WO2022075429A1 - Plant demolition management device, plant demolition management method, and plant demolition management program - Google Patents

Plant demolition management device, plant demolition management method, and plant demolition management program Download PDF

Info

Publication number
WO2022075429A1
WO2022075429A1 PCT/JP2021/037234 JP2021037234W WO2022075429A1 WO 2022075429 A1 WO2022075429 A1 WO 2022075429A1 JP 2021037234 W JP2021037234 W JP 2021037234W WO 2022075429 A1 WO2022075429 A1 WO 2022075429A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste
plant
dismantling
information
disposal
Prior art date
Application number
PCT/JP2021/037234
Other languages
French (fr)
Japanese (ja)
Inventor
剛 伊藤
透 川嵜
慎太郎 柳澤
高史 大平
洋 関
Original Assignee
日立Geニュークリア・エナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Geニュークリア・エナジー株式会社 filed Critical 日立Geニュークリア・エナジー株式会社
Publication of WO2022075429A1 publication Critical patent/WO2022075429A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/167Measuring radioactive content of objects, e.g. contamination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present invention relates to a plant dismantling management device, a plant dismantling management method, and a plant dismantling management program.
  • Radioactive waste is disposed of in a safe place so as not to affect the human environment.
  • Non-radioactive waste may be disposed of as general industrial waste or reused. In any case, it is important to manage waste accurately and efficiently during the period from decommissioning decision to disposal and reuse.
  • the dismantling and packing method of Patent Document 1 creates a plan to dismantle the waste and store it in a container on the premise that the waste such as pipes and equipment discharged from the nuclear power plant is transported to the disposal facility.
  • the radioactive solid waste treatment method of Patent Document 2 the radioactive solid waste is divided into a plurality of parts having different disposal methods based on the result of calculating the radiation amount of each part of the radioactive solid waste.
  • the radiation amount of the waste is specified before dismantling, a barcode or the like is attached to each waste after dismantling, and the information stored in the barcode or the like is used. It is managed by a computer until the final disposal.
  • the waste number, the source, the radiation dose, the storage record in the container, the radiation dose on the surface of the container, etc. are stored in the barcode or the like.
  • Patent Document 1 focuses on how to dismantle waste and store it in a container based on constraints such as container size and worker exposure dose, and waste by stakeholders. No mention is made of information sharing.
  • Patent Document 2 focuses on adjusting the radiation dose of the resulting solid (ingot), and again does not mention the sharing of waste information by stakeholders.
  • Patent Document 3 is conscious of waste traceability for the time being, but does not specifically mention that stakeholders share waste information. Therefore, the purpose is to efficiently share information among stakeholders of waste such as nuclear power plants.
  • the plant dismantling management device of the present invention plans a process from the waste discharged from the plant to reuse or final disposal based on the design information of the waste discharged from the plant and the radiation amount of the waste. It is characterized by including a disposal plan creation unit and a history providing unit that transmits waste history information to the terminal device of the interested party in response to a request from an interested party in the process. Other means will be described in the embodiment for carrying out the invention.
  • the present embodiment is an example of reusing or final disposal of waste generated by the decommissioning of a nuclear power plant.
  • the present invention is applicable to both boiling water reactors and pressure water reactors, and is also applicable to general plants that discharge radioactive waste.
  • FIG. 1 is a diagram illustrating a method for reusing and disposing of radioactive waste.
  • Spent fuel is generated during the normal operation of a nuclear power plant.
  • Uranium and plutonium are extracted from the spent fuel. These can be reused as fuel itself (row 51a).
  • the waste liquid remaining after extraction is vitrified as "high-level radioactive waste", stored in a metal container, and finally "geological disposal”.
  • Geological disposal is to bury it in rock at a depth of 300 m or deeper (row 51b).
  • the spent fuel stored in the nuclear power plant will be reused and finally disposed of in the same way as during operation.
  • various facilities reactors, generators, condensers, pipes, etc.
  • These facilities include "low level radiation waste” and other non-radiating waste (rows 52a-52e).
  • the object of the present invention is mainly these facilities.
  • low-level radioactive waste those with a high radiation dose (for example, control rods with a small distance from the core) are disassembled, stored in a container, and then "disposed at a medium depth".
  • Medium-depth disposal means burying in the ground 70 m or deeper underground (row 52a).
  • Low-level radioactive waste with a medium radiation dose eg, pumps with a medium distance from the core
  • pit disposal is to bury in a concrete pit installed in shallow ground (row 52b).
  • low-level radioactive waste those with a low radiation dose (for example, concrete waste that is far from the core) are stored in a container and then "trenched". Trench disposal is to bury an artificial structure such as a pit in shallow ground without installing it (row 52c). Low-level radioactive waste whose radiation dose is so small that it does not affect human health (called “clearance waste”) is specifically considered to be general industrial waste. Therefore, the clearance material can be finally disposed of as industrial waste and can be reused (row 52d).
  • waste that does not emit radiation is reused or finally disposed of as industrial waste (line 52e). It is estimated that more than 90% of the waste from the decommissioning of nuclear power plants is waste that does not emit radiation.
  • FIG. 2 is a diagram illustrating the flow of waste.
  • FIG. 2 shows an example in which the pipe 68 is reused or finally disposed of as waste generated after the decommissioning is decided.
  • the nuclear power plant 62 (nuclear power generation company) measures the radiation dose (unit is, for example, "mSv / hour") of the pipe 68. This measurement may be an actual measurement using a measuring instrument, or may be an estimation (logical calculation) based on design information created by the manufacturer 61. After that, the measurement will be repeated in various processes.
  • the pipe 68 is, for example, a “system” composed of many parts as shown in FIG. 3, and the radiation dose is different for each part. Therefore, the measurement here targets each part of the pipe.
  • the nuclear power plant 62 decontaminates the pipe 68 as necessary based on the measurement results. Decontamination is the work of removing the radiation source from the waste (details below). After that, decontamination can be repeated in any step.
  • the nuclear power plant 62 dismantles the pipe 68. Dismantling is the division of waste into smaller units (parts) to facilitate decontamination, transport, reuse, final disposal, etc., or to disperse radiation sources. After that, dismantling can be repeated in any step. After that, the disassembled pipe 68 is transported to the processing facility 63.
  • the portion of the pipe 68 generated as a result of dismantling is also referred to as “pipe 68”.
  • the treatment facility 63 (treatment facility operator) further dismantles the pipe 68.
  • low-level radioactive waste is transported to the temporary storage facility 65.
  • the pipe 68 exiting from the processing facility 63 maintains the outer shape of the pipe, but may be finely crushed. Clearances are transported to other facilities for disposal for reuse. Examples of reuse are benches in nuclear power plants, containers for storing low-level radioactive waste, and so on.
  • the "reuse facility" is these users.
  • the temporary storage facility 65 (temporary storage facility operator of waste) stores the dismantled pipes 68 transported from many treatment facilities in a predetermined container 71, and temporarily stores them in a designated place. Wait for the final disposal facility 66 to become available.
  • the final disposal facility 66 (the final disposal facility operator of waste) receives the container 71 from the temporary storage facility 65 and burys it in the ground.
  • the treatment facility and temporary storage facility may be located in close proximity to the nuclear power plant.
  • FIG. 3 is a diagram illustrating a system and a radiation source.
  • the system 49 has a pump 41, valves 42 and 43, and individual pipes 44-47. These form an integrated set of equipment, for example, transporting water from the condenser to the reactor pressure vessel.
  • system 49 may be slightly contaminated with radiation. Even if this is not the case, the radioactive substance 48 may be attached to the inside or the outside of some of the pipes 45.
  • the radioactive material that is the source of radiation in this way is also called a "radioactive source”.
  • Chemical decontamination is, for example, a method in which a decontamination device is directly connected to the system 49 and a drug (reducing agent or the like) is flowed.
  • the system 49 is disassembled, the pipe 45 is removed, and the pipe 45 or the pipe 45 is further halved. It is possible to perform mechanical decontamination on the disassembled material. Mechanical decontamination is, for example, a method of spraying an abrasive or rubbing with a brush on a portion of a pipe.
  • the robot or the like is made to chemically decontaminate the system 49, and then the pipe 45 is removed, and the pipe 45 is mechanically removed. It can also be dyed.
  • FIG. 4 is a diagram illustrating a configuration and the like of the plant dismantling management device 1.
  • the plant dismantling management device 1 is a general computer and includes a central control device 11, an input device 12 such as a mouse and a keyboard, an output device 13 such as a display, a main storage device 14, an auxiliary storage device 15, and a communication device 16. .. These are interconnected by a bus.
  • the auxiliary storage device 15 stores design information 31, decontamination information 32, dismantling information 33, measurement information 34, disposal plan information 35, and waste history information 36 (all of which are described in detail later).
  • the disposal plan creation unit 21, the information collection unit 22, and the history provision unit 23 in the main storage device 14 are programs.
  • the central control device 11 reads these programs from the auxiliary storage device 15 and loads them into the main storage device 14, thereby realizing the functions of each program (details will be described later).
  • the auxiliary storage device 15 may have a configuration independent of the plant dismantling management device 1.
  • the plant dismantling management device 1 can communicate with the following devices via the network 8.
  • FIG. 5 is a diagram showing an example of design information 31.
  • the design information 31 is created for each product shipped from the manufacturer, for example. In the design information 31, the following information is stored in association with each other.
  • the product ID (column 101) is an identifier that uniquely identifies a product that will become waste in the future.
  • the manufacturing location (column 102) is the name of the manufacturer and factory from which the product was manufactured.
  • the product type (column 103) is a wording expressing the product type by its function.
  • the “condenser secondary piping unit” here corresponds to, for example, the system 49 in FIG.
  • the shipping date (column 104) is the date when the product was shipped.
  • the application is a type of liquid flowing in the pipe.
  • the material (column 106) is a material constituting the product.
  • the inner diameter (column 107) is the inner diameter of the pipe.
  • "#" indicates a different numerical value abbreviated (the same applies hereinafter).
  • the inner diameter of the pipe may be stored for each pipe constituting the system (the same applies to the outer diameter).
  • the outer diameter (column 108) is the outer diameter of the pipe.
  • the length (column 109) is the length of the system.
  • the flow rate (column 110) is the maximum value of the volume of liquid flowing through the system per unit time.
  • the design drawing (column 111) is a design drawing created by the manufacturer.
  • the design drawing may have a type of three-dimensional CAD data or point cloud data.
  • the design drawing is a table showing the radiation dose expected when used under normal conditions for each part, and a graph showing the attenuation characteristics of the radiation dose after the operation is stopped for each part. , Includes graphs showing product performance, etc.
  • FIG. 6 is a diagram showing an example of decontamination information 32.
  • the waste ID (column 121) is an identifier that uniquely identifies the waste.
  • the waste ID before the first dismantling is the same as the product ID.
  • the waste ID may specify the system before dismantling, or may specify the part after dismantling. In the present embodiment, for the sake of clarity, "P011", “P012", etc. are added to the portion generated as a result of dismantling "P01" (hierarchical structure of numbers).
  • Each waste is tagged with a waste ID in any way.
  • the decontamination date (column 122) is the date when the waste was decontaminated.
  • the decontamination person ID (column 123) is an identifier that uniquely identifies the stakeholder who decontaminated the waste. Stakeholders are the entities (corporations) that handle waste, specifically, the nuclear power plant 62, treatment facility 63, temporary storage facility 65, final disposal facility 66, and waste (not shown) in FIG. It is a carrier and a reuse facility.
  • the decontamination method (column 124) is the method of decontamination carried out. Methods other than the above-mentioned chemical decontamination and mechanical decontamination (electrochemical decontamination) may be stored. Further, the decontamination method may be further subdivided and stored according to the chemicals, equipment, etc. used.
  • the decontamination coefficient (column 125) is a value obtained by dividing the radiation dose immediately before decontamination of waste by the radiation dose immediately after decontamination.
  • the plant dismantling management device 1 determines whether or not it is necessary to perform decontamination again based on the decontamination coefficient.
  • the secondary waste (column 126) is a secondary waste generated by decontamination, and may carry radioactive substances removed from the waste to be decontaminated, and is the result of chemical changes and the like. In some cases, it no longer carries radioactive material. If the secondary waste continues to carry radioactive substances, it is managed as another waste (with a new waste ID) and is subject to treatment such as evaporation and condensation. Secondary waste is also subject to tracing, just like original waste.
  • FIG. 7 is a diagram showing an example of disassembly information 33.
  • the plant dismantling management device 1 shall create a record of dismantling information 33.
  • the dismantling information 33 the following information is stored in association with each other.
  • the waste ID (column 131) is the same as the waste ID in FIG. However, the waste ID here is a combination of the waste ID before dismantling and the waste ID after dismantling in order to clarify what occurred before dismantling and what occurred after dismantling. ing.
  • the dismantling date (column 132) is the date when the waste was dismantled.
  • the dismantling person ID (column 133) is an identifier that uniquely identifies a stakeholder who dismantled the waste (for example, reference numeral 62 in FIG. 2).
  • the dismantling method (column 134) is a dismantling method carried out. Here, in addition to the specific method of dismantling, heavy machinery, tools, etc. used for dismantling may be stored. The dismantling method may be "crushing with a hammer until the pieces have a size of ⁇ mm or less".
  • the dismantling position column 135 may be left blank, and the waste ID after dismantling may be the same as the waste ID before dismantling (the waste ID is not assigned to each of the granular individuals).
  • the dismantling position (column 135) is information indicating at which position the waste before dismantling was dismantled (cut).
  • FIG. 8 is a diagram showing an example of the measurement information 34.
  • the plant dismantling management device 1 before and after decontamination or dismantling of waste, the plant dismantling management device 1 shall create a record of measurement information 34.
  • the measurement information 34 the following information is stored in association with each other.
  • the waste ID (column 141) is the same as the waste ID in FIG.
  • the measurement date (column 142) is the date on which the radiation dose of the waste was measured.
  • the measurer ID (column 143) is an identifier that uniquely identifies an interested party (for example, reference numeral 63 in FIG. 2) who has measured the radiation dose of waste.
  • the measured value (column 144) is the value of the radiation dose.
  • the unit is, for example, mSv / hour.
  • the measured value is a standard for judging whether or not the waste is a clearance material.
  • the abstract (column 145) is arbitrary reminder information related to the measurement, and here, it is the timing of the measurement.
  • FIG. 9 is a diagram showing an example of disposal plan information 35.
  • the disposal plan information 35 is a process chart for each waste (system, etc.) before dismantling until the waste is reused or finally disposed of after the decommissioning is decided.
  • the process includes dismantling, decontamination, temporary storage, reuse, and final disposal.
  • the plant dismantling management device 1 initially creates the disposal plan information 35.
  • the content of the disposal plan information 35 is "plan".
  • Each terminal device 2 to 6 in FIG. 4 transmits an implementation report of a process related to the terminal device 2 to 6 to the plant dismantling management device 1.
  • the plant dismantling management device 1 overwrites and updates the plan with the contents of the received implementation report.
  • pre-disassembly information (column 161), primary dismantling information (column 162), secondary dismantling information (column 163), temporary storage information (column 164), final disposal information (column 165), reuse.
  • Information (column 166) and revenue (column 167) are stored in association with each other.
  • the primary dismantling is performed, for example, at the nuclear power plant 62 in FIG. 2, and the secondary dismantling is performed, for example, at the processing facility 63 in FIG.
  • the plant dismantling management device 1 determines whether or not dismantling is necessary according to the radiation dose of the waste “P01”. Further, the plant dismantling management device 1 determines the decontamination method based on the radiation dose and the design information 31 (material, shape, etc.) (the same applies hereinafter). -The decontamination method is underlined. This indicates that the decontamination is performed by the mobile processing equipment described above (the same applies to the dismantling method described later).
  • the plant dismantling management device 1 estimates the radiation source from the distribution of the radiation dose in the waste "P01", determines the dismantling position and the number of wastes after dismantling, and dismantles based on the design information 31 (materials, etc.). Determine the tools, etc. for this (same below).
  • the waste “P011” is disassembled into the waste “P0111” and the waste “P0112”.
  • -The dismantling is performed by "cutting the waste” P011 "from the left at ⁇ m”.
  • the waste "P012” is disassembled into the waste "P0121” and the waste "P0122”.
  • -The dismantling is performed by "cutting at the center" of the waste "P012".
  • the dismantling is performed by the mobile processing equipment described above.
  • the temporary storage information column 164 the following can be seen. -Next, in the temporary storage facility "F03", “P0111” and “P0112” of the waste are “contained in the A-type container” and temporarily stored. Temporary storage is a measure until the final disposal facility or reuse facility is decided. -In the same storage facility “F03”, “P0121” and “P0122” of the waste are “contained in a B-type container” and temporarily stored. -The plant dismantling management device 1 determines the type of container based on the radiation amount of waste, design information 31, size after dismantling, and the like.
  • Revenue (column 167) is the above-mentioned revenue.
  • profit management is performed on a system-by-system basis.
  • FIG. 10 is a diagram showing an example of waste history information 36.
  • the plant dismantling management device 1 creates waste history information 36 for explaining the history of each waste including the waste after dismantling.
