WO2022075243A1 - Schizophrenia biomarker - Google Patents

Schizophrenia biomarker Download PDF

Info

Publication number
WO2022075243A1
WO2022075243A1 PCT/JP2021/036560 JP2021036560W WO2022075243A1 WO 2022075243 A1 WO2022075243 A1 WO 2022075243A1 JP 2021036560 W JP2021036560 W JP 2021036560W WO 2022075243 A1 WO2022075243 A1 WO 2022075243A1
Authority
WO
WIPO (PCT)
Prior art keywords
crmp2
phosphorylated
subject
schizophrenia
sample derived
Prior art date
Application number
PCT/JP2021/036560
Other languages
French (fr)
Japanese (ja)
Inventor
良郎 五嶋
宗孝 野本
Original Assignee
公立大学法人横浜市立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人横浜市立大学 filed Critical 公立大学法人横浜市立大学
Publication of WO2022075243A1 publication Critical patent/WO2022075243A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • the present invention relates to a schizophrenia biomarker.
  • Schizophrenia is a psychiatric disorder characterized by impaired cognition, perception, emotions, and behavior. Diagnosis of schizophrenia is made by symptom-based scoring, and the development of quantitative biomarkers is awaited. Under such circumstances, Bader et al. Reported that a change was observed in one of the CRMP family molecules called CRMP1 (Non-Patent Document 1: Hum Mol Genet, 21, 4406-4418, 2012). However, the method of Bader et al. Had to adjust the lymphocytes, which was complicated.
  • An object of the present invention is to provide a biomarker for schizophrenia that can be detected by a simple method.
  • the present inventors may find that an increase in the expression level of non-phosphate Collapsin Response Mediator Protein 2 (CRMP2) in a blood sample and / or a decrease in the phosphorylated CRMP2: non-phosphorylated CRMP2 ratio may be useful for diagnosing schizophrenia. It was found that there is, and the present invention was completed.
  • CRMP2 Collapsin Response Mediator Protein 2
  • the gist of the present invention is as follows.
  • a method for testing schizophrenia which comprises measuring the expression level of non-phosphorylated Collapsin Response Mediator Protein 2 (CRMP2) and / or phosphorylated CRMP2 in a sample derived from a subject.
  • CRMP2 Collapsin Response Mediator Protein 2
  • phosphorylated CRMP2 ratio indicates that the possibility or risk of developing schizophrenia is high.
  • the possibility or risk of developing schizophrenia is that the phosphorylated CRMP2: non-phosphorylated CRMP2 ratio in the subject's peripheral blood mononuclear cell fraction is 0.25 or less.
  • a method for diagnosing schizophrenia in a subject Obtaining a sample from the subject, b.
  • the method comprising determining the likelihood or risk of developing schizophrenia in a subject based on the expression level of non-phosphorylated CRMP2 and / or the phosphorylated CRMP2: non-phosphorylated CRMP2 ratio.
  • a method for diagnosing and treating schizophrenia in a subject Obtaining a sample from the subject, b. Measuring the expression levels of non-phosphorylated Collapsin Response Mediator Protein 2 (CRMP2) and / or phosphorylated CRMP2 in a sample derived from the subject. c.
  • the method described above comprising initiating treatment of the subject with schizophrenia if the likelihood or risk of developing schizophrenia is determined to be high.
  • the expression level of non-phosphorylated CRMP2 in the sample derived from the subject is higher than the expression level of non-phosphorylated CRMP2 in the sample derived from a healthy person who has not developed schizophrenia, and / or the sample derived from the subject.
  • Phosphorylated CRMP2 Non-phosphorylated CRMP2 ratio in a sample derived from a healthy person who has not developed schizophrenia is lower than the phosphorylated CRMP2: non-phosphorylated CRMP2 ratio in the possibility or risk of developing schizophrenia.
  • Integration including a reagent capable of measuring the expression level of non-phosphorylated Collapsin Response Mediator Protein 2 (CRMP2) and / or a reagent capable of measuring the expression level of phosphorylated CRMP2 in a sample derived from a subject.
  • CRMP2 Collapsin Response Mediator Protein 2
  • the present invention enables quantitative diagnosis of schizophrenia.
  • CRMP2 ratio may be useful in diagnosing schizophrenia.
  • This specification includes the contents described in the Japanese patent application, Japanese Patent Application No. 2020-169396 and / or the drawings which are the basis of the priority of the present application.
  • CRMP2 pCRMP2 phosphorylated with serine 522 was examined by quantitative Western blot using certain well-certified antibodies.
  • a single band of 64 kDa was detected using 9F in brain lysates from wt, crmp1 -/- and crmp2 ki / ki mice, but not in crmp2 -/- mice.
  • a single band was detected with anti-pCRMP1 / 2 antibodies in the brain lysates from wt and crmp1 -/- , but in crmp1 -/- ; crmp2 -/- and crmp2 ki / ki mice. There wasn't.
  • FIG. 1 A typical immunoblotting method using an anti-CRMP2 antibody against a human peripheral blood mononuclear cell (PBMC) fraction of a normal healthy control subject [left panel] was compared with a positive control brain lysate. In the right panel, it can be seen that the band is successfully blocked by the antigenic peptide of CRMP2. (See also Figure 3 for further validation of the antibodies used in this study). Further validation of the antibodies used in the immunoblotting in this study and evidence that the CRMP1 isoform is not associated with the phenomenon described in this study. The difference seen in SCZ and non-affected patients was also demonstrated by the use of antibodies against CRMP1 to be more important in the difference in the abundance of CRMP2 isoforms than in CRMP1 isoforms.
  • PBMC peripheral blood mononuclear cell
  • the present invention provides a method for testing schizophrenia, which comprises measuring the expression levels of non-phosphorylated Collapsin Response Mediator Protein 2 (CRMP2) and / or phosphorylated CRMP2 in a sample derived from a subject.
  • CRMP2 Collapsin Response Mediator Protein 2
  • Schizophrenia is a mental illness of unknown cause that often occurs in adolescence. Although genetic predisposition to develop the disease is recognized, the onset is considered to be due to the interaction between environmental factors and genetic factors as well as genetic factors. Symptoms are characterized by peculiar thought disorders, inappropriate or dull feelings and motivation, autistic or playful lifestyles, and social and occupational dysfunction. Anomalous experiences such as hallucinations and delusions, ego disorders such as acts and affected experiences, and lack of insight are shown in the form of psychotic episodes. Although there are cognitive impairments such as proper selection, judgment, and execution of information, consciousness is clear and general intelligence is maintained. There are no clear physical findings. The course indicates either acute or chronic course, but most have a chronic course.
  • neuregulin 1, DISC 1, and dysbindin which are potential risk genes for schizophrenia, are more highly expressed in the fetal brain than in adults and are involved in the formation of synapses and neural circuits (Harrison). PJ, Weinberger DR. Mol Psychiatry. 2005 Jan; 10 (1): 40-68; image 5.). Glantz and Lewis (2000) also reported that Golgi's staining reduced the density of dendrite spines in pyramidal neurons in the third layer of the dorsolateral prefrontal cortex (Glantz LA, Lewis DA. Arch). Gen Psychiatry. 2000 Jan; 57 (1): 65-73.).
  • CRMP2 Collapsin Response Mediator Protein 2
  • CRMPs are cytoplasmic proteins, and five subtypes (CRMP1-5) have been identified so far. All of these show high levels of expression during the developmental stage of the brain, but each shows a specific expression distribution and time of expression. Of these, CRMP2 shows high expression levels in the sensory system, hippocampus, cerebral cortex, cerebellum, etc. even in the adult brain.
  • CRMPs are homologous molecules of C. elegans Unc-33, and mutations in C. unc-33 cause axonal elongation and abnormal guidance in C. elegans neurons.
  • CRMPs are phosphorylated downstream of Sema3A, where cyclin dependent kinase 5 (Cdk5) phosphorylates the 522nd Serin residue, thereby continuing to glycogen synthase kinase (GSK3b) Ser517, Thr514, Thr509 residues. It is a protein that undergoes two-step phosphorylation modification, and its regulation of phosphorylation plays an important role in the development and maturation of nerves.
  • Cdk5 cyclin dependent kinase 5
  • GSK3b glycogen synthase kinase
  • CRMP2 undergoes various post-translational modifications such as Rho / ROCK kinase (ROCK1), Fyn (FYN), Fes (FES) tyrosine kinase, and SUMOylation.
  • ROCK1 Rho / ROCK kinase
  • FYN Fyn
  • FES Fes
  • SUMOylation phosphorylation modification
  • CRMP2 changes its interaction with molecules such as tuberin and calcium channels, and through this, it plays a role as a mediator of neuronutrient factors and other external signals, including Sema3A, as well as polarity and axon formation. It has been reported to be involved in various nerve functions and pathological conditions such as nerve cell migration, synaptogenesis, synaptic plasticity, and nerve disease (Nakamura et al, Front Cell Neurosci.
  • CRMP2 is phosphorylated by Cdk5 (cyclin-dependent kinase 5, CDK5) and GSK3b (GSK3b, glycogensynthase3b), which reduces the interaction with tuberin and suppresses protrusion elongation.
  • Cdk5 cyclin-dependent kinase 5, CDK5
  • GSK3b glycogensynthase3b
  • CRMP2 is highly expressed mainly in the central nervous system, especially in the cerebral spinal cord tissue during development. Among the CRMP family molecules, the expression level of CRMP2 is maintained even in the relatively mature stage, and its role in adults such as learning, memory, and cognitive function is presumed. The expression of CRMP2 is also expressed in cardiovascular system, immune system, and digestive system tissues, but its role is often unknown. CRMP2 undergoes various post-translational modifications, including phosphorylation, as described above. An important modification is phosphorylation modification by Cdk5, GSK3b, Rho / ROCK kinase at the C-terminus of CRMP2.
  • Cdk5 phosphorylates CRMP2 with Ser522, which promotes phosphorylation modification of CRMP2 by GSK3 ⁇ in Thr514 and Ser518.
  • This two-step phosphorylation modification mode is called prime phosphorylation (Nakamura et al, Front Cell Neurosci. 2020 Jun 23; 14: 188.).
  • prime phosphorylation Nakamura et al, Front Cell Neurosci. 2020 Jun 23; 14: 188.
  • phosphorylated CRMP2 has reduced interaction with tubulin and reduced cytoskeletal system function.
  • CRMP2 interacts with tubulin better and the formation of a cytoskeletal system occurs.
  • the phosphorylated CRMP2 is sometimes referred to as an inactive form, and the dephosphorylated form is sometimes referred to as an active form.
  • Other known physiological significance of CRMP2 post-translational modification is the interaction of CRMP2 with sodium and calcium channels and their activity regulation (Chew and Khana, Neuronal Signal. 2018; 2 (1): NS20170220.).
  • the phosphorylated CRMP2 is preferably CRMP2 phosphorylated by Ser522.
  • the subject is a mammal suspected of developing schizophrenia, but all mammals at risk of developing schizophrenia may be targeted. It is typically human. Humans are preferably under the age of 40, more preferably under the age of 30. Samples derived from the subject include cells, tissues, body fluids, etc. obtained from the subject, specifically, the subject's blood (for example, whole blood, serum, plasma, plasma exchange external fluid, etc.), brain tissue, saliva, tears, etc. Etc. can be exemplified. A blood sample such as whole blood, serum or plasma obtained by a normal blood test (clinical test) may be used as a blood sample. The blood sample may be a peripheral blood mononuclear cell fraction.
  • the expression of non-phosphorylated CRMP2 and / or phosphorylated CRMP2 in a sample derived from a subject may be measured by measuring the abundance of the above protein or a fragment thereof in the sample.
  • the measuring means is not particularly limited, and a known method may be used. It is preferably measured at the protein level, but may be measured at the nucleic acid level.
  • an antibody that specifically recognizes the protein may be either a monoclonal antibody or a polyclonal antibody. These antibodies can be produced by known methods, or commercially available ones may be used. In the examples described below, an anti-phosphorylated CRMP1 / 2 (S522) (p-S522-CRMP1 / 2) polyclonal antibody that recognizes CRMP2 phosphorylated by Ser522 was used. Typical methods include immunoassays such as an ELISA method and an immunochromatography method.
  • the immunoassay method does not require a special device or technique and can easily and quickly detect and quantify the target protein, it can be preferably used for the measurement of the above protein in the present invention as well.
  • Antibodies to the above proteins are known, and commercially available products also exist. Further, as described above, since the amino acid sequence of the above protein and the base sequence encoding these are also known, a specific antibody against each protein may be prepared by preparing a general hybridoma.
  • the immunoassay itself is well known in this field.
  • a sandwich method a competitive method, an agglutination method, a Western blotting method and the like, and based on the label, there are enzyme immunoassay, radioimmunoassay, fluorescence immunoassay, luminescence immunoassay and the like.
  • any immunoassay method capable of quantitative detection may be used.
  • a sandwich method such as sandwich ELISA can be preferably used.
  • the sandwich method the antibody that binds to the target protein is immobilized and reacted with the sample.
  • the target protein bound to the immobilized antibody is measured using a detection antibody labeled with an enzyme or the like.
  • the detection antibody it is preferable to use an antibody that binds to the target protein at a site different from that of the immobilized antibody.
  • the immobilized antibody and the detection antibody may be a polyclonal antibody or a monoclonal antibody, and an antigen-binding fragment of the antibody may be used.
  • the target protein bound to the immobilized antibody is reacted with the detection antibody, washed, and then the amount of the bound detection antibody is measured by a signal from the substance labeled on the antibody.
  • the substrate of the enzyme may be added into the reaction system, and the amount of color development, fluorescence, and luminescence generated by the enzyme reaction may be measured by a corresponding device.
  • Perform immunomeasurement on a standard sample containing a target protein with a known concentration prepare a calibration curve plotting the relationship between the signal of the labeling substance and the concentration, and perform the same operation on a sample with an unknown target protein concentration. By applying the obtained signal measurement value to the calibration curve, the target protein in the sample can be quantified.
  • nucleic acid probe that can specifically hybridize with the mRNA of the above protein (when measuring by Northern blotting).
  • at least one pair of nucleic acid primers capable of specifically amplifying the cDNA synthesized using the mRNA of the above protein as a template may be used (when measured by the RT-PCR method).
  • Nucleic acid probes and nucleic acid primers can be designed based on the genetic information (described above) of the above proteins.
  • a nucleic acid probe of about 15 to 1500 bases is usually suitable.
  • the nucleic acid probe may be labeled with a radioactive element, a fluorescent dye, an enzyme or the like.
  • nucleic acid primer one having about 15 to 30 bases is usually suitable.
  • Nucleic acid primers may be labeled with radioactive elements, fluorescent dyes, enzymes and the like.
  • non-phosphorylated CRMP2 If an increase in the expression level of non-phosphorylated CRMP2 and / or a decrease in the phosphorylated CRMP2: non-phosphorylated CRMP2 ratio is confirmed, it is highly possible that the patient has schizophrenia or develops schizophrenia. It can be determined that the possibility (risk of onset) is high. Therefore, the present invention can assist in the diagnosis of schizophrenia. INDUSTRIAL APPLICABILITY The present invention can be used for evaluation of the possibility or risk of developing schizophrenia, differentiation of schizophrenia (distinguishing from other diseases), and the like.
  • schizophrenia can be diagnosed according to the following criteria.
  • a blood sample for example, plasma, serum
  • a higher value is obtained in a blood sample collected from an unaffected person (for example, a healthy person).
  • Subjects are evaluated to have developed schizophrenia or have a high probability of developing schizophrenia (risk of developing schizophrenia).
  • the expression levels of non-phosphorylated CRMP2 and phosphorylated CRMP2 in blood samples (eg, plasma, serum) collected from the subject were measured, and the phosphorylated CRMP2: non-phosphorylated CRMP2 ratio was calculated, and this ratio was determined from the set value.
  • This preset value can be appropriately set by those skilled in the art. For example, a 95% confidence interval of the quantitative value of a healthy person who has not developed schizophrenia can be used as a reference value, or a cutoff value can be set from the ROC curve. As one embodiment, when the age is less than 30 years old in FIG. 1A and the reference value for the phosphorylated CRMP2: non-phosphorylated CRMP2 ratio is set to 0.25, the ratio in the measured value is equal to or less than the reference value. Can be determined to be more likely to have schizophrenia.
  • non-phosphorylated CRMP2 expression in samples derived from subjects determined to be highly likely to have schizophrenia was measured once or multiple times at different times, and the expression level was close to the cutoff value or the reference value. If the level drops to a level, it is determined that the patient has recovered from schizophrenia by treatment, and if the level is high or does not decrease, it is determined that the patient has not recovered from schizophrenia by treatment or the recovery is insufficient. can do.
  • the expression of non-phosphorylated CRMP2 and phosphorylated CRMP2 in samples derived from subjects judged to have a high possibility of schizophrenia was measured once or multiple times at different times, and phosphorylated CRMP2: non-phosphorylated.
  • the method of the present invention can be used not only for diagnosing schizophrenia, but also for prognostic examination and confirmation of therapeutic effect.
  • drug treatment will be the basis, and lifestyle guidance, psychotherapy, and community care will be added to promote social recovery.
  • the purpose of treatment is to reduce or suppress psychiatric symptoms and dysfunction, prevent recurrence, and reduce social and occupational activity restrictions and participation restrictions, that is, rehabilitation.
  • Drug therapy is based on drug selection according to the symptoms.
  • antipsychotic drugs chlorpromazine and haloperidol, which have a strong effect of suppressing acute symptoms such as hallucinations and delusions, are used. Since these are potent dopamine D2 receptor antagonists, extrapyramidal symptoms such as Parkinson's disease-like symptoms can be problematic as side effects.
  • these drugs generally do not improve, but even worsen, for negative symptoms such as cognitive impairment, withdrawal, and decreased motivation.
  • negative symptoms such as cognitive impairment, withdrawal, and decreased motivation.
  • Lybalvi which is a combination of olanzapine and the opioid receptor antagonist Samiddlefan, and aripiprazole, which has the effect of promoting the release of dopamine and noradrenaline by presynaptic D2 receptor antagonist, are used.
  • the anxiolytics lorazepam, paroxetine, the hypnotic solpitem, flunitrazepam, etc. are prescribed according to the psychological symptoms.
  • the present invention provides a method for diagnosing schizophrenia. That is, the present invention is a method for diagnosing schizophrenia in a subject. Obtaining a sample from the subject, b. Measuring the expression levels of non-phosphorylated Collapsin Response Mediator Protein 2 (CRMP2) and / or phosphorylated CRMP2 in a sample derived from the subject, and c. Provided above are the methods comprising determining the likelihood or risk of developing schizophrenia in a subject based on the expression level of non-phosphorylated CRMP2 and / or the phosphorylated CRMP2: non-phosphorylated CRMP2 ratio.
  • CRMP2 Collapsin Response Mediator Protein 2
  • the present invention also provides a method of treating schizophrenia in combination with the diagnosis of schizophrenia. That is, the present invention is a method for diagnosing and treating schizophrenia in a subject. Obtaining a sample from the subject, b. Measuring the expression levels of non-phosphorylated Collapsin Response Mediator Protein 2 (CRMP2) and / or phosphorylated CRMP2 in a sample derived from the subject. c. Determining the likelihood or risk of developing schizophrenia in a subject based on the expression level of non-phosphorylated CRMP2 and / or the phosphorylated CRMP2: non-phosphorylated CRMP2 ratio, and d. Provided above are methods that include initiating treatment for schizophrenia for a subject if the likelihood or risk of developing schizophrenia is determined to be high.
  • CRMP2 Collapsin Response Mediator Protein 2
  • CRMP2 non-phosphorylated CRMP2 ratio
  • the expression level of non-phosphorylated CRMP2 in the sample derived from the subject is higher than the expression level of non-phosphorylated CRMP2 in the sample derived from a healthy person who has not developed schizophrenia.
  • the phosphorylated CRMP2: non-phosphorylated CRMP2 ratio in the sample derived from the subject is lower than the phosphorylated CRMP2: non-phosphorylated CRMP2 ratio in the sample derived from a healthy person who has not developed schizophrenia, schizophrenia. It can be determined that the possibility of developing or the risk of developing the disease is high.
  • the expression level of non-phosphorylated CRMP2 in the sample derived from the subject is higher than the set value, and / or the phosphorylated CRMP2: non-phosphorylated CRMP2 ratio in the sample derived from the subject is high.
  • it is lower than the set value it can be determined that the possibility of developing schizophrenia or the risk of developing schizophrenia is high.
  • the set values are described above.
  • the present invention includes a reagent capable of measuring the expression level of non-phosphorylated Collapsin Response Mediator Protein 2 (CRMP2) and / or a reagent capable of measuring the expression level of phosphorylated CRMP2 in a sample derived from a subject. Kits for testing for schizophrenia are also provided.
  • CRMP2 Collapsin Response Mediator Protein 2
  • the kit of the present invention contains as a reagent an antibody capable of specifically recognizing non-phosphorylated CRMP2 and / or phosphorylated CRPM2.
  • the antibody should be capable of recognizing CRMP2 phosphorylated by Ser522.
  • the antibody may be either a monoclonal antibody or a polyclonal antibody.
  • the antibody may be immobilized on a microtiter plate, magnetic beads, a cellulose membrane or a substrate.
  • the kit may further include an instrument for collecting a sample derived from a subject, an anticoagulant, a set of reagents for detecting the protein, an instruction manual, and the like.
  • the instruction manual should also describe the evaluation and / or discrimination criteria for schizophrenia.
  • the kit of the present invention contains a nucleic acid probe that can specifically hybridize with CRMP2 mRNA as a reagent.
  • the nucleic acid probe may be immobilized on the substrate.
  • the kit also includes equipment for collecting biological samples, anticoagulants, reagents for extracting RNA from subject-derived samples, reagents for detecting RNA, instruction manuals, etc. May be good.
  • the instruction manual should also describe the evaluation and / or discrimination criteria for schizophrenia.
  • the kit of the present invention contains at least one pair of nucleic acid primers as a reagent capable of specifically amplifying cDNA synthesized using mRNA of CRMP2 as a template.
  • the kit also includes equipment for collecting subject-derived samples, anticoagulants, reagents for extracting RNA from subject-derived samples, reagents for detecting RNA, instruction manuals, etc. It is good to be.
  • the instruction manual should also describe the evaluation and / or discrimination criteria for schizophrenia.
  • the kit of the present invention may include a standard protein, a buffer, a substrate (when the antibody is enzyme-labeled), a reaction stop solution, a washing solution, a reaction vessel, and the like.
  • the kit of the present invention can be used as a pharmaceutical product for diagnosing a disease.
  • SCZ Schizophrenia
  • PBMC peripheral blood mononuclear cells
  • CRMP2 and pCRMP2 in peripheral blood are the basis for relatively rapid, minimally invasive, sensitive and specific auxiliary diagnostic tests for early SCZ (together with testing and imaging). It suggests that it may form.
  • Increased CRMP2 and / or decreased pCRMP2: CRMP2 ratio is useful for diagnosis in newly developed young patients with suspected SCZ, especially when trying to rule out other mimicry disorders (eg, manic episodes in BPD). there is a possibility.
  • SCZ Treatment Introduction Schizophrenia
  • SCZ is an idiopathic psychiatric disorder with substantial morbidity and mortality, and enormous personal and social costs. It is characterized by impaired cognition, perception, emotion and behavior. The pathogenic mechanism by the underlying pathogenic molecule that causes and / or promotes the disease is unknown. However, it is known that there are important genetic components (1). Nonetheless, the concordance rate for disease between identical twins remains at 50%, and SCZ is likely to be multigenic, epigenetic, and multifactorial in its pathogenicity and expression. It suggests that.
  • SCZ The underlying pathophysiology of SCZ is not understood, but it is believed to be related to changes in the structure and function of the neural network of the brain (2-5).
  • neural circuits are formed through neurogenesis, differentiation, axonal guidance, dendrite development, synaptogenesis, and activity-dependent refinement of immature synapses (6).
  • synapses are sites of neurotransmitter signaling, dendritic spine dysfunction may play an important pathogenic role in SCZ.
  • numerous genetic linkages and related studies suggest that abnormalities in genes involved in synaptogenesis and / or maturation may be risk factors for SCZ (4, 6-8).
  • CRMP2 Cold Response Mediator Protein 2
  • DPYSL2 Dihydropyrimidinase-like 2
  • CRMP2 Collapsin Response Mediator Protein 2
  • DPYSL2 Dihydropyrimidinase-like 2
  • the CRMP family of proteins is currently known to be composed of five homologous cytoplasmic proteins from CRMP1 to CRMP5 (10, 11).
  • CRMP2 actively binds to non-phosphorylated active cytoskeletal elements. Phosphorylation of CRMP2, a two-step process, inactivates CRMP2 and induces the release of cytoskeletal elements. Cdk5 first phosphorylates CRMP2 with Ser522 and primes glycogen synthase kinase 3 ⁇ (GSK3 ⁇ ) to phosphorylate CRMP2 with Thr514 and Ser518 (12). We now know that "toggling" between inactive (phosphorylated) and active (non-phosphorylated) CRMP2 is a continuous physiological adaptive mechanism to prevent the germination of abnormal neurons. ing.
  • Crmp2- / -Mice show hyperactivity, emotional behavioral disorders, decreased social interaction, mild contextual learning disabilities, and high susceptibility to methamphetamine (16, 17).
  • Bipolar disorder BPD
  • the "set value" of the ratio of phosphorylated (inactive) CRMP2 to non-phosphorylated (active) is abnormally high in LiR human brains and patient-specific human-induced stem cell (hiPSC) -derived neurons.
  • CRMP2 is also expressed in lymphocytes, can these brain abnormalities be reflected in readily accessible peripheral blood mononuclear cells (PBMCs) and serve as the basis for practical clinical diagnostic markers for SCZ? I decided. The difference in blood was found to be remarkable. CRMP2 levels were elevated compared to a healthy age-matched control group. The ratio of pCRMP2: CRMP2 is abnormally low (based on an increase in the denominator).
  • CRMP2 findings are in stark contrast to the LiRBPD situation, where the pCRMP2: CRMP2 ratio was always abnormally high and CRMP2 was always normal, distinguishing between the two states of undiagnosed young patients. May provide molecular and biochemical methods for, and may not be clear in the first presentation (manic episodes and schizophrenia "breaks" may resemble each other). These changes in the production of CRMP2 in SCZ not only provide rapid, sensitive, specific non-invasively accessible biomarkers and diagnostic support, but also underlie the neuropathological changes seen in SCZ. Begins to provide insights into certain molecular mechanisms.
  • CRMP2 was not significantly different from age-appropriate non-affected patients, but the pCRMP2: CRMP2 ratio was significantly higher in LiR BPD patients compared to non-affected controls (similarly, other psychology, including LiNR BPD). Compared to patients with neurological disorders).
  • the denominator (CRMP2) remained unchanged, with pCRMP2 (numerator) being abnormally high in LiR BPD patients. Differences in CRMP2 between SCZ patients and unaffected controls were significant, as detected through this more accessible peripheral blood-derived cell type assay (pCRMP2: CRMP2 ratio, we In addition to making it a suspicious and informative metric).
  • CRMP2 is a master cytoskeletal regulator and, therefore, a neural network modulator. Phosphorylation of CRMP2 alters the binding affinity for specific subsets of cytoskeletons and related proteins such as tubulin, RhoA, and filamine-A (11, 20, 21). These changes in phosphorylation state affect the regulation of cytoskeletal dynamics.
  • the “togling" between the inactive (phosphorylated) CRMP2 and the active (non-phosphorylated) CRMP2 is physiological (14, 18). However, imbalances between active and inactive CRMP2 (one too much) can cause abnormalities in synaptogenesis, synaptic maturation, and synaptic transmission (11, 22).
  • CRMP2 is also present in lymphocytes.
  • studies have shown similarities between receptor expression and transduction processes in cells and lymphocytes from the nervous system (23).
  • PBMC assay we found that blood levels of CRMP2 were higher compared to age-matched non-affected controls.
  • the net effect of increasing the denominator while maintaining a constant numerator was that the ratio of pCRMP2: CRMP2 in the SCZ group was lower than that in the control group. ..
  • These differences were most pronounced in the youngest group of SCZ patients. In SCZ patients younger than 30 years, the pCRMP2: CRMP2 ratio was lower than in control patients, up to the p ⁇ 0.01 significance level.
  • CRMP2 levels and ratios are SCZ-related behaviors because pCRMP2 begins to increase with age, especially with the development of Alzheimer's disease, when followed over time and over time in the same patient. May help distinguish between aging and age-related behaviors. In fact, in one patient, if the patient is already elderly and has many other comorbidities (24, 25), we nail the use of this biomarker for the first time. The specificity of the pCRMP2: CRMP2 ratio is likely to be worse in the older group.
  • CRMP2 the levels of master cytoskeletal modulator and neural network determinant, CRMP2 are higher than in non-affected age-matched controls.
  • CRMP2 eg, LiRBPD
  • higher active CRMP2 levels with constant inactive pCRMP2 levels are non-affected controls with a pCRMP2: CRMP2 ratio. It results in a unique reduction that is lower than that of the subject. This disruption in the normal equilibrium between the active and inactive CRMP2 can lead to an imbalance in the neural network as well.
  • CRMP2 appears to be involved in the pathology of SCZ in some way (in fact, some have been considered risk genes (26))
  • the dynamic regulation of the cytoskeleton and neural network Further research may lead to greater insight into the molecular mechanisms underlying the neuropathological changes seen in SCZ, as well as new therapeutic interventions.
  • the table summarizes the demographics of SCZ patients and healthy control patients (range 18-40 years) who collected PBMCs. Such data include age and gender, family history, smoking history, drinking history, education, background and medication history. The subjects were inpatients or outpatients at Yokohama City University Hospital, Yokohama Medical Center, and Yokohama Maioka Hospital (belonging to Yokohama City University). This study was approved by the ethics review board of each hospital. Each SCZ patient was diagnosed by at least two psychiatrists based on the diagnostic criteria of the Diagnostic and Statistical Manual of Mental Illness (DSM-IV). The severity of symptoms was assessed using PANSS (Positive and Negative Symptom Scale). Volunteers were enrolled by general open call for conforming non-affected controls. Psychiatrists interviewed each volunteer to rule out mental illness. Informed consent was obtained from all participants.
  • PBMCs were isolated from all blood samples taken using mononuclear cell preparation tubes (BD Vacutainer CPT: Becton-Dickinson, NJ, USA). Whole blood specimens were centrifuged for 30 minutes (1500 g, 25 ° C) and the PBMC layer was collected in a 15 ml tube. These samples were then washed with phosphate buffered saline minus (PBS) and centrifuged at 427 g for 10 minutes at 4 ° C. three times. After discarding the supernatant, the pellet was resuspended in RPMI1640 medium supplemented with 10% fetal bovine serum (FBS) and ampicillin.
  • FBS fetal bovine serum
  • the resuspended sample was sown on an uncoated Petri dish and cultured at 37 ° C for 2 days in a CO2 incubator. A supernatant fraction containing non-adhesive lymphocytes was collected and transferred to a 15 ml test tube. The sample was centrifuged at 200 g for 5 minutes at 4 ° C. After discarding the supernatant, the pellet was resuspended in 1 ml PBS and transferred to a 1.5 ml tube. After centrifugation at 200 g for 5 minutes at 4 ° C, the supernatant was discarded, the pellet was frozen in liquid nitrogen and stored at -80 ° C until use. CRMP2 and pCRMP2 levels were then evaluated in these samples as described below.
  • Anti-human CRMP2 monoclonal antibody (9F) was generated by injecting Balb / c mice into the C-terminal region of human CRMP2 (amino acids 486-528) (27).
  • An anti-phosphorylated CRMP1 / 2 (S522) (p-S522-CRMP1 / 2) polyclonal antibody that recognizes phosphorylated CRMP2 with Ser522 was produced in rabbits as previously reported (12).
  • the specificity of the two antibodies was verified by peptide blocking experiments in immunoblot analysis of human PMBC samples as previously reported (12, 27, 28). (See Figures 2 and 3)
  • CRMPs critical molecules for neurite morphogenesis and neuropsychiatric diseases. Mol Psychiatry. 2015; 20 (9): 1037-45. 11. Yamashita N, and Goshima Y. Collapsin response mediator proteins regulate neuronal development and plasticity by switching their phosphorylation status. Molecular neurobiology. 2012; 45 (2): 234-46. 12. Uchida Y, Ohshima T, Sasaki Y, Suzuki H, Yanai S, Yamashita N, et al. Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer's disease.
  • the present invention can assist in the diagnosis of schizophrenia.

