de la ligne principale du coupleur 2. Le deuxième port de la ligne principale du coupleur 2 est connecté au port commun du commutateur de signal 3. Le commutateur de signal 3 a deux autres ports en plus du port commun. L'un est connecté au port de sortie 4 de l'appareil
Figure imgf000013_0001
auquel est connecté l'objet mesuré 5. L'autre port du commutateur de signal 3 est connecté à la charge adaptée 6. Le port découplé du coupleur 2 est connecté à un récepteur des signaux haute fréquence 7 qui convertit les données de la forme analogique en forme numérique. Les données de huit récepteurs des signaux haute fréquence (à partir de huit canaux) sont envoyées au système de traitement des signaux numérique 8. Le système de traitement des signaux numérique 8, en plus du traitement des données, est également chargé de contrôler les commutateurs de signal 3 et de modifier les paramètres des générateurs des signaux haute fréquence accordables 1.
The system consists of eight identical channels and a digital signal processing system 8. Each of the channels comprises: a tunable high-frequency signal generator 1, a coupler 2, a signal selector 3, a matched load 6 and a receiver of high-frequency signals 7. The connection of the elements on each channel is as follows: the output of the tunable high-frequency signal generator 1 is connected to the port of the main line of coupler 2. The second port of the main line of coupler 2 is connected to the common port of signal switch 3. Signal switch 3 has two other ports in addition to the common port. One is connected to output port 4 of the device
Figure imgf000013_0001
to which the measured object 5 is connected. The other port of the signal switch 3 is connected to the matched load 6. The decoupled port of the coupler 2 is connected to a receiver of the high frequency signals 7 which converts the data from analog form in digital form. Data from eight receivers of high-frequency signals (from eight channels) is sent to the digital signal processing system 8. The digital signal processing system 8, in addition to data processing, is also responsible for controlling the switches signal 3 and modify the parameters of the tunable high-frequency signal generators 1.
La solution présentée peut comprendre un nombre quelconque de canaux, mais en pratique, des solutions avec un maximum de huit canaux seront principalement utilisées. The presented solution can consist of any number of channels, but in practice solutions with a maximum of eight channels will mainly be used.
Le nombre de canaux nécessaire pour déterminer la matrice S complète d'un objet donné dépend d’un nombre de ses entrées et sorties. Les exemples des éléments dont les paramètres peuvent être déterminés à l'aide d'un nombre donné de canaux sont présentés ci-dessous: The number of channels needed to determine the complete S-matrix of a given object depends on a number of its inputs and outputs. Examples of elements whose parameters can be determined using a given number of channels are shown below:
1 canal: antennes, charges; 1 channel: antennas, loads;
2 canaux: fils, lignes de transmission, amplificateurs de puissance, filtres, atténuateurs; 2 channels: wires, transmission lines, power amplifiers, filters, attenuators;
3 canaux: diviseurs de puissance, coupleurs, mélangeurs, circulateurs; 3 channels: power dividers, couplers, mixers, circulators;
4 canaux: diviseurs de puissance, coupleurs directionnels. 4 channels: power dividers, directional couplers.
Ceci n’est que quelques exemples du mode d'utilisation. Pour des éléments plus complexes, tels des réseaux d'antennes par exemple, un nombre de canaux plus élevé peut être requis. These are just a few examples of how to use it. For more complex elements, such as antenna arrays for example, a higher number of channels may be required.

Claims

Figure imgf000014_0001
Figure imgf000014_0001
REVENDICATIONS e système de mesures vectorielles monocanal ou multicanal avec un seul récepteur par canal qui comprend un générateur des signaux haute fréquence accordable, un coupleur ainsi qu’un récepteur des signaux haute fréquence, caractérisé en ce qu’une sortie du générateur des signaux haute fréquence accordable (1) est connectée à une ligne principale du coupleur (2) mais il est à noter que le deuxième port de la ligne principale du coupleur (2) est connecté à un port commun du commutateur de signal (3) qui reste à son tour connecté par un port à un objet mesuré (5) et par l'autre à la charge adaptée (6) tandis qu’un port découplé du coupleur (2) est connecté à un récepteur de signaux haute fréquence (7). e système selon la revendication 1, caractérisé en ce que dans le système multicanal, un générateur des signaux haute fréquence accordable (1) séparé est utilisé pour chaque canal. e système selon la revendication 1, caractérisé en ce que dans le système multicanal, un générateur des signaux haute fréquence accordable (1) commun est utilisé pour plusieurs canaux. e système selon la revendication 3, caractérisé en ce qu’une sortie du générateur des signaux haute fréquence accordable (1) est connectée à un port du commutateur de source commun, les autres ports du commutateur de source étant connectés aux ports de la ligne principale des coupleurs sur chacun des canaux. e système selon la revendication 1 ou 2 ou 3 ou 4, caractérisé en ce que le système multicanal utilise au moins un circuit de traitement de signaux numérique (8) pour chaque canal.
Figure imgf000015_0001
e système selon la revendication 1 ou 2 ou 3 ou 4, caractérisé en ce que dans le système multicanal, un circuit de traitement de signaux numérique (8) commun est utilisé.
a single-channel or multi-channel vector measurement system with a single receiver per channel which comprises a tunable high-frequency signal generator, a coupler and a high-frequency signal receiver, characterized in that an output of the high-frequency signal generator tunable (1) is connected to a main line of the coupler (2) but it should be noted that the second port of the main line of the coupler (2) is connected to a common port of the signal switch (3) which remains at its tower connected by one port to a measured object (5) and by the other to the adapted load (6) while a decoupled port of the coupler (2) is connected to a receiver of high frequency signals (7). System according to claim 1, characterized in that in the multi-channel system a separate tunable high-frequency signal generator (1) is used for each channel. System according to Claim 1, characterized in that in the multi-channel system a common tunable high-frequency signal generator (1) is used for several channels. e system according to claim 3, characterized in that an output of the tunable high-frequency signal generator (1) is connected to a port of the common source switch, the other ports of the source switch being connected to the ports of the main line couplers on each of the channels. e system according to claim 1 or 2 or 3 or 4, characterized in that the multichannel system uses at least one digital signal processing circuit (8) for each channel.
Figure imgf000015_0001
System according to Claim 1 or 2 or 3 or 4, characterized in that in the multi-channel system a common digital signal processing circuit (8) is used.
PCT/PL2021/000074 2020-10-07 2021-10-06 Single-channel or multi-channel vector measurement system with a single receiver per channel WO2022075869A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PL435618A PL241376B1 (en) 2020-10-07 2020-10-07 Single- or multi-channel system for vector measurements of high-frequency systems with a single receiver per channel
PLP.435618 2020-10-07