  • the waste history information 36 the following information is stored in association with each other.
  • the waste ID (column 171) is the same as the waste ID in FIG. However, the waste ID here often identifies the waste after being dismantled at least once. And each stakeholder pays attention to the waste here from his or her own standpoint.
  • the original waste ID (column 172) is an identifier that uniquely identifies the original waste before the waste in the waste ID column 171 is dismantled. In the example of FIG. 10, a stakeholder requests a history of waste “P0111”. The waste "P0111” is generated as a result of the original waste (system, etc.) "P01" being disassembled twice.
  • the design information (column 173) is all the contents of the design information 31 of the product “P01”.
  • the decontamination history (column 174) shows, for example, when, at what facility, and by what method the waste “P0111” and the waste before its dismantling were decontaminated, and what was the decontamination coefficient in the decontamination. Is shown.
  • the decontamination date and decontamination coefficient may be planned.
  • the dismantling history (column 175) indicates when, at what facility, and by what method the waste “P0111” and the waste before the dismantling were dismantled.
  • the dismantling date may be a scheduled date.
  • the measurement history (column 176) indicates when and at what facility the radiation doses of the waste “P0111” and the waste before dismantling were measured and what the values were.
  • the summary column shows the waste before dismantling showing the value.
  • the temporary storage information (column 177) indicates when, in what facility, and in what container the waste “P0111” and the waste before dismantling were stored.
  • the storage period may be a planned period.
  • the final disposal information (column 178) indicates when, at what facility, and by what disposal method the waste "P0111” was finally disposed of.
  • the disposal date may be the scheduled date.
  • Processing procedure Hereinafter, the processing procedure of the present embodiment will be described. There are three processing procedures, which are a planning processing procedure, a measurement processing procedure, and a history creating processing procedure.
  • FIG. 11 is a flowchart of the plan creation processing procedure.
  • the disposal plan creation unit 21 of the plant dismantling management device 1 identifies the waste. Specifically, the disposal plan creation unit 21 receives the waste ID of a group of wastes (for example, a system) from the power plant terminal device 2. For convenience of explanation, it is assumed here that the waste ID “P01” (condenser secondary side piping unit) is received.
  • step S202 the disposal plan creation unit 21 acquires the design information 31 (FIG. 5). Specifically, the disposal plan creation unit 21 receives the design information 31 of the waste “P01” from the power plant terminal device 2 or the manufacturer 61.
  • One of the design drawings included in the design information 31 shows the design radiation dose when the product "P01” is normally operated and the damping characteristics after the operation is stopped for each part (piping, etc.) of the product "P01". It is described in.
  • step S203 the disposal plan creation unit 21 acquires the measurement information 34 (FIG. 8). Specifically, the disposal plan creation unit 21 receives the measurement information 34 of the waste “P01” at the latest past time point from the power plant terminal device 2.
  • the measurement information here has the type of one record of the measurement information 34 in FIG.
  • the disposal plan creation unit 21 estimates the radiation dose. Specifically, the disposal plan creation unit 21 estimates the radiation amount using the design information 31 (design value) acquired in step S202 and the measurement information 34 (actual measurement value) acquired in step S203.
  • the radiation dose estimated here is, for example, a time-series radiation dose for each portion starting from the present time. The part where the radiation dose should be sufficiently low by design may actually exhibit a high radiation dose.
  • the disposal plan creation unit 21 specifies the radiation source. Specifically, the disposal plan creation unit 21 identifies the portion (piping, etc.) constituting the waste “P01” having the highest radiation dose. There is a high possibility that a radiation source has adhered to this part.
  • the disposal plan creation unit 21 may specify the radiation source (reference numeral 48 in FIG. 3) based on the image captured by operating the camera by the robot.
  • step S206 the disposal plan creation unit 21 determines whether or not decontamination is necessary. Specifically, the disposal plan creation unit 21 compares the radiation dose specified in step S205 with any of the following threshold values.
  • ⁇ Threshold 1 Upper limit for ensuring the safety of workers at nuclear power plants
  • Threshold 2 Upper limit for applying the target disposal method or reuse method
  • step S207 the disposal plan creation unit 21 determines whether or not decontamination is necessary. Specifically, the disposal plan creation unit 21 proceeds to step S209 when the radiation amount is equal to or higher than the threshold value as a result of comparison in step S206 (step S207 “Yes”), and proceeds to other cases (step S207 “No”). ) Proceed to step S208.
  • the disposal plan creation unit 21 determines the dismantling method. Specifically, the disposal plan creation unit 21 determines the dismantling method of the waste “P01” based on the design information 31 (materials and the like), the size of the container to be accommodated, and the like. If the mobile processing equipment is available, the disposal plan creation unit 21 decides to use it (the same applies to steps S209 to S211).
  • the disposal plan creation unit 21 determines the decontamination method before dismantling. Specifically, the disposal plan creation unit 21 determines the decontamination method for the waste “P01” based on the design information 31 and the radiation dose estimated in step S204. Since the waste "P01" is a system through which water flows, the disposal plan preparation unit 21 selects chemical decontamination. Further, a chemical suitable for the material (heat resistant steel) of the waste “P01” and the radiation dose is selected.
  • the disposal plan creation unit 21 determines the dismantling method. Specifically, the disposal plan creation unit 21 assumes that the waste “P01” has been decontaminated by the decontamination method determined in step S209, and has design information 31, radiation dose, and the size of the container to be accommodated. The method of dismantling the waste "P01” is determined based on the above.
  • step S211 the disposal plan creation unit 21 determines the decontamination method after dismantling. Specifically, the disposal plan creation unit 21 determines a decontamination method for each part (piping, etc.) after the waste “P01” is disassembled based on the design information 31 and the radiation dose. At this time, the disposal plan creation unit 21 assumes that the waste “P01” is decontaminated by the decontamination method determined in step S209 and the waste “P01” is dismantled by the dismantling method determined in step S210. , Determine the dismantling method.
  • the decontamination method determined here is, for example, mechanical decontamination of a pipe divided in half.
  • the disposal plan creation unit 21 may create a plan for stepwise decontaminating / disassembling the waste “P01” in a plurality of times.
  • the disposal plan preparation unit 21 decides reuse and final disposal. Specifically, first, the disposal plan creation unit 21 receives the reuse material required by the reuse facility and the required timing together with the purchase price from the reuse facility terminal device 6 of each reuse facility. .. Second, the disposal plan preparation unit 21 receives the waste that the final disposal facility can accept in the future and the acceptance timing together with the disposal price from the final disposal facility terminal device 5 of each final disposal facility.
  • the disposal plan preparation unit 21 determines a reusable facility in which the waste "P01” and the like can be reused, and / or a final disposal facility in which these can be finally disposed of.
  • "Waste" P01 "etc.” is a general term for the waste "P01" and the parts generated after its dismantling (the same shall apply hereinafter).
  • the disposal plan creation unit 21 determines the reuse facility based on, for example, the purchase price presented by each reuse facility, and determines the final disposal facility based on, for example, the acceptance timing presented by each final disposal facility.
  • the disposal plan creation unit 21 determines the storage method and the carrier. Specifically, first, the disposal plan creation unit 21 determines the amount of waste “P01” or the like to be temporarily stored and the period until final disposal, in the temporary storage facility terminal device of each temporary storage facility. Send to 4. Then, the temporary storage facility terminal device 4 returns the possibility of temporary storage and the storage fee to the plant dismantling management device 1.
  • the disposal plan creation unit 21 transfers the amount, radiation amount, etc. of the waste “P01” etc. transported between the nuclear power plant and each facility and between each facility to the carrier terminal of each carrier. It is transmitted to the device 7. Then, the carrier terminal device 7 returns the possibility of transport and the transport fee to the plant dismantling management device 1. Thirdly, the disposal plan creation unit 21 determines a temporary storage facility capable of temporarily storing the waste “P01” and the like, and a transporter capable of transporting these. The disposal plan creation unit 21 determines the temporary storage facility based on the storage fee presented by each temporary storage facility, and determines the carrier based on the transport fee presented by each carrier.
  • the disposal plan creation unit 21 creates the disposal plan information 35 (FIG. 9). Specifically, the disposal plan creation unit 21 creates the disposal plan information 35 based on the contents determined in steps S208 to S213 and stores it in the auxiliary storage device 15. At this stage, each facility (interested party) associated with the waste “P01” in the disposal plan information 35 accesses the plant dismantling management device 1 via its own terminal device, and disposes of the waste “P01”. The record of the plan information 35 can be visually recognized.
  • disposal plan information 35 After that, interested parties will perform decontamination, dismantling, temporary storage, transportation, reuse and final disposal based on the disposal plan information 35. Each stakeholder executes the part of the disposal plan information 35 that he / she is in charge of. However, it may not be possible to carry out as planned.
  • the disposal plan creation unit 21 receives an implementation report from the terminal device. Specifically, the disposal plan creation unit 21 receives implementation reports on pre-planned dismantling, decontamination, etc. from the terminal devices 2 to 6 (FIG. 4) of each stakeholder.
  • the implementation report includes information such as "the dismantling of F01 was carried out as planned" and "the decontamination of F0111 was changed to chemical decontamination".
  • the disposal plan creation unit 21 stores the received implementation report in the auxiliary storage device 15.
  • step S216 the disposal plan creation unit 21 stores the changes to the plan. Specifically, when the implementation report received in step S215 indicates a change from the plan, the disposal plan creation unit 21 overwrites the changed content with the disposal plan information 35 and stores it in the auxiliary storage device 15. After that, the planning process procedure is terminated. It should be noted that steps S215 and S216 are repeated each time each stakeholder dismantles, decontaminates, etc., and as a result, the disposal plan information 35 is always maintained in the latest state.
  • the main body of the process of acquiring information from interested parties may be the information collecting unit 22. In this case, the information collecting unit 22 passes the acquired information to the disposal plan creating unit 21 and entrusts the subsequent processing.
  • FIG. 12 is a flowchart of the measurement processing procedure.
  • Each stakeholder can measure the radiation dose of waste at any time.
  • each stakeholder other than the carrier measures the radiation amount of the waste before and after the dismantling or decontamination of the waste via its own terminal devices 2 to 6, and the plant dismantling management device 1 Shall be sent to.
  • the processing facility 63 (FIG. 2) is adopted as an example of interested parties.
  • step S301 the information collecting unit 22 of the plant dismantling management device 1 determines whether or not the preparation for dismantling is completed. Specifically, when the information collecting unit 22 receives from the processing facility terminal device 3 of the processing facility 63 that the preparation for dismantling the waste is completed (step S301 “Yes”), the information collecting unit 22 proceeds to step S303, and otherwise proceeds to step S303. (Step S301 “No”), the process proceeds to step S302.
  • step S302 the information collecting unit 22 determines whether or not the preparation for decontamination is completed. Specifically, when the information collecting unit 22 receives from the processing facility terminal device 3 of the processing facility 63 that the preparation for decontamination of waste is completed (step S302 “Yes”), the information collecting unit 22 proceeds to step S303, and the process proceeds to the process. In other cases (step S302 “No”), the process returns to step S301.
  • step S303 the information collecting unit 22 acquires the radiation dose. Specifically, first, the information collecting unit 22 receives the radiation dose of the waste from the processing facility terminal device 3 of the processing facility 63. Second, the information collecting unit 22 creates a record of measurement information 34 (FIG. 8) based on the received radiation dose.
  • step S304 the information collecting unit 22 determines whether or not the dismantling is completed. Specifically, when the information collecting unit 22 receives from the processing facility terminal device 3 of the processing facility 63 that the dismantling of the waste is completed (step S304 “Yes”), the information collecting unit 22 proceeds to step S306, and in other cases. (Step S304 “No”), the process proceeds to step S305.
  • step S305 the information collecting unit 22 determines whether or not the decontamination is completed. Specifically, when the information collecting unit 22 receives from the processing facility terminal device 3 of the processing facility 63 that the decontamination of the waste is completed (step S305 “Yes”), the information collecting unit 22 proceeds to step S306, and other than that. In the case (step S305 “No”), the process returns to step S304.
  • step S306 the information collecting unit 22 acquires the radiation dose and the like. Specifically, first, the information collecting unit 22 receives the radiation dose of the waste from the processing facility terminal device 3 of the processing facility 63. Second, the information collecting unit 22 creates a record of measurement information 34 (FIG. 8) based on the received radiation dose.
  • the information collecting unit 22 receives the contents of dismantling or decontamination of the waste from the processing facility terminal device 3 of the processing facility 63.
  • the information received here may be the same as the implementation report in step S215 (FIG. 11).
  • the information collecting unit 22 creates a record of dismantling information 33 (FIG. 7) or decontamination information 32 (FIG. 6) based on the received dismantling or decontamination content. After that, the measurement processing procedure is terminated.
  • the plant dismantling management device 1 always maintains the decontamination information 32 (FIG. 6), the dismantling information 33 (FIG. 7), and the measurement information 34 (FIG. 8) in the latest state.
  • FIG. 13 is a flowchart of the history creation processing procedure.
  • Each stakeholder can request the plant demolition management device 1 for the history of the waste it handles.
  • the temporary storage facility 65 FIG. 2 is trying to know its history in order to receive the waste “P0111”.
  • step S401 the history providing unit 23 of the plant dismantling management device 1 receives a history request from the terminal device. Specifically, the history providing unit 23 receives a history request including the waste ID “P0111” from the temporary storage facility terminal device 4 of the temporary storage facility 65.
  • step S402 the history providing unit 23 acquires the corresponding data from each information by using the search key. Specifically, the history providing unit 23 uses the waste ID “P0111” as a search key to design information 31 (FIG. 5), decontamination information 32 (FIG. 6), dismantling information 33 (FIG. 7), and measurement information 34. (FIG. 8), disposal plan information 35 (FIG. 9) and other information are searched. Then, the history providing unit 23 acquires all the data associated with "P0111".
  • the “other information” here is the implementation report received by the disposal plan creation unit 21 in step S215 (FIG. 11).
  • step S403 the history providing unit 23 creates the waste history information 36 (FIG. 10). Specifically, the history providing unit 23 creates the waste history information 36 having the waste ID “P0111” based on the data acquired in step S402. Of the waste history information 36 created here, the data in the temporary storage information column 177 and the final disposal information column 178 are at the planning stage.
  • step S404 the history providing unit 23 transmits the waste history information 36 (FIG. 10) to the terminal device. Specifically, the history providing unit 23 transmits the waste history information 36 created in step S403 to the temporary storage facility terminal device 4 of the temporary storage facility 65. After that, the history creation processing procedure is terminated.
  • the effects of the plant dismantling management device of this embodiment are as follows. (1) The plant demolition management device plans the waste process and enables stakeholders to share the waste history information. Therefore, the plant demolition management device not only contributes to the traceability of waste, but also can significantly reduce the management cost of each stakeholder. (2) The plant demolition management device can receive information on waste from interested parties. (3) The plant dismantling management device can manage dismantling, decontamination and temporary storage leading to the reuse or final disposal of waste. (4) The plant dismantling management device can plan the decontamination or dismantling method accurately and efficiently after specifying the radiation source.
  • the plant demolition management device can be applied to the decommissioning of a nuclear reactor.
  • the plant dismantling management device can determine the decontamination and dismantling method, etc. by using the waste design information and the like.
  • the plant dismantling management device can manage the profit related to the process.
  • the plant dismantling management device can update the process according to the actual results.
  • the present invention is not limited to the above-described embodiment, but includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the configurations described.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • each of the above-mentioned configurations, functions, processing units, processing means and the like may be realized by hardware by designing a part or all of them by, for example, an integrated circuit. Further, each of the above configurations, functions, and the like may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as programs, tables, and files that realize each function can be placed in a memory, a recording device such as a hard disk or SSD (Solid State Drive), or a recording medium such as an IC card, SD card, or DVD.
  • the control lines and information lines indicate what is considered necessary for explanation, and do not necessarily indicate all the control lines and information lines in the product. In practice, it can be considered that almost all configurations are interconnected.
  • Plant dismantling management device Power plant terminal device 3 Processing facility terminal device 4 Temporary storage facility terminal device 5 Final disposal facility terminal device 6 Reuse facility terminal device 7 Carrier terminal device 8 Network 11 Central control device 12 Input device 13 Output device 14 Main storage device 15 Auxiliary storage device 16 Communication device 21 Disposal plan creation department 22 Information collection department 23 History provision department 31 Design information 32 Decontamination information 33 Dismantling information 34 Measurement information 35 Disposal plan information 36 Waste history information