Abstract

Provided is a schizophrenia biomarker. A schizophrenia examination method including measuring the expression level of non-phosphorylated collapsin response mediator protein 2 (CRMP2) and/or phosphorylated CRMP2 in a sample derived from a subject.

Description

統合失調症バイオマーカーSchizophrenia biomarker
 本発明は、統合失調症バイオマーカーに関する。 The present invention relates to a schizophrenia biomarker.
 統合失調症(SCZ)は、認知、知覚、感情、行動の障害を特徴とする精神疾患である。統合失調症の診断は症状に基づくスコアリングによって行われていて、定量的なバイオマーカーの開発が待たれている。そのような中、BaderらはCRMP1というCRMPファミリー分子の一つに変化が認められることを報告した(非特許文献1:Hum Mol Genet, 21, 4406-4418, 2012)。しかし、Baderらの方法では、リンパ球を調整しなければならず、煩雑であった。 Schizophrenia (SCZ) is a psychiatric disorder characterized by impaired cognition, perception, emotions, and behavior. Diagnosis of schizophrenia is made by symptom-based scoring, and the development of quantitative biomarkers is awaited. Under such circumstances, Bader et al. Reported that a change was observed in one of the CRMP family molecules called CRMP1 (Non-Patent Document 1: Hum Mol Genet, 21, 4406-4418, 2012). However, the method of Bader et al. Had to adjust the lymphocytes, which was complicated.
 本発明は、簡便な方法で検出できる統合失調症のバイオマーカーを提供することを目的とする。 An object of the present invention is to provide a biomarker for schizophrenia that can be detected by a simple method.
 本発明者らは、血液検体における非リン酸Collapsin Response Mediator Protein 2(CRMP2)の発現量の上昇及び/又はリン酸化CRMP2:非リン酸化CRMP2比の低下が、統合失調症の診断に役立つ可能性があることを見出し、本発明を完成させるに至った。 The present inventors may find that an increase in the expression level of non-phosphate Collapsin Response Mediator Protein 2 (CRMP2) in a blood sample and / or a decrease in the phosphorylated CRMP2: non-phosphorylated CRMP2 ratio may be useful for diagnosing schizophrenia. It was found that there is, and the present invention was completed.
 本発明の要旨は以下の通りである。
(1)被験者由来の試料における、非リン酸化Collapsin Response Mediator Protein 2(CRMP2)及び/又はリン酸化CRMP2の発現量を測定することを含む、統合失調症の検査方法。
(2)非リン酸化CRMP2の発現量の上昇及び/又はリン酸化CRMP2:非リン酸化CRMP2比の低下が統合失調症の発症可能性又は発症リスクが高いことを示す(1)記載の検査方法。
(3)リン酸化CRMP2がSer522でリン酸化されたCRMP2である(1)又は(2)に記載の検査方法。
(4)被験者由来の試料が血液検体である(1)~(3)のいずれかに記載の検査方法。
(5)血液検体が末梢血単核細胞分画である(4)記載の検査方法。
(6)被験者が40歳未満である(1)~(5)のいずれかに記載の方法。
(7)被験者が30歳未満である(1)~(6)のいずれかに記載の方法。
(8)被験者が30歳未満である場合に、被験者の末梢血単核細胞分画におけるリン酸化CRMP2:非リン酸化CRMP2比が0.25以下であることが、統合失調症の発症可能性又は発症リスクが高いことを示す(1)~(7)のいずれかに記載の方法。
(9)被験者における統合失調症の診断方法であって、
a. 被験者由来の試料を得ること、
b. 被験者由来の試料における、非リン酸化Collapsin Response Mediator Protein 2(CRMP2)及び/又はリン酸化CRMP2の発現量を測定すること、及び
c. 非リン酸化CRMP2の発現量及び/又はリン酸化CRMP2:非リン酸化CRMP2比に基づき、被検者における統合失調症の発症可能性又は発症リスクを判定すること
を含む前記方法。
(10)被験者における統合失調症の診断及び治療の方法であって、
a. 被験者由来の試料を得ること、
b. 被験者由来の試料における、非リン酸化Collapsin Response Mediator Protein 2(CRMP2)及び/又はリン酸化CRMP2の発現量を測定すること、
c. 非リン酸化CRMP2の発現量及び/又はリン酸化CRMP2:非リン酸化CRMP2比に基づき、被検者における統合失調症の発症可能性又は発症リスクを判定すること、及び
d. 統合失調症の発症可能性又は発症リスクが高いと判定された場合に、被験者に対する統合失調症の治療を開始すること
を含む前記方法。
(11)被験者由来の試料における非リン酸化CRMP2の発現量が、統合失調症を発症していない健常人由来の試料における非リン酸化CRMP2の発現量よりも高い、及び/又は、被験者由来の試料におけるリン酸化CRMP2:非リン酸化CRMP2比が統合失調症を発症していない健常人由来の試料におけるリン酸化CRMP2:非リン酸化CRMP2比よりも低い場合に、統合失調症の発症可能性又は発症リスクが高いと判定する(9)又は(10)に記載の方法。
(12)被験者由来の試料における非リン酸化CRMP2の発現量が設定値よりも高い、及び/又は、被験者由来の試料におけるリン酸化CRMP2:非リン酸化CRMP2比が設定値よりも低い場合に、統合失調症の発症可能性又は発症リスクが高いと判定する(9)~(11)のいずれかに記載の方法。
(13)被験者由来の試料における、非リン酸化Collapsin Response Mediator Protein 2(CRMP2)の発現量を測定することができる試薬及び/又はリン酸化CRMP2の発現量を測定することができる試薬を含む、統合失調症の検査のためのキット。
The gist of the present invention is as follows.
(1) A method for testing schizophrenia, which comprises measuring the expression level of non-phosphorylated Collapsin Response Mediator Protein 2 (CRMP2) and / or phosphorylated CRMP2 in a sample derived from a subject.
(2) The test method according to (1), wherein an increase in the expression level of non-phosphorylated CRMP2 and / or a decrease in the phosphorylated CRMP2: non-phosphorylated CRMP2 ratio indicates that the possibility or risk of developing schizophrenia is high.
(3) The inspection method according to (1) or (2), wherein the phosphorylated CRMP2 is CRMP2 phosphorylated with Ser522.
(4) The test method according to any one of (1) to (3), wherein the sample derived from the subject is a blood sample.
(5) The test method according to (4), wherein the blood sample is a peripheral blood mononuclear cell fraction.
(6) The method according to any one of (1) to (5), wherein the subject is under 40 years old.
(7) The method according to any one of (1) to (6), wherein the subject is under 30 years old.
(8) When the subject is under 30 years old, the possibility or risk of developing schizophrenia is that the phosphorylated CRMP2: non-phosphorylated CRMP2 ratio in the subject's peripheral blood mononuclear cell fraction is 0.25 or less. The method according to any one of (1) to (7), which indicates that the value is high.
(9) A method for diagnosing schizophrenia in a subject.
Obtaining a sample from the subject,
b. Measuring the expression levels of non-phosphorylated Collapsin Response Mediator Protein 2 (CRMP2) and / or phosphorylated CRMP2 in a sample derived from the subject, and
c. The method comprising determining the likelihood or risk of developing schizophrenia in a subject based on the expression level of non-phosphorylated CRMP2 and / or the phosphorylated CRMP2: non-phosphorylated CRMP2 ratio.
(10) A method for diagnosing and treating schizophrenia in a subject.
Obtaining a sample from the subject,
b. Measuring the expression levels of non-phosphorylated Collapsin Response Mediator Protein 2 (CRMP2) and / or phosphorylated CRMP2 in a sample derived from the subject.
c. Determining the likelihood or risk of developing schizophrenia in a subject based on the expression level of non-phosphorylated CRMP2 and / or the phosphorylated CRMP2: non-phosphorylated CRMP2 ratio, and
d. The method described above comprising initiating treatment of the subject with schizophrenia if the likelihood or risk of developing schizophrenia is determined to be high.
(11) The expression level of non-phosphorylated CRMP2 in the sample derived from the subject is higher than the expression level of non-phosphorylated CRMP2 in the sample derived from a healthy person who has not developed schizophrenia, and / or the sample derived from the subject. Phosphorylated CRMP2: Non-phosphorylated CRMP2 ratio in a sample derived from a healthy person who has not developed schizophrenia is lower than the phosphorylated CRMP2: non-phosphorylated CRMP2 ratio in the possibility or risk of developing schizophrenia. The method according to (9) or (10), wherein is determined to be high.
(12) Integration when the expression level of non-phosphorylated CRMP2 in the sample derived from the subject is higher than the set value and / or the ratio of phosphorylated CRMP2: non-phosphorylated CRMP2 in the sample derived from the subject is lower than the set value. The method according to any one of (9) to (11), wherein it is determined that the possibility of developing schizophrenia or the risk of developing schizophrenia is high.
(13) Integration including a reagent capable of measuring the expression level of non-phosphorylated Collapsin Response Mediator Protein 2 (CRMP2) and / or a reagent capable of measuring the expression level of phosphorylated CRMP2 in a sample derived from a subject. A kit for testing for ataxia.
 本発明により、統合失調症の定量的診断が可能となる。 The present invention enables quantitative diagnosis of schizophrenia.
 CRMP2の増加および/またはpCRMP2 : CRMP2比の低下は、統合失調症の診断に役立つ可能性がある。
 本明細書は、本願の優先権の基礎である日本国特許出願、特願2020‐169396の明細書および/または図面に記載される内容を包含する。
Increased CRMP2 and / or decreased pCRMP2: CRMP2 ratio may be useful in diagnosing schizophrenia.
This specification includes the contents described in the Japanese patent application, Japanese Patent Application No. 2020-169396 and / or the drawings which are the basis of the priority of the present application.
SCZ患者のPBMCフラクションのpCRMP2対CRMP2比は、非罹患対照被験者のそれよりも有意に低かった。セリン522でリン酸化されたCRMP2(pCRMP2)は、特定の十分に認証された抗体を使用して、定量的ウエスタンブロットで調べた。[A] 30歳未満(* p <0.01)のコホート間の違いが最も顕著であった。[B] CRMP2 [左のグラフ]およびpCRMP2 [中央のグラフ](内部標準としてβ-アクチンに正規化された任意の値を使用)の絶対値を(集計で)調べると、非罹患対象者(C)と比較したSCZ(S)の患者からのヒトPBMC画分におけるpCRMP2:CRMP2比[右のグラフ]は、大幅に低かった(p = 0.0051) )。CRMP2(分母)のレベルが高く(p = 0.0146)、一方でpCRMP2は変化しないままだったため(p = 0.4373)である。The pCRMP2 to CRMP2 ratio of PBMC fractions in SCZ patients was significantly lower than that in unaffected control subjects. CRMP2 (pCRMP2) phosphorylated with serine 522 was examined by quantitative Western blot using certain well-certified antibodies. [A] Differences between cohorts under the age of 30 (* p <0.01) were the most prominent. [B] CRMP2 [left graph] and pCRMP2 [center graph] (using arbitrary values normalized to β-actin as an internal standard) were examined (aggregate) for non-affected subjects (aggregate). The pCRMP2: CRMP2 ratio [graph on the right] in the human PBMC fraction from patients with SCZ (S) compared to C) was significantly lower (p = 0.0051)). This is because the level of CRMP2 (denominator) is high (p = 0.0146), while pCRMP2 remains unchanged (p = 0.4373). イムノブロット分析に基づくCRMP2およびリン酸化型CRMP2に対する抗体の感度および特異性の認証。[A]野生型(wt)、crmp1-/-、crmp2-/-、crmp1-/-;crmp2-/-、およびCRMP2S522Aノックイン(crmp2ki/ki)マウス由来の脳溶解物のイムノブロット分析によって実証された抗CRMP2モノクローナル抗体(9F) [上部パネル]および抗リン酸化CRMP1/2(S522) (pCRMP1/2)ポリクローナル抗体[下部パネル]の特異性。上部パネルでは、wt、crmp1-/-およびcrmp2ki/kiマウス由来の脳溶解物において9Fを用いて64kDaの単一バンドが検出されたが、crmp2-/-マウスでは検出されなかった。下部パネルでは、wtおよびcrmp1-/-由来の脳溶解物中の抗pCRMP1/2抗体で単一バンドが検出されたが、crmp1-/-;crmp2-/-およびcrmp2ki/kiマウスでは検出されなかった。[B]正常な健常対照被験者[左パネル]のヒト末梢血単核細胞(PBMC)分画に対する抗CRMP2抗体を用いた代表的な免疫ブロット法で、陽性対照の脳溶解物と比較した。右パネルでは、バンドはCRMP2の抗原ペプチドによってうまくブロックされることがわかる。(本試験で用いた抗体のさらなる検証については、図3も参照のこと)Authentication of antibody sensitivity and specificity to CRMP2 and phosphorylated CRMP2 based on immunoblot analysis. [A] Demonstrated by immunoblot analysis of brain lysates from wild-type (wt), crmp1 -/- , crmp2 -/- , crmp1 -/- ; crmp2 --/- , and CRMP2S522A knock-in (crmp2 ki / ki ) mice Specificity of anti-CRMP2 monoclonal antibody (9F) [top panel] and anti-phosphorylated CRMP1 / 2 (S522) (pCRMP1 / 2) polyclonal antibody [bottom panel]. In the upper panel, a single band of 64 kDa was detected using 9F in brain lysates from wt, crmp1 -/- and crmp2 ki / ki mice, but not in crmp2 -/- mice. In the lower panel, a single band was detected with anti-pCRMP1 / 2 antibodies in the brain lysates from wt and crmp1 -/- , but in crmp1 -/- ; crmp2 -/- and crmp2 ki / ki mice. There wasn't. [B] A typical immunoblotting method using an anti-CRMP2 antibody against a human peripheral blood mononuclear cell (PBMC) fraction of a normal healthy control subject [left panel] was compared with a positive control brain lysate. In the right panel, it can be seen that the band is successfully blocked by the antigenic peptide of CRMP2. (See also Figure 3 for further validation of the antibodies used in this study). 本研究でイムノブロット法に用いた抗体のさらなる検証と、CRMP1アイソフォームが本研究で記述した現象に関連していないことを示す証拠。SCZ患者と非罹患患者でみられた差は、CRMP1アイソフォームよりもCRMP2アイソフォームの存在量の差に重要であることが、CRMP1に対する抗体の使用によっても証明された。また、本研究で記述した差はいずれもCRMP1に関連していなかった。この図は、野生(WT)およびcrmp1-/-(CRMP1 KO)またはcrmp2-/-(CRMP2 KO)マウス脳溶解物、ならびにヒト末梢血単核細胞(PBMC)分画(具体的にはリンパ球)に対する2種類の異なる抗CRMP1抗体(2E7Gおよび2C6G)を用いたイムノブロット分析を示す。WTマウスの脳溶解物では、2E7Gと2C6Gによって単一バンドが検出されたが、CRMP1ノックアウトマウスの脳溶解物では検出されず、それによってこれらの抗CRMP1抗体の特異性が示された。この分析では、これら2つの感受性CRMP1抗体を用いて、CRMP1はヒトリンパ球試料(a, b)では検出されなかった。Further validation of the antibodies used in the immunoblotting in this study and evidence that the CRMP1 isoform is not associated with the phenomenon described in this study. The difference seen in SCZ and non-affected patients was also demonstrated by the use of antibodies against CRMP1 to be more important in the difference in the abundance of CRMP2 isoforms than in CRMP1 isoforms. In addition, none of the differences described in this study were related to CRMP1. This figure shows wild (WT) and crmp1 -/- ( CRMP1 KO) or crmp2- (CRMP2 KO) mouse brain lysates, as well as human peripheral blood mononuclear cell (PBMC) fractions (specifically lymphocytes). ) Is shown in an immunoblot analysis using two different anti-CRMP1 antibodies (2E7G and 2C6G). Single bands were detected by 2E7G and 2C6G in WT mouse brain lysates, but not in CRMP1 knockout mouse brain lysates, indicating the specificity of these anti-CRMP1 antibodies. In this analysis, CRMP1 was not detected in human lymphocyte samples (a, b) using these two sensitive CRMP1 antibodies.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明は、被験者由来の試料における、非リン酸化Collapsin Response Mediator Protein 2(CRMP2)及び/又はリン酸化CRMP2の発現量を測定することを含む、統合失調症の検査方法を提供する。 The present invention provides a method for testing schizophrenia, which comprises measuring the expression levels of non-phosphorylated Collapsin Response Mediator Protein 2 (CRMP2) and / or phosphorylated CRMP2 in a sample derived from a subject.
 統合失調症は、青年期に好発する原因不明の精神疾患である。発病しやすい遺伝的素質が認められるが、発症は遺伝的要因のみではなく、環境要因と遺伝的要因との相互作用によると考えられる。症状の特徴は、特有な思考障害、不適切あるいは鈍麻した感情と意欲からなり、自閉的あるいは奇異な生活態度を取りやすく、社会的・職業的な機能不全を伴う。幻覚・妄想などの異常体験、作為・被影響体験などの自我の障害、病識の欠如などを精神病的エピソードの形で示す。情報を適切に選択、判断、実行に移すといった認知機能の障害があるが、意識は清明であり、一般的知能は保たれる。明確な身体所見はない。経過は急性、慢性いずれの経過も示すが、多くは慢性経過をとる。精神疾患のうちで最も頻度の高い重要な疾患である。統合失調症の診断は、米国精神医学会によって、その特徴的な症状や経過などを、非理論的、記述的立場に徹して詳細に記述された「精神疾患の診断・統計マニュアル」、あるいはそれに準じてWHOがまとめたICD-10の統合失調症ガイドライン等に基づいて行われている。最近の統合失調症の遺伝学的解析、脳画像解析、死後剖検脳の形態学的解析の集積により(Johnstone et al, Lancet 308, 924, 1976; Selemon et al, Biol Psychiatry 45, 17, 1999; Ripke et al, Nat Genet 45, 1150, 2013)、神経発達障害、神経回路の異常がその背景に存在することが明らかとなりつつある(Murray&Lewis, Br Med J 295, 681, 1987; Weinberger, Arch Gen Psychiatry 44, 660, 1987)。この様な神経発達の異常にその要因を求める神経発達障害仮説は、1980年代頃より、統合失調症における側脳室の拡大が病前の適応と相関し、初回エピソード統合失調症様症状でも認められることや(Weinberger et al, Arch Gen Psychiatry. 1982 Jul;39(7):778-83.)、脳の成熟や神経回路形成過程が明らかになるに伴って(Tessier-Lavigne M, Goodman CS. Science. 1996 Nov 15;274(5290):1123-33.)、発展してきた。遺伝学的研究からは、統合失調症のリスク遺伝子候補として挙げられるneuregulin 1, DISC1, dysbindinは成人より胎児期の脳に高発現し、シナプスや神経回路の形成に関わることが分かっている(Harrison PJ, Weinberger DR. Mol Psychiatry. 2005 Jan;10(1):40-68; image 5.)。またGlantzとLewis(2000)らは、ゴルジ染色法により背外側前頭前野皮質第3層の錐体ニューロンの樹状突起スパインの密度が減少していることを報告した(Glantz LA, Lewis DA. Arch Gen Psychiatry. 2000 Jan;57(1):65-73.)。正常な脳発達の過程でも、生直後1歳までは神経細胞には余剰なシナプスが形成され、その後刈り込みがなされ、大脳皮質の厚さは思春期から青年期にかけてやや薄くなることが知られている。統合失調症における大脳皮質体積の減少部位の分布は正常とほぼ同じパターンを示すことから(Sun et al, Schizophr Res. 2009 Mar;108(1-3):85-92.)、統合失調症においてはシナプス刈り込みが過剰となり、上述の様な変化が起こると推定されている。 Schizophrenia is a mental illness of unknown cause that often occurs in adolescence. Although genetic predisposition to develop the disease is recognized, the onset is considered to be due to the interaction between environmental factors and genetic factors as well as genetic factors. Symptoms are characterized by peculiar thought disorders, inappropriate or dull feelings and motivation, autistic or bizarre lifestyles, and social and occupational dysfunction. Anomalous experiences such as hallucinations and delusions, ego disorders such as acts and affected experiences, and lack of insight are shown in the form of psychotic episodes. Although there are cognitive impairments such as proper selection, judgment, and execution of information, consciousness is clear and general intelligence is maintained. There are no clear physical findings. The course indicates either acute or chronic course, but most have a chronic course. It is the most frequent and important mental illness. The diagnosis of schizophrenia is made by the American Psychiatric Association, which describes in detail the characteristic symptoms and course of schizophrenia from a non-theoretical and descriptive standpoint. It is carried out based on the ICD-10 schizophrenia guidelines compiled by WHO. By accumulating recent genetic analysis of schizophrenia, brain image analysis, and morphological analysis of postmortem autopsy brain (Johnstone et al, Lancet 308, 924, 1976; Selemon et al, Biol Psychiatry 45, 17, 1999; Ripke et al, Nat Genet 45, 1150, 2013), neurodevelopmental disorders, and neural circuit abnormalities are becoming clear in the background (Murray & Lewis, Br Med J 295, 681, 1987; Weinberger, Arch Gen Psychiatry. 44, 660, 1987). The neurodevelopmental disorder hypothesis, which seeks the cause of such abnormalities in neurodevelopmental development, has been observed since the 1980s, when the enlargement of the lateral ventricle in schizophrenia correlates with premorbid adaptation and is also observed in the first episode of schizophrenia-like symptoms. (Weinberger et al, Arch Gen Psychiatry. 1982 Jul; 39 (7): 778-83.) As brain maturation and neural circuit formation processes become clear (Tessier-Lavigne M, Goodman CS. Science. 1996 Nov 15; 274 (5290): 1123-33.), Has evolved. Genetic studies have shown that neuregulin 1, DISC 1, and dysbindin, which are potential risk genes for schizophrenia, are more highly expressed in the fetal brain than in adults and are involved in the formation of synapses and neural circuits (Harrison). PJ, Weinberger DR. Mol Psychiatry. 2005 Jan; 10 (1): 40-68; image 5.). Glantz and Lewis (2000) also reported that Golgi's staining reduced the density of dendrite spines in pyramidal neurons in the third layer of the dorsolateral prefrontal cortex (Glantz LA, Lewis DA. Arch). Gen Psychiatry. 2000 Jan; 57 (1): 65-73.). It is known that even in the process of normal brain development, excess synapses are formed in nerve cells until the age of 1 year after birth, and then pruning is performed, and the thickness of the cerebral cortex becomes slightly thinner from puberty to adolescence. There is. Since the distribution of the site of decrease in cerebral cortex volume in schizophrenia shows almost the same pattern as normal (Sun et al, Schizophr Res. 2009 Mar; 108 (1-3): 85-92.), In schizophrenia. It is presumed that the synaptic pruning becomes excessive and the above-mentioned changes occur.