Publications (1)

Publication Number Publication Date
WO2022075869A1 true WO2022075869A1 (en) 2022-04-14

Family

ID=81076636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/PL2021/000074 WO2022075869A1 (en) 2020-10-07 2021-10-06 Single-channel or multi-channel vector measurement system with a single receiver per channel

Country Status (2)

Country Link
PL (1) PL241376B1 (en)
WO (1) WO2022075869A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6836743B1 (en) * 2002-10-15 2004-12-28 Agilent Technologies, Inc. Compensating for unequal load and source match in vector network analyzer calibration
US7161358B1 (en) * 2006-03-13 2007-01-09 Agilent Technologies, Inc. Impedance analyzer
EP1752777A1 (en) * 2004-05-14 2007-02-14 Matsushita Electric Industries Co., Ltd. Method and apparatus for measuring electric circuit parameter
US20170111127A1 (en) * 2015-10-14 2017-04-20 Keysight Technologies, Inc. Hybrid multimode network analyzer
US20200103458A1 (en) * 2018-09-29 2020-04-02 Keysight Technologies, Inc. Integrated vector network analyzer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6836743B1 (en) * 2002-10-15 2004-12-28 Agilent Technologies, Inc. Compensating for unequal load and source match in vector network analyzer calibration
EP1752777A1 (en) * 2004-05-14 2007-02-14 Matsushita Electric Industries Co., Ltd. Method and apparatus for measuring electric circuit parameter
US7161358B1 (en) * 2006-03-13 2007-01-09 Agilent Technologies, Inc. Impedance analyzer
US20170111127A1 (en) * 2015-10-14 2017-04-20 Keysight Technologies, Inc. Hybrid multimode network analyzer
US20200103458A1 (en) * 2018-09-29 2020-04-02 Keysight Technologies, Inc. Integrated vector network analyzer

Also Published As

Publication number Publication date
PL241376B1 (en) 2022-09-19
PL435618A1 (en) 2022-04-11

Similar Documents

Publication Publication Date Title
US6970000B2 (en) Measuring device, in particular vectorial network analyzer, with separate oscillators
CN115128734B (en) Silicon optical chip and laser radar based on same
EP3565113B1 (en) Multi channel self-test for rf devices
JPH11352163A (en) Calibration method of network analyzer
CN101915909A (en) Implementing method for calibrating amplitude and phase of system receiving channel
CN108594013A (en) A kind of broadband instantaneous frequency measurement system directly adopted based on radio frequency
JP4426067B2 (en) Vector network analyzer
US20100271150A1 (en) Loop-type directional coupler
CN113138371B (en) Broadband near field measurement system and method for amplitude phase rapid calibration of radio frequency link
US6347382B1 (en) Multi-port device analysis apparatus and method
GB2196745A (en) Six-port reflectometer
FR2799310A1 (en) METHOD FOR CALIBRATING A COLLECTIVE ANTENNA
WO2022075869A1 (en) Single-channel or multi-channel vector measurement system with a single receiver per channel
CN107918073B (en) multichannel measuring method for vector network analyzer
US7772827B2 (en) Measuring device, in particular, a vectorial network analyzer with phase regulation
US11933848B2 (en) Measurement system for characterizing a device under test
GB2195454A (en) Microwave network analyser
US6750973B2 (en) Test structure for simultaneously characterizing two ports of an optical component using interferometer-based optical network analysis
RU56652U1 (en) RADAR SIGNAL DETECTION SYSTEM
CN115327225A (en) Full-optical microwave photon vector network analysis device and microwave device scattering parameter measurement method
GB2185582A (en) Reflectometers
Chen et al. A Ka band multi-channel integrated receiver for passive millimeter wave imaging system
US6788395B2 (en) Coherent analyzer for multi-port optical networks
EP0153478A1 (en) Signal separation circuit for a radio frequency (RF) network analyzer
CN113347054B (en) Terahertz single-port space network reflection coefficient measuring device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21878093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21878093

Country of ref document: EP

Kind code of ref document: A1