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Business, Economics & Management (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Primary Health Care (AREA)
  • Marketing (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Manufacturing & Machinery (AREA)
  • Processing Of Solid Wastes (AREA)
  • Measurement Of Radiation (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A plant demolition management device (1) according to the present invention is characterized by being provided with: a disposal plan creation unit (21) that plans, on the basis of design information of waste discharged from a plant and the radiation dose of the waste, processes to be performed until the waste is reused or finally disposed of after the waste is discharged from the plant; and a history providing unit (23) that transmits history information of the waste to a terminal device of a person concerned in response to a request from the person concerned during the processes.

Description

プラント解体管理装置、プラント解体管理方法及びプラント解体管理プログラムPlant demolition management equipment, plant demolition management method and plant demolition management program
 本発明は、プラント解体管理装置、プラント解体管理方法及びプラント解体管理プログラムに関する。 The present invention relates to a plant dismantling management device, a plant dismantling management method, and a plant dismantling management program.
 原子力発電所は、その使命を終えると、長期間に亘って計画的に廃炉される。廃炉に伴い発生する廃棄物のうち放射性の廃棄物は、人間環境に影響を与えないように安全な場所に処分される。放射性ではない廃棄物は、一般的な産業廃棄物として処分される場合もあるし、他に再利用されることもある。いずれにしても、廃炉決定から処分及び再利用までの期間において、廃棄物を正確かつ効率的に管理することが重要である。 Nuclear power plants will be decommissioned systematically for a long period of time after completing their mission. Of the waste generated by decommissioning, radioactive waste is disposed of in a safe place so as not to affect the human environment. Non-radioactive waste may be disposed of as general industrial waste or reused. In any case, it is important to manage waste accurately and efficiently during the period from decommissioning decision to disposal and reuse.
 特許文献1の解体梱包方法は、原子力発電所から排出された配管、機器等の廃棄物を処分施設に搬送する前提として、廃棄物を解体してコンテナに収納する計画を作成する。特許文献2の放射性固体廃棄物処理方法は、放射性固体廃棄物の各部分の放射線量を計算した結果に基づいて、処分方法が異なる複数の部分に放射性固体廃棄物を分割する。 The dismantling and packing method of Patent Document 1 creates a plan to dismantle the waste and store it in a container on the premise that the waste such as pipes and equipment discharged from the nuclear power plant is transported to the disposal facility. In the radioactive solid waste treatment method of Patent Document 2, the radioactive solid waste is divided into a plurality of parts having different disposal methods based on the result of calculating the radiation amount of each part of the radioactive solid waste.
 特許文献3の原子力施設解体廃棄物の管理方法は、廃棄物の放射線量を解体前に特定し、解体後の個々の廃棄物にバーコード等を付すとともに、バーコード等に記憶された情報を最終処分に至るまでコンピュータで管理する。バーコード等には、廃棄物番号、発生元、放射線量、容器への収納記録、容器表面の放射線量等が記憶される。 In the method for managing dismantled waste of nuclear facilities in Patent Document 3, the radiation amount of the waste is specified before dismantling, a barcode or the like is attached to each waste after dismantling, and the information stored in the barcode or the like is used. It is managed by a computer until the final disposal. The waste number, the source, the radiation dose, the storage record in the container, the radiation dose on the surface of the container, etc. are stored in the barcode or the like.
国際公開第99/39253号International Publication No. 99/39253 特開2002-207098号公報Japanese Unexamined Patent Publication No. 2002-207098 特開2001-141887号公報Japanese Unexamined Patent Publication No. 2001-141887
 廃炉決定から再利用又は最終処分に至るまでの期間、原子炉メーカ、原子力発電所、処理施設、一時保管施設、搬送業者、再利用施設、最終処分施設等の事業者を含む、多くの利害関係者が廃棄物に関わることになる。利害関係者は、それぞれの立場で、自身が関わる廃棄物についての過去又は将来の情報を必要とする。その後、再利用又は最終処分が終了した段階に至っても、同様である。 During the period from decommissioning decision to reuse or final disposal, many interests including reactor manufacturers, nuclear power plants, processing facilities, temporary storage facilities, carriers, reuse facilities, final disposal facilities, etc. The parties involved will be involved in the waste. Stakeholders, in their respective positions, need past or future information about the waste they are involved with. The same applies even when the reuse or final disposal is completed thereafter.
 しかしながら、特許文献1は、コンテナのサイズ、作業員の被爆量等の制約条件に基づき、廃棄物をどのよう解体しコンテナに収納するかということに焦点を当てており、利害関係者による廃棄物の情報共有については言及していない。特許文献2は、結果として作成される固体(インゴット)の放射線量を調整することに焦点を当ており、やはり、利害関係者による廃棄物の情報共有については言及していない。特許文献3は、廃棄物のトレーサビリティを一応は意識しているが、利害関係者が廃棄物の情報を共同利用することについては、具体的に言及していない。
 そこで、原子力発電所等の廃棄物の利害関係者が効率的に情報を共有することを目的とする。
However, Patent Document 1 focuses on how to dismantle waste and store it in a container based on constraints such as container size and worker exposure dose, and waste by stakeholders. No mention is made of information sharing. Patent Document 2 focuses on adjusting the radiation dose of the resulting solid (ingot), and again does not mention the sharing of waste information by stakeholders. Patent Document 3 is conscious of waste traceability for the time being, but does not specifically mention that stakeholders share waste information.
Therefore, the purpose is to efficiently share information among stakeholders of waste such as nuclear power plants.
 本発明のプラント解体管理装置は、プラントから排出される廃棄物の設計情報及び廃棄物の放射線量に基づき、廃棄物がプラントから排出された後再利用又は最終処分されるまでの工程を計画する処分計画作成部と、工程における利害関係者からの要求に応じて、廃棄物の履歴情報を利害関係者の端末装置に送信する履歴提供部と、を備えることを特徴とする。
 その他の手段については、発明を実施するための形態のなかで説明する。
The plant dismantling management device of the present invention plans a process from the waste discharged from the plant to reuse or final disposal based on the design information of the waste discharged from the plant and the radiation amount of the waste. It is characterized by including a disposal plan creation unit and a history providing unit that transmits waste history information to the terminal device of the interested party in response to a request from an interested party in the process.
Other means will be described in the embodiment for carrying out the invention.
 本発明によれば、原子力発電所等の廃棄物の利害関係者が効率的に情報を共有することができる。 According to the present invention, stakeholders of waste such as nuclear power plants can efficiently share information.
放射性廃棄物の再利用及び処分方法を説明する図であるIt is a figure explaining the reuse and disposal method of radioactive waste. 廃棄物の流れを説明する図である。It is a figure explaining the flow of waste. 系統及び放射線源を説明する図である。It is a figure explaining a system and a radiation source. プラント解体管理装置の構成等を説明する図である。It is a figure explaining the structure of a plant dismantling management apparatus. 設計情報の一例を示す図である。It is a figure which shows an example of the design information. 除染情報の一例を示す図である。It is a figure which shows an example of decontamination information. 解体情報の一例を示す図である。It is a figure which shows an example of dismantling information. 計測情報の一例を示す図である。It is a figure which shows an example of the measurement information. 処分計画情報の一例を示す図である。It is a figure which shows an example of disposal plan information. 廃棄物履歴情報の一例を示す図である。It is a figure which shows an example of waste history information. 計画作成処理手順のフローチャートである。It is a flowchart of a plan making process procedure. 計測処理手順のフローチャートである。It is a flowchart of the measurement processing procedure. 履歴作成処理手順のフローチャートである。It is a flowchart of a history creation processing procedure.
 以降、本発明を実施するための形態(“本実施形態”という)を、図等を参照しながら詳細に説明する。本実施形態は、原子力発電所の廃炉に伴い発生する廃棄物を再利用又は最終処分する例である。本発明は、沸騰水型原子炉にも圧力水型原子炉にも適用可能であり、放射性廃棄物を排出する一般のプラントにも適用可能である。 Hereinafter, a mode for carrying out the present invention (referred to as “the present embodiment”) will be described in detail with reference to figures and the like. This embodiment is an example of reusing or final disposal of waste generated by the decommissioning of a nuclear power plant. The present invention is applicable to both boiling water reactors and pressure water reactors, and is also applicable to general plants that discharge radioactive waste.
(放射性廃棄物の再利用及び処分方法)
 図1は、放射性廃棄物の再利用及び処分方法を説明する図である。原子力発電所が通常に運転されている期間、使用済燃料が発生する。使用済燃料から、ウラン及びプルトニウムが抽出される。これらは、燃料そのものとして、再利用され得る(行51a)。抽出後に残った廃液は、“高レベル放射性廃棄物”としてガラス固化され金属容器に収納され、最終的に“地層処分”される。地層処分とは、地下300m以深の岩盤中に埋設することである(行51b)。
(Reuse and disposal method of radioactive waste)
FIG. 1 is a diagram illustrating a method for reusing and disposing of radioactive waste. Spent fuel is generated during the normal operation of a nuclear power plant. Uranium and plutonium are extracted from the spent fuel. These can be reused as fuel itself (row 51a). The waste liquid remaining after extraction is vitrified as "high-level radioactive waste", stored in a metal container, and finally "geological disposal". Geological disposal is to bury it in rock at a depth of 300 m or deeper (row 51b).
 原子力発電所の廃炉決定後、原子力発電所に保管されている使用済燃料は、運転中と同様に、再利用及び最終処分される。廃炉決定後に独特であるのは、使用済燃料以外の諸設備(原子炉、発電機、復水器、配管等)が廃棄物として一度に多量に発生することである。これらの諸設備は、“低レベル放射線廃棄物”、及び、放射線を発しないその他の廃棄物を含む(行52a~52e)。本発明の対象は、主として、この諸設備である。 After the decision to decommission the nuclear power plant, the spent fuel stored in the nuclear power plant will be reused and finally disposed of in the same way as during operation. What is unique after the decision to decommission is that various facilities (reactors, generators, condensers, pipes, etc.) other than spent fuel are generated as waste in large quantities at one time. These facilities include "low level radiation waste" and other non-radiating waste (rows 52a-52e). The object of the present invention is mainly these facilities.
 低レベル放射性廃棄物のうち、放射線量が高いもの(例えば、炉心からの距離が小さい制御棒等)は、解体され、容器に収納されたうえで、“中深度処分”される。中深度処分とは、地下70m以深の地中に埋設することである(行52a)。低レベル放射性廃棄物のうち、放射線量が中程度であるもの(例えば、炉心からの距離が中程度であるポンプ等)は、解体され、容器に収納されたうえで、“ピット処分”される。ピット処分とは、浅い地中に設置したコンクリート製のピットに埋設することである(行52b)。 Of the low-level radioactive waste, those with a high radiation dose (for example, control rods with a small distance from the core) are disassembled, stored in a container, and then "disposed at a medium depth". Medium-depth disposal means burying in the ground 70 m or deeper underground (row 52a). Low-level radioactive waste with a medium radiation dose (eg, pumps with a medium distance from the core) is dismantled, stored in a container, and then "pitted". .. Pit disposal is to bury in a concrete pit installed in shallow ground (row 52b).
 低レベル放射性廃棄物のうち、放射線量が低いもの(例えば、炉心からの距離が大きいコンクリートガラ等)は、容器に収納されたうえで、“トレンチ処分”される。トレンチ処分とは、浅い地中にピットのような人工構築物を設置することなく埋設することである(行52c)。低レベル放射性廃棄物のうち、人間の健康に影響を与えない程度に放射線量が微小であるもの(“クリアランス物”と呼ばれる)は、特別に、一般の産業廃棄物とみなされる。したがって、クリアランス物は、産業廃棄物として最終処分されるほか、再利用可能となり得る(行52d)。 Of the low-level radioactive waste, those with a low radiation dose (for example, concrete waste that is far from the core) are stored in a container and then "trenched". Trench disposal is to bury an artificial structure such as a pit in shallow ground without installing it (row 52c). Low-level radioactive waste whose radiation dose is so small that it does not affect human health (called "clearance waste") is specifically considered to be general industrial waste. Therefore, the clearance material can be finally disposed of as industrial waste and can be reused (row 52d).
 放射線を発しない廃棄物は、当然、産業廃棄物として再利用又は最終処分される(行52e)。原子力発電所の廃炉に伴う廃棄物のうち、重量比で9割以上は、放射線を発しない廃棄物であると試算されている。 Naturally, waste that does not emit radiation is reused or finally disposed of as industrial waste (line 52e). It is estimated that more than 90% of the waste from the decommissioning of nuclear power plants is waste that does not emit radiation.
(廃棄物の流れ)
 図2は、廃棄物の流れを説明する図である。図2は、廃炉決定後に発生する廃棄物として、配管68が再利用又は最終処分される例である。原子力発電所62(原子力発電事業者)は、配管68の放射線量(単位は例えば“mSv/時”である)を計測する。この計測は、計測器を使用した実測であってもよいし、メーカ61が作成した設計情報に基づく推定(論理計算)であってもよい。以降、様々な工程で計測が繰り返されることになる。配管68は、例えば図3に示すような多くの部分からなる“系統”であり、その部分ごとに放射線量は異なる。したがって、ここでの計測は、配管の各部分を対象とする。
(Flow of waste)
FIG. 2 is a diagram illustrating the flow of waste. FIG. 2 shows an example in which the pipe 68 is reused or finally disposed of as waste generated after the decommissioning is decided. The nuclear power plant 62 (nuclear power generation company) measures the radiation dose (unit is, for example, "mSv / hour") of the pipe 68. This measurement may be an actual measurement using a measuring instrument, or may be an estimation (logical calculation) based on design information created by the manufacturer 61. After that, the measurement will be repeated in various processes. The pipe 68 is, for example, a “system” composed of many parts as shown in FIG. 3, and the radiation dose is different for each part. Therefore, the measurement here targets each part of the pipe.
 原子力発電所62は、計測結果に基づき、必要に応じ配管68を除染する。除染とは、廃棄物から放射線源を除去する作業である(詳細後記)。以降、任意の工程で除染が繰り返され得る。原子力発電所62は、配管68を解体する。解体とは、除染、搬送、再利用、最終処分等を容易にするために、又は、放射線源を分散するために、廃棄物をより小さな単位(部分)に分割することである。以降、任意の工程で解体が繰り返され得る。その後、解体された配管68は、処理施設63に搬送される。以降、説明の簡略化のため、解体された結果発生した配管68の部分も“配管68”と呼ぶ。 The nuclear power plant 62 decontaminates the pipe 68 as necessary based on the measurement results. Decontamination is the work of removing the radiation source from the waste (details below). After that, decontamination can be repeated in any step. The nuclear power plant 62 dismantles the pipe 68. Dismantling is the division of waste into smaller units (parts) to facilitate decontamination, transport, reuse, final disposal, etc., or to disperse radiation sources. After that, dismantling can be repeated in any step. After that, the disassembled pipe 68 is transported to the processing facility 63. Hereinafter, for the sake of simplification of the description, the portion of the pipe 68 generated as a result of dismantling is also referred to as “pipe 68”.
 処理施設63(処理施設事業者)は、配管68をさらに解体する。解体された配管68のうち、低レベル放射性廃棄物は一時保管施設65に搬送される。図2では、処理施設63から出て行く配管68は、配管らしい外形を保っているが、細かく破砕されている場合もある。クリアランス物は、再利用のための処理を目的とする他の施設に搬送される。再利用の例は、原子力発電所内のベンチ、低レベル放射性廃棄物を格納する容器等である。なお、“再利用施設”とは、これらのユーザである。 The treatment facility 63 (treatment facility operator) further dismantles the pipe 68. Of the dismantled pipe 68, low-level radioactive waste is transported to the temporary storage facility 65. In FIG. 2, the pipe 68 exiting from the processing facility 63 maintains the outer shape of the pipe, but may be finely crushed. Clearances are transported to other facilities for disposal for reuse. Examples of reuse are benches in nuclear power plants, containers for storing low-level radioactive waste, and so on. The "reuse facility" is these users.
 一時保管施設65(廃棄物の一時保管施設事業者)は、多くの処理施設から搬送されてきた解体された配管68を所定の容器71に収納し、指定された場所に一時的に保管し、最終処分施設66が利用可能になるのを待つ。最終処分施設66(廃棄物の最終処分施設事業者)は、一時保管施設65から容器71を受け入れ、地中に埋設する。一時保管施設及び最終処分施設のそれぞれは、複数存在してもよい。さらに、処理施設及び一時保管施設は、原子力発電所に近接して配置されていてもよい。 The temporary storage facility 65 (temporary storage facility operator of waste) stores the dismantled pipes 68 transported from many treatment facilities in a predetermined container 71, and temporarily stores them in a designated place. Wait for the final disposal facility 66 to become available. The final disposal facility 66 (the final disposal facility operator of waste) receives the container 71 from the temporary storage facility 65 and burys it in the ground. There may be multiple temporary storage facilities and multiple final disposal facilities. In addition, the treatment facility and temporary storage facility may be located in close proximity to the nuclear power plant.
(収益及びモバイル処理設備)
 一般的に、原子力発電所、原子炉又はより細かい系統単位で、収益管理が行われている。収益は、例えば“収益=発電収入-発電費用-廃炉費用+再利用収入”で定義される。廃棄物の一部が高額で再利用資材として売却できれば再利用収入は向上し、収益も向上する。また、例えば、廃棄物の除染及び解体に際し、複数の原子炉間又は複数の利害関係者間で移動・共同使用可能なモバイル処理設備(除染装置、カッタ等)を共用できれば、廃炉費用は下がり収益は向上する。
(Revenue and mobile processing equipment)
Generally, profit management is carried out in nuclear power plants, reactors or finer grid units. Revenue is defined as, for example, "revenue = power generation income-power generation cost-decommissioning cost + reuse income". If a part of the waste can be sold as a reuse material at a high price, the reuse income will be improved and the profit will be improved. In addition, for example, when decontaminating and dismantling waste, if mobile processing equipment (decontamination equipment, cutters, etc.) that can be moved and shared between multiple reactors or multiple stakeholders can be shared, decommissioning costs will be incurred. Will fall and profits will improve.
(系統及び放射線源)
 図3は、系統及び放射線源を説明する図である。系統49は、ポンプ41、バルブ42及び43、並びに、個々の配管44~47を有する。これらは、一体的な設備群となって、例えば復水器から原子炉圧力容器に水を搬送する。水が直接原子炉圧力容器を通る沸騰水型原子炉の場合、系統49は、僅かに放射線で汚染されている可能性がある。そうでない場合であっても、一部の配管45の内部又は外部に、放射性物質48が付着している場合もある。この場合、計測器で系統49の各部分の放射線量を計測すると、配管45の表面及び周辺の放射線量のみが他と比較して有意に大きくなっていることがわかる。このように放射線の源となる放射性物質は、“放射線源”とも呼ばれる。
(System and radiation source)
FIG. 3 is a diagram illustrating a system and a radiation source. The system 49 has a pump 41, valves 42 and 43, and individual pipes 44-47. These form an integrated set of equipment, for example, transporting water from the condenser to the reactor pressure vessel. In the case of a boiling water reactor where water passes directly through the reactor pressure vessel, system 49 may be slightly contaminated with radiation. Even if this is not the case, the radioactive substance 48 may be attached to the inside or the outside of some of the pipes 45. In this case, when the radiation dose of each part of the system 49 is measured with a measuring instrument, it can be seen that only the radiation dose on the surface and the periphery of the pipe 45 is significantly larger than the others. The radioactive material that is the source of radiation in this way is also called a "radioactive source".