 Collapsin Response Mediator Protein 2(CRMP2)(Protein, Dihydropyrimidinase-related protein 2; Gene, DPYSL2) は、軸索の反発性因子であるセマフォリン3A(Sema3A)の細胞内シグナルを伝達する分子として最初に同定された(Goshima et al, Nature. 1995 Aug 10;376(6540):509-14.)。CRMP2(DPYSL2)のアミノ酸配列はUniProt KnowledgebaseでQ16555(https://www.uniprot.org/uniprot/Q16555)として、また、塩基配列及び遺伝子情報はNCBIのデータベースにGene ID: 1808(https://www.ncbi.nlm.nih.gov/gene/1808)として登録されており、知ることができる。CRMPsは、細胞質タンパク質であり、これまでに5つのサブタイプ(CRMP1~5)が同定されている。これらは、いずれも脳の発生期に高いレベルの発現が認められるが、それぞれ特異的な発現分布と発現時期を示す。このうちCRMP2が成人脳でも嗅覚系、海馬、大脳皮質、小脳などで高い発現レベルを示す。CRMPsは線虫Unc-33の相同分子であり、Unc-33の突然変異は線虫の神経細胞において軸索の伸長やガイダンスの異常を引き起こす。CRMPsはSema3Aの下流で、cyclin dependent kinase 5 (Cdk5)により522番目のセリン(Ser)残基がリン酸化修飾を受け、それにより、引き続きglycogen synthase kinase (GSK3b)によるSer517, Thr514、Thr509残基の2段階のリン酸化修飾を受けるタンパク質であり、このリン酸化の制御は神経の発達や成熟に重要な役割を果たす。CRMP2はこのリン酸化修飾以外にもRho/ROCK kinase (ROCK1)、Fyn(FYN)、Fes (FES)チロシン kinase、SUMO化など様々な翻訳後修飾を受ける。CRMP2はリン酸化修飾を通じてチュブリンやカルシウムチャネルなどの分子との相互作用が変化し、これを通じてSema3Aを始め、神経栄養因子やその他の外界シグナルの媒介因子としての役割に加え、極性・軸索形成や神経細胞の遊走、シナプス形成、シナプス可塑性、神経疾患といった様々な神経機能と病態に関与することが報告されている(Nakamura et al, Front Cell Neurosci. 2020 Jun 23;14:188.) 。CRMP2はCdk5 (cyclin-dependent kinase 5, CDK5)、GSK3b (GSK3b, glycogen synthase 3b)によるリン酸化修飾によりチュブリンとの相互作用が低下して、突起伸長が抑制される。 Collapsin Response Mediator Protein 2 (CRMP2) (Protein, Dihydropyrimidinase-related protein 2; Gene, DPYSL2) was first identified as a molecule that transmits the intracellular signal of axonal repulsive factor semaphorin 3A (Sema3A). (Goshima et al, Nature. 1995 Aug 10; 376 (6540): 509-14.). The amino acid sequence of CRMP2 (DPYSL2) is Q16555 (https://www.uniprot.org/uniprot/Q16555) in UniProtKnowledgebase, and the base sequence and genetic information are in the NCBI database GeneID: 1808 (https: //). It is registered as www.ncbi.nlm.nih.gov/gene/1808) and can be known. CRMPs are cytoplasmic proteins, and five subtypes (CRMP1-5) have been identified so far. All of these show high levels of expression during the developmental stage of the brain, but each shows a specific expression distribution and time of expression. Of these, CRMP2 shows high expression levels in the sensory system, hippocampus, cerebral cortex, cerebellum, etc. even in the adult brain. CRMPs are homologous molecules of C. elegans Unc-33, and mutations in C. unc-33 cause axonal elongation and abnormal guidance in C. elegans neurons. CRMPs are phosphorylated downstream of Sema3A, where cyclin dependent kinase 5 (Cdk5) phosphorylates the 522nd Serin residue, thereby continuing to glycogen synthase kinase (GSK3b) Ser517, Thr514, Thr509 residues. It is a protein that undergoes two-step phosphorylation modification, and its regulation of phosphorylation plays an important role in the development and maturation of nerves. In addition to this phosphorylation modification, CRMP2 undergoes various post-translational modifications such as Rho / ROCK kinase (ROCK1), Fyn (FYN), Fes (FES) tyrosine kinase, and SUMOylation. Through phosphorylation modification, CRMP2 changes its interaction with molecules such as tuberin and calcium channels, and through this, it plays a role as a mediator of neuronutrient factors and other external signals, including Sema3A, as well as polarity and axon formation. It has been reported to be involved in various nerve functions and pathological conditions such as nerve cell migration, synaptogenesis, synaptic plasticity, and nerve disease (Nakamura et al, Front Cell Neurosci. 2020 Jun 23; 14: 188.). CRMP2 is phosphorylated by Cdk5 (cyclin-dependent kinase 5, CDK5) and GSK3b (GSK3b, glycogensynthase3b), which reduces the interaction with tuberin and suppresses protrusion elongation.
 CRMP2 は、主に中枢神経組織、特に発生期の脳脊髄組織に発現が多い。CRMP2は、CRMPファミリー分子の中でも比較的成熟期においても発現レベルが維持されており、学習・記憶・認知機能など、成人での役割も推定されている。CRMP2の発現は、他に心血管系、免疫系、消化器系組織にも発現しているが、その役割は未知のものが多い。CRMP2は、上記のようにリン酸化を含め様々な翻訳後修飾を受ける。重要な修飾として、CRMP2のC末端におけるCdk5、GSK3b, Rho/ROCKキナーゼによるリン酸化修飾がある。一例を挙げると、Cdk5は、CRMP2をSer522でリン酸化し、これがGSK3βによるCRMP2のThr514およびSer518におけるリン酸化修飾を促す。こうした二段階のリン酸化修飾の様式をprimed phosphorylationという (Nakamura et al, Front Cell Neurosci. 2020 Jun 23;14:188.)。この場合、リン酸化修飾を受けたCRMP2はチュブリンとの相互作用が低下し、細胞骨格系の機能は低下する。一方、脱リン酸化を受け非リン酸化型になるとCRMP2はチュブリンとの相互作用が向上し、細胞骨格系の形成が起こる。細胞骨格の形成を促進するという観点から、リン酸化型CRMP2 は非活性であり脱リン酸化型は活性型と表現することがある。他にCRMP2翻訳後修飾の生理学的意義が分かっているものとして、CRMP2のナトリウムチャネル、カルシウムチャネルへの相互作用とそれらの活性制御がある(Chew and Khanna, Neuronal Signal. 2018;2(1):NS20170220.)。 CRMP2 is highly expressed mainly in the central nervous system, especially in the cerebral spinal cord tissue during development. Among the CRMP family molecules, the expression level of CRMP2 is maintained even in the relatively mature stage, and its role in adults such as learning, memory, and cognitive function is presumed. The expression of CRMP2 is also expressed in cardiovascular system, immune system, and digestive system tissues, but its role is often unknown. CRMP2 undergoes various post-translational modifications, including phosphorylation, as described above. An important modification is phosphorylation modification by Cdk5, GSK3b, Rho / ROCK kinase at the C-terminus of CRMP2. As an example, Cdk5 phosphorylates CRMP2 with Ser522, which promotes phosphorylation modification of CRMP2 by GSK3β in Thr514 and Ser518. This two-step phosphorylation modification mode is called prime phosphorylation (Nakamura et al, Front Cell Neurosci. 2020 Jun 23; 14: 188.). In this case, phosphorylated CRMP2 has reduced interaction with tubulin and reduced cytoskeletal system function. On the other hand, when dephosphorylated and becomes non-phosphorylated, CRMP2 interacts with tubulin better and the formation of a cytoskeletal system occurs. From the viewpoint of promoting the formation of the cytoskeleton, the phosphorylated CRMP2 is sometimes referred to as an inactive form, and the dephosphorylated form is sometimes referred to as an active form. Other known physiological significance of CRMP2 post-translational modification is the interaction of CRMP2 with sodium and calcium channels and their activity regulation (Chew and Khana, Neuronal Signal. 2018; 2 (1): NS20170220.).
 本発明において、リン酸化CRMP2は、Ser522でリン酸化されたCRMP2であるとよい。 In the present invention, the phosphorylated CRMP2 is preferably CRMP2 phosphorylated by Ser522.
 本発明において、被験者は、統合失調症の発症が疑われる哺乳動物であるが、発症の危険性が考えられるすべての哺乳動物を対象としてもよい。典型的にはヒトである。ヒトは、40歳未満であることが好ましく、30歳未満であることがより好ましい。被験者由来の試料としては、被験者から得た細胞、組織、体液など、具体的には、被験者の血液(例えば、全血、血清、血漿、血漿交換外液など)、脳組織、唾液、涙、などを例示することができる。通常の血液検査(臨床検査)で得られる全血、血清あるいは血漿などの血液検体を血液サンプルとして使用するとよい。血液検体は、末梢血単核細胞分画であってもよい。 In the present invention, the subject is a mammal suspected of developing schizophrenia, but all mammals at risk of developing schizophrenia may be targeted. It is typically human. Humans are preferably under the age of 40, more preferably under the age of 30. Samples derived from the subject include cells, tissues, body fluids, etc. obtained from the subject, specifically, the subject's blood (for example, whole blood, serum, plasma, plasma exchange external fluid, etc.), brain tissue, saliva, tears, etc. Etc. can be exemplified. A blood sample such as whole blood, serum or plasma obtained by a normal blood test (clinical test) may be used as a blood sample. The blood sample may be a peripheral blood mononuclear cell fraction.
 本発明の方法において、被験者由来の試料における非リン酸化CRMP2及び/又はリン酸化CRMP2の発現の測定は、試料中の上記タンパク質またはその断片の存在量を測定すればよい。測定する手段としては、特に限定されることなく、公知の方法を用いるとよい。タンパク質レベルで測定するのが好ましいが、核酸レベルで測定してもよい。 In the method of the present invention, the expression of non-phosphorylated CRMP2 and / or phosphorylated CRMP2 in a sample derived from a subject may be measured by measuring the abundance of the above protein or a fragment thereof in the sample. The measuring means is not particularly limited, and a known method may be used. It is preferably measured at the protein level, but may be measured at the nucleic acid level.
 上記タンパク質の発現をタンパク質レベルで測定するためには、上記タンパク質を特異的に認識する抗体を用いるとよい。抗体は、モノクローナル抗体、ポリクローナル抗体のいずれであってもよい。これらの抗体は公知の方法で製造することができるし、また市販のものを使用してもよい。後述の実施例では、Ser522でリン酸化されたCRMP2を認識する抗リン酸化CRMP1/2(S522) (p-S522-CRMP1/2)ポリクローナル抗体を用いた。典型的な方法としては、ELISA法やイムノクロマトグラフィー法などの免疫測定法が挙げられる。免疫測定法は、特殊な装置や技術を必要とせず、簡便迅速に標的タンパク質を検出、定量することが可能であるため、本発明においても上記タンパク質の測定に好ましく用いることができる。上記タンパク質の抗体は公知であり、市販品も存在する。また、上述したように、上記タンパク質のアミノ酸配列およびこれらをコードする塩基配列も公知であるので、一般的なハイブリドーマを作製することにより、各タンパク質に対する特異抗体を作製してもよい。 In order to measure the expression of the protein at the protein level, it is advisable to use an antibody that specifically recognizes the protein. The antibody may be either a monoclonal antibody or a polyclonal antibody. These antibodies can be produced by known methods, or commercially available ones may be used. In the examples described below, an anti-phosphorylated CRMP1 / 2 (S522) (p-S522-CRMP1 / 2) polyclonal antibody that recognizes CRMP2 phosphorylated by Ser522 was used. Typical methods include immunoassays such as an ELISA method and an immunochromatography method. Since the immunoassay method does not require a special device or technique and can easily and quickly detect and quantify the target protein, it can be preferably used for the measurement of the above protein in the present invention as well. Antibodies to the above proteins are known, and commercially available products also exist. Further, as described above, since the amino acid sequence of the above protein and the base sequence encoding these are also known, a specific antibody against each protein may be prepared by preparing a general hybridoma.
 免疫測定法自体はこの分野で周知されている。反応形式により、サンドイッチ法、競合法、凝集法、ウェスタンブロット法等があり、また、標識に基づいて、酵素免疫分析、放射免疫分析、蛍光免疫分析、発光免疫分析等がある。本発明においては、定量的検出が可能な免疫測定法のいずれを用いてもよい。特に限定されないが、例えば、サンドイッチELISA等のサンドイッチ法を好ましく用いることができる。サンドイッチ法では、標的タンパク質に結合する抗体を固相化し、試料と反応させる。固相化抗体に結合した標的タンパク質は、酵素などで標識した検出抗体を用いて測定する。検出抗体は、固相化抗体とは異なる部位で標的タンパク質に結合する抗体を用いるのが好ましい。固相化抗体と検出抗体はポリクローナル抗体でもモノクローナル抗体でもよく、該抗体の抗原結合性の断片を用いることもできる。固相化抗体と結合した標的タンパク質を検出抗体と反応させ、洗浄を行った後、結合した検出抗体の量を、抗体に標識した物質からのシグナルで測定する。例えば、アルカリホスファターゼで標識した抗体を検出抗体として用いた場合、該酵素の基質を反応系内に添加し、酵素反応により生じる発色や蛍光、発光の量を対応する装置で測定すればよい。標的タンパク質を含む濃度既知の標準試料について免疫測定を行ない、標識物質のシグナルと濃度との関係をプロットした検量線を作成しておき、標的タンパク質が濃度未知の試料についても、同じ操作を行ない、得られるシグナル測定値を当該検量線に当てはめることにより、試料中の標的タンパク質を定量することができる。 The immunoassay itself is well known in this field. Depending on the reaction format, there are a sandwich method, a competitive method, an agglutination method, a Western blotting method and the like, and based on the label, there are enzyme immunoassay, radioimmunoassay, fluorescence immunoassay, luminescence immunoassay and the like. In the present invention, any immunoassay method capable of quantitative detection may be used. Although not particularly limited, for example, a sandwich method such as sandwich ELISA can be preferably used. In the sandwich method, the antibody that binds to the target protein is immobilized and reacted with the sample. The target protein bound to the immobilized antibody is measured using a detection antibody labeled with an enzyme or the like. As the detection antibody, it is preferable to use an antibody that binds to the target protein at a site different from that of the immobilized antibody. The immobilized antibody and the detection antibody may be a polyclonal antibody or a monoclonal antibody, and an antigen-binding fragment of the antibody may be used. The target protein bound to the immobilized antibody is reacted with the detection antibody, washed, and then the amount of the bound detection antibody is measured by a signal from the substance labeled on the antibody. For example, when an antibody labeled with alkaline phosphatase is used as a detection antibody, the substrate of the enzyme may be added into the reaction system, and the amount of color development, fluorescence, and luminescence generated by the enzyme reaction may be measured by a corresponding device. Perform immunomeasurement on a standard sample containing a target protein with a known concentration, prepare a calibration curve plotting the relationship between the signal of the labeling substance and the concentration, and perform the same operation on a sample with an unknown target protein concentration. By applying the obtained signal measurement value to the calibration curve, the target protein in the sample can be quantified.
 上記タンパク質の発現を核酸レベルで測定するためには、上記タンパク質のmRNAと特異的にハイブリダイズできる核酸プローブを用いるとよい(ノーザンブロット法で測定する場合)。あるいはまた、上記タンパク質のmRNAを鋳型として合成されるcDNAを特異的に増幅できる少なくとも1対の核酸プライマーを用いてもよい(RT-PCR法で測定する場合)。核酸プローブ及び核酸プライマーは、上記タンパク質の遺伝子情報(上述)に基づいて設計することができる。核酸プローブは、通常、約15~1500塩基のものが適当である。核酸プローブは、放射性元素、蛍光色素、酵素などで標識するとよい。核酸プライマーは、通常、約15~30塩基のものが適当である。核酸プライマーを放射性元素、蛍光色素、酵素などで標識してもよい。 In order to measure the expression of the above protein at the nucleic acid level, it is preferable to use a nucleic acid probe that can specifically hybridize with the mRNA of the above protein (when measuring by Northern blotting). Alternatively, at least one pair of nucleic acid primers capable of specifically amplifying the cDNA synthesized using the mRNA of the above protein as a template may be used (when measured by the RT-PCR method). Nucleic acid probes and nucleic acid primers can be designed based on the genetic information (described above) of the above proteins. A nucleic acid probe of about 15 to 1500 bases is usually suitable. The nucleic acid probe may be labeled with a radioactive element, a fluorescent dye, an enzyme or the like. As the nucleic acid primer, one having about 15 to 30 bases is usually suitable. Nucleic acid primers may be labeled with radioactive elements, fluorescent dyes, enzymes and the like.
 非リン酸化CRMP2の発現量の上昇及び/又はリン酸化CRMP2:非リン酸化CRMP2比の低下が確認された場合に、統合失調症を発症している可能性が高い、あるいは統合失調症を発症する可能性(発症リスク)が高いと判定することができる。よって、本発明は、統合失調症の診断を補助しうる。本発明は、統合失調症の発症可能性又は発症リスクの評価、統合失調症の鑑別(他の疾患との識別)などに利用できる。 If an increase in the expression level of non-phosphorylated CRMP2 and / or a decrease in the phosphorylated CRMP2: non-phosphorylated CRMP2 ratio is confirmed, it is highly possible that the patient has schizophrenia or develops schizophrenia. It can be determined that the possibility (risk of onset) is high. Therefore, the present invention can assist in the diagnosis of schizophrenia. INDUSTRIAL APPLICABILITY The present invention can be used for evaluation of the possibility or risk of developing schizophrenia, differentiation of schizophrenia (distinguishing from other diseases), and the like.
 本発明の一つの例として、統合失調症の診断は、以下のような基準で行うことができる。被験者から採取した血液試料(例えば、血漿、血清)における非リン酸化CRMP2の発現量を測定し、非罹患者(例えば、健常人)から採取した血液試料におけるそれよりも高い値が得られた場合、被験者は統合失調症を発症している、あるいは統合失調症を発症する可能性(発症リスク)が高いと評価する。あるいは、被験者から採取した血液試料(例えば、血漿、血清)における非リン酸化CRMP2とリン酸化CRMP2の発現量を測定し、リン酸化CRMP2:非リン酸化CRMP2比を算出し、この比が設定値よりも低くなった場合、統合失調症の発症を疑うことができる。この予め設定する値は、当業者が適宜設定することができる。例えば、統合失調症を発症していない健常者の定量値の95%信頼区間を基準値としたり、ROC曲線からカットオフ値を設定したりすることができる。一実施態様として、図1Aにおいて年齢を30歳未満とし、かつリン酸化CRMP2:非リン酸化CRMP2比に関する基準値を0.25と設定することにより、測定値における比が基準値以下である場合には統合失調症である可能性が高いと判定することができる。 As an example of the present invention, schizophrenia can be diagnosed according to the following criteria. When the expression level of non-phosphorylated CRMP2 in a blood sample (for example, plasma, serum) collected from a subject is measured, and a higher value is obtained in a blood sample collected from an unaffected person (for example, a healthy person). , Subjects are evaluated to have developed schizophrenia or have a high probability of developing schizophrenia (risk of developing schizophrenia). Alternatively, the expression levels of non-phosphorylated CRMP2 and phosphorylated CRMP2 in blood samples (eg, plasma, serum) collected from the subject were measured, and the phosphorylated CRMP2: non-phosphorylated CRMP2 ratio was calculated, and this ratio was determined from the set value. If it is also low, the onset of schizophrenia can be suspected. This preset value can be appropriately set by those skilled in the art. For example, a 95% confidence interval of the quantitative value of a healthy person who has not developed schizophrenia can be used as a reference value, or a cutoff value can be set from the ROC curve. As one embodiment, when the age is less than 30 years old in FIG. 1A and the reference value for the phosphorylated CRMP2: non-phosphorylated CRMP2 ratio is set to 0.25, the ratio in the measured value is equal to or less than the reference value. Can be determined to be more likely to have schizophrenia.
 さらに、非リン酸化CRMP2について、統合失調症である可能性が高いと判定された被験者由来の試料における発現を1回又は異なる時期に複数回測定し、発現レベルがカットオフ値もしくは基準値に近いレベルにまで低下した場合に、治療により統合失調症から回復したと判定し、前記レベルが高いあるいは低下しない場合に、治療により統合失調症から回復していない、あるいは回復が不十分であると判定することができる。また、非リン酸化CRMP2とリン酸化CRMP2について、統合失調症である可能性が高いと判定された被験者由来の試料における発現を1回又は異なる時期に複数回測定し、リン酸化CRMP2:非リン酸化CRMP2比がカットオフ値もしくは基準値に近いレベルにまで上昇した場合に、治療により統合失調症から回復したと判定し、前記レベルが低いあるいは上昇しない場合に、治療により統合失調症から回復していない、あるいは回復が不十分であると判定することができる。本発明の方法は、統合失調症の診断の他、予後の検査、治療効果の確認にも利用できる。 Furthermore, for non-phosphorylated CRMP2, expression in samples derived from subjects determined to be highly likely to have schizophrenia was measured once or multiple times at different times, and the expression level was close to the cutoff value or the reference value. If the level drops to a level, it is determined that the patient has recovered from schizophrenia by treatment, and if the level is high or does not decrease, it is determined that the patient has not recovered from schizophrenia by treatment or the recovery is insufficient. can do. In addition, the expression of non-phosphorylated CRMP2 and phosphorylated CRMP2 in samples derived from subjects judged to have a high possibility of schizophrenia was measured once or multiple times at different times, and phosphorylated CRMP2: non-phosphorylated. When the CRMP2 ratio rises to a level close to the cutoff value or the reference value, it is judged that the patient has recovered from schizophrenia by treatment, and when the level is low or does not rise, the patient has recovered from schizophrenia by treatment. It can be determined that there is no or insufficient recovery. The method of the present invention can be used not only for diagnosing schizophrenia, but also for prognostic examination and confirmation of therapeutic effect.
 被験者が統合失調症を発症している可能性が高いと判定された場合には、薬物治療を基本として、これに生活指導、精神療法、地域ケアを加え、社会的な復帰を促す。治療の目的は、精神症状と機能障害の軽減、あるいは抑制、再発の防止、そして社会的および職業的活動制限と参加制限の軽減、すなわち社会復帰である。薬物療法は、症状に応じた薬物選択に基づいて行う。抗精神病薬の使用によって、幻覚・妄想などの急性期症状を抑制する作用の強いクロルプロマジン、ハロペリドールが用いられる。これらは、強力なドパミンD2受容体拮抗薬であるため、パーキンソン病様症状などの錐体外路症状が副作用として問題となる場合がある。一方、これらの薬物は、認知障害やひきこもり、意欲の低減などの陰性症状に対しては一般に改善は見られず、むしろ悪化させることすらある。これらの症状に対しては、抗D2受容体作用に加え、抗セロトニン作用を併せ持つリスペリドン、オランザピン、ルマテペロン、イロペリドン、ジプラシドン、ルラシドン、レキサルティ、カリプラジン、アセナピン、更に抗α2アドレナリン受容体作用をも併せ持つパリペリドン、オランザピンとオピオイド受容体拮抗薬のサミドルファンを組み合わせたLybalvi、シナプス前D2受容体拮抗によってドパミンやノルアドレナリンの遊離促進作用を併せ持つアリピプラゾールなどが用いられる。これに加え、精神症状に応じて、抗不安薬ロラゼパム、パロキセチン、睡眠薬ゾルピテム、フルニトラゼパムなどが処方される。 If it is determined that the subject is likely to have schizophrenia, drug treatment will be the basis, and lifestyle guidance, psychotherapy, and community care will be added to promote social recovery. The purpose of treatment is to reduce or suppress psychiatric symptoms and dysfunction, prevent recurrence, and reduce social and occupational activity restrictions and participation restrictions, that is, rehabilitation. Drug therapy is based on drug selection according to the symptoms. By using antipsychotic drugs, chlorpromazine and haloperidol, which have a strong effect of suppressing acute symptoms such as hallucinations and delusions, are used. Since these are potent dopamine D2 receptor antagonists, extrapyramidal symptoms such as Parkinson's disease-like symptoms can be problematic as side effects. On the other hand, these drugs generally do not improve, but even worsen, for negative symptoms such as cognitive impairment, withdrawal, and decreased motivation. For these symptoms, risperidone, olanzapine, lumateperon, iroperidone, zipracidone, lulacidone, lexarti, cariprazine, asenapine, which also have anti-serotonin action, in addition to anti-D2 receptor action, and pariperidone, which also has anti-α2 adrenergic receptor action. , Lybalvi, which is a combination of olanzapine and the opioid receptor antagonist Samiddlefan, and aripiprazole, which has the effect of promoting the release of dopamine and noradrenaline by presynaptic D2 receptor antagonist, are used. In addition, the anxiolytics lorazepam, paroxetine, the hypnotic solpitem, flunitrazepam, etc. are prescribed according to the psychological symptoms.
