WO2022075498A1 - Method by which terminal displays authenticity of network on basis of selection input of user in wireless communication system, and apparatus therefor - Google Patents

Method by which terminal displays authenticity of network on basis of selection input of user in wireless communication system, and apparatus therefor Download PDF

Info

Publication number
WO2022075498A1
WO2022075498A1 PCT/KR2020/013605 KR2020013605W WO2022075498A1 WO 2022075498 A1 WO2022075498 A1 WO 2022075498A1 KR 2020013605 W KR2020013605 W KR 2020013605W WO 2022075498 A1 WO2022075498 A1 WO 2022075498A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
information
rlos
3gpp
user
Prior art date
Application number
PCT/KR2020/013605
Other languages
French (fr)
Korean (ko)
Inventor
김준웅
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2020/013605 priority Critical patent/WO2022075498A1/en
Publication of WO2022075498A1 publication Critical patent/WO2022075498A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/12Detection or prevention of fraud

Definitions

  • the present specification provides a method and an apparatus therefor in which a terminal receives a user's selection input in a wireless communication system and determines whether a network is authentic or not based on the received user's selection input.
  • a wireless communication system is a multiple access system that can support communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • Examples of the multiple access system include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, and a single carrier frequency (SC-FDMA) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency
  • M2M machine-to-machine
  • Various devices and technologies such as smartphones and tablet PCs, which require machine-to-machine (M2M) communication and high data transfer rates, are emerging and disseminated. Accordingly, the amount of data required to be processed in a cellular network is increasing very rapidly.
  • carrier aggregation technology, cognitive radio technology, etc. to efficiently use more frequency bands, increase the data capacity transmitted within a limited frequency.
  • multi-antenna technology, multi-base station cooperation technology, etc. are developing.
  • a mobile communication service provider may provide a predetermined voice or data service limitedly without a normal procedure for authenticating a subscriber or UE (3GPP UE authentication procedure) for the convenience of customers in special situations or according to local regulations.
  • RLOS Remote Local Operator Services
  • the 3GPP network permits and processes the network registration or service request procedure without performing the normal authentication procedure for UE subscription, the 3GPP network requires limited services (eg, USIM or the terminal in which the USIM is stored. If there is, it can limit the unreasonable abuse of network resources by providing only a service that connects only to the operator's customer center (restrictions on connection time or data speed or amount, restrictions on the range or service that can be connected, etc.). However, in this case, from the perspective of the UE or the user of the UE, the user's personal information or sensitive information may be transmitted through voice or data connection without the UE going through the network authentication procedure performed in the normal 3GPP UE authentication procedure. there is a risk
  • the 3GPP system authentication procedure that the UE can safely check whether the 3GPP communication network to which the UE is connected is a subscribed home network or another network that has a roaming agreement with the home network is omitted in the RLOS, a malicious fake base station or network Measures must be taken to prevent it from being misused.
  • certain services protect data communication through TLS and the UE verifies the server certificate of the server to prevent leakage of user data to the 3GPP Access Network or Core network in the middle. In the case of a server or voice call, a separate protection method is required.
  • the purpose of the present specification is to propose a method for securing security before sending data to the Serving Network that has been accessed/registered from the RLOS from the terminal point of view.
  • an object of the present specification is to propose a method for determining the authenticity of a 3GPP Network (Serving Network) that provides a RLOS service.
  • 3GPP Network Serving Network
  • a Restricted Local Operator Services (RLOS) connection procedure to the network performing a; transmitting an authentication request including connection state information between the UE and the network to a server in which information related to a user account of the UE is stored; receiving an authentication response including authentication information for the network generated by the server based on the connection state information from the server; presenting the RLOS security question through a display; obtaining an answer to the RLOS security question from a user via the display; and determining whether the network is authentic or not based on the answer and the authentication information.
  • RLOS Restricted Local Operator Services
  • the authentication information may be generated based on a result of comparing the first location information of the UE obtained from the network and the second location information of the UE included in the connection state information.
  • connection state information includes at least one of an ID of the network, an ID of the UE, the user account ID, location information of the UE, time information at which the connection procedure is performed, and first random number information.
  • the authentication request may be encrypted by the UE with a public key obtained in advance from the server, and the authentication response may be decrypted by the server with a private key corresponding to the public key.
  • the authentication request includes a preset question
  • the step of determining whether the authenticity is authenticity may include determining the authenticity of the network based on whether an answer included in the authentication response matches the preset question can be characterized as
  • the authenticity of the network is determined based on a result of comparing the answer with the previously stored authentication answer.
  • the method may further include displaying the authentication answer on the display.
  • the method may further include displaying a screen indicating a RLOS security server connection process through the display.
  • the method may further include displaying an answer to the RLOS security question through the display.
  • FIG 1 shows an AI device according to an embodiment of the present specification.
  • FIG 2 shows an AI server according to an embodiment of the present specification.
  • FIG 3 shows an AI system according to an embodiment of the present specification.
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • E-UTRAN evolved universal terrestrial radio access network
  • FIG. 6 is a diagram illustrating an architecture of a general NR-RAN.
  • FIG. 8 shows a registration procedure for a roaming user without a roaming contract with a RLOS IMS home network applied herein.
  • FIG. 10 shows a wireless communication device according to an embodiment of the present invention.
  • FIG. 11 illustrates a block diagram of a network node according to an embodiment of the present invention.
  • FIG. 12 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • FIG. 13 is an exemplary diagram showing the structure of a radio interface protocol (Radio Interface Protocol) in the control plane between the UE and the eNodeB.
  • Radio Interface Protocol Radio Interface Protocol
  • FIG. 14 illustrates a 3GPP network confirmation procedure for a RLOS service of a UE according to an embodiment of the present specification.
  • FIG. 15 illustrates a case in which a procedure for confirming a 3GPP network through the first uplink data is performed before RLOS connection establishment is completed.
  • FIG. 16 shows an example of a case in which the procedure of FIG. 15 is performed through an IMS service.
  • FIG. 17 illustrates a procedure for confirming the 3GPP Network and Security Server for the RLOS service of the UE according to the present specification.
  • 19 shows a 3GPP network verification procedure screen through a RLOS secure server connection according to the present specification.
  • 21 shows a screen in which the user directly confirms such an answer.
  • 24 is a flowchart illustrating a method for a UE to indicate whether a network is authentic or not based on a user's selection input according to an embodiment of the present specification.
  • Embodiments of the present specification may be supported by standard documents disclosed in at least one of the IEEE 802.xx system, the 3GPP system, the 3GPP LTE system, and the 3GPP2 system, which are wireless access systems. That is, obvious steps or parts not described in the embodiments of the present specification may be described with reference to the above documents.
  • 3GPP TS 36.211, 3GPP TS 36.213, 3GPP TS 36.321, 3GPP TS 36.322, 3GPP TS 36.323, 3GPP TS 36.331, 3GPP TS 23.203, 3GPP TS 23.401, 3GPP TS 24.228, 3GPP TS 23.228, 3GPP TS 23.228 , 3GPP TS 23.218, 3GPP TS 22.011, 3GPP TS 36.413 may be incorporated by one or more of the standard documents.
  • the base station has a meaning as a terminal node of a network that directly communicates with the terminal.
  • a specific operation described as being performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including the base station may be performed by the base station or other network nodes other than the base station.
  • BS Base Station
  • BS Base Station
  • BS Base Station
  • eNB evolved-NodeB
  • BTS base transceiver system
  • AP Access Point
  • gNB General NB
  • 'terminal' may be fixed or have mobility, and UE (User Equipment), MS (Mobile Station), UT (user terminal), MSS (Mobile Subscriber Station), SS (Subscriber Station), AMS ( Advanced Mobile Station), a wireless terminal (WT), a machine-type communication (MTC) device, a machine-to-machine (M2M) device, a device-to-device (D2D) device, and the like.
  • UE User Equipment
  • MS Mobile Station
  • UT user terminal
  • MSS Mobile Subscriber Station
  • SS Subscriber Station
  • AMS Advanced Mobile Station
  • WT wireless terminal
  • MTC machine-type communication
  • M2M machine-to-machine
  • D2D device-to-device
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • the transmitter may be a part of the base station, and the receiver may be a part of the terminal.
  • the transmitter may be a part of the terminal, and the receiver may be a part of the base station.
  • 3GPP LTE/LTE-A/NR New Radio
  • the three main requirements areas for 5G are (1) Enhanced Mobile Broadband (eMBB) area, (2) Massive Machine Type Communication (mMTC) area and (3) Ultra-reliable and It includes an Ultra-reliable and Low Latency Communications (URLLC) area.
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • URLLC Ultra-reliable and Low Latency Communications
  • KPI key performance indicator
  • eMBB goes far beyond basic mobile Internet access, covering rich interactive work, media and entertainment applications in the cloud or augmented reality.
  • Data is one of the key drivers of 5G, and for the first time in the 5G era, we may not see dedicated voice services.
  • voice is simply expected to be processed as an application using the data connection provided by the communication system.
  • the main causes for increased traffic volume are an increase in content size and an increase in the number of applications requiring high data rates.
  • Streaming services audio and video
  • interactive video and mobile Internet connections will become more widely used as more devices connect to the Internet. Many of these applications require always-on connectivity to push real-time information and notifications to users.
  • Cloud storage and applications are rapidly increasing in mobile communication platforms, which can be applied to both work and entertainment.
  • cloud storage is a special use case that drives the growth of uplink data rates.
  • 5G is also used for remote work in the cloud, requiring much lower end-to-end latency to maintain a good user experience when tactile interfaces are used.
  • Entertainment For example, cloud gaming and video streaming are other key factors that increase the demand for mobile broadband capabilities. Entertainment is essential on smartphones and tablets anywhere, including in high-mobility environments such as trains, cars and airplanes.
  • Another use example is augmented reality for entertainment and information retrieval.
  • augmented reality requires very low latency and instantaneous amount of data.
  • URLLC includes new services that will transform industries through ultra-reliable/low-latency links that allow for remote control of critical infrastructure and self-driving vehicles, such as self-driving vehicles. This level of reliability and latency is essential for smart grid control, industrial automation, robotics, and drone control and coordination.
  • 5G could complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means of delivering streams rated from hundreds of megabits per second to gigabits per second. This high speed is required to deliver TVs in resolutions of 4K and higher (6K, 8K and higher), as well as virtual and augmented reality.
  • Virtual Reality (VR) and Augmented Reality (AR) applications almost include immersive sporting events. Certain applications may require special network settings. For VR games, for example, game companies may need to integrate core servers with network operators' edge network servers to minimize latency.
  • Automotive is expected to be an important new driving force for 5G with many use cases for mobile communication to vehicles. For example, entertainment for passengers requires simultaneous high capacity and high mobility mobile broadband. The reason is that future users continue to expect high-quality connections regardless of their location and speed.
  • Another use case in the automotive sector is augmented reality dashboards. It identifies objects in the dark and overlays information that tells the driver about the distance and movement of the object over what the driver is seeing through the front window.
  • wireless modules will allow for communication between vehicles, the exchange of information between the vehicle and the supporting infrastructure, and the exchange of information between the automobile and other connected devices (eg, devices carried by pedestrians).
  • Safety systems can help drivers lower the risk of accidents by guiding alternative courses of action to help them drive safer.
  • the next step will be remote-controlled or self-driven vehicles.
  • This requires very reliable and very fast communication between different self-driving vehicles and between vehicles and infrastructure.
  • self-driving vehicles will perform all driving activities, allowing drivers to focus only on traffic anomalies that the vehicle itself cannot discern.
  • the technological requirements of self-driving vehicles demand ultra-low latency and ultra-fast reliability to increase traffic safety to unattainable levels for humans.
  • Smart cities and smart homes referred to as smart societies, will be embedded with high-density wireless sensor networks.
  • a distributed network of intelligent sensors will identify conditions for cost and energy-efficient maintenance of a city or house.
  • a similar setup can be performed for each household.
  • Temperature sensors, window and heating controllers, burglar alarms and appliances are all connected wirelessly. Many of these sensors are typically low data rates, low power and low cost. However, for example, real-time HD video may be required in certain types of devices for surveillance.
  • Smart grids use digital information and communication technologies to interconnect these sensors to gather information and act on it. This information can include supplier and consumer behavior, enabling smart grids to improve efficiency, reliability, economics, sustainability of production and distribution of fuels such as electricity in an automated manner.
  • the smart grid can also be viewed as another low-latency sensor network.
  • the health sector has many applications that can benefit from mobile communications.
  • the communication system may support telemedicine providing clinical care from a remote location. This can help reduce barriers to distance and improve access to consistently unavailable health care services in remote rural areas. It is also used to save lives in critical care and emergency situations.
  • a wireless sensor network based on mobile communication may provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
  • Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the tolerance for replacement of cables with reconfigurable wireless links is an attractive opportunity for many industries. Achieving this, however, requires that the wireless connection operate with cable-like delay, reliability and capacity, and that its management be simplified. Low latency and very low error probability are new requirements that need to be connected with 5G.
  • Logistics and freight tracking are important use cases for mobile communications that use location-based information systems to allow tracking of inventory and packages from anywhere.
  • Logistics and freight tracking use cases typically require low data rates but require wide range and reliable location information.
  • Machine learning refers to a field that defines various problems dealt with in the field of artificial intelligence and studies methodologies to solve them. do.
  • Machine learning is also defined as an algorithm that improves the performance of a certain task through constant experience.
  • An artificial neural network is a model used in machine learning, and may refer to an overall model having problem-solving ability, which is composed of artificial neurons (nodes) that form a network by combining synapses.
  • An artificial neural network may be defined by a connection pattern between neurons of different layers, a learning process that updates model parameters, and an activation function that generates an output value.
  • the artificial neural network may include an input layer, an output layer, and optionally one or more hidden layers. Each layer includes one or more neurons, and the artificial neural network may include neurons and synapses connecting neurons. In the artificial neural network, each neuron may output a function value of an activation function for input signals, weights, and biases input through synapses.
  • Model parameters refer to parameters determined through learning, and include the weight of synaptic connections and the bias of neurons.
  • the hyperparameter refers to a parameter that must be set before learning in a machine learning algorithm, and includes a learning rate, the number of iterations, a mini-batch size, an initialization function, and the like.
  • the purpose of learning the artificial neural network can be seen as determining the model parameters that minimize the loss function.
  • the loss function may be used as an index for determining optimal model parameters in the learning process of the artificial neural network.
  • Machine learning can be classified into supervised learning, unsupervised learning, and reinforcement learning according to a learning method.
  • Supervised learning refers to a method of training an artificial neural network in a state where a label for the training data is given, and the label is the correct answer (or result value) that the artificial neural network should infer when the training data is input to the artificial neural network.
  • Unsupervised learning may refer to a method of training an artificial neural network in a state where no labels are given for training data.
  • Reinforcement learning can refer to a learning method in which an agent defined in an environment learns to select an action or sequence of actions that maximizes the cumulative reward in each state.
  • machine learning implemented as a deep neural network (DNN) including a plurality of hidden layers is also called deep learning (deep learning), and deep learning is a part of machine learning.
  • DNN deep neural network
  • deep learning deep learning
  • machine learning is used in a sense including deep learning.
  • a robot can mean a machine that automatically handles or operates a task given by its own capabilities.
  • a robot having a function of recognizing an environment and performing an operation by self-judgment may be referred to as an intelligent robot.
  • Robots can be classified into industrial, medical, home, military, etc. depending on the purpose or field of use.
  • the robot may be provided with a driving unit including an actuator or a motor to perform various physical operations such as moving the robot joints.
  • the moving robot includes a wheel, a brake, a propeller, etc. in the driving unit, and can travel on the ground or fly in the air through the driving unit.
  • Autonomous driving refers to a technology that drives itself, and an autonomous driving vehicle refers to a vehicle that travels without or with minimal manipulation of a user.
  • autonomous driving includes technology for maintaining a driving lane, technology for automatically adjusting speed such as adaptive cruise control, technology for automatically driving along a predetermined route, technology for automatically setting a route when a destination is set, etc. All of these can be included.
  • the vehicle includes a vehicle having only an internal combustion engine, a hybrid vehicle having both an internal combustion engine and an electric motor, and an electric vehicle having only an electric motor, and may include not only automobiles, but also trains, motorcycles, and the like.
  • the autonomous vehicle can be viewed as a robot having an autonomous driving function.
  • the extended reality is a generic term for virtual reality (VR), augmented reality (AR), and mixed reality (MR).
  • VR technology provides only CG images of objects or backgrounds in the real world
  • AR technology provides virtual CG images on top of images of real objects
  • MR technology is a computer that mixes and combines virtual objects in the real world. graphic technology.
  • MR technology is similar to AR technology in that it shows both real and virtual objects. However, there is a difference in that in AR technology, a virtual object is used in a form that complements a real object, whereas in MR technology, a virtual object and a real object are used with equal characteristics.
  • HMD Head-Mount Display
  • HUD Head-Up Display
  • mobile phone tablet PC, laptop, desktop, TV, digital signage, etc.
  • FIG 1 shows an AI device 100 according to an embodiment of the present specification.
  • AI device 100 is TV, projector, mobile phone, smart phone, desktop computer, notebook computer, digital broadcasting terminal, PDA (personal digital assistants), PMP (portable multimedia player), navigation, tablet PC, wearable device, set-top box (STB) ), a DMB receiver, a radio, a washing machine, a refrigerator, a desktop computer, a digital signage, a robot, a vehicle, etc., may be implemented as a fixed device or a device allowing movement.
  • the terminal 100 includes a communication unit 110 , an input unit 120 , a learning processor 130 , a sensing unit 140 , an output unit 150 , a memory 170 and a processor 180 , etc. may include
  • the communication unit 110 may transmit/receive data to and from external devices such as other AI devices 100a to 100e or the AI server 200 using wired/wireless communication technology.
  • the communication unit 110 may transmit and receive sensor information, a user input, a learning model, a control signal, and the like with external devices.
  • the communication technology used by the communication unit 110 includes GSM (Global System for Mobile communication), CDMA (Code Division Multi Access), LTE (Long Term Evolution), 5G, WLAN (Wireless LAN), Wi-Fi (Wireless-Fidelity) ), Bluetooth, RFID (Radio Frequency Identification), Infrared Data Association (IrDA), ZigBee, NFC (Near Field Communication), and the like.
  • GSM Global System for Mobile communication
  • CDMA Code Division Multi Access
  • LTE Long Term Evolution
  • 5G Fifth Generation
  • WLAN Wireless LAN
  • Wi-Fi Wireless-Fidelity
  • Bluetooth Bluetooth
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • ZigBee ZigBee
  • NFC Near Field Communication
  • the input unit 120 may acquire various types of data.
  • the input unit 120 may include a camera for inputting an image signal, a microphone for receiving an audio signal, a user input unit for receiving information from a user, and the like.
  • a signal obtained from the camera or the microphone may be referred to as sensing data or sensor information.
  • the input unit 120 may acquire training data for model training and input data to be used when acquiring an output using the training model.
  • the input unit 120 may acquire raw input data, and in this case, the processor 180 or the learning processor 130 may extract an input feature by preprocessing the input data.
  • the learning processor 130 may train a model composed of an artificial neural network by using the training data.
  • the learned artificial neural network may be referred to as a learning model.
  • the learning model may be used to infer a result value with respect to new input data other than the training data, and the inferred value may be used as a basis for a decision to perform a certain operation.
  • the learning processor 130 may perform AI processing together with the learning processor 240 of the AI server 200 .
  • the learning processor 130 may include a memory integrated or implemented in the AI device 100 .
  • the learning processor 130 may be implemented using the memory 170 , an external memory directly coupled to the AI device 100 , or a memory maintained in an external device.
  • the sensing unit 140 may acquire at least one of internal information of the AI device 100 , information on the surrounding environment of the AI device 100 , and user information by using various sensors.
  • sensors included in the sensing unit 140 include a proximity sensor, an illuminance sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and a lidar. , radar, etc.
  • the output unit 150 may generate an output related to sight, hearing, or touch.
  • the output unit 150 may include a display unit that outputs visual information, a speaker that outputs auditory information, and a haptic module that outputs tactile information.
  • the memory 170 may store data supporting various functions of the AI device 100 .
  • the memory 170 may store input data obtained from the input unit 120 , learning data, a learning model, a learning history, and the like.
  • the processor 180 may determine at least one execution permitted operation of the AI device 100 based on information determined or generated using a data analysis algorithm or a machine learning algorithm. In addition, the processor 180 may control the components of the AI device 100 to perform the determined operation.
  • the processor 180 may request, search, receive, or utilize the data of the learning processor 130 or the memory 170, and is an operation that is predicted or preferred among the at least one execution permitted operation. It is possible to control the components of the AI device 100 to execute.
  • the processor 180 may generate a control signal for controlling the corresponding external device and transmit the generated control signal to the corresponding external device.
  • the processor 180 may obtain intention information with respect to a user input, and determine a user's requirement based on the obtained intention information.
  • the processor 180 uses at least one of a speech to text (STT) engine for converting a voice input into a character string or a natural language processing (NLP) engine for obtaining intention information of a natural language, Intention information corresponding to the input may be obtained.
  • STT speech to text
  • NLP natural language processing
  • At this time, at least one of the STT engine and the NLP engine may be configured as an artificial neural network, at least a part of which is learned according to a machine learning algorithm. And, at least one or more of the STT engine or the NLP engine is learned by the learning processor 130, or learned by the learning processor 240 of the AI server 200, or learned by distributed processing thereof. it could be
  • the processor 180 collects history information including the user's feedback on the operation contents or operation of the AI device 100 and stores it in the memory 170 or the learning processor 130, or the AI server 200 It can be transmitted to an external device.
  • the collected historical information may be used to update the learning model.
  • the processor 180 may control at least some of the components of the AI device 100 in order to drive an application program stored in the memory 170 . Furthermore, in order to drive the application program, the processor 180 may operate two or more of the components included in the AI device 100 in combination with each other.
  • FIG 2 shows an AI server 200 according to an embodiment of the present specification.
  • the AI server 200 may refer to a device that trains an artificial neural network using a machine learning algorithm or uses a learned artificial neural network.
  • the AI server 200 may be configured with a plurality of servers to perform distributed processing, and may be defined as a 5G network.
  • the AI server 200 may be included as a part of the AI device 100 to perform at least a part of AI processing together.
  • the AI server 200 may include a communication unit 210 , a memory 230 , a learning processor 240 , a processor 260 , and the like.
  • the communication unit 210 may transmit/receive data to and from an external device such as the AI device 100 .
  • the memory 230 may include a model storage unit 231 .
  • the model storage unit 231 may store a model (or artificial neural network, 231a) being trained or learned through the learning processor 240 .
  • the learning processor 240 may train the artificial neural network 231a using the training data.
  • the learning model may be used while being mounted on the AI server 200 of the artificial neural network, or may be used while being mounted on an external device such as the AI device 100 .
  • the learning model may be implemented in hardware, software, or a combination of hardware and software.
  • one or more instructions constituting the learning model may be stored in the memory 230 .
  • the processor 260 may infer a result value with respect to new input data using the learning model, and may generate a response or a control command based on the inferred result value.
  • FIG 3 shows an AI system 1 according to an embodiment of the present specification.
  • the AI system 1 includes at least one of an AI server 200 , a robot 100a , an autonomous vehicle 100b , an XR device 100c , a smartphone 100d , or a home appliance 100e . It is connected to the cloud network 10 .
  • the robot 100a to which the AI technology is applied, the autonomous driving vehicle 100b, the XR device 100c, the smart phone 100d, or the home appliance 100e may be referred to as AI devices 100a to 100e.
  • the cloud network 10 may constitute a part of the cloud computing infrastructure or may refer to a network existing in the cloud computing infrastructure.
  • the cloud network 10 may be configured using a 3G network, a 4G or Long Term Evolution (LTE) network, or a 5G network.
  • LTE Long Term Evolution
  • each of the devices 100a to 100e and 200 constituting the AI system 1 may be connected to each other through the cloud network 10 .
  • each of the devices 100a to 100e and 200 may communicate with each other through the base station, but may directly communicate with each other without passing through the base station.
  • the AI server 200 may include a server performing AI processing and a server performing an operation on big data.
  • the AI server 200 includes at least one of the AI devices constituting the AI system 1, such as a robot 100a, an autonomous vehicle 100b, an XR device 100c, a smartphone 100d, or a home appliance 100e, and It is connected through the cloud network 10 and may help at least a part of AI processing of the connected AI devices 100a to 100e.
  • the AI devices constituting the AI system such as a robot 100a, an autonomous vehicle 100b, an XR device 100c, a smartphone 100d, or a home appliance 100e.
  • the AI server 200 may train an artificial neural network according to a machine learning algorithm on behalf of the AI devices 100a to 100e, and directly store the learning model or transmit it to the AI devices 100a to 100e.
  • the AI server 200 receives input data from the AI devices 100a to 100e, infers a result value with respect to the input data received using the learning model, and provides a response or control command based on the inferred result value. It can be generated and transmitted to the AI devices 100a to 100e.
  • the AI devices 100a to 100e may infer a result value with respect to input data using a direct learning model, and generate a response or a control command based on the inferred result value.
  • the AI devices 100a to 100e to which the above-described technology is applied will be described.
  • the AI devices 100a to 100e shown in FIG. 3 can be viewed as specific examples of the AI device 100 shown in FIG. 1 .
  • the robot 100a may be implemented as a guide robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, an unmanned flying robot, etc. to which AI technology is applied.
  • the robot 100a may include a robot control module for controlling an operation, and the robot control module may mean a software module or a chip implemented as hardware.
  • the robot 100a acquires state information of the robot 100a by using sensor information obtained from various types of sensors, detects (recognizes) surrounding environments and objects, generates map data, moves path and travels A plan may be determined, a response to a user interaction may be determined, or an action may be determined.
  • the robot 100a may use sensor information obtained from at least one sensor among LiDAR, radar, and camera in order to determine a movement route and a travel plan.
  • the robot 100a may perform the above-described operations using a learning model composed of at least one artificial neural network.
  • the robot 100a may recognize a surrounding environment and an object using a learning model, and may determine an operation using the recognized surrounding environment information or object information.
  • the learning model may be directly learned from the robot 100a or learned from an external device such as the AI server 200 .
  • the robot 100a may perform an operation by generating a result using a direct learning model, but transmits sensor information to an external device such as the AI server 200 and receives the result generated accordingly to perform the operation You may.
  • the robot 100a determines a movement path and travel plan using at least one of map data, object information detected from sensor information, or object information obtained from an external device, and controls the driving unit to apply the determined movement path and travel plan. Accordingly, the robot 100a may be driven.
  • the map data may include object identification information for various objects disposed in a space in which the robot 100a moves.
  • the map data may include object identification information for fixed objects such as walls and doors and objects that are allowed to move, such as flowerpots and desks.
  • the object identification information may include a name, a type, a distance, a location, and the like.
  • the robot 100a may perform an operation or drive by controlling the driving unit based on the user's control/interaction.
  • the robot 100a may acquire intention information of an interaction according to a user's motion or voice utterance, determine a response based on the acquired intention information, and perform the operation.
  • the autonomous driving vehicle 100b may be implemented as a mobile robot, a vehicle, an unmanned aerial vehicle, etc. by applying AI technology.
  • the autonomous driving vehicle 100b may include an autonomous driving control module for controlling an autonomous driving function, and the autonomous driving control module may mean a software module or a chip implemented as hardware.
  • the autonomous driving control module may be included as a component of the autonomous driving vehicle 100b, or may be configured and connected to the outside of the autonomous driving vehicle 100b as separate hardware.
  • the autonomous vehicle 100b obtains state information of the autonomous vehicle 100b using sensor information obtained from various types of sensors, detects (recognizes) surrounding environments and objects, generates map data, A movement route and a driving plan may be determined, or an operation may be determined.
  • the autonomous driving vehicle 100b may use sensor information obtained from at least one sensor among a lidar, a radar, and a camera, similarly to the robot 100a, in order to determine a moving route and a driving plan.
  • the autonomous vehicle 100b may receive sensor information from external devices to recognize an environment or object for an area where the field of view is obscured or an area over a certain distance, or receive information recognized directly from external devices. .
  • the autonomous vehicle 100b may perform the above-described operations by using a learning model composed of at least one artificial neural network.
  • the autonomous driving vehicle 100b may recognize a surrounding environment and an object using a learning model, and may determine a driving route using the recognized surrounding environment information or object information.
  • the learning model may be directly learned from the autonomous vehicle 100b or learned from an external device such as the AI server 200 .
  • the autonomous vehicle 100b may generate a result by using the direct learning model and perform the operation, but it operates by transmitting sensor information to an external device such as the AI server 200 and receiving the result generated accordingly. can also be performed.
  • the autonomous vehicle 100b determines a movement path and a driving plan by using at least one of map data, object information detected from sensor information, or object information acquired from an external device, and controls the driving unit to determine the movement path and driving
  • the autonomous vehicle 100b may be driven according to a plan.
  • the map data may include object identification information for various objects disposed in a space (eg, a road) in which the autonomous vehicle 100b travels.
  • the map data may include object identification information for fixed objects such as street lights, rocks, and buildings, and objects that are allowed to move, such as vehicles and pedestrians.
  • the object identification information may include a name, a type, a distance, a location, and the like.
  • the autonomous vehicle 100b may perform an operation or drive by controlling the driving unit based on the user's control/interaction.
  • the autonomous vehicle 100b may acquire intention information of an interaction according to a user's motion or voice utterance, determine a response based on the obtained intention information, and perform the operation.
  • the XR device 100c is AI technology applied, so a head-mount display (HMD), a head-up display (HUD) provided in a vehicle, a television, a mobile phone, a smart phone, a computer, a wearable device, a home appliance, and a digital signage , a vehicle, a stationary robot, or a mobile robot.
  • HMD head-mount display
  • HUD head-up display
  • the XR device 100c analyzes 3D point cloud data or image data acquired through various sensors or from an external device to generate location data and attribute data for 3D points, thereby providing information on surrounding space or real objects. It can be obtained and output by rendering the XR object to be output. For example, the XR apparatus 100c may output an XR object including additional information on the recognized object to correspond to the recognized object.
  • the XR apparatus 100c may perform the above-described operations using a learning model composed of at least one artificial neural network.
  • the XR apparatus 100c may recognize a real object from 3D point cloud data or image data using a learning model, and may provide information corresponding to the recognized real object.
  • the learning model may be directly learned from the XR device 100c or learned from an external device such as the AI server 200 .
  • the XR device 100c may perform an operation by generating a result using the direct learning model, but it transmits sensor information to an external device such as the AI server 200 and receives the result generated accordingly to perform the operation. can also be done
  • the robot 100a may be implemented as a guide robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, an unmanned flying robot, etc. to which AI technology and autonomous driving technology are applied.
  • the robot 100a to which AI technology and autonomous driving technology are applied may mean a robot having an autonomous driving function or a robot 100a that interacts with the autonomous driving vehicle 100b.
  • the robot 100a having an autonomous driving function may collectively refer to devices that move by themselves according to a given movement line without user's control or by determining a movement line by themselves.
  • the robot 100a with the autonomous driving function and the autonomous driving vehicle 100b may use a common sensing method to determine one or more of a moving route or a driving plan.
  • the robot 100a having an autonomous driving function and the autonomous driving vehicle 100b may determine one or more of a movement route or a driving plan by using information sensed through lidar, radar, and camera.
  • the robot 100a interacting with the autonomous driving vehicle 100b exists separately from the autonomous driving vehicle 100b and is linked to an autonomous driving function inside or outside the autonomous driving vehicle 100b, or the autonomous driving vehicle 100b ) can perform an operation associated with the user on board.
  • the robot 100a interacting with the autonomous driving vehicle 100b acquires sensor information on behalf of the autonomous driving vehicle 100b and provides it to the autonomous driving vehicle 100b, or obtains sensor information and obtains information about the surrounding environment or By generating object information and providing it to the autonomous driving vehicle 100b, the autonomous driving function of the autonomous driving vehicle 100b may be controlled or supported.
  • the robot 100a interacting with the autonomous driving vehicle 100b may monitor a user riding in the autonomous driving vehicle 100b or control a function of the autonomous driving vehicle 100b through interaction with the user. .
  • the robot 100a may activate an autonomous driving function of the autonomous driving vehicle 100b or assist in controlling a driving unit of the autonomous driving vehicle 100b.
  • the function of the autonomous driving vehicle 100b controlled by the robot 100a may include not only an autonomous driving function, but also a function provided by a navigation system or an audio system provided in the autonomous driving vehicle 100b.
  • the robot 100a interacting with the autonomous driving vehicle 100b may provide information or assist a function to the autonomous driving vehicle 100b from the outside of the autonomous driving vehicle 100b.
  • the robot 100a may provide traffic information including signal information to the autonomous driving vehicle 100b, such as a smart traffic light, or interact with the autonomous driving vehicle 100b, such as an automatic electric charger for an electric vehicle. You can also automatically connect an electric charger to the charging port.
  • the robot 100a may be implemented as a guide robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, an unmanned flying robot, a drone, etc. to which AI technology and XR technology are applied.
  • the robot 100a to which the XR technology is applied may mean a robot that is a target of control/interaction within an XR image.
  • the robot 100a is distinguished from the XR device 100c and may be interlocked with each other.
  • the robot 100a which is the target of control/interaction within the XR image, obtains sensor information from sensors including a camera, the robot 100a or the XR device 100c generates an XR image based on the sensor information. and the XR apparatus 100c may output the generated XR image.
  • the robot 100a may operate based on a control signal input through the XR device 100c or a user's interaction.
  • the user can check the XR image corresponding to the viewpoint of the remotely linked robot 100a through an external device such as the XR device 100c, and adjust the autonomous driving path of the robot 100a through interaction or , control motion or driving, or check information of surrounding objects.
  • an external device such as the XR device 100c
  • the autonomous vehicle 100b may be implemented as a mobile robot, a vehicle, an unmanned aerial vehicle, etc. by applying AI technology and XR technology.
  • the autonomous driving vehicle 100b to which the XR technology is applied may mean an autonomous driving vehicle equipped with a means for providing an XR image or an autonomous driving vehicle subject to control/interaction within the XR image.
  • the autonomous driving vehicle 100b which is the target of control/interaction within the XR image, is distinguished from the XR device 100c and may be interlocked with each other.
  • the autonomous driving vehicle 100b having means for providing an XR image may obtain sensor information from sensors including a camera, and output an XR image generated based on the acquired sensor information.
  • the autonomous vehicle 100b may provide an XR object corresponding to a real object or an object in a screen to the passenger by outputting an XR image with a HUD.
  • the XR object when the XR object is output to the HUD, at least a portion of the XR object may be output to overlap the real object to which the passenger's gaze is directed.
  • the XR object when the XR object is output to the display provided inside the autonomous vehicle 100b, at least a portion of the XR object may be output to overlap the object in the screen.
  • the autonomous vehicle 100b may output XR objects corresponding to objects such as a lane, other vehicles, traffic lights, traffic signs, two-wheeled vehicles, pedestrians, and buildings.
  • the autonomous driving vehicle 100b which is the subject of control/interaction in the XR image, acquires sensor information from sensors including a camera, the autonomous driving vehicle 100b or the XR device 100c performs An XR image is generated, and the XR apparatus 100c may output the generated XR image.
  • the autonomous vehicle 100b may operate based on a control signal input through an external device such as the XR device 100c or a user's interaction.
  • IP Multimedia Subsystem IP Multimedia Core Network Subsystem
  • IP Multimedia Core Network Subsystem an architectural framework for providing standardization for delivering voice or other multimedia services over IP.
  • - UMTS Universal Mobile Telecommunications System
  • GSM Global System for Mobile Communication
  • 3rd generation mobile communication technology developed by 3GPP.
  • EPS Evolved Packet System
  • IP Internet Protocol
  • EPC Evolved Packet Core
  • UMTS is an evolved network.
  • NodeB base station of GERAN/UTRAN. It is installed outdoors and the coverage is macro cell scale.
  • - eNodeB/eNB base station of E-UTRAN. It is installed outdoors and the coverage is macro cell scale.
  • a UE may be referred to as a terminal (UE), a mobile equipment (ME), a mobile station (MS), or the like.
  • the UE may be a portable device such as a laptop computer, a mobile phone, a personal digital assistant (PDA), a smart phone, a multimedia device, or the like, or a non-portable device such as a personal computer (PC) or in-vehicle device.
  • PDA personal digital assistant
  • PC personal computer
  • the term UE or terminal may refer to an MTC device.
  • - HNB Home NodeB: As a base station of the UMTS network, it is installed indoors and the coverage is micro cell scale.
  • - HeNB Home eNodeB: As a base station of the EPS network, it is installed indoors and the coverage is micro-cell scale.
  • Mobility Management Entity Mobility Management (MM), Session Management (Session Management; SM) network node of the EPS network that performs the function.
  • MM Mobility Management
  • Session Management Session Management
  • SM Session Management
  • PDN-GW Packet Data Network-Gateway
  • PGW/P-GW A network node of the EPS network that performs UE IP address assignment, packet screening and filtering, charging data collection functions, and the like.
  • SGW Serving Gateway
  • S-GW Mobility anchor (mobility anchor), packet routing (routing), idle mode packet buffering, a function of triggering the MME to page the UE, etc.
  • Network node of the EPS network .
  • PCRF Policy and Charging Rule Function
  • OMA DM Open Mobile Alliance Device Management: A protocol designed to manage mobile devices such as cell phones, PDAs, and portable computers. Device configuration, firmware upgrade, error report, etc. perform the function of
  • OAM Operaation Administration and Maintenance
  • Non-Access Stratum the upper end of the control plane (control plane) between the UE and the MME (stratum).
  • control plane control plane
  • MME Mobility Management Entity
  • EMM EPS Mobility Management: As a sub-layer of the NAS layer, the EMM is in "EMM-Registered” or “EMM-Deregistered” state depending on whether the UE is network attached or detached. there may be
  • ECM (EMM Connection Management) connection (connection): a signaling connection (connection) for the exchange (exchange) of NAS messages established between the UE and the MME.
  • the ECM connection is a logical connection consisting of an RRC connection between the UE and the eNB and an S1 signaling connection between the eNB and the MME.
  • the established ECM connection means having an RRC connection established with the eNB to the UE, and means having an S1 signaling connection established with the eNB to the MME.
  • the ECM may have a status of "ECM-Connected" or "ECM-Idle".
  • - AS Includes the protocol stack between the UE and the wireless (or access) network, and is responsible for data and network control signal transmission.
  • MO Management Object
  • MO Management object used in the process of setting parameters (parameters) related to NAS function (Functionality) to the UE.
  • Packet Data Network A network in which a server supporting a specific service (eg, Multimedia Messaging Service (MMS) server, Wireless Application Protocol (WAP) server, etc.) is located.
  • MMS Multimedia Messaging Service
  • WAP Wireless Application Protocol
  • APN Access Point Name: A string that refers to or distinguishes a PDN. In order to access a requested service or network, it goes through a specific P-GW, and it means a name (string) predefined in the network to find this P-GW. (e.g. internet.mnc012.mcc345.gprs)
  • Radio Access Network a unit including a NodeB, an eNodeB, and a Radio Network Controller (RNC) for controlling them in a 3GPP network. It exists between UEs and provides connectivity to the core network.
  • RNC Radio Network Controller
  • HLR Home Location Register
  • HSS Home Subscriber Server
  • the HSS may perform functions such as configuration storage, identity management, and user state storage.
  • PLMN Public Land Mobile Network
  • -ANDSF Access Network Discovery and Selection Function: As one network entity, it provides a policy to discover and select the access allowed by the UE in the operator unit.
  • EPC path (or infrastructure data path): User plane communication path through EPC
  • E-RAB E-UTRAN Radio Access Bearer: refers to the concatenation of the S1 bearer and the corresponding data radio bearer. If the E-RAB exists, there is a one-to-one mapping between the E-RAB and the EPS bearer of the NAS.
  • GTP - GPRS Tunneling Protocol
  • GTP A group of IP-based communications protocols used to carry general packet radio service (GPRS) within GSM, UMTS and LTE networks.
  • GPRS general packet radio service
  • GTP and Proxy Mobile IPv6-based interfaces are specified on various interface points.
  • GTP can be decomposed into several protocols (eg GTP-C, GTP-U and GTP').
  • GTP-C is used within a GPRS core network for signaling between Gateway GPRS Support Nodes (GGSN) and Serving GPRS Support Nodes (SGSN).
  • GGSN Gateway GPRS Support Nodes
  • SGSN Serving GPRS Support Nodes
  • the SGSN activates a session for the user (eg, activates the PDN context), deactivates the same session, and adjusts the quality of service parameters.
  • GTP-U is used to carry user data within the GPRS core network and between the radio access network and the core network.
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • the 3GPP LTE / LTE-A system uses the concept of a cell to manage radio resources, and a cell associated with a radio resource is a cell of a geographic area. is separated from A "cell" associated with a radio resource is defined as a combination of downlink resources (DL resources) and uplink resources (UL resources), that is, a combination of a DL carrier and a UL carrier.
  • a cell may be configured with a DL resource alone or a combination of a DL resource and a UL resource.
  • linkage between a carrier frequency of a DL resource and a carrier frequency of a UL resource may be indicated by system information.
  • the carrier frequency means a center frequency of each cell or carrier.
  • a cell operating on a primary frequency is referred to as a primary cell (Pcell)
  • a cell operating on a secondary frequency is referred to as a secondary cell (Scell).
  • Scell refers to a cell that can be used to allow setup after RRC (Radio Resource Control) connection establishment is made and to provide additional radio resources.
  • RRC Radio Resource Control
  • the Scell may form a set of serving cells for the UE together with the Pcell.
  • a "cell” of a geographic area can be understood as coverage in which a node can provide a service using a carrier
  • a "cell” of radio resources is a frequency range configured by the carrier. It is related to bandwidth (BW).
  • BW bandwidth
  • the uplink coverage, which is the range in which a valid signal can be received from the UE depend on the carrier carrying the corresponding signal. It is also associated with the coverage of a "cell”. Therefore, the term “cell” may be used to mean the coverage of a service by a node, sometimes a radio resource, and sometimes a range that a signal using the radio resource can reach with an effective strength.
  • EPC is a key element of SAE (System Architecture Evolution) to improve the performance of 3GPP technologies.
  • SAE corresponds to a research task to determine a network structure that supports mobility between various types of networks.
  • SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies based on IP and providing improved data transmission capability.
  • EPC is a core network of an IP mobile communication system for a 3GPP LTE system, and can support packet-based real-time and non-real-time services.
  • the core network In the existing mobile communication system (ie, 2nd generation or 3rd generation mobile communication system), the core network through two distinct sub-domains, CS (Circuit-Switched) for voice and PS (Packet-Switched) for data.
  • CS Circuit-Switched
  • PS Packet-Switched
  • the connection between the UE and the UE having IP capability is an IP-based base station (eg, eNodeB (evolved Node B)), EPC, application domain (eg, IMS ( IP Multimedia Subsystem)).
  • eNodeB evolved Node B
  • EPC application domain
  • IMS IP Multimedia Subsystem
  • the EPC may include various components, and in FIG. 1 , some of them are a Serving Gateway (SGW), a Packet Data Network Gateway (PDN GW), a Mobility Management Entity (MME), and a Serving General Packet (GPRS) (SGSN). Radio Service) Supporting Node) and ePDG (enhanced Packet Data Gateway) are shown.
  • SGW Serving Gateway
  • PDN GW Packet Data Network Gateway
  • MME Mobility Management Entity
  • GPRS Serving General Packet
  • SGSN Serving General Packet
  • Radio Service Supporting Node
  • ePDG enhanced Packet Data Gateway
  • the SGW (or S-GW) is an element that functions as a boundary point between the radio access network (RAN) and the core network, and maintains a data path between the eNB and the PDN GW.
  • the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility within the E-UTRAN (Evolved-Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network defined after 3GPP Release-8).
  • the SGW provides mobility with other 3GPP networks (RANs defined before 3GPP Release-8, for example, UTRAN or GERAN (Global System for Mobile Communication) / EDGE (Enhanced Data rates for Global Evolution) Radio Access Network). It may serve as an anchor point for
  • the PDN GW corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW may support policy enforcement features, packet filtering, charging support, and the like.
  • mobility management between 3GPP networks and non-3GPP networks eg, untrusted networks such as Interworking Wireless Local Area Network (I-WLAN), Code Division Multiple Access (CDMA) networks or trusted networks such as WiMax). It can serve as an anchor point for I-WLAN, Code Division Multiple Access (CDMA) networks or trusted networks such as WiMax). It can serve as an anchor point for 3GPP networks and non-3GPP networks (eg, untrusted networks such as Interworking Wireless Local Area Network (I-WLAN), Code Division Multiple Access (CDMA) networks or trusted networks such as WiMax). It can serve as an anchor point for I-WLAN, Code Division Multiple Access (CDMA) networks or trusted networks such as WiMax). It can serve as an anchor point for I-WLAN, Code Division Multiple Access (CDMA) networks or trusted networks such as WiMax). It can serve as an anchor point for
  • the two gateways may be implemented according to a single gateway configuration option.
  • the MME is an element that performs signaling and control functions to support access to a network connection of the UE, allocation of network resources, tracking, paging, roaming and handover, and the like.
  • the MME controls control plane functions related to subscriber and session management.
  • the MME manages numerous eNBs and performs signaling for selection of a conventional gateway for handover to other 2G/3G networks.
  • the MME performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
  • the SGSN handles all packet data such as user's mobility management and authentication to other 3GPP networks (eg, GPRS networks).
  • 3GPP networks eg, GPRS networks.
  • the ePDG acts as a security node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
  • untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
  • the UE having IP capability is an IP provided by an operator (ie, an operator) via various elements in the EPC on the basis of 3GPP access as well as non-3GPP access.
  • a service network eg, IMS may be accessed.
  • FIG. 4 also shows various reference points (eg, S1-U, S1-MME, etc.).
  • reference points eg, S1-U, S1-MME, etc.
  • Table 1 summarizes the reference points shown in FIG. 4 .
  • various reference points may exist according to the network structure.
  • Reference point description S1-MME Reference point for the control plane protocol between E-UTRAN and MME S1-U Reference point between E-UTRAN and Serving GW for the per bearer user plane tunneling and inter eNodeB path switching during handover S3 Reference point between MME and SGSN providing user and bearer information exchange for mobility between 3GPP access networks in idle and/or active state.
  • This reference point may be used for intra-PLMN or inter-PLMN (eg, in the case of inter-PLMN handover)) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and/or active state
  • This reference point can be used intra-PLMN or inter-PLMN (e.g.
  • S4 A reference point between the SGW and SGSN that provides related control and mobility support between the GPRS core and the 3GPP anchor function of the SGW. In addition, if Direct Tunnel is not established, it provides the user plane tunneling .
  • S5 Reference point providing user plane tunneling and tunnel management between SGW and PDN GW. Used for SGW relocation when connection to a PDN GW where the SGW is not located is required due to terminal mobility and required PDN connectivity (It provides user plane tunneling and tunnel management between Serving GW and PDN GW.
  • the PDN may be an operator external public or private PDN or an operator-internal PDN (eg, IMS service).
  • This reference point corresponds to Gi of 3GPP access (It is the reference point between the PDN GW and the packet data network.
  • Packet data network may be an operator external public or private packet data network or an intra operator packet data network, e.g. for This reference point corresponds to Gi for 3GPP accesses.)
  • S2a and S2b correspond to non-3GPP interfaces.
  • S2a is a reference point that provides the user plane with trusted non-3GPP access and related control and mobility support between PDN GWs.
  • S2b is a reference point that provides the user plane with related control and mobility support between the ePDG and PDN GW.
  • E-UTRAN evolved universal terrestrial radio access network
  • the E-UTRAN system is a system evolved from the existing UTRAN system, and may be, for example, a 3GPP LTE/LTE-A system.
  • Communication networks are widely deployed to provide various communication services such as voice (eg, Voice over Internet Protocol (VoIP)) via IMS and packet data.
  • voice eg, Voice over Internet Protocol (VoIP)
  • VoIP Voice over Internet Protocol
  • the E-UMTS network includes an E-UTRAN, an EPC, and one or more UEs.
  • the E-UTRAN consists of eNBs that provide a control plane and a user plane protocol to the UE, and the eNBs are connected through an X2 interface.
  • An X2 user plane interface (X2-U) is defined between the eNBs.
  • the X2-U interface provides non-guaranteed delivery of a user plane packet data unit (PDU).
  • An X2 control plane interface (X2-CP) is defined between two neighboring eNBs. X2-CP performs functions such as context transfer between eNBs, control of a user plane tunnel between a source eNB and a target eNB, transfer of a handover related message, and uplink load management.
  • the eNB is connected to the UE through the wireless interface and connected to the evolved packet core (EPC) through the S1 interface.
  • EPC evolved packet core
  • the S1 user plane interface (S1-U) is defined between the eNB and a serving gateway (S-GW).
  • the S1 control plane interface (S1-MME) is defined between the eNB and a mobility management entity (MME).
  • the S1 interface performs an evolved packet system (EPS) bearer service management function, a non-access stratum (NAS) signaling transport function, network sharing, an MME load balancing function, and the like.
  • EPS evolved packet system
  • NAS non-access stratum
  • the S1 interface supports many-to-many-relation between the eNB and the MME/S-GW.
  • MME is NAS signaling security (security), AS (Access Stratum) security (security) control, CN (Core Network) inter-node (Inter-CN) signaling to support mobility between 3GPP access networks, (perform and control paging retransmission) Including) idle (IDLE) mode UE accessibility (reachability), (for idle and active mode terminals) tracking area identifier (TAI: Tracking Area Identity) management, PDN GW and SGW selection, MME for handover in which the MME is changed Bearer management functions including selection, SGSN selection for handover to 2G or 3G 3GPP access network, roaming, authentication, dedicated bearer establishment, Public Warning System (PWS) System) (including Earthquake and Tsunami Warning System (ETWS) and Commercial Mobile Alert System (CMAS)) message transmission.
  • PWS Public Warning System
  • ETWS Earthquake and Tsunami Warning System
  • CMAS Commercial Mobile Alert System
  • FIG. 6 is a diagram illustrating an architecture of a general NR-RAN.
  • the NG-RAN node may be one of the following.
  • gNB providing NR user plane and control plane protocols towards the UE
  • ng-eNB providing E-UTRA user plane and control plane protocols towards the UE.
  • the gNB and the ng-eNB are connected to each other through the Xn interface.
  • gNB and ng-eNB via NG interface to 5GC, more specifically via NG-C interface, Access and Mobility Management Function (AMF), user plane function via NG-U interface ( UPF: User Plane Function) (refer to 3GPP TS 23.501 [3]).
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • FIG. 7 shows an example of a general architecture of 5G. The following is a description of each reference interface and node in FIG. 7 .
  • Access and Mobility Management Function is a CN inter-node signaling for mobility between 3GPP access networks, a radio access network (RAN: Radio Access Network) CP interface (N2) termination (termination), NAS It supports functions such as end of signaling (N1), registration management (registration area management), idle mode UE accessibility (reachability), network slicing support, SMF selection, and the like.
  • AMF Access Management Function
  • a data network means, for example, an operator service, Internet access, or a third party service.
  • the DN transmits a downlink protocol data unit (PDU) to the UPF or receives a PDU transmitted from the UE from the UPF.
  • PDU downlink protocol data unit
  • a policy control function provides a function of receiving information about a packet flow from an application server and determining policies such as mobility management and session management.
  • a session management function (SMF: Session Management Function) provides a session management function, and when the UE has a plurality of sessions, it may be managed by a different SMF for each session.
  • SMF Session Management Function
  • Some or all functions of the SMF may be supported within a single instance of one SMF.
  • Unified Data Management stores user subscription data, policy data, and the like.
  • User plane function delivers the downlink PDU received from the DN to the UE via (R)AN, and delivers the uplink PDU received from the UE via (R)AN to the DN.
  • Application Function supports service provision (eg, application impact on traffic routing, network capability exposure access, interaction with policy framework for policy control, etc.) to interact with the 3GPP core network.
  • service provision eg, application impact on traffic routing, network capability exposure access, interaction with policy framework for policy control, etc.
  • Radio Access Network (R)AN: (Radio) Access Network
  • E-UTRA evolved E-UTRA
  • NR New Radio
  • gNB a generic term for a new radio access network that supports both.
  • gNB has functions for radio resource management (ie, Radio Bearer Control, Radio Admission Control, Connection Mobility Control), and dynamic resource allocation to the UE in uplink/downlink. It supports functions such as dynamic allocation of resources (ie, scheduling)).
  • radio resource management ie, Radio Bearer Control, Radio Admission Control, Connection Mobility Control
  • dynamic resource allocation ie, scheduling
  • User Equipment refers to user equipment.
  • a conceptual link connecting NFs in the 5G system is defined as a reference point.
  • N1 is the reference point between the UE and AMF
  • N2 is the reference point between (R)AN and AMF
  • N3 is the reference point between (R)AN and UPF
  • N4 is the reference point between SMF and UPF
  • N6 the reference point between UPF and the data network
  • N9 is a reference point between the two core UPFs
  • N5 is a reference point between PCF and AF
  • N7 is a reference point between SMF and PCF
  • N24 is a PCF in a visited network and a PCF in a home network Reference point
  • N8 is a reference point between UDM and AMF
  • N10 is a reference point between UDM and SMF
  • N11 is a reference point between AMF and SMF
  • N12 is a reference point between AMF and Authentication Server function (AUSF)
  • N13 is Reference point between UDM and AUSF
  • N14 is a reference point between two AMFs
  • N15 is a reference point between PCF and A
  • FIG. 7 exemplifies a reference model for a case in which the UE accesses one DN using one PDU session for convenience of description, but is not limited thereto.
  • downlink means communication from a base station (BS) to user equipment (UE)
  • uplink means communication from UE to BS.
  • a transmitter may be a part of a BS, and a receiver may be a part of the UE.
  • the transmitter may be part of the UE and the receiver may be part of the BS.
  • a UE may be represented as a first communication device
  • a BS may be represented as a second communication device.
  • BS is a fixed station, Node B, evolved-NodeB (eNB), Next Generation NodeB (gNB), base transceiver system (BTS), access point (AP), network or 5G (5th generation) network node , AI (Artificial Intelligence) system, RSU (road side unit), may be replaced by terms such as robot.
  • eNB evolved-NodeB
  • gNB Next Generation NodeB
  • BTS base transceiver system
  • AP access point
  • 5G (5th generation) network node 5G (5th generation) network node
  • AI Artificial Intelligence
  • RSU road side unit
  • the UE is a terminal, MS (Mobile Station), UT (User Terminal), MSS (Mobile Subscriber Station), SS (Subscriber Station), AMS (Advanced Mobile Station), WT (Wireless terminal), MTC (Machine) -Type Communication) device, M2M (Machine-to-Machine) device, D2D (Device-to-Device) device, vehicle, robot, AI module, drone, aerial UE, etc. can be replaced.
  • CDMA Code Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • TDMA Time Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier FDMA
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with a radio technology such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented with a radio technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), and the like.
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3GPP (3rd Generation Partnership Project) Long Term Evolution (LTE) is a part of Evolved UMTS (E-UMTS) using E-UTRA and LTE-A (Advanced)/LTE-A pro is an evolved version of 3GPP LTE.
  • 3GPP NR New Radio or New Radio Access Technology
  • 3GPP LTE/LTE-A/LTE-A pro is an evolved version of 3GPP LTE/LTE-A/LTE-A pro.
  • LTE refers to technology after 3GPP TS 36.xxx Release 8.
  • LTE technology after 3GPP TS 36.xxx Release 10 is referred to as LTE-A
  • LTE technology after 3GPP TS 36.xxx Release 13 is referred to as LTE-A pro.
  • 3GPP 5G (5th generation) technology refers to technology after TS 36.xxx Release 15 and technology after TS 38.XXX Release 15, among which technology after TS 38.xxx Release 15 is referred to as 3GPP NR, and TS 36.xxx Release 15 and later technologies may be referred to as enhanced LTE. "xxx" stands for standard document detail number. LTE/NR may be collectively referred to as a 3GPP system.
  • a node refers to a fixed point that can communicate with the UE to transmit/receive a radio signal.
  • Various types of BSs can be used as nodes regardless of their names.
  • BS, NB, eNB, pico-cell eNB (PeNB), home eNB (HeNB), relay (relay), repeater (repeater), etc. may be a node.
  • the node may not need to be a BS.
  • it may be a radio remote head (RRH) or a radio remote unit (RRU).
  • RRH, RRU, and the like generally have a lower power level compared to the power level of the BS.
  • At least one antenna is installed in one node.
  • the antenna may mean a physical antenna, an antenna port, a virtual antenna, or an antenna group.
  • a node is also called a point.
  • a cell refers to a certain geographic area or radio resource in which one or more nodes provide a communication service.
  • a "cell" of a geographic area can be understood as coverage in which a node can provide a service using a carrier, and a "cell” of radio resources is a bandwidth (a frequency size configured by the carrier) ( bandwidth, BW).
  • the downlink coverage which is the range in which a node can transmit a valid signal
  • the uplink coverage which is the range in which a valid signal can be received from the UE, depend on the carrier carrying the corresponding signal. It is also associated with the coverage of a "cell”. Therefore, the term “cell” may be used to mean the coverage of a service by a node, sometimes a radio resource, and sometimes a range that a signal using the radio resource can reach with an effective strength.
  • communication with a specific cell may mean communicating with a BS or node that provides a communication service to the specific cell.
  • the downlink/uplink signal of a specific cell means a downlink/uplink signal from/to a BS or node that provides a communication service to the specific cell.
  • a cell providing an uplink/downlink communication service to the UE is specifically referred to as a serving cell.
  • the channel state/quality of a specific cell means the channel state/quality of a channel or communication link formed between a UE and a BS or node providing a communication service to the specific cell.
  • a "cell" associated with a radio resource may be defined as a combination of downlink resources (DL resources) and uplink resources (UL resources), that is, a combination of a DL component carrier (CC) and UL CC.
  • a cell may be configured with a DL resource alone or a combination of a DL resource and a UL resource.
  • the linkage between the carrier frequency of the DL resource (or DL CC) and the carrier frequency of the UL resource (or UL CC) is the linkage. It may be indicated by system information transmitted through the cell.
  • the carrier frequency may be the same as or different from the center frequency of each cell or CC.
  • a cell operating on a primary frequency is referred to as a primary cell (Pcell) or PCC
  • a cell operating on a secondary frequency is referred to as a secondary cell (Scell).
  • Scell refers to a state in which the UE performs a radio resource control (RRC) connection establishment process with the BS to establish an RRC connection between the UE and the BS, that is, after the UE is in the RRC_CONNECTED state.
  • RRC connection may mean a path through which the RRC of the UE and the RRC of the BS can exchange RRC messages with each other.
  • the Scell may be configured to provide additional radio resources to the UE.
  • the Scell may form a set of serving cells for the UE together with the Pcell.
  • the Scell may form a set of serving cells for the UE together with the Pcell.
  • carrier aggregation is not configured or does not support carrier aggregation, there is only one serving cell configured only as a Pcell.
  • the cell supports its own radio access technology. For example, transmission/reception according to LTE radio access technology (RAT) is performed on an LTE cell, and transmission/reception according to 5G RAT is performed on a 5G cell.
  • LTE radio access technology RAT
  • 5G RAT 5th Generationан ⁇
  • the carrier aggregation technique refers to a technique for aggregating and using a plurality of carriers having a system bandwidth smaller than a target bandwidth for broadband support.
  • carrier aggregation performs downlink or uplink communication using a plurality of carrier frequencies each forming a system bandwidth (also referred to as a channel bandwidth), a basic frequency band divided into a plurality of orthogonal subcarriers is divided into one It is distinguished from OFDMA technology in which downlink or uplink communication is performed on a carrier frequency.
  • one frequency band having a constant system bandwidth is divided into a plurality of subcarriers having a predetermined subcarrier interval, and information/data is divided into the plurality of The frequency band to which the information/data is mapped is transmitted to a carrier frequency of the frequency band through frequency upconversion.
  • frequency bands each having their own system bandwidth and carrier frequency may be used for communication at the same time, and each frequency band used for carrier aggregation may be divided into a plurality of subcarriers having a predetermined subcarrier interval. .
  • the 3GPP-based communication standard is an upper layer of the physical layer (eg, medium access control (MAC) layer, radio link control (RLC) layer, packet data convergence protocol ( protocol data convergence protocol (PDCP) layer, radio resource control (RRC) layer, service data adaptation protocol (SDAP), non-access layer (non-access stratum, NAS) layer)
  • MAC medium access control
  • RLC radio link control
  • PDCP protocol data convergence protocol
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • non-access layer non-access stratum, NAS) layer
  • MAC medium access control
  • RLC radio link control
  • PDCP protocol data convergence protocol
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • non-access stratum non-access stratum
  • a physical downlink shared channel (PDSCH), a physical broadcast channel (PBCH), a physical multicast channel (PMCH), a physical control format indicator channel (physical control)
  • a physical downlink control channel (PDCCH)
  • a reference signal and a synchronization signal are defined as downlink physical signals.
  • a reference signal also referred to as a pilot, means a signal of a predefined special waveform that the BS and the UE know each other, for example, cell specific RS (RS), UE- UE-specific RS (UE-RS), positioning RS (PRS), channel state information RS (channel state information RS, CSI-RS), demodulation reference signal (DMRS) down Defined as link reference signals.
  • RS cell specific RS
  • PRS positioning RS
  • channel state information RS channel state information RS
  • CSI-RS channel state information RS
  • DMRS demodulation reference signal
  • the 3GPP-based communication standard supports uplink physical channels corresponding to resource elements carrying information originating from a higher layer, and resource elements used by the physical layer but not carrying information originating from a higher layer. Uplink physical signals are defined.
  • a physical uplink shared channel (PUSCH), a physical uplink control channel (PUCCH), and a physical random access channel (PRACH) are uplink physical channels.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH) are physical layer downlink control information (DCI) and downlink data. It may mean a set of time-frequency resources to be carried or a set of resource elements, respectively.
  • the UE when the UE transmits an uplink physical channel (eg, PUCCH, PUSCH, PRACH), it means that UCI, uplink data, or a random access signal is transmitted on the corresponding uplink physical channel or through the uplink physical channel.
  • the BS receives the uplink physical channel, it may mean that it receives DCI, uplink data, or a random access signal on or through the corresponding uplink physical channel.
  • a downlink physical channel eg, PDCCH, PDSCH
  • Receiving the downlink physical channel by the UE may mean receiving DCI or downlink data on or through the corresponding downlink physical channel.
  • a transport block is a payload for a physical layer.
  • data given to a physical layer from an upper layer or a medium access control (MAC) layer is basically referred to as a transport block.
  • MAC medium access control
  • HARQ Hybrid Automatic Repeat and reQuest
  • HARQ-ACK Hybrid Automatic Repeat and reQuest
  • the transmitter performing the HARQ operation waits for acknowledgment (ACK) after transmitting data (eg, transport block, codeword).
  • the receiving end performing the HARQ operation sends a positive acknowledgment (ACK) only when data is properly received, and sends a negative acknowledgment (negative ACK, NACK) when an error occurs in the received data.
  • the transmitting end When the transmitting end receives the ACK, it can transmit (new) data, and when it receives the NACK, it can retransmit the data.
  • the BS After the BS transmits scheduling information and data according to the scheduling information, a time delay occurs until ACK/NACK is received from the UE and retransmission data is transmitted. Such a time delay is caused by a channel propagation delay and a time taken for data decoding/encoding. Therefore, when new data is transmitted after the current HARQ process is finished, a gap occurs in data transmission due to a time delay. Accordingly, a plurality of independent HARQ processes are used to prevent gaps in data transmission during the time delay period.
  • the communication device may operate 7 independent HARQ processes to perform data transmission without a gap.
  • UL/DL transmission may be continuously performed while waiting for HARQ feedback for a previous UL/DL transmission.
  • channel state information refers to information that can indicate the quality of a radio channel (or link) formed between the UE and the antenna port.
  • CSI is a channel quality indicator (channel quality indicator, CQI), precoding matrix indicator (PMI), CSI-RS resource indicator (CSI-RS resource indicator, CRI), SSB resource indicator (SSB resource indicator, SSBRI) , may include at least one of a layer indicator (LI), a rank indicator (RI), and a reference signal received power (RSRP).
  • frequency division multiplexing may mean transmitting/receiving signals/channels/users in different frequency resources
  • time division multiplexing is It may mean transmitting/receiving signals/channels/users in different time resources.
  • frequency division duplex refers to a communication method in which uplink communication is performed on an uplink carrier and downlink communication is performed on a downlink carrier linked to the uplink carrier
  • time division Duplex time division duplex, TDD refers to a communication method in which uplink communication and downlink communication are performed by dividing time on the same carrier.
  • UE User Equipment
  • UE User Equipment
  • PDCP Packet Data Convergence Protocol
  • RRC Radio Resource Control
  • S1AP S1 Application Protocol
  • 3GPPP TS 22.125 Unmanned Aerial System support in 3GPP; Stage 1
  • GPRS General Packet Radio Service
  • E-UTRAN E-UTRAN Access Network
  • NAS Non-Access-Stratum
  • EPS Evolved Packet System
  • 3GPP TS 24.302 Access to the 3GPP Evolved Packet Core (EPC) via non-3GPP access networks; Stage 3
  • EPC Evolved Packet Core
  • UE User Equipment
  • PDCP Packet Data Convergence Protocol
  • RRC Radio Resource Control
  • SDAP Service Data Adaptation Protocol
  • 3GPP TS 24.502 Access to the 3GPP 5G Core Network (5GCN) via non-3GPP access networks
  • Provision of limited local operator services allows UEs to access operators who are not authenticated and provide limited local operator services. This need is covered by CFR Chapter 47 B, Part 20, Section 20.3, and CFR, Chapter 47, Chapter 47, Part 1, Chapter 20, Chapter 20, Chapter 20, Section 12 (Resale and Roaming). Based on specified US FCC rules.
  • the ability to access restricted area operator services as mandated by the FCC may be used to provide access to other operator specific restricted area operator services.
  • the service itself is outside the scope of 3GPP. Access to certain local services is entirely under the operator's control.
  • the local service set may be specified by the operator so that no other services are allowed for these UEs.
  • Three examples of limited local operator services are:
  • a limited local operator service can support a variety of use cases.
  • the first example is the temporary manual roaming use case.
  • the end user moves to an area where their home operator does not have a roaming agreement with a local service provider.
  • End-users may contact their local service provider's roaming care services to temporarily arrange services in their area.
  • End Users may not access other Services until this Agreement has been established.
  • Another example of limited local operator service is customer care for subscribers who have questions about their subscription.
  • the end user can access the customer service center of the business operator.
  • the customer care center service can answer questions about the end user.
  • a third example of limited local operator service is access to local service by an unlocked UE that contacts a customer subscription center to initiate a subscription with a network operator.
  • the UE cannot be authenticated in any network until a subscription with the local service provider is established.
  • Operators may choose to provide access to a specific set of limited local operator services. Operators may choose to allow unauthenticated UEs to access these restricted local operator services.
  • local services are not specific to the described access mechanism. Different access mechanisms can be applied to local services.
  • Limited local operator service is an optional feature supported in certain countries.
  • the service requirements for limited local operator services are defined in TS 22.101 [80], and the structural requirements are defined in TS 23.221 [27].
  • Access to restricted local operator services may be granted to UEs in restricted service state by the service network according to local regulations and operator policies.
  • the UE may enter the restricted service state specified in clause 4.3.12.1.
  • RLOS is requested by the UE based on the user's explicit request.
  • the UE When connecting to the network to access the RLOS, the UE shall send a NAS RLOS indication to the MME, and the MME shall proceed with the RLOS attachment procedure described in clause 5.3.2.1.
  • a specific RLOS-APN is configured uniquely to the PLMN.
  • the MME is configured with MME RLOS configuration data applied to the RLOS PDN connection established by the MME upon UE request.
  • the MME RLOS configuration data may include the RLOS APN used to derive the PDN GW, or the MME RLOS configuration data may include the PDN GW that is statically configured for the RLOS APN.
  • the UE in the restricted service state that wants to access the restricted local operator service determines that the cell supports the RLOS service through E-UTRAN through the broadcast indicator of the AS, and then indicates that the attach procedure is for accessing the RLOS.
  • start Networks supporting limited local operator services provide access to these UEs regardless of whether authentication is performed for them and, if so, regardless of the authentication result. If the PLMN does not advertise support for RLOS, the UE SHOULD block an attempt to initiate it for RLOS.
  • Limited local operator service only applies to WB-E-UTRAN.
  • the limited local operator service does not support the PDN connection, inter-RAT mobility and network triggered service request requested by the UE.
  • PDN connection For UEs connected for RLOS, handover between 3GPP and connections other than 3GPP is not supported.
  • Location services do not apply to limited local operator services.
  • the E-UTRAN node may set a broadcast indicator accordingly to indicate that the cell's RLOS UE is not allowed.
  • the mobility restrictions of clause 4.3.5.7 shall not apply to UEs receiving restricted area operator services.
  • the MME shall restrict movement to GERAN and UTRAN, and include GERAN and UTRAN in the handover restriction list.
  • RLOS configuration data including RLOS APN is required for MME, but HRPD or WLAN handover does not apply.
  • the initial QoS value used to establish the RLOS PDN connection is obtained from the MME RLOS configuration data.
  • Dynamic PCC based on the procedure described in TS 23.203 [6] can be used for UEs accessing limited local operator services including voice services.
  • the PCRF When establishing a PDN connection towards a PDN GW and a RLOS APN, according to clause 4.7.5, the PCRF provides QoS parameters to the PDN GW. This includes ARP values reserved for RLOS low-priority local operator services.
  • PCRF ensures that RLOS PDN connections are used only for limited local operator service RLOS IMS sessions.
  • the PCRF rejects the IMS session established over the RLOS PDN connection if the AF (ie, P-CSCF) does not provide the PCRF with a RLOS indication.
  • RLOS is provided by PLMN as a service.
  • the UE and the PLMN must have compatible IP address versions to obtain a RLOS PDN connection.
  • the PDN GW associated with the RLOS APN must support PDN format IPv4 and PDN format IPv6, the IP address assignment of the Serving PLMN is provided in accordance with clause 5.3.1.
  • RLOS Restricted Local Operator Services
  • a roaming user is a roaming user who does not have a roaming agreement or cannot communicate with the roaming user's network.
  • Operator restricted services may also be provided to subscribers of local operators roaming in unrestricted areas, but this is outside the scope of this.
  • RLOS is used only for outgoing services.
  • RLOS is defined only for users connected to the IMS via EPS (see TS 23.401 [70]);
  • P-CSCF P-CSCF
  • I-CSCF I-CSCF
  • S-CSCF S-CSCF
  • Additional functions can be built on to existing functions that support RLOS and non-RLOS IMS services.
  • a dedicated IMS node P/I/S-CSCF that supports only RLOS can be deployed.
  • FIG. 8 shows a registration procedure for a roaming user without a roaming contract with a RLOS IMS home network applied herein.
  • the registration procedure is as follows.
  • the UE After the UE obtains an IP connection (as defined in TS 23.401 [70] for RLOS users), it performs periodic IMS registration, and includes an indication in the registration information indicating that it is a RLOS-related IMS registration.
  • P CSCF is a P-CSCF that supports RLOS.
  • the security check of Article Z.3.3 is selectively performed and based on operator policy.
  • the P-CSCF processes the RLOS user by sending the registration information to the S-CSCF configured in the P-CSCF.
  • the P-CSCF ID for RLOS processing would have been sent to the UE during the attachment procedure including an explicit indication to access the RLOS.
  • steps 3-8 apply.
  • S-CSCF receiving the Register information, based on the RLOS indication, if the subscriber is a roaming user according to the network configuration without roaming consent with the home network, and if the network supports GIBA, Send a 420 reply of the secondary value.
  • the P-CSCF forwards a response of 420 to the UE.
  • the UE initiates a new registration request and does not include an authorization header field.
  • the P-CSCF optionally performs RLOS APN verification in Article Z.3.3, and then sends the registration information to the S-CSCF assigned to the UE.
  • the S-CSCF Upon receiving the registration information, the S-CSCF approves the registration, creates a temporary record for the UE not authenticated with the default service profile, and responds with 200 OK.
  • P-CSCF sends 200 OK to UE.
  • steps 9-10 apply.
  • S-CSCF receiving the Register information responds with a 403 response according to the network configuration as well as the operator configuration (no support for GIBA) based on the subscriber being a roaming user without roaming consent with the home network based on the RLOS indication do.
  • the S-CSCF creates a temporary registration record for an unauthenticated UE with a default service profile.
  • the P-CSCF sends a 403 response to the UE.
  • the P-CSCF creates a temporary registration record for an unauthenticated UE, taking into account that the subscriber is a roaming user without roaming consent with the home network.
  • the UE may initiate an IMS session.
  • the RLOS IMS registration procedure failure scenario is as follows.
  • the UE After the UE obtains an IP connection (as defined in TS 23.401 [70] for RLOS users), it performs periodic IMS registration, and includes in the registration information an indication that this is a RLOS IMS-related registration.
  • P-CSCF is a P-CSCF that supports RLOS. It selectively receives register information and performs RLOS APN verification in Section Z.3.3 based on operator policy. The RLOS indication and the P-CSCF of which the subscriber is its subscriber sends the registration information to the I-CSCF.
  • the I-CSCF queries the HSS for the subscriber S-CSCF. If the received S-CSCF does not support RLOS and the RLOS-related registration I-CSCF re-queries the HSS for the list of S-CSCFs and their functions. The I-CSCF shall use the returned S-CSCF function information to select an S-CSCF that supports RLOS.
  • the S-CSCF assigned to a subscriber may be a non-expired, non-deleted previous registration or RLOS-related registration.
  • I-CSCF transmits register information to the selected S-CSCF.
  • S-CSCF gets authentication information from HSS.
  • the S-CSCF challenges the UE by sending a 401 reply.
  • the I-CSCF forwards the 401 response to the P-CSCF.
  • the P-CSCF forwards a 401 response to the UE.
  • the UE sends a new registration request including authentication information to the P-CSCF.
  • the P-CSCF optionally performs the RLOS APN verification of clause Z.3.3 based on the operator policy, and then transmits the registration information to the I-CSCF.
  • the I-CSCF queries the HSS for the subscriber S-CSCF and receives the S-CSCF name assigned to the UE. If the received S-CSCF does not support RLOS and the RLOS-related registration I-CSCF re-queries the HSS for the list of S-CSCFs and their functions. The I-CSCF shall use the returned S-CSCF function information to select an S-CFCF that supports RLOS.
  • I-CSCF transmits register information to the selected S-CSCF.
  • the S-CSCF verifies the authentication information received by the UE, but did not successfully authenticate the UE. Since this is a RLOS-related IMS registration, the S-CSCF creates a temporary "Unauthenticated Subscriber" registration record for the UE with the default service profile and responds with a 403 response.
  • the I-CSCF sends a 403 response to the P-CSCF.
  • the P-CSCF sends a 403 response to the UE, and creates a temporary "Unauthenticated Subscriber" registration record for the UE.
  • a successful IMS registration is identical to a failed registration with the following exceptions.
  • the S-CSCF successfully authenticates the UE in step 12.
  • the S-CSCF tags the UE registration record as successful in RLOS registration.
  • the S-CSCF updates the HSS with the S-CSCF name assigned to the UE, and downloads and stores the UE profile from the HSS. This step is not performed in the previous case.
  • the UE shall include the RLOS indication in all outgoing sessions.
  • the P-CSCF shall reject the initiating session without such an indication.
  • the S-CSCF shall include the RLOS indication in the charging data related to the IMS session.
  • the S-CSCF shall forward the session initiation request to the telephony application server.
  • the telephony application server shall bypass the outgoing service for all successfully authenticated UEs.
  • the telephony application server can be configured with a different policy (eg destination set) for all of the above registration cases based on the operator policy.
  • the phone application server enforces these policies.
  • the S-CSCF shall include the RLOS indication in the charging data related to the IMS session.
  • the UE When the UE requests a PARLOS connection to the PLMN, the UE may be unauthenticated or in a restricted service state. If the UE is not authenticated or is in limited service state, the serving PLMN will not obtain credentials for the UE from the HSS, and it may be impossible to establish regular NAS and AS contexts. If the NAS and AS security context are not established, the PLMN may not be able to secure NAS and AS communication. Therefore, in the case of a UE accessing the PARLOS portal, a normal procedure for establishing NAS and AS security is impossible. Please note that if the UE is successfully authenticated and the network has established the NAS and AS security context, the UE will not connect to the PARLOS portal for service.
  • the service PLMN may request certain personal information such as the user's name, the user's address or the location of the user who needs the service. For some services, the PLMN in service may also request your credit card information and charge you for the service. When such personal information is transferred, without adequate protection, eavesdroppers can eavesdrop on communications and identify users' personal information. In many countries, transmission of personal data over unprotected communication links is also prohibited by law.
  • UE and MME shall protect NAS signaling for PARLOS service with integrity and confidentiality.
  • UE and eNB must protect AS signaling for PARLOS service with integrity and confidentiality.
  • a large number of malicious and unauthenticated UEs with RLOS connections can exhaust the network resources of the EPS network with additional signaling and traffic generation.
  • An attacker could initiate a DoS attack on an EPS network by simply introducing a number of malicious UEs to initiate RLOS access to the network.
  • the UE must obtain user consent for the use of PARLOS-based services. If the security risk is not sufficiently explained to the user as part of this interaction, the user is likely to be unaware of the security implications of the PARLOS-based service. The man in the middle will be able to use this to respond to PDN session attempts and access full communication.
  • the man in the middle may collect payment information and other information from the user.
  • the UE shall establish RLOS sessions only with authorized networks.
  • the user or application of the UE may depend on:
  • the three main requirement areas for 5G are (1) enhanced mobile broadband (eMBB) area, (2) massive machine type communication (mMTC) area, and (3) high reliability/ultra-low latency communication (URLLC; ultra-reliable and low latency communications).
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC ultra-reliable and low latency communications
  • KPI key performance indicator
  • eMBB focuses on overall improvements in data rates, latency, user density, capacity and coverage of mobile broadband connections. eMBB aims for a throughput of around 10 Gbps. eMBB goes far beyond basic mobile internet access, covering rich interactive work, media and entertainment applications in the cloud or augmented reality. Data is one of the key drivers of 5G, and for the first time in the 5G era, we may not see dedicated voice services. In 5G, voice is simply expected to be processed as an application using the data connection provided by the communication system. The main causes of the increased traffic volume are the increase in content size and the increase in the number of applications requiring high data rates. Streaming services (audio and video), interactive video and mobile Internet connections will become more widely used as more devices connect to the Internet.
  • Cloud storage and applications are rapidly increasing in mobile communication platforms, which can be applied to both work and entertainment.
  • Cloud storage is a special use case that drives the growth of uplink data rates.
  • 5G is also used for remote work on the cloud, requiring much lower end-to-end latency to maintain a good user experience when tactile interfaces are used.
  • cloud gaming and video streaming are another key factor demanding improvements in mobile broadband capabilities.
  • Entertainment is essential on smartphones and tablets anywhere, including in high-mobility environments such as trains, cars and airplanes.
  • Another use example is augmented reality for entertainment and information retrieval.
  • augmented reality requires very low latency and instantaneous amount of data.
  • mMTC is designed to enable communication between a large number of low-cost devices powered by batteries and is intended to support applications such as smart metering, logistics, field and body sensors.
  • mMTC is targeting a battery life of 10 years or so and/or a million devices per square kilometer.
  • mMTC enables the seamless connection of embedded sensors in all fields to form a sensor network, and is one of the most anticipated 5G use cases. Potentially, by 2020, there will be 20.4 billion IoT devices. Smart networks leveraging industrial IoT is one of the areas where 5G will play a major role in enabling smart cities, asset tracking, smart utilities, agriculture and security infrastructure.
  • URLLC enables devices and machines to communicate very reliably, with very low latency and high availability, enabling autonomous vehicle-to-vehicle communication and control, industrial control, factory automation, mission-critical applications such as telesurgery and healthcare, smart grid and public Ideal for safety applications.
  • URLLC aims for a delay on the order of 1 ms.
  • URLLC includes new services that will transform industries through high-reliability/ultra-low-latency links such as remote control of critical infrastructure and autonomous vehicles. This level of reliability and latency is essential for smart grid control, industrial automation, robotics, and drone control and coordination.
  • 5G could complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means of delivering streams rated from hundreds of megabits per second to gigabits per second.
  • FTTH fiber-to-the-home
  • DOCSIS cable-based broadband
  • Such a high speed may be required to deliver TVs with resolutions of 4K or higher (6K, 8K and higher) as well as virtual reality (VR) and augmented reality (AR).
  • VR and AR applications almost include immersive sporting events. Certain applications may require special network settings. For VR games, for example, game companies may need to integrate core servers with network operators' edge network servers to minimize latency.
  • Automotive is expected to be an important new driving force for 5G, with many use cases for mobile communication to vehicles. For example, entertainment for passengers requires both high capacity and high mobile broadband. The reason is that future users continue to expect high-quality connections regardless of their location and speed.
  • Another example of use in the automotive sector is augmented reality dashboards.
  • the augmented reality contrast board allows drivers to identify objects in the dark above what they are seeing through the front window.
  • the augmented reality dashboard superimposes information to inform the driver about the distance and movement of objects.
  • wireless modules will enable communication between vehicles, information exchange between vehicles and supporting infrastructure, and information exchange between automobiles and other connected devices (eg, devices carried by pedestrians).
  • Safety systems can lower the risk of accidents by guiding drivers through alternative courses of action to help them drive safer.
  • the next step will be remote-controlled vehicles or autonomous vehicles.
  • This requires very reliable and very fast communication between different autonomous vehicles and/or between vehicles and infrastructure.
  • autonomous vehicles will perform all driving activities, allowing drivers to focus only on traffic anomalies that the vehicle itself cannot discern.
  • the technological requirements of autonomous vehicles demand ultra-low latency and ultra-fast reliability to increase traffic safety to unattainable levels for humans.
  • Smart cities and smart homes referred to as smart societies, will be embedded as high-density wireless sensor networks as examples of smart networks.
  • a distributed network of intelligent sensors will identify conditions for keeping a city or house cost- and energy-efficient.
  • a similar setup can be performed for each household.
  • Temperature sensors, window and heating controllers, burglar alarms and appliances are all connected wirelessly. Many of these sensors typically require low data rates, low power and low cost.
  • real-time HD video may be required in certain types of devices for surveillance.
  • Smart grids use digital information and communication technologies to interconnect these sensors to gather information and act on it. This information can include supplier and consumer behavior, enabling smart grids to improve efficiency, reliability, economics, sustainability of production and distribution of fuels such as electricity in an automated manner.
  • the smart grid can also be viewed as another low-latency sensor network.
  • the health sector has many applications that can benefit from mobile communications.
  • the communication system may support telemedicine providing clinical care from a remote location. This can help reduce barriers to distance and improve access to consistently unavailable health care services in remote rural areas. It is also used to save lives in critical care and emergency situations.
  • a wireless sensor network based on mobile communication may provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
  • Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the possibility of replacing cables with reconfigurable radio links is an attractive opportunity for many industries. Achieving this, however, requires that wireless connections operate with similar delays, reliability and capacity as cables, and that their management is simplified. Low latency and very low error probability are new requirements that need to be connected with 5G.
  • Logistics and freight tracking are important use cases for mobile communications that use location-based information systems to enable tracking of inventory and packages from anywhere.
  • Logistics and freight tracking use cases typically require low data rates but require wide range and reliable location information.
  • FIG. 10 shows a wireless communication device according to an embodiment of the present invention.
  • a wireless communication system may include a first device 9010 and a second device 9020 .
  • the first device 9010 includes a base station, a network node, a transmitting terminal, a receiving terminal, a wireless device, a wireless communication device, a vehicle, a vehicle equipped with an autonomous driving function, a connected car, a drone (Unmanned Aerial Vehicle, UAV), Artificial Intelligence (AI) Module, Robot, AR (Augmented Reality) Device, VR (Virtual Reality) Device, MR (Mixed Reality) Device, Hologram Device, Public Safety Device, MTC Device, IoT Device, Medical Device, Pin It may be a tech device (or financial device), a security device, a climate/environment device, a device related to 5G services, or other devices related to the 4th industrial revolution field.
  • UAV Unmanned Aerial Vehicle
  • AI Artificial Intelligence
  • Robot Robot
  • AR (Augmented Reality) Device VR (Virtual Reality) Device
  • MR (Mixed Reality) Device Hologram Device
  • Public Safety Device MTC Device
  • IoT Device Medical Device
  • the second device 9020 includes a base station, a network node, a transmitting terminal, a receiving terminal, a wireless device, a wireless communication device, a vehicle, a vehicle equipped with an autonomous driving function, a connected car, a drone (Unmanned Aerial Vehicle, UAV), Artificial Intelligence (AI) Module, Robot, AR (Augmented Reality) Device, VR (Virtual Reality) Device, MR (Mixed Reality) Device, Hologram Device, Public Safety Device, MTC Device, IoT Device, Medical Device, Pin It may be a tech device (or financial device), a security device, a climate/environment device, a device related to 5G services, or other devices related to the 4th industrial revolution field.
  • UAV Unmanned Aerial Vehicle, UAV
  • Artificial Intelligence (AI) Module Robot
  • AR Augmented Reality
  • VR Virtual Reality
  • MR Magned Reality
  • Hologram Device Hologram Device
  • Public Safety Device MTC Device
  • IoT Device Medical Device
  • Pin It may be
  • the terminal includes a mobile phone, a smart phone, a laptop computer, a digital broadcasting terminal, personal digital assistants (PDA), a portable multimedia player (PMP), a navigation system, a slate PC, and a tablet.
  • PDA personal digital assistants
  • PMP portable multimedia player
  • PC tablet PC
  • ultrabook ultrabook
  • wearable device wearable device, for example, a watch-type terminal (smartwatch), glass-type terminal (smart glass), HMD (head mounted display), etc.
  • the HMD may be a display device worn on the head.
  • an HMD may be used to implement VR, AR or MR.
  • the drone may be a flying vehicle that does not have a human and flies by a wireless control signal.
  • the VR device may include a device that implements an object or a background of a virtual world.
  • the AR device may include a device implemented by connecting an object or background of the virtual world to an object or background of the real world.
  • the MR device may include a device that implements a virtual world object or background by fusion with a real world object or background.
  • the hologram device may include a device for realizing a 360-degree stereoscopic image by recording and reproducing stereoscopic information by utilizing an interference phenomenon of light generated by the meeting of two laser beams called holography.
  • the public safety device may include an image relay device or an image device that can be worn on a user's body.
  • the MTC device and the IoT device may be devices that do not require direct human intervention or manipulation.
  • the MTC device and the IoT device may include a smart meter, a bending machine, a thermometer, a smart light bulb, a door lock, or various sensors.
  • a medical device may be a device used for the purpose of diagnosing, treating, alleviating, treating, or preventing a disease.
  • a medical device may be a device used for the purpose of diagnosing, treating, alleviating or correcting an injury or disorder.
  • a medical device may be a device used for the purpose of examining, replacing, or modifying structure or function.
  • the medical device may be a device used for the purpose of controlling pregnancy.
  • the medical device may include a medical device, a surgical device, an (ex vivo) diagnostic device, a hearing aid, or a device for a procedure.
  • the security device may be a device installed to prevent a risk that may occur and maintain safety.
  • the security device may be a camera, CCTV, recorder or black box.
  • the fintech device may be a device capable of providing financial services such as mobile payment.
  • the fintech device may include a payment device or a Point of Sales (POS).
  • the climate/environment device may include a device for monitoring or predicting the climate/environment.
  • the first device 9010 may include at least one or more processors such as a processor 9011 , at least one memory such as a memory 9012 , and at least one transceiver such as a transceiver 9013 .
  • the processor 9011 may perform the functions, procedures, and/or methods described above.
  • the processor 9011 may perform one or more protocols.
  • the processor 9011 may perform one or more layers of an air interface protocol.
  • the memory 9012 is connected to the processor 9011 and may store various types of information and/or commands.
  • the transceiver 9013 may be connected to the processor 9011 and controlled to transmit/receive a wireless signal.
  • the second device 9020 may include at least one processor such as a processor 9021 , at least one memory device such as a memory 9022 , and at least one transceiver such as a transceiver 9023 .
  • the processor 9021 may perform the functions, procedures, and/or methods described above.
  • the processor 9021 may implement one or more protocols.
  • the processor 9021 may implement one or more layers of an air interface protocol.
  • the memory 9022 is connected to the processor 9021 and may store various types of information and/or commands.
  • the transceiver 9023 may be connected to the processor 9021 and may be controlled to transmit/receive a wireless signal.
  • the memory 9012 and/or the memory 9022 may be respectively connected inside or outside the processor 9011 and/or the processor 9021 , and may be connected to another processor through various technologies such as wired or wireless connection. may be connected to
  • the first device 9010 and/or the second device 9020 may have one or more antennas.
  • antenna 9014 and/or antenna 9024 may be configured to transmit and receive wireless signals.
  • FIG. 11 illustrates a block diagram of a network node according to an embodiment of the present invention.
  • FIG. 11 when the base station is divided into a central unit (CU) and a distributed unit (DU), it is a diagram illustrating the network node of FIG. 10 in more detail.
  • CU central unit
  • DU distributed unit
  • base stations W20 and W30 may be connected to the core network W10 , and the base station W30 may be connected to a neighboring base station W20 .
  • the interface between the base stations W20 and W30 and the core network W10 may be referred to as NG, and the interface between the base station W30 and the neighboring base station W20 may be referred to as Xn.
  • the base station W30 may be divided into CUs W32 and DUs W34 and W36. That is, the base station W30 may be hierarchically separated and operated.
  • the CU W32 may be connected to one or more DUs W34 and W36, for example, an interface between the CU W32 and the DUs W34 and W36 may be referred to as F1.
  • the CU (W32) may perform functions of upper layers of the base station, and the DUs (W34, W36) may perform functions of lower layers of the base station.
  • the CU W32 is a radio resource control (RRC), service data adaptation protocol (SDAP), and packet data convergence protocol (PDCP) layer of a base station (eg, gNB) hosting a logical node (logical node)
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • the DUs W34 and W36 may be logical nodes hosting radio link control (RLC), media access control (MAC), and physical (PHY) layers of the base station.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • the CU W32 may be a logical node hosting the RRC and PDCP layers of the base station (eg, en-gNB).
  • One DU (W34, W36) may support one or more cells. One cell can be supported by only one DU (W34, W36).
  • One DU (W34, W36) may be connected to one CU (W32), and by appropriate implementation, one DU (W34, W36) may be connected to a plurality of CUs.
  • FIG. 12 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • FIG. 12 is a diagram illustrating the terminal of FIG. 10 in more detail.
  • the terminal includes a processor (or a digital signal processor (DSP) (Y10), an RF module (or an RF unit) (Y35), and a power management module (Y05). ), antenna (Y40), battery (Y55), display (Y15), keypad (Y20), memory (Y30), SIM card (SIM (Subscriber Identification Module) ) card) (Y25) (this configuration is optional), a speaker (Y45) and a microphone (Y50) may be included.
  • the terminal may also include a single antenna or multiple antennas. can
  • the processor Y10 implements the functions, processes and/or methods proposed above.
  • the layer of the air interface protocol may be implemented by the processor Y10.
  • the memory Y30 is connected to the processor Y10 and stores information related to the operation of the processor Y10.
  • the memory Y30 may be inside or outside the processor Y10, and may be connected to the processor Y10 by various well-known means.
  • the user inputs command information such as a phone number by, for example, pressing (or touching) a button of the keypad Y20 or by voice activation using the microphone Y50.
  • the processor Y10 receives such command information and processes it to perform an appropriate function, such as making a call to a phone number. Operational data may be extracted from the SIM card Y25 or the memory Y30.
  • the processor Y10 may display command information or driving information on the display Y15 for the user to recognize and for convenience.
  • the RF module Y35 is connected to the processor Y10 to transmit and/or receive RF signals.
  • the processor Y10 transmits command information to the RF module Y35 to transmit, for example, a radio signal constituting voice communication data to initiate communication.
  • the RF module Y35 includes a receiver and a transmitter to receive and transmit a radio signal.
  • the antenna Y40 functions to transmit and receive radio signals.
  • the RF module Y35 may forward the signal and convert the signal to baseband for processing by the processor Y10.
  • the processed signal may be converted into audible or readable information output through the speaker Y45.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention provides one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), a processor, a controller, a microcontroller, a microprocessor, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that perform the functions or operations described above.
  • the software code may be stored in the memory and driven by the processor.
  • the memory may be located inside or outside the processor, and may transmit/receive data to and from the processor by various well-known means.
  • FIG. 13 is an exemplary diagram showing the structure of a radio interface protocol (Radio Interface Protocol) in the control plane between the UE and the eNodeB.
  • Radio Interface Protocol Radio Interface Protocol
  • the radio interface protocol is based on the 3GPP radio access network standard.
  • the radio interface protocol is horizontally composed of a physical layer, a data link layer, and a network layer, and vertically a user plane for data information transmission and control. It is divided into a control plane for signal transmission.
  • the protocol layers are L1 (first layer), L2 (second layer), and L3 (third layer) based on the lower three layers of the Open System Interconnection (OSI) reference model widely known in communication systems. ) can be distinguished.
  • OSI Open System Interconnection
  • the first layer provides an information transfer service using a physical channel.
  • the physical layer is connected to an upper medium access control layer through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel. And, data is transferred between different physical layers, that is, between the physical layers of the transmitting side and the receiving side through a physical channel.
  • a physical channel consists of several subframes on the time axis and several sub-carriers on the frequency axis.
  • one sub-frame is composed of a plurality of symbols and a plurality of sub-carriers on the time axis.
  • One subframe is composed of a plurality of resource blocks (Resource Block), and one resource block is composed of a plurality of symbols and a plurality of subcarriers.
  • a Transmission Time Interval (TTI), which is a unit time for data transmission, is 1 ms corresponding to one subframe.
  • the physical channels existing in the physical layer of the transmitting side and the receiving side are a data channel, a Physical Downlink Shared Channel (PDSCH) and a PUSCH (Physical Uplink Shared Channel), and a control channel, a Physical Downlink Control Channel (PDCCH), It can be divided into a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PUCCH Physical Uplink Control Channel
  • the PCFICH transmitted in the first OFDM symbol of the subframe carries a control format indicator (CFI) regarding the number of OFDM symbols used for transmission of control channels in the subframe (ie, the size of the control region).
  • CFI control format indicator
  • the wireless device first receives the CFI on the PCFICH and then monitors the PDCCH.
  • the PCFICH does not use blind decoding and is transmitted through a fixed PCFICH resource of a subframe.
  • the PHICH carries a positive-acknowledgement (ACK)/negative-acknowledgement (NACK) signal for a UL hybrid automatic repeat request (HARQ).
  • ACK positive-acknowledgement
  • NACK negative-acknowledgement
  • HARQ UL hybrid automatic repeat request
  • An ACK/NACK signal for UL (uplink) data on a PUSCH transmitted by a wireless device is transmitted on a PHICH.
  • the PBCH Physical Broadcast Channel
  • the PBCH carries system information essential for a wireless device to communicate with a base station, and the system information transmitted through the PBCH is called a master information block (MIB).
  • MIB master information block
  • SIB system information transmitted on the PDSCH indicated by the PDCCH
  • PDCCH is a resource allocation and transmission format of a downlink-shared channel (DL-SCH), resource allocation information of an uplink shared channel (UL-SCH), paging information on the PCH, system information on the DL-SCH, random access transmitted on the PDSCH Resource allocation of a higher layer control message such as a response, a set of transmission power control commands for individual UEs in an arbitrary UE group, and activation of voice over internet protocol (VoIP) may be carried.
  • a plurality of PDCCHs may be transmitted in the control region, and the UE may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or several consecutive control channel elements (CCEs).
  • CCEs control channel elements
  • the CCE is a logical allocation unit used to provide the PDCCH with a coding rate according to the state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the possible number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rates provided by the CCEs.
  • DCI downlink control information
  • DCI is a PDSCH resource allocation (this is also called a DL grant (downlink grant)), PUSCH resource allocation (this is also called a UL grant (uplink grant)), a set of transmit power control commands for individual UEs in an arbitrary UE group and/or activation of Voice over Internet Protocol (VoIP).
  • PDSCH resource allocation this is also called a DL grant (downlink grant)
  • PUSCH resource allocation this is also called a UL grant (uplink grant)
  • VoIP Voice over Internet Protocol
  • the Medium Access Control (MAC) layer serves to map various logical channels to various transport channels, and is also a logical channel multiplexing layer that maps multiple logical channels to one transport channel. play a role
  • the MAC layer is connected to the RLC layer, which is the upper layer, by a logical channel, and the logical channel is largely divided into a control channel that transmits information in the control plane and a control channel according to the type of transmitted information. It is divided into a traffic channel that transmits user plane information.
  • the radio link control (RLC) layer of the second layer divides and concatenates the data received from the upper layer to adjust the data size so that the lower layer is suitable for data transmission in the radio section perform the role
  • RLC radio link control
  • TM Transparent mode, transparent mode
  • UM Un-acknowledged mode, no response mode
  • AM Acknowledged mode, It provides three operation modes of response mode.
  • the AM RLC performs a retransmission function through an automatic repeat and request (ARQ) function for reliable data transmission.
  • ARQ automatic repeat and request
  • the packet data convergence protocol (PDCP) layer of the second layer is a relatively large IP containing unnecessary control information in order to efficiently transmit an IP packet such as IPv4 or IPv6 in a wireless section with a small bandwidth. It performs a header compression function that reduces the packet header size. This serves to increase the transmission efficiency of the radio section by transmitting only necessary information in the header part of the data.
  • the PDCP layer also performs a security function, which is composed of encryption (Ciphering) to prevent data interception by a third party and integrity protection (Integrity protection) to prevent data manipulation by a third party.
  • the Radio Resource Control (RRC) layer located at the uppermost part of the third layer is defined only in the control plane, and sets (setup), reconfiguration (Re) of radio bearers (Radio Bearer; abbreviated as RB). -Responsible for controlling logical channels, transport channels and physical channels in relation to setting) and release.
  • the RB means a service provided by the second layer for data transfer between the UE and the E-UTRAN.
  • the terminal When there is an RRC connection between the RRC of the terminal and the RRC layer of the radio network, the terminal is in the RRC connected state (Connected mode), otherwise it is in the RRC idle state (Idle mode).
  • the RRC state refers to whether or not the RRC of the UE is logically connected to the RRC of the E-UTRAN. If it is connected, it is called an RRC_CONNECTED state, and if it is not connected, it is called an RRC_IDLE state. Since the UE in the RRC_CONNECTED state has an RRC connection, the E-UTRAN can determine the existence of the UE on a cell-by-cell basis, and thus can effectively control the UE.
  • the E-UTRAN cannot detect the UE's existence, and the core network manages it in a tracking area (TA) unit larger than the cell. That is, the UE in the RRC_IDLE state only detects whether the UE exists in a larger regional unit than the cell, and in order to receive a normal mobile communication service such as voice or data, the UE must transition to the RRC_CONNECTED state.
  • TA tracking area
  • Each TA is identified through a tracking area identity (TAI).
  • the UE may configure the TAI through a tracking area code (TAC), which is information broadcast in a cell.
  • TAC tracking area code
  • the terminal searches for an appropriate cell, establishes an RRC connection in the cell, and registers the terminal information in the core network. After this, the UE stays in the RRC_IDLE state. The terminal staying in the RRC_IDLE state selects (re-)selects a cell as needed, and examines system information or paging information. This is called camping on the cell.
  • the UE that stayed in the RRC_IDLE state needs to establish an RRC connection, it establishes an RRC connection with the RRC of the E-UTRAN through an RRC connection procedure and transitions to the RRC_CONNECTED state.
  • RRC_CONNECTED state There are several cases in which the terminal in the RRC_IDLE state needs to establish an RRC connection. For example, when uplink data transmission is required due to a user's call attempt, or when a paging signal is received from the E-UTRAN. and sending a response message to it.
  • the NAS (Non-Access Stratum) layer performs functions such as session management and mobility management.
  • the NAS layer is divided into a NAS entity for MM (Mobility Management) and a NAS entity for SM (Session Management).
  • the NAS entity for MM provides the following general functions.
  • NAS procedures related to AMF including the following.
  • AMF supports the following functions.
  • the NAS entity for SM performs session management between the UE and the SMF.
  • SM signaling messages are processed, ie, generated and processed in the NAS-SM layer of the UE and SMF.
  • the content of the SM signaling message is not interpreted by the AMF.
  • the NAS entity for MM creates a NAS-MM message that derives how and where to forward the SM signaling message with a security header indicating the NAS transmission of the SM signaling, additional information about the receiving NAS-MM.
  • the NAS entity for SM Upon reception of SM signaling, the NAS entity for SM performs an integrity check of the NAS-MM message, and interprets additional information to derive a method and a place to derive the SM signaling message.
  • the RRC layer, the RLC layer, the MAC layer, and the PHY layer located below the NAS layer are collectively referred to as an access layer (Access Stratum: AS).
  • a separate RLOS security server is used to check whether the UE is connected to a normal 3GPP network.
  • a general user account must exist on this server (User ID and Password, etc.), and the UE securely stores the server certificate and URL from this server (it must be stored in a secure space in the USIM and ME).
  • FIG. 14 illustrates a 3GPP network confirmation procedure for a RLOS service of a UE according to an embodiment of the present specification.
  • a procedure for confirming the 3GPP network accessed by the UE to receive the RLOS service is shown in FIG. 14 .
  • An attach or registration procedure for RLOS is performed between the UE and the 3GPP system (refer to 3GPP TS 23.401, TS 23.228, etc.).
  • 3GPP TS 23.401, TS 23.228, etc. By including the URL of the RLOS Security Server as an option, you can check whether access to the server is possible.
  • the UE has a Serving network ID, a UE ID (IMSI if there is IMSI, IMEI depending on settings or not), User ID of the RLOS security server account, Cell ID, and location information obtained through GPS, etc. , the current date and time, and the randomly generated nonce are all encrypted with the public key of the RLOS security server received in advance and transmitted to the RLOS security server.
  • Public key cryptography can use well-known secure algorithms such as RSA and ECIES.
  • the RLOS security server decrypts the encrypted data with the private key corresponding to the public key.
  • step 2. optionally, the RLOS security server requests a location inquiry along with the UE ID to the 3GPP network that delivered the data in step 2.
  • step 3. optionally, the 3GPP network retrieves the UE ID from the list of subscribers temporarily created without authentication for RLOS, inquires which cell or region the UE is currently registered in, and returns the information to the RLOS security server. do.
  • step 4. the RLOS security server checks whether the location information received from the 3GPP network matches the location information received from the UE.
  • step 5 the RLOS security server succeeds in decrypting in step 2, and if the time is within the specified range with the current time, the UE ID, the current time, and the low significant bits half of the nonce received from the UE are used for signing. Signed with the private key and delivered to the UE (the corresponding certificate must have been delivered to the UE in advance). If the location information inquiry of 3 or 4 is selectively performed, the signed value is transmitted to the UE only when the location information matches, and if the location information does not match, a failure result is transmitted.
  • step 6 the UE checks whether the signed value matches the values and the current time delivered in step 2, and whether the signature is correct. If all verification is completed normally, the 3GPP network providing the RLOS has a network ID and a cell ID. It can be seen that is correct. If not, it may be connected to the 3GPP network spoofed for attack, so the RLOS connection is stopped.
  • the procedure of FIG. 14 assumes that the connection to the 3GPP network for the RLOS service is once completed, and as shown in FIG. 15, it is also possible to perform step 2 of FIG. 14 from the time when uplink data can be used for the first time. .
  • FIG. 15 illustrates a case in which a procedure for confirming a 3GPP network through the first uplink data is performed before RLOS connection establishment is completed.
  • FIG. 16 shows an example of a case in which the procedure of FIG. 15 is performed through an IMS service.
  • step 1 After the UE obtains IP connectivity, during the registration procedure with the P-SCSF (step 1), during the policy check with the PCRF, the permission of accessing the RLOS security server URL is checked (step 2), and if there is no problem here It connects to an external network through I-SCSF and performs the procedure shown in Figs. 14 or 15 through the RLOS security server (steps 3 to 11).
  • the user's personal questions and answers are stored in the RLOS security server in order to directly obtain the user's confidence without relying solely on the UE device.
  • the questions are "Where did you first enter the elementary school?", "The second overseas travel destination?" It is more preferable if it is information that cannot be known from general personal details such as. It is more preferable to register questions and answers in a device other than the UE (eg, other UE or PC), and store only the questions in a way that transmits only questions to devices that will use RLOS.
  • the procedure for storing questions in the device may be possible, for example, by accessing and downloading the one-time URL provided by the RLOS security server from the device.
  • FIG. 17 illustrates a procedure for confirming the 3GPP Network and Security Server for the RLOS service of the UE according to the present specification.
  • a procedure for confirming a 3GPP network accessed by the UE to receive the RLOS service is shown in FIG. 17 .
  • step 1 an attach or registration procedure for RLOS is performed between the UE and the 3GPP system (refer to 3GPP TS 23.401, TS 23.228, etc.).
  • 3GPP TS 23.401, TS 23.228, etc. By including the URL of the RLOS Security Server as an option, you can check whether access to the server is possible.
  • the UE has a Serving network ID, a UE ID (IMSI if there is an IMSI, or IMEI depending on the setting), User ID of the RLOS security server account, Cell ID, location information obtained through GPS, etc., current date and time, the randomly generated nonce, and the personal information question selected by the user are all encrypted with the public key of the RLOS security server received in advance and sent to the RLOS security server.
  • Public key cryptography can use well-known secure algorithms such as RSA and ECIES.
  • the RLOS security server decrypts the encrypted data with the private key corresponding to the public key.
  • a personal information question may be a sentence of the question itself, or this code if a code has been previously assigned to the questions by the RLOS security server (simply, it may be a sequence number indicating the sequence) .
  • FIG. 20 shows a screen in which the user can confirm the procedure for connecting to the RLOS security server to confirm the 3GPP network and the RLOS security server and to stop if necessary.
  • step 3 optionally, the RLOS security server requests a location inquiry along with the UE ID to the 3GPP network that delivered the data in step 2.
  • the 3GPP network retrieves the UE ID from the list of subscribers temporarily created for RLOS without authentication, inquires which cell or region the UE is currently registered in, and returns the information to the RLOS security server. .
  • step 5 the RLOS security server checks whether the location information received from the 3GPP network matches the location information received from the UE.
  • step 6 the RLOS security server succeeds in decrypting in step 2, and if the time is within a predetermined range with the current time, the UE ID, the current time, and the lower (low significant bits) half of the nonce received from the UE, and the individual
  • the answer to the information question is signed with the private key for signing and delivered to the UE (the corresponding certificate must be delivered to the UE in advance). If the location information inquiry of 3 or 4 is selectively performed, the signed value is transmitted to the UE only when the location information matches, and if the location information does not match, a failure result is transmitted.
  • step 7 the UE checks whether the signed value matches the values and the current time transmitted in step 2, and whether the signature is correct. Also, check that the answers to the questions you have chosen are correct.
  • FIG. 21 shows a screen in which the user directly confirms such an answer.
  • the UE may stop the RLOS service connection.
  • the answer comes as a hash result value instead of as text
  • the user enters the answer and hashes it, compares it with the signed hash value and checks if it matches. If all checks are completed normally, it can be seen that the network ID and cell ID of the 3GPP network providing RLOS are correct.
  • the UE may display 3GPP network verification through the RLOS server and verification results 2201 and 2202 of the security server through the display.
  • the answer to the security question is passed to the code to indicate the UE to compare with the user input.
  • the user can directly check whether at least the connection to the RLOS security server is connected to the RLOS security server, in addition to checking the 3GPP network, without completely relying on the verification procedure on the UE device. .
  • FIG. 18 a procedure for 3GPP network verification without maintaining a public key structure with the RLOS security server is shown in FIG. 18 .
  • the user directly checks whether the password registered by the RLOS security server matches, and the server can check the 3GPP network instead of the user.
  • the procedure is specifically as follows.
  • step 1 an attach or registration procedure for RLOS is performed between the UE and the 3GPP system (refer to 3GPP TS 23.401, TS 23.228, etc.).
  • 3GPP TS 23.401, TS 23.228, etc. By including the URL of the RLOS Security Server as an option, you can check whether access to the server is possible.
  • the UE has a Serving network ID, a UE ID (IMSI if there is an IMSI, or IMEI depending on the setting), User ID of the RLOS security server account, Cell ID, location information obtained through GPS, etc., current date and time, and randomly generated nonce1 are delivered to the RLOS security server.
  • IMSI IMSI if there is an IMSI, or IMEI depending on the setting
  • Cell ID Cell ID
  • location information obtained through GPS, etc. current date and time
  • randomly generated nonce1 are delivered to the RLOS security server.
  • the user enters the pre-registered password for the RLOS security server, and passes the hash result value along with nonce1.
  • step 3 optionally, the RLOS security server requests a location inquiry along with the UE ID to the 3GPP network that delivered the data in step 2.
  • the 3GPP network retrieves the UE ID from the list of subscribers temporarily created for RLOS without authentication, inquires which cell or region the UE is currently registered in, and returns the information to the RLOS security server. .
  • step 5 the RLOS security server checks whether the location information received from the 3GPP network matches the location information received from the UE.
  • step 6 when the time received in step 2 is within a predetermined range with the current time, and optionally, when the location information obtained in steps 3 to 4 matches the value delivered in step 2 or is within a valid range , hash by adding nonce1 received in step 2 to the value to which hash is applied by combining with random nonce2, which is the storage type of password stored by the user when registering password in the RLOS security server in advance.
  • nonce1 received in step 2
  • random nonce2 which is the storage type of password stored by the user when registering password in the RLOS security server in advance.
  • the value, nonce1, and time are signed and delivered to the UE.
  • nonce 2 and newly randomly generated nonce3 are signed and delivered.
  • step 7 the hash is applied again to the nonce2 received by the UE, along with the value to which the hash is applied along with the password, and the nonce1 and time transmitted in 2, and check whether the result matches the received value. If they match, the RLOS security server has the registered password, and it can be regarded as confirming the 3GPP network.
  • the UE may display a screen 2301 for receiving a user input of a password to confirm the RLOS security server, and display a result 2302 of checking whether the server's password storage value matches. there is.
  • step 8 (optional) if it is confirmed as a normal value to match in step 7, the UE applies the hash with the nonce2 received in step 7 to the password, and hashes it with the nonce3 again to the RLOS security server transmit
  • step 9 the RLOS security server hashes the stored password and the hash of nonce2 by combining nonce3, and checks whether the result matches the value received from the UE in step 8, and checks whether the UE is correct. to complete the procedure.
  • Steps 8 to 9 of FIG. 18 are additional measures for the RLOS security server to check whether the UE has correctly entered the pre-registered password from the user. If these values do not match, the 3GPP network has a security problem with the UE. and take measures against possible password theft for the user.
  • the UE via display 1901 "Choose a RLOS security question.” And a plurality of questions may be displayed as a button.
  • FIG. 20 shows a screen showing a process of connecting a RLOS security server according to the present specification.
  • the UE via the display 2001 "Connecting to the RLOS security server, URL: https://a.b.c.” and a "Cancel" button.
  • 24 is a flowchart illustrating a method for a UE to indicate whether a network is authentic or not based on a user's selection input according to an embodiment of the present specification.
  • the UE may perform a RLOS connection procedure to the network (2401).
  • the UE may transmit an authentication request including connection state information between the UE and the network to a server in which information related to a user account of the UE is stored ( S2403 ).
  • the UE may receive an authentication response including authentication information for the network generated by the server based on the connection state information from the server (S2405).
  • the UE may display the RLOS security question through the display, and obtain an answer to the RLOS security question from the user through the display (S2407).
  • the UE may determine the authenticity of the network based on the answer and authentication information (S2409).
  • the authentication information is generated based on a result of comparing the first location information of the UE obtained from the network and the second location information of the UE included in the connection state information.
  • the wireless communication technology implemented in the wireless device 100 of the present specification may include a narrowband Internet of Things for low-power communication as well as LTE, NR, and 6G.
  • NB-IoT technology may be an example of LPWAN (Low Power Wide Area Network) technology, and may be implemented in standards such as LTE Cat NB1 and/or LTE Cat NB2, and is limited to the above-mentioned names. not.
  • the wireless communication technology implemented in the wireless device 100 of the present specification may perform communication based on LTE-M technology.
  • the LTE-M technology may be an example of an LPWAN technology, and may be called various names such as enhanced machine type communication (eMTC).
  • eMTC enhanced machine type communication
  • LTE-M technology is 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL (non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, and/or 7) may be implemented in at least one of various standards such as LTE M, and is not limited to the above-described name.
  • the wireless communication technology implemented in the wireless device 100 of the present specification is at least one of ZigBee, Bluetooth, and Low Power Wide Area Network (LPWAN) in consideration of low power communication. may include, and is not limited to the above-mentioned names.
  • the ZigBee technology can create PAN (personal area networks) related to small/low-power digital communication based on various standards such as IEEE 802.15.4, and can be called by various names.
  • the above-described specification can be implemented as computer-readable code on a medium in which a program is recorded.
  • the computer-readable medium includes all types of recording devices in which data readable by a computer system is stored. Examples of computer-readable media include Hard Disk Drive (HDD), Solid State Disk (SSD), Silicon Disk Drive (SDD), ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • HDD Hard Disk Drive
  • SSD Solid State Disk
  • SDD Silicon Disk Drive
  • ROM Read Only Memory
  • RAM Compact Disk Drive
  • CD-ROM Compact Disk Read Only Memory
  • magnetic tape floppy disk
  • optical data storage device etc.
  • carrier wave eg, transmission over the Internet