(除染方法)
 放射線源の付着等がなく、系統49のどの部分も一様に高い放射線量を示す場合、系統を解体するまでもなく、系統全体に対し化学除染を行うことが可能である。化学除染とは、例えば系統49に直接除染装置を連結し、薬剤(還元剤等)を流す方法である。
(Decontamination method)
When there is no adhesion of a radiation source and all parts of the system 49 show a uniformly high radiation dose, it is possible to perform chemical decontamination of the entire system without disassembling the system. Chemical decontamination is, for example, a method in which a decontamination device is directly connected to the system 49 and a drug (reducing agent or the like) is flowed.
 ある部分に放射線源が付着した結果、系統49のうち放射線源が付着している部分の放射線量のみが高い場合、系統49を解体し配管45を取り外し、配管45に対し又は配管45を更に半分に解体したものに対し機械除染を行うことが可能である。機械除染とは、例えば、配管の部分に対し研磨剤を噴射する又はブラシで擦る方法である。 If only the radiation dose of the part of the system 49 to which the radiation source is attached is high as a result of the radiation source adhering to a certain part, the system 49 is disassembled, the pipe 45 is removed, and the pipe 45 or the pipe 45 is further halved. It is possible to perform mechanical decontamination on the disassembled material. Mechanical decontamination is, for example, a method of spraying an abrasive or rubbing with a brush on a portion of a pipe.
 さらに、作業員が系統49を安全に解体できない程度に配管45の放射線量が高い場合、ロボット等に系統49の化学除染をさせたうえで配管45を取り外させ、配管45に対して機械除染をさせることもできる。 Further, when the radiation dose of the pipe 45 is so high that the worker cannot safely disassemble the system 49, the robot or the like is made to chemically decontaminate the system 49, and then the pipe 45 is removed, and the pipe 45 is mechanically removed. It can also be dyed.
(プラント解体管理装置の構成等)
 図4は、プラント解体管理装置1の構成等を説明する図である。プラント解体管理装置1は、一般的なコンピュータであり、中央制御装置11、マウス、キーボード等の入力装置12、ディスプレイ等の出力装置13、主記憶装置14、補助記憶装置15及び通信装置16を備える。これらは、バスで相互に接続されている。補助記憶装置15は、設計情報31、除染情報32、解体情報33、計測情報34、処分計画情報35及び廃棄物履歴情報36(いずれも詳細後記)を格納している。
(Configuration of plant dismantling management equipment, etc.)
FIG. 4 is a diagram illustrating a configuration and the like of the plant dismantling management device 1. The plant dismantling management device 1 is a general computer and includes a central control device 11, an input device 12 such as a mouse and a keyboard, an output device 13 such as a display, a main storage device 14, an auxiliary storage device 15, and a communication device 16. .. These are interconnected by a bus. The auxiliary storage device 15 stores design information 31, decontamination information 32, dismantling information 33, measurement information 34, disposal plan information 35, and waste history information 36 (all of which are described in detail later).
 主記憶装置14における処分計画作成部21、情報収集部22及び履歴提供部23は、プログラムである。中央制御装置11は、これらのプログラムを補助記憶装置15から読み出し主記憶装置14にロードすることによって、各プログラムの機能(詳細後記)を実現する。補助記憶装置15は、プラント解体管理装置1から独立した構成であってもよい。プラント解体管理装置1は、ネットワーク8を介して以下の各装置と通信可能である。 The disposal plan creation unit 21, the information collection unit 22, and the history provision unit 23 in the main storage device 14 are programs. The central control device 11 reads these programs from the auxiliary storage device 15 and loads them into the main storage device 14, thereby realizing the functions of each program (details will be described later). The auxiliary storage device 15 may have a configuration independent of the plant dismantling management device 1. The plant dismantling management device 1 can communicate with the following devices via the network 8.
・図2の原子力発電所62に配置される発電所端末装置2
・図2の処理施設63に配置される処理施設端末装置3
・図2の一時保管施設65に配置される一時保管施設端末装置4
・図2の最終処分施設66に配置される最終処分施設端末装置5
・再利用施設に配置される再利用施設端末装置6
・搬送業者(図示せず)に配置される搬送者端末装置7
-Power plant terminal device 2 arranged at the nuclear power plant 62 in FIG.
-Processing facility terminal device 3 arranged in the processing facility 63 of FIG.
-Temporary storage facility terminal device 4 arranged in the temporary storage facility 65 in FIG.
-Final disposal facility terminal device 5 arranged at the final disposal facility 66 in FIG.
・ Reuse facility terminal device 6 placed in the reuse facility
-Carrier terminal device 7 placed in a carrier (not shown)
(設計情報)
 図5は、設計情報31の一例を示す図である。設計情報31は、例えばメーカから出荷される製品ごとに作成される。設計情報31においては、以下の情報が相互に関連付けて記憶されている。
 製品ID(欄101)は、将来廃棄物となる製品を一意に特定する識別子である。
 製造場所(欄102)は、製品が製造されたメーカ及び工場の名称である。
 製品種類(欄103)は、製品の種類をその機能で表現した文言である。ここでの“復水器2次側配管ユニット”は、例えば図3の系統49に相当する。
 出荷年月日(欄104)は、製品が出荷された年月日である。
(Design information)
FIG. 5 is a diagram showing an example of design information 31. The design information 31 is created for each product shipped from the manufacturer, for example. In the design information 31, the following information is stored in association with each other.
The product ID (column 101) is an identifier that uniquely identifies a product that will become waste in the future.
The manufacturing location (column 102) is the name of the manufacturer and factory from which the product was manufactured.
The product type (column 103) is a wording expressing the product type by its function. The “condenser secondary piping unit” here corresponds to, for example, the system 49 in FIG.
The shipping date (column 104) is the date when the product was shipped.
 用途(欄105)は、配管中を流れる液体の種類である。
 素材(欄106)は、製品を構成する素材である。
 内径(欄107)は、配管の内径である。なお、“#”は、異なる数値を省略的に示している(以下同様)。配管の内径は、系統を構成する配管ごとに記憶されていてもよい(外径についても同様)。
 外径(欄108)は、配管の外径である。
The application (column 105) is a type of liquid flowing in the pipe.
The material (column 106) is a material constituting the product.
The inner diameter (column 107) is the inner diameter of the pipe. In addition, "#" indicates a different numerical value abbreviated (the same applies hereinafter). The inner diameter of the pipe may be stored for each pipe constituting the system (the same applies to the outer diameter).
The outer diameter (column 108) is the outer diameter of the pipe.
 長さ(欄109)は、系統の長さである。
 流量(欄110)は、単位時間当たりに系統を流れる液体の体積の最大値である。
 設計図面(欄111)は、メーカが作成した設計図面である。設計図面は、3次元のCADデータ又は点群データの型式を有していてもよい。設計図面は、製品の外形を示す図の他に、通常の状態で使用された場合に想定される放射線量を部分ごとに示す表、運転停止後の放射線量の減衰特性を部分ごとに示すグラフ、製品の性能を示すグラフ等を含む。
The length (column 109) is the length of the system.
The flow rate (column 110) is the maximum value of the volume of liquid flowing through the system per unit time.
The design drawing (column 111) is a design drawing created by the manufacturer. The design drawing may have a type of three-dimensional CAD data or point cloud data. In addition to the figure showing the outer shape of the product, the design drawing is a table showing the radiation dose expected when used under normal conditions for each part, and a graph showing the attenuation characteristics of the radiation dose after the operation is stopped for each part. , Includes graphs showing product performance, etc.
(除染情報)
 図6は、除染情報32の一例を示す図である。廃棄物が除染される都度、プラント解体管理装置1は、除染情報32のレコードを作成するものとする。除染情報32においては、以下の情報が相互に関連付けて記憶されている。
 廃棄物ID(欄121)は、廃棄物を一意に特定する識別子である。最初の解体前の廃棄物IDは、製品IDと同じである。廃棄物IDは、解体前の系統等を特定する場合もあるし、解体後の部分を特定する場合もある。本実施形態では、分かりやすさのために、“P01”が解体された結果発生した部分には“P011”、“P012”等が付される(番号の階層構造)。個々の廃棄物には、廃棄物IDが任意の方法でタグ付けされる。
(Decontamination information)
FIG. 6 is a diagram showing an example of decontamination information 32. Each time the waste is decontaminated, the plant demolition management device 1 shall create a record of decontamination information 32. In the decontamination information 32, the following information is stored in association with each other.
The waste ID (column 121) is an identifier that uniquely identifies the waste. The waste ID before the first dismantling is the same as the product ID. The waste ID may specify the system before dismantling, or may specify the part after dismantling. In the present embodiment, for the sake of clarity, "P011", "P012", etc. are added to the portion generated as a result of dismantling "P01" (hierarchical structure of numbers). Each waste is tagged with a waste ID in any way.
 除染日(欄122)は、廃棄物が除染された年月日である。
 除染者ID(欄123)は、廃棄物を除染した利害関係者を一意に特定する識別子である。利害関係者とは、廃棄物を取り扱う主体(法人)であり、具体的には、図2の原子力発電所62、処理施設63、一時保管施設65、最終処分施設66、並びに、図示しない廃棄物搬送業者及び再利用施設である。
 除染方法(欄124)は、実施された除染の方法である。前記した化学除染及び機械除染以外の方法(電気化学的除染)が記憶されてもよい。さらに、使用される薬剤、機材等に応じて、除染方法がより細分化されて記憶されてもよい。
The decontamination date (column 122) is the date when the waste was decontaminated.
The decontamination person ID (column 123) is an identifier that uniquely identifies the stakeholder who decontaminated the waste. Stakeholders are the entities (corporations) that handle waste, specifically, the nuclear power plant 62, treatment facility 63, temporary storage facility 65, final disposal facility 66, and waste (not shown) in FIG. It is a carrier and a reuse facility.
The decontamination method (column 124) is the method of decontamination carried out. Methods other than the above-mentioned chemical decontamination and mechanical decontamination (electrochemical decontamination) may be stored. Further, the decontamination method may be further subdivided and stored according to the chemicals, equipment, etc. used.
 除染係数(欄125)は、廃棄物の除染直前の放射線量を、除染直後の放射線量で除算した値である。プラント解体管理装置1は、除染係数に基づき除染を再度行う必要性の有無を判断する。
 二次廃棄物(欄126)は、除染によって発生する2次的な廃棄物であり、除染対象の廃棄物から除去した放射性物質を担持している場合もあるし、化学変化等の結果、放射性物質をもはや担持していない場合もある。二次廃棄物が引き続き放射性物質を担持している場合は、それ自体が別の廃棄物として管理され(廃棄物IDが新たに付され)、蒸発凝縮等の処理対象となる。二次廃棄物も、本来の廃棄物と同様トレースの対象である。
The decontamination coefficient (column 125) is a value obtained by dividing the radiation dose immediately before decontamination of waste by the radiation dose immediately after decontamination. The plant dismantling management device 1 determines whether or not it is necessary to perform decontamination again based on the decontamination coefficient.
The secondary waste (column 126) is a secondary waste generated by decontamination, and may carry radioactive substances removed from the waste to be decontaminated, and is the result of chemical changes and the like. In some cases, it no longer carries radioactive material. If the secondary waste continues to carry radioactive substances, it is managed as another waste (with a new waste ID) and is subject to treatment such as evaporation and condensation. Secondary waste is also subject to tracing, just like original waste.
(解体情報33)
 図7は、解体情報33の一例を示す図である。廃棄物が解体される都度、プラント解体管理装置1は、解体情報33のレコードを作成するものとする。解体情報33においては、以下の情報が相互に関連付けて記憶されている。
 廃棄物ID(欄131)は、図6の廃棄物IDと同じである。但し、ここでの廃棄物IDは、解体前の何を解体した結果解体後に何が発生したかを明らかにするために、解体前の廃棄物IDと解体後の廃棄物IDとの組合せになっている。
(Dismantling information 33)
FIG. 7 is a diagram showing an example of disassembly information 33. Each time the waste is dismantled, the plant dismantling management device 1 shall create a record of dismantling information 33. In the dismantling information 33, the following information is stored in association with each other.
The waste ID (column 131) is the same as the waste ID in FIG. However, the waste ID here is a combination of the waste ID before dismantling and the waste ID after dismantling in order to clarify what occurred before dismantling and what occurred after dismantling. ing.
 解体日(欄132)は、廃棄物が解体された年月日である。
 解体者ID(欄133)は、廃棄物を解体した利害関係者(例えば、図2の符号62)を一意に特定する識別子である。
 解体方法(欄134)は、実施された解体の方法である。ここでは、解体の具体的な方法の他、解体に使用された重機、道具等が記憶されてもよい。なお、解体方法は、“大きさが○mm以下の破片になるまでハンマで粉砕する”等であってもよい。この場合、解体位置欄135を空欄とし、解体後の廃棄物IDを、解体前の廃棄物IDと同じとしてもよい(粒状の個体のそれぞれに廃棄物IDを採番しない)。
 解体位置(欄135)は、解体前の廃棄物をどの位置で解体(切断)したかを示す情報である。
The dismantling date (column 132) is the date when the waste was dismantled.
The dismantling person ID (column 133) is an identifier that uniquely identifies a stakeholder who dismantled the waste (for example, reference numeral 62 in FIG. 2).
The dismantling method (column 134) is a dismantling method carried out. Here, in addition to the specific method of dismantling, heavy machinery, tools, etc. used for dismantling may be stored. The dismantling method may be "crushing with a hammer until the pieces have a size of ○ mm or less". In this case, the dismantling position column 135 may be left blank, and the waste ID after dismantling may be the same as the waste ID before dismantling (the waste ID is not assigned to each of the granular individuals).
The dismantling position (column 135) is information indicating at which position the waste before dismantling was dismantled (cut).
(計測情報)
 図8は、計測情報34の一例を示す図である。本実施形態では、廃棄物の除染又は解体の前後に、プラント解体管理装置1は、計測情報34のレコードを作成するものとする。計測情報34においては、以下の情報が相互に関連付けて記憶されている。
 廃棄物ID(欄141)は、図6の廃棄物IDと同じである。
 計測日(欄142)は、廃棄物の放射線量が計測された年月日である。
 計測者ID(欄143)は、廃棄物の放射線量を計測した利害関係者(例えば、図2の符号63)を一意に特定する識別子である。
 計測値(欄144)は、放射線量の値である。単位は、例えばmSv/時である。計測値は、廃棄物がクリアランス物に該当するか否かを判断する基準となる。
 摘要(欄145)は、計測に係る任意の備忘的情報であり、ここでは、計測のタイミングである。
(Measurement information)
FIG. 8 is a diagram showing an example of the measurement information 34. In the present embodiment, before and after decontamination or dismantling of waste, the plant dismantling management device 1 shall create a record of measurement information 34. In the measurement information 34, the following information is stored in association with each other.
The waste ID (column 141) is the same as the waste ID in FIG.
The measurement date (column 142) is the date on which the radiation dose of the waste was measured.
The measurer ID (column 143) is an identifier that uniquely identifies an interested party (for example, reference numeral 63 in FIG. 2) who has measured the radiation dose of waste.
The measured value (column 144) is the value of the radiation dose. The unit is, for example, mSv / hour. The measured value is a standard for judging whether or not the waste is a clearance material.
The abstract (column 145) is arbitrary reminder information related to the measurement, and here, it is the timing of the measurement.
(処分計画情報)
 図9は、処分計画情報35の一例を示す図である。処分計画情報35は、廃炉の決定後廃棄物が再利用又は最終処分されるまでの、解体前の廃棄物(系統等)ごとの工程表である。工程は、解体、除染、一時保管、再利用、及び、最終処分を含む。まず、プラント解体管理装置1は、処分計画情報35を初期作成する。この段階では、処分計画情報35の内容は、“計画”である。その後、工程が実際に進捗すると、工程が計画通りに実行される場合と、そうではない場合とが発生する。図4の各端末装置2~6は、自身が関連する工程の実施報告をプラント解体管理装置1に送信する。プラント解体管理装置1は、受信した実施報告が計画と異なる場合、受信した実施報告の内容で計画を上書き更新する。
(Disposal plan information)
FIG. 9 is a diagram showing an example of disposal plan information 35. The disposal plan information 35 is a process chart for each waste (system, etc.) before dismantling until the waste is reused or finally disposed of after the decommissioning is decided. The process includes dismantling, decontamination, temporary storage, reuse, and final disposal. First, the plant dismantling management device 1 initially creates the disposal plan information 35. At this stage, the content of the disposal plan information 35 is "plan". After that, when the process actually progresses, there are cases where the process is executed as planned and cases where it is not. Each terminal device 2 to 6 in FIG. 4 transmits an implementation report of a process related to the terminal device 2 to 6 to the plant dismantling management device 1. When the received implementation report is different from the plan, the plant dismantling management device 1 overwrites and updates the plan with the contents of the received implementation report.
 処分計画情報35においては、解体前情報(欄161)、一次解体情報(欄162)、二次解体情報(欄163)、一時保管情報(欄164)、最終処分情報(欄165)、再利用情報(欄166)及び収益(欄167)が相互に関連付けて記憶されている。一次解体を行うのは、例えば図2の原子力発電所62であり、二次解体を行うのは、例えば図2の処理施設63である。 In the disposal plan information 35, pre-disassembly information (column 161), primary dismantling information (column 162), secondary dismantling information (column 163), temporary storage information (column 164), final disposal information (column 165), reuse. Information (column 166) and revenue (column 167) are stored in association with each other. The primary dismantling is performed, for example, at the nuclear power plant 62 in FIG. 2, and the secondary dismantling is performed, for example, at the processing facility 63 in FIG.
 解体前情報欄161を見ると、以下のことがわかる。
・廃棄物(系統)“P01”は、まず、原子力発電所“F01”において、解体前の全体が化学除染される。プラント解体管理装置1は、廃棄物“P01”の放射線量に応じて解体の要否を判断する。また、プラント解体管理装置1は、放射線量及び設計情報31(素材、形状等)に基づき、除染方法を決定する(以下同様)。
・除染方法に下線が施されている。このことは、除染が、前記したモバイル処理設備によって行われることを示す(後記する解体方法についても同様)。
Looking at the information column 161 before dismantling, the following can be seen.
-First, the entire waste (system) "P01" before dismantling is chemically decontaminated at the nuclear power plant "F01". The plant dismantling management device 1 determines whether or not dismantling is necessary according to the radiation dose of the waste “P01”. Further, the plant dismantling management device 1 determines the decontamination method based on the radiation dose and the design information 31 (material, shape, etc.) (the same applies hereinafter).
-The decontamination method is underlined. This indicates that the decontamination is performed by the mobile processing equipment described above (the same applies to the dismantling method described later).
 一次解体情報欄162を見ると、以下のことがわかる。
・廃棄物“P01”は、次に、処理施設“F01”において、廃棄物“P011”と廃棄物“P012”とに解体される。
・“F01”は、解体前情報における原子力発電所を特定するIDである。つまり、原子力発電所内で、当該解体が行われる。
・当該解体は、廃棄物“P01”の“左から○mでボルトを外す”ことによって行われる。プラント解体管理装置1は、廃棄物“P01”における放射線量の分布から放射線源を推定し、解体位置、解体後の廃棄物の個数を決定し、設計情報31(素材等)に基づき、解体するための工具等を決定する(以下同様)。