 本発明は、統合失調症の診断方法を提供する。すなわち、本発明は、被験者における統合失調症の診断方法であって、
a. 被験者由来の試料を得ること、
b. 被験者由来の試料における、非リン酸化Collapsin Response Mediator Protein 2(CRMP2)及び/又はリン酸化CRMP2の発現量を測定すること、及び
c. 非リン酸化CRMP2の発現量及び/又はリン酸化CRMP2:非リン酸化CRMP2比に基づき、被検者における統合失調症の発症可能性又は発症リスクを判定すること
を含む前記方法を提供する。
The present invention provides a method for diagnosing schizophrenia. That is, the present invention is a method for diagnosing schizophrenia in a subject.
Obtaining a sample from the subject,
b. Measuring the expression levels of non-phosphorylated Collapsin Response Mediator Protein 2 (CRMP2) and / or phosphorylated CRMP2 in a sample derived from the subject, and
c. Provided above are the methods comprising determining the likelihood or risk of developing schizophrenia in a subject based on the expression level of non-phosphorylated CRMP2 and / or the phosphorylated CRMP2: non-phosphorylated CRMP2 ratio.
 また、本発明は、統合失調症の診断と組み合わせた、統合失調症の治療方法も提供する。すなわち、本発明は、被験者における統合失調症の診断及び治療の方法であって、
a. 被験者由来の試料を得ること、
b. 被験者由来の試料における、非リン酸化Collapsin Response Mediator Protein 2(CRMP2)及び/又はリン酸化CRMP2の発現量を測定すること、
c. 非リン酸化CRMP2の発現量及び/又はリン酸化CRMP2:非リン酸化CRMP2比に基づき、被検者における統合失調症の発症可能性又は発症リスクを判定すること、及び
d. 統合失調症の発症可能性又は発症リスクが高いと判定された場合に、被験者に対する統合失調症の治療を開始すること
を含む前記方法を提供する。
The present invention also provides a method of treating schizophrenia in combination with the diagnosis of schizophrenia. That is, the present invention is a method for diagnosing and treating schizophrenia in a subject.
Obtaining a sample from the subject,
b. Measuring the expression levels of non-phosphorylated Collapsin Response Mediator Protein 2 (CRMP2) and / or phosphorylated CRMP2 in a sample derived from the subject.
c. Determining the likelihood or risk of developing schizophrenia in a subject based on the expression level of non-phosphorylated CRMP2 and / or the phosphorylated CRMP2: non-phosphorylated CRMP2 ratio, and
d. Provided above are methods that include initiating treatment for schizophrenia for a subject if the likelihood or risk of developing schizophrenia is determined to be high.
 本発明の診断方法及び治療方法において、被験者由来の試料における非リン酸化CRMP2の発現量が、統合失調症を発症していない健常人由来の試料における非リン酸化CRMP2の発現量よりも高い、及び/又は、被験者由来の試料におけるリン酸化CRMP2:非リン酸化CRMP2比が統合失調症を発症していない健常人由来の試料におけるリン酸化CRMP2:非リン酸化CRMP2比よりも低い場合に、統合失調症の発症可能性又は発症リスクが高いと判定することができる。また、本発明の診断方法及び治療方法において、被験者由来の試料における非リン酸化CRMP2の発現量が設定値よりも高い、及び/又は、被験者由来の試料におけるリン酸化CRMP2:非リン酸化CRMP2比が設定値よりも低い場合に、統合失調症の発症可能性又は発症リスクが高いと判定することができる。設定値については、上述した。 In the diagnostic and therapeutic methods of the present invention, the expression level of non-phosphorylated CRMP2 in the sample derived from the subject is higher than the expression level of non-phosphorylated CRMP2 in the sample derived from a healthy person who has not developed schizophrenia. / Or, if the phosphorylated CRMP2: non-phosphorylated CRMP2 ratio in the sample derived from the subject is lower than the phosphorylated CRMP2: non-phosphorylated CRMP2 ratio in the sample derived from a healthy person who has not developed schizophrenia, schizophrenia. It can be determined that the possibility of developing or the risk of developing the disease is high. Further, in the diagnostic method and the therapeutic method of the present invention, the expression level of non-phosphorylated CRMP2 in the sample derived from the subject is higher than the set value, and / or the phosphorylated CRMP2: non-phosphorylated CRMP2 ratio in the sample derived from the subject is high. When it is lower than the set value, it can be determined that the possibility of developing schizophrenia or the risk of developing schizophrenia is high. The set values are described above.
 本発明は、被験者由来の試料における、非リン酸化Collapsin Response Mediator Protein 2(CRMP2)の発現量を測定することができる試薬及び/又はリン酸化CRMP2の発現量を測定することができる試薬を含む、統合失調症の検査のためのキットも提供する。 The present invention includes a reagent capable of measuring the expression level of non-phosphorylated Collapsin Response Mediator Protein 2 (CRMP2) and / or a reagent capable of measuring the expression level of phosphorylated CRMP2 in a sample derived from a subject. Kits for testing for schizophrenia are also provided.
 一つの例として、本発明のキットは、非リン酸化CRMP2及び/又はリン酸化CRPM2を特異的に認識できる抗体を試薬として含む。抗体は、Ser522でリン酸化されたCRMP2を認識できるものであるとよい。抗体は、モノクローナル抗体、ポリクローナル抗体のいずれであってもよい。抗体はマイクロタイタープレートや磁気ビーズ、セルロース膜や基板に固定されていてもよい。キットには、さらに、被験者由来の試料を採取するための器具、抗凝固剤、上記タンパク質を検出するための試薬一式、取扱説明書などが含まれてもよい。取扱説明書には、キットの使用方法の他、統合失調症の評価及び/又は鑑別基準なども記載しておくとよい。 As an example, the kit of the present invention contains as a reagent an antibody capable of specifically recognizing non-phosphorylated CRMP2 and / or phosphorylated CRPM2. The antibody should be capable of recognizing CRMP2 phosphorylated by Ser522. The antibody may be either a monoclonal antibody or a polyclonal antibody. The antibody may be immobilized on a microtiter plate, magnetic beads, a cellulose membrane or a substrate. The kit may further include an instrument for collecting a sample derived from a subject, an anticoagulant, a set of reagents for detecting the protein, an instruction manual, and the like. In addition to how to use the kit, the instruction manual should also describe the evaluation and / or discrimination criteria for schizophrenia.
 別の一例として、本発明のキットは、CRMP2のmRNAと特異的にハイブリダイズできる核酸プローブを試薬として含む。核酸プローブは基板に固定されていてもよい。キットには、さらに、生体試料を採取するための器具、抗凝固剤、被験者由来の試料からRNAを抽出するための試薬類、RNAを検出するための試薬類、取扱説明書などが含まれてもよい。取扱説明書には、キットの使用方法の他、統合失調症の評価及び/又は鑑別基準なども記載しておくとよい。 As another example, the kit of the present invention contains a nucleic acid probe that can specifically hybridize with CRMP2 mRNA as a reagent. The nucleic acid probe may be immobilized on the substrate. The kit also includes equipment for collecting biological samples, anticoagulants, reagents for extracting RNA from subject-derived samples, reagents for detecting RNA, instruction manuals, etc. May be good. In addition to how to use the kit, the instruction manual should also describe the evaluation and / or discrimination criteria for schizophrenia.
 さらに別の一例として、本発明のキットはCRMP2のmRNAを鋳型として合成されるcDNAを特異的に増幅できる少なくとも1対の核酸プライマーを試薬として含む。キットには、さらに、被験者由来の試料を採取するための器具、抗凝固剤、被験者由来の試料からRNAを抽出するための試薬類、RNAを検出するための試薬類、取扱説明書などが含まれるとよい。取扱説明書には、キットの使用方法の他、統合失調症の評価及び/又は鑑別基準なども記載しておくとよい。 As yet another example, the kit of the present invention contains at least one pair of nucleic acid primers as a reagent capable of specifically amplifying cDNA synthesized using mRNA of CRMP2 as a template. The kit also includes equipment for collecting subject-derived samples, anticoagulants, reagents for extracting RNA from subject-derived samples, reagents for detecting RNA, instruction manuals, etc. It is good to be. In addition to how to use the kit, the instruction manual should also describe the evaluation and / or discrimination criteria for schizophrenia.
 本発明のキットには、この他、標準タンパク質、バッファー、基質(抗体が酵素標識されている場合)、反応停止液、洗浄液、反応容器などを含めてもよい。 In addition, the kit of the present invention may include a standard protein, a buffer, a substrate (when the antibody is enzyme-labeled), a reaction stop solution, a washing solution, a reaction vessel, and the like.
 本発明のキットは、疾病を診断するための医薬品として用いることができる。
The kit of the present invention can be used as a pharmaceutical product for diagnosing a disease.
 以下、実施例により本発明を更に詳細に説明する。
〔実施例1〕
 統合失調症(SCZ)は、認知、知覚、感情、行動の障害を特徴としている。現在、この神経精神障害の検証済みのバイオマーカーはほとんどない。これは、病気の原因となり、そして/または病気を進行させる根本的な病原メカニズムが不明であるためである。しかし、症候学において、SCZは、樹状突起スパイン上のシナプス接続、細胞骨格の調節によって部分的に駆動されるプロセスによって顕著に媒介される神経回路網の機能障害に依存しているという認識が高まっている。「Collapsin Response Mediator Protein 2」(CRMP2)は、軸索ガイダンス、樹状突起の分岐、およびスパイン形成のマスターレギュレーターである。つまり、神経回路網モジュレーターである。この細胞内タンパク質の活性は、そのリン酸化状態に依存している。非活性型(リン酸化)CRMP2と活性型(非リン酸化)CRMP2の間の「toggling(切り替え)」は生理学的であるが、神経精神障害におけるCRMP2の異常な調節が関与している証拠が出始めている。現在までに、リチウム応答性(LiR)双極性障害(BPD)は、異常に高くリン酸化された非活性型CRMP2(pCRMP2)とpCRMP2:CRMP2比の上昇によって一意に特徴付けられることがわかってきている。CRMP2はリンパ球にも発現しているため、SCZ患者と健常対照者の末梢血のCRMP2を調べた。40歳未満のSCZ患者の末梢血単核細胞(PBMC)において、我々は、BPDで認められたことの逆を観察した。非リン酸化活性型CRMP2のレベルは、非罹患年齢適合対照よりも高いが、リン酸化不活性型pCRMP2のレベルは、対照から変化しないままである。活性型CRMP2の存在量が多いが、おそらく不十分な量の相反する不活性型pCRMP2(増加したCRMP2基質のリン酸化が遅れているかのように)がpCRMP2 : CRMP2比の独特の低下につながることから、活性型CRMP2と不活性型CRMP2の正常な平衡の崩壊と、神経回路網の機能(特に樹状突起スパイン)にも異常があるという予想が示唆される。これらのデータは、末梢血中のCRMP2およびpCRMP2を測定することが、早期SCZ (検査および画像検査と併せて)のための比較的迅速、低侵襲、鋭敏および特異的な補助的診断検査の基礎を形成する可能性があることを示唆している。CRMP2の増加および/またはpCRMP2 : CRMP2比の低下は、SCZが疑われる新たに発症した若年患者において、特に他の擬態性疾患(例、BPDにおける躁病エピソード)を除外しようとする場合、診断に役立つ可能性がある。
Hereinafter, the present invention will be described in more detail by way of examples.
[Example 1]
Schizophrenia (SCZ) is characterized by impaired cognition, perception, emotions, and behavior. Currently, there are few validated biomarkers for this neuropsychiatric disorder. This is because the underlying pathogenic mechanism that causes and / or promotes the disease is unknown. However, in symptomology, it is recognized that SCZ depends on synaptic connections on dendrite spines, a dysfunction of the neural network that is significantly mediated by processes partially driven by cytoskeletal regulation. It is increasing. "Collapsin Response Mediator Protein 2" (CRMP2) is a master regulator of axonal guidance, dendrite bifurcation, and spine formation. That is, it is a neural network modulator. The activity of this intracellular protein depends on its phosphorylated state. "Toggling" between inactive (phosphorylated) CRMP2 and active (non-phosphorylated) CRMP2 is physiological, but there is evidence that abnormal regulation of CRMP2 in neuropsychiatric disorders is involved. I'm starting. To date, it has been found that lithium-responsive (LiR) bipolar disorder (BPD) is uniquely characterized by an abnormally high phosphorylated inactive CRMP2 (pCRMP2) and an increased pCRMP2: CRMP2 ratio. There is. Since CRMP2 is also expressed in lymphocytes, we examined the CRMP2 in the peripheral blood of SCZ patients and healthy controls. In peripheral blood mononuclear cells (PBMC) in SCZ patients younger than 40 years, we observed the opposite of what was found in BPD. The level of non-phosphorylated active CRMP2 is higher than that of the non-affected age-matched control, but the level of phosphorylated inactive pCRMP2 remains unchanged from the control. High abundance of active CRMP2, but perhaps inadequate amounts of conflicting inactive pCRMP2 (as if delayed phosphorylation of the increased CRMP2 substrate) leads to a unique reduction in the pCRMP2: CRMP2 ratio. This suggests that the normal equilibrium between active and inactive CRMP2 is disrupted and that the function of the neural network (particularly dendritic spine) is also abnormal. These data indicate that measuring CRMP2 and pCRMP2 in peripheral blood is the basis for relatively rapid, minimally invasive, sensitive and specific auxiliary diagnostic tests for early SCZ (together with testing and imaging). It suggests that it may form. Increased CRMP2 and / or decreased pCRMP2: CRMP2 ratio is useful for diagnosis in newly developed young patients with suspected SCZ, especially when trying to rule out other mimicry disorders (eg, manic episodes in BPD). there is a possibility.
Introduction
 統合失調症(SCZ)は、実質的な罹患率と死亡率、および莫大な個人的および社会的コストを伴う特発性精神障害である。それは、認知、知覚、感情、行動の障害によって特徴付けられる。病気を引き起こすおよび/または進行させる根本的な病原性分子による発症メカニズムは知られていない。しかしながら、重要な遺伝的要素があることが知られている(1)。それにもかかわらず、一卵性双生児間の疾患の一致率は50%に留まり、SCZはその病原性と発現において多遺伝子性、エピジェネティック(後成的)、多因子性である可能性が高いことを示唆している。
Introduction Introduction
Schizophrenia (SCZ) is an idiopathic psychiatric disorder with substantial morbidity and mortality, and enormous personal and social costs. It is characterized by impaired cognition, perception, emotion and behavior. The pathogenic mechanism by the underlying pathogenic molecule that causes and / or promotes the disease is unknown. However, it is known that there are important genetic components (1). Nonetheless, the concordance rate for disease between identical twins remains at 50%, and SCZ is likely to be multigenic, epigenetic, and multifactorial in its pathogenicity and expression. It suggests that.
 SCZの根本的な病態生理は理解されていないが、脳の神経回路網の構造と機能の変化が関係しているとされている(2-5)。脳の発達において、神経回路は、神経発生、分化、軸索ガイダンス、樹状突起発生、シナプス形成、および未熟なシナプスの活動依存性の精緻化を通じて形成される(6)。シナプスは神経伝達物質シグナル伝達の部位であるため、樹状突起スパインの機能不全はSCZにおいて重要な病因的役割を果たす可能性がある。実際、多数の遺伝的連鎖および関連研究により、シナプス形成および/または成熟に関与する遺伝子の異常がSCZの危険因子である可能性があることが示唆されている(4、6-8)。信頼性が高く、病原性に関連し、臨床的にアクセス可能なバイオマーカーの欠如は、根本的な病因メカニズムの理解だけでなく、SCZの診断も妨げる。 早期SCZの診断の速度、感度、および特異性を高めることは、より均質な患者集団全体にわたる遺伝子の体系的な検査を促進し、臨床管理を改善し、新しい治療オプションの開発を加速するだろう。 The underlying pathophysiology of SCZ is not understood, but it is believed to be related to changes in the structure and function of the neural network of the brain (2-5). In brain development, neural circuits are formed through neurogenesis, differentiation, axonal guidance, dendrite development, synaptogenesis, and activity-dependent refinement of immature synapses (6). Because synapses are sites of neurotransmitter signaling, dendritic spine dysfunction may play an important pathogenic role in SCZ. In fact, numerous genetic linkages and related studies suggest that abnormalities in genes involved in synaptogenesis and / or maturation may be risk factors for SCZ (4, 6-8). The lack of reliable, pathogenic, and clinically accessible biomarkers hinders not only an understanding of the underlying etiological mechanism, but also the diagnosis of SCZ. Increasing the speed, sensitivity, and specificity of early SCZ diagnosis will facilitate systematic testing of genes across a more homogeneous patient population, improve clinical management, and accelerate the development of new treatment options. ..
 「Collapsin Response Mediator Protein 2」(CRMP2)は、「Dihydropyrimidinase-like 2」(DPYSL2)とも呼ばれ、軸索ガイダンス、樹状分岐、スパイン形成のマスターレギュレーターである。したがって、神経回路網モジュレーターである。 これは最初、反発性軸索ガイダンス分子であるSemaphorin3Aのシグナル伝達を媒介する細胞内分子として同定された(9)が、それ以来、神経の発達と成人の神経系の恒常性の維持においてはるかに大きな役割を果たすと認識されてきている。CRMPファミリーのタンパク質は、CRMP1からCRMP5までの5つの相同な細胞質タンパク質で構成されることが現在知られている(10、11)。 CRMP2は、非リン酸化活性状態の細胞骨格要素に積極的に結合する。2段階のプロセスであるCRMP2のリン酸化は、CRMP2を不活性化し、細胞骨格要素の放出を誘導する。Cdk5は、最初にCRMP2をSer522でリン酸化し、グリコーゲン合成酵素キナーゼ3β(GSK3β)がCRMP2をThr514およびSer518でリン酸化するようにプライミングする(12)。 不活性(リン酸化)と活性(非リン酸化)CRMP2の間の「toggling(切り替え)」は、異常なニューロンの発芽を防止するための継続的な生理学的適応メカニズムであることを我々は今知っている。 "Collapsin Response Mediator Protein 2" (CRMP2), also called "Dihydropyrimidinase-like 2" (DPYSL2), is a master regulator for axon guidance, dendritic branching, and spine formation. Therefore, it is a neural network modulator. It was initially identified as an intracellular molecule that mediates signaling of the repulsive axon guidance molecule Semaphorin 3A (9), but has since been much more in neural development and maintenance of adult nervous system homeostasis. It has been recognized as playing a major role. The CRMP family of proteins is currently known to be composed of five homologous cytoplasmic proteins from CRMP1 to CRMP5 (10, 11). CRMP2 actively binds to non-phosphorylated active cytoskeletal elements. Phosphorylation of CRMP2, a two-step process, inactivates CRMP2 and induces the release of cytoskeletal elements. Cdk5 first phosphorylates CRMP2 with Ser522 and primes glycogen synthase kinase 3β (GSK3β) to phosphorylate CRMP2 with Thr514 and Ser518 (12). We now know that "toggling" between inactive (phosphorylated) and active (non-phosphorylated) CRMP2 is a continuous physiological adaptive mechanism to prevent the germination of abnormal neurons. ing.
 CRMPファミリーのタンパク質が軸索ガイダンス、樹状突起のパターン形成、シナプス形成などの重要な役割を果たしていることを我々が知るようになるプロセスは、神経精神障害の中心となるネットワーク異常にとって極めて重要なものとして認識されるようになっている(10、11、13、14)。 crmp1およびcrmp2遺伝子欠損マウスの表現型分析(それぞれcrmp1- / -およびcrmp2- / -)により、これらのトランスジェニック動物の両方が神経精神症状をモデル化すると考えられる行動異常を示すことが明らかになった。 たとえば、Crmp1 - / -マウスは、文脈依存性および長期記憶の障害を示し、プレパルス抑制の低下を示す(15)。Crmp2 - / -マウスは、活動亢進、感情的行動障害、社会的相互作用の低下、軽度の文脈学習障害、およびメタンフェタミンに対する高い感受性を示す(16、17)。 我々は最近、リチウム応答性(LiR)双極性障害(BPD)の病因の中核をなすものとして、異常なCRMP2翻訳後調節が関与していることを示した(14、18)。具体的には、非リン酸化(活性型)に対するリン酸化(非活性型)CRMP2の比率の「設定値」は、LiRヒト脳および患者固有のヒト誘導幹細胞(hiPSC)由来ニューロンで異常に高く、リン酸化されたCRMP2(pCRMP2)のレベルを低下させることにより、その設定値と樹状病変を正規化したCRMP2経路モジュレーターであるリチウムや皮質樹状突起スパイン密度とは、逆相関していた。 したがって、BPDを遺伝子自体の障害ではなく、発生に重要な分子の翻訳後調節の障害と見なした。LiR BPDに対するpCRMP2 : CRMP2比の上昇の特異性(非罹患対照、他の精神・神経疾患、さらにはリチウム非反応性(LiNR) BPD患者ではみられない上昇)から、この疾患のバイオマーカーとして役立つ可能性が示唆された(14)。最近の一連のゲノムワイド関連研究は、興味深いことに、BPDが気分障害よりもSCZなどの認知障害とクラスター化することを示している(19)。CRMP2が細胞骨格、したがって神経回路網の変調のマスターレギュレーターとしての役割を与えられた場合、その活動状態が、異常なシナプス形成、神経突起形成、及び神経回路網の活動によって特徴付けられると強く疑われるSCZの潜在的なバイオマーカーとしても役立つかどうかを我々は調査した。 The process by which we become aware that proteins in the CRMP family play important roles in axonal guidance, dendrite patterning, synaptogenesis, etc. is crucial for network abnormalities at the heart of neuropsychiatric disorders. It has come to be recognized as a thing (10, 11, 13, 14). Phenotypic analysis of crmp1 and crmp2 gene-deficient mice (crmp1 - / - and crmp2 - / - , respectively) reveals that both of these transgenic animals exhibit behavioral abnormalities that are thought to model neuropsychiatric symptoms. rice field. For example, Crmp1 - / - mice show context-sensitive and long-term memory impairment and show reduced prepulse inhibition (15). Crmp2- / -Mice show hyperactivity, emotional behavioral disorders, decreased social interaction, mild contextual learning disabilities, and high susceptibility to methamphetamine (16, 17). We have recently shown that aberrant CRMP2 posttranslational regulation is involved at the core of the etiology of lithium-responsive (LiR) bipolar disorder (BPD) (14, 18). Specifically, the "set value" of the ratio of phosphorylated (inactive) CRMP2 to non-phosphorylated (active) is abnormally high in LiR human brains and patient-specific human-induced stem cell (hiPSC) -derived neurons. By reducing the level of phosphorylated CRMP2 (pCRMP2), its setting was inversely correlated with the CRMP2 pathway modulators, lithium and cortical dendrite spine density, which normalized dendritic lesions. Therefore, we regarded BPD as a disorder of post-translational regulation of molecules important for development, not as a disorder of the gene itself. Serving as a biomarker for this disease due to the specificity of increased pCRMP2: CRMP2 ratio to LiR BPD (unaffected controls, other psycho-neurological disorders, as well as elevated levels not seen in patients with lithium non-reactive (LiNR) BPD) A possibility was suggested (14). Interestingly, a series of recent genome-wide association studies have shown that BPD clusters with cognitive disorders such as SCZ rather than mood disorders (19). Given the role of CRMP2 as a master regulator of the modulation of the cytoskeleton and thus the neural network, it is strongly suspected that its activity state is characterized by abnormal synaptogenesis, neurite formation, and neural network activity. We investigated whether it could also serve as a potential biomarker for SCZ.