Abstract

According to one aspect of the present specification, a restricted local operator services (RLOS) connection procedure is performed on a network, an authentication request including information about a connection state between a UE and the network is transmitted to a server in which information related to the UE's user account is stored, an authentication response including authentication information regarding the network is received from the server, the authentication information being generated by the server on the basis of the information about the connection state, an RLOS security question is displayed through a display, an answer to the RLOS security question is obtained from a user through the display, and the authenticity of the network is determined on the basis of the answer and the authentication information.

Description

무선 통신 시스템에서 단말이 사용자의 선택 입력에 기반하여 네트워크의 진위 여부를 표시하는 방법 및 이를 위한 장치Method and apparatus for displaying network authenticity by a terminal based on a user's selection input in a wireless communication system
본 명세서는 무선 통신 시스템에서 단말이 사용자의 선택 입력을 수신하고, 수신된 사용자 선택 입력에 기반하여 네트워크의 진위 여부를 판단하는 방법 및 이를 위한 장치이다.The present specification provides a method and an apparatus therefor in which a terminal receives a user's selection input in a wireless communication system and determines whether a network is authentic or not based on the received user's selection input.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.Wireless communication systems are being widely deployed to provide various types of communication services such as voice and data. In general, a wireless communication system is a multiple access system that can support communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.). Examples of the multiple access system include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, and a single carrier frequency (SC-FDMA) system. There is a division multiple access) system, a multi carrier frequency division multiple access (MC-FDMA) system, and the like.
기기 간(Machine-to-Machine, M2M) 통신과, 높은 데이터 전송량을 요구하는 스마트폰, 태블릿 PC 등의 다양한 장치 및 기술이 출현 및 보급되고 있다. 이에 따라, 셀룰러 네트워크에서 처리될 것이 요구되는 데이터 양이 매우 빠르게 증가하고 있다. 이와 같이 빠르게 증가하는 데이터 처리 요구량을 만족시키기 위해, 더 많은 주파수 대역을 효율적으로 사용하기 위한 반송파 집성(carrier aggregation) 기술, 인지무선(cognitive radio) 기술 등과, 한정된 주파수 내에서 전송되는 데이터 용량을 높이기 위한 다중 안테나 기술, 다중 기지국 협력 기술 등이 발전하고 있다.Various devices and technologies, such as smartphones and tablet PCs, which require machine-to-machine (M2M) communication and high data transfer rates, are emerging and disseminated. Accordingly, the amount of data required to be processed in a cellular network is increasing very rapidly. In order to satisfy such rapidly increasing data processing requirements, carrier aggregation technology, cognitive radio technology, etc., to efficiently use more frequency bands, increase the data capacity transmitted within a limited frequency. For multi-antenna technology, multi-base station cooperation technology, etc. are developing.
한편, 이동 통신 사업자는 특수한 상황에서의 고객의 편의를 위해서 또는 지역 법규에 따라서, 가입자 또는 UE를 인증하는 정상적인 절차 (3GPP UE authentication procedure) 없이 미리 정해진 음성이나 데이터 서비스를 제한적으로 제공할 수 있다. 이를 3GPP 시스템을 통해서 표준적으로 제공하기 위해서 규정한 것이 RLOS (Restricted Local Operator Services)이다. On the other hand, a mobile communication service provider may provide a predetermined voice or data service limitedly without a normal procedure for authenticating a subscriber or UE (3GPP UE authentication procedure) for the convenience of customers in special situations or according to local regulations. RLOS (Restricted Local Operator Services) is defined to provide this as a standard through the 3GPP system.
3GPP network이 UE의 가입에 대한 정상적인 인증 절차를 수행하지 않고 망 등록이나 서비스 요청 절차를 허용하고 처리하는 경우, 3GPP network 입장에서는 제한적으로 필요한 서비스(예를 들면, USIM 또는 USIM이 저장된 단말에 문제가 있을 경우 사업자 고객센터에만 연결시켜주는 서비스 등) 만 제공하여 망의 자원을 부당하게 악용하는 것을 제한시킬 수 있다(연결 시간이나 데이터 속도나 양의 제한, 연결할 수 있는 범위나 서비스의 제약 등). 하지만, 이 경우, UE 또는 UE의 사용자의 입장에서는 정상적인 3GPP의 UE 인증 절차에서 수행되는 UE가 network을 인증하는 절차를 거치지 않은 채로 음성이나 데이터 연결을 통해서 사용자의 개인 정보나 민감한 정보가 전달될 수 있는 위험이 있다.If the 3GPP network permits and processes the network registration or service request procedure without performing the normal authentication procedure for UE subscription, the 3GPP network requires limited services (eg, USIM or the terminal in which the USIM is stored. If there is, it can limit the unreasonable abuse of network resources by providing only a service that connects only to the operator's customer center (restrictions on connection time or data speed or amount, restrictions on the range or service that can be connected, etc.). However, in this case, from the perspective of the UE or the user of the UE, the user's personal information or sensitive information may be transmitted through voice or data connection without the UE going through the network authentication procedure performed in the normal 3GPP UE authentication procedure. there is a risk
즉, UE가 접속하는 3GPP 통신망이 가입된 홈 네트워크이거나 홈 네트워크와 로밍 협약이 되어 있는 다른 네트워크 인지 UE가 안전하게 확인할 수 있는 3GPP 시스템의 인증 절차가 RLOS에는 생략되기 때문에, 악의적인 가짜 기지국이나 망이 이를 악용하지 못하도록 하는 대책이 필요하다. 제한된 서비스 중에 특정 서비스들은 TLS를 통해 데이터 통신을 보호하고 서버의 Server certificate을 UE가 확인하는 방법으로 그 중간에 있는 3GPP Access Network이나 Core network에 사용자 데이터가 유출되는 것을 막을 수 있으나, 그렇지 못한 일반적인 웹서버나 음성 통화 등의 경우에는 별도의 보호 방법이 필요하다.In other words, since the 3GPP system authentication procedure that the UE can safely check whether the 3GPP communication network to which the UE is connected is a subscribed home network or another network that has a roaming agreement with the home network is omitted in the RLOS, a malicious fake base station or network Measures must be taken to prevent it from being misused. Among the limited services, certain services protect data communication through TLS and the UE verifies the server certificate of the server to prevent leakage of user data to the 3GPP Access Network or Core network in the middle. In the case of a server or voice call, a separate protection method is required.
본 명세서의 목적은, 단말 입장에서 RLOS 접근/등록한 Serving Network에 데이터를 보내기 전 보안성을 확보하기 위한 방법을 제안한다.The purpose of the present specification is to propose a method for securing security before sending data to the Serving Network that has been accessed/registered from the RLOS from the terminal point of view.
또한, 본 명세서의 목적은, RLOS 서비스를 제공하는 3GPP Network(Serving Network)의 진위 여부를 판단하기 위한 방법을 제안한다. In addition, an object of the present specification is to propose a method for determining the authenticity of a 3GPP Network (Serving Network) that provides a RLOS service.
본 명세서가 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 이하의 발명의 상세한 설명으로부터 본 명세서가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved by this specification are not limited to the technical problems mentioned above, and other technical problems not mentioned are clear to those of ordinary skill in the art to which this specification belongs from the detailed description of the invention below. can be understood clearly.
본 명세서의 하나의 실시예에 따른 무선 통신 시스템에서 UE(User Equipment)가 사용자 입력에 기반하여 네트워크(Network)의 진위 여부를 판단하는 방법에 있어서, 상기 네트워크에 RLOS(Restricted Local Operator Services) 연결 절차를 수행하는 단계; 상기 UE의 사용자 계정과 관련된 정보가 저장된 서버로 상기 UE와 상기 네트워크 사이의 연결 상태 정보를 포함하는 인증 요청을 전송하는 단계; 상기 서버에 의해 상기 연결 상태 정보에 기반하여 생성된 상기 네트워크에 대한 인증 정보를 포함하는 인증 응답을 상기 서버로부터 수신하는 단계; RLOS 보안 질문을 디스플레이를 통해 표시하는 단계; 사용자로부터 상기 디스플레이를 통해 상기 RLOS 보안 질문에 대한 답변을 획득하는 단계; 상기 답변 및 상기 인증 정보에 기반하여 상기 네트워크의 진위 여부를 판단하는 단계;를 포함할 수 있다.In a method for a UE (User Equipment) to determine the authenticity of a network based on a user input in a wireless communication system according to an embodiment of the present specification, a Restricted Local Operator Services (RLOS) connection procedure to the network performing a; transmitting an authentication request including connection state information between the UE and the network to a server in which information related to a user account of the UE is stored; receiving an authentication response including authentication information for the network generated by the server based on the connection state information from the server; presenting the RLOS security question through a display; obtaining an answer to the RLOS security question from a user via the display; and determining whether the network is authentic or not based on the answer and the authentication information.
또한, 상기 인증 정보는, 상기 네트워크로부터 획득한 상기 UE의 제1 위치 정보 및 상기 연결 상태 정보에 포함된 상기 UE의 제2 위치 정보를 비교한 결과에 기반하여 생성되는 것을 특징으로 할 수 있다. In addition, the authentication information may be generated based on a result of comparing the first location information of the UE obtained from the network and the second location information of the UE included in the connection state information.
또한, 상기 연결 상태 정보는, 상기 네트워크의 ID, 상기 UE의 ID, 상기 사용자 계정 ID, 상기 UE의 위치 정보, 상기 연결 절차가 수행된 시간 정보, 제1 난수 정보 중 적어도 하나를 포함하는 것을 특징으로 할 수 있다. In addition, the connection state information includes at least one of an ID of the network, an ID of the UE, the user account ID, location information of the UE, time information at which the connection procedure is performed, and first random number information. can be done with
또한, 상기 인증 요청은 상기 서버로부터 미리 획득한 공개키로 상기 UE에 의해 암호화되며, 상기 인증 응답은 상기 공개키에 대응되는 비밀키로 상기 서버에 의해 복호화되는 것을 특징으로 할 수 있다. In addition, the authentication request may be encrypted by the UE with a public key obtained in advance from the server, and the authentication response may be decrypted by the server with a private key corresponding to the public key.
또한, 상기 인증 요청은 미리 설정된 질문을 포함하며, 상기 진위 여부를 판단하는 단계는, 상기 인증 응답에 포함된 답변이 상기 미리 설정된 질문에 매칭되는지 여부에 기반하여 상기 네트워크에 대한 진위 여부를 판단하는 것을 특징으로 할 수 있다. In addition, the authentication request includes a preset question, and the step of determining whether the authenticity is authenticity may include determining the authenticity of the network based on whether an answer included in the authentication response matches the preset question can be characterized as
또한, 상기 답변과 미리 저장된 인증 답변을 비교한 결과에 기반하여 상기 네트워크의 진위 여부를 판단하는 것을 특징으로 할 수 있다. In addition, it may be characterized in that the authenticity of the network is determined based on a result of comparing the answer with the previously stored authentication answer.
또한, 상기 인증 답변을 상기 디스플레이 상에 표시하는 단계를 더 포함하는 것을 특징으로 할 수 있다. The method may further include displaying the authentication answer on the display.
또한, 상기 디스플레이를 통해 RLOS 보안 서버 연결 과정을 나타내는 화면을 표시하는 단계를 더 포함하는 것을 특징으로 할 수 있다. The method may further include displaying a screen indicating a RLOS security server connection process through the display.
또한, 상기 디스플레이를 통해 상기 RLOS 보안 질문에 대한 답변을 표시하는 단계를 더 포함하는 것을 특징으로 할 수 있다. The method may further include displaying an answer to the RLOS security question through the display.
본 명세서의 실시예에 따르면, 악의적인 가짜 Serving 기지국이나 네트워크를 판별할 수 있다는 장점이 있다. According to the embodiment of the present specification, there is an advantage of being able to determine a malicious fake serving base station or network.
또한, 본 명세서의 실시예에 따르면, 위치 정보 및/또는 UE(단말)의 식별정보(ID)를 추가로 이용하여 등록지역 외의 허가되지 않은 지역에서 UE와 연결된 가짜가 기지국을 판별할 수 있다. In addition, according to the embodiment of the present specification, it is possible to determine a fake base station connected to the UE in an unauthorized area other than the registration area by additionally using the location information and/or identification information (ID) of the UE (terminal).
본 명세서에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 명세서가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects obtainable in the present specification are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those of ordinary skill in the art to which this specification belongs from the description below. .
도 1은 본 명세서의 일 실시 예에 따른 AI 장치를 나타낸다.1 shows an AI device according to an embodiment of the present specification.
도 2는 본 명세서의 일 실시 예에 따른 AI 서버를 나타낸다.2 shows an AI server according to an embodiment of the present specification.
도 3은 본 명세서의 일 실시 예에 따른 AI 시스템을 나타낸다.3 shows an AI system according to an embodiment of the present specification.
도 4은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.4 is a diagram illustrating a schematic structure of an Evolved Packet System (EPS) including an Evolved Packet Core (EPC).
도 5는 본 명세서가 적용될 수 있는 E-UTRAN(evolved universal terrestrial radio access network)의 네트워크 구조의 예시도이다.5 is an exemplary diagram of a network structure of an evolved universal terrestrial radio access network (E-UTRAN) to which this specification can be applied.
도 6은 일반적인 NR-RAN의 아키텍쳐를 예시하는 도면이다.6 is a diagram illustrating an architecture of a general NR-RAN.
도 7은 5G의 일반적인 아키텍쳐의 예를 보여주고 있다. 7 shows an example of a general architecture of 5G.
도 8은 본 명세서에 적용되는 RLOS IMS 홈 네트워크와의 로밍 계약 없이 로밍 사용자를 위한 등록 절차를 나타낸다. 8 shows a registration procedure for a roaming user without a roaming contract with a RLOS IMS home network applied herein.
도 9는 본 명세서에 적용되는 RLOS IMS 등록 절차 실패 예를 도시한다. 9 shows an example of failure of the RLOS IMS registration procedure applied to the present specification.
도 10은 본 발명의 일 실시 예에 따른 무선 통신 장치를 나타낸다.10 shows a wireless communication device according to an embodiment of the present invention.
도 11은 본 발명의 일 실시 예에 따른 네트워크 노드의 블록 구성도를 예시한다.11 illustrates a block diagram of a network node according to an embodiment of the present invention.
도 12는 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.12 illustrates a block diagram of a communication device according to an embodiment of the present invention.
도 13는 UE과 eNodeB 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이다.13 is an exemplary diagram showing the structure of a radio interface protocol (Radio Interface Protocol) in the control plane between the UE and the eNodeB.
도 14는 본 명세서의 실시예에 다른 UE의 RLOS 서비스를 위한 3GPP Network 확인 절차를 도시한다. 14 illustrates a 3GPP network confirmation procedure for a RLOS service of a UE according to an embodiment of the present specification.
도 15는 RLOS 연결 설정이 완료되기 전에 첫번째 uplink data를 통해서 3GPP network을 확인하는 절차를 수행하는 경우를 도시한다. 15 illustrates a case in which a procedure for confirming a 3GPP network through the first uplink data is performed before RLOS connection establishment is completed.
도 16는 위 도 15의 절차가 IMS 서비스를 통해 수행되는 경우의 예를 도시한다.FIG. 16 shows an example of a case in which the procedure of FIG. 15 is performed through an IMS service.
도 17은 본 명세서에 따라 UE의 RLOS 서비스를 위한 3GPP Network 확인 및 Security Server를 확인하는 절차를 도시한다. 17 illustrates a procedure for confirming the 3GPP Network and Security Server for the RLOS service of the UE according to the present specification.
도 18은 본 명세서에 따라 공개키 구조 없이 RLOS 서비스를 위한 3GPP network을 확인하는 절차를 도시한다. 18 illustrates a procedure for confirming a 3GPP network for a RLOS service without a public key structure according to the present specification.
도 19는 본 명세서에 따라 RLOS 보안 서버 연결을 통한 3GPP 네트워크 확인 절차 화면을 도시한다. 19 shows a 3GPP network verification procedure screen through a RLOS secure server connection according to the present specification.
도 21은 이러한 답변을 사용자가 직접 확인하는 화면을 도시한다.21 shows a screen in which the user directly confirms such an answer.
도 22는 답변이 코드로 온 경우에 대해서 답변의 사용자 입력을 통해 일치 여부를 확인하는 경우를 보여준다. 22 shows a case in which a match is checked through a user input of an answer with respect to a case in which an answer comes as a code.
도 23은 이러한 패스워드 일치에 대한 결과를 사용자가 확인하는 화면을 보여준다.23 shows a screen in which the user confirms the result of the password matching.
도 24은 본 명세서의 실시예에 따라 UE가 사용자의 선택 입력에 기반하여 네트워크의 진위 여부를 표시하는 방법을 나타낸 흐름도이다. 24 is a flowchart illustrating a method for a UE to indicate whether a network is authentic or not based on a user's selection input according to an embodiment of the present specification.
본 명세서에서 사용되는 용어는 본 명세서에서의 기능을 고려하면서 허용한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 명세서에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 명세서의 전반에 걸친 내용을 토대로 정의되어야 한다.The terms used in the present specification have been selected while considering the functions in the present specification and are currently widely used general terms, which may vary depending on the intention or precedent of a person skilled in the art, the emergence of new technology, and the like. In addition, in a specific case, there is a term arbitrarily selected by the applicant, and in this case, the meaning will be described in detail in the description of the corresponding invention. Therefore, the terms used in this specification should be defined based on the meaning of the terms and the contents of the entire specification, rather than the simple names of terms.
이하의 실시 예들은 본 명세서의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 명세서의 실시 예를 구성할 수도 있다. 본 명세서의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다.The following embodiments combine elements and features of the present specification in a predetermined form. Each component or feature may be considered optional unless explicitly stated otherwise. Each component or feature may be implemented in a form that is not combined with other components or features. In addition, some elements and/or features may be combined to constitute an embodiment of the present specification. The order of operations described in the embodiments of the present specification may be changed. Some configurations or features of one embodiment may be included in other embodiments, or may be replaced with corresponding configurations or features of other embodiments.
도면에 대한 설명에서, 본 명세서의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.In the description of the drawings, procedures or steps that may obscure the gist of the present specification are not described, and procedures or steps that can be understood at the level of a person skilled in the art are also not described.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 명세서를 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.Throughout the specification, when a part is said to "comprising or including" a certain component, it does not exclude other components unless otherwise stated, meaning that other components may be further included. do. In addition, terms such as "...unit", "...group", and "module" described in the specification mean a unit that processes at least one function or operation, which is hardware or software or a combination of hardware and software. can be implemented as Also, "a or an", "one", "the", and like related terms are used differently herein in the context of describing this specification (especially in the context of the claims that follow). Unless indicated or clearly contradicted by context, it may be used in a sense including both the singular and the plural.
본 명세서의 실시 예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP 시스템, 3GPP LTE 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 명세서의 실시 예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다.Embodiments of the present specification may be supported by standard documents disclosed in at least one of the IEEE 802.xx system, the 3GPP system, the 3GPP LTE system, and the 3GPP2 system, which are wireless access systems. That is, obvious steps or parts not described in the embodiments of the present specification may be described with reference to the above documents.
또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다. 예를 들어, 본 명세서는 3GPP TS 36.211, 3GPP TS 36.213, 3GPP TS 36.321, 3GPP TS 36.322, 3GPP TS 36.323, 3GPP TS 36.331, 3GPP TS 23.203, 3GPP TS 23.401, 3GPP TS 24.301, 3GPP TS 23.228, 3GPP TS 29.228, 3GPP TS 23.218, 3GPP TS 22.011, 3GPP TS 36.413의 표준 문서들 중 하나 이상에 의해 뒷받침될(incorporate by reference) 수 있다.In addition, all terms disclosed in this document may be described by the standard document. For example, in the present specification, 3GPP TS 36.211, 3GPP TS 36.213, 3GPP TS 36.321, 3GPP TS 36.322, 3GPP TS 36.323, 3GPP TS 36.331, 3GPP TS 23.203, 3GPP TS 23.401, 3GPP TS 24.228, 3GPP TS 23.228, 3GPP TS 23.228 , 3GPP TS 23.218, 3GPP TS 22.011, 3GPP TS 36.413 may be incorporated by one or more of the standard documents.
이하, 본 명세서에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 명세서의 예시적인 실시형태를 설명하고자 하는 것이며, 본 명세서가 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.Hereinafter, preferred embodiments according to the present specification will be described in detail with reference to the accompanying drawings. DETAILED DESCRIPTION The detailed description set forth below in conjunction with the appended drawings is intended to describe exemplary embodiments of the present specification, and is not intended to represent the only embodiments in which the present specification may be practiced.
또한, 본 명세서의 실시 예들에서 사용되는 특정 용어들은 본 명세서의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 명세서의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.In addition, specific terms used in the embodiments of the present specification are provided to help the understanding of the present specification, and the use of these specific terms may be changed to other forms without departing from the technical spirit of the present specification.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), gNB(general NB) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.In this specification, the base station has a meaning as a terminal node of a network that directly communicates with the terminal. A specific operation described as being performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including the base station may be performed by the base station or other network nodes other than the base station. 'Base station (BS: Base Station)' is a term such as a fixed station (fixed station), Node B, eNB (evolved-NodeB), BTS (base transceiver system), access point (AP: Access Point), gNB (general NB), etc. can be replaced by In addition, 'terminal' may be fixed or have mobility, and UE (User Equipment), MS (Mobile Station), UT (user terminal), MSS (Mobile Subscriber Station), SS (Subscriber Station), AMS ( Advanced Mobile Station), a wireless terminal (WT), a machine-type communication (MTC) device, a machine-to-machine (M2M) device, a device-to-device (D2D) device, and the like.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.Hereinafter, downlink (DL: downlink) means communication from a base station to a terminal, and uplink (UL: uplink) means communication from a terminal to a base station. In the downlink, the transmitter may be a part of the base station, and the receiver may be a part of the terminal. In the uplink, the transmitter may be a part of the terminal, and the receiver may be a part of the base station.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A/NR(New Radio)를 위주로 기술하지만 본 명세서의 기술적 특징이 이에 제한되는 것은 아니다.For clarity of explanation, 3GPP LTE/LTE-A/NR (New Radio) is mainly described, but the technical features of the present specification are not limited thereto.
5G의 세 가지 주요 요구 사항 영역은 (1) 개선된 모바일 광대역 (Enhanced Mobile Broadband, eMBB) 영역, (2) 다량의 머신 타입 통신 (massive Machine Type Communication, mMTC) 영역 및 (3) 초-신뢰 및 저 지연 통신 (Ultra-reliable and Low Latency Communications, URLLC) 영역을 포함한다.The three main requirements areas for 5G are (1) Enhanced Mobile Broadband (eMBB) area, (2) Massive Machine Type Communication (mMTC) area and (3) Ultra-reliable and It includes an Ultra-reliable and Low Latency Communications (URLLC) area.
일부 사용 예(Use Case)는 최적화를 위해 다수의 영역들이 요구될 수 있고, 다른 사용 예는 단지 하나의 핵심 성능 지표 (Key Performance Indicator, KPI)에만 포커싱될 수 있다. 5G는 이러한 다양한 사용 예들을 유연하고 신뢰할 수 있는 방법으로 지원하는 것이다.Some use cases may require multiple areas for optimization, while other use cases may focus on only one key performance indicator (KPI). 5G is to support these various use cases in a flexible and reliable way.
eMBB는 기본적인 모바일 인터넷 액세스를 훨씬 능가하게 하며, 풍부한 양방향 작업, 클라우드 또는 증강 현실에서 미디어 및 엔터테인먼트 애플리케이션을 커버한다. 데이터는 5G의 핵심 동력 중 하나이며, 5G 시대에서 처음으로 전용 음성 서비스를 볼 수 없을 수 있다. 5G에서, 음성은 단순히 통신 시스템에 의해 제공되는 데이터 연결을 사용하여 응용 프로그램으로서 처리될 것이 기대된다. 증가된 트래픽 양(volume)을 위한 주요 원인들은 콘텐츠 크기의 증가 및 높은 데이터 전송률을 요구하는 애플리케이션 수의 증가이다. 스트리밍 서비스 (오디오 및 비디오), 대화형 비디오 및 모바일 인터넷 연결은 더 많은 장치가 인터넷에 연결될수록 더 널리 사용될 것이다. 이러한 많은 응용 프로그램들은 사용자에게 실시간 정보 및 알림을 푸쉬하기 위해 항상 켜져 있는 연결성이 필요하다. 클라우드 스토리지 및 애플리케이션은 모바일 통신 플랫폼에서 급속히 증가하고 있으며, 이것은 업무 및 엔터테인먼트 모두에 적용될 수 있다. 그리고, 클라우드 스토리지는 상향링크 데이터 전송률의 성장을 견인하는 특별한 사용 예이다. 5G는 또한 클라우드의 원격 업무에도 사용되며, 촉각 인터페이스가 사용될 때 우수한 사용자 경험을 유지하도록 훨씬 더 낮은 단-대-단(end-to-end) 지연을 요구한다. 엔터테인먼트 예를 들어, 클라우드 게임 및 비디오 스트리밍은 모바일 광대역 능력에 대한 요구를 증가시키는 또 다른 핵심 요소이다. 엔터테인먼트는 기차, 차 및 비행기와 같은 높은 이동성 환경을 포함하는 어떤 곳에서든지 스마트폰 및 태블릿에서 필수적이다. 또 다른 사용 예는 엔터테인먼트를 위한 증강 현실 및 정보 검색이다. 여기서, 증강 현실은 매우 낮은 지연과 순간적인 데이터 양을 필요로 한다.eMBB goes far beyond basic mobile Internet access, covering rich interactive work, media and entertainment applications in the cloud or augmented reality. Data is one of the key drivers of 5G, and for the first time in the 5G era, we may not see dedicated voice services. In 5G, voice is simply expected to be processed as an application using the data connection provided by the communication system. The main causes for increased traffic volume are an increase in content size and an increase in the number of applications requiring high data rates. Streaming services (audio and video), interactive video and mobile Internet connections will become more widely used as more devices connect to the Internet. Many of these applications require always-on connectivity to push real-time information and notifications to users. Cloud storage and applications are rapidly increasing in mobile communication platforms, which can be applied to both work and entertainment. And, cloud storage is a special use case that drives the growth of uplink data rates. 5G is also used for remote work in the cloud, requiring much lower end-to-end latency to maintain a good user experience when tactile interfaces are used. Entertainment For example, cloud gaming and video streaming are other key factors that increase the demand for mobile broadband capabilities. Entertainment is essential on smartphones and tablets anywhere, including in high-mobility environments such as trains, cars and airplanes. Another use example is augmented reality for entertainment and information retrieval. Here, augmented reality requires very low latency and instantaneous amount of data.
또한, 가장 많이 예상되는 5G 사용 예 중 하나는 모든 분야에서 임베디드 센서를 원활하게 연결할 수 있는 기능 즉, mMTC에 관한 것이다. 2020년까지 잠재적인 IoT 장치들은 204 억 개에 이를 것으로 예측된다. 산업 IoT는 5G가 스마트 도시, 자산 추적(asset tracking), 스마트 유틸리티, 농업 및 보안 인프라를 허용하게 하는 주요 역할을 수행하는 영역 중 하나이다.Also, one of the most anticipated 5G use cases relates to the ability to seamlessly connect embedded sensors in all fields, namely mMTC. By 2020, the number of potential IoT devices is projected to reach 20.4 billion. Industrial IoT is one of the areas where 5G will play a major role in enabling smart cities, asset tracking, smart utilities, agriculture and security infrastructure.
URLLC는 주요 인프라의 원격 제어 및 자체-구동 차량(self-driving vehicle)과 같은 초 신뢰 / 이용 허용한 지연이 적은 링크를 통해 산업을 변화시킬 새로운 서비스를 포함한다. 신뢰성과 지연의 수준은 스마트 그리드 제어, 산업 자동화, 로봇 공학, 드론 제어 및 조정에 필수적이다.URLLC includes new services that will transform industries through ultra-reliable/low-latency links that allow for remote control of critical infrastructure and self-driving vehicles, such as self-driving vehicles. This level of reliability and latency is essential for smart grid control, industrial automation, robotics, and drone control and coordination.
다음으로, 다수의 사용 예들에 대해 보다 구체적으로 살펴본다.Next, a number of usage examples will be described in more detail.
5G는 초당 수백 메가 비트에서 초당 기가 비트로 평가되는 스트림을 제공하는 수단으로 FTTH (fiber-to-the-home) 및 케이블 기반 광대역 (또는 DOCSIS)을 보완할 수 있다. 이러한 빠른 속도는 가상 현실과 증강 현실뿐 아니라 4K 이상(6K, 8K 및 그 이상)의 해상도로 TV를 전달하는데 요구된다. VR(Virtual Reality) 및 AR(Augmented Reality) 애플리케이션들은 거의 몰입형(immersive) 스포츠 경기를 포함한다. 특정 응용 프로그램은 특별한 네트워크 설정이 요구될 수 있다. 예를 들어, VR 게임의 경우, 게임 회사들이 지연을 최소화하기 위해 코어 서버를 네트워크 오퍼레이터의 에지 네트워크 서버와 통합해야 할 수 있다.5G could complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means of delivering streams rated from hundreds of megabits per second to gigabits per second. This high speed is required to deliver TVs in resolutions of 4K and higher (6K, 8K and higher), as well as virtual and augmented reality. Virtual Reality (VR) and Augmented Reality (AR) applications almost include immersive sporting events. Certain applications may require special network settings. For VR games, for example, game companies may need to integrate core servers with network operators' edge network servers to minimize latency.
자동차(Automotive)는 차량에 대한 이동 통신을 위한 많은 사용 예들과 함께 5G에 있어 중요한 새로운 동력이 될 것으로 예상된다. 예를 들어, 승객을 위한 엔터테인먼트는 동시의 높은 용량과 높은 이동성 모바일 광대역을 요구한다. 그 이유는 미래의 사용자는 그들의 위치 및 속도와 관계 없이 고품질의 연결을 계속해서 기대하기 때문이다. 자동차 분야의 다른 활용 예는 증강 현실 대시보드이다. 이는 운전자가 앞면 창을 통해 보고 있는 것 위에 어둠 속에서 물체를 식별하고, 물체의 거리와 움직임에 대해 운전자에게 말해주는 정보를 겹쳐서 디스플레이 한다. 미래에, 무선 모듈은 차량들 간의 통신, 차량과 지원하는 인프라구조 사이에서 정보 교환 및 자동차와 다른 연결된 디바이스들(예를 들어, 보행자에 의해 수반되는 디바이스들) 사이에서 정보 교환을 허용하게 한다. 안전 시스템은 운전자가 보다 안전한 운전을 할 수 있도록 행동의 대체 코스들을 안내하여 사고의 위험을 낮출 수 있게 한다. 다음 단계는 원격 조종되거나 자체 운전 차량(self-driven vehicle)이 될 것이다. 이는 서로 다른 자체 운전 차량들 사이 및 자동차와 인프라 사이에서 매우 신뢰성이 있고, 매우 빠른 통신을 요구한다. 미래에, 자체 운전 차량이 모든 운전 활동을 수행하고, 운전자는 차량 자체가 식별할 수 없는 교통 이상에만 집중하도록 할 것이다. 자체 운전 차량의 기술적 요구 사항은 트래픽 안전을 사람이 달성할 수 없을 정도의 수준까지 증가하도록 초 저 지연과 초고속 신뢰성을 요구한다.Automotive is expected to be an important new driving force for 5G with many use cases for mobile communication to vehicles. For example, entertainment for passengers requires simultaneous high capacity and high mobility mobile broadband. The reason is that future users continue to expect high-quality connections regardless of their location and speed. Another use case in the automotive sector is augmented reality dashboards. It identifies objects in the dark and overlays information that tells the driver about the distance and movement of the object over what the driver is seeing through the front window. In the future, wireless modules will allow for communication between vehicles, the exchange of information between the vehicle and the supporting infrastructure, and the exchange of information between the automobile and other connected devices (eg, devices carried by pedestrians). Safety systems can help drivers lower the risk of accidents by guiding alternative courses of action to help them drive safer. The next step will be remote-controlled or self-driven vehicles. This requires very reliable and very fast communication between different self-driving vehicles and between vehicles and infrastructure. In the future, self-driving vehicles will perform all driving activities, allowing drivers to focus only on traffic anomalies that the vehicle itself cannot discern. The technological requirements of self-driving vehicles demand ultra-low latency and ultra-fast reliability to increase traffic safety to unattainable levels for humans.
스마트 사회(smart society)로서 언급되는 스마트 도시와 스마트 홈은 고밀도 무선 센서 네트워크로 임베디드될 것이다. 지능형 센서의 분산 네트워크는 도시 또는 집의 비용 및 에너지-효율적인 유지에 대한 조건을 식별할 것이다. 유사한 설정이 각 가정을 위해 수행될 수 있다. 온도 센서, 창 및 난방 컨트롤러, 도난 경보기 및 가전 제품들은 모두 무선으로 연결된다. 이러한 센서들 중 많은 것들이 전형적으로 낮은 데이터 전송 속도, 저전력 및 저비용이다. 하지만, 예를 들어, 실시간 HD 비디오는 감시를 위해 특정 타입의 장치에서 요구될 수 있다.Smart cities and smart homes, referred to as smart societies, will be embedded with high-density wireless sensor networks. A distributed network of intelligent sensors will identify conditions for cost and energy-efficient maintenance of a city or house. A similar setup can be performed for each household. Temperature sensors, window and heating controllers, burglar alarms and appliances are all connected wirelessly. Many of these sensors are typically low data rates, low power and low cost. However, for example, real-time HD video may be required in certain types of devices for surveillance.
열 또는 가스를 포함한 에너지의 소비 및 분배는 고도로 분산화되고 있어, 분산 센서 네트워크의 자동화된 제어가 요구된다. 스마트 그리드는 정보를 수집하고 이에 따라 행동하도록 디지털 정보 및 통신 기술을 사용하여 이런 센서들을 상호 연결한다. 이 정보는 공급 업체와 소비자의 행동을 포함할 수 있으므로, 스마트 그리드가 효율성, 신뢰성, 경제성, 생산의 지속 허용성 및 자동화된 방식으로 전기와 같은 연료들의 분배를 개선하도록 할 수 있다. 스마트 그리드는 지연이 적은 다른 센서 네트워크로 볼 수도 있다.The consumption and distribution of energy, including heat or gas, is highly decentralized, requiring automated control of distributed sensor networks. Smart grids use digital information and communication technologies to interconnect these sensors to gather information and act on it. This information can include supplier and consumer behavior, enabling smart grids to improve efficiency, reliability, economics, sustainability of production and distribution of fuels such as electricity in an automated manner. The smart grid can also be viewed as another low-latency sensor network.
건강 부문은 이동 통신의 혜택을 누릴 수 있는 많은 응용 프로그램을 보유하고 있다. 통신 시스템은 멀리 떨어진 곳에서 임상 진료를 제공하는 원격 진료를 지원할 수 있다. 이는 거리에 대한 장벽을 줄이는데 도움을 주고, 거리가 먼 농촌에서 지속적으로 이용하지 못하는 의료 서비스들로의 접근을 개선시킬 수 있다. 이는 또한 중요한 진료 및 응급 상황에서 생명을 구하기 위해 사용된다. 이동 통신 기반의 무선 센서 네트워크는 심박수 및 혈압과 같은 파라미터들에 대한 원격 모니터링 및 센서들을 제공할 수 있다.The health sector has many applications that can benefit from mobile communications. The communication system may support telemedicine providing clinical care from a remote location. This can help reduce barriers to distance and improve access to consistently unavailable health care services in remote rural areas. It is also used to save lives in critical care and emergency situations. A wireless sensor network based on mobile communication may provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
무선 및 모바일 통신은 산업 응용 분야에서 점차 중요해지고 있다. 배선은 설치 및 유지 비용이 높다. 따라서, 케이블을 재구성할 수 있는 무선 링크들로의 교체 허용성은 많은 산업 분야에서 매력적인 기회이다. 그러나, 이를 달성하는 것은 무선 연결이 케이블과 비슷한 지연, 신뢰성 및 용량으로 동작하는 것과, 그 관리가 단순화될 것이 요구된다. 낮은 지연과 매우 낮은 오류 확률은 5G로 연결될 필요가 있는 새로운 요구 사항이다.Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the tolerance for replacement of cables with reconfigurable wireless links is an attractive opportunity for many industries. Achieving this, however, requires that the wireless connection operate with cable-like delay, reliability and capacity, and that its management be simplified. Low latency and very low error probability are new requirements that need to be connected with 5G.
물류(logistics) 및 화물 추적(freight tracking)은 위치 기반 정보 시스템을 사용하여 어디에서든지 인벤토리(inventory) 및 패키지의 추적을 허용하게 하는 이동 통신에 대한 중요한 사용 예이다. 물류 및 화물 추적의 사용 예는 전형적으로 낮은 데이터 속도를 요구하지만 넓은 범위와 신뢰성 있는 위치 정보가 필요하다.Logistics and freight tracking are important use cases for mobile communications that use location-based information systems to allow tracking of inventory and packages from anywhere. Logistics and freight tracking use cases typically require low data rates but require wide range and reliable location information.
본 명세서에서 후술할 본 명세서는 전술한 5G의 요구 사항을 만족하도록 각 실시예를 조합하거나 변경하여 구현될 수 있다.The present specification, which will be described later in this specification, may be implemented by combining or changing each embodiment to satisfy the above-described 5G requirements.
이하에서는 후술할 본 명세서가 응용될 수 있는 기술분야와 관련하여 구체적으로 설명한다.Hereinafter, it will be described in detail in relation to a technical field to which the present specification, which will be described later, can be applied.
인공 지능(AI: Artificial Intelligence)Artificial Intelligence (AI)
인공 지능은 인공적인 지능 또는 이를 만들 수 있는 방법론을 연구하는 분야를 의미하며, 머신 러닝(기계 학습, Machine Learning)은 인공 지능 분야에서 다루는 다양한 문제를 정의하고 그것을 해결하는 방법론을 연구하는 분야를 의미한다. 머신 러닝은 어떠한 작업에 대하여 꾸준한 경험을 통해 그 작업에 대한 성능을 높이는 알고리즘으로 정의하기도 한다.Artificial intelligence refers to a field that studies artificial intelligence or methodologies that can create it, and machine learning refers to a field that defines various problems dealt with in the field of artificial intelligence and studies methodologies to solve them. do. Machine learning is also defined as an algorithm that improves the performance of a certain task through constant experience.
인공 신경망(ANN: Artificial Neural Network)은 머신 러닝에서 사용되는 모델로써, 시냅스의 결합으로 네트워크를 형성한 인공 뉴런(노드)들로 구성되는, 문제 해결 능력을 가지는 모델 전반을 의미할 수 있다. 인공 신경망은 다른 레이어의 뉴런들 사이의 연결 패턴, 모델 파라미터를 갱신하는 학습 과정, 출력값을 생성하는 활성화 함수(Activation Function)에 의해 정의될 수 있다.An artificial neural network (ANN) is a model used in machine learning, and may refer to an overall model having problem-solving ability, which is composed of artificial neurons (nodes) that form a network by combining synapses. An artificial neural network may be defined by a connection pattern between neurons of different layers, a learning process that updates model parameters, and an activation function that generates an output value.
인공 신경망은 입력층(Input Layer), 출력층(Output Layer), 그리고 선택적으로 하나 이상의 은닉층(Hidden Layer)를 포함할 수 있다. 각 층은 하나 이상의 뉴런을 포함하고, 인공 신경망은 뉴런과 뉴런을 연결하는 시냅스를 포함할 수 있다. 인공 신경망에서 각 뉴런은 시냅스를 통해 입력되는 입력 신호들, 가중치, 편향에 대한 활성 함수의 함숫값을 출력할 수 있다. The artificial neural network may include an input layer, an output layer, and optionally one or more hidden layers. Each layer includes one or more neurons, and the artificial neural network may include neurons and synapses connecting neurons. In the artificial neural network, each neuron may output a function value of an activation function for input signals, weights, and biases input through synapses.
모델 파라미터는 학습을 통해 결정되는 파라미터를 의미하며, 시냅스 연결의 가중치와 뉴런의 편향 등이 포함된다. 그리고, 하이퍼파라미터는 머신 러닝 알고리즘에서 학습 전에 설정되어야 하는 파라미터를 의미하며, 학습률(Learning Rate), 반복 횟수, 미니 배치 크기, 초기화 함수 등이 포함된다.Model parameters refer to parameters determined through learning, and include the weight of synaptic connections and the bias of neurons. In addition, the hyperparameter refers to a parameter that must be set before learning in a machine learning algorithm, and includes a learning rate, the number of iterations, a mini-batch size, an initialization function, and the like.
인공 신경망의 학습의 목적은 손실 함수를 최소화하는 모델 파라미터를 결정하는 것으로 볼 수 있다. 손실 함수는 인공 신경망의 학습 과정에서 최적의 모델 파라미터를 결정하기 위한 지표로 이용될 수 있다.The purpose of learning the artificial neural network can be seen as determining the model parameters that minimize the loss function. The loss function may be used as an index for determining optimal model parameters in the learning process of the artificial neural network.
머신 러닝은 학습 방식에 따라 지도 학습(Supervised Learning), 비지도 학습(Unsupervised Learning), 강화 학습(Reinforcement Learning)으로 분류할 수 있다.Machine learning can be classified into supervised learning, unsupervised learning, and reinforcement learning according to a learning method.
지도 학습은 학습 데이터에 대한 레이블(label)이 주어진 상태에서 인공 신경망을 학습시키는 방법을 의미하며, 레이블이란 학습 데이터가 인공 신경망에 입력되는 경우 인공 신경망이 추론해 내야 하는 정답(또는 결과 값)을 의미할 수 있다. 비지도 학습은 학습 데이터에 대한 레이블이 주어지지 않는 상태에서 인공 신경망을 학습시키는 방법을 의미할 수 있다. 강화 학습은 어떤 환경 안에서 정의된 에이전트가 각 상태에서 누적 보상을 최대화하는 행동 혹은 행동 순서를 선택하도록 학습시키는 학습 방법을 의미할 수 있다.Supervised learning refers to a method of training an artificial neural network in a state where a label for the training data is given, and the label is the correct answer (or result value) that the artificial neural network should infer when the training data is input to the artificial neural network. can mean Unsupervised learning may refer to a method of training an artificial neural network in a state where no labels are given for training data. Reinforcement learning can refer to a learning method in which an agent defined in an environment learns to select an action or sequence of actions that maximizes the cumulative reward in each state.
인공 신경망 중에서 복수의 은닉층을 포함하는 심층 신경망(DNN: Deep Neural Network)으로 구현되는 머신 러닝을 딥 러닝(심층 학습, Deep Learning)이라 부르기도 하며, 딥 러닝은 머신 러닝의 일부이다. 이하에서, 머신 러닝은 딥 러닝을 포함하는 의미로 사용된다.Among artificial neural networks, machine learning implemented as a deep neural network (DNN) including a plurality of hidden layers is also called deep learning (deep learning), and deep learning is a part of machine learning. Hereinafter, machine learning is used in a sense including deep learning.
로봇(Robot)Robot
로봇은 스스로 보유한 능력에 의해 주어진 일을 자동으로 처리하거나 작동하는 기계를 의미할 수 있다. 특히, 환경을 인식하고 스스로 판단하여 동작을 수행하는 기능을 갖는 로봇을 지능형 로봇이라 칭할 수 있다.A robot can mean a machine that automatically handles or operates a task given by its own capabilities. In particular, a robot having a function of recognizing an environment and performing an operation by self-judgment may be referred to as an intelligent robot.
로봇은 사용 목적이나 분야에 따라 산업용, 의료용, 가정용, 군사용 등으로 분류할 수 있다.Robots can be classified into industrial, medical, home, military, etc. depending on the purpose or field of use.
로봇은 액츄에이터 또는 모터를 포함하는 구동부를 구비하여 로봇 관절을 움직이는 등의 다양한 물리적 동작을 수행할 수 있다. 또한, 이동 허용한 로봇은 구동부에 휠, 브레이크, 프로펠러 등이 포함되어, 구동부를 통해 지상에서 주행하거나 공중에서 비행할 수 있다.The robot may be provided with a driving unit including an actuator or a motor to perform various physical operations such as moving the robot joints. In addition, the moving robot includes a wheel, a brake, a propeller, etc. in the driving unit, and can travel on the ground or fly in the air through the driving unit.
자율 주행(Self-Driving, Autonomous-Driving)Self-Driving, Autonomous-Driving
자율 주행은 스스로 주행하는 기술을 의미하며, 자율 주행 차량은 사용자의 조작 없이 또는 사용자의 최소한의 조작으로 주행하는 차량(Vehicle)을 의미한다.Autonomous driving refers to a technology that drives itself, and an autonomous driving vehicle refers to a vehicle that travels without or with minimal manipulation of a user.
예컨대, 자율 주행에는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등이 모두 포함될 수 있다.For example, autonomous driving includes technology for maintaining a driving lane, technology for automatically adjusting speed such as adaptive cruise control, technology for automatically driving along a predetermined route, technology for automatically setting a route when a destination is set, etc. All of these can be included.
차량은 내연 기관만을 구비하는 차량, 내연 기관과 전기 모터를 함께 구비하는 하이브리드 차량, 그리고 전기 모터만을 구비하는 전기 차량을 모두 포괄하며, 자동차뿐만 아니라 기차, 오토바이 등을 포함할 수 있다.The vehicle includes a vehicle having only an internal combustion engine, a hybrid vehicle having both an internal combustion engine and an electric motor, and an electric vehicle having only an electric motor, and may include not only automobiles, but also trains, motorcycles, and the like.
이때, 자율 주행 차량은 자율 주행 기능을 가진 로봇으로 볼 수 있다.In this case, the autonomous vehicle can be viewed as a robot having an autonomous driving function.
확장 현실(XR: eXtended Reality)Extended Reality (XR)
확장 현실은 가상 현실(VR: Virtual Reality), 증강 현실(AR: Augmented Reality), 혼합 현실(MR: Mixed Reality)을 총칭한다. VR 기술은 현실 세계의 객체나 배경 등을 CG 영상으로만 제공하고, AR 기술은 실제 사물 영상 위에 가상으로 만들어진 CG 영상을 함께 제공하며, MR 기술은 현실 세계에 가상 객체들을 섞고 결합시켜서 제공하는 컴퓨터 그래픽 기술이다.The extended reality is a generic term for virtual reality (VR), augmented reality (AR), and mixed reality (MR). VR technology provides only CG images of objects or backgrounds in the real world, AR technology provides virtual CG images on top of images of real objects, and MR technology is a computer that mixes and combines virtual objects in the real world. graphic technology.
MR 기술은 현실 객체와 가상 객체를 함께 보여준다는 점에서 AR 기술과 유사하다. 그러나, AR 기술에서는 가상 객체가 현실 객체를 보완하는 형태로 사용되는 반면, MR 기술에서는 가상 객체와 현실 객체가 동등한 성격으로 사용된다는 점에서 차이점이 있다.MR technology is similar to AR technology in that it shows both real and virtual objects. However, there is a difference in that in AR technology, a virtual object is used in a form that complements a real object, whereas in MR technology, a virtual object and a real object are used with equal characteristics.
XR 기술은 HMD(Head-Mount Display), HUD(Head-Up Display), 휴대폰, 태블릿 PC, 랩탑, 데스크탑, TV, 디지털 사이니지 등에 적용될 수 있고, XR 기술이 적용된 장치를 XR 장치(XR Device)라 칭할 수 있다.XR technology can be applied to HMD (Head-Mount Display), HUD (Head-Up Display), mobile phone, tablet PC, laptop, desktop, TV, digital signage, etc. can be called
도 1은 본 명세서의 일 실시 예에 따른 AI 장치(100)를 나타낸다.1 shows an AI device 100 according to an embodiment of the present specification.
AI 장치(100)는 TV, 프로젝터, 휴대폰, 스마트폰, 데스크탑 컴퓨터, 노트북, 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 태블릿 PC, 웨어러블 장치, 셋톱박스(STB), DMB 수신기, 라디오, 세탁기, 냉장고, 데스크탑 컴퓨터, 디지털 사이니지, 로봇, 차량 등과 같은, 고정형 기기 또는 이동 허용한 기기 등으로 구현될 수 있다. AI device 100 is TV, projector, mobile phone, smart phone, desktop computer, notebook computer, digital broadcasting terminal, PDA (personal digital assistants), PMP (portable multimedia player), navigation, tablet PC, wearable device, set-top box (STB) ), a DMB receiver, a radio, a washing machine, a refrigerator, a desktop computer, a digital signage, a robot, a vehicle, etc., may be implemented as a fixed device or a device allowing movement.
도 1을 참조하면, 단말기(100)는 통신부(110), 입력부(120), 러닝 프로세서(130), 센싱부(140), 출력부(150), 메모리(170) 및 프로세서(180) 등을 포함할 수 있다.Referring to FIG. 1 , the terminal 100 includes a communication unit 110 , an input unit 120 , a learning processor 130 , a sensing unit 140 , an output unit 150 , a memory 170 and a processor 180 , etc. may include
통신부(110)는 유무선 통신 기술을 이용하여 다른 AI 장치(100a 내지 100e)나 AI 서버(200) 등의 외부 장치들과 데이터를 송수신할 수 있다. 예컨대, 통신부(110)는 외부 장치들과 센서 정보, 사용자 입력, 학습 모델, 제어 신호 등을 송수신할 수 있다.The communication unit 110 may transmit/receive data to and from external devices such as other AI devices 100a to 100e or the AI server 200 using wired/wireless communication technology. For example, the communication unit 110 may transmit and receive sensor information, a user input, a learning model, a control signal, and the like with external devices.
이때, 통신부(110)가 이용하는 통신 기술에는 GSM(Global System for Mobile communication), CDMA(Code Division Multi Access), LTE(Long Term Evolution), 5G, WLAN(Wireless LAN), Wi-Fi(Wireless-Fidelity), 블루투스(Bluetooth쪠), RFID(Radio Frequency Identification), 적외선 통신(Infrared Data Association; IrDA), ZigBee, NFC(Near Field Communication) 등이 있다.In this case, the communication technology used by the communication unit 110 includes GSM (Global System for Mobile communication), CDMA (Code Division Multi Access), LTE (Long Term Evolution), 5G, WLAN (Wireless LAN), Wi-Fi (Wireless-Fidelity) ), Bluetooth, RFID (Radio Frequency Identification), Infrared Data Association (IrDA), ZigBee, NFC (Near Field Communication), and the like.
입력부(120)는 다양한 종류의 데이터를 획득할 수 있다.The input unit 120 may acquire various types of data.
이때, 입력부(120)는 영상 신호 입력을 위한 카메라, 오디오 신호를 수신하기 위한 마이크로폰, 사용자로부터 정보를 입력 받기 위한 사용자 입력부 등을 포함할 수 있다. 여기서, 카메라나 마이크로폰을 센서로 취급하여, 카메라나 마이크로폰으로부터 획득한 신호를 센싱 데이터 또는 센서 정보라고 할 수도 있다.In this case, the input unit 120 may include a camera for inputting an image signal, a microphone for receiving an audio signal, a user input unit for receiving information from a user, and the like. Here, by treating the camera or the microphone as a sensor, a signal obtained from the camera or the microphone may be referred to as sensing data or sensor information.
입력부(120)는 모델 학습을 위한 학습 데이터 및 학습 모델을 이용하여 출력을 획득할 때 사용될 입력 데이터 등을 획득할 수 있다. 입력부(120)는 가공되지 않은 입력 데이터를 획득할 수도 있으며, 이 경우 프로세서(180) 또는 러닝 프로세서(130)는 입력 데이터에 대하여 전처리로써 입력 특징점(input feature)을 추출할 수 있다.The input unit 120 may acquire training data for model training and input data to be used when acquiring an output using the training model. The input unit 120 may acquire raw input data, and in this case, the processor 180 or the learning processor 130 may extract an input feature by preprocessing the input data.
러닝 프로세서(130)는 학습 데이터를 이용하여 인공 신경망으로 구성된 모델을 학습시킬 수 있다. 여기서, 학습된 인공 신경망을 학습 모델이라 칭할 수 있다. 학습 모델은 학습 데이터가 아닌 새로운 입력 데이터에 대하여 결과 값을 추론해 내는데 사용될 수 있고, 추론된 값은 어떠한 동작을 수행하기 위한 판단의 기초로 이용될 수 있다.The learning processor 130 may train a model composed of an artificial neural network by using the training data. Here, the learned artificial neural network may be referred to as a learning model. The learning model may be used to infer a result value with respect to new input data other than the training data, and the inferred value may be used as a basis for a decision to perform a certain operation.
이때, 러닝 프로세서(130)는 AI 서버(200)의 러닝 프로세서(240)과 함께 AI 프로세싱을 수행할 수 있다.In this case, the learning processor 130 may perform AI processing together with the learning processor 240 of the AI server 200 .
이때, 러닝 프로세서(130)는 AI 장치(100)에 통합되거나 구현된 메모리를 포함할 수 있다. 또는, 러닝 프로세서(130)는 메모리(170), AI 장치(100)에 직접 결합된 외부 메모리 또는 외부 장치에서 유지되는 메모리를 사용하여 구현될 수도 있다.In this case, the learning processor 130 may include a memory integrated or implemented in the AI device 100 . Alternatively, the learning processor 130 may be implemented using the memory 170 , an external memory directly coupled to the AI device 100 , or a memory maintained in an external device.
센싱부(140)는 다양한 센서들을 이용하여 AI 장치(100) 내부 정보, AI 장치(100)의 주변 환경 정보 및 사용자 정보 중 적어도 하나를 획득할 수 있다.The sensing unit 140 may acquire at least one of internal information of the AI device 100 , information on the surrounding environment of the AI device 100 , and user information by using various sensors.
이때, 센싱부(140)에 포함되는 센서에는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰, 라이다, 레이더 등이 있다.At this time, sensors included in the sensing unit 140 include a proximity sensor, an illuminance sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and a lidar. , radar, etc.
출력부(150)는 시각, 청각 또는 촉각 등과 관련된 출력을 발생시킬 수 있다. The output unit 150 may generate an output related to sight, hearing, or touch.
이때, 출력부(150)에는 시각 정보를 출력하는 디스플레이부, 청각 정보를 출력하는 스피커, 촉각 정보를 출력하는 햅틱 모듈 등이 포함될 수 있다.In this case, the output unit 150 may include a display unit that outputs visual information, a speaker that outputs auditory information, and a haptic module that outputs tactile information.
메모리(170)는 AI 장치(100)의 다양한 기능을 지원하는 데이터를 저장할 수 있다. 예컨대, 메모리(170)는 입력부(120)에서 획득한 입력 데이터, 학습 데이터, 학습 모델, 학습 히스토리 등을 저장할 수 있다.The memory 170 may store data supporting various functions of the AI device 100 . For example, the memory 170 may store input data obtained from the input unit 120 , learning data, a learning model, a learning history, and the like.
프로세서(180)는 데이터 분석 알고리즘 또는 머신 러닝 알고리즘을 사용하여 결정되거나 생성된 정보에 기초하여, AI 장치(100)의 적어도 하나의 실행 허용한 동작을 결정할 수 있다. 그리고, 프로세서(180)는 AI 장치(100)의 구성 요소들을 제어하여 결정된 동작을 수행할 수 있다.The processor 180 may determine at least one execution permitted operation of the AI device 100 based on information determined or generated using a data analysis algorithm or a machine learning algorithm. In addition, the processor 180 may control the components of the AI device 100 to perform the determined operation.
이를 위해, 프로세서(180)는 러닝 프로세서(130) 또는 메모리(170)의 데이터를 요청, 검색, 수신 또는 활용할 수 있고, 상기 적어도 하나의 실행 허용한 동작 중 예측되는 동작이나, 바람직한 것으로 판단되는 동작을 실행하도록 AI 장치(100)의 구성 요소들을 제어할 수 있다.To this end, the processor 180 may request, search, receive, or utilize the data of the learning processor 130 or the memory 170, and is an operation that is predicted or preferred among the at least one execution permitted operation. It is possible to control the components of the AI device 100 to execute.
이때, 프로세서(180)는 결정된 동작을 수행하기 위하여 외부 장치의 연계가 필요한 경우, 해당 외부 장치를 제어하기 위한 제어 신호를 생성하고, 생성한 제어 신호를 해당 외부 장치에 전송할 수 있다.In this case, when the connection of the external device is required to perform the determined operation, the processor 180 may generate a control signal for controlling the corresponding external device and transmit the generated control signal to the corresponding external device.
프로세서(180)는 사용자 입력에 대하여 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 사용자의 요구 사항을 결정할 수 있다.The processor 180 may obtain intention information with respect to a user input, and determine a user's requirement based on the obtained intention information.
이때, 프로세서(180)는 음성 입력을 문자열로 변환하기 위한 STT(Speech To Text) 엔진 또는 자연어의 의도 정보를 획득하기 위한 자연어 처리(NLP: Natural Language Processing) 엔진 중에서 적어도 하나 이상을 이용하여, 사용자 입력에 상응하는 의도 정보를 획득할 수 있다. In this case, the processor 180 uses at least one of a speech to text (STT) engine for converting a voice input into a character string or a natural language processing (NLP) engine for obtaining intention information of a natural language, Intention information corresponding to the input may be obtained.
이때, STT 엔진 또는 NLP 엔진 중에서 적어도 하나 이상은 적어도 일부가 머신 러닝 알고리즘에 따라 학습된 인공 신경망으로 구성될 수 있다. 그리고, STT 엔진 또는 NLP 엔진 중에서 적어도 하나 이상은 러닝 프로세서(130)에 의해 학습된 것이나, AI 서버(200)의 러닝 프로세서(240)에 의해 학습된 것이거나, 또는 이들의 분산 처리에 의해 학습된 것일 수 있다.At this time, at least one of the STT engine and the NLP engine may be configured as an artificial neural network, at least a part of which is learned according to a machine learning algorithm. And, at least one or more of the STT engine or the NLP engine is learned by the learning processor 130, or learned by the learning processor 240 of the AI server 200, or learned by distributed processing thereof. it could be