Looking at the primary dismantling information column 162, the following can be seen.
-The waste "P01" is then disassembled into the waste "P011" and the waste "P012" at the treatment facility "F01".
-"F01" is an ID that identifies the nuclear power plant in the pre-demolition information. That is, the dismantling is carried out in the nuclear power plant.
-The dismantling is performed by "removing the bolt at ○ m from the left" of the waste "P01". The plant dismantling management device 1 estimates the radiation source from the distribution of the radiation dose in the waste "P01", determines the dismantling position and the number of wastes after dismantling, and dismantles based on the design information 31 (materials, etc.). Determine the tools, etc. for this (same below).
 二次解体情報欄163を見ると、以下のことがわかる。
・次に、処理施設“F02”において、廃棄物“P011”は、廃棄物“P0111”と廃棄物“P0112”とに解体される。
・当該解体は、廃棄物“P011”を“左から●mで切断する”ことによって行われる。
・同じ処理施設“F02”において、廃棄物“P012”は、廃棄物“P0121”と廃棄物“P0122”とに解体される。
・当該解体は、廃棄物“P012”を“中央で切断”することによって行われる。当該解体は、前記したモバイル処理設備によって行われる。
・解体後の廃棄物“P0111”、“P0112” 、“P0121”及び “P0122”は、機械除染される。ここで機械除染が選択されたのは、例えば、系統が2段階で解体された結果、機械除染(ロボットによるブラシかけ等)が可能になったからである。
Looking at the secondary dismantling information column 163, the following can be seen.
Next, in the treatment facility “F02”, the waste “P011” is disassembled into the waste “P0111” and the waste “P0112”.
-The dismantling is performed by "cutting the waste" P011 "from the left at ● m".
-In the same treatment facility "F02", the waste "P012" is disassembled into the waste "P0121" and the waste "P0122".
-The dismantling is performed by "cutting at the center" of the waste "P012". The dismantling is performed by the mobile processing equipment described above.
-The dismantled wastes "P0111", "P0112", "P0121" and "P0122" are mechanically decontaminated. Mechanical decontamination was selected here because, for example, as a result of dismantling the system in two stages, mechanical decontamination (brushing by a robot, etc.) became possible.
 一時保管情報欄164を見ると、以下のことがわかる。
・次に、一時保管施設“F03”において、廃棄物のうち“P0111”及び“P0112”は“A型容器に収容”されて一時保管される。一時保管は、最終処分施設又は再利用施設が決まるまでの措置である。
・同じ保管施設“F03”において、廃棄物のうち“P0121”及び“P0122”は“B型容器に収容”されて一時保管される。
・プラント解体管理装置1は、廃棄物の放射線量、設計情報31、解体後のサイズ等に基づき、容器の種類を決定する。
Looking at the temporary storage information column 164, the following can be seen.
-Next, in the temporary storage facility "F03", "P0111" and "P0112" of the waste are "contained in the A-type container" and temporarily stored. Temporary storage is a measure until the final disposal facility or reuse facility is decided.
-In the same storage facility "F03", "P0121" and "P0122" of the waste are "contained in a B-type container" and temporarily stored.
-The plant dismantling management device 1 determines the type of container based on the radiation amount of waste, design information 31, size after dismantling, and the like.
 最終処分情報欄165を見ると、以下のことがわかる。
・最後に、最終処分施設“F04”において、A型容器に収容された廃棄物“P0111”及び廃棄物“P0112”は、ピット処分される。
Looking at the final disposal information column 165, we can see the following.
-Finally, at the final disposal facility "F04", the waste "P0111" and the waste "P0112" contained in the A-type container are disposed of in the pit.
 再利用情報欄166を見ると、以下のことがわかる。
・一方、再利用施設“F05”において、B型容器に収容された廃棄物“P0121”及び廃棄物“P0122”は、容器から取り出され資材となる。
Looking at the reuse information column 166, we can see the following.
-On the other hand, in the reuse facility "F05", the waste "P0121" and the waste "P0122" contained in the B-type container are taken out from the container and used as materials.
 収益(欄167)は、前記した収益である。ここでは、系統単位で収益管理が行われている。 Revenue (column 167) is the above-mentioned revenue. Here, profit management is performed on a system-by-system basis.
(廃棄物履歴情報)
 図10は、廃棄物履歴情報36の一例を示す図である。図4の各端末装置2~7からの要求に応じて、プラント解体管理装置1は、解体後の廃棄物を含む廃棄物ごとに、その履歴を説明する廃棄物履歴情報36を作成する。廃棄物履歴情報36においては、以下の情報が相互に関連付けて記憶されている。
(Waste history information)
FIG. 10 is a diagram showing an example of waste history information 36. In response to the request from each of the terminal devices 2 to 7 in FIG. 4, the plant dismantling management device 1 creates waste history information 36 for explaining the history of each waste including the waste after dismantling. In the waste history information 36, the following information is stored in association with each other.
 廃棄物ID(欄171)は、図6の廃棄物IDと同じである。但し、ここでの廃棄物IDは、多くの場合、少なくとも1回解体された後の廃棄物を特定する。そして、各利害関係者は、それぞれの立場でここでの廃棄物に注目する。
 原廃棄物ID(欄172)は、廃棄物ID欄171の廃棄物が解体される前のもとの廃棄物を一意に特定する識別子である。図10の例では、ある利害関係者が廃棄物“P0111”の履歴を要求している。廃棄物“P0111”は、もとの廃棄物(系統等)“P01”が、2回解体された結果発生したものである。
 設計情報(欄173)は、製品“P01”の設計情報31のすべての内容である。
The waste ID (column 171) is the same as the waste ID in FIG. However, the waste ID here often identifies the waste after being dismantled at least once. And each stakeholder pays attention to the waste here from his or her own standpoint.
The original waste ID (column 172) is an identifier that uniquely identifies the original waste before the waste in the waste ID column 171 is dismantled. In the example of FIG. 10, a stakeholder requests a history of waste “P0111”. The waste "P0111" is generated as a result of the original waste (system, etc.) "P01" being disassembled twice.
The design information (column 173) is all the contents of the design information 31 of the product “P01”.
 除染履歴(欄174)は、例えば廃棄物“P0111”及びその解体前の廃棄物が、いつ、どの施設で、どのような方法で除染され、その除染における除染係数はいくらであったかを示す。除染日及び除染係数は予定であってもよい。
 解体履歴(欄175)は、廃棄物“P0111”及びその解体前の廃棄物が、いつ、どの施設で、どのような方法で解体されたかを示す。解体日は、予定日であってもよい。
 計測履歴(欄176)は、廃棄物“P0111”及びその解体前の廃棄物の放射線量が、いつ、どの施設で計測した結果、どのような値であったかを示す。なお、摘要欄は、その値を示した解体前の廃棄物を示している。
The decontamination history (column 174) shows, for example, when, at what facility, and by what method the waste "P0111" and the waste before its dismantling were decontaminated, and what was the decontamination coefficient in the decontamination. Is shown. The decontamination date and decontamination coefficient may be planned.
The dismantling history (column 175) indicates when, at what facility, and by what method the waste “P0111” and the waste before the dismantling were dismantled. The dismantling date may be a scheduled date.
The measurement history (column 176) indicates when and at what facility the radiation doses of the waste “P0111” and the waste before dismantling were measured and what the values were. In addition, the summary column shows the waste before dismantling showing the value.
 一時保管情報(欄177)は、廃棄物“P0111”及びその解体前の廃棄物が、いつ、どの施設で、どのような容器で保管されていたかを示す。保管期間は、予定期間であってもよい。
 最終処分情報(欄178)は、廃棄物“P0111”が、いつ、どの施設で、どのような処分方法で最終処分されたかを示す。処分日は、予定日であってもよい。
The temporary storage information (column 177) indicates when, in what facility, and in what container the waste “P0111” and the waste before dismantling were stored. The storage period may be a planned period.
The final disposal information (column 178) indicates when, at what facility, and by what disposal method the waste "P0111" was finally disposed of. The disposal date may be the scheduled date.
(処理手順)
 以降で、本実施形態の処理手順を説明する。処理手順は3つ存在し、それらは、計画作成処理手順、計測処理手順及び履歴作成処理手順である。
(Processing procedure)
Hereinafter, the processing procedure of the present embodiment will be described. There are three processing procedures, which are a planning processing procedure, a measurement processing procedure, and a history creating processing procedure.
(計画作成処理手順)
 図11は、計画作成処理手順のフローチャートである。いま、ある原子力発電所の廃炉が決定されたとする。
 ステップS201において、プラント解体管理装置1の処分計画作成部21は、廃棄物を特定する。具体的には、処分計画作成部21は、廃棄物のうちあるひと纏まりのもの(例えば系統)の廃棄物IDを発電所端末装置2から受信する。説明の都合上、ここでは、廃棄物ID“P01”(復水器2次側配管ユニット)が受信されたとする。
(Planning process procedure)
FIG. 11 is a flowchart of the plan creation processing procedure. Now, suppose that the decommissioning of a nuclear power plant has been decided.
In step S201, the disposal plan creation unit 21 of the plant dismantling management device 1 identifies the waste. Specifically, the disposal plan creation unit 21 receives the waste ID of a group of wastes (for example, a system) from the power plant terminal device 2. For convenience of explanation, it is assumed here that the waste ID “P01” (condenser secondary side piping unit) is received.
 ステップS202において、処分計画作成部21は、設計情報31(図5)を取得する。具体的には、処分計画作成部21は、廃棄物“P01”の設計情報31を、発電所端末装置2又はメーカ61から受信する。設計情報31に含まれる設計図面のうちの1枚は、製品“P01”が通常運転される場合の設計上の放射線量及び運転停止後の減衰特性を製品“P01”の部分(配管等)ごとに記載している。 In step S202, the disposal plan creation unit 21 acquires the design information 31 (FIG. 5). Specifically, the disposal plan creation unit 21 receives the design information 31 of the waste “P01” from the power plant terminal device 2 or the manufacturer 61. One of the design drawings included in the design information 31 shows the design radiation dose when the product "P01" is normally operated and the damping characteristics after the operation is stopped for each part (piping, etc.) of the product "P01". It is described in.
 ステップS203において、処分計画作成部21は、計測情報34(図8)を取得する。具体的には、処分計画作成部21は、直近の過去の時点における廃棄物“P01”の計測情報34を発電所端末装置2から受信する。ここでの計測情報は、図8の計測情報34の1本のレコードの型式を有する。 In step S203, the disposal plan creation unit 21 acquires the measurement information 34 (FIG. 8). Specifically, the disposal plan creation unit 21 receives the measurement information 34 of the waste “P01” at the latest past time point from the power plant terminal device 2. The measurement information here has the type of one record of the measurement information 34 in FIG.
 ステップS204において、処分計画作成部21は、放射線量を推定する。具体的には、処分計画作成部21は、ステップS202において取得した設計情報31(設計値)、及び、ステップS203において取得した計測情報34(実測値)を使用して、放射線量を推定する。ここで推定される放射線量は、例えば、現時点を起点とする、部分ごとの時系列放射線量である。放射線量が設計上充分低いはずの部分が、実際には高い放射線量を呈している場合もある。 In step S204, the disposal plan creation unit 21 estimates the radiation dose. Specifically, the disposal plan creation unit 21 estimates the radiation amount using the design information 31 (design value) acquired in step S202 and the measurement information 34 (actual measurement value) acquired in step S203. The radiation dose estimated here is, for example, a time-series radiation dose for each portion starting from the present time. The part where the radiation dose should be sufficiently low by design may actually exhibit a high radiation dose.
 ステップS205において、処分計画作成部21は、放射線源を特定する。具体的には、処分計画作成部21は、廃棄物“P01”を構成する部分(配管等)のうち、最も放射線量が高いものを特定する。この部分には、放射線源が付着している可能性が高い。処分計画作成部21は、カメラをロボットに操作させて撮像した画像に基づき、放射線源(図3の符号48)を特定してもよい。 In step S205, the disposal plan creation unit 21 specifies the radiation source. Specifically, the disposal plan creation unit 21 identifies the portion (piping, etc.) constituting the waste “P01” having the highest radiation dose. There is a high possibility that a radiation source has adhered to this part. The disposal plan creation unit 21 may specify the radiation source (reference numeral 48 in FIG. 3) based on the image captured by operating the camera by the robot.
 ステップS206において、処分計画作成部21は、除染の要否を決定する。具体的には、処分計画作成部21は、ステップS205において特定した放射線量を以下のいずれかの閾値と比較する。
・閾値1:原子力発電所の作業員の安全を確保できる上限
・閾値2:目標とする処分方法又は再利用方法を適用するための上限
In step S206, the disposal plan creation unit 21 determines whether or not decontamination is necessary. Specifically, the disposal plan creation unit 21 compares the radiation dose specified in step S205 with any of the following threshold values.
・ Threshold 1: Upper limit for ensuring the safety of workers at nuclear power plants ・ Threshold 2: Upper limit for applying the target disposal method or reuse method
 ステップS207において、処分計画作成部21は、除染が必要であるか否かを判断する。具体的には、処分計画作成部21は、ステップS206における比較の結果、放射線量が閾値以上である場合(ステップS207“Yes”)、ステップS209に進み、それ以外の場合(ステップS207“No”)ステップS208に進む。 In step S207, the disposal plan creation unit 21 determines whether or not decontamination is necessary. Specifically, the disposal plan creation unit 21 proceeds to step S209 when the radiation amount is equal to or higher than the threshold value as a result of comparison in step S206 (step S207 “Yes”), and proceeds to other cases (step S207 “No”). ) Proceed to step S208.
 ステップS208において、処分計画作成部21は、解体方法を決定する。具体的には、処分計画作成部21は、設計情報31(素材等)及び収容する容器の大きさ等に基づき廃棄物“P01”の解体方法を決定する。処分計画作成部21は、モバイル処理設備が使用可能である場合、その使用を決定する(ステップS209~S211でも同様)。 In step S208, the disposal plan creation unit 21 determines the dismantling method. Specifically, the disposal plan creation unit 21 determines the dismantling method of the waste “P01” based on the design information 31 (materials and the like), the size of the container to be accommodated, and the like. If the mobile processing equipment is available, the disposal plan creation unit 21 decides to use it (the same applies to steps S209 to S211).
 ステップS209において、処分計画作成部21は、解体前の除染方法を決定する。具体的には、処分計画作成部21は、設計情報31及びステップS204において推定した放射線量に基づき、廃棄物“P01”に対する除染方法を決定する。廃棄物“P01”は、水が流れる系統であるので、処分計画作成部21は、化学除染を選択する。さらに、廃棄物“P01”の素材(耐熱鋼)及び放射線量に適した薬剤を選択する。 In step S209, the disposal plan creation unit 21 determines the decontamination method before dismantling. Specifically, the disposal plan creation unit 21 determines the decontamination method for the waste “P01” based on the design information 31 and the radiation dose estimated in step S204. Since the waste "P01" is a system through which water flows, the disposal plan preparation unit 21 selects chemical decontamination. Further, a chemical suitable for the material (heat resistant steel) of the waste “P01” and the radiation dose is selected.
 ステップS210において、処分計画作成部21は、解体方法を決定する。具体的には、処分計画作成部21は、ステップS209において決定した除染方法で廃棄物“P01”が除染されていることを前提に、設計情報31、放射線量及び収容する容器の大きさ等に基づき廃棄物“P01”の解体方法を決定する。 In step S210, the disposal plan creation unit 21 determines the dismantling method. Specifically, the disposal plan creation unit 21 assumes that the waste “P01” has been decontaminated by the decontamination method determined in step S209, and has design information 31, radiation dose, and the size of the container to be accommodated. The method of dismantling the waste "P01" is determined based on the above.
 ステップS211において、処分計画作成部21は、解体後の除染方法を決定する。具体的には、処分計画作成部21は、設計情報31及び放射線量に基づき廃棄物“P01”が解体された後の各部分(配管等)に対する除染方法を決定する。このとき処分計画作成部21は、ステップS209において決定した除染方法で廃棄物“P01”が除染され、ステップS210において決定した解体方法で廃棄物“P01”が解体されていることを前提に、解体方法を決定する。ここで決定される除染方法は、例えば、半分に分割されている配管に対する機械除染である。 In step S211 the disposal plan creation unit 21 determines the decontamination method after dismantling. Specifically, the disposal plan creation unit 21 determines a decontamination method for each part (piping, etc.) after the waste “P01” is disassembled based on the design information 31 and the radiation dose. At this time, the disposal plan creation unit 21 assumes that the waste “P01” is decontaminated by the decontamination method determined in step S209 and the waste “P01” is dismantled by the dismantling method determined in step S210. , Determine the dismantling method. The decontamination method determined here is, for example, mechanical decontamination of a pipe divided in half.
 ステップS209~S211の処理を繰り返すことによって、処分計画作成部21は、廃棄物“P01”を複数回にわけて段階的に除染・解体する計画を作成してもよい。 By repeating the processes of steps S209 to S211, the disposal plan creation unit 21 may create a plan for stepwise decontaminating / disassembling the waste “P01” in a plurality of times.
 ステップS212において、処分計画作成部21は、再利用及び最終処分を決定する。具体的には、第1に、処分計画作成部21は、再利用施設が必要としている再利用資材及び必要としているタイミングをその購入価格とともに各再利用施設の再利用施設端末装置6から受信する。
 第2に、処分計画作成部21は、最終処分施設が将来的に受け入れ可能である廃棄物及び受け入れタイミングをその処分価格とともに各最終処分施設の最終処分施設端末装置5から受信する。
In step S212, the disposal plan preparation unit 21 decides reuse and final disposal. Specifically, first, the disposal plan creation unit 21 receives the reuse material required by the reuse facility and the required timing together with the purchase price from the reuse facility terminal device 6 of each reuse facility. ..
Second, the disposal plan preparation unit 21 receives the waste that the final disposal facility can accept in the future and the acceptance timing together with the disposal price from the final disposal facility terminal device 5 of each final disposal facility.
 第3に、処分計画作成部21は、廃棄物“P01”等を再利用可能な再利用施設、及び/又は、これらを最終処分可能な最終処分施設を決定する。「廃棄物“P01”等」は、廃棄物“P01”及びその解体後に発生した部分を総称している(以下同様)。処分計画作成部21は、例えば、各再利用施設が提示する購入価格に基づき、再利用施設を決定し、例えば、各最終処分施設が提示する受け入れタイミングに基づき、最終処分施設を決定する。 Thirdly, the disposal plan preparation unit 21 determines a reusable facility in which the waste "P01" and the like can be reused, and / or a final disposal facility in which these can be finally disposed of. "Waste" P01 "etc." is a general term for the waste "P01" and the parts generated after its dismantling (the same shall apply hereinafter). The disposal plan creation unit 21 determines the reuse facility based on, for example, the purchase price presented by each reuse facility, and determines the final disposal facility based on, for example, the acceptance timing presented by each final disposal facility.
 ステップS213において、処分計画作成部21は、保管方法及び搬送業者を決定する。具体的には、第1に、処分計画作成部21は、一時保管の対象とする廃棄物“P01”等の量、及び、最終処分までの期間を、各一時保管施設の一時保管施設端末装置4に送信する。すると一時保管施設端末装置4は、一時保管の可否及び保管料金をプラント解体管理装置1に返信する。 In step S213, the disposal plan creation unit 21 determines the storage method and the carrier. Specifically, first, the disposal plan creation unit 21 determines the amount of waste “P01” or the like to be temporarily stored and the period until final disposal, in the temporary storage facility terminal device of each temporary storage facility. Send to 4. Then, the temporary storage facility terminal device 4 returns the possibility of temporary storage and the storage fee to the plant dismantling management device 1.
 第2に、処分計画作成部21は、原子力発電所と各施設との間及び各施設相互間において搬送される廃棄物“P01”等の量、放射線量等を、各搬送業者の搬送業者端末装置7に送信する。すると搬送業者端末装置7は、搬送の可否及び搬送料金をプラント解体管理装置1に返信する。
 第3に、処分計画作成部21は、廃棄物“P01”等を一時保管可能な一時保管施設、及び、これらを搬送可能な搬送業者を決定する。処分計画作成部21は、各一時保管施設が提示する保管料金に基づき、一時保管施設を決定し、各搬送業者が提示する搬送料金に基づき、搬送業者を決定する。
Secondly, the disposal plan creation unit 21 transfers the amount, radiation amount, etc. of the waste “P01” etc. transported between the nuclear power plant and each facility and between each facility to the carrier terminal of each carrier. It is transmitted to the device 7. Then, the carrier terminal device 7 returns the possibility of transport and the transport fee to the plant dismantling management device 1.
Thirdly, the disposal plan creation unit 21 determines a temporary storage facility capable of temporarily storing the waste “P01” and the like, and a transporter capable of transporting these. The disposal plan creation unit 21 determines the temporary storage facility based on the storage fee presented by each temporary storage facility, and determines the carrier based on the transport fee presented by each carrier.
 ステップS214において、処分計画作成部21は、処分計画情報35(図9)を作成する。具体的には、処分計画作成部21は、ステップS208~S213において決定した内容に基づき、処分計画情報35を作成し、補助記憶装置15に記憶する。この段階で、処分計画情報35において廃棄物“P01”に関連付けられた各施設(利害関係者)は、自身の端末装置を介してプラント解体管理装置1にアクセスし、廃棄物“P01”に関する処分計画情報35のレコードを視認できるようになる。 In step S214, the disposal plan creation unit 21 creates the disposal plan information 35 (FIG. 9). Specifically, the disposal plan creation unit 21 creates the disposal plan information 35 based on the contents determined in steps S208 to S213 and stores it in the auxiliary storage device 15. At this stage, each facility (interested party) associated with the waste “P01” in the disposal plan information 35 accesses the plant dismantling management device 1 via its own terminal device, and disposes of the waste “P01”. The record of the plan information 35 can be visually recognized.
 その後、処分計画情報35に基づき利害関係者が、除染、解体、一時保管、搬送、再利用及び最終処分を行うことになる。各利害関係者は、処分計画情報35のうち自身が担当する部分を実行する。しかしながら、計画通りに実行できない場合もある。 After that, interested parties will perform decontamination, dismantling, temporary storage, transportation, reuse and final disposal based on the disposal plan information 35. Each stakeholder executes the part of the disposal plan information 35 that he / she is in charge of. However, it may not be possible to carry out as planned.
 ステップS215において、処分計画作成部21は、端末装置から実施報告を受信する。具体的には、処分計画作成部21は、各利害関係者の端末装置2~6(図4)から、予め計画された解体、除染等について実施報告を受信する。実施報告は、例えば“F01の解体を計画通りに実行した”、“F0111の除染を化学除染に変更した”等の情報を含む。処分計画作成部21は、受信した実施報告を補助記憶装置15に記憶する。 In step S215, the disposal plan creation unit 21 receives an implementation report from the terminal device. Specifically, the disposal plan creation unit 21 receives implementation reports on pre-planned dismantling, decontamination, etc. from the terminal devices 2 to 6 (FIG. 4) of each stakeholder. The implementation report includes information such as "the dismantling of F01 was carried out as planned" and "the decontamination of F0111 was changed to chemical decontamination". The disposal plan creation unit 21 stores the received implementation report in the auxiliary storage device 15.
 ステップS216において、処分計画作成部21は、計画に対する変更点を記憶する。具体的には、処分計画作成部21は、ステップS215において受信した実施報告が計画からの変更を示す場合、変更後の内容を処分計画情報35に上書きし、補助記憶装置15に記憶する。その後、計画作成処理手順を終了する。
 なお、ステップS215及びS216は、各利害関係者が解体、除染等を行う都度繰り返され、その結果、処分計画情報35は、常時最新の状態で維持される。
 ステップS201~S216の処理のうち、利害関係者から情報を取得する処理の主体は、情報収集部22であってもよい。この場合、情報収集部22は取得した情報を処分計画作成部21に渡し、以降の処理を委ねる。
In step S216, the disposal plan creation unit 21 stores the changes to the plan. Specifically, when the implementation report received in step S215 indicates a change from the plan, the disposal plan creation unit 21 overwrites the changed content with the disposal plan information 35 and stores it in the auxiliary storage device 15. After that, the planning process procedure is terminated.
It should be noted that steps S215 and S216 are repeated each time each stakeholder dismantles, decontaminates, etc., and as a result, the disposal plan information 35 is always maintained in the latest state.
Among the processes of steps S201 to S216, the main body of the process of acquiring information from interested parties may be the information collecting unit 22. In this case, the information collecting unit 22 passes the acquired information to the disposal plan creating unit 21 and entrusts the subsequent processing.
(計測処理手順)
 図12は、計測処理手順のフローチャートである。各利害関係者は、任意の時点で廃棄物の放射線量を測定することができる。本実施形態では、搬送業者以外の各利害関係者は、自身の端末装置2~6を介して、廃棄物の解体又は除染の前後において廃棄物の放射線量を計測し、プラント解体管理装置1に送信するものとする。いま、説明の便宜上、利害関係者の例として処理施設63(図2)を採用する。
(Measurement processing procedure)
FIG. 12 is a flowchart of the measurement processing procedure. Each stakeholder can measure the radiation dose of waste at any time. In the present embodiment, each stakeholder other than the carrier measures the radiation amount of the waste before and after the dismantling or decontamination of the waste via its own terminal devices 2 to 6, and the plant dismantling management device 1 Shall be sent to. Now, for convenience of explanation, the processing facility 63 (FIG. 2) is adopted as an example of interested parties.
 ステップS301において、プラント解体管理装置1の情報収集部22は、解体の準備が完了したか否かを判断する。具体的には、情報収集部22は、処理施設63の処理施設端末装置3から廃棄物の解体の準備が完了した旨を受信した場合(ステップS301“Yes”)、ステップS303に進み、それ以外の場合(ステップS301“No”)、ステップS302に進む。 In step S301, the information collecting unit 22 of the plant dismantling management device 1 determines whether or not the preparation for dismantling is completed. Specifically, when the information collecting unit 22 receives from the processing facility terminal device 3 of the processing facility 63 that the preparation for dismantling the waste is completed (step S301 “Yes”), the information collecting unit 22 proceeds to step S303, and otherwise proceeds to step S303. (Step S301 “No”), the process proceeds to step S302.
 ステップS302において、情報収集部22は、除染の準備が完了したか否かを判断する。具体的には、情報収集部22は、処理施設63の処理施設端末装置3から廃棄物の除染の準備が完了した旨を受信した場合(ステップS302“Yes”)、ステップS303に進み、それ以外の場合(ステップS302“No”)、ステップS301に戻る。 In step S302, the information collecting unit 22 determines whether or not the preparation for decontamination is completed. Specifically, when the information collecting unit 22 receives from the processing facility terminal device 3 of the processing facility 63 that the preparation for decontamination of waste is completed (step S302 “Yes”), the information collecting unit 22 proceeds to step S303, and the process proceeds to the process. In other cases (step S302 “No”), the process returns to step S301.
 ステップS303において、情報収集部22は、放射線量を取得する。具体的には、第1に、情報収集部22は、処理施設63の処理施設端末装置3から廃棄物の放射線量を受信する。
 第2に、情報収集部22は、受信した放射線量に基づき、計測情報34(図8)のレコードを作成する。
In step S303, the information collecting unit 22 acquires the radiation dose. Specifically, first, the information collecting unit 22 receives the radiation dose of the waste from the processing facility terminal device 3 of the processing facility 63.
Second, the information collecting unit 22 creates a record of measurement information 34 (FIG. 8) based on the received radiation dose.
 ステップS304において、情報収集部22は、解体が完了したか否かを判断する。具体的には、情報収集部22は、処理施設63の処理施設端末装置3から廃棄物の解体が完了した旨を受信した場合(ステップS304“Yes”)、ステップS306に進み、それ以外の場合(ステップS304“No”)、ステップS305に進む。 In step S304, the information collecting unit 22 determines whether or not the dismantling is completed. Specifically, when the information collecting unit 22 receives from the processing facility terminal device 3 of the processing facility 63 that the dismantling of the waste is completed (step S304 “Yes”), the information collecting unit 22 proceeds to step S306, and in other cases. (Step S304 “No”), the process proceeds to step S305.
 ステップS305において、情報収集部22は、除染が完了したか否かを判断する。具体的には、情報収集部22は、処理施設63の処理施設端末装置3から廃棄物の除染が完了した旨を受信した場合(ステップS305“Yes”)、ステップS306に進み、それ以外の場合(ステップS305“No”)、ステップS304に戻る。 In step S305, the information collecting unit 22 determines whether or not the decontamination is completed. Specifically, when the information collecting unit 22 receives from the processing facility terminal device 3 of the processing facility 63 that the decontamination of the waste is completed (step S305 “Yes”), the information collecting unit 22 proceeds to step S306, and other than that. In the case (step S305 “No”), the process returns to step S304.
 ステップS306において、情報収集部22は、放射線量等を取得する。具体的には、第1に、情報収集部22は、処理施設63の処理施設端末装置3から廃棄物の放射線量を受信する。
 第2に、情報収集部22は、受信した放射線量に基づき、計測情報34(図8)のレコードを作成する。
In step S306, the information collecting unit 22 acquires the radiation dose and the like. Specifically, first, the information collecting unit 22 receives the radiation dose of the waste from the processing facility terminal device 3 of the processing facility 63.
Second, the information collecting unit 22 creates a record of measurement information 34 (FIG. 8) based on the received radiation dose.
 第3に、情報収集部22は、処理施設63の処理施設端末装置3から廃棄物に対する解体又は除染の内容を受信する。なお、ここで受信する情報は、ステップS215(図11)における実施報告と同じものであってもよい。
 第4に、情報収集部22は、受信した解体又は除染の内容に基づき解体情報33(図7)又は除染情報32(図6)のレコードを作成する。その後、計測処理手順を終了する。
 以上で明らかなように、プラント解体管理装置1は、除染情報32(図6)、解体情報33(図7)及び計測情報34(図8)を、常時最新の状態で維持する。
Thirdly, the information collecting unit 22 receives the contents of dismantling or decontamination of the waste from the processing facility terminal device 3 of the processing facility 63. The information received here may be the same as the implementation report in step S215 (FIG. 11).
Fourth, the information collecting unit 22 creates a record of dismantling information 33 (FIG. 7) or decontamination information 32 (FIG. 6) based on the received dismantling or decontamination content. After that, the measurement processing procedure is terminated.
As is clear from the above, the plant dismantling management device 1 always maintains the decontamination information 32 (FIG. 6), the dismantling information 33 (FIG. 7), and the measurement information 34 (FIG. 8) in the latest state.
(履歴作成処理手順)
 図13は、履歴作成処理手順のフローチャートである。各利害関係者は、プラント解体管理装置1に対して、自身が扱う廃棄物の履歴を要求することができる。説明の便宜上、いま、利害関係者の例として一時保管施設65(図2)が、廃棄物“P0111”を受け入れるために、その履歴を知ろうとしているとする。
(History creation processing procedure)
FIG. 13 is a flowchart of the history creation processing procedure. Each stakeholder can request the plant demolition management device 1 for the history of the waste it handles. For convenience of explanation, it is now assumed that, as an example of a stakeholder, the temporary storage facility 65 (FIG. 2) is trying to know its history in order to receive the waste “P0111”.
 ステップS401において、プラント解体管理装置1の履歴提供部23は、端末装置から履歴要求を受信する。具体的には、履歴提供部23は、一時保管施設65の一時保管施設端末装置4から廃棄物ID“P0111”を含む履歴要求を受信する。 In step S401, the history providing unit 23 of the plant dismantling management device 1 receives a history request from the terminal device. Specifically, the history providing unit 23 receives a history request including the waste ID “P0111” from the temporary storage facility terminal device 4 of the temporary storage facility 65.
 ステップS402において、履歴提供部23は、検索キーを使用して各情報から該当するデータを取得する。具体的には、履歴提供部23は、廃棄物ID“P0111”を検索キーとして、設計情報31(図5)、除染情報32(図6)、解体情報33(図7)、計測情報34(図8)、処分計画情報35(図9)及びその他の情報を検索する。そのうえで、履歴提供部23は、“P0111”に関連付けられているすべてのデータを取得する。ここでの“その他の情報”とは、ステップS215(図11)において処分計画作成部21が受信した実施報告である。 In step S402, the history providing unit 23 acquires the corresponding data from each information by using the search key. Specifically, the history providing unit 23 uses the waste ID “P0111” as a search key to design information 31 (FIG. 5), decontamination information 32 (FIG. 6), dismantling information 33 (FIG. 7), and measurement information 34. (FIG. 8), disposal plan information 35 (FIG. 9) and other information are searched. Then, the history providing unit 23 acquires all the data associated with "P0111". The “other information” here is the implementation report received by the disposal plan creation unit 21 in step S215 (FIG. 11).
 ステップS403において、履歴提供部23は、廃棄物履歴情報36(図10)を作成する。具体的には、履歴提供部23は、ステップS402において取得したデータに基づいて、廃棄物IDが“P0111”である廃棄物履歴情報36を作成する。なお、ここで作成される廃棄物履歴情報36のうち、一時保管情報欄177及び最終処分情報欄178のデータは、計画段階のものである。 In step S403, the history providing unit 23 creates the waste history information 36 (FIG. 10). Specifically, the history providing unit 23 creates the waste history information 36 having the waste ID “P0111” based on the data acquired in step S402. Of the waste history information 36 created here, the data in the temporary storage information column 177 and the final disposal information column 178 are at the planning stage.
 ステップS404において、履歴提供部23は、端末装置に廃棄物履歴情報36(図10)を送信する。具体的には、履歴提供部23は、ステップS403において作成した廃棄物履歴情報36を一時保管施設65の一時保管施設端末装置4に送信する。
 その後、履歴作成処理手順を終了する。
In step S404, the history providing unit 23 transmits the waste history information 36 (FIG. 10) to the terminal device. Specifically, the history providing unit 23 transmits the waste history information 36 created in step S403 to the temporary storage facility terminal device 4 of the temporary storage facility 65.
After that, the history creation processing procedure is terminated.
(本実施形態の効果)
 本実施形態のプラント解体管理装置の効果は以下の通りである。
(1)プラント解体管理装置は、廃棄物の工程を計画し、廃棄物の履歴情報を利害関係者が共有することを可能にする。したがって、プラント解体管理装置は、廃棄物のトレーサビリティに資するだけでなく各利害関係者の管理費用を大幅に削減することができる。
(2)プラント解体管理装置は、廃棄物に関する情報を利害関係者から受信することができる。
(3)プラント解体管理装置は、廃棄物の再利用又は最終処分に至る、解体、除染及び一時保管を管理することができる。
(4)プラント解体管理装置は、放射線源を特定したうえで、的確かつ効率的に除染又は解体の方法を計画することができる。
(Effect of this embodiment)
The effects of the plant dismantling management device of this embodiment are as follows.
(1) The plant demolition management device plans the waste process and enables stakeholders to share the waste history information. Therefore, the plant demolition management device not only contributes to the traceability of waste, but also can significantly reduce the management cost of each stakeholder.
(2) The plant demolition management device can receive information on waste from interested parties.
(3) The plant dismantling management device can manage dismantling, decontamination and temporary storage leading to the reuse or final disposal of waste.
(4) The plant dismantling management device can plan the decontamination or dismantling method accurately and efficiently after specifying the radiation source.
(5)プラント解体管理装置は、原子炉の廃炉に適用され得る。
(6)プラント解体管理装置は、廃棄物の設計情報等を使用して除染及び解体の方法等を決定することができる。
(7)プラント解体管理装置は、工程に係る収益を管理することができる。
(8)プラント解体管理装置は、実績に応じ工程を更新することができる。
(5) The plant demolition management device can be applied to the decommissioning of a nuclear reactor.
(6) The plant dismantling management device can determine the decontamination and dismantling method, etc. by using the waste design information and the like.
(7) The plant dismantling management device can manage the profit related to the process.
(8) The plant dismantling management device can update the process according to the actual results.
 なお、本発明は前記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施例は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, but includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the configurations described. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
 また、前記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウエアで実現してもよい。また、前記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウエアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、又は、ICカード、SDカード、DVD等の記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際には殆どすべての構成が相互に接続されていると考えてもよい。
Further, each of the above-mentioned configurations, functions, processing units, processing means and the like may be realized by hardware by designing a part or all of them by, for example, an integrated circuit. Further, each of the above configurations, functions, and the like may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as programs, tables, and files that realize each function can be placed in a memory, a recording device such as a hard disk or SSD (Solid State Drive), or a recording medium such as an IC card, SD card, or DVD.
In addition, the control lines and information lines indicate what is considered necessary for explanation, and do not necessarily indicate all the control lines and information lines in the product. In practice, it can be considered that almost all configurations are interconnected.
 1   プラント解体管理装置
 2   発電所端末装置
 3   処理施設端末装置
 4   一時保管施設端末装置
 5   最終処分施設端末装置
 6   再利用施設端末装置
 7   搬送者端末装置
 8   ネットワーク
 11  中央制御装置
 12  入力装置
 13  出力装置
 14  主記憶装置
 15  補助記憶装置
 16  通信装置
 21  処分計画作成部
 22  情報収集部
 23  履歴提供部
 31  設計情報
 32  除染情報
 33  解体情報
 34  計測情報
 35  処分計画情報
 36  廃棄物履歴情報
1 Plant dismantling management device 2 Power plant terminal device 3 Processing facility terminal device 4 Temporary storage facility terminal device 5 Final disposal facility terminal device 6 Reuse facility terminal device 7 Carrier terminal device 8 Network 11 Central control device 12 Input device 13 Output device 14 Main storage device 15 Auxiliary storage device 16 Communication device 21 Disposal plan creation department 22 Information collection department 23 History provision department 31 Design information 32 Decontamination information 33 Dismantling information 34 Measurement information 35 Disposal plan information 36 Waste history information