 CRMP2がリンパ球でも発現していることを知って、これらの脳の異常が容易にアクセス可能な末梢血単核細胞(PBMC)に反映され、SCZの実用的な臨床診断マーカーの基礎として役立つかどうかを判断した。血中の違いは顕著であることがわかった。CRMP2のレベルは、健康な年齢適合対照群と比較して上昇した。pCRMP2:CRMP2の比率が異常に低くなっている(分母の増加に基づく)。これらの所見は、疾患が「より純粋」である可能性が高いSCZの若い患者で最も顕著であった(つまり、加齢に伴う疾患や他の併存症による汚染が少なく、早期診断と治療が最も有益である可能性がある)。これらのCRMP2の調査結果は、pCRMP2:CRMP2比が常に異常に高く、CRMP2が常に正常であったLiR BPDの状況とはまったく対照的であり、診断されていない若い患者の2つの状態を区別するための分子的および生化学的方法を提供する可能性があり、最初のプレゼンテーションでは明確ではない場合がある(躁病のエピソードと統合失調症の「ブレイク」は、互いに似ていることがある)。SCZでのCRMP2の生成におけるこれらの変化は、迅速で高感度な特定の非侵襲的にアクセス可能なバイオマーカーと診断支援を提供するだけでなく、SCZで見られる神経病理学的変化の根底にある分子メカニズムへの洞察を提供し始める。 Knowing that CRMP2 is also expressed in lymphocytes, can these brain abnormalities be reflected in readily accessible peripheral blood mononuclear cells (PBMCs) and serve as the basis for practical clinical diagnostic markers for SCZ? I decided. The difference in blood was found to be remarkable. CRMP2 levels were elevated compared to a healthy age-matched control group. The ratio of pCRMP2: CRMP2 is abnormally low (based on an increase in the denominator). These findings were most pronounced in young patients with SCZ who were more likely to have the disease "purer" (ie, less contaminated with age-related disease and other comorbidities, early diagnosis and treatment. May be the most beneficial). These CRMP2 findings are in stark contrast to the LiRBPD situation, where the pCRMP2: CRMP2 ratio was always abnormally high and CRMP2 was always normal, distinguishing between the two states of undiagnosed young patients. May provide molecular and biochemical methods for, and may not be clear in the first presentation (manic episodes and schizophrenia "breaks" may resemble each other). These changes in the production of CRMP2 in SCZ not only provide rapid, sensitive, specific non-invasively accessible biomarkers and diagnostic support, but also underlie the neuropathological changes seen in SCZ. Begins to provide insights into certain molecular mechanisms.
Results
 CRMP2は年齢適合非罹患患者と有意差はなかったが、pCRMP2 : CRMP2比は、LiR BPD患者では非罹患対照と比較して有意に上昇していた(同様に、LiNR BPDを含む他の精神・神経疾患患者と比較しても)。分母(CRMP2)は不変のままで、LiR BPD患者で異常に高かったのはpCRMP2(分子)であった。SCZ患者と罹患していない対照群との間のCRMP2の差は、このよりアクセスしやすい末梢血由来細胞型のアッセイを通して検出されたように、顕著であった(pCRMP2 : CRMP2比を、われわれがそれを疑った有益な計量値にすることに加えて)。
Results Results.
CRMP2 was not significantly different from age-appropriate non-affected patients, but the pCRMP2: CRMP2 ratio was significantly higher in LiR BPD patients compared to non-affected controls (similarly, other psychology, including LiNR BPD). Compared to patients with neurological disorders). The denominator (CRMP2) remained unchanged, with pCRMP2 (numerator) being abnormally high in LiR BPD patients. Differences in CRMP2 between SCZ patients and unaffected controls were significant, as detected through this more accessible peripheral blood-derived cell type assay (pCRMP2: CRMP2 ratio, we In addition to making it a suspicious and informative metric).
 我々はまず、生きている患者のPBMCサンプル中のCRMP2とpCRMP2の検出システムを確立した[図2 & 3]。「純粋な」SCZであった可能性が高い患者を検討し、加齢関連疾患ならびにポリファーマシー(非精神疾患を含む)の交絡作用を排除するために、我々は、加齢に伴う可能性のある疾患と関連のない共存症が介入する前の時期である40歳未満のSCZ患者に焦点を当てて評価した。このSCZ患者群および非罹患年齢適合対照群の人口統計学的情報を表に要約する。その点では両群間に有意差はなかった。予想されるように、教育完了年数および追求されているキャリアの要求は、年齢適合非罹患対照と比較してSCZ患者で低かった。 We first established a detection system for CRMP2 and pCRMP2 in PBMC samples of living patients [Fig. 2 & 3]. To examine patients who are likely to have "pure" SCZ and to eliminate the entanglement of age-related disorders as well as polypharmacy (including non-psychiatric disorders), we may be associated with aging. The evaluation focused on SCZ patients <40 years of age, before intervention of comorbidities unrelated to a disease. The table summarizes the demographic information of this SCZ patient group and the non-affected age-matched control group. There was no significant difference between the two groups in that respect. As expected, years of education completion and career requirements pursued were lower in SCZ patients compared to age-matched non-affected controls.
 CRMP2のレベルだけでなく、結果として生じるpCRMP2 : CRMP2比に関しても、SCZ患者と非罹患対照との間に有意差が存在した[図1]。CRMP2レベルはSCZ患者のPBMCで有意に高かった。最も著しく、30歳未満のSCZ患者ではそうであった(*p <0.01)。一方、CRMP2のリン酸化はCRMP2基質の増加と同時には増加せず、したがって、分母(CRMP2)がその存在量の増加に基づいて大きくなったため、SCZ群では(非罹患対照群と比較して)pCRMP2 : CRMP2の比率が低かった[図1]。非リン酸化活性型CRMP2が過剰に存在することで(通常存在する活性型CRMP2とリン酸化不活性型CRMP2の平衡と比較して)、特に樹状突起スパインでの神経回路網の機能が異常になると予想される。特に、SCZにおけるより低いpCRMP2 : CRMP2比は、LiR BPD患者において我々が以前に報告したより高い比(14, 18)と劇的に対比し、この診断補助の潜在的有用性を高めた。 There was a significant difference between SCZ patients and non-affected controls not only in the level of CRMP2 but also in the resulting pCRMP2: CRMP2 ratio [Fig. 1]. CRMP2 levels were significantly higher in PBMC in SCZ patients. Most notably, this was the case in SCZ patients younger than 30 years (* p <0.01). On the other hand, the phosphorylation of CRMP2 did not increase at the same time as the increase in the CRMP2 substrate, and therefore the denominator (CRMP2) increased based on the increase in its abundance, so that in the SCZ group (compared to the unaffected control group). pCRMP2: The ratio of CRMP2 was low [Fig. 1]. Excessive presence of non-phosphorylated active CRMP2 (compared to the equilibrium between normally present active and non-phosphorylated CRMP2) results in abnormal neural network function, especially in dendritic spines. It is expected to be. In particular, the lower pCRMP2: CRMP2 ratio in SCZ dramatically contrasted with the higher ratio (14,18) we previously reported in LiRBPD patients, increasing the potential usefulness of this diagnostic aid.
 要するに、診断目的において、血液中の過剰量の活性非リン酸化CRMP2は、SCZ患者を非罹患対照被験者と区別する(そしてBPDのような他の擬似精神疾患を有する患者をも区別する可能性が高い)。 In short, for diagnostic purposes, excessive amounts of active non-phosphorylated CRMP2 in the blood may distinguish SCZ patients from unaffected control subjects (and also patients with other pseudopsychiatric disorders such as BPD). expensive).
Discussion 
 本研究では、この病態の症状は、樹状突起スパイン上のシナプス結合によって顕著に媒介される神経回路網の機能障害、すなわち一部は細胞骨格調節によって駆動される過程に依存するという、文献の増大する意味に由来するSCZの補助的診断バイオマーカーの証拠を提供する。CRMP2は、マスター細胞骨格調節因子であり、したがって、神経回路網モジュレーター(調節因子)である。CRMP2のリン酸化は、チューブリン、RhoA、フィラミン-Aなどの細胞骨格および関連タンパク質の特異的サブセットへの結合親和性を変化させる(11, 20, 21)。これらのリン酸化状態の変化は、細胞骨格動態の調節に影響を及ぼす。不活性型(リン酸化) CRMP2と活性型(非リン酸化) CRMP2の間の「トグリング」は生理的である(14, 18)。しかし、活性型CRMP2と不活性型CRMP2のバランスの異常(どちらか一方が多すぎる)は、シナプス形成、シナプス成熟、シナプス伝達の異常を引き起こす可能性がある(11, 22)。
Discussion
In this study, the literature states that the symptoms of this condition depend on dysfunction of the neural network, which is markedly mediated by synaptic connections on dendrite spines, i.e., partly driven by cytoskeletal regulation. Provides evidence of ancillary diagnostic biomarkers of SCZ derived from the increasing implications. CRMP2 is a master cytoskeletal regulator and, therefore, a neural network modulator. Phosphorylation of CRMP2 alters the binding affinity for specific subsets of cytoskeletons and related proteins such as tubulin, RhoA, and filamine-A (11, 20, 21). These changes in phosphorylation state affect the regulation of cytoskeletal dynamics. The "togling" between the inactive (phosphorylated) CRMP2 and the active (non-phosphorylated) CRMP2 is physiological (14, 18). However, imbalances between active and inactive CRMP2 (one too much) can cause abnormalities in synaptogenesis, synaptic maturation, and synaptic transmission (11, 22).
 前述したように、CRMP2はリンパ球にも存在する。実際、神経系からの細胞とリンパ球における受容体の発現と形質導入過程の間の類似性が研究により示されている(23)。我々のPBMCアッセイを用いて、年齢適合非罹患対照患者と比較して、CRMP2の血中レベルがより大きいことを見出した。また、CRMP2のリン酸化型は対照とほとんど変わらなかったため、一定の分子を維持しながら分母を増加させる正味の効果は、SCZ群のpCRMP2 : CRMP2の比を対照群と比較して低下させていた。これらの差は、SCZ患者の最も若いグループで最も顕著であった。30歳未満のSCZ患者では、pCRMP2 : CRMP2の比は、p<0.01有意水準まで、対照患者よりも低かった。 As mentioned above, CRMP2 is also present in lymphocytes. In fact, studies have shown similarities between receptor expression and transduction processes in cells and lymphocytes from the nervous system (23). Using our PBMC assay, we found that blood levels of CRMP2 were higher compared to age-matched non-affected controls. In addition, since the phosphorylated form of CRMP2 was almost the same as that of the control, the net effect of increasing the denominator while maintaining a constant numerator was that the ratio of pCRMP2: CRMP2 in the SCZ group was lower than that in the control group. .. These differences were most pronounced in the youngest group of SCZ patients. In SCZ patients younger than 30 years, the pCRMP2: CRMP2 ratio was lower than in control patients, up to the p <0.01 significance level.
 SCZの若年患者におけるpCRMP2 : CRMP2比の低値と、年齢適合非罹患対照被験者における正常な比との間の厳密な分離(図1Aに示されるように)は、PBMCとして容易かつ繰り返しアクセス可能で情報価値のある細胞型をアッセイすることが、SCZの疑いのある患者のPBMCにおいてCRMP2およびpCRMP2を迅速に測定できる(もちろん、精神医学的および神経行動学的検査および投薬試験と併せて実施されるべきである)低侵襲補助診断試験の基礎として役立つ可能性があることを示唆している。このような補助的検査を受けることは、他の行動上の問題、人格障害、または全身性疾患を含む、SCZとそれに類似する可能性のある他の病態とを臨床医が鑑別するのに役立つであろう。例えば、これらの値は、BPD患者においてSCZによる精神病エピソードと躁病エピソードとを比較的迅速に臨床医が区別するのに役立つであろう。正常なCRMP2値および/またはpCRMP2 : CRMP2比の上昇についてはまた後で話しましょう。増加したCRMP2値および/または比の低下は、新たに発症した若年患者におけるSCZの診断をたやすいことにするでしょう。さらに、同じ患者で経時的かつ長期的に追跡した場合、pCRMP2は年齢とともに増加し始めるため、特にアルツハイマー型認知症の発症に伴って増加し始めるため、CRMP2レベルおよび比は、SCZに関連する行動と加齢に関連する行動とを区別するのに役立つ可能性がある。実際、ある患者において、その患者がすでに高齢であり、他の多くの共存症(24, 25)を有する場合、このバイオマーカーを初めて使用することに我々はくぎを刺します。pCRMP2: CRMP2比の特異性は、その高齢群ではより不良である可能性が高い。 Exact separation between low pCRMP2: CRMP2 ratios in young patients with SCZ and normal ratios in age-matched non-affected controls (as shown in Figure 1A) is easily and repeatedly accessible as PBMCs. Assaying informative cell types can rapidly measure CRMP2 and pCRMP2 in PBMC of patients with suspected SCZ (of course, in conjunction with psychiatric and neurobehavioral tests and medication tests). It suggests that it may serve as the basis for minimally invasive assisted diagnostic trials. Having such ancillary tests helps clinicians differentiate SCZ from other conditions that may be similar, including other behavioral problems, personality disorders, or systemic disorders. Will. For example, these values may help clinicians distinguish between SCZ psychotic and manic episodes relatively quickly in BPD patients. We will talk about the normal CRMP2 value and / or the increase in the pCRMP2: CRMP2 ratio later. Increased CRMP2 levels and / or decreased ratios will facilitate the diagnosis of SCZ in newly developed young patients. In addition, CRMP2 levels and ratios are SCZ-related behaviors because pCRMP2 begins to increase with age, especially with the development of Alzheimer's disease, when followed over time and over time in the same patient. May help distinguish between aging and age-related behaviors. In fact, in one patient, if the patient is already elderly and has many other comorbidities (24, 25), we nail the use of this biomarker for the first time. The specificity of the pCRMP2: CRMP2 ratio is likely to be worse in the older group.
 結論として、SCZ患者の末梢血単球において、マスター細胞骨格モジュレーターおよび神経回路網決定因子、CRMP2のレベルは、非罹患年齢適合対照よりも高い。CRMP2が関与しているもの(例えば、LiR BPD)を含む他の精神疾患とは対照的に、一定の不活性型pCRMP2レベルを有するより高い活性型CRMP2レベルは、pCRMP2 : CRMP2比の非罹患対照被験者よりも低い独特の低下をもたらす。活性型CRMP2と不活性型CRMP2の間の正常な平衡におけるこの破壊は、同様に神経回路網の不均衡につながる可能性がある。これらの脳の変化は若年患者(おそらく初期段階で、おそらく未だ診断されていない)の末梢血で検出できるため、これらの比率を検定することは、患者の異常行動の病因を決定しようとするとき(検査および画像検査と併せて)、最終的に補助的、比較的迅速、低侵襲、敏感および特異的な診断補助として役立つ可能性があるという興味深い可能性が存在する。 In conclusion, in peripheral blood monocytes of SCZ patients, the levels of master cytoskeletal modulator and neural network determinant, CRMP2 are higher than in non-affected age-matched controls. In contrast to other psychiatric disorders, including those involving CRMP2 (eg, LiRBPD), higher active CRMP2 levels with constant inactive pCRMP2 levels are non-affected controls with a pCRMP2: CRMP2 ratio. It results in a unique reduction that is lower than that of the subject. This disruption in the normal equilibrium between the active and inactive CRMP2 can lead to an imbalance in the neural network as well. Since these brain changes can be detected in the peripheral blood of young patients (probably early, probably not yet diagnosed), testing these ratios is when trying to determine the etiology of a patient's abnormal behavior. There is an interesting possibility (in combination with examination and imaging) that it may ultimately serve as ancillary, relatively rapid, minimally invasive, sensitive and specific diagnostic aids.
 CRMP2がSCZの病態生理に何らかの様式で関与しているように思われることを考えると(実際、リスク遺伝子とみなしてきたものもある(26))、細胞骨格と神経回路網の動的調節のさらなる研究は、SCZで見られる神経病理学的変化の根底にある分子機構、ならびに新規治療介入へのより大きな洞察につながるかもしれない。 Given that CRMP2 appears to be involved in the pathology of SCZ in some way (in fact, some have been considered risk genes (26)), the dynamic regulation of the cytoskeleton and neural network Further research may lead to greater insight into the molecular mechanisms underlying the neuropathological changes seen in SCZ, as well as new therapeutic interventions.
Methods 
[PBMCが採取された患者]
 PBMCを採取したSCZ患者および健常対照患者(18~40歳の範囲)の人口統計を表に要約する。このようなデータには、年齢および性別、家族の既往歴、喫煙歴、飲酒歴、教育、経歴および投薬歴が含まれる。被験者は横浜市立大学病院、横浜メディカルセンター、横浜舞岡病院(横浜市立大学所属)の入院患者または外来患者であった。本研究は各病院の倫理審査委員会の承認を得た。各SCZ患者は、精神障害の診断&統計マニュアル(DSM‐IV)の診断基準に基づいて、少なくとも2人の精神科医によって診断された。PANSS (陽性および陰性症状スケール)を用いて症状の重症度を評価した。適合非罹患対照については、一般オープンコールによりボランティアを登録した。各ボランティアに精神科医によるインタビューを行い、精神障害を除外した。すべての参加者からインフォームドコンセントを得た。
Methods
[Patients from whom PBMC was collected]
The table summarizes the demographics of SCZ patients and healthy control patients (range 18-40 years) who collected PBMCs. Such data include age and gender, family history, smoking history, drinking history, education, background and medication history. The subjects were inpatients or outpatients at Yokohama City University Hospital, Yokohama Medical Center, and Yokohama Maioka Hospital (belonging to Yokohama City University). This study was approved by the ethics review board of each hospital. Each SCZ patient was diagnosed by at least two psychiatrists based on the diagnostic criteria of the Diagnostic and Statistical Manual of Mental Illness (DSM-IV). The severity of symptoms was assessed using PANSS (Positive and Negative Symptom Scale). Volunteers were enrolled by general open call for conforming non-affected controls. Psychiatrists interviewed each volunteer to rule out mental illness. Informed consent was obtained from all participants.
[血液サンプル採取とリンパ球分離]
 PBMCは、単核細胞調製チューブ(BD Vacutainer CPT:Becton-Dickinson, NJ,USA)を用いて採取したすべての血液サンプルから分離した。全血標本を30分間(1500g、25℃)遠心分離し、15mlチューブにPBMC層を回収した。次にこれらのサンプルをリン酸緩衝生理食塩水マイナス(PBS)で洗浄し、4℃で10分間427gで3回遠心分離した。上清を廃棄した後、10%ウシ胎児血清(FBS)とアンピシリンを添加したRPMI1640培地にペレットを再懸濁した。
[Blood sampling and lymphocyte separation]
PBMCs were isolated from all blood samples taken using mononuclear cell preparation tubes (BD Vacutainer CPT: Becton-Dickinson, NJ, USA). Whole blood specimens were centrifuged for 30 minutes (1500 g, 25 ° C) and the PBMC layer was collected in a 15 ml tube. These samples were then washed with phosphate buffered saline minus (PBS) and centrifuged at 427 g for 10 minutes at 4 ° C. three times. After discarding the supernatant, the pellet was resuspended in RPMI1640 medium supplemented with 10% fetal bovine serum (FBS) and ampicillin.
 再懸濁した試料を非被覆Petri皿上に播種し、37℃で2日間CO2インキュベーター中で培養した。非接着性リンパ球を含む上清画分を採取し、15mlの試験管に移した。試料を4℃で5分間200gで遠心分離した。上清を捨てた後、ペレットを1mlのPBSに再懸濁し、1.5mlの試験管に移した。200gで5分間、4℃で遠心分離した後、上清を捨て、ペレットを液体窒素で凍結し、使用まで-80℃で保存した。CRMP2およびpCRMP2レベルは、その後、以下に記載するように、これらのサンプルにおいて評価された。 The resuspended sample was sown on an uncoated Petri dish and cultured at 37 ° C for 2 days in a CO2 incubator. A supernatant fraction containing non-adhesive lymphocytes was collected and transferred to a 15 ml test tube. The sample was centrifuged at 200 g for 5 minutes at 4 ° C. After discarding the supernatant, the pellet was resuspended in 1 ml PBS and transferred to a 1.5 ml tube. After centrifugation at 200 g for 5 minutes at 4 ° C, the supernatant was discarded, the pellet was frozen in liquid nitrogen and stored at -80 ° C until use. CRMP2 and pCRMP2 levels were then evaluated in these samples as described below.
[抗体]
 Balb/cマウスにヒトCRMP2のC末端領域(アミノ酸486~528)を注射することにより、抗ヒトCRMP2モノクローナル抗体(9F)を作製した(27)。
Ser522でリン酸化されたCRMP2を認識する抗リン酸化CRMP1/2(S522) (p-S522-CRMP1/2)ポリクローナル抗体が、ウサギで既報(12)のように作製された。2つの抗体の特異性は、既報(12, 27, 28)のようなヒトPMBC試料のイムノブロット分析におけるペプチドブロッキング実験により検証した。(図2及び3参照)
[antibody]
Anti-human CRMP2 monoclonal antibody (9F) was generated by injecting Balb / c mice into the C-terminal region of human CRMP2 (amino acids 486-528) (27).
An anti-phosphorylated CRMP1 / 2 (S522) (p-S522-CRMP1 / 2) polyclonal antibody that recognizes phosphorylated CRMP2 with Ser522 was produced in rabbits as previously reported (12). The specificity of the two antibodies was verified by peptide blocking experiments in immunoblot analysis of human PMBC samples as previously reported (12, 27, 28). (See Figures 2 and 3)
[イムノブロット分析]
 試料ペレットを、50μlの免疫沈降IP緩衝液(20mM Tris-HCl、pH 8.0、150mM NaCl、1mM EDTA、10mM NaF、1mM Na3VO4、1 % Nonidet P-40、50μMρ-APMSF[ρ-アミジノフェニルメタンスルホニルフルオリド])中でホモジナイズし、15,000g、4℃で20分間遠心分離した。次に、試料を抗CRMP2(9F)、抗リン酸化CRMP1/2、およびシグナルエンハンサーHIKARI (Nacalai Tesque、京都、日本)を有する抗β‐アクチンマウスモノクローナル(A5316、Sigma‐Aldrich、MO、USA)抗体による免疫ブロット分析に用いた。アクチン(2.0mg/ml)およびラット脳溶解物(0.5mg/ml)を負荷対照として用いた。精製CRMP2を標準として用い、ImageJを用いて免疫ブロット法でリンパ球溶解物中のCRMP2濃度を算出した。CRMP2とそのSer522リン酸化型のCRMP2(p‐S522‐CRMP2)の相対量を、内部標準としてβ‐アクチンを用いて推定した。(図2及び3参照)
[Immunoblot analysis]
Sample pellets of 50 μl immunoprecipitated IP buffer (20 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1 mM EDTA, 10 mM NaF, 1 mM Na3VO4, 1% Nonidet P-40, 50 μM ρ-APMSF [ρ-amidinophenylmethanesulfonyl fluoride] D]) was homogenized and centrifuged at 15,000 g at 4 ° C for 20 minutes. Next, sample the anti-β-actin mouse monoclonal (A5316, Sigma-Aldrich, MO, USA) antibody with anti-CRMP2 (9F), anti-phosphorylated CRMP1 / 2, and signal enhancer HIKARI (Nacalai Tesque, Kyoto, Japan). Used for immunoblot analysis by. Actin (2.0 mg / ml) and rat brain lysate (0.5 mg / ml) were used as load controls. Purified CRMP2 was used as a standard, and the CRMP2 concentration in the lymphocyte lysate was calculated by immunoblotting using ImageJ. Relative amounts of CRMP2 and its Ser522 phosphorylated CRMP2 (p-S522-CRMP2) were estimated using β-actin as an internal standard. (See Figures 2 and 3)
[末梢血検体からのデータの統計解析]
 統計解析はIBM SPSS Statistics 22(IMB解析)を用いて行った。Mann-WhitneyのU検定については、統計学的有意性をp<0.05とした。連続変数間の検討については、回帰分析を行い、相関係数の有意性はp<0.05とした。
[Statistical analysis of data from peripheral blood samples]
Statistical analysis was performed using IBM SPSS Statistics 22 (IMB analysis). For the Mann-Whitney U test, the statistical significance was p <0.05. Regression analysis was performed for the examination between continuous variables, and the significance of the correlation coefficient was p <0.05.
[試験の承認]
 横浜市立大学病院、横浜メディカルセンター、横浜舞岡病院における治験実施計画書は、各病院の倫理審査委員会により承認された。すべての動物処置は、横浜市立大学大学院医学系研究科の動物実験委員会が概説した施設のガイドラインに従って、またNIH Guide for the Care and Use of Laboratory Animals (National Academies Press, 2011)に準拠して実施した。
[Test approval]
The clinical trial implementation plans at Yokohama City University Hospital, Yokohama Medical Center, and Yokohama Maioka Hospital were approved by the ethical review board of each hospital. All animal treatments are performed according to the facility guidelines outlined by the Animal Care and Use of Laboratory Animals (National Academies Press, 2011) of the Graduate School of Medicine, Yokohama City University. bottom.