프로세서(180)는 AI 장치(100)의 동작 내용이나 동작에 대한 사용자의 피드백 등을 포함하는 이력 정보를 수집하여 메모리(170) 또는 러닝 프로세서(130)에 저장하거나, AI 서버(200) 등의 외부 장치에 전송할 수 있다. 수집된 이력 정보는 학습 모델을 갱신하는데 이용될 수 있다.The processor 180 collects history information including the user's feedback on the operation contents or operation of the AI device 100 and stores it in the memory 170 or the learning processor 130, or the AI server 200 It can be transmitted to an external device. The collected historical information may be used to update the learning model.
프로세서(180)는 메모리(170)에 저장된 응용 프로그램을 구동하기 위하여, AI 장치(100)의 구성 요소들 중 적어도 일부를 제어할 수 있다. 나아가, 프로세서(180)는 상기 응용 프로그램의 구동을 위하여, AI 장치(100)에 포함된 구성 요소들 중 둘 이상을 서로 조합하여 동작시킬 수 있다.The processor 180 may control at least some of the components of the AI device 100 in order to drive an application program stored in the memory 170 . Furthermore, in order to drive the application program, the processor 180 may operate two or more of the components included in the AI device 100 in combination with each other.
도 2는 본 명세서의 일 실시 예에 따른 AI 서버(200)를 나타낸다.2 shows an AI server 200 according to an embodiment of the present specification.
도 2를 참조하면, AI 서버(200)는 머신 러닝 알고리즘을 이용하여 인공 신경망을 학습시키거나 학습된 인공 신경망을 이용하는 장치를 의미할 수 있다. 여기서, AI 서버(200)는 복수의 서버들로 구성되어 분산 처리를 수행할 수도 있고, 5G 네트워크로 정의될 수 있다. 이때, AI 서버(200)는 AI 장치(100)의 일부의 구성으로 포함되어, AI 프로세싱 중 적어도 일부를 함께 수행할 수도 있다.Referring to FIG. 2 , the AI server 200 may refer to a device that trains an artificial neural network using a machine learning algorithm or uses a learned artificial neural network. Here, the AI server 200 may be configured with a plurality of servers to perform distributed processing, and may be defined as a 5G network. In this case, the AI server 200 may be included as a part of the AI device 100 to perform at least a part of AI processing together.
AI 서버(200)는 통신부(210), 메모리(230), 러닝 프로세서(240) 및 프로세서(260) 등을 포함할 수 있다.The AI server 200 may include a communication unit 210 , a memory 230 , a learning processor 240 , a processor 260 , and the like.
통신부(210)는 AI 장치(100) 등의 외부 장치와 데이터를 송수신할 수 있다.The communication unit 210 may transmit/receive data to and from an external device such as the AI device 100 .
메모리(230)는 모델 저장부(231)를 포함할 수 있다. 모델 저장부(231)는 러닝 프로세서(240)을 통하여 학습 중인 또는 학습된 모델(또는 인공 신경망, 231a)을 저장할 수 있다.The memory 230 may include a model storage unit 231 . The model storage unit 231 may store a model (or artificial neural network, 231a) being trained or learned through the learning processor 240 .
러닝 프로세서(240)는 학습 데이터를 이용하여 인공 신경망(231a)을 학습시킬 수 있다. 학습 모델은 인공 신경망의 AI 서버(200)에 탑재된 상태에서 이용되거나, AI 장치(100) 등의 외부 장치에 탑재되어 이용될 수도 있다.The learning processor 240 may train the artificial neural network 231a using the training data. The learning model may be used while being mounted on the AI server 200 of the artificial neural network, or may be used while being mounted on an external device such as the AI device 100 .
학습 모델은 하드웨어, 소프트웨어 또는 하드웨어와 소프트웨어의 조합으로 구현될 수 있다. 학습 모델의 일부 또는 전부가 소프트웨어로 구현되는 경우 학습 모델을 구성하는 하나 이상의 명령어(instruction)는 메모리(230)에 저장될 수 있다.The learning model may be implemented in hardware, software, or a combination of hardware and software. When a part or all of the learning model is implemented in software, one or more instructions constituting the learning model may be stored in the memory 230 .
프로세서(260)는 학습 모델을 이용하여 새로운 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성할 수 있다.The processor 260 may infer a result value with respect to new input data using the learning model, and may generate a response or a control command based on the inferred result value.
도 3은 본 명세서의 일 실시 예에 따른 AI 시스템(1)을 나타낸다.3 shows an AI system 1 according to an embodiment of the present specification.
도 3을 참조하면, AI 시스템(1)은 AI 서버(200), 로봇(100a), 자율 주행 차량(100b), XR 장치(100c), 스마트폰(100d) 또는 가전(100e) 중에서 적어도 하나 이상이 클라우드 네트워크(10)와 연결된다. 여기서, AI 기술이 적용된 로봇(100a), 자율 주행 차량(100b), XR 장치(100c), 스마트폰(100d) 또는 가전(100e) 등을 AI 장치(100a 내지 100e)라 칭할 수 있다.Referring to FIG. 3 , the AI system 1 includes at least one of an AI server 200 , a robot 100a , an autonomous vehicle 100b , an XR device 100c , a smartphone 100d , or a home appliance 100e . It is connected to the cloud network 10 . Here, the robot 100a to which the AI technology is applied, the autonomous driving vehicle 100b, the XR device 100c, the smart phone 100d, or the home appliance 100e may be referred to as AI devices 100a to 100e.
클라우드 네트워크(10)는 클라우드 컴퓨팅 인프라의 일부를 구성하거나 클라우드 컴퓨팅 인프라 안에 존재하는 네트워크를 의미할 수 있다. 여기서, 클라우드 네트워크(10)는 3G 네트워크, 4G 또는 LTE(Long Term Evolution) 네트워크 또는 5G 네트워크 등을 이용하여 구성될 수 있다.The cloud network 10 may constitute a part of the cloud computing infrastructure or may refer to a network existing in the cloud computing infrastructure. Here, the cloud network 10 may be configured using a 3G network, a 4G or Long Term Evolution (LTE) network, or a 5G network.
즉, AI 시스템(1)을 구성하는 각 장치들(100a 내지 100e, 200)은 클라우드 네트워크(10)를 통해 서로 연결될 수 있다. 특히, 각 장치들(100a 내지 100e, 200)은 기지국을 통해서 서로 통신할 수도 있지만, 기지국을 통하지 않고 직접 서로 통신할 수도 있다.That is, each of the devices 100a to 100e and 200 constituting the AI system 1 may be connected to each other through the cloud network 10 . In particular, each of the devices 100a to 100e and 200 may communicate with each other through the base station, but may directly communicate with each other without passing through the base station.
AI 서버(200)는 AI 프로세싱을 수행하는 서버와 빅 데이터에 대한 연산을 수행하는 서버를 포함할 수 있다.The AI server 200 may include a server performing AI processing and a server performing an operation on big data.
AI 서버(200)는 AI 시스템(1)을 구성하는 AI 장치들인 로봇(100a), 자율 주행 차량(100b), XR 장치(100c), 스마트폰(100d) 또는 가전(100e) 중에서 적어도 하나 이상과 클라우드 네트워크(10)을 통하여 연결되고, 연결된 AI 장치들(100a 내지 100e)의 AI 프로세싱을 적어도 일부를 도울 수 있다.The AI server 200 includes at least one of the AI devices constituting the AI system 1, such as a robot 100a, an autonomous vehicle 100b, an XR device 100c, a smartphone 100d, or a home appliance 100e, and It is connected through the cloud network 10 and may help at least a part of AI processing of the connected AI devices 100a to 100e.
이때, AI 서버(200)는 AI 장치(100a 내지 100e)를 대신하여 머신 러닝 알고리즘에 따라 인공 신경망을 학습시킬 수 있고, 학습 모델을 직접 저장하거나 AI 장치(100a 내지 100e)에 전송할 수 있다. In this case, the AI server 200 may train an artificial neural network according to a machine learning algorithm on behalf of the AI devices 100a to 100e, and directly store the learning model or transmit it to the AI devices 100a to 100e.
이때, AI 서버(200)는 AI 장치(100a 내지 100e)로부터 입력 데이터를 수신하고, 학습 모델을 이용하여 수신한 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성하여 AI 장치(100a 내지 100e)로 전송할 수 있다.At this time, the AI server 200 receives input data from the AI devices 100a to 100e, infers a result value with respect to the input data received using the learning model, and provides a response or control command based on the inferred result value. It can be generated and transmitted to the AI devices 100a to 100e.
또는, AI 장치(100a 내지 100e)는 직접 학습 모델을 이용하여 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성할 수도 있다.Alternatively, the AI devices 100a to 100e may infer a result value with respect to input data using a direct learning model, and generate a response or a control command based on the inferred result value.
이하에서는, 상술한 기술이 적용되는 AI 장치(100a 내지 100e)의 다양한 실시 예들을 설명한다. 여기서, 도 3에 도시된 AI 장치(100a 내지 100e)는 도 1에 도시된 AI 장치(100)의 구체적인 실시 예로 볼 수 있다.Hereinafter, various embodiments of the AI devices 100a to 100e to which the above-described technology is applied will be described. Here, the AI devices 100a to 100e shown in FIG. 3 can be viewed as specific examples of the AI device 100 shown in FIG. 1 .
본 명세서가 적용될 수 있는 AI 및 로봇AI and robots to which this specification can be applied
로봇(100a)은 AI 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇 등으로 구현될 수 있다.The robot 100a may be implemented as a guide robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, an unmanned flying robot, etc. to which AI technology is applied.
로봇(100a)은 동작을 제어하기 위한 로봇 제어 모듈을 포함할 수 있고, 로봇 제어 모듈은 소프트웨어 모듈 또는 이를 하드웨어로 구현한 칩을 의미할 수 있다.The robot 100a may include a robot control module for controlling an operation, and the robot control module may mean a software module or a chip implemented as hardware.
로봇(100a)은 다양한 종류의 센서들로부터 획득한 센서 정보를 이용하여 로봇(100a)의 상태 정보를 획득하거나, 주변 환경 및 객체를 검출(인식)하거나, 맵 데이터를 생성하거나, 이동 경로 및 주행 계획을 결정하거나, 사용자 상호작용에 대한 응답을 결정하거나, 동작을 결정할 수 있다.The robot 100a acquires state information of the robot 100a by using sensor information obtained from various types of sensors, detects (recognizes) surrounding environments and objects, generates map data, moves path and travels A plan may be determined, a response to a user interaction may be determined, or an action may be determined.
여기서, 로봇(100a)은 이동 경로 및 주행 계획을 결정하기 위하여, 라이다, 레이더, 카메라 중에서 적어도 하나 이상의 센서에서 획득한 센서 정보를 이용할 수 있다.Here, the robot 100a may use sensor information obtained from at least one sensor among LiDAR, radar, and camera in order to determine a movement route and a travel plan.
로봇(100a)은 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, 로봇(100a)은 학습 모델을 이용하여 주변 환경 및 객체를 인식할 수 있고, 인식된 주변 환경 정보 또는 객체 정보를 이용하여 동작을 결정할 수 있다. 여기서, 학습 모델은 로봇(100a)에서 직접 학습되거나, AI 서버(200) 등의 외부 장치에서 학습된 것일 수 있다. The robot 100a may perform the above-described operations using a learning model composed of at least one artificial neural network. For example, the robot 100a may recognize a surrounding environment and an object using a learning model, and may determine an operation using the recognized surrounding environment information or object information. Here, the learning model may be directly learned from the robot 100a or learned from an external device such as the AI server 200 .
이때, 로봇(100a)은 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(200) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.In this case, the robot 100a may perform an operation by generating a result using a direct learning model, but transmits sensor information to an external device such as the AI server 200 and receives the result generated accordingly to perform the operation You may.
로봇(100a)은 맵 데이터, 센서 정보로부터 검출한 객체 정보 또는 외부 장치로부터 획득한 객체 정보 중에서 적어도 하나 이상을 이용하여 이동 경로와 주행 계획을 결정하고, 구동부를 제어하여 결정된 이동 경로와 주행 계획에 따라 로봇(100a)을 주행시킬 수 있다. The robot 100a determines a movement path and travel plan using at least one of map data, object information detected from sensor information, or object information obtained from an external device, and controls the driving unit to apply the determined movement path and travel plan. Accordingly, the robot 100a may be driven.
맵 데이터에는 로봇(100a)이 이동하는 공간에 배치된 다양한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 예컨대, 맵 데이터에는 벽, 문 등의 고정 객체들과 화분, 책상 등의 이동 허용한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 그리고, 객체 식별 정보에는 명칭, 종류, 거리, 위치 등이 포함될 수 있다.The map data may include object identification information for various objects disposed in a space in which the robot 100a moves. For example, the map data may include object identification information for fixed objects such as walls and doors and objects that are allowed to move, such as flowerpots and desks. In addition, the object identification information may include a name, a type, a distance, a location, and the like.
또한, 로봇(100a)은 사용자의 제어/상호작용에 기초하여 구동부를 제어함으로써, 동작을 수행하거나 주행할 수 있다. 이때, 로봇(100a)은 사용자의 동작이나 음성 발화에 따른 상호작용의 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 응답을 결정하여 동작을 수행할 수 있다.In addition, the robot 100a may perform an operation or drive by controlling the driving unit based on the user's control/interaction. In this case, the robot 100a may acquire intention information of an interaction according to a user's motion or voice utterance, determine a response based on the acquired intention information, and perform the operation.
본 명세서가 적용될 수 있는 AI 및 자율주행AI and autonomous driving to which this specification can be applied
자율 주행 차량(100b)은 AI 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다. The autonomous driving vehicle 100b may be implemented as a mobile robot, a vehicle, an unmanned aerial vehicle, etc. by applying AI technology.
자율 주행 차량(100b)은 자율 주행 기능을 제어하기 위한 자율 주행 제어 모듈을 포함할 수 있고, 자율 주행 제어 모듈은 소프트웨어 모듈 또는 이를 하드웨어로 구현한 칩을 의미할 수 있다. 자율 주행 제어 모듈은 자율 주행 차량(100b)의 구성으로써 내부에 포함될 수도 있지만, 자율 주행 차량(100b)의 외부에 별도의 하드웨어로 구성되어 연결될 수도 있다.The autonomous driving vehicle 100b may include an autonomous driving control module for controlling an autonomous driving function, and the autonomous driving control module may mean a software module or a chip implemented as hardware. The autonomous driving control module may be included as a component of the autonomous driving vehicle 100b, or may be configured and connected to the outside of the autonomous driving vehicle 100b as separate hardware.
자율 주행 차량(100b)은 다양한 종류의 센서들로부터 획득한 센서 정보를 이용하여 자율 주행 차량(100b)의 상태 정보를 획득하거나, 주변 환경 및 객체를 검출(인식)하거나, 맵 데이터를 생성하거나, 이동 경로 및 주행 계획을 결정하거나, 동작을 결정할 수 있다. The autonomous vehicle 100b obtains state information of the autonomous vehicle 100b using sensor information obtained from various types of sensors, detects (recognizes) surrounding environments and objects, generates map data, A movement route and a driving plan may be determined, or an operation may be determined.
여기서, 자율 주행 차량(100b)은 이동 경로 및 주행 계획을 결정하기 위하여, 로봇(100a)과 마찬가지로, 라이다, 레이더, 카메라 중에서 적어도 하나 이상의 센서에서 획득한 센서 정보를 이용할 수 있다.Here, the autonomous driving vehicle 100b may use sensor information obtained from at least one sensor among a lidar, a radar, and a camera, similarly to the robot 100a, in order to determine a moving route and a driving plan.
특히, 자율 주행 차량(100b)은 시야가 가려지는 영역이나 일정 거리 이상의 영역에 대한 환경이나 객체는 외부 장치들로부터 센서 정보를 수신하여 인식하거나, 외부 장치들로부터 직접 인식된 정보를 수신할 수 있다.In particular, the autonomous vehicle 100b may receive sensor information from external devices to recognize an environment or object for an area where the field of view is obscured or an area over a certain distance, or receive information recognized directly from external devices. .
자율 주행 차량(100b)은 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, 자율 주행 차량(100b)은 학습 모델을 이용하여 주변 환경 및 객체를 인식할 수 있고, 인식된 주변 환경 정보 또는 객체 정보를 이용하여 주행 동선을 결정할 수 있다. 여기서, 학습 모델은 자율 주행 차량(100b)에서 직접 학습되거나, AI 서버(200) 등의 외부 장치에서 학습된 것일 수 있다. The autonomous vehicle 100b may perform the above-described operations by using a learning model composed of at least one artificial neural network. For example, the autonomous driving vehicle 100b may recognize a surrounding environment and an object using a learning model, and may determine a driving route using the recognized surrounding environment information or object information. Here, the learning model may be directly learned from the autonomous vehicle 100b or learned from an external device such as the AI server 200 .
이때, 자율 주행 차량(100b)은 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(200) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.In this case, the autonomous vehicle 100b may generate a result by using the direct learning model and perform the operation, but it operates by transmitting sensor information to an external device such as the AI server 200 and receiving the result generated accordingly. can also be performed.
자율 주행 차량(100b)은 맵 데이터, 센서 정보로부터 검출한 객체 정보 또는 외부 장치로부터 획득한 객체 정보 중에서 적어도 하나 이상을 이용하여 이동 경로와 주행 계획을 결정하고, 구동부를 제어하여 결정된 이동 경로와 주행 계획에 따라 자율 주행 차량(100b)을 주행시킬 수 있다.The autonomous vehicle 100b determines a movement path and a driving plan by using at least one of map data, object information detected from sensor information, or object information acquired from an external device, and controls the driving unit to determine the movement path and driving The autonomous vehicle 100b may be driven according to a plan.
맵 데이터에는 자율 주행 차량(100b)이 주행하는 공간(예컨대, 도로)에 배치된 다양한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 예컨대, 맵 데이터에는 가로등, 바위, 건물 등의 고정 객체들과 차량, 보행자 등의 이동 허용한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 그리고, 객체 식별 정보에는 명칭, 종류, 거리, 위치 등이 포함될 수 있다.The map data may include object identification information for various objects disposed in a space (eg, a road) in which the autonomous vehicle 100b travels. For example, the map data may include object identification information for fixed objects such as street lights, rocks, and buildings, and objects that are allowed to move, such as vehicles and pedestrians. In addition, the object identification information may include a name, a type, a distance, a location, and the like.
또한, 자율 주행 차량(100b)은 사용자의 제어/상호작용에 기초하여 구동부를 제어함으로써, 동작을 수행하거나 주행할 수 있다. 이때, 자율 주행 차량(100b)은 사용자의 동작이나 음성 발화에 따른 상호작용의 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 응답을 결정하여 동작을 수행할 수 있다.Also, the autonomous vehicle 100b may perform an operation or drive by controlling the driving unit based on the user's control/interaction. In this case, the autonomous vehicle 100b may acquire intention information of an interaction according to a user's motion or voice utterance, determine a response based on the obtained intention information, and perform the operation.
본 명세서가 적용될 수 있는 AI 및 XRAI and XR to which this specification may be applied
XR 장치(100c)는 AI 기술이 적용되어, HMD(Head-Mount Display), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 휴대폰, 스마트 폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지, 차량, 고정형 로봇이나 이동형 로봇 등으로 구현될 수 있다.The XR device 100c is AI technology applied, so a head-mount display (HMD), a head-up display (HUD) provided in a vehicle, a television, a mobile phone, a smart phone, a computer, a wearable device, a home appliance, and a digital signage , a vehicle, a stationary robot, or a mobile robot.
XR 장치(100c)는 다양한 센서들을 통해 또는 외부 장치로부터 획득한 3차원 포인트 클라우드 데이터 또는 이미지 데이터를 분석하여 3차원 포인트들에 대한 위치 데이터 및 속성 데이터를 생성함으로써 주변 공간 또는 현실 객체에 대한 정보를 획득하고, 출력할 XR 객체를 렌더링하여 출력할 수 있다. 예컨대, XR 장치(100c)는 인식된 물체에 대한 추가 정보를 포함하는 XR 객체를 해당 인식된 물체에 대응시켜 출력할 수 있다.The XR device 100c analyzes 3D point cloud data or image data acquired through various sensors or from an external device to generate location data and attribute data for 3D points, thereby providing information on surrounding space or real objects. It can be obtained and output by rendering the XR object to be output. For example, the XR apparatus 100c may output an XR object including additional information on the recognized object to correspond to the recognized object.
XR 장치(100c)는 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, XR 장치(100c)는 학습 모델을 이용하여 3차원 포인트 클라우드 데이터 또는 이미지 데이터에서 현실 객체를 인식할 수 있고, 인식한 현실 객체에 상응하는 정보를 제공할 수 있다. 여기서, 학습 모델은 XR 장치(100c)에서 직접 학습되거나, AI 서버(200) 등의 외부 장치에서 학습된 것일 수 있다. The XR apparatus 100c may perform the above-described operations using a learning model composed of at least one artificial neural network. For example, the XR apparatus 100c may recognize a real object from 3D point cloud data or image data using a learning model, and may provide information corresponding to the recognized real object. Here, the learning model may be directly learned from the XR device 100c or learned from an external device such as the AI server 200 .
이때, XR 장치(100c)는 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(200) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.In this case, the XR device 100c may perform an operation by generating a result using the direct learning model, but it transmits sensor information to an external device such as the AI server 200 and receives the result generated accordingly to perform the operation. can also be done
본 명세서가 적용될 수 있는 AI, 로봇 및 자율주행AI, robot and autonomous driving to which this specification can be applied
로봇(100a)은 AI 기술 및 자율 주행 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇 등으로 구현될 수 있다.The robot 100a may be implemented as a guide robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, an unmanned flying robot, etc. to which AI technology and autonomous driving technology are applied.
AI 기술과 자율 주행 기술이 적용된 로봇(100a)은 자율 주행 기능을 가진 로봇 자체나, 자율 주행 차량(100b)과 상호작용하는 로봇(100a) 등을 의미할 수 있다. The robot 100a to which AI technology and autonomous driving technology are applied may mean a robot having an autonomous driving function or a robot 100a that interacts with the autonomous driving vehicle 100b.
자율 주행 기능을 가진 로봇(100a)은 사용자의 제어 없이도 주어진 동선에 따라 스스로 움직이거나, 동선을 스스로 결정하여 움직이는 장치들을 통칭할 수 있다.The robot 100a having an autonomous driving function may collectively refer to devices that move by themselves according to a given movement line without user's control or by determining a movement line by themselves.
자율 주행 기능을 가진 로봇(100a) 및 자율 주행 차량(100b)은 이동 경로 또는 주행 계획 중 하나 이상을 결정하기 위해 공통적인 센싱 방법을 사용할 수 있다. 예를 들어, 자율 주행 기능을 가진 로봇(100a) 및 자율 주행 차량(100b)은 라이다, 레이더, 카메라를 통해 센싱된 정보를 이용하여, 이동 경로 또는 주행 계획 중 하나 이상을 결정할 수 있다.The robot 100a with the autonomous driving function and the autonomous driving vehicle 100b may use a common sensing method to determine one or more of a moving route or a driving plan. For example, the robot 100a having an autonomous driving function and the autonomous driving vehicle 100b may determine one or more of a movement route or a driving plan by using information sensed through lidar, radar, and camera.
자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)과 별개로 존재하면서, 자율 주행 차량(100b)의 내부 또는 외부에서 자율 주행 기능에 연계되거나, 자율 주행 차량(100b)에 탑승한 사용자와 연계된 동작을 수행할 수 있다.The robot 100a interacting with the autonomous driving vehicle 100b exists separately from the autonomous driving vehicle 100b and is linked to an autonomous driving function inside or outside the autonomous driving vehicle 100b, or the autonomous driving vehicle 100b ) can perform an operation associated with the user on board.
이때, 자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)을 대신하여 센서 정보를 획득하여 자율 주행 차량(100b)에 제공하거나, 센서 정보를 획득하고 주변 환경 정보 또는 객체 정보를 생성하여 자율 주행 차량(100b)에 제공함으로써, 자율 주행 차량(100b)의 자율 주행 기능을 제어하거나 보조할 수 있다.At this time, the robot 100a interacting with the autonomous driving vehicle 100b acquires sensor information on behalf of the autonomous driving vehicle 100b and provides it to the autonomous driving vehicle 100b, or obtains sensor information and obtains information about the surrounding environment or By generating object information and providing it to the autonomous driving vehicle 100b, the autonomous driving function of the autonomous driving vehicle 100b may be controlled or supported.
또는, 자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)에 탑승한 사용자를 모니터링하거나 사용자와의 상호작용을 통해 자율 주행 차량(100b)의 기능을 제어할 수 있다. 예컨대, 로봇(100a)은 운전자가 졸음 상태인 경우로 판단되는 경우, 자율 주행 차량(100b)의 자율 주행 기능을 활성화하거나 자율 주행 차량(100b)의 구동부의 제어를 보조할 수 있다. 여기서, 로봇(100a)이 제어하는 자율 주행 차량(100b)의 기능에는 단순히 자율 주행 기능뿐만 아니라, 자율 주행 차량(100b)의 내부에 구비된 네비게이션 시스템이나 오디오 시스템에서 제공하는 기능도 포함될 수 있다.Alternatively, the robot 100a interacting with the autonomous driving vehicle 100b may monitor a user riding in the autonomous driving vehicle 100b or control a function of the autonomous driving vehicle 100b through interaction with the user. . For example, when it is determined that the driver is in a drowsy state, the robot 100a may activate an autonomous driving function of the autonomous driving vehicle 100b or assist in controlling a driving unit of the autonomous driving vehicle 100b. Here, the function of the autonomous driving vehicle 100b controlled by the robot 100a may include not only an autonomous driving function, but also a function provided by a navigation system or an audio system provided in the autonomous driving vehicle 100b.
또는, 자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)의 외부에서 자율 주행 차량(100b)에 정보를 제공하거나 기능을 보조할 수 있다. 예컨대, 로봇(100a)은 스마트 신호등과 같이 자율 주행 차량(100b)에 신호 정보 등을 포함하는 교통 정보를 제공할 수도 있고, 전기 차량의 자동 전기 충전기와 같이 자율 주행 차량(100b)과 상호작용하여 충전구에 전기 충전기를 자동으로 연결할 수도 있다.Alternatively, the robot 100a interacting with the autonomous driving vehicle 100b may provide information or assist a function to the autonomous driving vehicle 100b from the outside of the autonomous driving vehicle 100b. For example, the robot 100a may provide traffic information including signal information to the autonomous driving vehicle 100b, such as a smart traffic light, or interact with the autonomous driving vehicle 100b, such as an automatic electric charger for an electric vehicle. You can also automatically connect an electric charger to the charging port.
본 명세서가 적용될 수 있는 AI, 로봇 및 XRAI, Robot and XR to which this specification can be applied
로봇(100a)은 AI 기술 및 XR 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇, 드론 등으로 구현될 수 있다. The robot 100a may be implemented as a guide robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, an unmanned flying robot, a drone, etc. to which AI technology and XR technology are applied.
XR 기술이 적용된 로봇(100a)은 XR 영상 내에서의 제어/상호작용의 대상이 되는 로봇을 의미할 수 있다. 이 경우, 로봇(100a)은 XR 장치(100c)와 구분되며 서로 연동될 수 있다.The robot 100a to which the XR technology is applied may mean a robot that is a target of control/interaction within an XR image. In this case, the robot 100a is distinguished from the XR device 100c and may be interlocked with each other.
XR 영상 내에서의 제어/상호작용의 대상이 되는 로봇(100a)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하면, 로봇(100a) 또는 XR 장치(100c)는 센서 정보에 기초한 XR 영상을 생성하고, XR 장치(100c)는 생성된 XR 영상을 출력할 수 있다. 그리고, 이러한 로봇(100a)은 XR 장치(100c)를 통해 입력되는 제어 신호 또는 사용자의 상호작용에 기초하여 동작할 수 있다. When the robot 100a, which is the target of control/interaction within the XR image, obtains sensor information from sensors including a camera, the robot 100a or the XR device 100c generates an XR image based on the sensor information. and the XR apparatus 100c may output the generated XR image. In addition, the robot 100a may operate based on a control signal input through the XR device 100c or a user's interaction.
예컨대, 사용자는 XR 장치(100c) 등의 외부 장치를 통해 원격으로 연동된 로봇(100a)의 시점에 상응하는 XR 영상을 확인할 수 있고, 상호작용을 통하여 로봇(100a)의 자율 주행 경로를 조정하거나, 동작 또는 주행을 제어하거나, 주변 객체의 정보를 확인할 수 있다.For example, the user can check the XR image corresponding to the viewpoint of the remotely linked robot 100a through an external device such as the XR device 100c, and adjust the autonomous driving path of the robot 100a through interaction or , control motion or driving, or check information of surrounding objects.
본 명세서가 적용될 수 있는 AI, 자율주행 및 XRAI, autonomous driving and XR to which this specification may be applied
자율 주행 차량(100b)은 AI 기술 및 XR 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다. The autonomous vehicle 100b may be implemented as a mobile robot, a vehicle, an unmanned aerial vehicle, etc. by applying AI technology and XR technology.
XR 기술이 적용된 자율 주행 차량(100b)은 XR 영상을 제공하는 수단을 구비한 자율 주행 차량이나, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량 등을 의미할 수 있다. 특히, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량(100b)은 XR 장치(100c)와 구분되며 서로 연동될 수 있다.The autonomous driving vehicle 100b to which the XR technology is applied may mean an autonomous driving vehicle equipped with a means for providing an XR image or an autonomous driving vehicle subject to control/interaction within the XR image. In particular, the autonomous driving vehicle 100b, which is the target of control/interaction within the XR image, is distinguished from the XR device 100c and may be interlocked with each other.
XR 영상을 제공하는 수단을 구비한 자율 주행 차량(100b)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하고, 획득한 센서 정보에 기초하여 생성된 XR 영상을 출력할 수 있다. 예컨대, 자율 주행 차량(100b)은 HUD를 구비하여 XR 영상을 출력함으로써, 탑승자에게 현실 객체 또는 화면 속의 객체에 대응되는 XR 객체를 제공할 수 있다.The autonomous driving vehicle 100b having means for providing an XR image may obtain sensor information from sensors including a camera, and output an XR image generated based on the acquired sensor information. For example, the autonomous vehicle 100b may provide an XR object corresponding to a real object or an object in a screen to the passenger by outputting an XR image with a HUD.
이때, XR 객체가 HUD에 출력되는 경우에는 XR 객체의 적어도 일부가 탑승자의 시선이 향하는 실제 객체에 오버랩되도록 출력될 수 있다. 반면, XR 객체가 자율 주행 차량(100b)의 내부에 구비되는 디스플레이에 출력되는 경우에는 XR 객체의 적어도 일부가 화면 속의 객체에 오버랩되도록 출력될 수 있다. 예컨대, 자율 주행 차량(100b)은 차로, 타 차량, 신호등, 교통 표지판, 이륜차, 보행자, 건물 등과 같은 객체와 대응되는 XR 객체들을 출력할 수 있다.In this case, when the XR object is output to the HUD, at least a portion of the XR object may be output to overlap the real object to which the passenger's gaze is directed. On the other hand, when the XR object is output to the display provided inside the autonomous vehicle 100b, at least a portion of the XR object may be output to overlap the object in the screen. For example, the autonomous vehicle 100b may output XR objects corresponding to objects such as a lane, other vehicles, traffic lights, traffic signs, two-wheeled vehicles, pedestrians, and buildings.
XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량(100b)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하면, 자율 주행 차량(100b) 또는 XR 장치(100c)는 센서 정보에 기초한 XR 영상을 생성하고, XR 장치(100c)는 생성된 XR 영상을 출력할 수 있다. 그리고, 이러한 자율 주행 차량(100b)은 XR 장치(100c) 등의 외부 장치를 통해 입력되는 제어 신호 또는 사용자의 상호작용에 기초하여 동작할 수 있다.When the autonomous driving vehicle 100b, which is the subject of control/interaction in the XR image, acquires sensor information from sensors including a camera, the autonomous driving vehicle 100b or the XR device 100c performs An XR image is generated, and the XR apparatus 100c may output the generated XR image. In addition, the autonomous vehicle 100b may operate based on a control signal input through an external device such as the XR device 100c or a user's interaction.
먼저, 본 명세서에서 사용되는 용어들은 다음과 같이 정의된다.First, terms used in this specification are defined as follows.
- IMS(IP Multimedia Subsystem or IP Multimedia Core Network Subsystem): IP 상으로 음성 또는 다른 멀티미디어 서비스를 배달하기 위한 표준화를 제공하기 위한 구조적(architectural) 프레임워크(framework).- IMS (IP Multimedia Subsystem or IP Multimedia Core Network Subsystem): an architectural framework for providing standardization for delivering voice or other multimedia services over IP.
- UMTS(Universal Mobile Telecommunications System): 3GPP에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대(Generation) 이동 통신 기술.- UMTS (Universal Mobile Telecommunications System): GSM (Global System for Mobile Communication)-based 3rd generation mobile communication technology developed by 3GPP.
- EPS(Evolved Packet System): IP(Internet Protocol) 기반의 PS(packet switched) 코어(core) 네트워크인 EPC(Evolved Packet Core)와 LTE/UTRAN 등의 액세스 네트워크로 구성된 네트워크 시스템. UMTS가 진화된 형태의 네트워크이다.- EPS (Evolved Packet System): A network system composed of an Internet Protocol (IP)-based PS (packet switched) core network, an Evolved Packet Core (EPC) network, and an access network such as LTE/UTRAN. UMTS is an evolved network.
- NodeB: GERAN/UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.- NodeB: base station of GERAN/UTRAN. It is installed outdoors and the coverage is macro cell scale.
- eNodeB/eNB: E-UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.- eNodeB/eNB: base station of E-UTRAN. It is installed outdoors and the coverage is macro cell scale.
- UE(User Equipment): 사용자 기기. UE는 UE(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수도 있다. 또한, UE는 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트 폰, 멀티미디어 기기 등과 같이 휴대 허용한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불허용능한 기기일 수도 있다. MTC 관련 내용에서 UE 또는 단말이라는 용어는 MTC 디바이스를 지칭할 수 있다.- UE (User Equipment): User equipment. A UE may be referred to as a terminal (UE), a mobile equipment (ME), a mobile station (MS), or the like. In addition, the UE may be a portable device such as a laptop computer, a mobile phone, a personal digital assistant (PDA), a smart phone, a multimedia device, or the like, or a non-portable device such as a personal computer (PC) or in-vehicle device. In the context of MTC, the term UE or terminal may refer to an MTC device.
- HNB(Home NodeB): UMTS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀(micro cell) 규모이다.- HNB (Home NodeB): As a base station of the UMTS network, it is installed indoors and the coverage is micro cell scale.
- HeNB(Home eNodeB): EPS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀 규모이다.- HeNB (Home eNodeB): As a base station of the EPS network, it is installed indoors and the coverage is micro-cell scale.
- MME(Mobility Management Entity): 이동성 관리(Mobility Management; MM), 세션 관리(Session Management; SM) 기능을 수행하는 EPS 네트워크의 네트워크 노드.- MME (Mobility Management Entity): Mobility Management (MM), Session Management (Session Management; SM) network node of the EPS network that performs the function.
- PDN-GW(Packet Data Network-Gateway)/PGW/P-GW: UE IP 주소 할당, 패킷 스크리닝(screening) 및 필터링, 과금 데이터 취합(charging data collection) 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.- PDN-GW (Packet Data Network-Gateway)/PGW/P-GW: A network node of the EPS network that performs UE IP address assignment, packet screening and filtering, charging data collection functions, and the like.
- SGW(Serving Gateway)/S-GW: 이동성 앵커(mobility anchor), 패킷 라우팅(routing), 휴지(idle) 모드 패킷 버퍼링, MME가 UE를 페이징하도록 트리거링하는 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.- Serving Gateway (SGW) / S-GW: Mobility anchor (mobility anchor), packet routing (routing), idle mode packet buffering, a function of triggering the MME to page the UE, etc. Network node of the EPS network .
- PCRF (Policy and Charging Rule Function): 서비스 플로우(service flow)별로 차별화된 QoS 및 과금 정책을 동적(dynamic) 으로 적용하기 위한 정책 결정(Policy decision)을 수행하는 EPS 네트워크의 네트워크 노드.- PCRF (Policy and Charging Rule Function): A network node of the EPS network that performs policy decision to dynamically apply QoS and charging policies differentiated for each service flow.
- OMA DM (Open Mobile Alliance Device Management): 핸드폰, PDA, 휴대용 컴퓨터 등과 같은 모바일 디바이스들 관리를 위해 디자인 된 프로토콜로써, 디바이스 설정(configuration), 펌웨어 업그레이드(firmware upgrade), 오류 보고 (Error Report)등의 기능을 수행함.- OMA DM (Open Mobile Alliance Device Management): A protocol designed to manage mobile devices such as cell phones, PDAs, and portable computers. Device configuration, firmware upgrade, error report, etc. perform the function of
- OAM (Operation Administration and Maintenance): 네트워크 결함 표시, 성능정보, 그리고 데이터와 진단 기능을 제공하는 네트워크 관리 기능군.- OAM (Operation Administration and Maintenance): A set of network management functions that provide network fault indication, performance information, and data and diagnostic functions.
- NAS(Non-Access Stratum): UE와 MME 간의 제어 플레인(control plane)의 상위 단(stratum). LTE/UMTS 프로토콜 스택에서 UE와 코어(core) 네트워크간의 시그널링, 트래픽 메시지를 주고 받기 위한 기능적인 계층으로서, UE의 이동성을 지원하고, UE와 PDN GW 간의 IP 연결을 수립(establish) 및 유지하는 세션 관리 절차 및 IP 주소 관리 등을 지원한다.- NAS (Non-Access Stratum): the upper end of the control plane (control plane) between the UE and the MME (stratum). As a functional layer for exchanging signaling and traffic messages between the UE and the core network in the LTE / UMTS protocol stack, the session supports mobility of the UE and establishes and maintains an IP connection between the UE and the PDN GW It supports management procedures and IP address management.
- EMM (EPS Mobility Management): NAS 계층의 서브-계층으로서, UE가 네트워크 어태치(attach)되어 있는지 디태치(detach)되어 있는지에 따라 EMM은 "EMM-Registered" 아니면 "EMM-Deregistered" 상태에 있을 수 있다.- EMM (EPS Mobility Management): As a sub-layer of the NAS layer, the EMM is in "EMM-Registered" or "EMM-Deregistered" state depending on whether the UE is network attached or detached. there may be
- ECM (EMM Connection Management) 연결(connection): UE와 MME가 사이에 수립(establish)된, NAS 메시지의 교환(exchange)을 위한 시그널링 연결(connection). ECM 연결은 UE와 eNB 사이의 RRC 연결과 상기 eNB와 MME 사이의 S1 시그널링 연결로 구성된 논리(logical) 연결이다. ECM 연결이 수립(establish)/종결(terminate)되면, 상기 RRC 및 S1 시그널링 연결은 마찬가지로 수립/종결된다. 수립된 ECM 연결은 UE에게는 eNB와 수립된 RRC 연결을 갖는 것을 의미하며, MME에게는 상기 eNB와 수립된 S1 시그널링 연결을 갖는 것을 의미한다. NAS 시그널링 연결, 즉, ECM 연결이 수립되어 있는지에 따라, ECM은 "ECM-Connected" 아니면 "ECM-Idle" 상태를 가질 수 있다.- ECM (EMM Connection Management) connection (connection): a signaling connection (connection) for the exchange (exchange) of NAS messages established between the UE and the MME. The ECM connection is a logical connection consisting of an RRC connection between the UE and the eNB and an S1 signaling connection between the eNB and the MME. When the ECM connection is established/terminated, the RRC and S1 signaling connections are also established/terminated. The established ECM connection means having an RRC connection established with the eNB to the UE, and means having an S1 signaling connection established with the eNB to the MME. Depending on whether a NAS signaling connection, that is, an ECM connection is established, the ECM may have a status of "ECM-Connected" or "ECM-Idle".
- AS (Access-Stratum): UE와 무선(혹은 접속) 네트워크 간의 프로토콜 스택을 포함하며, 데이터 및 네트워크 제어 신호 전송 등을 담당한다.- AS (Access-Stratum): Includes the protocol stack between the UE and the wireless (or access) network, and is responsible for data and network control signal transmission.
- NAS 설정(configuration) MO (Management Object): NAS 기능(Functionality)과 연관된 파라미터들(parameters)을 UE에게 설정하는 과정에서 사용되는 MO (Management object).- NAS configuration (configuration) MO (Management Object): MO (Management object) used in the process of setting parameters (parameters) related to NAS function (Functionality) to the UE.
- PDN(Packet Data Network): 특정 서비스를 지원하는 서버(예를 들어, MMS(Multimedia Messaging Service) 서버, WAP(Wireless Application Protocol) 서버 등)가 위치하고 있는 네트워크.- PDN (Packet Data Network): A network in which a server supporting a specific service (eg, Multimedia Messaging Service (MMS) server, Wireless Application Protocol (WAP) server, etc.) is located.
- PDN 연결: 하나의 IP 주소(하나의 IPv4 주소 및/또는 하나의 IPv6 프리픽스)로 표현되는, UE와 PDN 간의 논리적인 연결.- PDN Connection: A logical connection between the UE and the PDN, expressed by one IP address (one IPv4 address and/or one IPv6 prefix).
- APN (Access Point Name): PDN을 지칭하거나 구분하는 문자열. 요청한 서비스나 네트워크에 접속하기 위해서는 특정 P-GW를 거치게 되는데, 이 P-GW를 찾을 수 있도록 네트워크 내에서 미리 정의한 이름(문자열)을 의미한다. (예를 들어, internet.mnc012.mcc345.gprs)- APN (Access Point Name): A string that refers to or distinguishes a PDN. In order to access a requested service or network, it goes through a specific P-GW, and it means a name (string) predefined in the network to find this P-GW. (e.g. internet.mnc012.mcc345.gprs)
- RAN(Radio Access Network): 3GPP 네트워크에서 NodeB, eNodeB 및 이들을 제어하는 RNC(Radio Network Controller)를 포함하는 단위. UE 간에 존재하며 코어 네트워크로의 연결을 제공한다.- RAN (Radio Access Network): a unit including a NodeB, an eNodeB, and a Radio Network Controller (RNC) for controlling them in a 3GPP network. It exists between UEs and provides connectivity to the core network.
- HLR(Home Location Register)/HSS(Home Subscriber Server): 3GPP 네트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS는 설정 저장(configuration storage), 식별자 관리(identity management), 사용자 상태 저장 등의 기능을 수행할 수 있다.- HLR (Home Location Register)/HSS (Home Subscriber Server): A database having subscriber information in the 3GPP network. The HSS may perform functions such as configuration storage, identity management, and user state storage.
- PLMN(Public Land Mobile Network): 개인들에게 이동통신 서비스를 제공할 목적으로 구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.- PLMN (Public Land Mobile Network): A network configured for the purpose of providing mobile communication services to individuals. It may be configured to be divided for each operator.
- ANDSF(Access Network Discovery and Selection Function): 하나의 네트워크 엔티티(entity)로서 사업자 단위로 UE가 사용 허용한 접속(access)을 발견하고 선택하도록 하는 Policy를 제공.-ANDSF (Access Network Discovery and Selection Function): As one network entity, it provides a policy to discover and select the access allowed by the UE in the operator unit.
- EPC 경로(또는 infrastructure data path): EPC를 통한 사용자 평면 커뮤니케이션 경로- EPC path (or infrastructure data path): User plane communication path through EPC
- E-RAB (E-UTRAN Radio Access Bearer): S1 베어러와 해당 데이터 무선 베어러의 연결(concatenation)을 말한다. E-RAB가 존재하면 상기 E-RAB와 NAS의 EPS 베어러 사이에 일대일 매핑이 있다.- E-RAB (E-UTRAN Radio Access Bearer): refers to the concatenation of the S1 bearer and the corresponding data radio bearer. If the E-RAB exists, there is a one-to-one mapping between the E-RAB and the EPS bearer of the NAS.
- GTP (GPRS Tunneling Protocol): GSM, UMTS 및 LTE 네트워크들 내에서 일반 패킷 무선 서비스(general packet radio service, GPRS)를 나르기 위해 사용되는 IP-기반 통신들 프로토콜들의 그룹. 3GPP 아키텍쳐 내에는, GTP 및 프록시 모바일 IPv6 기반 인터페이스들이 다양한 인터페이스 포인트 상에 특정(specify)되어 있다. GTP는 몇몇 프로토콜들(예, GTP-C, GTP-U 및 GTP')으로 분해(decompose)될 수 있다. GTP-C는 게이트웨이 GPRS 지원 노드들(GGSN) 및 서빙 GPRS 지원 노드들(SGSN) 간 시그널링을 위해 GPRS 코어(core) 네트워크 내에서 사용된다. GTP-C는 상기 SGSN이 사용자를 위해 세션을 활성화(activate)(예, PDN 컨텍스트 활성화(activation))하는 것, 동일 세션을 비활성화(deactivate)하는 것, 서비스 파라미터들의 품질(quality)를 조정(adjust)하는 것, 또는 다른 SGSN으로부터 막 동작한 가입자(subscriber)를 위한 세션을 갱신하는 것을 허용한다. GTP-U는 상기 GPRS 코어 네트워크 내에서 그리고 무선 접속 네트워크 및 코어 네트워크 간에서 사용자 데이터를 나르기 위해 사용된다. 도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.- GPRS Tunneling Protocol (GTP): A group of IP-based communications protocols used to carry general packet radio service (GPRS) within GSM, UMTS and LTE networks. Within the 3GPP architecture, GTP and Proxy Mobile IPv6-based interfaces are specified on various interface points. GTP can be decomposed into several protocols (eg GTP-C, GTP-U and GTP'). GTP-C is used within a GPRS core network for signaling between Gateway GPRS Support Nodes (GGSN) and Serving GPRS Support Nodes (SGSN). In the GTP-C, the SGSN activates a session for the user (eg, activates the PDN context), deactivates the same session, and adjusts the quality of service parameters. ), or update a session for a subscriber that has just operated from another SGSN. GTP-U is used to carry user data within the GPRS core network and between the radio access network and the core network. 1 is a diagram illustrating a schematic structure of an Evolved Packet System (EPS) including an Evolved Packet Core (EPC).
- 무선 자원으로서의 셀(cell): 3GPP LTE/LTE-A 시스템은 무선 자원을 관리하기 위해 셀(cell)의 개념을 사용하고 있는데, 무선 자원과 연관된 셀(cell)은 지리적 영역의 셀(cell)과 구분된다. 무선 자원과 연관된 "셀"이라 함은 하향링크 자원(DL resources)와 상향링크 자원(UL resources)의 조합, 즉, DL 반송파와 UL 반송파의 조합으로 정의된다. 셀은 DL 자원 단독, 또는 DL 자원과 UL 자원의 조합으로 설정될(configured) 수 있다. 반송파 집성이 지원되는 경우, DL 자원의 반송파 주파수(carrier frequency)와 UL 자원의 반송파 주파수(carrier frequency) 사이의 링키지(linkage)는 시스템 정보에 의해 지시될 수 있다. 여기서, 반송파 주파수라 함은 각 셀 혹은 반송파의 중심 주파수(center frequency)를 의미한다. 특히 1차 주파수(primary frequency) 상에서 동작하는 셀을 1차 셀(primary cell, Pcell)로 지칭되고, 2차 주파수(Secondary frequency) 상에서 동작하는 셀을 2차 셀(secondary cell, Scell)로 지칭된다. Scell이라 함은 RRC(Radio Resource Control) 연결 개설(connection establishment)이 이루어진 이후에 설정 허용하고 추가적인 무선 자원을 제공을 위해 사용될 수 있는 셀을 의미한다. UE의 성능(capabilities)에 따라, Scell이 Pcell과 함께, 상기 UE를 위한 서빙 셀의 모음(set)을 형성할 수 있다. RRC_CONNECTED 상태에 있지만 반송파 집성이 설정되지 않았거나 반송파 집성을 지원하지 않는 UE의 경우, Pcell로만 설정된 서빙 셀이 단 하나 존재한다. 한편, 지리적 영역의 "셀"은 노드가 반송파를 이용하여 서비스를 제공할 수 있는 커버리지(coverage)라고 이해될 수 있으며, 무선 자원의 "셀"은 상기 반송파에 의해 설정(configure)되는 주파수 범위인 대역폭(bandwidth, BW)와 연관된다. 노드가 유효한 신호를 전송할 수 있는 범위인 하향링크 커버리지와 UE로부터 유효한 신호를 수신할 수 있는 범위인 상향링크 커버리지는 해당 신호를 나르는 반송파에 의해 의존하므로 노드의 커버리지는 상기 노드가 사용하는 무선 자원의 "셀"의 커버리지와 연관되기도 한다. 따라서 "셀"이라는 용어는 때로는 노드에 의한 서비스의 커버리지를, 때로는 무선 자원을, 때로는 상기 무선 자원을 이용한 신호가 유효한 세기로 도달할 수 있는 범위를 의미하는 데 사용될 수 있다.- Cell as a radio resource: The 3GPP LTE / LTE-A system uses the concept of a cell to manage radio resources, and a cell associated with a radio resource is a cell of a geographic area. is separated from A "cell" associated with a radio resource is defined as a combination of downlink resources (DL resources) and uplink resources (UL resources), that is, a combination of a DL carrier and a UL carrier. A cell may be configured with a DL resource alone or a combination of a DL resource and a UL resource. When carrier aggregation is supported, linkage between a carrier frequency of a DL resource and a carrier frequency of a UL resource may be indicated by system information. Here, the carrier frequency means a center frequency of each cell or carrier. In particular, a cell operating on a primary frequency is referred to as a primary cell (Pcell), and a cell operating on a secondary frequency is referred to as a secondary cell (Scell). . Scell refers to a cell that can be used to allow setup after RRC (Radio Resource Control) connection establishment is made and to provide additional radio resources. According to the capabilities of the UE, the Scell may form a set of serving cells for the UE together with the Pcell. In the case of a UE in the RRC_CONNECTED state but carrier aggregation is not configured or does not support carrier aggregation, there is only one serving cell configured only as a Pcell. On the other hand, a "cell" of a geographic area can be understood as coverage in which a node can provide a service using a carrier, and a "cell" of radio resources is a frequency range configured by the carrier. It is related to bandwidth (BW). The downlink coverage, which is the range in which a node can transmit a valid signal, and the uplink coverage, which is the range in which a valid signal can be received from the UE, depend on the carrier carrying the corresponding signal. It is also associated with the coverage of a "cell". Therefore, the term “cell” may be used to mean the coverage of a service by a node, sometimes a radio resource, and sometimes a range that a signal using the radio resource can reach with an effective strength.
EPC는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Architecture Evolution)의 핵심적인 요소이다. SAE는 다양한 종류의 네트워크 간의 이동성을 지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들어, IP 기반으로 다양한 무선 접속 기술들을 지원하고 보다 향상된 데이터 전송 캐퍼빌리티를 제공하는 등의 최적화된 패킷-기반 시스템을 제공하는 것을 목표로 한다.EPC is a key element of SAE (System Architecture Evolution) to improve the performance of 3GPP technologies. SAE corresponds to a research task to determine a network structure that supports mobility between various types of networks. SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies based on IP and providing improved data transmission capability.
구체적으로, EPC는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 코어 네트워크이며, 패킷-기반 실시간 및 비실시간 서비스를 지원할 수 있다. 기존의 이동 통신 시스템(즉, 2 세대 또는 3 세대 이동 통신 시스템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet-Switched)의 2 개의 구별되는 서브-도메인을 통해서 코어 네트워크의 기능이 구현되었다. 그러나, 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS의 서브-도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE 시스템에서는, IP 캐퍼빌리티(capability)를 가지는 UE와 UE 간의 연결이, IP 기반의 기지국(예를 들어, eNodeB(evolved Node B)), EPC, 애플리케이션 도메인(예를 들어, IMS(IP Multimedia Subsystem))을 통하여 구성될 수 있다. 즉, EPC는 단-대-단(end-to-end) IP 서비스 구현에 필수적인 구조이다.Specifically, EPC is a core network of an IP mobile communication system for a 3GPP LTE system, and can support packet-based real-time and non-real-time services. In the existing mobile communication system (ie, 2nd generation or 3rd generation mobile communication system), the core network through two distinct sub-domains, CS (Circuit-Switched) for voice and PS (Packet-Switched) for data. The function has been implemented. However, in the 3GPP LTE system, which is the evolution of the 3G mobile communication system, sub-domains of CS and PS are unified into one IP domain. That is, in the 3GPP LTE system, the connection between the UE and the UE having IP capability is an IP-based base station (eg, eNodeB (evolved Node B)), EPC, application domain (eg, IMS ( IP Multimedia Subsystem)). That is, the EPC is an essential structure for implementing an end-to-end IP service.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway), PDN GW(Packet Data Network Gateway), MME(Mobility Management Entity), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.The EPC may include various components, and in FIG. 1 , some of them are a Serving Gateway (SGW), a Packet Data Network Gateway (PDN GW), a Mobility Management Entity (MME), and a Serving General Packet (GPRS) (SGSN). Radio Service) Supporting Node) and ePDG (enhanced Packet Data Gateway) are shown.
SGW(또는 S-GW)는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNB와 PDN GW 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, UE가 eNB에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, SGW는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 SGW를 통해서 패킷들이 라우팅될 수 있다. 또한, SGW는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.The SGW (or S-GW) is an element that functions as a boundary point between the radio access network (RAN) and the core network, and maintains a data path between the eNB and the PDN GW. In addition, when the UE moves over an area served by the eNB, the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility within the E-UTRAN (Evolved-Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network defined after 3GPP Release-8). In addition, the SGW provides mobility with other 3GPP networks (RANs defined before 3GPP Release-8, for example, UTRAN or GERAN (Global System for Mobile Communication) / EDGE (Enhanced Data rates for Global Evolution) Radio Access Network). It may serve as an anchor point for
PDN GW(또는 P-GW)는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종료점(termination point)에 해당한다. PDN GW는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 WiMax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.The PDN GW (or P-GW) corresponds to the termination point of the data interface towards the packet data network. The PDN GW may support policy enforcement features, packet filtering, charging support, and the like. In addition, mobility management between 3GPP networks and non-3GPP networks (eg, untrusted networks such as Interworking Wireless Local Area Network (I-WLAN), Code Division Multiple Access (CDMA) networks or trusted networks such as WiMax). It can serve as an anchor point for
도 4의 네트워크 구조의 예시에서는 SGW와 PDN GW가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.Although the example of the network structure of FIG. 4 shows that the SGW and the PDN GW are configured as separate gateways, the two gateways may be implemented according to a single gateway configuration option.
MME는, UE의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME는 가입자 및 세션 관리에 관련된 제어 평면(control plane) 기능들을 제어한다. MME는 수많은 eNB들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 휴지 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.The MME is an element that performs signaling and control functions to support access to a network connection of the UE, allocation of network resources, tracking, paging, roaming and handover, and the like. The MME controls control plane functions related to subscriber and session management. The MME manages numerous eNBs and performs signaling for selection of a conventional gateway for handover to other 2G/3G networks. In addition, the MME performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.The SGSN handles all packet data such as user's mobility management and authentication to other 3GPP networks (eg, GPRS networks).
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.The ePDG acts as a security node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
도 4을 참조하여 설명한 바와 같이, IP 능력(capability)를 가지는 UE는, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 운영자(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.As described with reference to FIG. 4 , the UE having IP capability is an IP provided by an operator (ie, an operator) via various elements in the EPC on the basis of 3GPP access as well as non-3GPP access. A service network (eg, IMS) may be accessed.
또한, 도 4은 다양한 참조 포인트(reference point)들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 엔티티(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 참조 포인트라고 정의한다. 다음의 표 1은 도 4에 도시된 참조 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 참조 포인트들이 존재할 수 있다.4 also shows various reference points (eg, S1-U, S1-MME, etc.). In the 3GPP system, a conceptual link connecting two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point. Table 1 below summarizes the reference points shown in FIG. 4 . In addition to the examples in Table 1, various reference points may exist according to the network structure.
reference pointreference point 설명(description)description
S1-MMES1-MME E-UTRAN와 MME 간의 제어 평면 프로토콜에 대한 레퍼런스 포인트(Reference point for the control plane protocol between E-UTRAN and MME)Reference point for the control plane protocol between E-UTRAN and MME
S1-US1-U 핸드오버 동안 eNB 간 경로 스위칭 및 베어러 당 사용자 평면 터널링에 대한 E-UTRAN와 SGW 간의 레퍼런스 포인트 (Reference point between E-UTRAN and Serving GW for the per bearer user plane tunneling and inter eNodeB path switching during handover)Reference point between E-UTRAN and Serving GW for the per bearer user plane tunneling and inter eNodeB path switching during handover