Claims (10)

  1.  プラントから排出される廃棄物の設計情報及び前記廃棄物の放射線量に基づき、前記廃棄物が前記プラントから排出された後再利用又は最終処分されるまでの工程を計画する処分計画作成部と、
     前記工程における利害関係者からの要求に応じて、前記廃棄物の履歴情報を前記利害関係者の端末装置に送信する履歴提供部と、
     を備えることを特徴とするプラント解体管理装置。
    Based on the design information of the waste discharged from the plant and the radiation dose of the waste, the disposal plan creation unit that plans the process from the discharge of the waste to the reuse or final disposal of the waste,
    A history providing unit that transmits the history information of the waste to the terminal device of the stakeholder in response to a request from the stakeholder in the process.
    A plant demolition management device characterized by being equipped with.
  2.  前記利害関係者が取り扱った前記廃棄物に関する情報を受信する情報収集部を備えること、
     を特徴とする請求項1に記載のプラント解体管理装置。
    To have an information gathering unit that receives information about the waste handled by the interested parties.
    The plant dismantling management device according to claim 1.
  3.  前記工程は、
     前記廃棄物の解体、除染及び一時保管のうちの少なくとも1つを含み、
     前記履歴情報は、
     前記廃棄物の設計情報、並びに、前記廃棄物の放射線量、除染、解体、一時保管及び最終処分に関する情報のうちの少なくとも1つを含むこと、
     を特徴とする請求項2に記載のプラント解体管理装置。
    The step is
    Includes at least one of the dismantling, decontamination and temporary storage of the waste.
    The history information is
    Includes at least one of the waste design information and information on the radiation dose, decontamination, dismantling, temporary storage and final disposal of the waste.
    2. The plant dismantling management device according to claim 2.
  4.  前記処分計画作成部は、
     前記廃棄物の部分のうち放射線源となる部分を特定したうえで除染又は解体の方法を計画すること、
     を特徴とする請求項3に記載のプラント解体管理装置。
    The disposal planning department
    To plan the decontamination or dismantling method after identifying the part of the waste that will be the radiation source.
    The plant dismantling management device according to claim 3.
  5.  前記利害関係者は、
     原子力発電所、前記廃棄物の処理施設、前記廃棄物の一時保管施設、前記廃棄物の再利用施設及び前記廃棄物の最終処分施設のうちの少なくとも1つを含むこと、
     を特徴とする請求項4に記載のプラント解体管理装置。
    The interested parties are
    Include at least one of a nuclear power plant, said waste treatment facility, said waste temporary storage facility, said waste reuse facility and said waste final disposal facility.
    The plant dismantling management device according to claim 4.
  6.  前記処分計画作成部は、
     前記廃棄物の設計情報及び前記廃棄物の放射線量に基づき、前記廃棄物を除染する必要性の有無、前記廃棄物を除染する方法及び前記廃棄物を解体する方法のうちの少なくとも1つを決定すること、
     を特徴とする請求項5に記載のプラント解体管理装置。
    The disposal planning department
    At least one of the necessity of decontaminating the waste, the method of decontaminating the waste, and the method of dismantling the waste based on the design information of the waste and the radiation dose of the waste. To decide,
    The plant dismantling management device according to claim 5.
  7.  前記処分計画作成部は、
     前記工程の収益を管理し、
     前記工程は、
     前記利害関係者間で共同使用可能な設備を使用し得る工程を含むこと、
     を特徴とする請求項6に記載のプラント解体管理装置。
    The disposal planning department
    Manage the profit of the process and
    The step is
    Including a process in which equipment that can be shared among the stakeholders can be used,
    The plant dismantling management device according to claim 6.
  8.  前記処分計画作成部は、
     前記利害関係者から受信した情報に基づき、前記工程を更新すること、
     を特徴とする請求項7に記載のプラント解体管理装置。
    The disposal planning department
    Updating the process based on the information received from the interested parties,
    7. The plant dismantling management device according to claim 7.
  9.  プラント解体管理装置の処分計画作成部は、
     プラントから排出される廃棄物の設計情報及び前記廃棄物の放射線量に基づき、前記廃棄物が前記プラントから排出された後再利用又は最終処分されるまでの工程を計画し、
     前記プラント解体管理装置の履歴提供部は、
     前記工程における利害関係者からの要求に応じて、前記廃棄物の履歴情報を前記利害関係者の端末装置に送信すること、
     を特徴とするプラント解体管理装置のプラント解体管理方法。
    The disposal plan creation department of the plant dismantling management device
    Based on the design information of the waste discharged from the plant and the radiation dose of the waste, the process from the discharge of the waste to the reuse or final disposal is planned.
    The history providing unit of the plant dismantling management device
    To transmit the history information of the waste to the terminal device of the stakeholder in response to the request from the stakeholder in the process.
    A plant demolition management method for plant demolition management equipment.
  10.  コンピュータを、
     プラントから排出される廃棄物の設計情報及び前記廃棄物の放射線量に基づき、前記廃棄物が前記プラントから排出された後再利用又は最終処分されるまでの工程を計画する処分計画作成部と、
     前記工程における利害関係者からの要求に応じて、前記廃棄物の履歴情報を前記利害関係者の端末装置に送信する履歴提供部と、
     して機能させることを特徴とするプラント解体管理プログラム。
    Computer,
    Based on the design information of the waste discharged from the plant and the radiation dose of the waste, the disposal plan creation unit that plans the process from the discharge of the waste to the reuse or final disposal of the waste,
    A history providing unit that transmits the history information of the waste to the terminal device of the stakeholder in response to a request from the stakeholder in the process.
    A plant demolition management program characterized by its ability to function.
PCT/JP2021/037234 2020-10-08 2021-10-07 Plant demolition management device, plant demolition management method, and plant demolition management program WO2022075429A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-170502 2020-10-08
JP2020170502A JP7473441B2 (en) 2020-10-08 2020-10-08 PLANT DISMANTLING MANAGEMENT DEVICE, PLANT DISMANTLING MANAGEMENT METHOD, AND

Publications (1)

Publication Number Publication Date
WO2022075429A1 true WO2022075429A1 (en) 2022-04-14

Family

ID=81126503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037234 WO2022075429A1 (en) 2020-10-08 2021-10-07 Plant demolition management device, plant demolition management method, and plant demolition management program

Country Status (3)

Country Link
JP (1) JP7473441B2 (en)
TW (1) TWI834067B (en)
WO (1) WO2022075429A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102640021B1 (en) * 2022-08-31 2024-02-22 최영구 A sampling methods for analysis and evaluation of the over-motor radiological properties of a permanent shutdown nuclear power plant

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200242558A1 (en) * 2019-01-28 2020-07-30 Korea Atomic Energy Research Institute Method and apparatus for decommissioning plan of nuclear facility

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8953731B2 (en) * 2004-12-03 2015-02-10 General Electric Company Method of producing isotopes in power nuclear reactors
JP4747345B2 (en) 2008-03-04 2011-08-17 独立行政法人 日本原子力研究開発機構 Equipment dismantling work management support system
CN104190689B (en) * 2014-08-04 2016-02-24 中国建筑第八工程局有限公司 Based on the building waste recovery method of intelligent management system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200242558A1 (en) * 2019-01-28 2020-07-30 Korea Atomic Energy Research Institute Method and apparatus for decommissioning plan of nuclear facility

Also Published As

Publication number Publication date
JP2022062474A (en) 2022-04-20
JP7473441B2 (en) 2024-04-23
TW202215355A (en) 2022-04-16
TWI834067B (en) 2024-03-01

Similar Documents

Publication Publication Date Title
KR102242394B1 (en) Method for treating racioactive waste treatment process, tracking racioactive waste treatment process and system therefor
WO2022075429A1 (en) Plant demolition management device, plant demolition management method, and plant demolition management program
JP7301670B2 (en) Process control system and process control method
JP7234072B2 (en) Waste body radioactivity evaluation system and waste body radioactivity evaluation method
Kawamura et al. Decommissioning and Environmental Remediation Scenario Development for Fukushima Daiichi
KR20200032539A (en) Method for tracking racioactive waste treatment process and system therefor
CN112466495B (en) Nuclear power plant retired radioactive waste management method
Batsulin et al. The structure of the support system for making optimal decisions during the decommissioning of nuclear facilities
Bochkarev et al. Optimal Decision Support System under the Decommissioning of Nuclear Facilities
Daniška International guidance on decommissioning cost structure and its practical implementation
Canadian Nuclear Safety Commission REGDOC-2.11. 2, Decommissioning
Nichols et al. Summary Analysis Hanford Site Composite (Analysis Update)
Daniška Decommissioning Consultant, VUJE, as, Okružná, Trnava, Slovak Republic
Parvin Research reactor decommissioning and radioactive waste management
Selling Radiological protection in the decommissioning of nuclear facilities: safety, regulations and licensing
Shuford et al. Operations Research Modeling in Support of the Hanford Direct Feed Low Activity Waste Program–15538
Zachar et al. Code eOMEGA-Decommissioning Costing of Nuclear Facilities Based on the ISDC-17230
Marsiletti et al. IDMT an integrated system to manage decommissioning activities
Topping Reactor-Site Selection
Chang et al. Generating alternatives for low-level radioactive waste management systems
Kristofova et al. Decommissioning activities for NPP A-1 in the Slovak Republic
Ign Design Lessons Drawn from the Decommissioning of Nuclear Facilities
Meservey et al. Improving D&D Planning and Waste Management with Cutting and Packaging Simulation
Gonen et al. Analysis of distribution system planning data requirements
Dinner Nuclear facility design and operation to facilitate decommissioning: lessons learned

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877728

Country of ref document: EP

Kind code of ref document: A1