PBMCが解析された患者の人口統計学的情報
Figure JPOXMLDOC01-appb-I000001
table
Demographic information of patients analyzed for PBMC
Figure JPOXMLDOC01-appb-I000001
References
1. Ripke S, O'Dushlaine C, Chambert K, Moran JL, Kahler AK, Akterin S, et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia.
Nat Genet. 2013;45(10):1150-9.
2. Beasley CL, Pennington K, Behan A, Wait R, Dunn MJ, and Cotter D. Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: Evidence for disease-associated changes. Proteomics. 2006;6(11):3414-25.
3. Holmans PA, Riley B, Pulver AE, Owen MJ, Wildenauer DB, Gejman PV, et al. Genomewide linkage scan of schizophrenia in a large multicenter pedigree sample using single nucleotide polymorphisms. Mol Psychiatry. 2009;14(8):786-95.
4. Johnston-Wilson NL, Sims CD, Hofmann JP, Anderson L, Shore AD, Torrey EF, et al. Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium. Mol Psychiatry. 2000;5(2):142-9.
5. Ng MY, Levinson DF, Faraone SV, Suarez BK, DeLisi LE, Arinami T, et al. Meta-analysis of 32 genome-wide linkage studies of schizophrenia. Mol Psychiatry. 2009;14(8):774-85.
6. Penzes P, Buonanno A, Passafaro M, Sala C, and Sweet RA. Developmental vulnerability of synapses and circuits associated with neuropsychiatric disorders. J Neurochem. 2013;126(2):165-82.
7. Fallin MD, Lasseter VK, Liu Y, Avramopoulos D, McGrath J, Wolyniec PS, et al. Linkage and association on 8p21.2-p21.1 in schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2011;156(2):188-97.
8. Koide T, Aleksic B, Ito Y, Usui H, Yoshimi A, Inada T, et al. A two-stage case-control association study of the dihydropyrimidinase-like 2 gene (DPYSL2) with schizophrenia in Japanese subjects. J Hum Genet. 2010;55(7):469-72.
9. Goshima Y, Nakamura F, Strittmatter P, and Strittmatter SM. Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature. 1995;376(6540):509-14.
10. Quach TT, Honnorat J, Kolattukudy PE, Khanna R, and Duchemin AM. CRMPs: critical molecules for neurite morphogenesis and neuropsychiatric diseases. Mol Psychiatry. 2015;20(9):1037-45.
11. Yamashita N, and Goshima Y. Collapsin response mediator proteins regulate neuronal development and plasticity by switching their phosphorylation status. Molecular neurobiology. 2012;45(2):234-46.
12. Uchida Y, Ohshima T, Sasaki Y, Suzuki H, Yanai S, Yamashita N, et al. Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer's disease. Genes to cells : devoted to molecular & cellular mechanisms. 2005;10(2):165-79.
13. Ip JP, Fu AK, and Ip NY. CRMP2: functional roles in neural development and therapeutic potential in neurological diseases. Neuroscientist. 2014;20(6):589-98.
14. Tobe BTD, Crain AM, Winquist AM, Calabrese B, Makihara H, Zhao WN, et al. Probing the lithium-response pathway in hiPSCs implicates the phosphoregulatory set-point for a cytoskeletal modulator in bipolar pathogenesis. Proc Natl Acad Sci U S A. 2017.
15. Yamashita N, Takahashi A, Takao K, Yamamoto T, Kolattukudy P, Miyakawa T, et al. Mice lacking collapsin response mediator protein 1 manifest hyperactivity, impaired learning and memory, and impaired prepulse inhibition. Frontiers in behavioral neuroscience. 2013;7:216.
16. Nakamura H, Yamashita N, Kimura A, Kimura Y, Hirano H, Makihara H, et al. Comprehensive behavioral study and proteomic analyses of CRMP2-deficient mice. Genes to cells : devoted to molecular & cellular mechanisms. 2016.
17. Zhang H, Kang E, Wang Y, Yang C, Yu H, Wang Q, et al. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice. Nat Commun. 2016;7.
18. Zhao WN, Tobe BTD, Udeshi ND, Xuan LL, Pernia CD, Zolg DP, et al. Discovery of suppressors of CRMP2 phosphorylation reveals compounds that mimic the behavioral effects of lithium on amphetamine-induced hyperlocomotion. Transl Psychiatry. 2020;10(1):76.
19. Gandal MJ, Haney JR, Parikshak NN, Leppa V, Ramaswami G, Hartl C, et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science. 2018;359(6376):693-7.
20. Arimura N, Menager C, Fukata Y, and Kaibuchi K. Role of CRMP-2 in neuronal polarity. J Neurobiol. 2004;58(1):34-47.
21. Nakamura F, Kumeta K, Hida T, Isono T, Nakayama Y, Kuramata-Matsuoka E, et al. Amino- and carboxyl-terminal domains of Filamin-A interact with CRMP1 to mediate Sema3A signalling. Nat Commun. 2014;5:5325.
22. Brittain JM, Duarte DB, Wilson SM, Zhu W, Ballard C, Johnson PL, et al. Suppression of inflammatory and neuropathic pain by uncoupling CRMP-2 from the presynaptic Ca(2)(+) channel complex. Nat Med. 2011;17(7):822-9.
23. Gladkevich A, Kauffman HF, and Korf J. Lymphocytes as a neural probe: potential for studying psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28(3):559-76.
24. Jaros JA, Rahmoune H, Wesseling H, Leweke FM, Ozcan S, Guest PC, et al. Effects of olanzapine on serum protein phosphorylation patterns in patients with schizophrenia. Proteomics Clin Appl. 2015;9(9-10):907-16.
25. Kedracka-Krok S, Swiderska B, Jankowska U, Skupien-Rabian B, Solich J, Buczak K, et al. Clozapine influences cytoskeleton structure and calcium homeostasis in rat cerebral cortex and has a different proteomic profile than risperidone. J Neurochem. 2015;132(6):657-76.
26. Lee H, Joo J, Nah SS, Kim JW, Kim HK, Kwon JT, et al. Changes in Dpysl2 expression are associated with prenatally stressed rat offspring and susceptibility to schizophrenia in humans. Int J Mol Med. 2015;35(6):1574-86.
27. Higurashi M, Iketani M, Takei K, Yamashita N, Aoki R, Kawahara N, et al. Localized role of CRMP1 and CRMP2 in neurite outgrowth and growth cone steering. Developmental neurobiology. 2012;72(12):1528-40.
28. Makihara H, Nakai S, Ohkubo W, Yamashita N, Nakamura F, Kiyonari H, et al. CRMP1 and CRMP2 have synergistic but distinct roles in dendritic development. Genes to cells : devoted to molecular & cellular mechanisms. 2016;21(9):994-1005.