S3S3 유휴(idle) 및/또는 활성화 상태에서 3GPP 액세스 네트워크 간 이동성에 대한 사용자 및 베어러 정보 교환을 제공하는 MME와 SGSN 간의 레퍼런스 포인트. 이 레퍼런스 포인트는 PLMN-내 또는 PLMN-간(예를 들어, PLMN-간 핸드오버의 경우)에 사용될 수 있음) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and/or active state. This reference point can be used intra-PLMN or inter-PLMN (e.g. in the case of Inter-PLMN HO).)Reference point between MME and SGSN providing user and bearer information exchange for mobility between 3GPP access networks in idle and/or active state. This reference point may be used for intra-PLMN or inter-PLMN (eg, in the case of inter-PLMN handover)) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and/or active state This reference point can be used intra-PLMN or inter-PLMN (e.g. in the case of Inter-PLMN HO).)
S4S4 GPRS 코어와 SGW의 3GPP 앵커 기능 간의 관련 제어 및 이동성 지원을 제공하는 SGW와 SGSN 간의 레퍼런스 포인트. 또한, 직접 터널이 수립되지 않으며, 사용자 플레인 터널링을 제공함 (It provides related control and mobility support between GPRS Core and the 3GPP Anchor function of Serving GW. In addition, if Direct Tunnel is not established, it provides the user plane tunneling.)A reference point between the SGW and SGSN that provides related control and mobility support between the GPRS core and the 3GPP anchor function of the SGW. In addition, if Direct Tunnel is not established, it provides the user plane tunneling .)
S5S5 SGW와 PDN GW 간의 사용자 평면 터널링 및 터널 관리를 제공하는 레퍼런스 포인트. 단말 이동성으로 인해, 그리고 요구되는 PDN 연결성을 위해서 SGW가 함께 위치하지 않은 PDN GW로의 연결이 필요한 경우, SGW 재배치를 위해서 사용됨 (It provides user plane tunneling and tunnel management between Serving GW and PDN GW. It is used for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.)Reference point providing user plane tunneling and tunnel management between SGW and PDN GW. Used for SGW relocation when connection to a PDN GW where the SGW is not located is required due to terminal mobility and required PDN connectivity (It provides user plane tunneling and tunnel management between Serving GW and PDN GW. It is used for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.)
S11S11 MME와 SGW 간의 제어 평면 프로토콜에 대한 레퍼런스 포인트Reference point for control plane protocol between MME and SGW
SGiSGi PDN GW와 PDN 간의 레퍼런스 포인트. 여기서, PDN은, 오퍼레이터 외부 공용 또는 사설 PDN이거나 오퍼레이터-내 PDN(예를 들어, IMS 서비스)이 해당될 수 있음. 이 레퍼런스 포인트는 3GPP 액세스의 Gi에 해당함 (It is the reference point between the PDN GW and the packet data network. Packet data network may be an operator external public or private packet data network or an intra operator packet data network, e.g. for provision of IMS services. This reference point corresponds to Gi for 3GPP accesses.)Reference point between PDN GW and PDN. Here, the PDN may be an operator external public or private PDN or an operator-internal PDN (eg, IMS service). This reference point corresponds to Gi of 3GPP access (It is the reference point between the PDN GW and the packet data network. Packet data network may be an operator external public or private packet data network or an intra operator packet data network, e.g. for This reference point corresponds to Gi for 3GPP accesses.)
도 4에 도시된 참조 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 참조 포인트다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 참조 포인트다.Among the reference points shown in FIG. 4 , S2a and S2b correspond to non-3GPP interfaces. S2a is a reference point that provides the user plane with trusted non-3GPP access and related control and mobility support between PDN GWs. S2b is a reference point that provides the user plane with related control and mobility support between the ePDG and PDN GW.
도 5는 본 명세서가 적용될 수 있는 E-UTRAN(evolved universal terrestrial radio access network)의 네트워크 구조의 일 예를 나타낸다. 5 shows an example of a network structure of an evolved universal terrestrial radio access network (E-UTRAN) to which this specification can be applied.
E-UTRAN 시스템은 기존 UTRAN 시스템에서 진화한 시스템으로, 예를 들어, 3GPP LTE/LTE-A 시스템일 수 있다. 통신 네트워크는 IMS 및 패킷 데이터를 통해 음성(voice)(예를 들어, VoIP(Voice over Internet Protocol))과 같은 다양한 통신 서비스를 제공하기 위하여 광범위하게 배치된다. The E-UTRAN system is a system evolved from the existing UTRAN system, and may be, for example, a 3GPP LTE/LTE-A system. Communication networks are widely deployed to provide various communication services such as voice (eg, Voice over Internet Protocol (VoIP)) via IMS and packet data.
도 4를 참조하면, E-UMTS 네트워크는 E-UTRAN, EPC 및 하나 이상의 UE를 포함한다. E-UTRAN은 단말에게 제어 평면(control plane)과 사용자 평면(user plane) 프로토콜을 제공하는 eNB들로 구성되고, eNB들은 X2 인터페이스를 통해 연결된다. Referring to FIG. 4 , the E-UMTS network includes an E-UTRAN, an EPC, and one or more UEs. The E-UTRAN consists of eNBs that provide a control plane and a user plane protocol to the UE, and the eNBs are connected through an X2 interface.
X2 사용자 평면 인터페이스(X2-U)는 eNB들 사이에 정의된다. X2-U 인터페이스는 사용자 평면 PDU(packet data unit)의 보장되지 않은 전달(non guaranteed delivery)을 제공한다. X2 제어 평면 인터페이스(X2-CP)는 두 개의 이웃 eNB 사이에 정의된다. X2-CP는 eNB 간의 컨텍스트(context) 전달, 소스 eNB와 타겟 eNB 사이의 사용자 평면 터널의 제어, 핸드오버 관련 메시지의 전달, 상향링크 부하 관리 등의 기능을 수행한다. An X2 user plane interface (X2-U) is defined between the eNBs. The X2-U interface provides non-guaranteed delivery of a user plane packet data unit (PDU). An X2 control plane interface (X2-CP) is defined between two neighboring eNBs. X2-CP performs functions such as context transfer between eNBs, control of a user plane tunnel between a source eNB and a target eNB, transfer of a handover related message, and uplink load management.
eNB은 무선인터페이스를 통해 단말과 연결되고 S1 인터페이스를 통해 EPC(evolved packet core)에 연결된다. The eNB is connected to the UE through the wireless interface and connected to the evolved packet core (EPC) through the S1 interface.
S1 사용자 평면 인터페이스(S1-U)는 eNB와 서빙 게이트웨이(S-GW: serving gateway) 사이에 정의된다. S1 제어 평면 인터페이스(S1-MME)는 eNB와 이동성 관리 개체(MME: mobility management entity) 사이에 정의된다. S1 인터페이스는 EPS(evolved packet system) 베어러 서비스 관리 기능, NAS(non-access stratum) 시그널링 트랜스포트 기능, 네트워크 쉐어링, MME 부하 밸런싱 기능 등을 수행한다. S1 인터페이스는 eNB와 MME/S-GW 간에 다수-대-다수 관계(many-to-many-relation)를 지원한다. The S1 user plane interface (S1-U) is defined between the eNB and a serving gateway (S-GW). The S1 control plane interface (S1-MME) is defined between the eNB and a mobility management entity (MME). The S1 interface performs an evolved packet system (EPS) bearer service management function, a non-access stratum (NAS) signaling transport function, network sharing, an MME load balancing function, and the like. The S1 interface supports many-to-many-relation between the eNB and the MME/S-GW.
MME는 NAS 시그널링 보안(security), AS(Access Stratum) 보안(security) 제어, 3GPP 액세스 네트워크 간 이동성을 지원하기 위한 CN(Core Network) 노드 간(Inter-CN) 시그널링, (페이징 재전송의 수행 및 제어 포함하여) 아이들(IDLE) 모드 UE 접근성(reachability), (아이들 및 액티브 모드 단말을 위한) 트래킹 영역 식별자(TAI: Tracking Area Identity) 관리, PDN GW 및 SGW 선택, MME가 변경되는 핸드오버를 위한 MME 선택, 2G 또는 3G 3GPP 액세스 네트워크로의 핸드오버를 위한 SGSN 선택, 로밍(roaming), 인증(authentication), 전용 베어러 확립(dedicated bearer establishment)를 포함하는 베어러 관리 기능, 공공 경고 시스템(PWS: Public Warning System)(지진 및 쓰나미 경고 시스템(ETWS: Earthquake and Tsunami Warning System) 및 상용 모바일 경고 시스템(CMAS: Commercial Mobile Alert System) 포함) 메시지 전송의 지원 등의 다양한 기능을 수행할 수 있다. MME is NAS signaling security (security), AS (Access Stratum) security (security) control, CN (Core Network) inter-node (Inter-CN) signaling to support mobility between 3GPP access networks, (perform and control paging retransmission) Including) idle (IDLE) mode UE accessibility (reachability), (for idle and active mode terminals) tracking area identifier (TAI: Tracking Area Identity) management, PDN GW and SGW selection, MME for handover in which the MME is changed Bearer management functions including selection, SGSN selection for handover to 2G or 3G 3GPP access network, roaming, authentication, dedicated bearer establishment, Public Warning System (PWS) System) (including Earthquake and Tsunami Warning System (ETWS) and Commercial Mobile Alert System (CMAS)) message transmission.
도 6은 일반적인 NR-RAN의 아키텍쳐를 예시하는 도면이다.6 is a diagram illustrating an architecture of a general NR-RAN.
도 6을 참조하면, NG-RAN 노드는 다음 중 하나일 수 있다.Referring to FIG. 6 , the NG-RAN node may be one of the following.
UE를 향하는 NR 사용자 평면 및 제어 평면 프로토콜을 제공하는 gNB; 또는gNB providing NR user plane and control plane protocols towards the UE; or
UE를 향하는 E-UTRA 사용자 평면 및 제어 평면 프로토콜을 제공하는 ng-eNB.ng-eNB providing E-UTRA user plane and control plane protocols towards the UE.
gNB와 ng-eNB는 Xn 인터페이스를 통해 서로 연결된다. 또한 gNB와 ng-eNB는 5GC에 대한 NG 인터페이스를 통해, 보다 자세히는 NG-C 인터페이스를 통해, 액세스 및 이동성 관리 기능(AMF : Access and Mobility Management Function), NG-U 인터페이스를 통한 사용자 평면 기능(UPF : User Plane Function) 에 연결된다(3GPP TS 23.501 [3] 참조).The gNB and the ng-eNB are connected to each other through the Xn interface. In addition, gNB and ng-eNB via NG interface to 5GC, more specifically via NG-C interface, Access and Mobility Management Function (AMF), user plane function via NG-U interface ( UPF: User Plane Function) (refer to 3GPP TS 23.501 [3]).
참고로 기능적 분리를 위한 아키텍쳐와 F1 인터페이스는 3GPP TS 38.401 [4]에 정의되어 있다.For reference, the architecture for functional separation and the F1 interface are defined in 3GPP TS 38.401 [4].
도 7은 5G의 일반적인 아키텍쳐의 예를 보여주고 있다. 다음은 도 7에서의 각 참조 인터페이스(reference interface)및 node에 대한 설명이다.7 shows an example of a general architecture of 5G. The following is a description of each reference interface and node in FIG. 7 .
액세스 및 이동성 관리 기능(AMF: Access and Mobility Management Function)은 3GPP 액세스 네트워크들 간의 이동성을 위한 CN 노드 간 시그널링, 무선 액세스 네트워크(RAN: Radio Access Network) CP 인터페이스(N2)의 종단(termination), NAS 시그널링의 종단(N1), 등록 관리(등록 영역(Registration Area) 관리), 아이들 모드 UE 접근성(reachability), 네트워크 슬라이싱(Network Slicing)의 지원, SMF 선택 등의 기능을 지원한다.Access and Mobility Management Function (AMF: Access and Mobility Management Function) is a CN inter-node signaling for mobility between 3GPP access networks, a radio access network (RAN: Radio Access Network) CP interface (N2) termination (termination), NAS It supports functions such as end of signaling (N1), registration management (registration area management), idle mode UE accessibility (reachability), network slicing support, SMF selection, and the like.
AMF의 일부 또는 전체의 기능들은 하나의 AMF의 단일 인스턴스(instance) 내에서 지원될 수 있다. Some or all functions of AMF may be supported within a single instance of one AMF.
데이터 네트워크(DN: Data network)는 예를 들어, 운영자 서비스, 인터넷 접속 또는 서드파티(3rd party) 서비스 등을 의미한다. DN은 UPF로 하향링크 프로토콜 데이터 유닛(PDU: Protocol Data Unit)을 전송하거나, UE로부터 전송된 PDU를 UPF로부터 수신한다. A data network (DN: Data network) means, for example, an operator service, Internet access, or a third party service. The DN transmits a downlink protocol data unit (PDU) to the UPF or receives a PDU transmitted from the UE from the UPF.
정책 제어 기능(PCF: Policy Control function)은 어플리케이션 서버로부터 패킷 흐름에 대한 정보를 수신하여, 이동성 관리, 세션 관리 등의 정책을 결정하는 기능을 제공한다. A policy control function (PCF) provides a function of receiving information about a packet flow from an application server and determining policies such as mobility management and session management.
세션 관리 기능(SMF: Session Management Function)은 세션 관리 기능을 제공하며, UE가 다수 개의 세션을 가지는 경우 각 세션 별로 서로 다른 SMF에 의해 관리될 수 있다. A session management function (SMF: Session Management Function) provides a session management function, and when the UE has a plurality of sessions, it may be managed by a different SMF for each session.
SMF의 일부 또는 전체의 기능들은 하나의 SMF의 단일 인스턴스(instance) 내에서 지원될 수 있다. Some or all functions of the SMF may be supported within a single instance of one SMF.
통합된 데이터 관리(UDM: Unified Data Management)는 사용자의 가입 데이터, 정책 데이터 등을 저장한다. Unified Data Management (UDM) stores user subscription data, policy data, and the like.
사용자 평면 기능(UPF: User plane Function)은 DN으로부터 수신한 하향링크 PDU를 (R)AN을 경유하여 UE에게 전달하며, (R)AN을 경유하여 UE로부터 수신한 상향링크 PDU를 DN으로 전달한다. User plane function (UPF) delivers the downlink PDU received from the DN to the UE via (R)AN, and delivers the uplink PDU received from the UE via (R)AN to the DN. .
어플리케이션 기능(AF: Application Function)은 서비스 제공(예를 들어, 트래픽 라우팅 상에서 어플리케이션 영향, 네트워크 능력 노출(Network Capability Exposure) 접근, 정책 제어를 위한 정책 프레임워크와의 상호동작 등의 기능을 지원)을 위해 3GPP 코어 네트워크와 상호동작한다. Application Function (AF) supports service provision (eg, application impact on traffic routing, network capability exposure access, interaction with policy framework for policy control, etc.) to interact with the 3GPP core network.
(무선) 액세스 네트워크((R)AN: (Radio) Access Network)는 4G 무선 액세스 기술의 진화된 버전인 진화된 E-UTRA(evolved E-UTRA)와 새로운 무선 액세스 기술(NR: New Radio)(예를 들어, gNB)을 모두 지원하는 새로운 무선 액세스 네트워크를 총칭한다. (Radio) Access Network ((R)AN: (Radio) Access Network) is an evolved version of 4G radio access technology, evolved E-UTRA (E-UTRA) and new radio access technology (NR: New Radio) ( For example, gNB) is a generic term for a new radio access network that supports both.
gNB은 무선 자원 관리를 위한 기능들(즉, 무선 베어러 제어(Radio Bearer Control), 무선 허락 제어(Radio Admission Control), 연결 이동성 제어(Connection Mobility Control), 상향링크/하향링크에서 UE에게 자원의 동적 할당(Dynamic allocation of resources)(즉, 스케줄링)) 등의 기능을 지원한다.gNB has functions for radio resource management (ie, Radio Bearer Control, Radio Admission Control, Connection Mobility Control), and dynamic resource allocation to the UE in uplink/downlink. It supports functions such as dynamic allocation of resources (ie, scheduling)).
사용자 장치(UE: User Equipment)는 사용자 기기를 의미한다. User Equipment (UE: User Equipment) refers to user equipment.
3GPP 시스템에서는 5G 시스템 내 NF들 간을 연결하는 개념적인 링크를 참조 포인트(reference point)라고 정의한다. In the 3GPP system, a conceptual link connecting NFs in the 5G system is defined as a reference point.
N1는 UE와 AMF 간의 참조 포인트, N2는 (R)AN과 AMF 간의 참조 포인트, N3는 (R)AN과 UPF 간의 참조 포인트, N4는 SMF와 UPF 간의 참조 포인트, N6 UPF와 데이터 네트워크 간의 참조 포인트, N9는 2개의 코어 UPF들 간의 참조 포인트, N5는 PCF와 AF 간의 참조 포인트, N7는 SMF와 PCF 간의 참조 포인트, N24는 방문 네트워크(visited network) 내 PCF와 홈 네트워크(home network) 내 PCF 간의 참조 포인트, N8는 UDM과 AMF 간의 참조 포인트, N10는 UDM과 SMF 간의 참조 포인트, N11는 AMF와 SMF 간의 참조 포인트, N12는 AMF와 인증 서버 기능(AUSF: Authentication Server function) 간의 참조 포인트, N13는 UDM과 AUSF 간의 참조 포인트, N14는 2개의 AMF들 간의 참조 포인트, N15는 비-로밍 시나리오의 경우, PCF와 AMF 간의 참조 포인트, 로밍 시나리오의 경우 방문 네트워크(visited network) 내 PCF와 AMF 간의 참조 포인트, N16은 두 개의 SMF 간의 참조 포인트(로밍 시나리오에서는 방문 네트워크 내 SMF와 홈 네트워크 간의 SMF 간의 참조 포인트), N17은 AMF와 5G-EIR(Equipment Identity Register) 간의 참조 포인트, N18은 AMF와 UDSF(Unstructured Data Storage Function) 간의 참조 포인트, N22는 AMF와 NSSF(Network Slice Selection Function) 간의 참조 포인트, N23은 PCF와 NWDAF(Network Data Analytics Function) 간의 참조 포인트, N24는 NSSF와 NWDAF 간의 참조 포인트, N27은 방문 네트워크 내 NRF(Network Repository Function)와 홈 네트워크 내 NRF 간의 참조 포인트, N31은 방문 네트워크 내 NSSF와 홈 네트워크 내 NSSF 간의 참조 포인트, N32는 방문 네트워크 내 SEPP(SEcurity Protection Proxy)와 홈 네트워크 내 SEPP 간의 참조 포인트, N33은 NEF(Network Exposure Function)와 AF 간의 참조 포인트, N40은 SMF와 CHF(charging function) 간의 참조 포인트, N50은 AMF와 CBCF(Circuit Bearer Control Function) 간의 참조 포인트를 의미한다. N1 is the reference point between the UE and AMF, N2 is the reference point between (R)AN and AMF, N3 is the reference point between (R)AN and UPF, N4 is the reference point between SMF and UPF, N6 the reference point between UPF and the data network , N9 is a reference point between the two core UPFs, N5 is a reference point between PCF and AF, N7 is a reference point between SMF and PCF, N24 is a PCF in a visited network and a PCF in a home network Reference point, N8 is a reference point between UDM and AMF, N10 is a reference point between UDM and SMF, N11 is a reference point between AMF and SMF, N12 is a reference point between AMF and Authentication Server function (AUSF), N13 is Reference point between UDM and AUSF, N14 is a reference point between two AMFs, N15 is a reference point between PCF and AMF in case of non-roaming scenario, and reference point between PCF and AMF in visited network in case of roaming scenario , N16 is the reference point between the two SMFs (in the roaming scenario, the reference point between the SMF in the visited network and the SMF between the home network), N17 is the reference point between the AMF and the 5G-EIR (Equipment Identity Register), and N18 is the AMF and the Unstructured UDSF (UDSF) Data Storage Function), N22 is the reference point between AMF and Network Slice Selection Function (NSSF), N23 is the reference point between PCF and NWDAF (Network Data Analytics Function), N24 is the reference point between NSSF and NWDAF, N27 is visit Reference point between NRF (Network Repository Function) in network and NRF in home network, N31 is N in visited network Reference point between SSF and NSSF in home network, N32 is a reference point between SEPP (Security Protection Proxy) in visited network and SEPP in home network, N33 is reference point between NEF (Network Exposure Function) and AF, N40 is SMF and CHF ( A reference point between the charging function, N50 means a reference point between the AMF and the Circuit Bearer Control Function (CBCF).
한편, 도 7에서는 설명의 편의 상 UE가 하나의 PDU 세션을 이용하여 하나의 DN에 액세스하는 경우에 대한 참조 모델을 예시하나 이에 한정되지 않는다. Meanwhile, FIG. 7 exemplifies a reference model for a case in which the UE accesses one DN using one PDU session for convenience of description, but is not limited thereto.
이하에서, 하향링크(downlink, DL)는 기지국(base station, BS)에서 사용자 기기(user equipment, UE)로의 통신을 의미하며, 상향링크(uplink, UL)는 UE에서 BS로의 통신을 의미한다. 하향링크에서 전송기(transmitter)는 BS의 일부이고, 수신기(receiver)는 UE의 일부일 수 있다. 상향링크에서 전송기는 UE의 일부이고, 수신기는 BS의 일부일 수 있다. 본 명세에서 UE는 제 1 통신 장치, BS는 제 2 통신 장치로 표현될 수도 있다. BS는 고정국(fixed station), Node B, eNB(evolved-NodeB), gNB(Next Generation NodeB), BTS(base transceiver system), 접속 포인트(access point, AP), 네트워크 혹은 5G (5th generation) 네트워크 노드, AI (Artificial Intelligence) 시스템, RSU(road side unit), 로봇 등의 용어에 의해 대체될 수 있다. 또한, UE는 단말(terminal), MS(Mobile Station), UT(User Terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치, 차량(vehicle), 로봇(robot), AI 모듈, 드론, 공중(Aerial) UE 등의 용어로 대체될 수 있다.Hereinafter, downlink (DL) means communication from a base station (BS) to user equipment (UE), and uplink (UL) means communication from UE to BS. In the downlink, a transmitter may be a part of a BS, and a receiver may be a part of the UE. In the uplink, the transmitter may be part of the UE and the receiver may be part of the BS. In this specification, a UE may be represented as a first communication device, and a BS may be represented as a second communication device. BS is a fixed station, Node B, evolved-NodeB (eNB), Next Generation NodeB (gNB), base transceiver system (BTS), access point (AP), network or 5G (5th generation) network node , AI (Artificial Intelligence) system, RSU (road side unit), may be replaced by terms such as robot. In addition, the UE is a terminal, MS (Mobile Station), UT (User Terminal), MSS (Mobile Subscriber Station), SS (Subscriber Station), AMS (Advanced Mobile Station), WT (Wireless terminal), MTC (Machine) -Type Communication) device, M2M (Machine-to-Machine) device, D2D (Device-to-Device) device, vehicle, robot, AI module, drone, aerial UE, etc. can be replaced.
이하의 기술은 CDMA(Code Division Multiple Access), FDMA(Frequency Division Multiple Access), TDMA(Time Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier FDMA) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)/LTE-A pro는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A/LTE-A pro의 진화된 버전이다.The following technologies are various radio access methods such as Code Division Multiple Access (CDMA), Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier FDMA (SC-FDMA), and the like. can be used in the system. CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000. TDMA may be implemented with a radio technology such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE). OFDMA may be implemented with a radio technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), and the like. UTRA is part of the Universal Mobile Telecommunications System (UMTS). 3GPP (3rd Generation Partnership Project) Long Term Evolution (LTE) is a part of Evolved UMTS (E-UMTS) using E-UTRA and LTE-A (Advanced)/LTE-A pro is an evolved version of 3GPP LTE. 3GPP NR (New Radio or New Radio Access Technology) is an evolved version of 3GPP LTE/LTE-A/LTE-A pro.
설명을 명확하게 하기 위해, 3GPP 통신 시스템(예, LTE-A, NR)을 기반으로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. LTE는 3GPP TS 36.xxx Release 8 이후의 기술을 의미한다. 세부적으로, 3GPP TS 36.xxx Release 10 이후의 LTE 기술은 LTE-A로 지칭되고, 3GPP TS 36.xxx Release 13 이후의 LTE 기술은 LTE-A pro로 지칭된다. 3GPP 5G (5th generation) 기술은 TS 36.xxx Release 15 이후의 기술 및 TS 38.XXX Release 15 이후의 기술을 의미하며, 이 중 TS 38.xxx Release 15 이후의 기술은 3GPP NR로 지칭되고, TS 36.xxx Release 15 이후의 기술은 enhanced LTE로 지칭될 수 있다. "xxx"는 표준 문서 세부 번호를 의미한다. LTE/NR은 3GPP 시스템으로 통칭될 수 있다. For clarity of explanation, although description is based on a 3GPP communication system (eg, LTE-A, NR), the technical spirit of the present invention is not limited thereto. LTE refers to technology after 3GPP TS 36.xxx Release 8. In detail, LTE technology after 3GPP TS 36.xxx Release 10 is referred to as LTE-A, and LTE technology after 3GPP TS 36.xxx Release 13 is referred to as LTE-A pro. 3GPP 5G (5th generation) technology refers to technology after TS 36.xxx Release 15 and technology after TS 38.XXX Release 15, among which technology after TS 38.xxx Release 15 is referred to as 3GPP NR, and TS 36.xxx Release 15 and later technologies may be referred to as enhanced LTE. "xxx" stands for standard document detail number. LTE/NR may be collectively referred to as a 3GPP system.
본 명세(disclosure)에서, 노드(node)라 함은 UE와 통신하여 무선 신호를 전송/수신할 수 있는 고정된 포인트(point)을 말한다. 다양한 형태의 BS들이 그 명칭에 관계없이 노드로서 이용될 수 있다. 예를 들어, BS, NB, eNB, 피코-셀 eNB(PeNB), 홈 eNB(HeNB), 릴레이(relay), 리피터(repeater) 등이 노드가 될 수 있다. 또한, 노드는 BS가 아니어도 될 수 있다. 예를 들어, 무선 리모트 헤드(radio remote head, RRH), 무선 리모트 유닛(radio remote unit, RRU)가 될 수 있다. RRH, RRU 등은 일반적으로 BS의 전력 레벨(power level)에 비해 더욱 낮은 전력 레벨을 갖는다. 일 노드에는 최소 하나의 안테나가 설치된다. 상기 안테나는 물리 안테나를 의미할 수도 있으며, 안테나 포트, 가상 안테나, 또는 안테나 그룹을 의미할 수도 있다. 노드는 포인트(point)라고 불리기도 한다.In this specification (disclosure), a node refers to a fixed point that can communicate with the UE to transmit/receive a radio signal. Various types of BSs can be used as nodes regardless of their names. For example, BS, NB, eNB, pico-cell eNB (PeNB), home eNB (HeNB), relay (relay), repeater (repeater), etc. may be a node. Also, the node may not need to be a BS. For example, it may be a radio remote head (RRH) or a radio remote unit (RRU). RRH, RRU, and the like generally have a lower power level compared to the power level of the BS. At least one antenna is installed in one node. The antenna may mean a physical antenna, an antenna port, a virtual antenna, or an antenna group. A node is also called a point.
본 명세에서 셀(cell)이라 함은 하나 이상의 노드가 통신 서비스를 제공하는 일정 지리적 영역 혹은 무선 자원을 말한다. 지리적 영역의 "셀"은 노드가 반송파를 이용하여 서비스를 제공할 수 있는 커버리지(coverage)라고 이해될 수 있으며, 무선 자원의 "셀"은 상기 반송파에 의해 설정(configure)되는 주파수 크기인 대역폭(bandwidth, BW)와 연관된다. 노드가 유효한 신호를 전송할 수 있는 범위인 하향링크 커버리지와 UE로부터 유효한 신호를 수신할 수 있는 범위인 상향링크 커버리지는 해당 신호를 나르는 반송파에 의해 의존하므로 노드의 커버리지는 상기 노드가 사용하는 무선 자원의 "셀"의 커버리지와 연관되기도 한다. 따라서 "셀"이라는 용어는 때로는 노드에 의한 서비스의 커버리지를, 때로는 무선 자원을, 때로는 상기 무선 자원을 이용한 신호가 유효한 세기로 도달할 수 있는 범위를 의미하는 데 사용될 수 있다. In the present specification, a cell refers to a certain geographic area or radio resource in which one or more nodes provide a communication service. A "cell" of a geographic area can be understood as coverage in which a node can provide a service using a carrier, and a "cell" of radio resources is a bandwidth (a frequency size configured by the carrier) ( bandwidth, BW). The downlink coverage, which is the range in which a node can transmit a valid signal, and the uplink coverage, which is the range in which a valid signal can be received from the UE, depend on the carrier carrying the corresponding signal. It is also associated with the coverage of a "cell". Therefore, the term “cell” may be used to mean the coverage of a service by a node, sometimes a radio resource, and sometimes a range that a signal using the radio resource can reach with an effective strength.
본 명세에서 특정 셀과 통신한다고 함은 상기 특정 셀에 통신 서비스를 제공하는 BS 혹은 노드와 통신하는 것을 의미할 수 있다. 또한, 특정 셀의 하향링크/상향링크 신호는 상기 특정 셀에 통신 서비스를 제공하는 BS 혹은 노드로부터의/로의 하향링크/상향링크 신호를 의미한다. UE에게 상향링크/하향링크 통신 서비스를 제공하는 셀을 특히 서빙 셀(serving cell)이라고 한다. 또한, 특정 셀의 채널 상태/품질은 상기 특정 셀에 통신 서비스를 제공하는 BS 혹은 노드와 UE 사이에 형성된 채널 혹은 통신 링크의 채널 상태/품질을 의미한다.In the present specification, communication with a specific cell may mean communicating with a BS or node that provides a communication service to the specific cell. In addition, the downlink/uplink signal of a specific cell means a downlink/uplink signal from/to a BS or node that provides a communication service to the specific cell. A cell providing an uplink/downlink communication service to the UE is specifically referred to as a serving cell. In addition, the channel state/quality of a specific cell means the channel state/quality of a channel or communication link formed between a UE and a BS or node providing a communication service to the specific cell.
한편, 무선 자원과 연관된 "셀"은 하향링크 자원(DL resources)와 상향링크 자원(UL resources)의 조합, 즉, DL 컴포넌트 반송파(component carrier, CC) 와 UL CC의 조합으로 정의될 수 있다. 셀은 DL 자원 단독, 또는 DL 자원과 UL 자원의 조합으로 설정될(configured) 수도 있다. 반송파 집성(carrier aggregation)이 지원되는 경우, DL 자원(또는, DL CC)의 반송파 주파수(carrier frequency)와 UL 자원(또는, UL CC)의 반송파 주파수(carrier frequency) 사이의 링키지(linkage)는 해당 셀을 통해 전송되는 시스템 정보(system information)에 의해 지시될 수 있다. 여기서, 반송파 주파수는 각 셀 혹은 CC의 중심 주파수(center frequency)와 같을 수도 혹은 다를 수도 있다. 이하에서는 1차 주파수(primary frequency) 상에서 동작하는 셀을 1차 셀(primary cell, Pcell) 혹은 PCC로 지칭하고, 2차 주파수(Secondary frequency) 상에서 동작하는 셀을 2차 셀(secondary cell, Scell) 혹은 SCC로 칭한다. Scell이라 함은 UE가 BS와 RRC(Radio Resource Control) 연결 수립(connection establishment) 과정을 수행하여 상기 UE와 상기 BS 간에 RRC 연결이 수립된 상태, 즉, 상기 UE가 RRC_CONNECTED 상태가 된 후에 설정될 수 있다. 여기서 RRC 연결은 UE의 RRC와 BS의 RRC가 서로 RRC 메시지를 주고 받을 수 있는 통로를 의미할 수 있다. Scell은 UE에게 추가적인 무선 자원을 제공하기 위해 설정될 수 있다. UE의 성능(capabilities)에 따라, Scell이 Pcell과 함께, 상기 UE를 위한 서빙 셀의 모음(set)을 형성할 수 있다. RRC_CONNECTED 상태에 있지만 반송파 집성이 설정되지 않았거나 반송파 집성을 지원하지 않는 UE의 경우, Pcell로만 설정된 서빙 셀이 단 하나 존재한다.Meanwhile, a "cell" associated with a radio resource may be defined as a combination of downlink resources (DL resources) and uplink resources (UL resources), that is, a combination of a DL component carrier (CC) and UL CC. A cell may be configured with a DL resource alone or a combination of a DL resource and a UL resource. When carrier aggregation is supported, the linkage between the carrier frequency of the DL resource (or DL CC) and the carrier frequency of the UL resource (or UL CC) is the linkage. It may be indicated by system information transmitted through the cell. Here, the carrier frequency may be the same as or different from the center frequency of each cell or CC. Hereinafter, a cell operating on a primary frequency is referred to as a primary cell (Pcell) or PCC, and a cell operating on a secondary frequency is referred to as a secondary cell (Scell). Or called SCC. Scell refers to a state in which the UE performs a radio resource control (RRC) connection establishment process with the BS to establish an RRC connection between the UE and the BS, that is, after the UE is in the RRC_CONNECTED state. there is. Here, the RRC connection may mean a path through which the RRC of the UE and the RRC of the BS can exchange RRC messages with each other. The Scell may be configured to provide additional radio resources to the UE. According to the capabilities of the UE, the Scell may form a set of serving cells for the UE together with the Pcell. In the case of a UE in the RRC_CONNECTED state but carrier aggregation is not configured or does not support carrier aggregation, there is only one serving cell configured only as a Pcell.
셀은 고유의 무선 접속 기술을 지원한다. 예를 들어, LTE 셀 상에서는 LTE 무선 접속 기술(radio access technology, RAT)에 따른 전송/수신이 수행되며, 5G 셀 상에서는 5G RAT에 따른 전송/수신이 수행된다.The cell supports its own radio access technology. For example, transmission/reception according to LTE radio access technology (RAT) is performed on an LTE cell, and transmission/reception according to 5G RAT is performed on a 5G cell.
반송파 집성 기술은 광대역 지원을 위해 목표 대역폭(bandwidth)보다 작은 시스템 대역폭을 가지는 복수의 반송파들을 집성하여 사용하는 기술을 말한다. 반송파 집성은 각각이 시스템 대역폭(채널 대역폭이라고도 함)을 형성하는 복수의 반송파 주파수들을 사용하여 하향링크 혹은 상향링크 통신을 수행한다는 점에서, 복수의 직교하는 부반송파들로 분할된 기본 주파수 대역을 하나의 반송파 주파수에 실어 하향링크 혹은 상향링크 통신을 수행하는 OFDMA 기술과 구분된다. 예를 들어, OFDMA 혹은 직교 주파수 분할 다중화(orthogonal frequency division multiplexing, OFDM)의 경우에는 일정 시스템 대역폭을 갖는 하나의 주파수 대역이 일정 부반송파 간격을 갖는 복수의 부반송파들로 분할되고, 정보/데이터가 상기 복수의 부반송파들 내에서 매핑되며, 상기 정보/데이터가 맵핑된 상기 주파수 대역은 주파수 상향 변환(upconversion)을 거쳐 상기 주파수 대역의 반송파 주파수로 전송된다. 무선 반송파 집성의 경우에는 각각이 자신의 시스템 대역폭 및 반송파 주파수를 갖는 주파수 대역들이 동시에 통신에 사용될 수 있으며, 반송파 집성에 사용되는 각 주파수 대역은 일정 부반송파 간격을 갖는 복수의 부반송파들로 분할될 수 있다.The carrier aggregation technique refers to a technique for aggregating and using a plurality of carriers having a system bandwidth smaller than a target bandwidth for broadband support. In that carrier aggregation performs downlink or uplink communication using a plurality of carrier frequencies each forming a system bandwidth (also referred to as a channel bandwidth), a basic frequency band divided into a plurality of orthogonal subcarriers is divided into one It is distinguished from OFDMA technology in which downlink or uplink communication is performed on a carrier frequency. For example, in the case of OFDMA or orthogonal frequency division multiplexing (OFDM), one frequency band having a constant system bandwidth is divided into a plurality of subcarriers having a predetermined subcarrier interval, and information/data is divided into the plurality of The frequency band to which the information/data is mapped is transmitted to a carrier frequency of the frequency band through frequency upconversion. In the case of radio carrier aggregation, frequency bands each having their own system bandwidth and carrier frequency may be used for communication at the same time, and each frequency band used for carrier aggregation may be divided into a plurality of subcarriers having a predetermined subcarrier interval. .
3GPP 기반 통신 표준은 물리 계층(physical layer)의 상위 계층(upper layer)(예, 매제 접속 제어(medium access control, MAC) 계층, 무선 링크 제어(radio link control, RLC) 계층, 패킷 데이터 수렴 프로토콜(protocol data convergence protocol, PDCP) 계층, 무선 자원 제어(radio resource control, RRC) 계층, 서비스 데이터 적응 프로토콜(service data adaptation protocol, SDAP), 비-접속 층(non-access stratum, NAS) 계층)로부터 기원한 정보를 나르는 자원 요소(resource element)들에 대응하는 하향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 하향링크 물리 신호들을 정의한다. 예를 들어, 물리 하향링크 공유 채널(physical downlink shared channel, PDSCH), 물리 브로드캐스트 채널(physical broadcast channel, PBCH), 물리 멀티캐스트 채널(physical multicast channel, PMCH), 물리 제어 포맷 지시자 채널(physical control format indicator channel, PCFICH), 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)이 하향링크 물리 채널들로서 정의되어 있으며, 참조 신호와 동기 신호가 하향링크 물리 신호들로서 정의되어 있다. 파일럿(pilot)이라고도 지칭되는 참조 신호(reference signal, RS)는 BS와 UE가 서로 알고 있는 기정의된 특별한 파형의 신호를 의미하는데, 예를 들어, 셀 특정적 RS(cell specific RS), UE-특정적 RS(UE-specific RS, UE-RS), 포지셔닝 RS(positioning RS, PRS), 채널 상태 정보 RS(channel state information RS, CSI-RS), 복조 참조 신호(demodulation reference signal, DMRS)가 하향링크 참조 신호들로서 정의된다. 한편, 3GPP 기반 통신 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 상향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 상향링크 물리 신호들을 정의하고 있다. 예를 들어, 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH), 물리 상향링크 제어 채널(physical uplink control channel, PUCCH), 물리 임의 접속 채널(physical random access channel, PRACH)가 상향링크 물리 채널로서 정의되며, 상향링크 제어/데이터 신호를 위한 복조 참조 신호(demodulation reference signal, DMRS)와 상향링크 채널 측정에 사용되는 사운딩 참조 신호(sounding reference signal, SRS)가 정의된다.The 3GPP-based communication standard is an upper layer of the physical layer (eg, medium access control (MAC) layer, radio link control (RLC) layer, packet data convergence protocol ( protocol data convergence protocol (PDCP) layer, radio resource control (RRC) layer, service data adaptation protocol (SDAP), non-access layer (non-access stratum, NAS) layer) Defines downlink physical channels corresponding to resource elements carrying one piece of information and downlink physical signals corresponding to resource elements used by the physical layer but not carrying information originating from a higher layer . For example, a physical downlink shared channel (PDSCH), a physical broadcast channel (PBCH), a physical multicast channel (PMCH), a physical control format indicator channel (physical control) A format indicator channel (PCFICH) and a physical downlink control channel (PDCCH) are defined as downlink physical channels, and a reference signal and a synchronization signal are defined as downlink physical signals. A reference signal (RS), also referred to as a pilot, means a signal of a predefined special waveform that the BS and the UE know each other, for example, cell specific RS (RS), UE- UE-specific RS (UE-RS), positioning RS (PRS), channel state information RS (channel state information RS, CSI-RS), demodulation reference signal (DMRS) down Defined as link reference signals. On the other hand, the 3GPP-based communication standard supports uplink physical channels corresponding to resource elements carrying information originating from a higher layer, and resource elements used by the physical layer but not carrying information originating from a higher layer. Uplink physical signals are defined. For example, a physical uplink shared channel (PUSCH), a physical uplink control channel (PUCCH), and a physical random access channel (PRACH) are uplink physical channels. is defined, and a demodulation reference signal (DMRS) for an uplink control/data signal and a sounding reference signal (SRS) used for uplink channel measurement are defined.
본 명세에서 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)와 물리 하향링크 공유 채널(physical downlink shared channel, PDSCH)는 물리 계층의 하향링크 제어 정보(downlink control information, DCI)와 하향링크 데이터를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 각각 의미할 수 있다. 또한, 물리 상향링크 제어 채널(physical uplink control channel), 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH) 및 물리 임의 접속 채널(physical random access channel)는 물리 계층의 상향링크 제어 정보(uplink control information, UCI), 상향링크 데이터 및 임의 접속 신호를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 각각 의미한다. 이하에서 UE가 상향링크 물리 채널(예, PUCCH, PUSCH, PRACH)를 전송한다는 것은 해당 상향링크 물리 채널 상에서 혹은 상향링크 물리 채널을 통해서 UCI, 상향링크 데이터, 또는 임의 접속 신호를 전송한다는 것을 의미할 수 있다. BS가 상향링크 물리 채널을 수신한다는 것은 해당 상향링크 물리 채널 상에서 혹은 통해서 DCI, 상향링크 데이터, 또는 임의 접속 신호를 수신한다는 것을 의미할 수 있다. BS가 하향링크 물리 채널(예, PDCCH, PDSCH)를 전송한다는 것은 해당 하향링크 물리 채널 상에서 혹은 하향링크 물리 채널을 통해서 DCI 혹은 하향링크 데이터를 전송한다는 것과 동일한 의미로 사용된다. UE가 하향링크 물리 채널을 수신한다는 것은 해당 하향링크 물리 채널 상에서 혹은 통해서 DCI 혹은 하향링크 데이터를 수신한다는 것을 의미할 수 있다.In this specification, a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH) are physical layer downlink control information (DCI) and downlink data. It may mean a set of time-frequency resources to be carried or a set of resource elements, respectively. In addition, the physical uplink control channel (physical uplink control channel), the physical uplink shared channel (physical uplink shared channel, PUSCH) and the physical random access channel (physical random access channel) uplink control information of the physical layer (uplink control information , UCI), a set of time-frequency resources carrying uplink data and random access signals, or a set of resource elements, respectively. Hereinafter, when the UE transmits an uplink physical channel (eg, PUCCH, PUSCH, PRACH), it means that UCI, uplink data, or a random access signal is transmitted on the corresponding uplink physical channel or through the uplink physical channel. can When the BS receives the uplink physical channel, it may mean that it receives DCI, uplink data, or a random access signal on or through the corresponding uplink physical channel. When the BS transmits a downlink physical channel (eg, PDCCH, PDSCH), it is used in the same meaning as transmitting DCI or downlink data on a corresponding downlink physical channel or through a downlink physical channel. Receiving the downlink physical channel by the UE may mean receiving DCI or downlink data on or through the corresponding downlink physical channel.
본 명세에서 수송 블록(transport block)은 물리 계층을 위한 페이로드(payload)이다. 예를 들어, 상위 계층 혹은 매체 접속 제어(medium access control, MAC) 계층으로부터 물리 계층에 주어진 데이터가 기본적으로 수송 블록으로 지칭된다.In this specification, a transport block is a payload for a physical layer. For example, data given to a physical layer from an upper layer or a medium access control (MAC) layer is basically referred to as a transport block.
본 명세에서 HARQ(Hybrid Automatic Repeat and reQuest)는 오류 제어 방법의 일종이다. 하향링크를 통해 전송되는 HARQ-ACK(HARQ acknowledgement)은 상향링크 데이터에 대한 오류 제어를 위해 사용되며, 상향링크를 통해 전송되는 HARQ-ACK은 하향링크 데이터에 대한 오류 제어를 위해 사용된다. HARQ 동작을 수행하는 전송단은 데이터(예, 수송 블록, 코드워드)를 전송한 후 긍정 확인(ACK; acknowledgement)를 기다린다. HARQ 동작을 수행하는 수신단은 데이터를 제대로 받은 경우만 긍정 확인(ACK)을 보내며, 수신 데이터에 오류가 생긴 경우 부정 확인(negative ACK, NACK)을 보낸다. 전송단이 ACK을 수신한 경우에는 (새로운) 데이터를 전송할 수 있고, NACK을 수신한 경우에는 데이터를 재전송할 수 있다. BS가 스케줄링 정보와 상기 스케줄링 정보에 따른 데이터를 전송한 뒤, UE로부터 ACK/NACK을 수신하고 재전송 데이터가 전송될 때까지 시간 딜레이(delay)가 발생한다. 이러한 시간 딜레이는 채널 전파 지연(channel propagation delay), 데이터 디코딩(decoding)/인코딩(encoding)에 걸리는 시간으로 인해 발생한다. 따라서, 현재 진행 중인 HARQ 프로세스가 끝난 후에 새로운 데이터를 보내는 경우, 시간 딜레이로 인해 데이터 전송에 공백이 발생한다. 따라서, 시간 딜레이 구간 동안에 데이터 전송에 공백이 생기는 것을 방지하기 위하여 복수의 독립적인 HARQ 프로세스가 사용된다. 예를 들어, 초기 전송과 재전송 사이에 7번의 전송 기회(occasion)가 있는 경우, 통신 장치는 7개의 독립적인 HARQ 프로세스를 운영하여 공백 없이 데이터 전송을 수행할 수 있다. 복수의 병렬 HARQ 프로세스들을 활용하면, 이전 UL/DL 전송에 대한 HARQ 피드백을 기다리는 동안 UL/DL 전송이 연속적으로 수행될 수 있다. In the present specification, HARQ (Hybrid Automatic Repeat and reQuest) is a kind of error control method. HARQ acknowledgment (HARQ-ACK) transmitted through downlink is used for error control on uplink data, and HARQ-ACK transmitted through uplink is used for error control on downlink data. The transmitter performing the HARQ operation waits for acknowledgment (ACK) after transmitting data (eg, transport block, codeword). The receiving end performing the HARQ operation sends a positive acknowledgment (ACK) only when data is properly received, and sends a negative acknowledgment (negative ACK, NACK) when an error occurs in the received data. When the transmitting end receives the ACK, it can transmit (new) data, and when it receives the NACK, it can retransmit the data. After the BS transmits scheduling information and data according to the scheduling information, a time delay occurs until ACK/NACK is received from the UE and retransmission data is transmitted. Such a time delay is caused by a channel propagation delay and a time taken for data decoding/encoding. Therefore, when new data is transmitted after the current HARQ process is finished, a gap occurs in data transmission due to a time delay. Accordingly, a plurality of independent HARQ processes are used to prevent gaps in data transmission during the time delay period. For example, if there are 7 transmission occasions between the initial transmission and the retransmission, the communication device may operate 7 independent HARQ processes to perform data transmission without a gap. Utilizing a plurality of parallel HARQ processes, UL/DL transmission may be continuously performed while waiting for HARQ feedback for a previous UL/DL transmission.
본 명세에서 채널 상태 정보(channel state information, CSI)는 UE와 안테나 포트 사이에 형성되는 무선 채널(혹은 링크라고도 함)의 품질을 나타낼 수 있는 정보를 통칭한다. CSI는 채널 품질 지시자(channel quality indicator, CQI), 프리코딩 행렬 지시자 (precoding matrix indicator, PMI), CSI-RS 자원 지시자(CSI-RS resource indicator, CRI), SSB 자원 지시자(SSB resource indicator, SSBRI), 레이어 지시자(layer indicator, LI), 랭크 지시자(rank indicator, RI) 또는 참조 신호 수신 품질(reference signal received power, RSRP) 중 적어도 하나를 포함할 수 있다.In the present specification, channel state information (CSI) refers to information that can indicate the quality of a radio channel (or link) formed between the UE and the antenna port. CSI is a channel quality indicator (channel quality indicator, CQI), precoding matrix indicator (PMI), CSI-RS resource indicator (CSI-RS resource indicator, CRI), SSB resource indicator (SSB resource indicator, SSBRI) , may include at least one of a layer indicator (LI), a rank indicator (RI), and a reference signal received power (RSRP).
본 명세에서 주파수 분할 다중화(frequency division multiplexing, FDM)라 함은 신호/채널/사용자들을 서로 다른 주파수 자원에서 전송/수신하는 것을 의미할 수 있으며, 시간 분할 다중화(time division multiplexing, TDM)이라 함은 신호/채널/사용자들을 서로 다른 시간 자원에서 전송/수신하는 것을 의미할 수 있다.In this specification, frequency division multiplexing (FDM) may mean transmitting/receiving signals/channels/users in different frequency resources, and time division multiplexing (TDM) is It may mean transmitting/receiving signals/channels/users in different time resources.
본 발명에서 주파수 분할 듀플렉스(frequency division duplex, FDD)는 상향링크 반송파에서 상향링크 통신이 수행되고 상기 상향링크용 반송파에 링크된 하향링크용 반송파에서 하향링크 통신이 수행되는 통신 방식을 말하며, 시간 분할 듀플렉스(time division duplex, TDD)라 함은 상향링크 통신과 하향링크 통신이 동일 반송파에서 시간을 나누어 수행되는 통신 방식을 말한다. In the present invention, frequency division duplex (FDD) refers to a communication method in which uplink communication is performed on an uplink carrier and downlink communication is performed on a downlink carrier linked to the uplink carrier, and time division Duplex (time division duplex, TDD) refers to a communication method in which uplink communication and downlink communication are performed by dividing time on the same carrier.
본 명세에서 사용된 배경기술, 용어, 약어 등에 관해서는 본 발명 이전에 공개된 표준 문서에 기재된 사항을 참조할 수 있다. 예를 들어, 다음 문서를 참조할 수 있다.For background art, terms, abbreviations, etc. used in this specification, reference may be made to matters described in standard documents published before the present invention. For example, you can refer to the following documents:
3GPP LTE3GPP LTE
- 3GPP TS 36.211: Physical channels and modulation- 3GPP TS 36.211: Physical channels and modulation
- 3GPP TS 36.212: Multiplexing and channel coding- 3GPP TS 36.212: Multiplexing and channel coding
- 3GPP TS 36.213: Physical layer procedures- 3GPP TS 36.213: Physical layer procedures
- 3GPP TS 36.214: Physical layer; Measurements- 3GPP TS 36.214: Physical layer; Measurements
- 3GPP TS 36.300: Overall description- 3GPP TS 36.300: Overall description
- 3GPP TS 36.304: User Equipment (UE) procedures in idle mode- 3GPP TS 36.304: User Equipment (UE) procedures in idle mode
- 3GPP TS 36.306: User Equipment (UE) radio access capabilities- 3GPP TS 36.306: User Equipment (UE) radio access capabilities
- 3GPP TS 36.314: Layer 2 - Measurements- 3GPP TS 36.314: Layer 2 - Measurements
- 3GPP TS 36.321: Medium Access Control (MAC) protocol- 3GPP TS 36.321: Medium Access Control (MAC) protocol
- 3GPP TS 36.322: Radio Link Control (RLC) protocol- 3GPP TS 36.322: Radio Link Control (RLC) protocol
- 3GPP TS 36.323: Packet Data Convergence Protocol (PDCP)- 3GPP TS 36.323: Packet Data Convergence Protocol (PDCP)
- 3GPP TS 36.331: Radio Resource Control (RRC) protocol- 3GPP TS 36.331: Radio Resource Control (RRC) protocol
- 3GPP TS 36.413: S1 Application Protocol (S1AP)- 3GPP TS 36.413: S1 Application Protocol (S1AP)
- 3GPP TS 36.423: X2 Application Protocol (X2AP)- 3GPP TS 36.423: X2 Application Protocol (X2AP)
- 3GPPP TS 22.125: Unmanned Aerial System support in 3GPP; Stage 1- 3GPPP TS 22.125: Unmanned Aerial System support in 3GPP; Stage 1
- 3GPP TS 23.303: Proximity-based services (Prose); Stage 2- 3GPP TS 23.303: Proximity-based services (Prose); Stage 2
- 3GPP TS 23.401: General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio - 3GPP TS 23.401: General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio
Access Network (E-UTRAN) accessAccess Network (E-UTRAN) access
- 3GPP TS 23.402: Architecture enhancements for non-3GPP accesses- 3GPP TS 23.402: Architecture enhancements for non-3GPP accesses
- 3GPP TS 23.286: Application layer support for V2X services; Functional architecture and information flows- 3GPP TS 23.286: Application layer support for V2X services; Functional architecture and information flows
- 3GPP TS 24.301: Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS); Stage 3- 3GPP TS 24.301: Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS); Stage 3
- 3GPP TS 24.302: Access to the 3GPP Evolved Packet Core (EPC) via non-3GPP access networks; Stage 3- 3GPP TS 24.302: Access to the 3GPP Evolved Packet Core (EPC) via non-3GPP access networks; Stage 3
- 3GPP TS 24.334: Proximity-services (ProSe) User Equipment (UE) to ProSe function protocol aspects; Stage 3- 3GPP TS 24.334: Proximity-services (ProSe) User Equipment (UE) to ProSe function protocol aspects; Stage 3
- 3GPP TS 24.386: User Equipment (UE) to V2X control function; protocol aspects; Stage 3- 3GPP TS 24.386: User Equipment (UE) to V2X control function; protocol aspects; Stage 3
3GPP NR3GPP NR
- 3GPP TS 38.211: Physical channels and modulation- 3GPP TS 38.211: Physical channels and modulation
- 3GPP TS 38.212: Multiplexing and channel coding- 3GPP TS 38.212: Multiplexing and channel coding
- 3GPP TS 38.213: Physical layer procedures for control- 3GPP TS 38.213: Physical layer procedures for control
- 3GPP TS 38.214: Physical layer procedures for data- 3GPP TS 38.214: Physical layer procedures for data
- 3GPP TS 38.215: Physical layer measurements- 3GPP TS 38.215: Physical layer measurements
- 3GPP TS 38.300: NR and NG-RAN Overall Description- 3GPP TS 38.300: NR and NG-RAN Overall Description
- 3GPP TS 38.304: User Equipment (UE) procedures in idle mode and in RRC inactive state- 3GPP TS 38.304: User Equipment (UE) procedures in idle mode and in RRC inactive state
- 3GPP TS 38.321: Medium Access Control (MAC) protocol- 3GPP TS 38.321: Medium Access Control (MAC) protocol
- 3GPP TS 38.322: Radio Link Control (RLC) protocol- 3GPP TS 38.322: Radio Link Control (RLC) protocol
- 3GPP TS 38.323: Packet Data Convergence Protocol (PDCP)- 3GPP TS 38.323: Packet Data Convergence Protocol (PDCP)
- 3GPP TS 38.331: Radio Resource Control (RRC) protocol- 3GPP TS 38.331: Radio Resource Control (RRC) protocol
- 3GPP TS 37.324: Service Data Adaptation Protocol (SDAP)- 3GPP TS 37.324: Service Data Adaptation Protocol (SDAP)
- 3GPP TS 37.340: Multi-connectivity; Overall description- 3GPP TS 37.340: Multi-connectivity; Overall description
- 3GPP TS 23.501: System Architecture for the 5G System- 3GPP TS 23.501: System Architecture for the 5G System
- 3GPP TS 23.502: Procedures for the 5G System- 3GPP TS 23.502: Procedures for the 5G System
- 3GPP TS 23.503: Policy and Charging Control Framework for the 5G System; Stage 2- 3GPP TS 23.503: Policy and Charging Control Framework for the 5G System; Stage 2
- 3GPP TS 24.501: Non-Access-Stratum (NAS) protocol for 5G System (5GS); Stage 3- 3GPP TS 24.501: Non-Access-Stratum (NAS) protocol for 5G System (5GS); Stage 3
- 3GPP TS 24.502: Access to the 3GPP 5G Core Network (5GCN) via non-3GPP access networks- 3GPP TS 24.502: Access to the 3GPP 5G Core Network (5GCN) via non-3GPP access networks
- 3GPP TS 24.526: User Equipment (UE) policies for 5G System (5GS); Stage 3- 3GPP TS 24.526: User Equipment (UE) policies for 5G System (5GS); Stage 3
제한된 로컬 운영자 서비스의 제공은 UE가 인증되지 않고 제한된 로컬 운영자 서비스를 제공하는 운영자에 접근할 수 있게 한다. 이러한 필요성은 연방규제법(CFR) 제47장 B 제20부 20.3절 및 연방규제법(CFR) 제47장 제47장 제1부 제20장 제20장 제20장 12절 (리세일 및 로밍)에 명시된 미국의 FCC 규정에 기초한다. Provision of limited local operator services allows UEs to access operators who are not authenticated and provide limited local operator services. This need is covered by CFR Chapter 47 B, Part 20, Section 20.3, and CFR, Chapter 47, Chapter 47, Part 1, Chapter 20, Chapter 20, Chapter 20, Section 12 (Resale and Roaming). Based on specified US FCC rules.
FCC가 명령한 대로 제한된 지역 사업자 서비스에 접근할 수 있는 능력은 다른 사업자 특정 제한된 지역 사업자 서비스에 대한 액세스를 제공하는 데 사용될 수도 있다. 서비스 자체는 3GPP의 범위를 벗어났다. 어떤 지역 서비스에 대한 접근은 완전히 사업자의 통제 하에 있다. 지역 서비스 집합은 이러한 UE에 대해 다른 서비스가 허용되지 않도록 사업자에 의해 지정될 수 있다. 제한된 지역 운영자 서비스의 세 가지 예는 다음과 같다.The ability to access restricted area operator services as mandated by the FCC may be used to provide access to other operator specific restricted area operator services. The service itself is outside the scope of 3GPP. Access to certain local services is entirely under the operator's control. The local service set may be specified by the operator so that no other services are allowed for these UEs. Three examples of limited local operator services are:
제한된 지역 운영자 서비스는 다양한 사용 사례를 지원할 수 있다. 첫 번째 예는 임시 수동 로밍 사용 사례다. 최종 사용자는 자신의 홈 사업자가 지역 서비스 제공자와 로밍 계약을 체결하지 않은 지역으로 이동한다. 최종 사용자는 지역 서비스 제공업체의 로밍 케어 서비스에 연락하여 임시로 지역에 서비스를 알선할 수 있다. 최종 사용자는 이 약정이 확립될 때까지 다른 서비스에 접속할 수 없다. A limited local operator service can support a variety of use cases. The first example is the temporary manual roaming use case. The end user moves to an area where their home operator does not have a roaming agreement with a local service provider. End-users may contact their local service provider's roaming care services to temporarily arrange services in their area. End Users may not access other Services until this Agreement has been established.
제한된 지역 운영자 서비스의 또 다른 예로는 가입에 대해 질문이 있는 가입자에 대한 고객 관리다. 이 경우 최종 사용자는 사업자의 고객상담센터에 접속할 수 있다. 고객 관리 센터 서비스는 최종 사용자에 대한 질문에 답변할 수 있다.Another example of limited local operator service is customer care for subscribers who have questions about their subscription. In this case, the end user can access the customer service center of the business operator. The customer care center service can answer questions about the end user.
제한된 지역 사업자 서비스의 세 번째 예는 네트워크 사업자와의 가입을 개시하기 위해 고객 가입 센터에 연락하는 잠금 해제된 UE에 의한 지역 서비스에 대한 접근이다. 이 경우, UE는 지역 서비스 제공 업체와 가입이 설정될 때까지 어떠한 네트워크에서도 인증될 수 없다. A third example of limited local operator service is access to local service by an unlocked UE that contacts a customer subscription center to initiate a subscription with a network operator. In this case, the UE cannot be authenticated in any network until a subscription with the local service provider is established.
운영자는 제한된 지역 운영자 서비스의 특정 집합에 대한 접근을 제공하도록 선택할 수 있다. 운영자는 인증되지 않은 UE가 이러한 제한된 지역 운영자 서비스에 접근할 수 있도록 선택할 수 있다. Operators may choose to provide access to a specific set of limited local operator services. Operators may choose to allow unauthenticated UEs to access these restricted local operator services.
그러한 제한된 지역 사업자 서비스에 대한 접근을 제공하는 능력은 미국 사업자들이 독점적으로 이용할 수 있었다. 그러나 LTE의 광범위한 배치와 VoLTE의 해당 도입은 UE가 접근을 위해 성공적으로 인증되지 않고 이러한 제한된 로컬 운영자 서비스(예: 특정 숫자 문자열 다이얼링, 캡티브 포털 접속)에 접근할 수 있도록 표준화된 메커니즘에 대한 수요를 발생시킨다. 오늘날 이러한 서비스의 선도적 제공자는 매월 2,300만 건 이상의 지역 서비스 시도를 처리하며, 이는 해당 기능의 광범위한 사용을 나타낸다.The ability to provide access to such limited regional operator services was exclusively available to U.S. operators. However, the widespread deployment of LTE and the corresponding introduction of VoLTE put a need for a standardized mechanism for UEs to access these limited local operator services (eg dialing certain numeric strings, accessing captive portals) without being successfully authenticated for access. causes Today, the leading provider of these services handles more than 23 million local service attempts per month, indicating widespread use of the feature.
참고: 아래에서 다루는 사용 사례에서, 지역 서비스는 설명된 접근 메커니즘에 특정되지 않는다. 지역 서비스에 다른 접근 메커니즘을 적용할 수 있다.Note: In the use cases covered below, local services are not specific to the described access mechanism. Different access mechanisms can be applied to local services.
RLOS 지원RLOS support
제한된 로컬 운영자 서비스는 특정 국가에서 지원되는 선택적 기능이다. 제한된 지역 운영자 서비스의 서비스 요건은 TS 22.101[80]에 정의되어 있으며, 구조 요건은 TS 23.221[27]에 정의되어 있다.Limited local operator service is an optional feature supported in certain countries. The service requirements for limited local operator services are defined in TS 22.101 [80], and the structural requirements are defined in TS 23.221 [27].
제한된 지역 운영자 서비스에 대한 액세스는 지역 규제 및 운영자 정책에 따라 서비스 네트워크에 의해 제한된 서비스 상태의 UE에 허용될 수 있다. UE는 조항 4.3.12.1에 명시된 제한된 서비스 상태로 들어갈 수 있다.Access to restricted local operator services may be granted to UEs in restricted service state by the service network according to local regulations and operator policies. The UE may enter the restricted service state specified in clause 4.3.12.1.
RLOS는 UE가 사용자의 명시적 요청에 기초하여 요청한다. RLOS에 접속하기 위해 네트워크에 접속할 때, UE는 NAS RLOS 표시를 MME에 전송해야 하며, MME는 5.3.2.1항에 기술된 RLOS 첨부 절차를 진행해야 한다. 특정 RLOS-APN은 PLMN에만 고유하게 구성된다.RLOS is requested by the UE based on the user's explicit request. When connecting to the network to access the RLOS, the UE shall send a NAS RLOS indication to the MME, and the MME shall proceed with the RLOS attachment procedure described in clause 5.3.2.1. A specific RLOS-APN is configured uniquely to the PLMN.
RLOS에 대한 접근 허용은 완전히 로컬 운영자의 통제 하에 있다. 예를 들어, RLOS에 대한 EPC 접근은 UE의 인증 여부나 인증이 성공 또는 실패 여부에 따라 달라지지 않는다.Granting access to RLOS is completely under the control of the local operator. For example, EPC access to RLOS does not depend on whether the UE is authenticated or whether authentication succeeds or fails.
제한된 로컬 운영자 서비스에 대한 액세스를 제공하기 위해, MME는 UE 요청에 따라 MME에 의해 설정된 RLOS PDN 연결에 적용되는 MME RLOS 구성 데이터로 구성된다. MME RLOS 구성 데이터는 PDN GW를 도출하는 데 사용되는 RLOS APN을 포함하거나, MME RLOS 구성 데이터는 RLOS APN에 대해 정적으로 구성된 PDN GW를 포함할 수 있다.To provide access to limited local operator services, the MME is configured with MME RLOS configuration data applied to the RLOS PDN connection established by the MME upon UE request. The MME RLOS configuration data may include the RLOS APN used to derive the PDN GW, or the MME RLOS configuration data may include the PDN GW that is statically configured for the RLOS APN.
제한된 지역 운영자 서비스에 접근하고자 하는 제한된 서비스 상태의 UE는 셀이 AS의 브로드캐스트 지표를 통해 E-UTRAN을 통해 RLOS 서비스를 지원한다고 판단하고 이후 첨부 절차가 RLOS에 접속하기 위한 것임을 표시하여 첨부 절차를 개시한다. 제한된 지역 운영자 서비스를 지원하는 네트워크는 UE에 대한 인증이 수행되는지 여부와 상관없이 그리고 인증이 수행되는 경우 인증 결과에 관계없이 이러한 UE에 대한 접근을 제공한다. PLMN이 RLOS에 대한 지원을 광고하지 않는 경우, UE는 RLOS에 대한 시작 시도를 차단해야 한다.The UE in the restricted service state that wants to access the restricted local operator service determines that the cell supports the RLOS service through E-UTRAN through the broadcast indicator of the AS, and then indicates that the attach procedure is for accessing the RLOS. start Networks supporting limited local operator services provide access to these UEs regardless of whether authentication is performed for them and, if so, regardless of the authentication result. If the PLMN does not advertise support for RLOS, the UE SHOULD block an attempt to initiate it for RLOS.
제한된 로컬 운영자 서비스는 WB-E-UTRAN에만 적용된다. 제한된 지역 운영자 서비스는 UE가 요청한 PDN 연결, RAT 간 이동성 및 네트워크 트리거 서비스 요청을 지원하지 않는다. RLOS를 위해 연결된 UE에 대해서는 3GPP와 3GPP 이외의 접속 간 핸드오버가 지원되지 않는다. 위치 서비스는 제한된 지역 운영자 서비스에는 적용되지 않는다.Limited local operator service only applies to WB-E-UTRAN. The limited local operator service does not support the PDN connection, inter-RAT mobility and network triggered service request requested by the UE. For UEs connected for RLOS, handover between 3GPP and connections other than 3GPP is not supported. Location services do not apply to limited local operator services.
참고: 예를 들어, E-UTRAN에 자원이 부족한 상황에서, E-UTRAN 노드는 셀의 RLOS UE가 허용되지 않음을 나타내기 위해 그에 따라 브로드캐스트 인디케이터를 설정할 수 있다.Note: For example, in a situation where E-UTRAN lacks resources, the E-UTRAN node may set a broadcast indicator accordingly to indicate that the cell's RLOS UE is not allowed.
RLOS APN의 경우 온라인 충전이 활성화되지 않는다. 오프라인 충전의 경우 가능한 경우 IMEI뿐만 아니라 RLOS APN 표시가 충전 기록에 추가된다.Online charging is not active for RLOS APNs. For offline charging, the IMEI as well as the RLOS APN indication will be added to the charging history if available.
지역 특화 사업자를 위한 참조 모델Reference model for regionally specialized operators
상기 명시된 비상근무와 동일한 아키텍처를 적용한다.The same architecture as the emergency service specified above applies.
이동성 및 액세스 제한Mobility and Access Restrictions
제한된 지역 운영자 서비스에 대한 액세스가 지원되는 경우, 조항 4.3.5.7의 이동성 제한을 제한된 지역 운영자 서비스를 받는 UE에 적용해서는 안 된다. 단, RLOS에 연결된 UE의 경우, MME는 GERAN과 UTRAN으로의 이동을 제한해야 하며, 핸드오버 제한 목록에 GERAN과 UTRAN을 포함시켜야 한다.Where access to restricted area operator services is supported, the mobility restrictions of clause 4.3.5.7 shall not apply to UEs receiving restricted area operator services. However, in the case of a UE connected to RLOS, the MME shall restrict movement to GERAN and UTRAN, and include GERAN and UTRAN in the handover restriction list.
제한된 지역 운영자 서비스를 위한 PDN GW 선택 기능Ability to select PDN GWs for limited local operator services
조항 4.3.12.4에 명시된 비상근무와 동일한 메커니즘이 다음과 같은 차이와 함께 적용된다.The same mechanisms as for emergency service specified in clause 4.3.12.4 apply with the following differences:
제한된 지역 운영자 서비스의 경우, RLOS APN을 포함하는 RLOS 구성 데이터가 MME에 필요하지만, HRPD 또는 WLAN 핸드오버는 적용되지 않는다.For limited local operator service, RLOS configuration data including RLOS APN is required for MME, but HRPD or WLAN handover does not apply.
제한된 로컬 운영자 서비스에 대한 QoSQoS for limited local operator services
RLOS 연결 중 RLOS PDN 연결을 설정하는 데 사용되는 초기 QoS 값은 MME RLOS 구성 데이터에서 얻는다.During the RLOS connection, the initial QoS value used to establish the RLOS PDN connection is obtained from the MME RLOS configuration data.
제한된 지역 운영자 서비스를 위한 PCCPCC for Limited Local Operator Services
TS 23.203 [6]에 기술된 절차에 기초한 동적 PCC는 음성 서비스를 포함하는 제한된 지역 운영자 서비스에 접근하는 UE에 사용될 수 있다. PDN GW와 RLOS APN을 향한 PDN 연결을 설정할 때, 조항 4.7.5에 따라, PCRF는 PDN GW에 QoS 매개변수를 제공한다. 여기에는 RLOS가 낮은 우선 순위의 지역 운영자 서비스에 예약된 ARP 값이 포함된다.Dynamic PCC based on the procedure described in TS 23.203 [6] can be used for UEs accessing limited local operator services including voice services. When establishing a PDN connection towards a PDN GW and a RLOS APN, according to clause 4.7.5, the PCRF provides QoS parameters to the PDN GW. This includes ARP values reserved for RLOS low-priority local operator services.
PCRF는 RLOS PDN 연결이 제한된 로컬 운영자 서비스 RLOS IMS 세션에만 사용되도록 보장한다. PCRF는 AF(즉, P-CSCF)가 PCRF에 RLOS 표시를 제공하지 않는 경우 RLOS PDN 연결을 통해 설정된 IMS 세션을 거부한다.PCRF ensures that RLOS PDN connections are used only for limited local operator service RLOS IMS sessions. The PCRF rejects the IMS session established over the RLOS PDN connection if the AF (ie, P-CSCF) does not provide the PCRF with a RLOS indication.
IP 주소 할당IP address assignment
RLOS는 서비스형 PLMN에 의해 제공된다. UE와 PLMN은 RLOS PDN 연결을 얻기 위해 호환 가능한 IP 주소 버전을 가지고 있어야 한다. RLOS APN과 관련된 PDN GW가 PDN 형식 IPv4 및 PDN 형식 IPv6을 지원해야 한다는 예외를 제외하고 서빙 PLMN의 IP 주소 할당은 조항 5.3.1에 따라 제공된다.RLOS is provided by PLMN as a service. The UE and the PLMN must have compatible IP address versions to obtain a RLOS PDN connection. With the exception that the PDN GW associated with the RLOS APN must support PDN format IPv4 and PDN format IPv6, the IP address assignment of the Serving PLMN is provided in accordance with clause 5.3.1.
IMS 기반 RLOS(Limited Local Operator Services) 지원IMS-based RLOS (Limited Local Operator Services) support
일반Normal
이 조항은 IMS 기반의 제한된 지역 사업자 서비스(RLOS)를 지원하기 위해 필요한 기능을 설명한다. RLOS 서비스는 다음의 가입자에게 제공되는 사업자 소유 서비스다.This clause describes the functions required to support IMS-based Restricted Local Operator Services (RLOS). The RLOS service is an operator-owned service provided to the following subscribers:
- 로밍 이용자는 로밍 약정이 없거나, 로밍 이용자의 네트워크와 통신할 수 없는 로밍 이용자.- A roaming user is a roaming user who does not have a roaming agreement or cannot communicate with the roaming user's network.
- 로컬 운영자가 IMS 서비스와 제한된 운영자 로컬 서비스에 대한 로밍 계약을 체결한 다른 운영자의 가입자인 로밍 사용자.- Roaming Users who are subscribers of another Operator for which the Local Operator has a roaming agreement for the IMS Service and the Limited Operator Local Service.
- 제한된 서비스를 가진 독방에서 배회한 사업자 소유 가입자 이러한 가입자는 서비스가 제한된 셀에서 로밍하기 전에 성공적으로 인증되었거나 인증되지 않았을 수 있다.- Operator-owned subscribers roaming in a cell with limited service These subscribers may or may not have been successfully authenticated prior to roaming in a service-restricted cell.
참고: 사업시행자 제한 서비스는 제한되지 않은 지역에서 로밍하는 지역 사업자의 가입자에게도 제공될 수 있지만, 이것은 범위를 벗어난다.Note: Operator restricted services may also be provided to subscribers of local operators roaming in unrestricted areas, but this is outside the scope of this.
RLOS는 발신 서비스에만 사용된다.RLOS is used only for outgoing services.
이 규격 버전에서 RLOS는 EPS를 통해 IMS에 연결된 사용자만을 위해 정의된다(TS 23.401 [70] 참조).;In this version of the specification, RLOS is defined only for users connected to the IMS via EPS (see TS 23.401 [70]);
구조rescue
RLOS를 지원하려면 아래 그림과 같이 P-CSCF, I- CSCF 및 S-CSCF의 추가 기능이 필요하다. 추가 기능은 RLOS 및 비 RLOS IMS 서비스를 지원하는 기존 기능에 구축될 수 있다. 선택적으로 RLOS만 지원하는 전용 IMS 노드(P/I/S-CSCF)를 배치할 수 있다.To support RLOS, additional functions of P-CSCF, I-CSCF and S-CSCF are required as shown in the figure below. Additional functions can be built on to existing functions that support RLOS and non-RLOS IMS services. Optionally, a dedicated IMS node (P/I/S-CSCF) that supports only RLOS can be deployed.
참고: IMS 수준 로밍 계약(부속서 W에서 정의)이 없는 로밍 시나리오에 대한 아키텍처는 IMS에 액세스하는 RLOS 사용자에게 적용되지 않는다.Note: The architecture for roaming scenarios without an IMS-level roaming agreement (as defined in Annex W) does not apply to RLOS users accessing IMS.
RLOS 접근을 위한 IMS 등록IMS registration for RLOS access
로밍 사용자를 위한 RLOS IMS 등록(홈 네트워크와 로밍 계약 없음)RLOS IMS registration for roaming users (no roaming contract with home network)
도 8은 본 명세서에 적용되는 RLOS IMS 홈 네트워크와의 로밍 계약 없이 로밍 사용자를 위한 등록 절차를 나타낸다. 8 shows a registration procedure for a roaming user without a roaming contract with a RLOS IMS home network applied herein.
도 8에 도시된 바와 같이, 등록 절차는 하기와 같다. As shown in Fig. 8, the registration procedure is as follows.
1. UE가 IP 접속을 획득한 후(RLOS 사용자에 대해 TS 23.401 [70]에서 정의함) 정기 IMS 등록을 수행하고, 등록 정보에 RLOS 관련 IMS 등록임을 나타내는 표시를 포함한다.1. After the UE obtains an IP connection (as defined in TS 23.401 [70] for RLOS users), it performs periodic IMS registration, and includes an indication in the registration information indicating that it is a RLOS-related IMS registration.
2. P CSCF는 RLOS를 지원하는 P-CSCF로, Register 정보를 받으면 선택적으로, 그리고 운용자 정책에 기초하여 Z.3.3조항의 보안 점검을 실시한다. 가입자가 홈 네트워크와 로밍 계약을 하지 않은 로밍 사용자 및 등록 정보의 RLOS 표시를 근거로, P-CSCF는 등록 정보를 P-CSCF에서 구성한 S-CSCF에 전송하여 RLOS 사용자를 처리한다.2. P CSCF is a P-CSCF that supports RLOS. Upon receiving register information, the security check of Article Z.3.3 is selectively performed and based on operator policy. Based on the RLOS indication of the roaming user and registration information for which the subscriber does not have a roaming contract with the home network, the P-CSCF processes the RLOS user by sending the registration information to the S-CSCF configured in the P-CSCF.
참고: RLOS 처리를 위한 P-CSCF ID는 RLOS에 접근하기 위한 명시적 표시를 포함하는 첨부 절차 중에 UE로 전송되었을 것이다.Note: The P-CSCF ID for RLOS processing would have been sent to the UE during the attachment procedure including an explicit indication to access the RLOS.
S-CSCF가 420 응답으로 응답한 경우 3-8단계를 적용한다.If the S-CSCF responds with a 420 response, steps 3-8 apply.
3. Register 정보를 받은 S-CSCF는 RLOS 표시에 근거하여 가입자가 홈 네트워크와의 로밍 동의 없이 네트워크 구성에 따라 로밍 사용자로 되어 있으며, 네트워크가 GIBA를 지원하는 경우, 지원되지 않는 헤더 필드에 열거된 2차 값의 420 회신을 송신한다.3. S-CSCF receiving the Register information, based on the RLOS indication, if the subscriber is a roaming user according to the network configuration without roaming consent with the home network, and if the network supports GIBA, Send a 420 reply of the secondary value.
4. P-CSCF는 420의 응답을 UE에 전달한다.4. The P-CSCF forwards a response of 420 to the UE.
5. UE는 새로운 등록 요청을 시작하고 승인 헤더 필드를 포함하지 않는다.5. The UE initiates a new registration request and does not include an authorization header field.
6. P-CSCF는 선택적으로 Z.3.3조에서 RLOS APN 확인을 수행한 다음, 등록 정보를 UE에 할당된 S-CSCF로 전송한다.6. The P-CSCF optionally performs RLOS APN verification in Article Z.3.3, and then sends the registration information to the S-CSCF assigned to the UE.
7. 등록 정보를 수령한 S-CSCF는 등록을 승인하고, 기본 서비스 프로필로 인증되지 않은 UE에 대한 임시 기록을 생성하고, 200 OK로 응답한다.7. Upon receiving the registration information, the S-CSCF approves the registration, creates a temporary record for the UE not authenticated with the default service profile, and responds with 200 OK.
8. P-CSCF는 UE에 200 OK를 전송한다.8. P-CSCF sends 200 OK to UE.
S-CSCF가 403 응답으로 응답한 경우 9-10단계를 적용한다.If the S-CSCF responds with a 403 response, steps 9-10 apply.
9. Register 정보를 받은 S-CSCF는 RLOS 표시에 근거하여 가입자가 홈 네트워크와의 로밍 동의 없이 로밍 사용자임을 근거로 하여, 사업자 구성뿐만 아니라 네트워크 구성에 따라(GIBA에 대한 지원 없음) 403 응답으로 응답한다. S-CSCF는 기본 서비스 프로파일을 가진 인증되지 않은 UE에 대한 임시 등록 기록을 만든다.9. S-CSCF receiving the Register information responds with a 403 response according to the network configuration as well as the operator configuration (no support for GIBA) based on the subscriber being a roaming user without roaming consent with the home network based on the RLOS indication do. The S-CSCF creates a temporary registration record for an unauthenticated UE with a default service profile.
10. P-CSCF는 403 응답을 UE에 전송한다. P-CSCF는 가입자가 홈 네트워크와의 로밍 동의 없이 로밍 사용자라는 점을 감안하여 인증되지 않은 UE에 대한 임시 등록 기록을 작성한다. UE는 IMS 세션을 시작할 수 있다.10. The P-CSCF sends a 403 response to the UE. The P-CSCF creates a temporary registration record for an unauthenticated UE, taking into account that the subscriber is a roaming user without roaming consent with the home network. The UE may initiate an IMS session.
RLOS IMS 등록 운영자 소유 가입자 및 홈 네트워크와의 로밍 계약을 체결한 로밍 사용자RLOS IMS registered operator-owned subscribers and roaming users with roaming agreements with home networks
사업자 소유 가입자 또는/또는 홈 네트워크와의 IMS 서비스 및 제한된 로컬 운영자 서비스 로밍 계약을 체결한 로밍 사용자는 제한된 서비스를 가진 셀에서 로밍할 때 IMS 기반 제한된 로컬 운영자 서비스에 접근하기 위해 아래에 명시된 새로운 IMS 등록을 수행해야 한다. 또한 UE는 서비스가 제한된 셀에서 로밍하기 전에 UE가 수행하는 유효한 IMS 등록도 삭제해야 한다.Roaming Users with IMS Services and Restricted Local Operator Services roaming agreements with carrier-owned subscribers or/or home networks must register for a new IMS as specified below to access IMS-based Restricted Local Operator Services when roaming in cells with limited services. should be performed In addition, the UE must also delete a valid IMS registration performed by the UE before roaming in a service-restricted cell.
IMS 등록 실패IMS registration failed
도 9는 본 명세서에 적용되는 RLOS IMS 등록 절차 실패 예를 도시한다. 9 shows an example of failure of the RLOS IMS registration procedure applied to the present specification.
도 9에 도시된 바와 같이, RLOS IMS 등록 절차 실패 시나리오는 하기와 같다. As shown in FIG. 9 , the RLOS IMS registration procedure failure scenario is as follows.
1. UE가 IP 접속을 획득한 후(RLOS 사용자에 대해 TS 23.401 [70]에서 정의한 것) 정기 IMS 등록을 수행하고, 등록 정보에 이것이 RLOS IMS 관련 등록이라는 표시를 포함한다.1. After the UE obtains an IP connection (as defined in TS 23.401 [70] for RLOS users), it performs periodic IMS registration, and includes in the registration information an indication that this is a RLOS IMS-related registration.
2. P-CSCF는 RLOS를 지원하는 P-CSCF로, Register 정보를 선택적으로 수령하고 운용자 정책에 기초하여 Z.3.3절의 RLOS APN 확인을 수행한다. RLOS 표시와 가입자가 자신의 가입자인 P-CSCF는 등록 정보를 I-CSCF로 전송한다.2. P-CSCF is a P-CSCF that supports RLOS. It selectively receives register information and performs RLOS APN verification in Section Z.3.3 based on operator policy. The RLOS indication and the P-CSCF of which the subscriber is its subscriber sends the registration information to the I-CSCF.
비고 1: RLOS를 처리하기 위한 P-CSCF ID는 RLOS에 접근하기 위한 명시적 표시를 포함하는 첨부 절차 중에 UE로 전송되었을 것이다.NOTE 1: The P-CSCF ID for handling the RLOS would have been sent to the UE during the attachment procedure including an explicit indication to access the RLOS.
3. I-CSCF는 가입자 S-CSCF에 대해 HSS를 조회한다. 수신된 S-CSCF가 RLOS를 지원하지 않고 RLOS 관련 등록 I-CSCF가 S-CSCF 목록과 그 기능을 위해 HSS를 다시 쿼리하는 경우. I-CSCF는 반환된 S-CSCF 기능 정보를 사용하여 RLOS를 지원하는 S-CSCF를 선택해야 한다.3. The I-CSCF queries the HSS for the subscriber S-CSCF. If the received S-CSCF does not support RLOS and the RLOS-related registration I-CSCF re-queries the HSS for the list of S-CSCFs and their functions. The I-CSCF shall use the returned S-CSCF function information to select an S-CSCF that supports RLOS.
참고 2: 가입자에게 할당된 S-CSCF는 만료되지 않고 삭제되지 않은 이전 등록 또는 RLOS 관련 등록일 수 있다.Note 2: The S-CSCF assigned to a subscriber may be a non-expired, non-deleted previous registration or RLOS-related registration.
4. I-CSCF는 Register 정보를 선택한 S-CSCF로 전송한다.4. I-CSCF transmits register information to the selected S-CSCF.
5. S-CSCF는 HSS에서 인증 정보를 가져온다.5. S-CSCF gets authentication information from HSS.
6. S-CSCF는 401 회신을 송신함으로써 UE에 도전한다.6. The S-CSCF challenges the UE by sending a 401 reply.
7. I-CSCF는 401 응답을 P-CSCF에 전달한다.7. The I-CSCF forwards the 401 response to the P-CSCF.
8. P-CSCF는 401 응답을 UE에 전달한다.8. The P-CSCF forwards a 401 response to the UE.
9. UE는 인증 정보를 포함하여 새로운 등록 요청을 P-CSCF에 전송한다.9. The UE sends a new registration request including authentication information to the P-CSCF.
10. P-CSCF는 선택적으로 운용자 정책에 기초하여 Z.3.3절의 RLOS APN 확인을 수행한 다음, 등록 정보를 I-CSCF로 전송한다.10. The P-CSCF optionally performs the RLOS APN verification of clause Z.3.3 based on the operator policy, and then transmits the registration information to the I-CSCF.
11. I-CSCF는 가입자 S-CSCF에 대해 HSS를 조회하고 UE에 할당된 S-CSCF 이름을 수신한다. 수신된 S-CSCF가 RLOS를 지원하지 않고 RLOS 관련 등록 I-CSCF가 S-CSCF 목록과 그 기능을 위해 HSS를 다시 쿼리하는 경우. I-CSCF는 반환된 S-CSCF 기능 정보를 사용하여 RLOS를 지원하는 S-CFCF를 선택해야 한다.11. The I-CSCF queries the HSS for the subscriber S-CSCF and receives the S-CSCF name assigned to the UE. If the received S-CSCF does not support RLOS and the RLOS-related registration I-CSCF re-queries the HSS for the list of S-CSCFs and their functions. The I-CSCF shall use the returned S-CSCF function information to select an S-CFCF that supports RLOS.
12. I-CSCF는 Register 정보를 선택한 S-CSCF로 전송한다.12. I-CSCF transmits register information to the selected S-CSCF.
13. S-CSCF는 UE가 수신한 인증 정보를 검증하지만 UE를 성공적으로 인증하지 못했다. 이것은 RLOS 관련 IMS 등록이므로, S-CSCF는 기본 서비스 프로파일로 UE를 위한 임시 "인증되지 않은 가입자" 등록 기록을 생성하고 403 응답으로 응답한다.13. The S-CSCF verifies the authentication information received by the UE, but did not successfully authenticate the UE. Since this is a RLOS-related IMS registration, the S-CSCF creates a temporary "Unauthenticated Subscriber" registration record for the UE with the default service profile and responds with a 403 response.
14. I-CSCF는 403 응답을 P-CSCF에 전송한다.14. The I-CSCF sends a 403 response to the P-CSCF.
15. P-CSCF는 403 응답을 UE에 전송하고, UE에 대한 임시 "인증되지 않은 가입자" 등록 기록을 작성한다.15. The P-CSCF sends a 403 response to the UE, and creates a temporary "Unauthenticated Subscriber" registration record for the UE.
IMS 등록 성공IMS registration successful
성공적인 IMS 등록은 다음과 같은 예외를 제외하고 실패한 등록과 동일하다.A successful IMS registration is identical to a failed registration with the following exceptions.
- S-CSCF는 12단계에서 UE를 성공적으로 인증한다.- The S-CSCF successfully authenticates the UE in step 12.
- S-CSCF는 UE 등록 기록을 RLOS 등록에 성공했다고 태그한다.- The S-CSCF tags the UE registration record as successful in RLOS registration.
- S-CSCF는 UE에 할당되는 S-CSCF 이름으로 HSS를 업데이트하고, HSS에서 UE 프로필을 다운로드하여 저장한다. 이 단계는 이전 사례에서는 수행되지 않는다.- The S-CSCF updates the HSS with the S-CSCF name assigned to the UE, and downloads and stores the UE profile from the HSS. This step is not performed in the previous case.
IMS 기반 RLOS 세션 개시IMS-based RLOS session initiation
다음과 같은 추가 요건을 포함하여 조항 5.6.2를 적용한다.Clause 5.6.2 applies, including the following additional requirements:
- UE는 모든 출발 세션에서 RLOS 표시를 포함해야 한다. P-CSCF는 그러한 지시 없이 시작 세션을 거부해야 한다.- The UE shall include the RLOS indication in all outgoing sessions. The P-CSCF shall reject the initiating session without such an indication.
- S-CSCF는 IMS 세션과 관련된 충전 데이터에 RLOS 표시를 포함해야 한다.- The S-CSCF shall include the RLOS indication in the charging data related to the IMS session.
- S-CSCF는 전화 통신 애플리케이션 서버에 세션 개시 요청을 전달해야 한다. 전화 통신 애플리케이션 서버는 성공적으로 인증된 모든 UE에 대해 발신 서비스를 우회해야 한다. 전화 통신 애플리케이션 서버는 사업자 정책에 기초하여 위의 모든 등록 사례에 대해 다른 정책(예: 수신처 세트)으로 구성할 수 있다. 전화 응용 프로그램 서버는 이러한 정책을 시행한다.- The S-CSCF shall forward the session initiation request to the telephony application server. The telephony application server shall bypass the outgoing service for all successfully authenticated UEs. The telephony application server can be configured with a different policy (eg destination set) for all of the above registration cases based on the operator policy. The phone application server enforces these policies.
- S-CSCF는 IMS 세션과 관련된 충전 데이터에 RLOS 표시를 포함해야 한다.- The S-CSCF shall include the RLOS indication in the charging data related to the IMS session.
- 등록된 신분증을 신분증으로 사용한다.- Use your registered ID as your ID.
6가지 주요 이슈6 major issues
6.1 소개6.1 Introduction
이 조항은 PARLOS 서비스와 관련된 보안 측면에 대해 식별된 주요 문제를 상세히 기술한다. 각각의 핵심 이슈는 이슈의 배경을 정의하고, 이슈와 관련된 위협을 정의하며, 핵심 이슈를 해결하는 요구사항을 제안한다.This clause details the main issues identified with respect to the security aspects related to the PARLOS service. Each key issue defines the background of the issue, defines the threats associated with the issue, and proposes requirements to address the key issue.
6.2 주요 이슈 #1: PARLOS 세션에 대한 임시 보안 설정6.2 Key Issue #1: Temporary Security Settings for PARLOS Sessions
UE가 PLMN에 대한 PARLOS 연결을 요청하는 경우, UE는 인증되지 않았거나 제한된 서비스 상태에 있을 수 있다. UE가 인증되지 않았거나 제한된 서비스 상태에 있는 경우, 서비스 중인 PLMN은 HSS로부터 UE에 대한 자격 증명을 얻지 못할 것이며, 정기적인 NAS 및 AS 컨텍스트를 확립하는 것은 불가능할 수 있다. NAS 및 AS 보안 컨텍스트를 설정하지 않으면, PLMN은 NAS 및 AS 통신을 보호할 수 없을 수 있다. 따라서 PARLOS 포털에 접속하는 UE의 경우, NAS 및 AS 보안을 확립하기 위한 정상적인 절차는 불가능하다. UE가 성공적으로 인증되고 네트워크가 NAS 및 AS 보안 컨텍스트를 구축한 경우 UE는 서비스를 위해 PARLOS 포털에 연결되지 않는다는 점에 유의하십시오.When the UE requests a PARLOS connection to the PLMN, the UE may be unauthenticated or in a restricted service state. If the UE is not authenticated or is in limited service state, the serving PLMN will not obtain credentials for the UE from the HSS, and it may be impossible to establish regular NAS and AS contexts. If the NAS and AS security context are not established, the PLMN may not be able to secure NAS and AS communication. Therefore, in the case of a UE accessing the PARLOS portal, a normal procedure for establishing NAS and AS security is impossible. Please note that if the UE is successfully authenticated and the network has established the NAS and AS security context, the UE will not connect to the PARLOS portal for service.
PARLOS를 통해 입력된 서비스를 활성화하기 위해 서비스 PLMN은 사용자의 이름, 사용자의 주소 또는 서비스가 필요한 사용자의 위치와 같은 특정 개인 정보를 요청할 수 있다. 일부 서비스의 경우, 서비스 중인 PLMN은 사용자 신용 카드 정보를 요청하여 서비스에 대한 요금도 청구할 수 있다. 이러한 개인정보가 이전될 경우 적절한 보호가 없으면 도청자는 통신을 엿듣고 사용자의 개인정보를 파악할 수 있게 된다. 많은 국가에서 보호되지 않은 통신 링크를 통한 개인 데이터 전송도 법적으로 금지되어 있다.In order to activate the service entered through PARLOS, the service PLMN may request certain personal information such as the user's name, the user's address or the location of the user who needs the service. For some services, the PLMN in service may also request your credit card information and charge you for the service. When such personal information is transferred, without adequate protection, eavesdroppers can eavesdrop on communications and identify users' personal information. In many countries, transmission of personal data over unprotected communication links is also prohibited by law.
따라서 보호되지 않는 통신 링크에 대한 이 개인 정보의 이전은 PARLOS 서비스를 제공하는 데 있어 보안 위협이다. 이것은 PARLOS 서비스를 제공하기 전에 UE에 대해 다루어질 필요가 있다. PARLOS 서비스가 활성화되기 전에 PRALOS 포털에 접속하는 UE에 대해 임시 보안 컨텍스트를 설정할 필요가 있다.Therefore, the transfer of this personal information to unprotected communication links is a security threat to the provision of PARLOS services. This needs to be addressed for the UE before providing the PARLOS service. Before the PARLOS service is activated, it is necessary to establish a temporary security context for the UE accessing the PRALOS portal.
6.2.2 잠재적인 보안 위협6.2.2 Potential Security Threats
PARLOS 서비스 세션이 보안되지 않은 경우, 기밀성 및 무결성 보호와 함께 사용자의 이름, 주소, 신용카드 정보 등 민감한 개인 데이터가 처마 드로퍼에 의해 도난당할 수 있다.If the PARLOS service session is not secure, sensitive personal data such as the user's name, address, and credit card information can be stolen by the eaves dropper along with confidentiality and integrity protection.
6.2.3 잠재적인 보안 요구사항6.2.3 Potential Security Requirements
최소한 네트워크와 UE가 PARLOS 서비스를 제공하는 동안 애플리케이션 계층에서 엔드 투 엔드 보안을 설정하는 것이 가능해야 한다.At a minimum, it should be possible to establish end-to-end security at the application layer while the network and UE provide PARLOS services.
UE와 MME는 PARLOS 서비스에 대한 NAS 신호 전달을 무결성과 기밀성으로 보호해야 한다.UE and MME shall protect NAS signaling for PARLOS service with integrity and confidentiality.
UE와 eNB는 PARLOS 서비스에 대한 AS 신호 전달을 무결성과 기밀성으로 보호해야 한다.UE and eNB must protect AS signaling for PARLOS service with integrity and confidentiality.
6.3 주요 이슈 #2: EPC를 이용한 인증되지 않은 UE의 RLOS 접속 지원6.3 Main Issue #2: Support for RLOS Access by Unauthenticated UEs Using EPC
6.3.1 주요 이슈내용6.3.1 Major Issues
RLOS 연결을 가진 다수의 악의적이고 인증되지 않은 UE는 추가 신호 전달 및 트래픽 생성으로 EPS 네트워크의 네트워크 자원을 고갈시킬 수 있다. A large number of malicious and unauthenticated UEs with RLOS connections can exhaust the network resources of the EPS network with additional signaling and traffic generation.
6.3.2 잠재적인 보안 위협6.3.2 Potential Security Threats
공격자는 네트워크에 대한 RLOS 접근을 개시하기 위해 많은 악의적인 UE를 도입하기만 하면 EPS 네트워크에 DoS 공격을 개시할 수 있다. An attacker could initiate a DoS attack on an EPS network by simply introducing a number of malicious UEs to initiate RLOS access to the network.
6.3.3 잠재적인 보안 요구사항6.3.3 Potential security requirements
6.4 주요 이슈 #3: PARLOS 서비스의 사용 허가.6.4 Key Issue #3: Permission to Use PARLOS Services.
6.4.1 주요 이슈내용6.4.1 Main Issues
사용자가 현재 4G 또는 5G 네트워크에 접속했을 때, 홈 네트워크로부터 서빙 네트워크가 허가된 것이 분명하다. 그러나, 네트워크 인증을 건너뛰어야 하는 경우, 무허가 네트워크가 사용자에게 서비스를 제공할 수 있도록 할 수 있다. 이것은 허가받지 않은 네트워크가 제공되고 있는 어떤 서비스의 중간에서 남자가 될 수 있게 한다. When the user currently connects to the 4G or 5G network, it is clear that the serving network is authorized from the home network. However, if network authentication needs to be skipped, it can allow unauthorized networks to provide services to users. This allows an unauthorized network to be a man in the middle of any service being provided.
무허가 네트워크를 설정하는 것은 RLOS 수행 능력을 방송하는 상자에 네트워크를 넣어 가짜 기지국을 설치하는 것과 마찬가지로 쉬운 동시에 피해자가 기존 셀을 교란시켜 실제 네트워크에 부착할 수 없도록 하는 등의 조치를 취한다. 이 공격은 수동 로밍이 필요한 지역에만 국한되지 않고 어디서든 수행할 수 있을 것이다.Setting up an unlicensed network is as easy as placing a fake base station by putting the network in a box that broadcasts its RLOS capabilities, while taking steps such as disrupting the existing cell and preventing the victim from attaching to the real network. This attack will not be limited to areas where manual roaming is required, but could be carried out anywhere.
6.4.2 잠재적인 보안 위협6.4.2 Potential Security Threats
무허가 네트워크는 중간 위치에 있는 남성을 착취할 수 있다.Unauthorized networks can exploit men in intermediate positions.
- UE는 PARLOS 기반 서비스의 사용에 대한 사용자 동의를 얻어야 한다. 이러한 상호작용의 일환으로 보안 리스크가 사용자에게 충분히 설명되지 않는다면, 사용자는 PARLOS 기반의 서비스 보안 함의를 모를 가능성이 높다. 중간에 있는 남자는 이것을 이용하여 PDN 세션 시도에 응하고 완전한 통신에 접근할 수 있을 것이다.- The UE must obtain user consent for the use of PARLOS-based services. If the security risk is not sufficiently explained to the user as part of this interaction, the user is likely to be unaware of the security implications of the PARLOS-based service. The man in the middle will be able to use this to respond to PDN session attempts and access full communication.
- 사용자가 수동 로밍을 할 것으로 예상하는 곳에서 중간에 있는 남자가 영업하는 경우, 중간 위치에 있는 남자가 사용자로부터 결제 정보 및 기타 정보를 수집할 수 있다.- If the man in the middle is doing business in a place where the user expects to do manual roaming, the man in the middle may collect payment information and other information from the user.
6.4.3 잠재적인 보안 요구사항6.4.3 Potential security requirements
UE는 승인된 네트워크로만 RLOS 세션을 설정해야 한다. The UE shall establish RLOS sessions only with authorized networks.
참고: 사용자 상호작용은 사용자 인식에 대한 하나의 가능한 해결책이다.Note: User interaction is one possible solution to user awareness.
6.4 주요 이슈 #4: PARLOS 서비스의 이용에 대한 사용자 인식.6.4 Key Issue #4: User perceptions of the use of PARLOS services.
6.4.1 주요 이슈내용6.4.1 Main Issues
사용자가 현재 4G 또는 5G 네트워크에 접속할 때, UE의 사용자나 애플리케이션은 다음 사항에 의존할 수 있다.When a user currently connects to a 4G or 5G network, the user or application of the UE may depend on:
3GPP 보안3GPP Security
- 3GPP TS 33.51: 물리적 채널 및 변조- 3GPP TS 33.51: Physical Channels and Modulation
- 3GPP TS 33.401: 물리적 채널 및 변조- 3GPP TS 33.401: Physical Channels and Modulation
- 3GPP TS 33.303: 근접 기반 서비스(ProSe); 보안 측면- 3GPP TS 33.303: Proximity Based Services (ProSe); security aspect
<5G 사용 시나리오><5G usage scenario>
5G의 세 가지 주요 요구 사항 영역은 (1) 향상된 모바일 광대역(eMBB; enhanced mobile broadband) 영역, (2) 거대 MTC(mMTC; massive machine type communication) 영역 및 (3) 고신뢰/초저지연 통신(URLLC; ultra-reliable and low latency communications) 영역을 포함한다. 일부 사용 예는 최적화를 위해 다수의 영역을 요구할 수 있고, 다른 사용 예는 단지 하나의 핵심 성능 지표(KPI; key performance indicator)에만 포커싱 할 수 있다. 5G는 이러한 다양한 사용 예들을 유연하고 신뢰할 수 있는 방법으로 지원하는 것이다.The three main requirement areas for 5G are (1) enhanced mobile broadband (eMBB) area, (2) massive machine type communication (mMTC) area, and (3) high reliability/ultra-low latency communication (URLLC; ultra-reliable and low latency communications). Some use cases may require multiple domains for optimization, while other use cases may focus on only one key performance indicator (KPI). 5G is to support these various use cases in a flexible and reliable way.
eMBB는 데이터 속도, 지연, 사용자 밀도, 모바일 광대역 접속의 용량 및 커버리지의 전반적인 향상에 중점을 둔다. eMBB는 10Gbps 정도의 처리량을 목표로 한다. eMBB는 기본적인 모바일 인터넷 접속을 훨씬 능가하게 하며, 풍부한 양방향 작업, 클라우드 또는 증강 현실에서 미디어 및 엔터테인먼트 애플리케이션을 커버한다. 데이터는 5G의 핵심 동력 중 하나이며, 5G 시대에서 처음으로 전용 음성 서비스를 볼 수 없을 수 있다. 5G에서, 음성은 단순히 통신 시스템에 의해 제공되는 데이터 연결을 사용하여 응용 프로그램으로서 처리될 것으로 기대된다. 증가된 트래픽 양의 주요 원인은 콘텐츠 크기의 증가 및 높은 데이터 전송률을 요구하는 애플리케이션 수의 증가이다. 스트리밍 서비스(오디오 및 비디오), 대화형 비디오 및 모바일 인터넷 연결은 더 많은 장치가 인터넷에 연결될수록 더 널리 사용될 것이다. 이러한 많은 애플리케이션은 사용자에게 실시간 정보 및 알림을 푸쉬하기 위해 항상 켜져 있는 연결성을 필요로 한다. 클라우드 스토리지 및 애플리케이션은 모바일 통신 플랫폼에서 급속히 증가하고 있으며, 이것은 업무 및 엔터테인먼트 모두에 적용될 수 있다. 클라우드 스토리지는 상향링크 데이터 전송률의 성장을 견인하는 특별한 사용 예이다. 5G는 또한 클라우드 상의 원격 업무에도 사용되며, 촉각 인터페이스가 사용될 때 우수한 사용자 경험을 유지하도록 훨씬 더 낮은 단-대-단(end-to-end) 지연을 요구한다. 엔터테인먼트에서 예를 들면, 클라우드 게임 및 비디오 스트리밍은 모바일 광대역 능력의 향상을 요구하는 또 다른 핵심 요소이다. 엔터테인먼트는 기차, 차 및 비행기와 같은 높은 이동성 환경을 포함하여 어떤 곳에서든지 스마트폰 및 태블릿에서 필수적이다. 또 다른 사용 예는 엔터테인먼트를 위한 증강 현실 및 정보 검색이다. 여기서, 증강 현실은 매우 낮은 지연과 순간적인 데이터 양을 필요로 한다.eMBB focuses on overall improvements in data rates, latency, user density, capacity and coverage of mobile broadband connections. eMBB aims for a throughput of around 10 Gbps. eMBB goes far beyond basic mobile internet access, covering rich interactive work, media and entertainment applications in the cloud or augmented reality. Data is one of the key drivers of 5G, and for the first time in the 5G era, we may not see dedicated voice services. In 5G, voice is simply expected to be processed as an application using the data connection provided by the communication system. The main causes of the increased traffic volume are the increase in content size and the increase in the number of applications requiring high data rates. Streaming services (audio and video), interactive video and mobile Internet connections will become more widely used as more devices connect to the Internet. Many of these applications require always-on connectivity to push real-time information and notifications to users. Cloud storage and applications are rapidly increasing in mobile communication platforms, which can be applied to both work and entertainment. Cloud storage is a special use case that drives the growth of uplink data rates. 5G is also used for remote work on the cloud, requiring much lower end-to-end latency to maintain a good user experience when tactile interfaces are used. In entertainment, for example, cloud gaming and video streaming are another key factor demanding improvements in mobile broadband capabilities. Entertainment is essential on smartphones and tablets anywhere, including in high-mobility environments such as trains, cars and airplanes. Another use example is augmented reality for entertainment and information retrieval. Here, augmented reality requires very low latency and instantaneous amount of data.
mMTC는 배터리에 의해 구동되는 다량의 저비용 장치 간의 통신을 가능하게 하기 위하여 설계되며, 스마트 계량, 물류, 현장 및 신체 센서와 같은 애플리케이션을 지원하기 위한 것이다. mMTC는 10년 정도의 배터리 및/또는 1km2 당 백만 개 정도의 장치를 목표로 한다. mMTC는 모든 분야에서 임베디드 센서를 원활하게 연결할 수 있게 하여 센서 네트워크를 구성할 수 있으며, 가장 많이 예상되는 5G 사용 예 중 하나이다. 잠재적으로 2020년까지 IoT 장치들은 204억 개에 이를 것으로 예측된다. 산업 IoT를 활용한 스마트 네트워크는 5G가 스마트 도시, 자산 추적(asset tracking), 스마트 유틸리티, 농업 및 보안 인프라를 가능하게 하는 주요 역할을 수행하는 영역 중 하나이다.mMTC is designed to enable communication between a large number of low-cost devices powered by batteries and is intended to support applications such as smart metering, logistics, field and body sensors. mMTC is targeting a battery life of 10 years or so and/or a million devices per square kilometer. mMTC enables the seamless connection of embedded sensors in all fields to form a sensor network, and is one of the most anticipated 5G use cases. Potentially, by 2020, there will be 20.4 billion IoT devices. Smart networks leveraging industrial IoT is one of the areas where 5G will play a major role in enabling smart cities, asset tracking, smart utilities, agriculture and security infrastructure.
URLLC는 장치 및 기계가 매우 신뢰성 있고 매우 낮은 지연 및 높은 가용성으로 통신할 수 있도록 함으로써 자율주행 차량간 통신 및 제어, 산업 제어, 공장 자동화, 원격 수술과 헬스케어와 같은 미션 크리티컬 어플리케이션, 스마트 그리드 및 공공 안전 애플리케이션에 이상적이다. URLLC는 1ms의 정도의 지연을 목표로 한다. URLLC는 주요 인프라의 원격 제어 및 자율 주행 차량과 같은 고신뢰/초저지연 링크를 통해 산업을 변화시킬 새로운 서비스를 포함한다. 신뢰성과 지연의 수준은 스마트 그리드 제어, 산업 자동화, 로봇 공학, 드론 제어 및 조정에 필수적이다.URLLC enables devices and machines to communicate very reliably, with very low latency and high availability, enabling autonomous vehicle-to-vehicle communication and control, industrial control, factory automation, mission-critical applications such as telesurgery and healthcare, smart grid and public Ideal for safety applications. URLLC aims for a delay on the order of 1 ms. URLLC includes new services that will transform industries through high-reliability/ultra-low-latency links such as remote control of critical infrastructure and autonomous vehicles. This level of reliability and latency is essential for smart grid control, industrial automation, robotics, and drone control and coordination.
다음으로, 도 T의 삼각형 안에 포함된 다수의 사용 예에 대해 보다 구체적으로 살펴본다.Next, a plurality of usage examples included in the triangle of FIG. T will be described in more detail.
5G는 초당 수백 메가 비트에서 초당 기가 비트로 평가되는 스트림을 제공하는 수단으로 FTTH(fiber-to-the-home) 및 케이블 기반 광대역(또는 DOCSIS)을 보완할 수 있다. 이러한 빠른 속도는 가상 현실(VR; virtual reality)과 증강 현실(AR; augmented reality) 뿐 아니라 4K 이상(6K, 8K 및 그 이상)의 해상도로 TV를 전달하는 데에 요구될 수 있다. VR 및 AR 애플리케이션은 거의 몰입형(immersive) 스포츠 경기를 포함한다. 특정 애플리케이션은 특별한 네트워크 설정이 요구될 수 있다. 예를 들어, VR 게임의 경우, 게임 회사가 지연을 최소화하기 위해 코어 서버를 네트워크 오퍼레이터의 에지 네트워크 서버와 통합해야 할 수 있다.5G could complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means of delivering streams rated from hundreds of megabits per second to gigabits per second. Such a high speed may be required to deliver TVs with resolutions of 4K or higher (6K, 8K and higher) as well as virtual reality (VR) and augmented reality (AR). VR and AR applications almost include immersive sporting events. Certain applications may require special network settings. For VR games, for example, game companies may need to integrate core servers with network operators' edge network servers to minimize latency.
자동차(Automotive)는 차량에 대한 이동 통신을 위한 많은 사용 예와 함께 5G에 있어 중요한 새로운 동력이 될 것으로 예상된다. 예를 들어, 승객을 위한 엔터테인먼트는 높은 용량과 높은 모바일 광대역을 동시에 요구한다. 그 이유는 미래의 사용자는 그들의 위치 및 속도와 관계 없이 고품질의 연결을 계속해서 기대하기 때문이다. 자동차 분야의 다른 사용 예는 증강 현실 대시보드이다. 운전자는 증강 현실 대비보드를 통해 앞면 창을 통해 보고 있는 것 위에 어둠 속에서 물체를 식별할 수 있다. 증강 현실 대시보드는 물체의 거리와 움직임에 대해 운전자에게 알려줄 정보를 겹쳐서 디스플레이 한다. 미래에, 무선 모듈은 차량 간의 통신, 차량과 지원하는 인프라구조 사이에서 정보 교환 및 자동차와 다른 연결된 장치(예를 들어, 보행자에 의해 수반되는 장치) 사이에서 정보 교환을 가능하게 한다. 안전 시스템은 운전자가 보다 안전한 운전을 할 수 있도록 행동의 대체 코스를 안내하여 사고의 위험을 낮출 수 있게 한다. 다음 단계는 원격 조종 차량 또는 자율 주행 차량이 될 것이다. 이는 서로 다른 자율 주행 차량 사이 및/또는 자동차와 인프라 사이에서 매우 신뢰성이 있고 매우 빠른 통신을 요구한다. 미래에, 자율 주행 차량이 모든 운전 활동을 수행하고, 운전자는 차량 자체가 식별할 수 없는 교통 이상에만 집중하도록 할 것이다. 자율 주행 차량의 기술적 요구 사항은 트래픽 안전을 사람이 달성할 수 없을 정도의 수준까지 증가하도록 초 저 지연과 초고속 신뢰성을 요구한다.Automotive is expected to be an important new driving force for 5G, with many use cases for mobile communication to vehicles. For example, entertainment for passengers requires both high capacity and high mobile broadband. The reason is that future users continue to expect high-quality connections regardless of their location and speed. Another example of use in the automotive sector is augmented reality dashboards. The augmented reality contrast board allows drivers to identify objects in the dark above what they are seeing through the front window. The augmented reality dashboard superimposes information to inform the driver about the distance and movement of objects. In the future, wireless modules will enable communication between vehicles, information exchange between vehicles and supporting infrastructure, and information exchange between automobiles and other connected devices (eg, devices carried by pedestrians). Safety systems can lower the risk of accidents by guiding drivers through alternative courses of action to help them drive safer. The next step will be remote-controlled vehicles or autonomous vehicles. This requires very reliable and very fast communication between different autonomous vehicles and/or between vehicles and infrastructure. In the future, autonomous vehicles will perform all driving activities, allowing drivers to focus only on traffic anomalies that the vehicle itself cannot discern. The technological requirements of autonomous vehicles demand ultra-low latency and ultra-fast reliability to increase traffic safety to unattainable levels for humans.
스마트 사회로서 언급되는 스마트 도시와 스마트 홈은 스마트 네트워크의 일례로 고밀도 무선 센서 네트워크로 임베디드 될 것이다. 지능형 센서의 분산 네트워크는 도시 또는 집의 비용 및 에너지 효율적인 유지에 대한 조건을 식별할 것이다. 유사한 설정이 각 가정을 위해 수행될 수 있다. 온도 센서, 창 및 난방 컨트롤러, 도난 경보기 및 가전 제품은 모두 무선으로 연결된다. 이러한 센서 중 많은 것들이 전형적으로 낮은 데이터 전송 속도, 저전력 및 저비용을 요구한다. 하지만, 예를 들어, 실시간 HD 비디오는 감시를 위해 특정 타입의 장치에서 요구될 수 있다.Smart cities and smart homes, referred to as smart societies, will be embedded as high-density wireless sensor networks as examples of smart networks. A distributed network of intelligent sensors will identify conditions for keeping a city or house cost- and energy-efficient. A similar setup can be performed for each household. Temperature sensors, window and heating controllers, burglar alarms and appliances are all connected wirelessly. Many of these sensors typically require low data rates, low power and low cost. However, for example, real-time HD video may be required in certain types of devices for surveillance.
열 또는 가스를 포함한 에너지의 소비 및 분배는 고도로 분산화되고 있어, 분산 센서 네트워크의 자동화된 제어가 요구된다. 스마트 그리드는 정보를 수집하고 이에 따라 행동하도록 디지털 정보 및 통신 기술을 사용하여 이런 센서를 상호 연결한다. 이 정보는 공급 업체와 소비자의 행동을 포함할 수 있으므로, 스마트 그리드가 효율성, 신뢰성, 경제성, 생산의 지속 가능성 및 자동화된 방식으로 전기와 같은 연료의 분배를 개선하도록 할 수 있다. 스마트 그리드는 지연이 적은 다른 센서 네트워크로 볼 수도 있다.The consumption and distribution of energy, including heat or gas, is highly decentralized, requiring automated control of distributed sensor networks. Smart grids use digital information and communication technologies to interconnect these sensors to gather information and act on it. This information can include supplier and consumer behavior, enabling smart grids to improve efficiency, reliability, economics, sustainability of production and distribution of fuels such as electricity in an automated manner. The smart grid can also be viewed as another low-latency sensor network.
건강 부문은 이동 통신의 혜택을 누릴 수 있는 많은 애플리케이션을 보유하고 있다. 통신 시스템은 멀리 떨어진 곳에서 임상 진료를 제공하는 원격 진료를 지원할 수 있다. 이는 거리에 대한 장벽을 줄이는 데에 도움을 주고, 거리가 먼 농촌에서 지속적으로 이용하지 못하는 의료 서비스로의 접근을 개선시킬 수 있다. 이는 또한 중요한 진료 및 응급 상황에서 생명을 구하기 위해 사용된다. 이동 통신 기반의 무선 센서 네트워크는 심박수 및 혈압과 같은 파라미터에 대한 원격 모니터링 및 센서를 제공할 수 있다.The health sector has many applications that can benefit from mobile communications. The communication system may support telemedicine providing clinical care from a remote location. This can help reduce barriers to distance and improve access to consistently unavailable health care services in remote rural areas. It is also used to save lives in critical care and emergency situations. A wireless sensor network based on mobile communication may provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
무선 및 모바일 통신은 산업 응용 분야에서 점차 중요해지고 있다. 배선은 설치 및 유지 비용이 높다. 따라서, 케이블을 재구성할 수 있는 무선 링크로의 교체 가능성은 많은 산업 분야에서 매력적인 기회이다. 그러나, 이를 달성하는 것은 무선 연결이 케이블과 비슷한 지연, 신뢰성 및 용량으로 동작하는 것과, 그 관리가 단순화될 것을 요구한다. 낮은 지연과 매우 낮은 오류 확률은 5G로 연결될 필요가 있는 새로운 요구 사항이다.Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the possibility of replacing cables with reconfigurable radio links is an attractive opportunity for many industries. Achieving this, however, requires that wireless connections operate with similar delays, reliability and capacity as cables, and that their management is simplified. Low latency and very low error probability are new requirements that need to be connected with 5G.
물류 및 화물 추적은 위치 기반 정보 시스템을 사용하여 어디에서든지 인벤토리(inventory) 및 패키지의 추적을 가능하게 하는 이동 통신에 대한 중요한 사용 예이다. 물류 및 화물 추적의 사용 예는 전형적으로 낮은 데이터 속도를 요구하지만 넓은 범위와 신뢰성 있는 위치 정보가 필요하다.Logistics and freight tracking are important use cases for mobile communications that use location-based information systems to enable tracking of inventory and packages from anywhere. Logistics and freight tracking use cases typically require low data rates but require wide range and reliable location information.
<본 발명이 적용될 수 있는 장치 일반><General device to which the present invention can be applied>
이하, 본 발명이 적용될 수 있는 장치에 대하여 설명한다.Hereinafter, an apparatus to which the present invention can be applied will be described.
도 10은 본 발명의 일 실시 예에 따른 무선 통신 장치를 나타낸다.10 shows a wireless communication device according to an embodiment of the present invention.
도 10을 참조하면, 무선 통신 시스템은 제 1 장치(9010)와 제 2 장치(9020)를 포함할 수 있다. Referring to FIG. 10 , a wireless communication system may include a first device 9010 and a second device 9020 .
상기 제 1 장치(9010)는 기지국, 네트워크 노드, 전송 단말, 수신 단말, 무선 장치, 무선 통신 장치, 차량, 자율주행 기능을 탑재한 차량, 커넥티드카(Connected Car), 드론(Unmanned Aerial Vehicle, UAV), AI(Artificial Intelligence) 모듈, 로봇, AR(Augmented Reality) 장치, VR(Virtual Reality) 장치, MR(Mixed Reality) 장치, 홀로그램 장치, 공공 안전 장치, MTC 장치, IoT 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, 5G 서비스와 관련된 장치 또는 그 이외 4차 산업 혁명 분야와 관련된 장치일 수 있다.The first device 9010 includes a base station, a network node, a transmitting terminal, a receiving terminal, a wireless device, a wireless communication device, a vehicle, a vehicle equipped with an autonomous driving function, a connected car, a drone (Unmanned Aerial Vehicle, UAV), Artificial Intelligence (AI) Module, Robot, AR (Augmented Reality) Device, VR (Virtual Reality) Device, MR (Mixed Reality) Device, Hologram Device, Public Safety Device, MTC Device, IoT Device, Medical Device, Pin It may be a tech device (or financial device), a security device, a climate/environment device, a device related to 5G services, or other devices related to the 4th industrial revolution field.
상기 제 2 장치(9020)는 기지국, 네트워크 노드, 전송 단말, 수신 단말, 무선 장치, 무선 통신 장치, 차량, 자율주행 기능을 탑재한 차량, 커넥티드카(Connected Car), 드론(Unmanned Aerial Vehicle, UAV), AI(Artificial Intelligence) 모듈, 로봇, AR(Augmented Reality) 장치, VR(Virtual Reality) 장치, MR(Mixed Reality) 장치, 홀로그램 장치, 공공 안전 장치, MTC 장치, IoT 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, 5G 서비스와 관련된 장치 또는 그 이외 4차 산업 혁명 분야와 관련된 장치일 수 있다.The second device 9020 includes a base station, a network node, a transmitting terminal, a receiving terminal, a wireless device, a wireless communication device, a vehicle, a vehicle equipped with an autonomous driving function, a connected car, a drone (Unmanned Aerial Vehicle, UAV), Artificial Intelligence (AI) Module, Robot, AR (Augmented Reality) Device, VR (Virtual Reality) Device, MR (Mixed Reality) Device, Hologram Device, Public Safety Device, MTC Device, IoT Device, Medical Device, Pin It may be a tech device (or financial device), a security device, a climate/environment device, a device related to 5G services, or other devices related to the 4th industrial revolution field.
예를 들어, 단말은 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털 방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)) 등을 포함할 수 있다. 예를 들어, HMD는 머리에 착용하는 형태의 디스플레이 장치일 수 있다. 예를 들어, HMD는 VR, AR 또는 MR을 구현하기 위해 사용될 수 있다.For example, the terminal includes a mobile phone, a smart phone, a laptop computer, a digital broadcasting terminal, personal digital assistants (PDA), a portable multimedia player (PMP), a navigation system, a slate PC, and a tablet. PC (tablet PC), ultrabook (ultrabook), wearable device (wearable device, for example, a watch-type terminal (smartwatch), glass-type terminal (smart glass), HMD (head mounted display), etc. may be included. . For example, the HMD may be a display device worn on the head. For example, an HMD may be used to implement VR, AR or MR.
예를 들어, 드론은 사람이 타지 않고 무선 컨트롤 신호에 의해 비행하는 비행체일 수 있다. 예를 들어, VR 장치는 가상 세계의 객체 또는 배경 등을 구현하는 장치를 포함할 수 있다. 예를 들어, AR 장치는 현실 세계의 객체 또는 배경 등에 가상 세계의 객체 또는 배경을 연결하여 구현하는 장치를 포함할 수 있다. 예를 들어, MR 장치는 현실 세계의 객체 또는 배경 등에 가상 세계의 객체 또는 배경을 융합하여 구현하는 장치를 포함할 수 있다. 예를 들어, 홀로그램 장치는 홀로그래피라는 두 개의 레이저 광이 만나서 발생하는 빛의 간섭현상을 활용하여, 입체 정보를 기록 및 재생하여 360도 입체 영상을 구현하는 장치를 포함할 수 있다. 예를 들어, 공공 안전 장치는 영상 중계 장치 또는 사용자의 인체에 착용 가능한 영상 장치 등을 포함할 수 있다. 예를 들어, MTC 장치 및 IoT 장치는 사람의 직접적인 개입이나 또는 조작이 필요하지 않는 장치일 수 있다. 예를 들어, MTC 장치 및 IoT 장치는 스마트 미터, 벤딩 머신, 온도계, 스마트 전구, 도어락 또는 각종 센서 등을 포함할 수 있다. 예를 들어, 의료 장치는 질병을 진단, 치료, 경감, 처치 또는 예방할 목적으로 사용되는 장치일 수 있다. 예를 들어, 의료 장치는 상해 또는 장애를 진단, 치료, 경감 또는 보정할 목적으로 사용되는 장치일 수 있다. 예를 들어, 의료 장치는 구조 또는 기능을 검사, 대체 또는 변형할 목적으로 사용되는 장치일 수 있다. 예를 들어, 의료 장치는 임신을 조절할 목적으로 사용되는 장치일 수 있다. 예를 들어, 의료 장치는 진료용 장치, 수술용 장치, (체외) 진단용 장치, 보청기 또는 시술용 장치 등을 포함할 수 있다. 예를 들어, 보안 장치는 발생할 우려가 있는 위험을 방지하고, 안전을 유지하기 위하여 설치한 장치일 수 있다. 예를 들어, 보안 장치는 카메라, CCTV, 녹화기(recorder) 또는 블랙박스 등일 수 있다. 예를 들어, 핀테크 장치는 모바일 결제 등 금융 서비스를 제공할 수 있는 장치일 수 있다. 예를 들어, 핀테크 장치는 결제 장치 또는 POS(Point of Sales) 등을 포함할 수 있다. 예를 들어, 기후/환경 장치는 기후/환경을 모니터링 또는 예측하는 장치를 포함할 수 있다.For example, the drone may be a flying vehicle that does not have a human and flies by a wireless control signal. For example, the VR device may include a device that implements an object or a background of a virtual world. For example, the AR device may include a device implemented by connecting an object or background of the virtual world to an object or background of the real world. For example, the MR device may include a device that implements a virtual world object or background by fusion with a real world object or background. For example, the hologram device may include a device for realizing a 360-degree stereoscopic image by recording and reproducing stereoscopic information by utilizing an interference phenomenon of light generated by the meeting of two laser beams called holography. For example, the public safety device may include an image relay device or an image device that can be worn on a user's body. For example, the MTC device and the IoT device may be devices that do not require direct human intervention or manipulation. For example, the MTC device and the IoT device may include a smart meter, a bending machine, a thermometer, a smart light bulb, a door lock, or various sensors. For example, a medical device may be a device used for the purpose of diagnosing, treating, alleviating, treating, or preventing a disease. For example, a medical device may be a device used for the purpose of diagnosing, treating, alleviating or correcting an injury or disorder. For example, a medical device may be a device used for the purpose of examining, replacing, or modifying structure or function. For example, the medical device may be a device used for the purpose of controlling pregnancy. For example, the medical device may include a medical device, a surgical device, an (ex vivo) diagnostic device, a hearing aid, or a device for a procedure. For example, the security device may be a device installed to prevent a risk that may occur and maintain safety. For example, the security device may be a camera, CCTV, recorder or black box. For example, the fintech device may be a device capable of providing financial services such as mobile payment. For example, the fintech device may include a payment device or a Point of Sales (POS). For example, the climate/environment device may include a device for monitoring or predicting the climate/environment.
상기 제 1 장치(9010)는 프로세서(9011)와 같은 적어도 하나 이상의 프로세서와, 메모리(9012)와 같은 적어도 하나 이상의 메모리와, 송수신기(9013)과 같은 적어도 하나 이상의 송수신기를 포함할 수 있다. 상기 프로세서(9011)는 전술한 기능, 절차, 및/또는 방법들을 수행할 수 있다. 상기 프로세서(9011)는 하나 이상의 프로토콜을 수행할 수 있다. 예를 들어, 상기 프로세서(9011)는 무선 인터페이스 프로토콜의 하나 이상의 계층들을 수행할 수 있다. 상기 메모리(9012)는 상기 프로세서(9011)와 연결되고, 다양한 형태의 정보 및/또는 명령을 저장할 수 있다. 상기 송수신기(9013)는 상기 프로세서(9011)와 연결되고, 무선 시그널을 송수신하도록 제어될 수 있다.The first device 9010 may include at least one or more processors such as a processor 9011 , at least one memory such as a memory 9012 , and at least one transceiver such as a transceiver 9013 . The processor 9011 may perform the functions, procedures, and/or methods described above. The processor 9011 may perform one or more protocols. For example, the processor 9011 may perform one or more layers of an air interface protocol. The memory 9012 is connected to the processor 9011 and may store various types of information and/or commands. The transceiver 9013 may be connected to the processor 9011 and controlled to transmit/receive a wireless signal.
상기 제 2 장치(9020)는 프로세서(9021)와 같은 적어도 하나의 프로세서와, 메모리(9022)와 같은 적어도 하나 이상의 메모리 장치와, 송수신기(9023)와 같은 적어도 하나의 송수신기를 포함할 수 있다. 상기 프로세서(9021)는 전술한 기능, 절차, 및/또는 방법들을 수행할 수 있다. 상기 프로세서(9021)는 하나 이상의 프로토콜을 구현할 수 있다. 예를 들어, 상기 프로세서(9021)는 무선 인터페이스 프로토콜의 하나 이상의 계층들을 구현할 수 있다. 상기 메모리(9022)는 상기 프로세서(9021)와 연결되고, 다양한 형태의 정보 및/또는 명령을 저장할 수 있다. 상기 송수신기(9023)는 상기 프로세서(9021)와 연결되고, 무선 시그널을 송수신하도록 제어될 수 있다. The second device 9020 may include at least one processor such as a processor 9021 , at least one memory device such as a memory 9022 , and at least one transceiver such as a transceiver 9023 . The processor 9021 may perform the functions, procedures, and/or methods described above. The processor 9021 may implement one or more protocols. For example, the processor 9021 may implement one or more layers of an air interface protocol. The memory 9022 is connected to the processor 9021 and may store various types of information and/or commands. The transceiver 9023 may be connected to the processor 9021 and may be controlled to transmit/receive a wireless signal.
상기 메모리(9012) 및/또는 상기 메모리(9022)는, 상기 프로세서(9011) 및/또는 상기 프로세서(9021)의 내부 또는 외부에서 각기 연결될 수도 있고, 유선 또는 무선 연결과 같이 다양한 기술을 통해 다른 프로세서에 연결될 수도 있다.The memory 9012 and/or the memory 9022 may be respectively connected inside or outside the processor 9011 and/or the processor 9021 , and may be connected to another processor through various technologies such as wired or wireless connection. may be connected to
상기 제 1 장치(9010) 및/또는 상기 제 2 장치(9020)는 하나 이상의 안테나를 가질 수 있다. 예를 들어, 안테나(9014) 및/또는 안테나(9024)는 무선 신호를 송수신하도록 구성될 수 있다.The first device 9010 and/or the second device 9020 may have one or more antennas. For example, antenna 9014 and/or antenna 9024 may be configured to transmit and receive wireless signals.
도 11은 본 발명의 일 실시 예에 따른 네트워크 노드의 블록 구성도를 예시한다.11 illustrates a block diagram of a network node according to an embodiment of the present invention.
특히, 도 11에서는 기지국이 중앙 유닛(CU: central unit)과 분산 유닛(DU: distributed unit)으로 분할되는 경우, 앞서 도 10의 네트워크 노드를 보다 상세하게 예시하는 도면이다.In particular, in FIG. 11 , when the base station is divided into a central unit (CU) and a distributed unit (DU), it is a diagram illustrating the network node of FIG. 10 in more detail.
도 11를 참조하면, 기지국(W20, W30)은 코어 네트워크(W10)와 연결되어 있을 수 있고, 기지국(W30)은 이웃 기지국(W20)과 연결되어 있을 수 있다. 예를 들어, 기지국(W20, W30)과 코어 네트워크(W10) 사이의 인터페이스를 NG라고 칭할 수 있고, 기지국(W30) 이웃 기지국(W20) 사이의 인터페이스를 Xn이라고 칭할 수 있다.Referring to FIG. 11 , base stations W20 and W30 may be connected to the core network W10 , and the base station W30 may be connected to a neighboring base station W20 . For example, the interface between the base stations W20 and W30 and the core network W10 may be referred to as NG, and the interface between the base station W30 and the neighboring base station W20 may be referred to as Xn.
기지국(W30)은 CU(W32) 및 DU(W34, W36)로 분할될 수 있다. 즉, 기지국(W30)은 계층적으로 분리되어 운용될 수 있다. CU(W32)는 하나 이상의 DU(W34, W36)와 연결되어 있을 수 있으며, 예를 들어, 상기 CU(W32)와 DU(W34, W36) 사이의 인터페이스를 F1이라고 칭할 수 있다. CU(W32)는 기지국의 상위 계층(upper layers)의 기능을 수행할 수 있고, DU(W34, W36)는 기지국의 하위 계층(lower layers)의 기능을 수행할 수 있다. 예를 들어, CU(W32)는 기지국(예를 들어, gNB)의 RRC(radio resource control), SDAP(service data adaptation protocol) 및 PDCP(packet data convergence protocol) 계층을 호스팅하는 로지컬 노드(logical node)일 수 있고, DU(W34, W36)는 기지국의 RLC(radio link control), MAC(media access control) 및 PHY(physical) 계층을 호스팅하는 로지컬 노드일 수 있다. 대안적으로, CU(W32)는 기지국(예를 들어, en-gNB)의 RRC 및 PDCP 계층을 호스팅하는 로지컬 노드일 수 있다.The base station W30 may be divided into CUs W32 and DUs W34 and W36. That is, the base station W30 may be hierarchically separated and operated. The CU W32 may be connected to one or more DUs W34 and W36, for example, an interface between the CU W32 and the DUs W34 and W36 may be referred to as F1. The CU (W32) may perform functions of upper layers of the base station, and the DUs (W34, W36) may perform functions of lower layers of the base station. For example, the CU W32 is a radio resource control (RRC), service data adaptation protocol (SDAP), and packet data convergence protocol (PDCP) layer of a base station (eg, gNB) hosting a logical node (logical node) , and the DUs W34 and W36 may be logical nodes hosting radio link control (RLC), media access control (MAC), and physical (PHY) layers of the base station. Alternatively, the CU W32 may be a logical node hosting the RRC and PDCP layers of the base station (eg, en-gNB).
DU(W34, W36)의 동작은 부분적으로 CU(W32)에 의해 제어될 수 있다. 하나의 DU(W34, W36)는 하나 이상의 셀을 지원할 수 있다. 하나의 셀은 오직 하나의 DU(W34, W36)에 의해서만 지원될 수 있다. 하나의 DU(W34, W36)는 하나의 CU(W32)에 연결될 수 있고, 적절한 구현에 의하여 하나의 DU(W34, W36)는 복수의 CU에 연결될 수도 있다.The operation of the DUs W34 and W36 may be partially controlled by the CU W32. One DU (W34, W36) may support one or more cells. One cell can be supported by only one DU (W34, W36). One DU (W34, W36) may be connected to one CU (W32), and by appropriate implementation, one DU (W34, W36) may be connected to a plurality of CUs.
도 12는 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.12 illustrates a block diagram of a communication device according to an embodiment of the present invention.
특히, 도12에서는 앞서 도 10의 단말을 보다 상세히 예시하는 도면이다. In particular, FIG. 12 is a diagram illustrating the terminal of FIG. 10 in more detail.
도 12를 참조하면, 단말은 프로세서(또는 디지털 신호 프로세서(DSP: digital signal processor)(Y10), RF 모듈(RF module)(또는 RF 유닛)(Y35), 파워 관리 모듈(power management module)(Y05), 안테나(antenna)(Y40), 배터리(battery)(Y55), 디스플레이(display)(Y15), 키패드(keypad)(Y20), 메모리(memory)(Y30), 심카드(SIM(Subscriber Identification Module) card)(Y25)(이 구성은 선택적임), 스피커(speaker)(Y45) 및 마이크로폰(microphone)(Y50)을 포함하여 구성될 수 있다. 단말은 또한 단일의 안테나 또는 다중의 안테나를 포함할 수 있다. 12 , the terminal includes a processor (or a digital signal processor (DSP) (Y10), an RF module (or an RF unit) (Y35), and a power management module (Y05). ), antenna (Y40), battery (Y55), display (Y15), keypad (Y20), memory (Y30), SIM card (SIM (Subscriber Identification Module) ) card) (Y25) (this configuration is optional), a speaker (Y45) and a microphone (Y50) may be included. The terminal may also include a single antenna or multiple antennas. can
프로세서(Y10)는 앞서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층은 프로세서(Y10)에 의해 구현될 수 있다. The processor Y10 implements the functions, processes and/or methods proposed above. The layer of the air interface protocol may be implemented by the processor Y10.
메모리(Y30)는 프로세서(Y10)와 연결되고, 프로세서(Y10)의 동작과 관련된 정보를 저장한다. 메모리(Y30)는 프로세서(Y10) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(Y10)와 연결될 수 있다.The memory Y30 is connected to the processor Y10 and stores information related to the operation of the processor Y10. The memory Y30 may be inside or outside the processor Y10, and may be connected to the processor Y10 by various well-known means.
사용자는 예를 들어, 키패드(Y20)의 버튼을 누르거나(혹은 터치하거나) 또는 마이크로폰(Y50)를 이용한 음성 구동(voice activation)에 의해 전화 번호 등과 같은 명령 정보를 입력한다. 프로세서(Y10)는 이러한 명령 정보를 수신하고, 전화 번호로 전화를 거는 등 적절한 기능을 수행하도록 처리한다. 구동 상의 데이터(operational data)는 심카드(Y25) 또는 메모리(Y30)로부터 추출할 수 있다. 또한, 프로세서(Y10)는 사용자가 인지하고 또한 편의를 위해 명령 정보 또는 구동 정보를 디스플레이(Y15) 상에 디스플레이할 수 있다. The user inputs command information such as a phone number by, for example, pressing (or touching) a button of the keypad Y20 or by voice activation using the microphone Y50. The processor Y10 receives such command information and processes it to perform an appropriate function, such as making a call to a phone number. Operational data may be extracted from the SIM card Y25 or the memory Y30. In addition, the processor Y10 may display command information or driving information on the display Y15 for the user to recognize and for convenience.
RF 모듈(Y35)는 프로세서(Y10)에 연결되어, RF 신호를 송신 및/또는 수신한다. 프로세서(Y10)는 통신을 개시하기 위하여 예를 들어, 음성 통신 데이터를 구성하는 무선 신호를 전송하도록 명령 정보를 RF 모듈(Y35)에 전달한다. RF 모듈(Y35)은 무선 신호를 수신 및 송신하기 위하여 수신기(receiver) 및 전송기(transmitter)로 구성된다. 안테나(Y40)는 무선 신호를 송신 및 수신하는 기능을 한다. 무선 신호를 수신할 때, RF 모듈(Y35)은 프로세서(Y10)에 의해 처리하기 위하여 신호를 전달하고 기저 대역으로 신호를 변환할 수 있다. 처리된 신호는 스피커(Y45)를 통해 출력되는 가청 또는 가독 정보로 변환될 수 있다. The RF module Y35 is connected to the processor Y10 to transmit and/or receive RF signals. The processor Y10 transmits command information to the RF module Y35 to transmit, for example, a radio signal constituting voice communication data to initiate communication. The RF module Y35 includes a receiver and a transmitter to receive and transmit a radio signal. The antenna Y40 functions to transmit and receive radio signals. When receiving a wireless signal, the RF module Y35 may forward the signal and convert the signal to baseband for processing by the processor Y10. The processed signal may be converted into audible or readable information output through the speaker Y45.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.The embodiments described above are those in which elements and features of the present invention are combined in a predetermined form. Each component or feature should be considered optional unless explicitly stated otherwise. Each component or feature may be implemented in a form that is not combined with other components or features. It is also possible to configure embodiments of the present invention by combining some elements and/or features. The order of operations described in the embodiments of the present invention may be changed. Some features or features of one embodiment may be included in another embodiment, or may be replaced with corresponding features or features of another embodiment. It is apparent that claims that are not explicitly cited in the claims can be combined to form an embodiment or included as a new claim by amendment after filing.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof. In the case of implementation by hardware, an embodiment of the present invention provides one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), a processor, a controller, a microcontroller, a microprocessor, and the like.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.In the case of implementation by firmware or software, an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that perform the functions or operations described above. The software code may be stored in the memory and driven by the processor. The memory may be located inside or outside the processor, and may transmit/receive data to and from the processor by various well-known means.
<제어 평면 무선 인터페이스 프로토콜(Radio Interface Protocol) 구조><Control Plane Radio Interface Protocol Structure>
도 13는 UE과 eNodeB 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이다.13 is an exemplary diagram showing the structure of a radio interface protocol (Radio Interface Protocol) in the control plane between the UE and the eNodeB.
상기 무선인터페이스 프로토콜은 3GPP 무선접속망 규격을 기반으로 한다. 상기 무선 인터페이스 프로토콜은 수평적으로 물리계층(Physical 계층), 데이터링크계층(Data Link 계층) 및 네트워크계층(Network 계층)으로 이루어지며, 수직적으로는 데이터정보 전송을 위한 사용자평면(User Plane)과 제어신호(Signaling)전달을 위한 제어평면(Control Plane)으로 구분된다. The radio interface protocol is based on the 3GPP radio access network standard. The radio interface protocol is horizontally composed of a physical layer, a data link layer, and a network layer, and vertically a user plane for data information transmission and control. It is divided into a control plane for signal transmission.
상기 프로토콜 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준모델의 하위 3개 계층을 바탕으로 L1(제1계층), L2(제2계층), L3(제3계층)로 구분될 수 있다.The protocol layers are L1 (first layer), L2 (second layer), and L3 (third layer) based on the lower three layers of the Open System Interconnection (OSI) reference model widely known in communication systems. ) can be distinguished.
이하에서, 상기 도 13에 도시된 제어 평면의 의 각 계층을 설명한다. Hereinafter, each layer of the control plane shown in FIG. 13 will be described.
제1 계층인 물리계층은 물리채널(Physical Channel)을 이용하여 정보전송서비스(Information Transfer Service)를 제공한다. 상기 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송 채널(Transport Channel)을 통해 연결되어 있으며, 상기 전송 채널을 통해 매체접속제어계층과 물리계층 사이의 데이터가 전달된다. 그리고, 서로 다른 물리계층 사이, 즉 송신 측과 수신 측의 물리계층 사이는 물리채널을 통해 데이터가 전달된다.The first layer, the physical layer, provides an information transfer service using a physical channel. The physical layer is connected to an upper medium access control layer through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel. And, data is transferred between different physical layers, that is, between the physical layers of the transmitting side and the receiving side through a physical channel.
물리채널(Physical Channel)은 시간 축 상에 있는 여러 개의 서브프레임과 주파수축상에 있는 여러 개의 서브 캐리어(Sub-carrier)로 구성된다. 여기서, 하나의 서브프레임(Sub-frame)은 시간 축 상에 복수의 심볼(Symbol)들과 복수의 서브 캐리어들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 심볼(Symbol)들과 복수의 서브캐리어들로 구성된다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.A physical channel consists of several subframes on the time axis and several sub-carriers on the frequency axis. Here, one sub-frame is composed of a plurality of symbols and a plurality of sub-carriers on the time axis. One subframe is composed of a plurality of resource blocks (Resource Block), and one resource block is composed of a plurality of symbols and a plurality of subcarriers. A Transmission Time Interval (TTI), which is a unit time for data transmission, is 1 ms corresponding to one subframe.
상기 송신 측과 수신 측의 물리계층에 존재하는 물리 채널들은 3GPP LTE에 따르면, 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다. According to 3GPP LTE, the physical channels existing in the physical layer of the transmitting side and the receiving side are a data channel, a Physical Downlink Shared Channel (PDSCH) and a PUSCH (Physical Uplink Shared Channel), and a control channel, a Physical Downlink Control Channel (PDCCH), It can be divided into a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
서브프레임의 첫 번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임 내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 CFI(control format indicator)를 나른다. 무선기기는 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다. The PCFICH transmitted in the first OFDM symbol of the subframe carries a control format indicator (CFI) regarding the number of OFDM symbols used for transmission of control channels in the subframe (ie, the size of the control region). The wireless device first receives the CFI on the PCFICH and then monitors the PDCCH.
PDCCH와 달리, PCFICH는 블라인드 디코딩을 사용하지 않고, 서브프레임의 고정된 PCFICH 자원을 통해 전송된다.Unlike the PDCCH, the PCFICH does not use blind decoding and is transmitted through a fixed PCFICH resource of a subframe.
PHICH는 UL HARQ(hybrid automatic repeat request)를 위한 ACK(positive-acknowledgement)/NACK(negative-acknowledgement) 신호를 나른다. 무선기기에 의해 전송되는 PUSCH 상의 UL(uplink) 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다. The PHICH carries a positive-acknowledgement (ACK)/negative-acknowledgement (NACK) signal for a UL hybrid automatic repeat request (HARQ). An ACK/NACK signal for UL (uplink) data on a PUSCH transmitted by a wireless device is transmitted on a PHICH.
PBCH(Physical Broadcast Channel)은 무선 프레임의 첫 번째 서브프레임의 두 번째 슬롯의 앞선 4개의 OFDM 심벌에서 전송된다. PBCH는 무선기기가 기지국과 통신하는데 필수적인 시스템 정보를 나르며, PBCH를 통해 전송되는 시스템 정보를 MIB(master information block)라 한다. 이와 비교하여, PDCCH에 의해 지시되는 PDSCH 상으로 전송되는 시스템 정보를 SIB(system information block)라 한다.The PBCH (Physical Broadcast Channel) is transmitted in the preceding four OFDM symbols of the second slot of the first subframe of the radio frame. The PBCH carries system information essential for a wireless device to communicate with a base station, and the system information transmitted through the PBCH is called a master information block (MIB). In comparison, system information transmitted on the PDSCH indicated by the PDCCH is referred to as a system information block (SIB).
PDCCH는 DL-SCH(downlink-shared channel)의 자원 할당 및 전송 포맷, UL-SCH(uplink shared channel)의 자원 할당 정보, PCH 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 랜덤 액세스 응답과 같은 상위 계층 제어 메시지의 자원 할당, 임의의 UE 그룹 내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및 VoIP(voice over internet protocol)의 활성화 등을 나를 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 몇몇 연속적인 CCE(control channel elements)의 집합(aggregation) 상으로 전송된다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)에 대응된다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다.PDCCH is a resource allocation and transmission format of a downlink-shared channel (DL-SCH), resource allocation information of an uplink shared channel (UL-SCH), paging information on the PCH, system information on the DL-SCH, random access transmitted on the PDSCH Resource allocation of a higher layer control message such as a response, a set of transmission power control commands for individual UEs in an arbitrary UE group, and activation of voice over internet protocol (VoIP) may be carried. A plurality of PDCCHs may be transmitted in the control region, and the UE may monitor the plurality of PDCCHs. The PDCCH is transmitted on an aggregation of one or several consecutive control channel elements (CCEs). The CCE is a logical allocation unit used to provide the PDCCH with a coding rate according to the state of a radio channel. The CCE corresponds to a plurality of resource element groups. The format of the PDCCH and the possible number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rates provided by the CCEs.
PDCCH를 통해 전송되는 제어정보를 다운링크 제어정보(downlink control information, DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다), PUSCH의 자원 할당(이를 UL 그랜트(uplink grant)라고도 한다), 임의의 UE 그룹 내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.Control information transmitted through the PDCCH is referred to as downlink control information (DCI). DCI is a PDSCH resource allocation (this is also called a DL grant (downlink grant)), PUSCH resource allocation (this is also called a UL grant (uplink grant)), a set of transmit power control commands for individual UEs in an arbitrary UE group and/or activation of Voice over Internet Protocol (VoIP).
제2계층에는 여러 가지 계층이 존재한다. 먼저 매체접속제어(Medium Access Control; MAC) 계층은 다양한 논리채널(Logical Channel)을 다양한 전송채널에 매핑시키는 역할을 하며, 또한 여러 논리채널을 하나의 전송채널에 매핑시키는 논리채널 다중화(Multiplexing)의 역할을 수행한다. MAC 계층은 상위계층인 RLC 계층과는 논리채널(Logical Channel)로 연결되어 있으며, 논리채널은 크게 전송되는 정보의 종류에 따라 제어평면(Control Plane)의 정보를 전송하는 제어채널(Control Channel)과 사용자평면(User Plane)의 정보를 전송하는 트래픽 채널(Traffic Channel)로 나뉜다.In the second layer, there are several layers. First, the Medium Access Control (MAC) layer serves to map various logical channels to various transport channels, and is also a logical channel multiplexing layer that maps multiple logical channels to one transport channel. play a role The MAC layer is connected to the RLC layer, which is the upper layer, by a logical channel, and the logical channel is largely divided into a control channel that transmits information in the control plane and a control channel according to the type of transmitted information. It is divided into a traffic channel that transmits user plane information.
제2계층의 무선링크제어(Radio Link Control; RLC) 계층은 상위계층으로부터 수신한 데이터를 분할(Segmentation) 및 연결(Concatenation)하여 하위계층이 무선 구간으로 데이터를 전송하기에 적합하도록 데이터 크기를 조절하는 역할을 수행한다. 또한, 각각의 무선 베어러(Radio Bearer; RB)가 요구하는 다양한 QoS를 보장할 수 있도록 하기 위해 TM(Transparent 모드, 투명모드), UM(Un-acknowledged 모드, 무응답모드), 및 AM(Acknowledged 모드, 응답모드)의 세가지 동작 모드를 제공하고 있다. 특히, AM RLC는 신뢰성 있는 데이터 전송을 위해 자동 반복 및 요청(Automatic Repeat and Request; ARQ) 기능을 통한 재전송 기능을 수행하고 있다.The radio link control (RLC) layer of the second layer divides and concatenates the data received from the upper layer to adjust the data size so that the lower layer is suitable for data transmission in the radio section perform the role In addition, in order to ensure various QoS required by each radio bearer (RB), TM (Transparent mode, transparent mode), UM (Un-acknowledged mode, no response mode), and AM (Acknowledged mode, It provides three operation modes of response mode). In particular, the AM RLC performs a retransmission function through an automatic repeat and request (ARQ) function for reliable data transmission.
제2계층의 패킷 데이터 수렴(Packet Data Convergence Protocol; PDCP) 계층은 IPv4나 IPv6와 같은 IP 패킷 전송 시에 대역폭이 작은 무선 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어정보를 담고 있는 IP 패킷 헤더 사이즈를 줄여주는 헤더압축(Header Compression) 기능을 수행한다. 이는 데이터의 헤더(Header) 부분에서 반드시 필요한 정보만을 전송하도록 하여, 무선 구간의 전송효율을 증가시키는 역할을 한다. 또한, LTE 시스템에서는 PDCP 계층이 보안(Security) 기능도 수행하는데, 이는 제 3자의 데이터 감청을 방지하는 암호화(Ciphering)와 제 3자의 데이터 조작을 방지하는 무결성 보호(Integrity protection)로 구성된다.The packet data convergence protocol (PDCP) layer of the second layer is a relatively large IP containing unnecessary control information in order to efficiently transmit an IP packet such as IPv4 or IPv6 in a wireless section with a small bandwidth. It performs a header compression function that reduces the packet header size. This serves to increase the transmission efficiency of the radio section by transmitting only necessary information in the header part of the data. In addition, in the LTE system, the PDCP layer also performs a security function, which is composed of encryption (Ciphering) to prevent data interception by a third party and integrity protection (Integrity protection) to prevent data manipulation by a third party.
제3 계층의 가장 상부에 위치한 무선자원제어(Radio Resource Control; 이하 RRC라 약칭함) 계층은 제어평면에서만 정의되며, 무선 베어러(Radio Bearer; RB라 약칭함)들의 설정(설정), 재설정(Re-설정) 및 해제(Release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. 이때, RB는 단말과 E-UTRAN간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다.The Radio Resource Control (RRC) layer located at the uppermost part of the third layer is defined only in the control plane, and sets (setup), reconfiguration (Re) of radio bearers (Radio Bearer; abbreviated as RB). -Responsible for controlling logical channels, transport channels and physical channels in relation to setting) and release. In this case, the RB means a service provided by the second layer for data transfer between the UE and the E-UTRAN.
상기 단말의 RRC와 무선망의 RRC계층 사이에 RRC 연결(RRC connection)이 있을 경우, 단말은 RRC연결상태(Connected 모드)에 있게 되고, 그렇지 못할 경우 RRC휴지상태(Idle 모드)에 있게 된다.When there is an RRC connection between the RRC of the terminal and the RRC layer of the radio network, the terminal is in the RRC connected state (Connected mode), otherwise it is in the RRC idle state (Idle mode).
이하 단말의 RRC 상태(RRC state)와 RRC 연결 방법에 대해 설명한다. RRC 상태란 단말의 RRC가 E-UTRAN의 RRC와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC_CONNECTED 상태(state), 연결되어 있지 않은 경우는 RRC_IDLE 상태라고 부른다. RRC_CONNECTED 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC_IDLE 상태의 단말은 E-UTRAN이 단말의 존재를 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 TA(Tracking Area) 단위로 핵심망이 관리한다. 즉, RRC_IDLE 상태의 단말은 셀에 비하여 큰 지역 단위로 해당 단말의 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 해당 단말이 RRC_CONNECTED 상태로 천이하여야 한다. 각 TA는 TAI(Tracking area identity)를 통해 구분된다. 단말은 셀에서 방송(broadcasting)되는 정보인 TAC(Tracking area code)를 통해 TAI를 구성할 수 있다.Hereinafter, an RRC state of the UE and an RRC connection method will be described. The RRC state refers to whether or not the RRC of the UE is logically connected to the RRC of the E-UTRAN. If it is connected, it is called an RRC_CONNECTED state, and if it is not connected, it is called an RRC_IDLE state. Since the UE in the RRC_CONNECTED state has an RRC connection, the E-UTRAN can determine the existence of the UE on a cell-by-cell basis, and thus can effectively control the UE. On the other hand, for the UE in the RRC_IDLE state, the E-UTRAN cannot detect the UE's existence, and the core network manages it in a tracking area (TA) unit larger than the cell. That is, the UE in the RRC_IDLE state only detects whether the UE exists in a larger regional unit than the cell, and in order to receive a normal mobile communication service such as voice or data, the UE must transition to the RRC_CONNECTED state. Each TA is identified through a tracking area identity (TAI). The UE may configure the TAI through a tracking area code (TAC), which is information broadcast in a cell.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 연결을 맺고, 핵심망에 단말의 정보를 등록한다. 이 후, 단말은 RRC_IDLE 상태에 머무른다. RRC_IDLE 상태에 머무르는 단말은 필요에 따라서 셀을(재)선택하고, 시스템 정보(System information)나 페이징 정보를 살펴본다. 이를 셀에 캠프 온(Camp on) 한다고 한다. RRC_IDLE 상태에 머물러 있던 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED 상태로 천이한다. RRC_IDLE 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 등의 이유로 상향 데이터 전송이 필요하다거나, 아니면 E-UTRAN으로부터 페이징 신호를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.When the user turns on the terminal for the first time, the terminal searches for an appropriate cell, establishes an RRC connection in the cell, and registers the terminal information in the core network. After this, the UE stays in the RRC_IDLE state. The terminal staying in the RRC_IDLE state selects (re-)selects a cell as needed, and examines system information or paging information. This is called Camping on the cell. When the UE that stayed in the RRC_IDLE state needs to establish an RRC connection, it establishes an RRC connection with the RRC of the E-UTRAN through an RRC connection procedure and transitions to the RRC_CONNECTED state. There are several cases in which the terminal in the RRC_IDLE state needs to establish an RRC connection. For example, when uplink data transmission is required due to a user's call attempt, or when a paging signal is received from the E-UTRAN. and sending a response message to it.
상기 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management)등의 기능을 수행한다.The NAS (Non-Access Stratum) layer performs functions such as session management and mobility management.
아래는 도 13에 도시된 NAS 계층에 대하여 상세히 설명한다.Hereinafter, the NAS layer shown in FIG. 13 will be described in detail.
NAS 계층은 MM(Mobility Management)을 위한 NAS 엔티티와 SM(Session Management)을 위한 NAS 엔티티로 구분된다.The NAS layer is divided into a NAS entity for MM (Mobility Management) and a NAS entity for SM (Session Management).
1) MM을 위한 NAS 엔티티는 일반적인 다음과 같은 기능을 제공한다.1) The NAS entity for MM provides the following general functions.
AMF와 관련된 NAS 절차로서, 다음을 포함한다.NAS procedures related to AMF, including the following.
- 등록 관리 및 접속 관리 절차. AMF는 다음과 같은 기능을 지원한다. - Registration management and access management procedures. AMF supports the following functions.
- UE와 AMF간에 안전한 NAS 신호 연결(무결성 보호, 암호화)- Secure NAS signal connection between UE and AMF (integrity protection, encryption)
2) SM을 위한 NAS 엔티티는 UE와 SMF간에 세션 관리를 수행한다. 2) The NAS entity for SM performs session management between the UE and the SMF.
SM 시그널링 메시지는 UE 및 SMF의 NAS-SM 계층에서 처리, 즉 생성 및 처리된다. SM 시그널링 메시지의 내용은 AMF에 의해 해석되지 않는다.SM signaling messages are processed, ie, generated and processed in the NAS-SM layer of the UE and SMF. The content of the SM signaling message is not interpreted by the AMF.
- SM 시그널링 전송의 경우, - In case of SM signaling transmission,
- MM을 위한 NAS 엔티티는 SM 시그널링의 NAS 전송을 나타내는 보안 헤더, 수신하는 NAS-MM에 대한 추가 정보를 통해 SM 시그널링 메시지를 전달하는 방법과 위치를 유도하는 NAS-MM 메시지를 생성합니다.- The NAS entity for MM creates a NAS-MM message that derives how and where to forward the SM signaling message with a security header indicating the NAS transmission of the SM signaling, additional information about the receiving NAS-MM.
- SM 시그널링 수신시, SM을 위한 NAS 엔티티는 NAS-MM 메시지의 무결성 검사를 수행하고, 추가 정보를 해석하여 SM 시그널링 메시지를 도출할 방법 및 장소를 유도한다.- Upon reception of SM signaling, the NAS entity for SM performs an integrity check of the NAS-MM message, and interprets additional information to derive a method and a place to derive the SM signaling message.
한편, 도 13에서 NAS 계층 아래에 위치하는 RRC 계층, RLC 계층, MAC 계층, PHY 계층을 묶어서 액세스 계층(Access Stratum: AS)이라고 부르기도 한다.Meanwhile, in FIG. 13 , the RRC layer, the RLC layer, the MAC layer, and the PHY layer located below the NAS layer are collectively referred to as an access layer (Access Stratum: AS).
본 명세서의 실시예Examples of the present specification
UE가 정상적인 3GPP network에 연결되었는지를 확인하기 위해서 별도의 RLOS용 security server를 이용한다. 이 서버에는 일반적인 사용자 계정이 존재해야 하며 (User ID와 Password 등), UE는 이 서버로부터 서버 인증서와 URL을안전하게 보관한다 (USIM 과 ME의 안전한 공간에 저장해야 함). A separate RLOS security server is used to check whether the UE is connected to a normal 3GPP network. A general user account must exist on this server (User ID and Password, etc.), and the UE securely stores the server certificate and URL from this server (it must be stored in a secure space in the USIM and ME).
도 14는 본 명세서의 실시예에 다른 UE의 RLOS 서비스를 위한 3GPP Network 확인 절차를 도시한다. 14 illustrates a 3GPP network confirmation procedure for a RLOS service of a UE according to an embodiment of the present specification.
UE가 RLOS 서비스를 받기 위해서 접속한 3GPP network에 대한 확인을 하는 절차는 도 14와 같다.A procedure for confirming the 3GPP network accessed by the UE to receive the RLOS service is shown in FIG. 14 .
RLOS를 위한 attatch 또는 registration 절차를 UE와 3GPP system 간에 수행한다 (3GPP TS 23.401, TS 23.228 등 참고). 옵션으로 RLOS Security Server의 URL을 포함시켜서, 해당 서버 접속 등이 가능한지를 확인할 수도 있다.An attach or registration procedure for RLOS is performed between the UE and the 3GPP system (refer to 3GPP TS 23.401, TS 23.228, etc.). By including the URL of the RLOS Security Server as an option, you can check whether access to the server is possible.
먼저, 1. 단계에서, UE는 Serving network ID와, UE ID (IMSI가 있으면 IMSI, 없거나 설정에 따라서는 IMEI 등)과, RLOS security server 계정의 User ID, Cell ID 및 GPS 등을 통해서 얻은 위치 정보, 현재 날짜와 시각, 그리고 random하게 생성한 nonce를 모두 사전에 전달 받은 RLOS security server의 공개키로 암호화하여 RLOS security server에 전송한다. 공개키 암호화 방식은 RSA, ECIES와 같이 잘 알려진 안전한 알고리즘을 사용할 수 있다. RLOS security server는 공개키에 해당하는 비밀키로 암호화된 데이터를 복호화한다. First, in step 1., the UE has a Serving network ID, a UE ID (IMSI if there is IMSI, IMEI depending on settings or not), User ID of the RLOS security server account, Cell ID, and location information obtained through GPS, etc. , the current date and time, and the randomly generated nonce are all encrypted with the public key of the RLOS security server received in advance and transmitted to the RLOS security server. Public key cryptography can use well-known secure algorithms such as RSA and ECIES. The RLOS security server decrypts the encrypted data with the private key corresponding to the public key.
2. 단계에서, 선택 사항으로 RLOS security server는 단계 2에서 data를 전달해주었던 3GPP network에 UE ID와 함께 위치 조회를 요청한다.In step 2., optionally, the RLOS security server requests a location inquiry along with the UE ID to the 3GPP network that delivered the data in step 2.
3. 단계에서, 선택 사항으로3GPP network는 RLOS를 위해 인증 없이 임시 생성한 가입자 목록에서 UE ID로 검색하여 해당 UE가 어떤 셀이나 지역에 현재 등록되어 있는지를 조회하여 그 정보를 RLOS security server에 회신한다.In step 3., optionally, the 3GPP network retrieves the UE ID from the list of subscribers temporarily created without authentication for RLOS, inquires which cell or region the UE is currently registered in, and returns the information to the RLOS security server. do.
4. 단계에서, RLOS security server는 3GPP network에서 받은 위치 정보와 UE에게 받은 위치 정보가 일치하는지 확인한다. In step 4., the RLOS security server checks whether the location information received from the 3GPP network matches the location information received from the UE.
5. 단계에서, RLOS security server는 2에서 복호화를 성공하였고, 시각이 현재 시각과 정해진 범위 내에 있는 경우에, UE ID, 현재 시각, 그리고 UE로부터 전달받은 nonce의 하위 (low significant bits) 절반을 서명용 비밀키로 서명하여 UE에게 전달한다 (해당 인증서는 UE에게 미리 전달되어 있어야 함). 만일 3~4의 위치 정보 조회를 선택적으로 수행한 경우에는, 위치 정보가 일치하여야 UE에게 서명한 값을 전달하며, 일치하지 않으면, 실패 결과를 전달한다. In step 5, the RLOS security server succeeds in decrypting in step 2, and if the time is within the specified range with the current time, the UE ID, the current time, and the low significant bits half of the nonce received from the UE are used for signing. Signed with the private key and delivered to the UE (the corresponding certificate must have been delivered to the UE in advance). If the location information inquiry of 3 or 4 is selectively performed, the signed value is transmitted to the UE only when the location information matches, and if the location information does not match, a failure result is transmitted.
6. 단계에서, UE는 서명되어 온 값이 단계 2에서 전달했던 값들 및 현재 시각과 일치하는지 그리고 서명이 맞는지 확인하며, 확인이 모두 정상적으로 끝났다면, RLOS를 제공하는 3GPP network이 network ID와 cell ID가 맞는 것임을 알 수 있다. 그렇지 않은 경우에는 공격을 위한 위장된 3GPP network에 연결되었을 수 있으므로, RLOS 연결을 중단한다. In step 6., the UE checks whether the signed value matches the values and the current time delivered in step 2, and whether the signature is correct. If all verification is completed normally, the 3GPP network providing the RLOS has a network ID and a cell ID. It can be seen that is correct. If not, it may be connected to the 3GPP network spoofed for attack, so the RLOS connection is stopped.
도 14의 절차는 일단 3GPP network에 RLOS서비를 위해 연결이 완료된 후에 진행되는 경우를 가정한 것이며, 도 15와 같이 uplink data를 처음으로 사용할 수 있는 시점부터 도 14의 단계 2를 수행하는 것도 가능하다. The procedure of FIG. 14 assumes that the connection to the 3GPP network for the RLOS service is once completed, and as shown in FIG. 15, it is also possible to perform step 2 of FIG. 14 from the time when uplink data can be used for the first time. .
도 15는 RLOS 연결 설정이 완료되기 전에 첫번째 uplink data를 통해서 3GPP network을 확인하는 절차를 수행하는 경우를 도시한다. 15 illustrates a case in which a procedure for confirming a 3GPP network through the first uplink data is performed before RLOS connection establishment is completed.
도 16는 위 도 15의 절차가 IMS 서비스를 통해 수행되는 경우의 예를 도시한다.FIG. 16 shows an example of a case in which the procedure of FIG. 15 is performed through an IMS service.
UE가 IP connectivity를 얻은 이후에 P-SCSF에 등록 절차 중 (단계1) 에 PCRF에 정책 확인 중에 RLOS security server URL의 접속 여부에 대한 허가를 확인하고 (단계2), 여기에 문제가 없을 경우에 I-SCSF를 통하여 외부 망으로 연결하여 RLOS security server를 통해 도 14이나 도 15에서 제시한 절차를 수행한다 (단계3~11).After the UE obtains IP connectivity, during the registration procedure with the P-SCSF (step 1), during the policy check with the PCRF, the permission of accessing the RLOS security server URL is checked (step 2), and if there is no problem here It connects to an external network through I-SCSF and performs the procedure shown in Figs. 14 or 15 through the RLOS security server (steps 3 to 11).
추가로 UE device에만 의존하지 않고 사용자의 확신을 직접 얻기 위해서 사용자의 개인적인 질문들과 그에 대한 답들을 RLOS security server에 저장해둔다. 예를 들면, 질문들은 "첫 입학한 초등학교는 어디입니까?", "두번째로 갔던 해외 여행지는?" 등과 같은 일반적인 개인 신상명세에서는 알 수 없는 정보들이면 더 바람직하다. 질문과 답변 등록은 UE가 아닌 다른 기기에서 (예를 들면 다른 UE나 PC와 같이) 하는 것이 더 바람직하며, RLOS 사용을 할 기기들에는 질문들만 전송하는 방식 등으로 저장하도록 한다. 기기에 질문들은 저장하는 절차는 예를 들면 RLOS security server에서 제공하는 일회성 URL 등을 해당 기기에서 접근하여 다운로드 하는 방식 등으로 가능할 수 있다. In addition, the user's personal questions and answers are stored in the RLOS security server in order to directly obtain the user's confidence without relying solely on the UE device. For example, the questions are "Where did you first enter the elementary school?", "The second overseas travel destination?" It is more preferable if it is information that cannot be known from general personal details such as. It is more preferable to register questions and answers in a device other than the UE (eg, other UE or PC), and store only the questions in a way that transmits only questions to devices that will use RLOS. The procedure for storing questions in the device may be possible, for example, by accessing and downloading the one-time URL provided by the RLOS security server from the device.
도 17은 본 명세서에 따라 UE의 RLOS 서비스를 위한 3GPP Network 확인 및 Security Server를 확인하는 절차를 도시한다. UE가 RLOS 서비스를 받기 위해서 접속한 3GPP network에 대한 확인을 하는 절차는 도 17과 같다.17 illustrates a procedure for confirming the 3GPP Network and Security Server for the RLOS service of the UE according to the present specification. A procedure for confirming a 3GPP network accessed by the UE to receive the RLOS service is shown in FIG. 17 .
1단계에서, RLOS를 위한 attatch 또는 registration 절차를 UE와 3GPP system 간에 수행한다 (3GPP TS 23.401, TS 23.228 등 참고). 옵션으로 RLOS Security Server의 URL을 포함시켜서, 해당 서버 접속 등이 가능한지를 확인할 수도 있다.In step 1, an attach or registration procedure for RLOS is performed between the UE and the 3GPP system (refer to 3GPP TS 23.401, TS 23.228, etc.). By including the URL of the RLOS Security Server as an option, you can check whether access to the server is possible.
2단계에서, UE는 Serving network ID와, UE ID (IMSI가 있으면 IMSI, 없거나 설정에 따라서는 IMEI 등)과, RLOS security server 계정의 User ID, Cell ID 및 GPS 등을 통해서 얻은 위치 정보, 현재 날짜와 시각, 그리고 random하게 생성한 nonce, 그리고 사용자가 선택한 개인 정보 질문을 모두 사전에 전달 받은 RLOS security server의 공개키로 암호화하여 RLOS security server에 전송한다. 공개키 암호화 방식은 RSA, ECIES와 같이 잘 알려진 안전한 알고리즘을 사용할 수 있다. RLOS security server는 공개키에 해당하는 비밀키로 암호화된 데이터를 복호화한다. 개인정보 질문은 질문 자체 문장이 될 수도 있고, 질문들에 대해 사전에 RLOS security server에서 코드 등이 부여된 경우에는 이 코드가 될 수도 있다 (가장 단순하게는 순서를 나타내는 순서 번호가 될 수도 있다). In step 2, the UE has a Serving network ID, a UE ID (IMSI if there is an IMSI, or IMEI depending on the setting), User ID of the RLOS security server account, Cell ID, location information obtained through GPS, etc., current date and time, the randomly generated nonce, and the personal information question selected by the user are all encrypted with the public key of the RLOS security server received in advance and sent to the RLOS security server. Public key cryptography can use well-known secure algorithms such as RSA and ECIES. The RLOS security server decrypts the encrypted data with the private key corresponding to the public key. A personal information question may be a sentence of the question itself, or this code if a code has been previously assigned to the questions by the RLOS security server (simply, it may be a sequence number indicating the sequence) .
도 19은 이러한 개인 설정 질문을 선택하는 절차를 보여준다. 19 shows the procedure for selecting these personalized questions.
또한 도 20는 RLOS security server로 연결하여 3GPP network 확인 및 RLOS security server 확인을 하는 절차를 사용자가 확인하고 필요하면 중단할 수 있는 화면을 보여준다.In addition, FIG. 20 shows a screen in which the user can confirm the procedure for connecting to the RLOS security server to confirm the 3GPP network and the RLOS security server and to stop if necessary.
3단계에서, 선택 사항으로 RLOS security server는 단계 2에서 data를 전달해주었던 3GPP network에 UE ID와 함께 위치 조회를 요청한다.In step 3, optionally, the RLOS security server requests a location inquiry along with the UE ID to the 3GPP network that delivered the data in step 2.
4단계에서, 선택 사항으로3GPP network는 RLOS를 위해 인증 없이 임시 생성한 가입자 목록에서 UE ID로 검색하여 해당 UE가 어떤 셀이나 지역에 현재 등록되어 있는지를 조회하여 그 정보를 RLOS security server에 회신한다.In step 4, optionally, the 3GPP network retrieves the UE ID from the list of subscribers temporarily created for RLOS without authentication, inquires which cell or region the UE is currently registered in, and returns the information to the RLOS security server. .
5단계에서, RLOS security server는 3GPP network에서 받은 위치 정보와 UE에게 받은 위치 정보가 일치하는지 확인한다. In step 5, the RLOS security server checks whether the location information received from the 3GPP network matches the location information received from the UE.
6 단계에서, RLOS security server는 2에서 복호화를 성공하였고, 시각이 현재 시각과 정해진 범위 내에 있는 경우에, UE ID, 현재 시각, 그리고 UE로부터 전달받은 nonce의 하위 (low significant bits) 절반, 그리고 개인 정보 질문에 대한 답을 서명용 비밀키로 서명하여 UE에게 전달한다 (해당 인증서는 UE에게 미리 전달되어 있어야 함). 만일 3~4의 위치 정보 조회를 선택적으로 수행한 경우에는, 위치 정보가 일치하여야 UE에게 서명한 값을 전달하며, 일치하지 않으면, 실패 결과를 전달한다. 또한, 개인 정보에 질문에 대한 답이 유출 및 수집되는 것을 막고자 한다면, 답변을 정해진 잘 알려진 secure hash algorithm을 거쳐서 그 결과만 포함시키는 것도 가능하다.In step 6, the RLOS security server succeeds in decrypting in step 2, and if the time is within a predetermined range with the current time, the UE ID, the current time, and the lower (low significant bits) half of the nonce received from the UE, and the individual The answer to the information question is signed with the private key for signing and delivered to the UE (the corresponding certificate must be delivered to the UE in advance). If the location information inquiry of 3 or 4 is selectively performed, the signed value is transmitted to the UE only when the location information matches, and if the location information does not match, a failure result is transmitted. In addition, if you want to prevent leakage and collection of answers to questions in personal information, it is also possible to include only the results of answers through a well-known secure hash algorithm.
7 단계에서, UE는 서명되어 온 값이 단계 2에서 전달했던 값들 및 현재 시각과 일치하는지 그리고 서명이 맞는지 확인한다. 또한, 선택했던 질문에 대한 답변이 맞는지도 확인한다. In step 7, the UE checks whether the signed value matches the values and the current time transmitted in step 2, and whether the signature is correct. Also, check that the answers to the questions you have chosen are correct.
도 21은 이러한 답변을 사용자가 직접 확인하는 화면을 도시한다. 도 21에 도시된 바와 같이, 답변이 일치하지 않을 경우, UE는 RLOS 서비스 연결을 중단할 수도 있다. 답변이 텍스트로 온 것이 아니라 hash 결과 값으로 온 경우에 대해서는, 사용자가 답변을 입력하여 hash를 하고, 서명되어서 전달 받은 hash 값과 비교를 하여 일치하는지 확인한다. 확인이 모두 정상적으로 끝났다면, RLOS를 제공하는 3GPP network이 network ID와 cell ID가 맞는 것임을 알 수 있다. 21 shows a screen in which the user directly confirms such an answer. As shown in FIG. 21 , if the answers do not match, the UE may stop the RLOS service connection. In case the answer comes as a hash result value instead of as text, the user enters the answer and hashes it, compares it with the signed hash value and checks if it matches. If all checks are completed normally, it can be seen that the network ID and cell ID of the 3GPP network providing RLOS are correct.
도 22는 답변이 코드로 온 경우에 대해서 답변의 사용자 입력을 통해 일치 여부를 확인하는 경우를 보여준다. 그렇지 않은 경우에는 공격을 위한 위장된 3GPP network에 연결되었을 수 있으므로, RLOS 연결을 중단한다. 22 shows a case in which a match is checked through a user input of an answer with respect to a case in which an answer comes as a code. If not, it may be connected to the 3GPP network spoofed for attack, so the RLOS connection is stopped.
도 22에 도시된 바와 같이, UE는 RLOS 서버를 통한 3GPP 네트워크 확인과 보안 서버의 확인 결과(2201, 2202)를 디스플레이를 통해 표시할 수 있다. 도 22의 경우, 보안 질문에 대한 답변이 코드로 전달되어 사용자 입력과 비교하는 UE를 나타낸다. As shown in FIG. 22 , the UE may display 3GPP network verification through the RLOS server and verification results 2201 and 2202 of the security server through the display. In the case of FIG. 22 , the answer to the security question is passed to the code to indicate the UE to compare with the user input.
도 17의 절차에 사용자가 미리 설정한 질문에 대한 답변을 확인함으로써, UE 기기에 확인 절차를 완전히 의존하지 않고, 최소한 RLOS security server에 연결되었는지를, 3GPP network 확인과 더불어 추가적으로 사용자가 직접 확인할 수 있다. By checking the answers to the questions set in advance by the user in the procedure of FIG. 17, the user can directly check whether at least the connection to the RLOS security server is connected to the RLOS security server, in addition to checking the 3GPP network, without completely relying on the verification procedure on the UE device. .
다른 방법으로, RLOS security server와의 공개키 구조를 유지하지 않고도 3GPP network 확인을 하는 절차는 도 18와 같다. As another method, a procedure for 3GPP network verification without maintaining a public key structure with the RLOS security server is shown in FIG. 18 .
도 18은 본 명세서에 따라 공개키 구조 없이 RLOS 서비스를 위한 3GPP network을 확인하는 절차를 도시한다. 18 illustrates a procedure for confirming a 3GPP network for a RLOS service without a public key structure according to the present specification.
도 18에 따르면, 공개키 대신에 사용자가 RLOS security server가 등록한 패스워드의 일치 여부를 사용자가 직접 확인하고, 서버가 사용자 대신 3GPP network을 확인할 수 있다. 그 절차는 구체적으로 다음과 같다.According to FIG. 18 , instead of the public key, the user directly checks whether the password registered by the RLOS security server matches, and the server can check the 3GPP network instead of the user. The procedure is specifically as follows.
1단계에서, RLOS를 위한 attatch 또는 registration 절차를 UE와 3GPP system 간에 수행한다 (3GPP TS 23.401, TS 23.228 등 참고). 옵션으로 RLOS Security Server의 URL을 포함시켜서, 해당 서버 접속 등이 가능한지를 확인할 수도 있다.In step 1, an attach or registration procedure for RLOS is performed between the UE and the 3GPP system (refer to 3GPP TS 23.401, TS 23.228, etc.). By including the URL of the RLOS Security Server as an option, you can check whether access to the server is possible.
2단계에서, UE는 Serving network ID와, UE ID (IMSI가 있으면 IMSI, 없거나 설정에 따라서는 IMEI 등)과, RLOS security server 계정의 User ID, Cell ID 및 GPS 등을 통해서 얻은 위치 정보, 현재 날짜와 시각, 그리고 random하게 생성한 nonce1를 RLOS security server에 전달한다. 전달할 때에, 이 모든 값을 secure hash algorithm을 거쳐나 나온 값도 함께 전달한다. 추가로 공개키 없는 상태에서의 RLOS security server의 사용자 확인을 위해서 사용자는 RLOS security server용 사전 등록되었던 패스워드를 입력하고, nonce1 과 함께 hash를 거친 결과 값을 함께 전달한다.In step 2, the UE has a Serving network ID, a UE ID (IMSI if there is an IMSI, or IMEI depending on the setting), User ID of the RLOS security server account, Cell ID, location information obtained through GPS, etc., current date and time, and randomly generated nonce1 are delivered to the RLOS security server. When passing, all these values are passed through the secure hash algorithm and the values are also transmitted. In addition, for user verification of the RLOS security server in the absence of a public key, the user enters the pre-registered password for the RLOS security server, and passes the hash result value along with nonce1.
3단계에서, 선택 사항으로 RLOS security server는 단계 2에서 data를 전달해주었던 3GPP network에 UE ID와 함께 위치 조회를 요청한다.In step 3, optionally, the RLOS security server requests a location inquiry along with the UE ID to the 3GPP network that delivered the data in step 2.
4단계에서, 선택 사항으로3GPP network는 RLOS를 위해 인증 없이 임시 생성한 가입자 목록에서 UE ID로 검색하여 해당 UE가 어떤 셀이나 지역에 현재 등록되어 있는지를 조회하여 그 정보를 RLOS security server에 회신한다.In step 4, optionally, the 3GPP network retrieves the UE ID from the list of subscribers temporarily created for RLOS without authentication, inquires which cell or region the UE is currently registered in, and returns the information to the RLOS security server. .
5단계에서, RLOS security server는 3GPP network에서 받은 위치 정보와 UE에게 받은 위치 정보가 일치하는지 확인한다. In step 5, the RLOS security server checks whether the location information received from the 3GPP network matches the location information received from the UE.
6단계에서, RLOS security server는 2에서 전달 받은 시각이 현재 시각과 정해진 범위 내에 있는 경우에, 그리고 선택적으로 단계 3~4에서 얻은 위치 정보가 2에서 전달 받은 값과 일치하거나 유효한 범위 내에 있는 경우에, 미리 RLOS security server에 사용자가 패스워드 등록 시에 저장하고 있던 패스워드의 저장 형태인 랜덤한 nonce2와 합쳐서 hash를 적용한 값에 대해서 2에서 전달 받은 nonce1 을 추가하여 hash를 한다. 그 결과 값과 nonce1, 시각을 서명하여 UE에게 전달한다. 추가로 nonce 2와 새로 랜덤하게 생성한 nonce3를 서명하여 전달한다.In step 6, when the time received in step 2 is within a predetermined range with the current time, and optionally, when the location information obtained in steps 3 to 4 matches the value delivered in step 2 or is within a valid range , hash by adding nonce1 received in step 2 to the value to which hash is applied by combining with random nonce2, which is the storage type of password stored by the user when registering password in the RLOS security server in advance. As a result, the value, nonce1, and time are signed and delivered to the UE. In addition, nonce 2 and newly randomly generated nonce3 are signed and delivered.
7단계에서, UE 전달 받은 nonce2를 패스워드와 함께 hash를 적용한 값과 함께 2에서 전달했던 nonce1, 시각과 모두 함께 다시 hash를 적용하여 그 결과가 전달 받은 값과 일치하는지 확인한다. 일치한다면, RLOS security server는 등록했던 패스워드를 갖고 있으며, 3GPP network를 확인한 것으로 간주할 수 있다.In step 7, the hash is applied again to the nonce2 received by the UE, along with the value to which the hash is applied along with the password, and the nonce1 and time transmitted in 2, and check whether the result matches the received value. If they match, the RLOS security server has the registered password, and it can be regarded as confirming the 3GPP network.
도 23은 이러한 패스워드 일치에 대한 결과를 사용자가 확인하는 화면을 보여준다.23 shows a screen in which the user confirms the result of the password matching.
도 23에 도시된 바와 같이, UE는 RLOS 보안 서버를 확인하기 위하여, 패스워드의 사용자 입력을 수신하는 화면(2301)을 표시하고, 서버의 패스워드 저장 값의 일치 여부 확인 결과(2302)를 표시할 수 있다. 23 , the UE may display a screen 2301 for receiving a user input of a password to confirm the RLOS security server, and display a result 2302 of checking whether the server's password storage value matches. there is.
8단계에서, (옵션) 단계 7에서 일치하는 것으로 정상 값으로 확인된 경우, UE는 패스워드에 대해서 단계 7에서 전달받은 nonce2와 함께 hash를 적용하고, 이에 대해서 다시 nonce3와 함께 hash하여 RLOS security server에 전달한다.In step 8, (optional) if it is confirmed as a normal value to match in step 7, the UE applies the hash with the nonce2 received in step 7 to the password, and hashes it with the nonce3 again to the RLOS security server transmit
9단계에서, (옵션) RLOS security server는 저장하고 있는 패스워드 및 nonce2의 hash에 대해서 nonce3를 합쳐서 hash를 하고, 그 결과가 단계 8에서 UE로부터 전달받은 값과 일치하는지 확인하고, UE가 맞는지를 확인하여 절차를 마친다.In step 9, (optional) the RLOS security server hashes the stored password and the hash of nonce2 by combining nonce3, and checks whether the result matches the value received from the UE in step 8, and checks whether the UE is correct. to complete the procedure.
도 18의 단계 중 8~9 단계는 RLOS security server가 UE가 사전 등록된 password를 사용자로부터 정확히 입력 받았는지를 확인받는 추가적인 조치로, 이 값이 불일치하면 3GPP network에 해당 UE에 보안상 문제가 생겼음을 알리고, 해당 user에 대해서도 패스워드 도용 가능성에 대한 조치를 취한다. Steps 8 to 9 of FIG. 18 are additional measures for the RLOS security server to check whether the UE has correctly entered the pre-registered password from the user. If these values do not match, the 3GPP network has a security problem with the UE. and take measures against possible password theft for the user.
도 19는 본 명세서에 따라 RLOS 보안 질문 선택을 질의하는 화면을 도시한다. 19 illustrates a screen for querying RLOS security question selection in accordance with this specification.
도 19에 도시된 바와 같이, UE는 디스플레이(1901)를 통해 "RLOS 보안 질문을 선택하세요." 및 복수의 질문들을 버튼을 표시할 수 있다. As shown in FIG. 19 , the UE via display 1901 "Choose a RLOS security question." And a plurality of questions may be displayed as a button.
도 20은 본 명세서에 따라 RLOS 보안 서버를 연결하는 과정을 보여주는 화면을 도시한다. 20 shows a screen showing a process of connecting a RLOS security server according to the present specification.
도 20에 도시된 바와 같이, UE는 디스플레이(2001)를 통해 "RLOS 보안 서버로 연결 중입니다, URL: https://a.b.c." 및 "취소" 버튼을 표시할 수 있다. As shown in FIG. 20 , the UE via the display 2001 "Connecting to the RLOS security server, URL: https://a.b.c." and a "Cancel" button.
도 24은 본 명세서의 실시예에 따라 UE가 사용자의 선택 입력에 기반하여 네트워크의 진위 여부를 표시하는 방법을 나타낸 흐름도이다. 24 is a flowchart illustrating a method for a UE to indicate whether a network is authentic or not based on a user's selection input according to an embodiment of the present specification.
먼저, UE는 네트워크에 RLOS 연결 절차를 수행할 수 있다(2401).First, the UE may perform a RLOS connection procedure to the network (2401).
이어서, UE는 UE의 사용자 계정과 관련된 정보가 저장된 서버로 UE와 네트워크 사이의 연결 상태 정보를 포함하는 인증 요청을 전송할 수 있다(S2403).Subsequently, the UE may transmit an authentication request including connection state information between the UE and the network to a server in which information related to a user account of the UE is stored ( S2403 ).
그 다음, UE는 서버에 의해 연결 상태 정보에 기반하여 생성된 네트워크에 대한 인증 정보를 포함하는 인증 응답을 서버로부터 수신할 수 있다(S2405).Then, the UE may receive an authentication response including authentication information for the network generated by the server based on the connection state information from the server (S2405).
이어서, UE는 RLOS 보안 질문을 디스플레이를 통해 표시하고, 사용자로부터 디스플레이를 통해 RLOS 보안 질문에 대한 답변 획득할 수 있다(S2407).Subsequently, the UE may display the RLOS security question through the display, and obtain an answer to the RLOS security question from the user through the display (S2407).
그 다음, UE는 답변 및 인증 정보에 기반하여 네트워크의 진위 여부를 판단할 수 있다(S2409). 여기서, 인증 정보는 네트워크로부터 획득한 UE의 제1 위치 정보 및 연결 상태 정보에 포함된 UE의 제2 위치 정보를 비교한 결과에 기반하여 생성된다.Then, the UE may determine the authenticity of the network based on the answer and authentication information (S2409). Here, the authentication information is generated based on a result of comparing the first location information of the UE obtained from the network and the second location information of the UE included in the connection state information.
여기서, 본 명세서의 무선 기기(100)에서 구현되는 무선 통신 기술은 LTE, NR 및 6G뿐만 아니라 저전력 통신을 위한 Narrowband Internet of Things를 포함할 수 있다. 이때, 예를 들어 NB-IoT 기술은 LPWAN(Low Power Wide Area Network) 기술의 일례일 수 있고, LTE Cat NB1 및/또는 LTE Cat NB2 등의 규격으로 구현될 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기(100)에서 구현되는 무선 통신 기술은 LTE-M 기술을 기반으로 통신을 수행할 수 있다. 이때, 일 예로, LTE-M 기술은 LPWAN 기술의 일례일 수 있고, eMTC(enhanced Machine Type Communication) 등의 다양한 명칭으로 불릴 수 있다. 예를 들어, LTE-M 기술은 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL(non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, 및/또는 7) LTE M 등의 다양한 규격 중 적어도 어느 하나로 구현될 수 있으며 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기(100)에서 구현되는 무선 통신 기술은 저전력 통신을 고려한 지그비(ZigBee), 블루투스(Bluetooth) 및 저전력 광역 통신망(Low Power Wide Area Network, LPWAN) 중 적어도 어느 하나를 포함할 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 일 예로 ZigBee 기술은 IEEE 802.15.4 등의 다양한 규격을 기반으로 소형/저-파워 디지털 통신에 관련된 PAN(personal area networks)을 생성할 수 있으며, 다양한 명칭으로 불릴 수 있다.Here, the wireless communication technology implemented in the wireless device 100 of the present specification may include a narrowband Internet of Things for low-power communication as well as LTE, NR, and 6G. At this time, for example, NB-IoT technology may be an example of LPWAN (Low Power Wide Area Network) technology, and may be implemented in standards such as LTE Cat NB1 and/or LTE Cat NB2, and is limited to the above-mentioned names. not. Additionally or alternatively, the wireless communication technology implemented in the wireless device 100 of the present specification may perform communication based on LTE-M technology. In this case, as an example, the LTE-M technology may be an example of an LPWAN technology, and may be called various names such as enhanced machine type communication (eMTC). For example, LTE-M technology is 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL (non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, and/or 7) may be implemented in at least one of various standards such as LTE M, and is not limited to the above-described name. Additionally or alternatively, the wireless communication technology implemented in the wireless device 100 of the present specification is at least one of ZigBee, Bluetooth, and Low Power Wide Area Network (LPWAN) in consideration of low power communication. may include, and is not limited to the above-mentioned names. For example, the ZigBee technology can create PAN (personal area networks) related to small/low-power digital communication based on various standards such as IEEE 802.15.4, and can be called by various names.
전술한 본 명세서는, 프로그램이 기록된 매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 매체는, 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 매체의 예로는, HDD(Hard Disk Drive), SSD(Solid State Disk), SDD(Silicon Disk Drive), ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 장치 등이 있으며, 또한 캐리어 웨이브(예를 들어, 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 명세서의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 명세서의 등가적 범위 내에서의 모든 변경은 본 명세서의 범위에 포함된다.The above-described specification can be implemented as computer-readable code on a medium in which a program is recorded. The computer-readable medium includes all types of recording devices in which data readable by a computer system is stored. Examples of computer-readable media include Hard Disk Drive (HDD), Solid State Disk (SSD), Silicon Disk Drive (SDD), ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage device, etc. There is also a carrier wave (eg, transmission over the Internet) that is implemented in the form of. Accordingly, the above detailed description should not be construed as restrictive in all respects but as exemplary. The scope of this specification should be determined by a reasonable interpretation of the appended claims, and all modifications within the scope of equivalents of this specification are included in the scope of this specification.

Claims (9)

  1. 무선 통신 시스템에서 UE(User Equipment)가 사용자 입력에 기반하여 네트워크(Network)의 진위 여부를 판단하는 방법에 있어서,In a method for a UE (User Equipment) to determine the authenticity of a network based on a user input in a wireless communication system, the method comprising:
    상기 네트워크에 RLOS(Restricted Local Operator Services) 연결 절차를 수행하는 단계;performing a Restricted Local Operator Services (RLOS) connection procedure to the network;
    상기 UE의 사용자 계정과 관련된 정보가 저장된 서버로 상기 UE와 상기 네트워크 사이의 연결 상태 정보를 포함하는 인증 요청을 전송하는 단계;transmitting an authentication request including connection state information between the UE and the network to a server in which information related to a user account of the UE is stored;
    상기 서버에 의해 상기 연결 상태 정보에 기반하여 생성된 상기 네트워크에 대한 인증 정보를 포함하는 인증 응답을 상기 서버로부터 수신하는 단계; receiving an authentication response including authentication information for the network generated by the server based on the connection state information from the server;
    RLOS 보안 질문을 디스플레이를 통해 표시하는 단계;presenting the RLOS security question through a display;
    사용자로부터 상기 디스플레이를 통해 상기 RLOS 보안 질문에 대한 답변을 획득하는 단계;obtaining an answer to the RLOS security question from a user via the display;
    상기 답변 및 상기 인증 정보에 기반하여 상기 네트워크의 진위 여부를 판단하는 단계;를 포함하는, Determining the authenticity of the network based on the answer and the authentication information; Containing,
    방법.Way.
  2. 제1항에 있어서,The method of claim 1,
    상기 인증 정보는, The authentication information is
    상기 네트워크로부터 획득한 상기 UE의 제1 위치 정보 및 상기 연결 상태 정보에 포함된 상기 UE의 제2 위치 정보를 비교한 결과에 기반하여 생성되는 것을 특징으로 하는, Characterized in that it is generated based on a result of comparing the first location information of the UE obtained from the network and the second location information of the UE included in the connection state information,
    방법.Way.
  3. 제1항 또는 제2항에 있어서, 3. The method of claim 1 or 2,
    상기 연결 상태 정보는, The connection state information is
    상기 네트워크의 ID, 상기 UE의 ID, 상기 사용자 계정 ID, 상기 UE의 위치 정보, 상기 연결 절차가 수행된 시간 정보, 제1 난수 정보 중 적어도 하나를 포함하는 것을 특징으로 하는, characterized by including at least one of the network ID, the UE ID, the user account ID, location information of the UE, time information at which the connection procedure was performed, and first random number information,
    방법.Way.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,4. The method according to any one of claims 1 to 3,
    상기 인증 요청은 상기 서버로부터 미리 획득한 공개키로 상기 UE에 의해 암호화되며,The authentication request is encrypted by the UE with a public key obtained in advance from the server,
    상기 인증 응답은 상기 공개키에 대응되는 비밀키로 상기 서버에 의해 복호화되는 것을 특징으로 하는,The authentication response is decrypted by the server with a private key corresponding to the public key,
    방법.Way.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,5. The method according to any one of claims 1 to 4,
    상기 인증 요청은 미리 설정된 질문을 포함하며, The authentication request includes a preset question,
    상기 진위 여부를 판단하는 단계는, The step of determining the authenticity is,
    상기 인증 응답에 포함된 답변이 상기 미리 설정된 질문에 매칭되는지 여부에 기반하여 상기 네트워크에 대한 진위 여부를 판단하는 것을 특징으로 하는, characterized in that the authenticity of the network is determined based on whether the answer included in the authentication response matches the preset question,
    방법.Way.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,6. The method according to any one of claims 1 to 5,
    상기 답변과 미리 저장된 인증 답변을 비교한 결과에 기반하여 상기 네트워크의 진위 여부를 판단하는 것을 특징으로 하는, characterized in that it is determined whether the network is authentic or not based on a result of comparing the answer with the previously stored authentication answer,
    방법.Way.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,7. The method according to any one of claims 1 to 6,
    상기 인증 답변을 상기 디스플레이 상에 표시하는 단계를 더 포함하는 것을 특징으로 하는, It characterized in that it further comprises the step of displaying the authentication answer on the display,
    방법.Way.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,8. The method according to any one of claims 1 to 7,
    상기 디스플레이를 통해 RLOS 보안 서버 연결 과정을 나타내는 화면을 표시하는 단계를 더 포함하는 것을 특징으로 하는, Further comprising the step of displaying a screen indicating the RLOS security server connection process through the display,
    방법.Way.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서,9. The method according to any one of claims 1 to 8,
    상기 디스플레이를 통해 상기 RLOS 보안 질문에 대한 답변을 표시하는 단계를 더 포함하는 것을 특징으로 하는, and displaying an answer to the RLOS security question via the display.
    방법.Way.
PCT/KR2020/013605 2020-10-07 2020-10-07 Method by which terminal displays authenticity of network on basis of selection input of user in wireless communication system, and apparatus therefor WO2022075498A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/013605 WO2022075498A1 (en) 2020-10-07 2020-10-07 Method by which terminal displays authenticity of network on basis of selection input of user in wireless communication system, and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/013605 WO2022075498A1 (en) 2020-10-07 2020-10-07 Method by which terminal displays authenticity of network on basis of selection input of user in wireless communication system, and apparatus therefor

Publications (1)

Publication Number Publication Date
WO2022075498A1 true WO2022075498A1 (en) 2022-04-14

Family

ID=81126564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013605 WO2022075498A1 (en) 2020-10-07 2020-10-07 Method by which terminal displays authenticity of network on basis of selection input of user in wireless communication system, and apparatus therefor

Country Status (1)

Country Link
WO (1) WO2022075498A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210276584A1 (en) * 2020-03-09 2021-09-09 Panasonic Intellectual Property Management Co., Ltd. In-vehicle device to connect to information terminal and in-vehicle system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060030635A (en) * 2004-10-06 2006-04-11 삼성전자주식회사 Method for managing an individual identify information card of subcriber identify module inserted mobile phone
KR101357669B1 (en) * 2011-09-22 2014-02-03 삼성에스디에스 주식회사 System and method for connecting network based on location
KR101879910B1 (en) * 2012-04-16 2018-07-18 지티이 코포레이션 Single-card multi-mode multi-operator authentication method and device
WO2020150701A1 (en) * 2019-01-18 2020-07-23 Apple Inc. Evolved packet core (epc) solution for restricted local operator services (rlos) access using device authentication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060030635A (en) * 2004-10-06 2006-04-11 삼성전자주식회사 Method for managing an individual identify information card of subcriber identify module inserted mobile phone
KR101357669B1 (en) * 2011-09-22 2014-02-03 삼성에스디에스 주식회사 System and method for connecting network based on location
KR101879910B1 (en) * 2012-04-16 2018-07-18 지티이 코포레이션 Single-card multi-mode multi-operator authentication method and device
WO2020150701A1 (en) * 2019-01-18 2020-07-23 Apple Inc. Evolved packet core (epc) solution for restricted local operator services (rlos) access using device authentication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Security Aspects; Study on Security Aspects of Provision of Access to Restricted Local Operator Services by Unauthenticated UEs (PARLOS) (Release 16)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 33.815, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG3, no. V16.0.1, 30 October 2019 (2019-10-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 17, XP051840511 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210276584A1 (en) * 2020-03-09 2021-09-09 Panasonic Intellectual Property Management Co., Ltd. In-vehicle device to connect to information terminal and in-vehicle system
US11765592B2 (en) * 2020-03-09 2023-09-19 Panasonic Intellectual Property Management Co., Ltd. In-vehicle device to connect to information terminal and in-vehicle system

Similar Documents

Publication Publication Date Title
WO2020141964A1 (en) Method for allowing registration to network in wireless communication system, and device therefor
WO2020141965A1 (en) Method and device for performing registration in network in wireless communication system
WO2020080913A1 (en) Method supporting separate data transmission for independent network slices in wireless communication system
WO2020111912A1 (en) Method for transmitting and receiving paging signal in wireless communication system and apparatus therefor
WO2020046094A1 (en) Method and apparatus for selecting public land mobile network (plmn) in wireless communication system
WO2020067790A1 (en) Method and apparatus for determining whether to perform transmission on a random access or a configured grant in wireless communication system
WO2020204536A1 (en) Method for terminal to connect to network in wireless communication system
WO2020141956A1 (en) Method for selecting network in wireless communication system
WO2020218764A1 (en) Method for performing registration with network in wireless communication system, and apparatus therefor
WO2020204309A1 (en) Communication method for handling network error
WO2021172964A1 (en) Method and apparatus for failure recovery in wireless communication system
WO2020138985A1 (en) Method for providing communication service in wireless communication system
WO2020046093A1 (en) Method and device for selecting public land mobile network (plmn) in wireless communication system
WO2020213817A1 (en) Method for displaying screen after connecting to another plmn to handle network failure
WO2020213816A1 (en) Method for managing network failures
WO2020204310A1 (en) Method for dealing with network failure
WO2020022716A1 (en) Method and device for controlling data transmission state in wireless communication system
WO2020076144A1 (en) Method for configuring, to network, capability of terminal supporting multiple wireless access systems in wireless communication system, and device for same
WO2020060007A1 (en) Method and wireless device for handling pdu session in 5g mobile communication
WO2021162507A1 (en) Method and apparatus for transmitting response message in wireless communication system
WO2020091281A1 (en) Method and apparatus for performing proxy authentication for access permission by terminal in wireless communication system
WO2021091295A1 (en) Cancelling sl csi reporting in a wireless communication system
WO2021194134A1 (en) Method and apparatus for conditional mobility failure handling in wireless communication system
WO2020171312A1 (en) Method for requesting always-on pdu session in 5gs
WO2021091153A1 (en) Method and device for controlling configuration related to sidelink communication in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956813

Country of ref document: EP

Kind code of ref document: A1