 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
References
1. Ripke S, O'Dushlaine C, Chambert K, Moran JL, Kahler AK, Akterin S, et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia.
Nat Genet. 2013; 45 (10): 1150-9.
2. Beasley CL, Pennington K, Behan A, Wait R, Dunn MJ, and Cotter D. Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: Evidence for disease-associated changes. Proteomics. 2006; 6 (11): 3414-25.
3. Holmans PA, Riley B, Pulver AE, Owen MJ, Wildenauer DB, Gejman PV, et al. Genomewide linkage scan of schizophrenia in a large multicenter pedigree sample using single nucleotide polymorphisms. Mol Psychiatry. 2009; 14 (8): 786 -95.
4. Johnston-Wilson NL, Sims CD, Hofmann JP, Anderson L, Shore AD, Torrey EF, et al. Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium. Mol Psychiatry. 2000; 5 (2): 142-9.
5. Ng MY, Levinson DF, Faraone SV, Suarez BK, DeLisi LE, Arinami T, et al. Meta-analysis of 32 genome-wide association studies of schizophrenia. Mol Psychiatry. 2009; 14 (8): 774-85.
6. Penzes P, Buonanno A, Passafaro M, Sala C, and Sweet RA. Developmental vulnerability of synapses and circuits associated with neuropsychiatric disorders. J Neurochem. 2013; 126 (2): 165-82.
7. Fallin MD, Lasseter VK, Liu Y, Avramopoulos D, McGrath J, Wolyniec PS, et al. Linkage and association on 8p21.2-p21.1 in schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2011; 156 (2) ): 188-97.
8. Koide T, Aleksic B, Ito Y, Usui H, Yoshimi A, Inada T, et al. A two-stage case-control association study of the dihydropyrimidinase-like 2 gene (DPYSL2) with schizophrenia in Japanese subjects. J Hum Genet. 2010; 55 (7): 469-72.
9. Goshima Y, Nakamura F, Strittmatter P, and Strittmatter SM. Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature. 1995; 376 (6540): 509-14.
10. Quach TT, Honnorat J, Kolattukudy PE, Khanna R, and Duchemin AM. CRMPs: critical molecules for neurite morphogenesis and neuropsychiatric diseases. Mol Psychiatry. 2015; 20 (9): 1037-45.
11. Yamashita N, and Goshima Y. Collapsin response mediator proteins regulate neuronal development and plasticity by switching their phosphorylation status. Molecular neurobiology. 2012; 45 (2): 234-46.
12. Uchida Y, Ohshima T, Sasaki Y, Suzuki H, Yanai S, Yamashita N, et al. Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer's disease. Genes to cells: devoted to molecular & cellular mechanisms. 2005; 10 (2): 165-79.
13. Ip JP, Fu AK, and Ip NY. CRMP2: functional roles in neural development and therapeutic potential in neurological diseases. Neuroscientist. 2014; 20 (6): 589-98.
14. Tobe BTD, Crain AM, Winquist AM, Calabrese B, Makihara H, Zhao WN, et al. Probing the lithium-response pathway in hiPSCs implicates the phosphoregulatory set-point for a cytoskeletal modulator in bipolar pathogenesis. A. 2017.
15. Yamashita N, Takahashi A, Takao K, Yamamoto T, Kolattukudy P, Miyakawa T, et al. Mice lacking collapsin response mediator protein 1 manifest hyperactivity, impaired learning and memory, and impaired prepulse inhibition. Frontiers in behavioral neuroscience. 2013; 7: 216.
16. Nakamura H, Yamashita N, Kimura A, Kimura Y, Hirano H, Makihara H, et al. Comprehensive behavioral study and proteomic analyzes of CRMP2-deficient mice. Genes to cells: devoted to molecular & cellular mechanisms. 2016.
17. Zhang H, Kang E, Wang Y, Yang C, Yu H, Wang Q, et al. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioral impairments in mice. Nat Commun. 2016; 7.
18. Zhao WN, Tobe BTD, Udeshi ND, Xuan LL, Pernia CD, Zolg DP, et al. Discovery of suppressors of CRMP2 phosphorylation reveals compounds that mimic the behavioral effects of lithium on amphetamine-induced hyperlocomotion. Transl Psychiatry. 2020; 10 (1): 76.
19. Gandal MJ, Haney JR, Parikshak NN, Leppa V, Ramaswami G, Hartl C, et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science. 2018; 359 (6376): 693-7.
20. Arimura N, Menager C, Fukata Y, and Kaibuchi K. Role of CRMP-2 in neuronal polarity. J Neurobiol. 2004; 58 (1): 34-47.
21. Nakamura F, Kumeta K, Hida T, Isono T, Nakayama Y, Kuramata-Matsuoka E, et al. Amino- and carboxyl-terminal domains of Filamin-A interact with CRMP1 to mediate Sema3A signaling. Nat Commun. 2014; 5 : 5325.
22. Brittain JM, Duarte DB, Wilson SM, Zhu W, Ballard C, Johnson PL, et al. Suppression of inflammation and neuropathic pain by uncoupling CRMP-2 from the presynaptic Ca (2) (+) channel complex. Nat Med. 2011; 17 (7): 822-9.
23. Gladkevich A, Kauffman HF, and Korf J. Lymphocytes as a neural probe: potential for studying psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2004; 28 (3): 559-76.
24. Jaros JA, Rahmoune H, Wesseling H, Leweke FM, Ozcan S, Guest PC, et al. Effects of olanzapine on serum protein phosphorylation patterns in patients with schizophrenia. Proteomics Clin Appl. 2015; 9 (9-10): 907 -16.
25. Kedracka-Krok S, Swiderska B, Jankowska U, Skupien-Rabian B, Solich J, Buczak K, et al. Clozapine influences cytoskeleton structure and calcium homeostasis in rat cerebral cortex and has a different proteomic profile than risperidone. J Neurochem. 2015; 132 (6): 657-76.
26. Lee H, Joo J, Nah SS, Kim JW, Kim HK, Kwon JT, et al. Changes in Dpysl2 expression are associated with prenatally stressed rat offspring and susceptibility to schizophrenia in humans. Int J Mol Med. 2015; 35 ( 6): 1574-86.
27. Higurashi M, Iketani M, Takei K, Yamashita N, Aoki R, Kawahara N, et al. Localized role of CRMP1 and CRMP2 in neurite outgrowth and growth cone steering. Developmental neurobiology. 2012; 72 (12): 1528-40 ..
28. Makihara H, Nakai S, Ohkubo W, Yamashita N, Nakamura F, Kiyonari H, et al. CRMP1 and CRMP2 have synergistic but distinct roles in dendritic development. Genes to cells: devoted to molecular & cellular mechanisms. 2016; 21 ( 9): 994-1005.

All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.
 本発明は、統合失調症の診断を補助できる。 The present invention can assist in the diagnosis of schizophrenia.

Claims (13)

  1. 被験者由来の試料における、非リン酸化Collapsin Response Mediator Protein 2(CRMP2)及び/又はリン酸化CRMP2の発現量を測定することを含む、統合失調症の検査方法。 A method for testing schizophrenia, which comprises measuring the expression levels of non-phosphorylated Collapsin Response Mediator Protein 2 (CRMP2) and / or phosphorylated CRMP2 in a sample derived from a subject.
  2. 非リン酸化CRMP2の発現量の上昇及び/又はリン酸化CRMP2:非リン酸化CRMP2比の低下が統合失調症の発症可能性又は発症リスクが高いことを示す請求項1記載の検査方法。 The test method according to claim 1, wherein an increase in the expression level of non-phosphorylated CRMP2 and / or a decrease in the phosphorylated CRMP2: ratio of non-phosphorylated CRMP2 indicates that the possibility or risk of developing schizophrenia is high.
  3. リン酸化CRMP2がSer522でリン酸化されたCRMP2である請求項1又は2に記載の検査方法。 The inspection method according to claim 1 or 2, wherein the phosphorylated CRMP2 is CRMP2 phosphorylated with Ser522.
  4. 被験者由来の試料が血液検体である請求項1~3のいずれかに記載の検査方法。 The test method according to any one of claims 1 to 3, wherein the sample derived from the subject is a blood sample.
  5. 血液検体が末梢血単核細胞分画である請求項4記載の検査方法。 The test method according to claim 4, wherein the blood sample is a peripheral blood mononuclear cell fraction.
  6. 被験者が40歳未満である請求項1~5のいずれかに記載の方法。 The method according to any one of claims 1 to 5, wherein the subject is under 40 years old.
  7. 被験者が30歳未満である請求項1~6のいずれかに記載の方法。 The method according to any one of claims 1 to 6, wherein the subject is under 30 years old.
  8. 被験者が30歳未満である場合に、被験者の末梢血単核細胞分画におけるリン酸化CRMP2:非リン酸化CRMP2比が0.25以下であることが、統合失調症の発症可能性又は発症リスクが高いことを示す請求項1~7のいずれかに記載の方法。 If the subject is under the age of 30, a phosphorylated CRMP2: non-phosphorylated CRMP2 ratio in the subject's peripheral blood mononuclear cell fraction of 0.25 or less is likely or at high risk of developing schizophrenia. The method according to any one of claims 1 to 7.
  9. 被験者における統合失調症の診断方法であって、
    a. 被験者由来の試料を得ること、
    b. 被験者由来の試料における、非リン酸化Collapsin Response Mediator Protein 2(CRMP2)及び/又はリン酸化CRMP2の発現量を測定すること、及び
    c. 非リン酸化CRMP2の発現量及び/又はリン酸化CRMP2:非リン酸化CRMP2比に基づき、被検者における統合失調症の発症可能性又は発症リスクを判定すること
    を含む前記方法。
    A method for diagnosing schizophrenia in subjects
    Obtaining a sample from the subject,
    b. Measuring the expression levels of non-phosphorylated Collapsin Response Mediator Protein 2 (CRMP2) and / or phosphorylated CRMP2 in a sample derived from the subject, and
    c. The method comprising determining the likelihood or risk of developing schizophrenia in a subject based on the expression level of non-phosphorylated CRMP2 and / or the phosphorylated CRMP2: non-phosphorylated CRMP2 ratio.
  10. 被験者における統合失調症の診断及び治療の方法であって、
    a. 被験者由来の試料を得ること、
    b. 被験者由来の試料における、非リン酸化Collapsin Response Mediator Protein 2(CRMP2)及び/又はリン酸化CRMP2の発現量を測定すること、
    c. 非リン酸化CRMP2の発現量及び/又はリン酸化CRMP2:非リン酸化CRMP2比に基づき、被検者における統合失調症の発症可能性又は発症リスクを判定すること、及び
    d. 統合失調症の発症可能性又は発症リスクが高いと判定された場合に、被験者に対する統合失調症の治療を開始すること
    を含む前記方法。
    A method of diagnosing and treating schizophrenia in a subject.
    Obtaining a sample from the subject,
    b. Measuring the expression levels of non-phosphorylated Collapsin Response Mediator Protein 2 (CRMP2) and / or phosphorylated CRMP2 in a sample derived from the subject.
    c. Determining the likelihood or risk of developing schizophrenia in a subject based on the expression level of non-phosphorylated CRMP2 and / or the phosphorylated CRMP2: non-phosphorylated CRMP2 ratio, and
    d. The method described above comprising initiating treatment of the subject with schizophrenia if the likelihood or risk of developing schizophrenia is determined to be high.
  11. 被験者由来の試料における非リン酸化CRMP2の発現量が、統合失調症を発症していない健常人由来の試料における非リン酸化CRMP2の発現量よりも高い、及び/又は、被験者由来の試料におけるリン酸化CRMP2:非リン酸化CRMP2比が統合失調症を発症していない健常人由来の試料におけるリン酸化CRMP2:非リン酸化CRMP2比よりも低い場合に、統合失調症の発症可能性又は発症リスクが高いと判定する請求項9又は10に記載の方法。 The expression level of non-phosphorylated CRMP2 in the sample derived from the subject is higher than the expression level of non-phosphorylated CRMP2 in the sample derived from a healthy person who has not developed schizophrenia, and / or phosphorylation in the sample derived from the subject. When the ratio of CRMP2: non-phosphorylated CRMP2 is lower than the ratio of phosphorylated CRMP2: non-phosphorylated CRMP2 in a sample derived from a healthy person who has not developed schizophrenia, the possibility or risk of developing schizophrenia is high. The method according to claim 9 or 10.
  12. 被験者由来の試料における非リン酸化CRMP2の発現量が設定値よりも高い、及び/又は、被験者由来の試料におけるリン酸化CRMP2:非リン酸化CRMP2比が設定値よりも低い場合に、統合失調症の発症可能性又は発症リスクが高いと判定する請求項9~11のいずれかに記載の方法。 Schizophrenia when the expression level of non-phosphorylated CRMP2 in the sample derived from the subject is higher than the set value and / or when the ratio of phosphorylated CRMP2: non-phosphorylated CRMP2 in the sample derived from the subject is lower than the set value. The method according to any one of claims 9 to 11, which determines that the possibility of onset or the risk of onset is high.
  13. 被験者由来の試料における、非リン酸化Collapsin Response Mediator Protein 2(CRMP2)の発現量を測定することができる試薬及び/又はリン酸化CRMP2の発現量を測定することができる試薬を含む、統合失調症の検査のためのキット。 Of schizophrenia, including a reagent capable of measuring the expression level of non-phosphorylated Collapsin Response Mediator Protein 2 (CRMP2) and / or a reagent capable of measuring the expression level of phosphorylated CRMP2 in a sample derived from a subject. Kit for inspection.
PCT/JP2021/036560 2020-10-06 2021-10-04 Schizophrenia biomarker WO2022075243A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020169396 2020-10-06
JP2020-169396 2020-10-06

Publications (1)

Publication Number Publication Date
WO2022075243A1 true WO2022075243A1 (en) 2022-04-14

Family

ID=81126896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036560 WO2022075243A1 (en) 2020-10-06 2021-10-04 Schizophrenia biomarker

Country Status (1)

Country Link
WO (1) WO2022075243A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108548A1 (en) * 2011-02-10 2012-08-16 住友化学株式会社 TRANSFORMANT HAVING Gm1 GENE, GPCR GENE, AND CRMP2 GENE INTRODUCED THEREIN
WO2021100685A1 (en) * 2019-11-19 2021-05-27 国立大学法人東京大学 Treatment or prevention of psychiatric disease based on kif3 motor, and drug screening

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108548A1 (en) * 2011-02-10 2012-08-16 住友化学株式会社 TRANSFORMANT HAVING Gm1 GENE, GPCR GENE, AND CRMP2 GENE INTRODUCED THEREIN
WO2021100685A1 (en) * 2019-11-19 2021-05-27 国立大学法人東京大学 Treatment or prevention of psychiatric disease based on kif3 motor, and drug screening

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
FURUTA, YUKI; NOMOTO, M.; GOSHIMA, Y.; BABA, T. : "20p-P12-5 Detection of CRMP1 Protein Related with Schizophrenia Using Photonic Crystal Nanolaser Sensor", 63RD JSAP SPRING MEETING, JAPAN SOCIETY OF APPLIED PHYSICS AND RELATED SOCIETIES ; 64 (TOKYO) : 2016.03.19-22, vol. 63, 3 March 2016 (2016-03-03) - 22 March 2016 (2016-03-22), JP, pages 10-399, XP009535546 *
GOSHIMA, YOSHIO ET AL.: "Changes in CRMP2 and its phosphorylation modification levels in blood samples derived from schizophrenia patients", THE OFFICIAL JOURNAL OF JAPANESE SOCIETY OF LABORATORY MEDICINE., vol. 50, no. Suppl., 13 November 2019 (2019-11-13), JP, pages S332 *
JOHNSTON-WILSON N L; SIMS C D; HOFMANN J-P; ANDERSON L; SHORE A D; TORREY E F; YOLKEN R H;: "Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder", MOLECULAR PSYCHIATRY, NATURE PUBLISHING GROUP UK, LONDON, vol. 5, no. 2, 1 March 2000 (2000-03-01), London, pages 142 - 149, XP037787920, ISSN: 1359-4184, DOI: 10.1038/sj.mp.4000696 *
MARTINS-DE-SOUZA DANIEL; DIAS-NETO EMMANUEL; SCHMITT ANDREA; FALKAI PETER; GORMANNS PHILIPP; MACCARRONE GIUSEPPINA; TURCK CHRISTOP: "Proteome analysis of schizophrenia brain tissue.", THE WORLD JOURNAL OF BIOLOGICAL PSYCHIATRY, vol. 11, no. 2, 1 March 2010 (2010-03-01), pages 110 - 120, XP009183867, ISSN: 1814-1412, DOI: 10.3109/15622970903490626 *
NAKATA KENJI, UJIKE HIROSHI, SAKAI AYUMU, TAKAKI MANABU, IMAMURA TAKAKI, TANAKA YUJI, KURODA SHIGETOSHI: "The Human Dihydropyrimidinase-Related Protein 2 Gene on Chromosome 8p21 Is Associated with Paranoid-Type Schizophrenia", BIOLOGICAL PSYCHIATRY, vol. 53, no. 7, 1 April 2003 (2003-04-01), XP055919594, DOI: 10.1016/S0006-3223(03)01730-4 *
NOMOTO MUNETAKA, KONOPASKE GLENN T., YAMASHITA NAOYA, AOKI REINA, JITSUKI-TAKAHASHI AOI, NAKAMURA HARUKO, MAKIHARA HIROKO, SAITO M: "Clinical evidence that a dysregulated master neural network modulator may aid in diagnosing schizophrenia", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, NATIONAL ACADEMY OF SCIENCES, vol. 118, no. 31, 3 August 2021 (2021-08-03), XP055919602, ISSN: 0027-8424, DOI: 10.1073/pnas.2100032118 *
TOYOSHIMA MANABU, JIANG XUGUANG, OGAWA TADAYUKI, OHNISHI TETSUO, YOSHIHARA SHOGO, BALAN SHABEESH, YOSHIKAWA TAKEO, HIROKAWA NOBUTA: "Enhanced carbonyl stress induces irreversible multimerization of CRMP2 in schizophrenia pathogenesis", LIFE SCIENCE ALLIANCE, vol. 2, no. 5, 1 October 2019 (2019-10-01), pages e201900478, XP055919566, DOI: 10.26508/lsa.201900478 *

Similar Documents

Publication Publication Date Title
Tawara et al. Pathomechanisms of anti–cytosolic 5′‐nucleotidase 1 A autoantibodies in sporadic inclusion body myositis
Schurov et al. Expression of disrupted in schizophrenia 1 (DISC1) protein in the adult and developing mouse brain indicates its role in neurodevelopment
Vijayan et al. Molecular links and biomarkers of stroke, vascular dementia, and Alzheimer's disease
Ding et al. GABAA receptor α1 subunit mutation A322D associated with autosomal dominant juvenile myoclonic epilepsy reduces the expression and alters the composition of wild type GABAA receptors
Posa et al. Recapitulation of pathological TDP-43 features in immortalized lymphocytes from sporadic ALS patients
Nagarsheth et al. Notch-1 immunoexpression is increased in Alzheimer's and Pick's disease
Fernández et al. Centrosomal cohesion deficits as cellular biomarker in lymphoblastoid cell lines from LRRK2 Parkinson's disease patients
Qin et al. Differentially expressed proteins underlying childhood cortical dysplasia with epilepsy identified by iTRAQ proteomic profiling
EP1763674A2 (en) Biomarkers of alzheimer&#39;s disease
US20200138951A1 (en) Fkbp52-tau interaction as a novel therapeutical target for treating the neurological disorders involving tau dysfunction
Remnestål et al. Association of CSF proteins with tau and amyloid β levels in asymptomatic 70-year-olds
Zhang et al. Elevated cleavage of neuregulin-1 by beta-secretase 1 in plasma of schizophrenia patients
CN109073661B (en) Assays for diagnosis of neurological diseases
Forrest et al. Cell-specific MAPT gene expression is preserved in neuronal and glial tau cytopathologies in progressive supranuclear palsy
Nomoto et al. Clinical evidence that a dysregulated master neural network modulator may aid in diagnosing schizophrenia
WO2022075243A1 (en) Schizophrenia biomarker
Wu et al. Enzymatic activity of palmitoyl‐protein thioesterase‐1 in serum from schizophrenia significantly associates with schizophrenia diagnosis scales
US20220003787A1 (en) Biomarker proteins for diagnosing alzheimer&#39;s dementia and use thereof
US8703433B2 (en) Marker for amyotrophic lateral sclerosis, and use thereof
Martinez-Valbuena et al. 4R-Tau seeding activity unravels molecular subtypes in patients with Progressive Supranuclear Palsy
US20240036064A1 (en) Methods and compositions for detecting cognitive disorder
WO2024075803A1 (en) Method for testing, treating or preventing cranial nerve disease
Harris VEGFR1 and VEGFR2 in dementia
JP2024054886A (en) Methods for examination, treatment, or prevention of neurological disorders
Kostesky A study of potential sporadic amyotrophic lateral sclerosis biomarkers in cerebrospinal fluid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP