WO2022075211A1 - Laser welding method and laser welding device - Google Patents

Laser welding method and laser welding device Download PDF

Info

Publication number
WO2022075211A1
WO2022075211A1 PCT/JP2021/036382 JP2021036382W WO2022075211A1 WO 2022075211 A1 WO2022075211 A1 WO 2022075211A1 JP 2021036382 W JP2021036382 W JP 2021036382W WO 2022075211 A1 WO2022075211 A1 WO 2022075211A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
pattern
welding
laser beam
work
Prior art date
Application number
PCT/JP2021/036382
Other languages
French (fr)
Japanese (ja)
Inventor
静波 王
龍幸 中川
勤 杉山
俊輔 川合
憲三 柴田
雅史 石黒
篤寛 川本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2022555436A priority Critical patent/JP7213440B2/en
Priority to CN202180045914.8A priority patent/CN115812015A/en
Publication of WO2022075211A1 publication Critical patent/WO2022075211A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/22Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/28Seam welding of curved planar seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/322Bonding taking account of the properties of the material involved involving coated metal parts

Definitions

  • This disclosure relates to a laser welding method and a laser welding apparatus.
  • Laser welding has a high power density of laser light shining on the work to be welded, so high-speed and high-quality welding can be performed.
  • scanning welding in which welding is performed while scanning the laser beam on the surface of the work at high speed, the laser beam can be moved to the next welding point at high speed during the non-welding period, thus shortening the total welding time.
  • Patent Document 1 a method of scanning the laser beam so as to draw a resage pattern on the surface of the work has been conventionally proposed (see, for example, Patent Document 2 and Patent Document 3).
  • scanning welding is applied not only to ordinary steel materials but also to thin plate welding of steel materials surface-treated such as zinc plating (see, for example, Patent Document 4).
  • the boiling point of zinc (906 ° C) is significantly lower than the melting point of iron (1535 ° C).
  • the zinc-plated layer interposed in the laminated surface of the steel plates reaches the evaporation temperature before the iron melts. Will reach.
  • the generated zinc vapor may destabilize the keyhole or the molten pool, form porosity inside the work, or, in the extreme case, blow off the molten pool, resulting in welding defects.
  • Patent Document 4 there is a method of weaving a laser beam back and forth along the welding direction and lowering the output of the laser beam in the forward step of weaving forward to be lower than that in the reverse step of weaving backward. It has been disclosed. By doing so, it is possible to weld the steel plates to each other after removing the zinc plating layer.
  • the present disclosure has been made in view of this point, and an object thereof is to suppress the occurrence of welding defects in lap welding of a plate material on which a coating layer such as a zinc plating layer is formed, and to obtain a weld bead having a good shape. It is an object of the present invention to provide a laser welding method and a laser welding apparatus.
  • the work is welded by scanning the laser light two-dimensionally and irradiating the surface of the work while advancing the laser light in the welding direction.
  • the work has a structure in which the plate-shaped portions are overlapped with each other in two base materials including the plate-shaped portions, and a coating layer is formed at least on the surface of the plate-shaped portions. Yes, the boiling point of the coating layer is lower than the melting point of the base metal, and in the welding step, a predetermined pattern is drawn on the surface of the work, and the predetermined pattern is along the welding direction.
  • the first drawing pattern located in front of the origin of the predetermined pattern scans the laser beam so as to be a pattern wider in the direction intersecting the welding direction than the second drawing pattern located behind the origin. Then, the output of the laser beam is controlled so that the output of the laser beam during drawing of the first drawing pattern is lower than the output of the laser beam during drawing of the second drawing pattern, and the predetermined state is determined.
  • the pattern is characterized in that two annular patterns having an asymmetrical shape are continuous patterns in contact with each other at the origin.
  • the laser welding apparatus includes a laser oscillator that generates a laser beam, a laser head that receives the laser beam and irradiates the work, and a controller that controls the operation of the laser head and the output of the laser beam.
  • the laser head has a laser light scanner that scans the laser light in each of the first direction and the second direction intersecting the first direction, and the work has a plate-shaped portion.
  • the plate-shaped portions are overlapped with each other to form a coating layer at least on the surface of the plate-shaped portions, and the boiling point of the coating layer is higher than the melting point of the base material.
  • the controller When low, the controller is located so that the laser beam draws a predetermined pattern on the surface of the work, and is located in front of the origin of the predetermined pattern along the welding direction among the predetermined patterns.
  • the 1 drawing pattern drives and controls the laser light scanner so that the pattern is wider in the direction intersecting the welding direction than the second drawing pattern located behind the origin, and the controller further controls the first drawing pattern.
  • the output of the laser beam is controlled so that the output of the laser beam during drawing of the drawing pattern is lower than the output of the laser beam during drawing of the second drawing pattern, and the predetermined patterns are asymmetrical with each other. It is characterized in that two annular patterns having a large shape are in contact with each other at the origin and are continuous patterns.
  • the coating layer between the two plate-shaped portions can be removed, and the generation of welding defects due to the steam generated by the evaporation of the coating layer can be suppressed. Further, the shape of the weld bead formed on the work can be improved.
  • FIG. 1 is a schematic configuration diagram of a laser welding apparatus according to the first embodiment.
  • FIG. 2 is a schematic configuration diagram of a laser light scanner.
  • FIG. 3 is a schematic cross-sectional view of the work.
  • FIG. 4 is a diagram showing a scanning pattern of laser light.
  • FIG. 5 is a diagram showing a scanning locus of a laser beam along a welding direction.
  • FIG. 6 is a diagram showing the relationship between the drawing position of the laser beam and the output.
  • FIG. 7 is a schematic view showing a state change of the work along the welding direction at the time of laser light irradiation.
  • FIG. 8 is a diagram showing the relationship between the drawing position and the output of the laser beam according to the first modification.
  • FIG. 1 is a schematic configuration diagram of a laser welding apparatus according to the first embodiment.
  • FIG. 2 is a schematic configuration diagram of a laser light scanner.
  • FIG. 3 is a schematic cross-sectional view of the work.
  • FIG. 4 is
  • FIG. 9 is a schematic view showing a state change of the work along the welding direction at the time of laser light irradiation.
  • FIG. 10 is a diagram showing the relationship between the output of the laser beam and the depth of the keyhole.
  • FIG. 11A is a diagram showing a first scanning pattern of the laser beam according to the second modification.
  • FIG. 11B is a diagram showing a second scanning pattern of the laser beam according to the second modification.
  • FIG. 11C is a diagram showing a third scanning pattern of the laser beam according to the second modification.
  • FIG. 12 is a diagram showing a scanning locus of a laser beam along a welding line according to a second embodiment.
  • FIG. 13A is a diagram showing the relationship between the drawing position and the output of the laser beam at the start of welding.
  • FIG. 13A is a diagram showing the relationship between the drawing position and the output of the laser beam at the start of welding.
  • FIG. 13B is a diagram showing the relationship between the drawing position and the output of the laser beam at the end of welding.
  • FIG. 14A is a diagram showing a first scanning pattern of the laser beam according to the modified example 3.
  • FIG. 14B is a diagram showing a second scanning pattern of the laser beam according to the third modification.
  • FIG. 14C is a diagram showing a third scanning pattern of the laser beam according to the modified example 3.
  • FIG. 15 is a diagram showing an outline of the scanning locus of the laser beam according to the third embodiment.
  • FIG. 16A is a diagram showing a first spot pattern.
  • FIG. 16B is a diagram showing a second spot pattern.
  • FIG. 16C is a diagram showing a third spot pattern.
  • FIG. 16D is a diagram showing a fourth spot pattern.
  • FIG. 16E is a diagram showing a fifth spot pattern.
  • FIG. 16F is a diagram showing a sixth spot pattern.
  • FIG. 16G is a diagram showing a seventh spot pattern.
  • FIG. 1 shows a schematic diagram of the configuration of the laser welding apparatus according to the present embodiment
  • FIG. 2 shows a schematic configuration diagram of a laser light scanner.
  • FIG. 3 shows a schematic cross-sectional view of the work.
  • the direction parallel to the traveling direction of the laser beam LB from the reflection mirror 33 toward the laser beam scanner 40 is the X direction, and the direction parallel to the optical axis of the laser beam LB emitted from the laser head 30.
  • the Z direction and the directions orthogonal to the X direction and the Z direction may be referred to as the Y direction, respectively.
  • the XY plane including the X direction and the Y direction in the plane may be substantially parallel to the surface or may form a constant angle with the surface.
  • the laser welding apparatus 100 includes a laser oscillator 10, an optical fiber 20, a laser head 30, a controller 50, and a manipulator 60.
  • the laser oscillator 10 is a laser light source that is supplied with electric power from a power source (not shown) to generate laser light LB.
  • the laser oscillator 10 may be composed of a single laser light source or a plurality of laser modules. In the latter case, the laser light emitted from each of the plurality of laser modules is combined and emitted as the laser light LB. Further, the laser light source or the laser module used in the laser oscillator 10 is appropriately selected according to the material of the work 200, the shape of the welded portion, and the like.
  • a fiber laser, a disk laser, or a YAG (Yttrium Aluminum Garnet) laser can be used as a laser light source.
  • the wavelength of the laser beam LB is set in the range of 1000 nm to 1100 nm.
  • the semiconductor laser may be used as a laser light source or a laser module.
  • the wavelength of the laser beam LB is set in the range of 800 nm to 1000 nm.
  • the visible light laser may be used as a laser light source or a laser module.
  • the wavelength of the laser beam LB is set in the range of 400 nm to 600 nm.
  • the optical fiber 20 is optically coupled to the laser oscillator 10, and the laser light LB generated by the laser oscillator 10 is incident on the optical fiber 20 and transmitted inside the optical fiber 20 toward the laser head 30.
  • the laser head 30 is attached to the end of the optical fiber 20 and irradiates the work 200 with the laser light LB transmitted from the optical fiber 20.
  • the laser head 30 has a collimation lens 32, a reflection mirror 33, a condenser lens 34, and a laser light scanner 40 as optical components, and these optical components have a predetermined arrangement relationship inside the housing 31. Is kept and housed.
  • the collimation lens 32 receives the laser beam LB emitted from the optical fiber 20, converts it into parallel light, and causes it to be incident on the reflection mirror 33. Further, the collimation lens 32 is connected to a drive unit (not shown) and is configured to be displaceable in the Z direction in response to a control signal from the controller 50. By displacing the collimation lens 32 in the Z direction, the focal position of the laser beam LB can be changed, and the laser beam LB can be appropriately irradiated according to the shape of the work 200. That is, the collimation lens 32 also functions as a focal position adjusting mechanism for the laser beam LB in combination with a drive unit (not shown). The condenser lens 34 may be displaced by the drive unit to change the focal position of the laser beam LB.
  • the reflection mirror 33 reflects the laser light LB transmitted through the collimation lens 32 and makes it incident on the laser light scanner 40.
  • the surface of the reflection mirror 33 is provided so as to form an optical axis of about 45 degrees with the optical axis of the laser beam LB transmitted through the collimation lens 32.
  • the condenser lens 34 concentrates the laser light LB reflected by the reflection mirror 33 and scanned by the laser light scanner 40 on the surface of the work 200.
  • the laser light scanner 40 is a known galvano scanner having a first galvano mirror 41 and a second galvano mirror 42.
  • the first galvano mirror 41 has a first mirror 41a, a first rotation shaft 41b, and a first drive unit 41c
  • the second galvano mirror 42 has a second mirror 42a, a second rotation shaft 42b, and a second drive unit. It has 42c.
  • the laser beam LB transmitted through the condenser lens 34 is reflected by the first mirror 41a and further reflected by the second mirror 42a to irradiate the surface of the work 200.
  • the first drive unit 41c and the second drive unit 42c are galvano motors, and the first rotation shaft 41b and the second rotation shaft 42b are output shafts of the motor.
  • the first drive unit 41c is rotationally driven by a driver that operates in response to a control signal from the controller 50, so that the first mirror 41a attached to the first rotation shaft 41b becomes the first rotation shaft. It rotates around the axis of 41b.
  • the second drive unit 42c is rotationally driven by a driver that operates in response to a control signal from the controller 50, so that the second mirror 42a attached to the second rotary shaft 42b becomes the axis of the second rotary shaft 42b. Rotate around.
  • the laser beam LB is scanned in the X direction by the first mirror 41a rotating around the axis of the first rotation shaft 41b to a predetermined angle. Further, the second mirror 42a rotates around the axis of the second rotating shaft 42b to a predetermined angle, so that the laser beam LB is scanned in the Y direction. That is, the laser light scanner 40 is configured to scan the laser light LB two-dimensionally in the XY plane and irradiate the work 200.
  • the controller 50 controls the laser oscillation of the laser oscillator 10. Specifically, laser oscillation control is performed by supplying control signals such as an output current and an on / off time to a power source (not shown) connected to the laser oscillator 10. Further, the controller 50 controls the output of the laser beam LB.
  • the controller 50 controls the operation of the laser head 30 according to the content of the selected laser welding program. Specifically, the drive control of the laser light scanner 40 provided on the laser head 30 and the drive unit (not shown) of the collimation lens 32 is performed. Further, the controller 50 controls the operation of the manipulator 60.
  • the laser welding program is stored in a storage unit (not shown) provided inside the controller 50 or at another location, and is called by the controller 50 by a command from the controller 50.
  • the controller 50 has an integrated circuit such as an LSI or a microcomputer (not shown), and the function of the controller 50 described above is realized by executing a laser welding program which is software on the integrated circuit.
  • a controller 50 that controls the operation of the laser head 30 and a controller 50 that controls the output of the laser beam LB may be provided separately.
  • the manipulator 60 is an articulated robot and is attached to the housing 31 of the laser head 30. Further, the manipulator 60 is connected to the controller 50 so as to be able to send and receive signals, and moves the laser head 30 so as to draw a predetermined trajectory according to the above-mentioned laser welding program. In addition, another controller (not shown) that controls the operation of the manipulator 60 may be provided.
  • the laser welding device 100 shown in FIG. 1 can perform laser welding on workpieces 200 having various shapes.
  • workpieces 200 having various shapes.
  • zinc-plated layers 211 and 221 are formed on the surface thereof, and the laser beam LB is placed on the work 200 in which the first plate material 210 and the second plate material 220 made of steel plates are closely adhered to each other without a gap. Is irradiated, and lap welding is performed.
  • the galvanized layers 211 and 221 are formed on the surfaces of the first plate material 210 and the second plate material 220, respectively, it is possible to prevent the steel plate from rusting.
  • the structure and material of the work 200 to be laser welded are not limited to the example shown in FIG.
  • FIG. 4 shows a scanning pattern of the laser beam, and the laser beam LB is scanned so as to draw a Lissajous pattern (hereinafter, also referred to as a Lissajous figure) in the XY plane, in this case, on the surface of the work 200.
  • a Lissajous pattern hereinafter, also referred to as a Lissajous figure
  • the Lissajous pattern shown in FIG. 4 vibrates the laser beam LB in the X direction in a sine wave shape of a predetermined frequency, and in the Y direction, the laser light LB has a sine wave shape having a frequency different from the X direction (1/2 of the frequency in the X direction). Obtained by vibrating. Further, as described above, the scanning pattern of the laser beam LB in the X direction and the Y direction is determined based on the rotational motion of the first mirror 41a and the second mirror 42a.
  • the position coordinates X and Y are expressed by the following equations, respectively. It is represented by 1) and (2).
  • X a1 ⁇ sin (nt) ⁇ ⁇ ⁇ (1)
  • Y b1 ⁇ sin (mt + ⁇ ) ⁇ ⁇ ⁇ (2)
  • X a2 ⁇ sin (nt) ⁇ ⁇ ⁇ (3)
  • Y b2 ⁇ sin (mt + ⁇ ) ⁇ ⁇ ⁇ (4)
  • b1 Amplitude of scan pattern LS1 in Lissajous pattern in Y direction
  • a2 Amplitude of scan pattern LS2 in Lissajous pattern in X direction
  • b2 Amplitude of Lissajous pattern Amplitude of the scanning pattern LS2 in the Y direction
  • n Frequency of the first mirror 41a
  • m Frequency of the second mirror 42a t: Time ⁇ : Phase difference when driving the first mirror 41a or the second mirror 42a. Is the amount of ang
  • the scanning pattern LS1 (hereinafter, also referred to as the first drawing pattern LS1) is a scanning pattern located on the + side in the X direction in the resage pattern shown in FIG. 4, and is also referred to as the scanning pattern LS2 (hereinafter, also referred to as the second drawing pattern LS2). ) Is a scanning pattern located on the ⁇ side in the X direction.
  • the position coordinates X and Y shown in the equations (1) to (4) are represented by a static coordinate system of the resage pattern in a state where the position of the laser head 30 is fixed.
  • the frequency n and the frequency m correspond to the drive frequencies of the first mirror 41a and the second mirror 42a, respectively.
  • the resage pattern of the present embodiment has an asymmetrical shape with respect to the center line extending in the Y direction through the origin O.
  • the first drawing pattern LS1 is larger than the second drawing pattern LS2 in each of the X direction and the Y direction. Therefore, the drawing length of the first drawing pattern LS1 is longer than the drawing length of the second drawing pattern LS2.
  • a1, a2, b1 and b2 are each normalized by 1 based on the size of the first drawing pattern LS1.
  • the phase difference ⁇ of the equations (1) to (4) may be either 0 degree or 180 degrees.
  • the pattern in which the first drawing pattern LS1 and the second drawing pattern LS2 are combined is an ⁇ -shaped resage pattern.
  • the size of the actual Lissajous pattern, that is, the amplitudes in the X direction and the Y direction are in the range of about 1 mm to 10 mm, respectively.
  • the drawing distance of the resage pattern in the predetermined time variation ⁇ t in the X direction is ⁇ X
  • the drawing distance in the Y direction is ⁇ Y
  • the drawing distance of the resage pattern in the time variation ⁇ t is ⁇ L.
  • V ⁇ L / ⁇ t ⁇ ⁇ ⁇ (8)
  • the formulas (5) to (8) are formulas related to LS1 created based on the formulas (1) to (2), but similarly, LS2 is based on the formulas (3) to (4). You can create formulas for. Here, the details are omitted.
  • FIG. 5 shows the scanning locus of the laser beam along the welding direction, and the outer shape of the plurality of resage patterns shown in the figure corresponds to the outer shape of the weld bead. Further, the plurality of resage patterns shown in the figure each indicate a change in the position of the drawing pattern with respect to time when the laser beam LB travels along the welding direction.
  • FIG. 6 shows the relationship between the drawing position of the laser beam and the output
  • FIG. 7 schematically shows the state change of the work along the welding direction when the laser beam is irradiated.
  • the resage pattern shown in FIG. 4 is obtained by scanning the laser beam LB from the origin O in the direction of the arrow AR1 and the arrow AR2 shown in FIG. 4 during one cycle. Specifically, the laser beam LB is scanned so as to pass from the origin O to the drawing position A ⁇ B ⁇ C ⁇ O ⁇ D ⁇ E ⁇ F ⁇ O during one cycle.
  • the surface of the work 200 is irradiated with the laser beam LB while the laser head 30 is moved in the + direction in the X direction (hereinafter, may be referred to as the welding direction WD) at a predetermined speed by the manipulator 60.
  • the laser light scanner 40 is used to two-dimensionally scan the laser light LB so as to draw the resage pattern shown in FIG. 4 on the surface of the work 200.
  • the case where the work 200 shown in FIG. 3 is laminated and welded will be described as an example.
  • the first drawing pattern LS1 drawn in front of the origin O along the welding direction WD is X more than the second drawing pattern LS2 drawn behind the origin O.
  • the scanning amplitude is large in both the direction and the Y direction.
  • the first drawing pattern LS1 shown in FIG. 4 is obtained.
  • the second drawing pattern LS2 shown in FIG. 4 is obtained.
  • the scanning width LAC of the first drawing pattern LS1 in the Y direction is twice as wide as the scanning width LDF of the second drawing pattern LS2 in the Y direction.
  • the scanning width LAC corresponds to the width in the Y direction from which the zinc plating layers 211 and 221 are removed (hereinafter, also referred to as the zinc plating layer removal width LAC), and the scanning width LDF is the work. It corresponds to a welding width of 200 (hereinafter, also referred to as a welding width LDF).
  • the weld width LDF corresponds to the width of the weld bead (not shown) in the Y direction, but the two often do not completely match. This is because the width of the actual weld bead in the Y direction is often slightly wider than the weld width LDF due to the influence of heat conduction during welding.
  • the zinc plating layer removal width LAC is set to be wider than the welding width LDF in the Y direction. Therefore, in the scanning locus of the laser beam LB, the galvanized layers 211 and 221 are removed on both sides of the weld width LDF in the Y direction, but the first plate material 210 and the second plate material 220 are not welded. Occurs.
  • the width of this region in the Y direction may be referred to as the bead outer peripheral zinc plating layer removal width LNZn.
  • the output P1 of the laser beam LB during drawing of the first drawing pattern LS1 is set to be lower than the output P2 of the laser beam LB during drawing of the second drawing pattern LS2. ..
  • the optical axis is deeper than the origin O of the resage pattern, for example, at the drawing position B, due to the laser beam LB1 indicated by bb'.
  • LK1 keyhole 301 is formed, and a molten pool 311 is further formed around the keyhole 301.
  • the depth LK1 of the keyhole 301 does not reach the interface between the first plate material 210 and the second plate material 220, and similarly, the molten pool 311 also reaches the interface between the first plate material 210 and the second plate material 220. Not reached. That is, the first plate material 210 is not completely melted to the bottom by the laser beam LB1.
  • the temperature of the interface between the first plate material 210 and the second plate material 220 rises due to the heat input from the laser beam LB1 reaching the inside of the keyhole 301 and the heat generated in the molten pool 311 to reach the above-mentioned boiling point of zinc.
  • the zinc-plated layers 211 and 221 intervening at the interface evaporate.
  • the galvanized layers 211 and 221 are removed from the interface along the X direction from the origin O over the length LZn.
  • the laser beam LB2 whose optical axis is indicated by e-e'is behind the origin O of the resage pattern, for example, at the drawing position E.
  • a keyhole 302 having a depth of LK2 is formed, and a molten pool 312 is further formed around the keyhole 302.
  • the keyhole 302 penetrates the first plate material 210 and reaches the inside of the second plate material 220.
  • the molten pool 312 is also formed from the surface of the first plate material 210 to the inside of the second plate material 220.
  • the welded welded portion 320 is formed behind the molten pool 312.
  • the zinc plating layer removal width LAC is wider than the weld width LDF in the Y direction, and the zinc plating layers 211 and 221 are removed on both sides of the weld width LDF in the Y direction. , A region where the first plate material 210 and the second plate material 220 are not welded is formed.
  • the laser beam LB is two-dimensionally scanned while advancing the laser beam LB in the X direction (first direction) to irradiate the surface of the work 200. This includes a welding step for welding the work 200.
  • the work 200 has a structure in which the first plate material 210 having the zinc plating layer 211 formed on the surface and the second plate material 220 having the zinc plating layer 221 formed on the surface are overlapped without a gap. Both the first plate material 210 and the second plate material 220 are steel plates.
  • the laser beam LB is vibrated in a sine wave shape having a first frequency corresponding to the frequency n along the X direction, and has a second frequency corresponding to the frequency m along the Y direction (second direction). Vibrate in a sine wave shape. As a result, the laser beam LB is scanned so as to draw an ⁇ -shaped resage pattern on the surface of the work 200.
  • the first drawing pattern LS1 located in front of the origin O of the resage pattern along the welding direction WD (+ side direction in the X direction) is located behind the origin O
  • the second drawing pattern LS2 is located behind the origin O.
  • the laser beam LB is scanned so as to have a wider pattern in the Y direction than the above.
  • the output P of the laser beam LB is controlled so that the output P1 of the laser beam LB drawing the first drawing pattern LS1 is lower than the output P2 of the laser beam LB drawing the second drawing pattern LS2.
  • first drawing pattern LS1 the zinc-plated layers 211 and 221 intervening at the interface between the first plate material 210 and the second plate material 220 are removed.
  • second drawing pattern LS2 the first plate material 210 and the second plate material 220 from which the galvanized layers 211 and 221 have been removed are welded to each other.
  • the zinc plating layers 211 and 221 intervening at the interface between the first plate material 210 and the second plate material 220 can be removed, and the generation of welding defects due to the generation of zinc vapor can be suppressed. Further, the shape of the weld bead formed on the work 200 can be made good.
  • the laser beam is not scanned in the direction intersecting the welding direction, and the trajectory of the laser beam overlaps in the forward step and the reverse step. Further, the width of the laser beam in the direction intersecting the welding direction is the same in the forward step and the reverse step. Therefore, depending on the spot size and output of the laser beam, it is not possible to secure a sufficient width for removing the zinc plating layer with respect to the welding width in the direction intersecting the welding direction, and welding defects caused by zinc vapor during welding of the work. Was likely to occur. In addition, there is a risk that the shape of the weld bead will collapse.
  • the laser beam LB is scanned so that the zinc plating layer removal width LAC is wider than the welding width LDF in the Y direction. Therefore, a region where the zinc plating layer is removed can be sufficiently secured for the welded region, and the generation of welding defects due to the generation of zinc vapor can be suppressed. Further, this makes it possible to improve the shape of the weld bead formed on the work 200.
  • the laser welding apparatus 100 includes a laser oscillator 10 that generates a laser beam LB, a laser head 30 that receives the laser beam LB and irradiates the work 200, and an operation of the laser head 30 and a laser beam LB. It includes at least a controller 50 that controls the output P.
  • the work 200 has a structure in which the first plate material 210 having the zinc plating layer 211 formed on the surface and the second plate material 220 having the zinc plating layer 221 formed on the surface are overlapped without a gap. Both the first plate material 210 and the second plate material 220 are steel plates.
  • the laser head 30 has a laser light scanner 40 that scans the laser light LB in each of the X direction (first direction) and the Y direction (second direction) intersecting the X direction.
  • the controller 50 vibrates the laser beam LB in a sinusoidal shape having a first frequency along the X direction and vibrates in a sinusoidal shape having a second frequency along the Y direction.
  • the controller 50 drives and controls the laser light scanner 40 so that the laser light LB draws an ⁇ -shaped resage pattern on the surface of the work 200.
  • the controller 50 among the resage patterns, the first drawing pattern LS1 located in front of the origin O of the resage pattern along the X direction, which is the welding direction, is Y more than the second drawing pattern LS2 located behind.
  • the laser light scanner 40 is driven and controlled so as to have a wide pattern with respect to the direction.
  • the controller 50 controls the output P of the laser beam LB so that the output P1 of the laser beam LB drawing the first drawing pattern LS1 is lower than the output P2 of the laser beam LB drawing the second drawing pattern LS2. do.
  • the zinc plating layers 211 and 221 intervening at the interface between the first plate material 210 and the second plate material 220 can be removed, and the generation of welding defects due to the generation of zinc vapor is suppressed. be able to. Further, the shape of the weld bead formed on the work 200 can be made good.
  • the laser welding device 100 further includes a manipulator 60 to which the laser head 30 is attached, and the controller 50 controls the operation of the manipulator 60.
  • the manipulator 60 moves the laser head 30 in a predetermined direction with respect to the surface of the work 200.
  • the manipulator 60 By providing the manipulator 60 in this way, the welding direction of the laser beam LB can be changed. Further, laser welding can be easily performed on a work 200 having a complicated shape, for example, a three-dimensional shape.
  • the laser oscillator 10 and the laser head 30 are connected by an optical fiber 20, and the laser light LB is transmitted from the laser oscillator 10 to the laser head 30 through the optical fiber 20.
  • optical fiber 20 By providing the optical fiber 20 in this way, it becomes possible to perform laser welding on the work 200 installed at a position away from the laser oscillator 10. This increases the degree of freedom in arranging each part of the laser welding apparatus 100.
  • the laser light scanner 40 is composed of a first galvano mirror 41 that scans the laser light LB in the X direction and a second galvano mirror 42 that scans the laser light LB in the Y direction.
  • the laser light scanner 40 By configuring the laser light scanner 40 in this way, the laser light LB can be easily scanned two-dimensionally. Further, since a known galvano scanner is used as the laser light scanner 40, it is possible to suppress an increase in the cost of the laser welding apparatus 100.
  • the laser head 30 further includes a collimation lens 32, and the collimation lens 32 is configured to change the focal position of the laser beam LB along the Z direction intersecting each of the X direction and the Y direction.
  • the collimation lens 32 is configured to change the focal position of the laser beam LB along the Z direction intersecting the surface of the work 200. That is, the collimation lens 32 also functions as a focal position adjusting mechanism for the laser beam LB in combination with a drive unit (not shown).
  • the focal position of the laser beam LB can be easily changed, and the laser beam LB can be appropriately irradiated according to the shape of the work 200.
  • the laser light LB is moved in the + direction in the X direction by moving the laser head 30 in the X direction, but the laser light is moved in the Y direction by moving the laser head 30.
  • the LB may be advanced in the Y direction. That is, the welding direction may be the Y direction.
  • the controller 50 among the resage patterns, the first drawing pattern LS1 located in front of the origin O of the resage pattern along the Y direction which is the welding direction is located behind the origin O.
  • the laser light scanner 40 can be driven and controlled so that the pattern is wider in the X direction than the drawing pattern LS2. That is, the laser beam LB can be scanned so that the first drawing pattern LS1 has a wider pattern in the X direction than the second drawing pattern LS2. As a result, the width from which the zinc plating layers 211 and 221 are removed can be made sufficiently wider than the welding width, and the generation of welding defects due to zinc vapor can be suppressed.
  • the drawing direction of the resage pattern is not particularly limited to the above-mentioned direction.
  • the laser beam LB may be scanned in the direction of the arrow AR3 and the arrow AR4 shown in FIG. 4 from the origin O during one cycle to draw a resage pattern.
  • the laser beam LB may be scanned so as to pass from the origin O to the drawing position C ⁇ B ⁇ A ⁇ O ⁇ F ⁇ E ⁇ D ⁇ O during one cycle.
  • FIG. 8 shows the relationship between the drawing position of the laser beam and the output according to the present modification
  • FIG. 9 schematically shows the state change of the work along the welding direction at the time of irradiation with the laser beam
  • FIG. 10 shows the relationship between the output of the laser beam and the depth of the keyhole.
  • This modification differs from the configuration shown in the first embodiment in the following points. That is, the output P of the laser beam LB is controlled to be continuously increased at the transition of the LS2 from the first drawing pattern LS1 to the second drawing pattern. Further, at the time of transition from the second drawing pattern LS2 to the first drawing pattern LS1, the output P of the laser beam LB is controlled to be continuously lowered.
  • the drawing position of the laser beam LB moves from the origin O to D, from the time when the laser beam LB passes through the origin O until the period t1 elapses.
  • the output P of the laser beam LB is continuously increased from P1 to P2.
  • the control curve S1 of the output P in this case may be linear or curved.
  • the output P of the laser beam LB is continuously transmitted from P2 to P1 from the time when the laser beam LB passes through the origin O until the period t2 elapses. It is decreasing.
  • the control curve S2 of the output P in this case may be linear or curved.
  • the keyholes 302 are closed sequentially from the bottom to the top, but in many cases, the keyholes 302 are closed at one or more locations from the bottom to the length LK12 at almost the same timing. It often ends up. When such a situation occurs, a cavity may remain below or above the closed portion, and porosity may be formed inside the work 200.
  • the drawing position of the laser beam LB moves from the above-mentioned position O'to the position O'", that is, the transition time from the first drawing pattern LS1 to the second drawing pattern LS1 in the resage pattern.
  • the output P of the laser beam LB increases stepwise from P1 to P2, and the shape of the keyhole 301 having a depth of LK1 suddenly changes to the keyhole 302 having a depth of LK2.
  • an excessive impact may be applied to the molten pool 312. If the molten pool 312 becomes unstable and undulates, it will be reflected in the shape of the weld bead, and there is a possibility that a weld bead having a good shape cannot be formed.
  • control of the output P of the laser beam LB is performed by the controller 50.
  • the output P of the laser beam LB in order to form a keyhole in the work 200, it is necessary to set the output P of the laser beam LB to a predetermined value or more.
  • the work 200 In the region where the output P is smaller than the predetermined value (heat conduction welding region Rc), the work 200 is softened or melted by the heat input by the laser beam LB, but no keyhole is formed.
  • the keyhole welding region Rk is reached via the transition region Rt. In this region, a keyhole is formed in the work 200, and the depth of the keyhole becomes deeper as the output P increases. Both the outputs P1 and P2 described above are included in the keyhole welding region Rk.
  • ⁇ Modification 2> 11A shows the first scanning pattern of the laser beam according to the present modification
  • FIG. 11B shows the second scanning pattern
  • FIG. 11C shows the third scanning pattern of the laser beam.
  • the above-mentioned parameters a1, b1, a2, b2, m shown in the formulas (1) to (4) are appropriately set according to the material of the work 200, the joint shape, the required bead shape width, and the like. Can be changed. Therefore, the scanning pattern of the laser beam LB is not particularly limited to the pattern shown in FIG.
  • the ratio of the parameters a1 and b1 is 2: 1, and in the drawing pattern LS2, the ratio of the parameters a2 and b2 is 2: 1, and a2 and b2 are set respectively. It may be 1/2 of a1 and b2.
  • the ratio of the parameters a1 and b1 may be 2: 1 and in the drawing pattern LS2, the ratio of the parameters a2 and b2 may be 4: 1.
  • the values of the parameters a1, b1, a2, and b2 shown in the equations (1) to (4) are not particularly limited to the examples shown in FIGS. 4 and 11A to 11C.
  • the ratio of the frequency n of the first mirror 41a to the frequency m of the second mirror 42a in other words, the vibration frequency in the X direction of the laser beam LB, which is the vibration frequency in the first frequency and the vibration frequency in the Y direction.
  • the ratio n: m of the second frequency is 1: 2. This makes it possible to make the first drawing pattern LS1 located in front of the origin O in the Y direction intersecting the welding direction wider than the second drawing pattern LS2 located behind the origin O.
  • the ratio n: m of the first frequency and the second frequency is 2: 1.
  • the drive frequencies of the first mirror 41a and the second mirror 42a may be changed according to the shape of the work 200 or the required bead shape.
  • FIG. 12 shows a scanning locus of a laser beam along a welding line according to the present embodiment.
  • FIG. 13A shows the relationship between the drawing position of the laser beam at the start of welding and the output
  • FIG. 13B shows the relationship between the drawing position of the laser beam at the end of welding and the output.
  • the output of the laser beam LB during drawing of the first drawing pattern LS1 is set to P1. It differs from the configuration shown in the first embodiment in that the output of the laser beam LB when drawing the second drawing pattern LS2 is set to zero.
  • the distance that the rear end of the resage pattern, that is, the portion corresponding to the drawing position E shown in FIG. 4 moves along the welding direction WD corresponds to the length L2 shown in FIG. Further, the length L2 corresponds to about twice the length of the second drawing pattern LS2 in the X direction.
  • the output of the laser beam LB during drawing of the second drawing pattern LS2 is P2 in a predetermined period (second period) before the end of laser welding.
  • the output of the laser beam LB when drawing the first drawing pattern LS1 is set to zero.
  • the distance that the front end of the resage pattern, that is, the portion corresponding to the drawing position B shown in FIG. 4 moves along the welding direction WD corresponds to the length L1 shown in FIG.
  • the length L1 substantially corresponds to the sum of the length of the first drawing pattern LS1 in the X direction and the length of the second drawing pattern LS2 in the Y direction.
  • the work 200 is welded by irradiating the region where the zinc plating layers 211 and 221 are surely removed with the laser beam LB at the output P2 to cause welding defects caused by zinc vapor.
  • the occurrence can be reliably suppressed.
  • the shape of the weld bead can be made good. This will be described further.
  • the first drawing pattern LS1 is drawn in front of the welding start point along the welding direction WD, and the second drawing pattern LS1 is drawn behind the welding start point.
  • the drawing pattern LS2 is drawn.
  • the laser beam LB of the output P2 is irradiated behind the welding start point in a state where the zinc plating layers 211 and 221 are not removed. Will be.
  • zinc vapor is generated in the portion where the zinc plating layer has not been removed, and welding defects are further generated.
  • the output of the laser beam LB when drawing the second drawing pattern LS2 is set to zero in the present embodiment.
  • the zinc plating layers 211 and 221 are removed from the welding start point to the welding end point.
  • the corrosion resistance of the first plate material 210 and the second plate material 220 which are steel plates, may decrease.
  • the output of the laser beam LB when drawing the first drawing pattern LS1 is set to zero in the present embodiment.
  • the zinc plating layers 211 and 221 are removed more than necessary, and the deterioration of the corrosion resistance of the first plate material 210 and the second plate material 220, which are steel plates, can be suppressed.
  • the laser output is zero in both the LS2S portion shown by the dotted line in the L2 period and the LS1E portion shown by the dotted line in the L1 period.
  • ⁇ Modification 3> 14A to 14C show the first to third scanning patterns of the laser beam according to this modification.
  • the arrows drawn in the scanning pattern indicate the drawing direction of the laser beam LB.
  • the scanning pattern of the laser beam LB of the present disclosure is not limited to the resage pattern shown in the first embodiment and the second modification.
  • it may be a composite pattern of two circular patterns having asymmetrical shapes and arranged so as to be in contact with each other at the origin O and sandwiching the Y axis.
  • FIG. 14B it may be a composite pattern of two elliptical patterns having asymmetrical shapes and arranged so as to be in contact with each other at the origin O and sandwiching the Y axis.
  • FIG. 14A it may be a composite pattern of two circular patterns having asymmetrical shapes and arranged so as to be in contact with each other at the origin O and sandwiching the Y axis.
  • FIG. 14B it may be a composite pattern of two elliptical patterns having asymmetrical shapes and arranged so as to be in contact with each other at the origin O and sandwiching the Y axis.
  • each scanning pattern shown in FIGS. 14A to 14C may be a composite pattern of two annular patterns arranged asymmetrically with respect to the Y axis. Also, the size of each of the two annular patterns can be changed as appropriate.
  • the scanning pattern of the laser beam LB in the present specification may be a pattern in which two annular patterns are in contact with each other at one point and are continuous, and is not limited to the examples shown in FIGS. 14A to 14C and the modifications thereof. These patterns can be obtained by driving the first mirror 41a and the second mirror 42a according to a predetermined drive pattern, respectively.
  • the "predetermined pattern” which is the scanning pattern of the laser beam LB, is a pattern in which two annular patterns having asymmetrical shapes are at one point, and in this case, they are in contact with each other at the origin O and are continuous. Needless to say, the “predetermined pattern” includes the resage pattern disclosed in the present specification.
  • FIG. 15 shows an outline of the scanning locus of the laser beam according to the third embodiment
  • FIGS. 16A to 16G show the first to seventh spot patterns, respectively.
  • the so-called line welding in which the work 200 is laser-welded while advancing the laser beam LB to the + side in the X direction, has been described as an example, but the laser welding method of the present disclosure can also be used for spot welding. Applicable.
  • the scanning pattern SP1 of the laser beam LB shown in FIG. 15 has a shape similar to the scanning pattern shown in FIG.
  • the scanning pattern SP1 of the laser beam LB has two annular patterns having asymmetrical shapes in contact with each other at the origin O and are continuous. It is preferable to use a pattern, and it is preferable to use an ⁇ -shaped laserge pattern.
  • the scanning pattern SP1 of the laser beam LB is shown as a Lissajous pattern, but the actual waveform of the scanning pattern SP1 changes according to the traveling speed of the laser beam LB.
  • first drawing pattern LS1 and the second drawing pattern LS2 are separated from each other along the welding direction WD, in this case, in the clockwise direction along the spot pattern SP, and the progress of the laser beam LB The separation distance changes according to the speed. Further, both the first drawing pattern LS1 and the second drawing pattern LS2 have a deformed shape extending along the circumferential direction of the spot pattern SP.
  • the first drawing pattern LS1 located in front of the origin O of the scanning pattern SP1 along the welding direction WD is wider in the Y direction than the second drawing pattern LS2 located behind the origin O.
  • the laser beam LB is scanned so as to be.
  • the zinc-plated layers 211 and 221 intervening at the interface between the first plate material 210 and the second plate material 220 are removed while drawing the first drawing pattern LS1. While drawing the second drawing pattern LS2, the first plate material 210 and the second plate material 220 from which the galvanized layers 211 and 221 have been removed are spot welded to each other.
  • the scanning pattern SP1 is drawn as the first drawing pattern while passing through the origin O. It is desirable to scan the laser beam LB so that the center line (not shown) divided into the LS1 and the second drawing pattern LS2 is always orthogonal to the tangential direction at the origin O in the spot pattern SP.
  • the laser welding method of the present disclosure has the following configurations. That is, in the laser welding method of the present disclosure, the welding step of welding the work 200 by scanning the laser beam LB two-dimensionally and irradiating the surface of the work 200 while advancing the laser beam LB in the welding direction WD. Is equipped with.
  • the work 200 has a structure in which the first plate material 210 having the zinc plating layer 211 formed on the surface and the second plate material 220 having the zinc plating layer 221 formed on the surface are overlapped without a gap. Both the first plate material 210 and the second plate material 220 are steel plates.
  • the laser beam LB is scanned so as to draw a predetermined pattern on the surface of the work 200.
  • the predetermined pattern is a continuous pattern in which two annular patterns having asymmetrical shapes are in contact with each other at the origin O.
  • the first drawing pattern LS1 located in front of the origin O of the predetermined pattern along the welding direction WD has a welding direction WD more than the second drawing pattern LS2 located behind the origin O.
  • the laser beam LB is scanned so as to have a wide pattern in the intersecting direction.
  • the output P of the laser beam LB is controlled so that the output P1 of the laser beam LB drawing the first drawing pattern LS1 is lower than the output P2 of the laser beam LB drawing the second drawing pattern LS2.
  • first drawing pattern LS1 the zinc-plated layers 211 and 221 intervening at the interface between the first plate material 210 and the second plate material 220 are removed.
  • second drawing pattern LS2 the first plate material 210 and the second plate material 220 from which the galvanized layers 211 and 221 have been removed are welded to each other. In this case, the case where the first plate material 210 and the second plate material 220 are spot welded to each other is also included.
  • the zinc plating layers 211 and 221 intervening at the interface between the first plate material 210 and the second plate material 220 can be removed.
  • the shape of the weld bead formed on the work 200 can be made good.
  • the laser welding apparatus 100 of the present disclosure includes a laser oscillator 10 that generates a laser beam LB, a laser head 30 that receives the laser beam LB and irradiates the work 200, an operation of the laser head 30, and an output P of the laser beam LB. At least includes a controller 50 for controlling the above.
  • the work 200 has a structure in which the first plate material 210 having the zinc plating layer 211 formed on the surface and the second plate material 220 having the zinc plating layer 221 formed on the surface are overlapped without a gap. Both the first plate material 210 and the second plate material 220 are steel plates.
  • the laser head 30 has a laser light scanner 40 that scans the laser light LB in each of the X direction (first direction) and the Y direction (second direction) intersecting the X direction.
  • the laser light scanner 40 is driven and controlled so that the laser light LB draws a predetermined pattern on the surface of the work 200.
  • the first drawing pattern LS1 located in front of the origin O of the resage pattern along the welding direction WD is in the welding direction WD with respect to the second drawing pattern LS2 located behind.
  • the laser light scanner 40 is driven and controlled so as to have a wide pattern in the direction intersecting with.
  • the controller 50 controls the output P of the laser beam LB so that the output P1 of the laser beam LB drawing the first drawing pattern LS1 is lower than the output P2 of the laser beam LB drawing the second drawing pattern LS2. do.
  • the laser welding apparatus 100 By configuring the laser welding apparatus 100 in this way, even if there is no gap between the first plate material 210 and the second plate material 220, the zinc plating layer interposed at the interface between the first plate material 210 and the second plate material 220 211,221 can be removed, and the generation of welding defects due to the generation of zinc vapor can be suppressed. Further, the shape of the weld bead formed on the work 200 can be made good. In this case, the case where the first plate material 210 and the second plate material 220 are spot welded to each other is also included.
  • the spot pattern SP does not necessarily have to be a circular pattern shown in FIG. It suffices if the first plate material 210 and the second plate material 220 are spot welded.
  • the spot pattern SP can take various shapes.
  • the spot pattern SP may be an open circle shape in which a part is open, or as shown in FIG. 16F, the spot pattern SP may be a waveform.
  • the spot pattern SP may be substantially U-shaped.
  • FIGS. 16A, 16C to 16E, and 16G when a part of the spot pattern SP is open, air, oil, or the like between the first plate material 210 and the second plate material 220 escapes. Since the mouth is formed, the shape of the weld bead can be improved.
  • the laser beam LB passes from the origin O to the drawing position C ⁇ B ⁇ A ⁇ O ⁇ F ⁇ E ⁇ D ⁇ O during one cycle. May be scanned. Needless to say, the timing for changing the output P of the laser beam LB is changed according to the change in the order of the drawing positions.
  • the condenser lens 34 is arranged in the front stage of the laser light scanner 40, but is in the rear stage of the laser light scanner 40, that is, the light emission port of the laser light scanner 40 and the laser head 30. It may be arranged between.
  • the scanning pattern of the laser beam LB becomes a Lissajous pattern. It may be set to. In this case, it goes without saying that the amplitudes a and b of the first mirror 41a and the second mirror 42a, the frequencies n and m of the first mirror 41a and the second mirror 42a, and the phase ⁇ are appropriately changed.
  • the laser beam LB is scanned as shown below. That is, the laser beam LB is vibrated in a sine and cosine wave shape having a first frequency along the welding direction WD, and also in a sine and cosine wave shape having a second frequency along the direction intersecting the welding direction WD. ..
  • the work 200 shown in FIG. 3 is laser-welded has been described as an example, but the present invention is not particularly limited to this.
  • the work 200 is two base materials each including a plate-shaped portion and the plate-shaped portions are overlapped with each other and a zinc plating layer is formed on the surface of at least the plate-shaped portion. good.
  • the base material in this case may be iron, mild steel, or high-strength steel. All of these melting points are higher than the boiling point of zinc.
  • a zinc alloy plating layer containing zinc and aluminum may be formed on the surfaces of the two base materials. That is, a plating layer containing zinc as a main component may be formed on the surfaces of the two base materials.
  • the "plating layer containing zinc as a main component” means a plating layer containing 60% or more of zinc.
  • a coating layer made of a material other than zinc may be formed on the surfaces of the two base materials, respectively.
  • the materials of the coating layer and the base material are set so that the boiling points of the materials constituting the coating layer are lower than the melting points of the materials constituting the base material.
  • the work 200 having such a structure is laser welded, by applying the laser welding method and the laser welding apparatus of the present disclosure, welding caused by steam generated by evaporation of the coating layer such as the zinc plating layer 211,221 is performed. Needless to say, the occurrence of defects can be suppressed and the shape of the weld bead can be improved.
  • the laser welding method of the present disclosure can suppress the generation of welding defects due to the vapor generated by evaporation of the coating layer, lap welding of two members having a coating layer such as a zinc plating layer formed on the surface is performed. Useful on.
  • Laser oscillator 20 Optical fiber 30
  • Laser head 31 Housing 32 Collimation lens 33
  • Reflective mirror 34 Condensing lens 40
  • Laser optical scanner 41 1st galvano mirror 41a 1st mirror 41b 1st rotating shaft 41c 1st drive unit 42 2nd galvano mirror 42a 2nd mirror 42b 2nd rotating shaft 42c 2nd drive unit 50
  • Controller 60 Manipulator 200 Work 210 1st plate material (base material) 211 Galvanized layer (coating layer) 220 Second plate material (base material) 221 Galvanized layer (coating layer) 301, 302 Keyholes 311, 312 Welded pond 320 Welded part

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

This laser welding method comprises a welding step in which a workpiece is welded by scanning laser light, while the laser light is advanced in an X direction, two-dimensionally and irradiating a surface of the workpiece therewith so as to trace prescribed patterns. The laser light is scanned so that a first drawing pattern, of the prescribed patterns, that is located in front of an origin point in the X direction is a wider pattern in a Y direction than a second drawing pattern that is located behind the origin point. The output of the laser light is controlled so that the output of the laser light during the drawing of the first drawing pattern is lower than the output of the laser light during the drawing of the second drawing pattern.

Description

レーザ溶接方法及びレーザ溶接装置Laser welding method and laser welding equipment
 本開示は、レーザ溶接方法及びレーザ溶接装置に関する。 This disclosure relates to a laser welding method and a laser welding apparatus.
 レーザ溶接は、被溶接物であるワークに照射されるレーザ光のパワー密度が高いため、高速かつ高品質の溶接を行うことができる。特に、レーザ光をワークの表面で高速にスキャンしながら溶接を行うスキャニング溶接では、溶接をしない期間中にレーザビームを次の溶接点へ高速に移動することができるため、トータルな溶接時間を短縮することができる(例えば、特許文献1参照)。また、レーザ光のスキャニング方法に関しては、ワークの表面にリサージュパターンを描くようにレーザ光を走査する方法が、従来提案されている(例えば、特許文献2、特許文献3参照)。また、スキャンニング溶接は、通常の鉄鋼材料のみではなく、亜鉛めっき等の表面処理を行った鉄鋼材料の薄板溶接にも適用されている(例えば、特許文献4参照)。 Laser welding has a high power density of laser light shining on the work to be welded, so high-speed and high-quality welding can be performed. In particular, in scanning welding in which welding is performed while scanning the laser beam on the surface of the work at high speed, the laser beam can be moved to the next welding point at high speed during the non-welding period, thus shortening the total welding time. (See, for example, Patent Document 1). Further, as for the method of scanning the laser beam, a method of scanning the laser beam so as to draw a resage pattern on the surface of the work has been conventionally proposed (see, for example, Patent Document 2 and Patent Document 3). Further, scanning welding is applied not only to ordinary steel materials but also to thin plate welding of steel materials surface-treated such as zinc plating (see, for example, Patent Document 4).
特開2005-095934号公報Japanese Unexamined Patent Publication No. 2005-095934 特開昭60-177983号公報Japanese Unexamined Patent Publication No. 60-177983 特開平11-104877号公報Japanese Unexamined Patent Publication No. 11-104877 特許第4915315号公報Japanese Patent No. 4915315
 ところで、亜鉛の沸点(906℃)は、鉄の融点(1535℃)よりも大幅に低い。このため、亜鉛めっき層がそれぞれの表面に形成された2枚の鋼板をギャップレスで重ねて溶接する重ね溶接では、鉄が溶融する前に鋼板の重ね合わせ面に介在する亜鉛めっき層が蒸発温度に達してしまう。発生した亜鉛蒸気は、キーホールまたは溶融池を不安定にしたり、ワークの内部にポロシティを形成させたり、極端な場合は溶融池を吹き飛ばしたりして、溶接欠陥を発生させるおそれがあった。 By the way, the boiling point of zinc (906 ° C) is significantly lower than the melting point of iron (1535 ° C). For this reason, in lap welding in which two steel plates having a zinc-plated layer formed on their respective surfaces are laminated and welded in a gapless manner, the zinc-plated layer interposed in the laminated surface of the steel plates reaches the evaporation temperature before the iron melts. Will reach. The generated zinc vapor may destabilize the keyhole or the molten pool, form porosity inside the work, or, in the extreme case, blow off the molten pool, resulting in welding defects.
 しかし、特許文献1~3に開示された従来の構成では、亜鉛めっき層が形成された鋼板の重ね溶接に関して何ら開示されておらず、前述の課題に関しても開示されていない。 However, in the conventional configurations disclosed in Patent Documents 1 to 3, nothing is disclosed regarding the lap welding of the steel plate on which the zinc-plated layer is formed, and neither is the above-mentioned problem.
 一方、特許文献4には、溶接方向に沿ってレーザビームを前後にウィービングするとともに、前方にウィービングする前進工程でのレーザ光の出力を後方にウィービングする後進工程でのそれよりも低くする方法が開示されている。このようにすることで、亜鉛めっき層を除去した後に鋼板同士を溶接することを可能にしている。 On the other hand, in Patent Document 4, there is a method of weaving a laser beam back and forth along the welding direction and lowering the output of the laser beam in the forward step of weaving forward to be lower than that in the reverse step of weaving backward. It has been disclosed. By doing so, it is possible to weld the steel plates to each other after removing the zinc plating layer.
 しかし、特許文献4に開示される方法では、レーザ光の軌跡が、前進工程と後進工程とで重なっている。また、溶接方向と交差する方向におけるレーザ光の幅が、前進工程と後進工程とで同じである。これらのことにより、溶接領域に対して、亜鉛めっき層が除去される領域が十分に確保できず、溶接欠陥を発生させるおそれがあった。 However, in the method disclosed in Patent Document 4, the trajectory of the laser beam overlaps between the forward step and the reverse step. Further, the width of the laser beam in the direction intersecting the welding direction is the same in the forward step and the reverse step. As a result, it is not possible to secure a sufficient area for removing the zinc plating layer with respect to the welded area, and there is a possibility that welding defects may occur.
 本開示はかかる点に鑑みてなされたもので、その目的は、亜鉛めっき層等の被覆層が形成された板材の重ね溶接において、溶接欠陥の発生を抑制し、良好な形状の溶接ビードが得られるレーザ溶接方法及びレーザ溶接装置を提供することにある。 The present disclosure has been made in view of this point, and an object thereof is to suppress the occurrence of welding defects in lap welding of a plate material on which a coating layer such as a zinc plating layer is formed, and to obtain a weld bead having a good shape. It is an object of the present invention to provide a laser welding method and a laser welding apparatus.
 上記目的を達成するため、本開示に係るレーザ溶接方法は、レーザ光を溶接方向に進行させながら、前記レーザ光を二次元的に走査してワークの表面に照射することで、前記ワークを溶接する溶接ステップを備え、前記ワークは、それぞれ板状の部分を含む2つの母材において、前記板状の部分同士が重ね合わされ、少なくとも前記板状の部分の表面に被覆層が形成された構造であり、かつ前記被覆層の沸点は、前記母材の融点よりも低く、前記溶接ステップでは、前記ワークの表面で所定のパターンを描くように、かつ、前記所定のパターンのうち、溶接方向に沿って前記所定のパターンの原点の前方に位置する第1描画パターンは、前記原点の後方に位置する第2描画パターンよりも前記溶接方向と交差する方向に関して広いパターンとなるように前記レーザ光を走査し、前記第1描画パターンを描画中の前記レーザ光の出力が、前記第2描画パターンを描画中の前記レーザ光の出力よりも低くなるように前記レーザ光の出力を制御し、前記所定のパターンは、互いに非対称な形状の2つの環状のパターンが前記原点で接して連続したパターンであることを特徴とする。 In order to achieve the above object, in the laser welding method according to the present disclosure, the work is welded by scanning the laser light two-dimensionally and irradiating the surface of the work while advancing the laser light in the welding direction. The work has a structure in which the plate-shaped portions are overlapped with each other in two base materials including the plate-shaped portions, and a coating layer is formed at least on the surface of the plate-shaped portions. Yes, the boiling point of the coating layer is lower than the melting point of the base metal, and in the welding step, a predetermined pattern is drawn on the surface of the work, and the predetermined pattern is along the welding direction. The first drawing pattern located in front of the origin of the predetermined pattern scans the laser beam so as to be a pattern wider in the direction intersecting the welding direction than the second drawing pattern located behind the origin. Then, the output of the laser beam is controlled so that the output of the laser beam during drawing of the first drawing pattern is lower than the output of the laser beam during drawing of the second drawing pattern, and the predetermined state is determined. The pattern is characterized in that two annular patterns having an asymmetrical shape are continuous patterns in contact with each other at the origin.
 本開示に係るレーザ溶接装置は、レーザ光を発生させるレーザ発振器と、前記レーザ光を受け取ってワークに向けて照射するレーザヘッドと、前記レーザヘッドの動作及び前記レーザ光の出力を制御するコントローラと、を少なくとも備え、前記レーザヘッドは、前記レーザ光を第1方向と前記第1方向と交差する第2方向のそれぞれに走査するレーザ光スキャナを有し、前記ワークが、それぞれ板状の部分を含む2つの母材において、前記板状の部分同士が重ね合わされ、少なくとも前記板状の部分の表面に被覆層が形成された構造であり、かつ前記被覆層の沸点が前記母材の融点よりも低い場合に、前記コントローラは、前記レーザ光が前記ワークの表面で所定のパターンを描くように、かつ前記所定のパターンのうち、溶接方向に沿って前記所定のパターンの原点の前方に位置する第1描画パターンは、前記原点の後方に位置する第2描画パターンよりも前記溶接方向と交差する方向に関して広いパターンとなるように前記レーザ光スキャナを駆動制御し、さらに、前記コントローラは、前記第1描画パターンを描画中の前記レーザ光の出力が、前記第2描画パターンを描画中の前記レーザ光の出力よりも低くなるように前記レーザ光の出力を制御し、前記所定のパターンは、互いに非対称な形状の2つの環状のパターンが前記原点で接して連続したパターンであることを特徴とする。 The laser welding apparatus according to the present disclosure includes a laser oscillator that generates a laser beam, a laser head that receives the laser beam and irradiates the work, and a controller that controls the operation of the laser head and the output of the laser beam. The laser head has a laser light scanner that scans the laser light in each of the first direction and the second direction intersecting the first direction, and the work has a plate-shaped portion. In the two base materials including the base material, the plate-shaped portions are overlapped with each other to form a coating layer at least on the surface of the plate-shaped portions, and the boiling point of the coating layer is higher than the melting point of the base material. When low, the controller is located so that the laser beam draws a predetermined pattern on the surface of the work, and is located in front of the origin of the predetermined pattern along the welding direction among the predetermined patterns. The 1 drawing pattern drives and controls the laser light scanner so that the pattern is wider in the direction intersecting the welding direction than the second drawing pattern located behind the origin, and the controller further controls the first drawing pattern. The output of the laser beam is controlled so that the output of the laser beam during drawing of the drawing pattern is lower than the output of the laser beam during drawing of the second drawing pattern, and the predetermined patterns are asymmetrical with each other. It is characterized in that two annular patterns having a large shape are in contact with each other at the origin and are continuous patterns.
 本開示によれば、2つの板状の部分の間にある被覆層を除去できるとともに、被覆層が蒸発して発生する蒸気に起因した溶接欠陥の発生を抑制することができる。また、ワークに形成される溶接ビードの形状を良好なものとすることができる。 According to the present disclosure, the coating layer between the two plate-shaped portions can be removed, and the generation of welding defects due to the steam generated by the evaporation of the coating layer can be suppressed. Further, the shape of the weld bead formed on the work can be improved.
図1は、実施形態1に係るレーザ溶接装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a laser welding apparatus according to the first embodiment. 図2は、レーザ光スキャナの概略構成図である。FIG. 2 is a schematic configuration diagram of a laser light scanner. 図3は、ワークの断面模式図である。FIG. 3 is a schematic cross-sectional view of the work. 図4は、レーザ光の走査パターンを示す図である。FIG. 4 is a diagram showing a scanning pattern of laser light. 図5は、溶接方向に沿ったレーザ光の走査軌跡を示す図である。FIG. 5 is a diagram showing a scanning locus of a laser beam along a welding direction. 図6は、レーザ光の描画位置と出力との関係を示す図である。FIG. 6 is a diagram showing the relationship between the drawing position of the laser beam and the output. 図7は、レーザ光照射時の溶接方向に沿ったワークの状態変化を示す模式図である。FIG. 7 is a schematic view showing a state change of the work along the welding direction at the time of laser light irradiation. 図8は、変形例1に係るレーザ光の描画位置と出力との関係を示す図である。FIG. 8 is a diagram showing the relationship between the drawing position and the output of the laser beam according to the first modification. 図9は、レーザ光照射時の溶接方向に沿ったワークの状態変化を示す模式図である。FIG. 9 is a schematic view showing a state change of the work along the welding direction at the time of laser light irradiation. 図10は、レーザ光の出力とキーホールの深さとの関係を示す図である。FIG. 10 is a diagram showing the relationship between the output of the laser beam and the depth of the keyhole. 図11Aは、変形例2に係るレーザ光の第1の走査パターンを示す図である。FIG. 11A is a diagram showing a first scanning pattern of the laser beam according to the second modification. 図11Bは、変形例2に係るレーザ光の第2の走査パターンを示す図である。FIG. 11B is a diagram showing a second scanning pattern of the laser beam according to the second modification. 図11Cは、変形例2に係るレーザ光の第3の走査パターンを示す図である。FIG. 11C is a diagram showing a third scanning pattern of the laser beam according to the second modification. 図12は、実施形態2に係る溶接線に沿ったレーザ光の走査軌跡を示す図である。FIG. 12 is a diagram showing a scanning locus of a laser beam along a welding line according to a second embodiment. 図13Aは、溶接開始時のレーザ光の描画位置と出力との関係を示す図である。FIG. 13A is a diagram showing the relationship between the drawing position and the output of the laser beam at the start of welding. 図13Bは、溶接終了時のレーザ光の描画位置と出力との関係を示す図である。FIG. 13B is a diagram showing the relationship between the drawing position and the output of the laser beam at the end of welding. 図14Aは、変形例3に係るレーザ光の第1の走査パターンを示す図である。FIG. 14A is a diagram showing a first scanning pattern of the laser beam according to the modified example 3. 図14Bは、変形例3に係るレーザ光の第2の走査パターンを示す図である。FIG. 14B is a diagram showing a second scanning pattern of the laser beam according to the third modification. 図14Cは、変形例3に係るレーザ光の第3の走査パターンを示す図である。FIG. 14C is a diagram showing a third scanning pattern of the laser beam according to the modified example 3. 図15は、実施形態3に係るレーザ光の走査軌跡の概略を示す図である。FIG. 15 is a diagram showing an outline of the scanning locus of the laser beam according to the third embodiment. 図16Aは、第1のスポットパターンを示す図である。FIG. 16A is a diagram showing a first spot pattern. 図16Bは、第2のスポットパターンを示す図である。FIG. 16B is a diagram showing a second spot pattern. 図16Cは、第3のスポットパターンを示す図である。FIG. 16C is a diagram showing a third spot pattern. 図16Dは、第4のスポットパターンを示す図である。FIG. 16D is a diagram showing a fourth spot pattern. 図16Eは、第5のスポットパターンを示す図である。FIG. 16E is a diagram showing a fifth spot pattern. 図16Fは、第6のスポットパターンを示す図である。FIG. 16F is a diagram showing a sixth spot pattern. 図16Gは、第7のスポットパターンを示す図である。FIG. 16G is a diagram showing a seventh spot pattern.
 以下、本開示の実施形態を図面に基づいて説明する。なお、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本開示、その適用物或いはその用途を制限することを意図するものではない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. It should be noted that the following description of the preferred embodiment is merely an example and is not intended to limit the present disclosure, its application or its use.
 (実施形態1)
 [レーザ溶接装置及びレーザ光スキャナの構成]
 図1は、本実施形態に係るレーザ溶接装置の構成の模式図を示し、図2は、レーザ光スキャナの概略構成図を示す。図3は、ワークの断面模式図を示す。
(Embodiment 1)
[Construction of laser welding equipment and laser light scanner]
FIG. 1 shows a schematic diagram of the configuration of the laser welding apparatus according to the present embodiment, and FIG. 2 shows a schematic configuration diagram of a laser light scanner. FIG. 3 shows a schematic cross-sectional view of the work.
 なお、以降の説明において、反射ミラー33からレーザ光スキャナ40に向かうレーザ光LBの進行方向と平行な方向をX方向と、レーザヘッド30から出射されるレーザ光LBの光軸と平行な方向をZ方向と、X方向及びZ方向とそれぞれ直交する方向をY方向とそれぞれ呼ぶことがある。X方向とY方向とを面内に含むXY平面は、ワーク200の表面が平坦面である場合、当該表面と略平行でもよく、当該表面と一定の角度をなしていてもよい。 In the following description, the direction parallel to the traveling direction of the laser beam LB from the reflection mirror 33 toward the laser beam scanner 40 is the X direction, and the direction parallel to the optical axis of the laser beam LB emitted from the laser head 30. The Z direction and the directions orthogonal to the X direction and the Z direction may be referred to as the Y direction, respectively. When the surface of the work 200 is a flat surface, the XY plane including the X direction and the Y direction in the plane may be substantially parallel to the surface or may form a constant angle with the surface.
 図1に示すように、レーザ溶接装置100は、レーザ発振器10と光ファイバ20とレーザヘッド30とコントローラ50とマニピュレータ60とを備えている。 As shown in FIG. 1, the laser welding apparatus 100 includes a laser oscillator 10, an optical fiber 20, a laser head 30, a controller 50, and a manipulator 60.
 レーザ発振器10は、図示しない電源から電力が供給されてレーザ光LBを発生させるレーザ光源である。なお、レーザ発振器10は、単一のレーザ光源で構成されていてもよいし、複数のレーザモジュールで構成されていてもよい。後者の場合は、複数のレーザモジュールからそれぞれ出射されたレーザ光を結合してレーザ光LBとして出射する。また、レーザ発振器10で使用されるレーザ光源あるいはレーザモジュールは、ワーク200の材質や溶接部位の形状等に応じて、適宜選択される。 The laser oscillator 10 is a laser light source that is supplied with electric power from a power source (not shown) to generate laser light LB. The laser oscillator 10 may be composed of a single laser light source or a plurality of laser modules. In the latter case, the laser light emitted from each of the plurality of laser modules is combined and emitted as the laser light LB. Further, the laser light source or the laser module used in the laser oscillator 10 is appropriately selected according to the material of the work 200, the shape of the welded portion, and the like.
 例えば、ファイバレーザかディスクレーザ、あるいはYAG(Yttrium Aluminum Garnet)レーザをレーザ光源とすることもできる。この場合、レーザ光LBの波長は、1000nm~1100nmの範囲に設定される。また、半導体レーザをレーザ光源あるいはレーザモジュールとしてもよい。この場合、レーザ光LBの波長は、800nm~1000nmの範囲に設定される。また、可視光レーザをレーザ光源あるいはレーザモジュールとしてもよい。この場合、レーザ光LBの波長は、400nm~600nmの範囲に設定される。 For example, a fiber laser, a disk laser, or a YAG (Yttrium Aluminum Garnet) laser can be used as a laser light source. In this case, the wavelength of the laser beam LB is set in the range of 1000 nm to 1100 nm. Further, the semiconductor laser may be used as a laser light source or a laser module. In this case, the wavelength of the laser beam LB is set in the range of 800 nm to 1000 nm. Further, the visible light laser may be used as a laser light source or a laser module. In this case, the wavelength of the laser beam LB is set in the range of 400 nm to 600 nm.
 光ファイバ20は、レーザ発振器10に光学的に結合されており、レーザ発振器10で発生したレーザ光LBは、光ファイバ20に入射されて、その内部をレーザヘッド30に向けて伝送される。 The optical fiber 20 is optically coupled to the laser oscillator 10, and the laser light LB generated by the laser oscillator 10 is incident on the optical fiber 20 and transmitted inside the optical fiber 20 toward the laser head 30.
 レーザヘッド30は、光ファイバ20の端部に取り付けられており、光ファイバ20から伝送されたレーザ光LBをワーク200に向けて照射する。 The laser head 30 is attached to the end of the optical fiber 20 and irradiates the work 200 with the laser light LB transmitted from the optical fiber 20.
 また、レーザヘッド30は、光学部品として、コリメーションレンズ32と反射ミラー33と集光レンズ34とレーザ光スキャナ40とを有しており、筐体31の内部にこれらの光学部品が所定の配置関係を保って収容されている。 Further, the laser head 30 has a collimation lens 32, a reflection mirror 33, a condenser lens 34, and a laser light scanner 40 as optical components, and these optical components have a predetermined arrangement relationship inside the housing 31. Is kept and housed.
 コリメーションレンズ32は、光ファイバ20から出射されたレーザ光LBを受け取って、平行光に変換し、反射ミラー33に入射させる。また、コリメーションレンズ32は、図示しない駆動部に連結されており、コントローラ50からの制御信号に応じて、Z方向に変位可能に構成されている。コリメーションレンズ32をZ方向に変位させることで、レーザ光LBの焦点位置を変化させ、ワーク200の形状に応じて適切にレーザ光LBを照射させることができる。つまり、コリメーションレンズ32は、図示しない駆動部との組み合わせにより、レーザ光LBの焦点位置調整機構としても機能している。なお、集光レンズ34を駆動部により変位させて、レーザ光LBの焦点位置を変化させるようにしてもよい。 The collimation lens 32 receives the laser beam LB emitted from the optical fiber 20, converts it into parallel light, and causes it to be incident on the reflection mirror 33. Further, the collimation lens 32 is connected to a drive unit (not shown) and is configured to be displaceable in the Z direction in response to a control signal from the controller 50. By displacing the collimation lens 32 in the Z direction, the focal position of the laser beam LB can be changed, and the laser beam LB can be appropriately irradiated according to the shape of the work 200. That is, the collimation lens 32 also functions as a focal position adjusting mechanism for the laser beam LB in combination with a drive unit (not shown). The condenser lens 34 may be displaced by the drive unit to change the focal position of the laser beam LB.
 反射ミラー33は、コリメーションレンズ32を透過したレーザ光LBを反射して、レーザ光スキャナ40に入射させる。反射ミラー33の表面は、コリメーションレンズ32を透過したレーザ光LBの光軸と約45度をなすように設けられている。 The reflection mirror 33 reflects the laser light LB transmitted through the collimation lens 32 and makes it incident on the laser light scanner 40. The surface of the reflection mirror 33 is provided so as to form an optical axis of about 45 degrees with the optical axis of the laser beam LB transmitted through the collimation lens 32.
 集光レンズ34は、反射ミラー33で反射され、レーザ光スキャナ40で走査されたレーザ光LBをワーク200の表面に集光させる。 The condenser lens 34 concentrates the laser light LB reflected by the reflection mirror 33 and scanned by the laser light scanner 40 on the surface of the work 200.
 図2に示すように、レーザ光スキャナ40は、第1ガルバノミラー41と第2ガルバノミラー42とを有する公知のガルバノスキャナである。第1ガルバノミラー41は、第1ミラー41aと第1回転軸41bと第1駆動部41cとを有し、第2ガルバノミラー42は、第2ミラー42aと第2回転軸42bと第2駆動部42cとを有している。集光レンズ34を透過したレーザ光LBは、第1ミラー41aで反射され、さらに第2ミラー42aで反射されて、ワーク200の表面に照射される。 As shown in FIG. 2, the laser light scanner 40 is a known galvano scanner having a first galvano mirror 41 and a second galvano mirror 42. The first galvano mirror 41 has a first mirror 41a, a first rotation shaft 41b, and a first drive unit 41c, and the second galvano mirror 42 has a second mirror 42a, a second rotation shaft 42b, and a second drive unit. It has 42c. The laser beam LB transmitted through the condenser lens 34 is reflected by the first mirror 41a and further reflected by the second mirror 42a to irradiate the surface of the work 200.
 例えば、第1駆動部41c及び第2駆動部42cは、ガルバノモータであり、第1回転軸41b及び第2回転軸42bは、モータの出力軸である。図示していないが、第1駆動部41cが、コントローラ50からの制御信号に応じて動作するドライバによって回転駆動することで、第1回転軸41bに取り付けられた第1ミラー41aが第1回転軸41bの軸線回りに回転する。同様に、第2駆動部42cが、コントローラ50からの制御信号に応じて動作するドライバによって回転駆動することで、第2回転軸42bに取り付けられた第2ミラー42aが第2回転軸42bの軸線回りに回転する。 For example, the first drive unit 41c and the second drive unit 42c are galvano motors, and the first rotation shaft 41b and the second rotation shaft 42b are output shafts of the motor. Although not shown, the first drive unit 41c is rotationally driven by a driver that operates in response to a control signal from the controller 50, so that the first mirror 41a attached to the first rotation shaft 41b becomes the first rotation shaft. It rotates around the axis of 41b. Similarly, the second drive unit 42c is rotationally driven by a driver that operates in response to a control signal from the controller 50, so that the second mirror 42a attached to the second rotary shaft 42b becomes the axis of the second rotary shaft 42b. Rotate around.
 第1ミラー41aが第1回転軸41bの軸線回りに所定の角度まで回転動作をすることで、レーザ光LBがX方向に走査される。また、第2ミラー42aが第2回転軸42bの軸線回りに所定の角度まで回転動作をすることで、レーザ光LBがY方向に走査される。つまり、レーザ光スキャナ40は、レーザ光LBをXY平面内で二次元的に走査してワーク200に向けて照射するように構成されている。 The laser beam LB is scanned in the X direction by the first mirror 41a rotating around the axis of the first rotation shaft 41b to a predetermined angle. Further, the second mirror 42a rotates around the axis of the second rotating shaft 42b to a predetermined angle, so that the laser beam LB is scanned in the Y direction. That is, the laser light scanner 40 is configured to scan the laser light LB two-dimensionally in the XY plane and irradiate the work 200.
 コントローラ50は、レーザ発振器10のレーザ発振を制御する。具体的には、レーザ発振器10に接続された図示しない電源に対して出力電流やオンオフ時間等の制御信号を供給することにより、レーザ発振制御を行う。また、コントローラ50は、レーザ光LBの出力を制御する。 The controller 50 controls the laser oscillation of the laser oscillator 10. Specifically, laser oscillation control is performed by supplying control signals such as an output current and an on / off time to a power source (not shown) connected to the laser oscillator 10. Further, the controller 50 controls the output of the laser beam LB.
 また、コントローラ50は、選択されたレーザ溶接プログラムの内容に応じて、レーザヘッド30の動作を制御する。具体的には、レーザヘッド30に設けられたレーザ光スキャナ40及び、コリメーションレンズ32の図示しない駆動部の駆動制御を行う。さらに、コントローラ50は、マニピュレータ60の動作を制御する。なお、レーザ溶接プログラムは、コントローラ50の内部または別の場所に設けられた記憶部(図示せず)に保存され、コントローラ50からの命令によってコントローラ50に呼び出される。 Further, the controller 50 controls the operation of the laser head 30 according to the content of the selected laser welding program. Specifically, the drive control of the laser light scanner 40 provided on the laser head 30 and the drive unit (not shown) of the collimation lens 32 is performed. Further, the controller 50 controls the operation of the manipulator 60. The laser welding program is stored in a storage unit (not shown) provided inside the controller 50 or at another location, and is called by the controller 50 by a command from the controller 50.
 コントローラ50は、図示しないLSIまたはマイクロコンピュータ等の集積回路を有しており、この集積回路上でソフトウェアであるレーザ溶接プログラムを実行することで、前述のコントローラ50の機能が実現される。なお、レーザヘッド30の動作を制御するコントローラ50とレーザ光LBの出力を制御するコントローラ50とを別個に設けてもよい。 The controller 50 has an integrated circuit such as an LSI or a microcomputer (not shown), and the function of the controller 50 described above is realized by executing a laser welding program which is software on the integrated circuit. A controller 50 that controls the operation of the laser head 30 and a controller 50 that controls the output of the laser beam LB may be provided separately.
 マニピュレータ60は、多関節ロボットであり、レーザヘッド30の筐体31に取り付けられている。また、マニピュレータ60は、コントローラ50と信号の授受が可能に接続され、前述のレーザ溶接プログラムに応じて所定の軌跡を描くようにレーザヘッド30を移動させる。なお、マニピュレータ60の動作を制御する別のコントローラ(図示せず)を設けるようにしてもよい。 The manipulator 60 is an articulated robot and is attached to the housing 31 of the laser head 30. Further, the manipulator 60 is connected to the controller 50 so as to be able to send and receive signals, and moves the laser head 30 so as to draw a predetermined trajectory according to the above-mentioned laser welding program. In addition, another controller (not shown) that controls the operation of the manipulator 60 may be provided.
 図1に示すレーザ溶接装置100は、種々の形状のワーク200に対してレーザ溶接を行うことができる。例えば、図3に示すように、それぞれ亜鉛めっき層211,221が表面に形成され、鋼板からなる第1板材210と第2板材220とをギャップ無く密着させて重ね合わせたワーク200にレーザ光LBを照射して、重ね溶接が行われる。第1板材210及び第2板材220の表面にそれぞれ亜鉛めっき層211,221を形成することで、鋼板に錆びが発生するのを防止できる。なお、レーザ溶接されるワーク200の構造や材質が図3に示す例に限定されないことは言うまでもない。 The laser welding device 100 shown in FIG. 1 can perform laser welding on workpieces 200 having various shapes. For example, as shown in FIG. 3, zinc-plated layers 211 and 221 are formed on the surface thereof, and the laser beam LB is placed on the work 200 in which the first plate material 210 and the second plate material 220 made of steel plates are closely adhered to each other without a gap. Is irradiated, and lap welding is performed. By forming the galvanized layers 211 and 221 on the surfaces of the first plate material 210 and the second plate material 220, respectively, it is possible to prevent the steel plate from rusting. Needless to say, the structure and material of the work 200 to be laser welded are not limited to the example shown in FIG.
 [リサージュパターンの数式的表現]
 図4は、レーザ光の走査パターンを示し、レーザ光LBは、XY平面内、この場合はワーク200の表面でリサージュパターン(以下、リサージュ図形ともいう)を描くように走査される。
[Mathematical expression of Lissajous pattern]
FIG. 4 shows a scanning pattern of the laser beam, and the laser beam LB is scanned so as to draw a Lissajous pattern (hereinafter, also referred to as a Lissajous figure) in the XY plane, in this case, on the surface of the work 200.
 図4に示すリサージュパターンは、レーザ光LBをX方向に所定の周波数の正弦波状に振動させるとともに、Y方向にX方向と異なる周波数(X方向の周波数の1/2である)の正弦波状に振動させることで得られる。また、前述したように、第1ミラー41a及び第2ミラー42aの回転運動に基づいて、レーザ光LBのX方向及びY方向の走査パターンが決定される。第1ミラー41aの駆動によって得られるリサージュパターンの位置座標をXとし、第2ミラー42aの駆動によって得られるリサージュパターンの位置座標をYとするとき、位置座標X,Yは、それぞれ以下の式(1)、(2)で表される。 The Lissajous pattern shown in FIG. 4 vibrates the laser beam LB in the X direction in a sine wave shape of a predetermined frequency, and in the Y direction, the laser light LB has a sine wave shape having a frequency different from the X direction (1/2 of the frequency in the X direction). Obtained by vibrating. Further, as described above, the scanning pattern of the laser beam LB in the X direction and the Y direction is determined based on the rotational motion of the first mirror 41a and the second mirror 42a. When the position coordinates of the resage pattern obtained by driving the first mirror 41a are X and the position coordinates of the resage pattern obtained by driving the second mirror 42a are Y, the position coordinates X and Y are expressed by the following equations, respectively. It is represented by 1) and (2).
 X=a1×sin(nt)   ・・・(1)
 Y=b1×sin(mt+φ) ・・・(2)
 X=a2×sin(nt)   ・・・(3)
 Y=b2×sin(mt+φ) ・・・(4)
 ここで、
 a1:リサージュパターンのうちの走査パターンLS1のX方向の振幅
 b1:リサージュパターンのうちの走査パターンLS1のY方向の振幅
 a2:リサージュパターンのうちの走査パターンLS2のX方向の振幅
 b2:リサージュパターンのうちの走査パターンLS2のY方向の振幅
 n:第1ミラー41aの周波数
 m:第2ミラー42aの周波数
 t:時間
 φ:第1ミラー41aまたは第2ミラー42a駆動時の位相差であり、具体的には、第1ミラー41aと第2ミラー42aの回転運動時に設ける角度ずれ量である。
X = a1 × sin (nt) ・ ・ ・ (1)
Y = b1 × sin (mt + φ) ・ ・ ・ (2)
X = a2 × sin (nt) ・ ・ ・ (3)
Y = b2 × sin (mt + φ) ・ ・ ・ (4)
here,
a1: Amplitude of scan pattern LS1 in Lissajous pattern in X direction b1: Amplitude of scan pattern LS1 in Lissajous pattern in Y direction a2: Amplitude of scan pattern LS2 in Lissajous pattern in X direction b2: Amplitude of Lissajous pattern Amplitude of the scanning pattern LS2 in the Y direction n: Frequency of the first mirror 41a m: Frequency of the second mirror 42a t: Time φ: Phase difference when driving the first mirror 41a or the second mirror 42a. Is the amount of angular deviation provided during the rotational movement of the first mirror 41a and the second mirror 42a.
 走査パターンLS1(以下、第1描画パターンLS1ともいう)は、図4に示すリサージュパターンにおいて、X方向で+側に位置する走査パターンであり、走査パターンLS2(以下、第2描画パターンLS2ともいう)は、X方向で-側に位置する走査パターンである。 The scanning pattern LS1 (hereinafter, also referred to as the first drawing pattern LS1) is a scanning pattern located on the + side in the X direction in the resage pattern shown in FIG. 4, and is also referred to as the scanning pattern LS2 (hereinafter, also referred to as the second drawing pattern LS2). ) Is a scanning pattern located on the − side in the X direction.
 なお、式(1)~(4)に示す位置座標X,Yは、レーザヘッド30の位置を固定した状態でのリサージュパターンの静止座標系で表現される。 The position coordinates X and Y shown in the equations (1) to (4) are represented by a static coordinate system of the resage pattern in a state where the position of the laser head 30 is fixed.
 また、周波数nと周波数mは、それぞれ第1ミラー41aと第2ミラー42aの駆動周波数とそれぞれ対応する。 Further, the frequency n and the frequency m correspond to the drive frequencies of the first mirror 41a and the second mirror 42a, respectively.
 図4から明らかなように、本実施形態のリサージュパターンは、原点Oを通りY方向に延びる中心線に関して非対称な形状となっている。 As is clear from FIG. 4, the resage pattern of the present embodiment has an asymmetrical shape with respect to the center line extending in the Y direction through the origin O.
 X方向に沿って原点Oの前方に位置する第1描画パターンLS1は、式(1)、(2)において、a1=1,b1=1,n=1,m=2,φ=0とした場合に対応する。一方、原点Oの後方に位置する第2描画パターンLS2は、式(3)、(4)において、a2=0.5,b2=0.5,n=1,m=2,φ=0とした場合に対応する。つまり、X方向及びY方向のそれぞれにおいて、第1描画パターンLS1は、第2描画パターンLS2よりも大きなパターンとなっている。よって、第1描画パターンLS1の描画長さは、第2描画パターンLS2の描画長さよりも長くなっている。なお、a1,a2,b1,b2は、それぞれ第1描画パターンLS1の大きさを基準に1で正規化している。また、式(1)~(4)の位相差φは、0度または180度のどちらでもよい。 The first drawing pattern LS1 located in front of the origin O along the X direction is set to a1 = 1, b1 = 1, n = 1, m = 2, φ = 0 in the equations (1) and (2). Correspond to the case. On the other hand, the second drawing pattern LS2 located behind the origin O has a2 = 0.5, b2 = 0.5, n = 1, m = 2, φ = 0 in the equations (3) and (4). Correspond to the case. That is, the first drawing pattern LS1 is larger than the second drawing pattern LS2 in each of the X direction and the Y direction. Therefore, the drawing length of the first drawing pattern LS1 is longer than the drawing length of the second drawing pattern LS2. It should be noted that a1, a2, b1 and b2 are each normalized by 1 based on the size of the first drawing pattern LS1. Further, the phase difference φ of the equations (1) to (4) may be either 0 degree or 180 degrees.
 また、第1描画パターンLS1と第2描画パターンLS2とを合成したパターンは、∞字形状のリサージュパターンである。なお、実際のリサージュパターンのサイズ、つまり、X方向及びY方向の振幅は、それぞれ1mm~10mm程度の範囲内にある。 Further, the pattern in which the first drawing pattern LS1 and the second drawing pattern LS2 are combined is an ∞-shaped resage pattern. The size of the actual Lissajous pattern, that is, the amplitudes in the X direction and the Y direction are in the range of about 1 mm to 10 mm, respectively.
 ここで、図4に示すように、所定の時間変分ΔtにおけるリサージュパターンのX方向の描画距離をΔX、Y方向の描画距離をΔY、時間変分Δtにおけるリサージュパターンの描画距離をΔLとするとき、ΔX、ΔY、ΔLは、それぞれ以下に示す式(5)~(7)で表される。 Here, as shown in FIG. 4, the drawing distance of the resage pattern in the predetermined time variation Δt in the X direction is ΔX, the drawing distance in the Y direction is ΔY, and the drawing distance of the resage pattern in the time variation Δt is ΔL. Then, ΔX, ΔY, and ΔL are represented by the following equations (5) to (7), respectively.
 ΔX= a1×n×cos(nt)×Δt ・・・(5)
 ΔY= b1×m×cos(mt+φ)×Δt ・・・(6)
 ΔL= Δt×{(ΔX)+(ΔY)1/2 ・・・(7)
 よって、リサージュパターンの描画速度Vは、以下に示す式(8)で表される。
ΔX = a1 × n × cos (nt) × Δt ・ ・ ・ (5)
ΔY = b1 × m × cos (mt + φ) × Δt ・ ・ ・ (6)
ΔL = Δt × {(ΔX) 2 + (ΔY) 2 } 1/2 ... (7)
Therefore, the drawing speed V of the resage pattern is expressed by the following equation (8).
 V= ΔL/Δt ・・・(8)
 数式(5)~(8)は、数式(1)~(2)をもとにして作成した、LS1に関する数式であるが、同様に、数式(3)~(4)をもとにしてLS2に関する数式を作成することができる。ここでは、その詳細を省略する。
V = ΔL / Δt ・ ・ ・ (8)
The formulas (5) to (8) are formulas related to LS1 created based on the formulas (1) to (2), but similarly, LS2 is based on the formulas (3) to (4). You can create formulas for. Here, the details are omitted.
 [レーザ溶接方法]
 図5は、溶接方向に沿ったレーザ光の走査軌跡を示し、図中に示す複数のリサージュパターンの外形が、溶接ビードの外形に対応している。また、図中に示す複数のリサージュパターンは、レーザ光LBが溶接方向に沿って進行する際の、描画パターンの時間に対する位置変化をそれぞれ示している。図6は、レーザ光の描画位置と出力との関係を示し、図7は、レーザ光照射時の溶接方向に沿ったワークの状態変化を模式的に示す。
[Laser welding method]
FIG. 5 shows the scanning locus of the laser beam along the welding direction, and the outer shape of the plurality of resage patterns shown in the figure corresponds to the outer shape of the weld bead. Further, the plurality of resage patterns shown in the figure each indicate a change in the position of the drawing pattern with respect to time when the laser beam LB travels along the welding direction. FIG. 6 shows the relationship between the drawing position of the laser beam and the output, and FIG. 7 schematically shows the state change of the work along the welding direction when the laser beam is irradiated.
 なお、図4に示すリサージュパターンは、1周期の間に、原点Oから図4に示す矢印AR1及び矢印AR2の方向にレーザ光LBを走査することで得られる。具体的には、1周期の間に、原点Oから描画位置A→B→C→O→D→E→F→Oを通るようにレーザ光LBを走査する。 The resage pattern shown in FIG. 4 is obtained by scanning the laser beam LB from the origin O in the direction of the arrow AR1 and the arrow AR2 shown in FIG. 4 during one cycle. Specifically, the laser beam LB is scanned so as to pass from the origin O to the drawing position A → B → C → O → D → E → F → O during one cycle.
 本実施形態では、マニピュレータ60によってレーザヘッド30をX方向の+方向(以下、溶接方向WDと呼ぶことがある)に所定の速度で移動させつつ、レーザ光LBをワーク200の表面に照射している。さらに、レーザ光スキャナ40を用いて、ワーク200の表面で図4に示すリサージュパターンを描くように、レーザ光LBを二次元的に走査している。また、本実施形態では、図3に示すワーク200を重ね溶接する場合を例に取って説明する。 In the present embodiment, the surface of the work 200 is irradiated with the laser beam LB while the laser head 30 is moved in the + direction in the X direction (hereinafter, may be referred to as the welding direction WD) at a predetermined speed by the manipulator 60. There is. Further, the laser light scanner 40 is used to two-dimensionally scan the laser light LB so as to draw the resage pattern shown in FIG. 4 on the surface of the work 200. Further, in the present embodiment, the case where the work 200 shown in FIG. 3 is laminated and welded will be described as an example.
 図4に示すように、リサージュパターンのうち、溶接方向WDに沿って原点Oの前方に描画される第1描画パターンLS1は、原点Oの後方に描画される第2描画パターンLS2よりも、X方向、Y方向ともに走査振幅が大きくなっている。具体的には、式(1)、(2)において、a1=1、b1=1、n=1、m=2とした場合に、図4に示す第1描画パターンLS1が得られる。また、式(3)、(4)において、a2=0.5、b2=0.5、n=1、m=2とした場合に、図4に示す第2描画パターンLS2が得られる。 As shown in FIG. 4, among the resage patterns, the first drawing pattern LS1 drawn in front of the origin O along the welding direction WD is X more than the second drawing pattern LS2 drawn behind the origin O. The scanning amplitude is large in both the direction and the Y direction. Specifically, in the equations (1) and (2), when a1 = 1, b1 = 1, n = 1, and m = 2, the first drawing pattern LS1 shown in FIG. 4 is obtained. Further, in the equations (3) and (4), when a2 = 0.5, b2 = 0.5, n = 1, and m = 2, the second drawing pattern LS2 shown in FIG. 4 is obtained.
 このことから明らかなように、第1描画パターンLS1のY方向の走査幅LACは、第2描画パターンLS2のY方向の走査幅LDFよりも2倍広くなっている。また、図5に示すように、走査幅LACは、亜鉛めっき層211,221が除去されるY方向の幅(以下、亜鉛めっき層除去幅LACともいう)に相当し、走査幅LDFは、ワーク200の溶接幅(以下、溶接幅LDFともいう)に相当する。なお、溶接幅LDFは、溶接ビード(図示せず)のY方向の幅に対応しているが、両者は完全には一致しないことが多い。溶接中の熱伝導の影響で、実際の溶接ビードのY方向の幅は、溶接幅LDFよりも少し広くなることが多いためである。 As is clear from this, the scanning width LAC of the first drawing pattern LS1 in the Y direction is twice as wide as the scanning width LDF of the second drawing pattern LS2 in the Y direction. Further, as shown in FIG. 5, the scanning width LAC corresponds to the width in the Y direction from which the zinc plating layers 211 and 221 are removed (hereinafter, also referred to as the zinc plating layer removal width LAC), and the scanning width LDF is the work. It corresponds to a welding width of 200 (hereinafter, also referred to as a welding width LDF). The weld width LDF corresponds to the width of the weld bead (not shown) in the Y direction, but the two often do not completely match. This is because the width of the actual weld bead in the Y direction is often slightly wider than the weld width LDF due to the influence of heat conduction during welding.
 前述したように、Y方向に関し、亜鉛めっき層除去幅LACは、溶接幅LDFよりも広くなるように設定される。このため、レーザ光LBの走査軌跡において、Y方向に関し、溶接幅LDFの両側に、亜鉛めっき層211,221が除去される一方、第1板材210と第2板材220とが溶接されていない領域が生じる。なお、以降の説明において、この領域のY方向の幅をビード外周部亜鉛めっき層除去幅LNZnと呼ぶことがある。 As described above, the zinc plating layer removal width LAC is set to be wider than the welding width LDF in the Y direction. Therefore, in the scanning locus of the laser beam LB, the galvanized layers 211 and 221 are removed on both sides of the weld width LDF in the Y direction, but the first plate material 210 and the second plate material 220 are not welded. Occurs. In the following description, the width of this region in the Y direction may be referred to as the bead outer peripheral zinc plating layer removal width LNZn.
 一方、図6に示すように、第1描画パターンLS1を描画中のレーザ光LBの出力P1は、第2描画パターンLS2を描画中のレーザ光LBの出力P2よりも低くなるように設定される。 On the other hand, as shown in FIG. 6, the output P1 of the laser beam LB during drawing of the first drawing pattern LS1 is set to be lower than the output P2 of the laser beam LB during drawing of the second drawing pattern LS2. ..
 図3に示すワーク200に対して、従来の技術では、レーザ光LBによりギャップレスで重ね溶接を行う場合、前述したように、鉄が溶融する前に発生した亜鉛蒸気が、溶接欠陥を発生させるおそれがある。一方、本実施形態によれば、第1板材210と第2板材220との界面に介在する亜鉛めっき層211,221を除去できるとともに、亜鉛蒸気の発生に伴う溶接欠陥の発生を抑制することができる。このことについてさらに説明する。 In the conventional technique, when lap welding is performed on the work 200 shown in FIG. 3 in a gapless manner by using a laser beam LB, as described above, zinc vapor generated before the iron melts may cause welding defects. There is. On the other hand, according to the present embodiment, the zinc-plated layers 211 and 221 intervening at the interface between the first plate material 210 and the second plate material 220 can be removed, and the generation of welding defects due to the generation of zinc vapor can be suppressed. can. This will be described further.
 レーザ光LB1の出力を図6に示す出力P1に設定することで、リサージュパターンの原点Oよりも前方、例えば、描画位置Bでは、光軸がb-b’で示されるレーザ光LB1により深さがLK1のキーホール301が形成され、さらにその周囲に溶融池311が形成される。このとき、キーホール301の深さLK1は、第1板材210と第2板材220との界面に達しておらず、同様に、溶融池311も第1板材210と第2板材220との界面に達していない。つまり、第1板材210はレーザ光LB1によって底部まで完全には溶融していない。 By setting the output of the laser beam LB1 to the output P1 shown in FIG. 6, the optical axis is deeper than the origin O of the resage pattern, for example, at the drawing position B, due to the laser beam LB1 indicated by bb'. LK1 keyhole 301 is formed, and a molten pool 311 is further formed around the keyhole 301. At this time, the depth LK1 of the keyhole 301 does not reach the interface between the first plate material 210 and the second plate material 220, and similarly, the molten pool 311 also reaches the interface between the first plate material 210 and the second plate material 220. Not reached. That is, the first plate material 210 is not completely melted to the bottom by the laser beam LB1.
 一方、キーホール301の内部に到達したレーザ光LB1からの入熱及び溶融池311で発生した熱により、第1板材210と第2板材220との界面の温度は上昇し前述した亜鉛の沸点に達して、当該界面に介在する亜鉛めっき層211,221が蒸発する。この結果、原点OからX方向に沿って長さLZnに亘って、亜鉛めっき層211,221が当該界面から除去される。 On the other hand, the temperature of the interface between the first plate material 210 and the second plate material 220 rises due to the heat input from the laser beam LB1 reaching the inside of the keyhole 301 and the heat generated in the molten pool 311 to reach the above-mentioned boiling point of zinc. Upon reaching this point, the zinc-plated layers 211 and 221 intervening at the interface evaporate. As a result, the galvanized layers 211 and 221 are removed from the interface along the X direction from the origin O over the length LZn.
 また、レーザ光LB2の出力を図6に示す出力P2に設定することで、リサージュパターンの原点Oよりも後方、例えば、描画位置Eでは、光軸がe-e’で示されるレーザ光LB2により深さがLK2のキーホール302が形成され、さらにその周囲に溶融池312が形成される。このとき、キーホール302は、第1板材210を貫通して、第2板材220の内部に到達している。同様に、溶融池312も第1板材210の表面から第2板材220の内部にかけて形成されている。つまり、レーザ光LB2により、亜鉛めっき層211,221が蒸発して除去された後の第1板材210と第2板材220との界面近傍が溶融され、第1板材210と第2板材220とが溶接された溶接部320が、溶融池312の後方に形成される。 Further, by setting the output of the laser beam LB2 to the output P2 shown in FIG. 6, the laser beam LB2 whose optical axis is indicated by e-e'is behind the origin O of the resage pattern, for example, at the drawing position E. A keyhole 302 having a depth of LK2 is formed, and a molten pool 312 is further formed around the keyhole 302. At this time, the keyhole 302 penetrates the first plate material 210 and reaches the inside of the second plate material 220. Similarly, the molten pool 312 is also formed from the surface of the first plate material 210 to the inside of the second plate material 220. That is, the vicinity of the interface between the first plate material 210 and the second plate material 220 is melted by the laser beam LB2 after the galvanized layers 211 and 221 are evaporated and removed, and the first plate material 210 and the second plate material 220 are formed. The welded welded portion 320 is formed behind the molten pool 312.
 また、前述したように、Y方向に関し、亜鉛めっき層除去幅LACは溶接幅LDFよりも広くなっており、溶接幅LDFのY方向の両側には、亜鉛めっき層211,221が除去される一方、第1板材210と第2板材220とが溶接されていない領域が形成される。 Further, as described above, the zinc plating layer removal width LAC is wider than the weld width LDF in the Y direction, and the zinc plating layers 211 and 221 are removed on both sides of the weld width LDF in the Y direction. , A region where the first plate material 210 and the second plate material 220 are not welded is formed.
 このようにすることで、亜鉛めっき層211,221が確実に除去された領域に対してレーザ溶接がなされるため、亜鉛蒸気に起因して発生するキーホール302及び溶融池312の不安定性を低減できる。同様に、亜鉛蒸気に起因してワーク200の内部に形成されるポロシティや溶融池312が吹き飛んで発生するスパッタやクレータ等の溶接欠陥の発生を抑制できる。 By doing so, laser welding is performed on the region where the zinc plating layers 211 and 221 are surely removed, so that the instability of the keyhole 302 and the molten pool 312 generated due to the zinc vapor is reduced. can. Similarly, it is possible to suppress the generation of welding defects such as spatters and craters generated by blowing off the porosity and the molten pool 312 formed inside the work 200 due to the zinc steam.
 [効果等]
 以上説明したように、本実施形態に係るレーザ溶接方法は、レーザ光LBをX方向(第1方向)に進行させながら、レーザ光LBを二次元的に走査してワーク200の表面に照射することで、ワーク200を溶接する溶接ステップを備えている。
[Effects, etc.]
As described above, in the laser welding method according to the present embodiment, the laser beam LB is two-dimensionally scanned while advancing the laser beam LB in the X direction (first direction) to irradiate the surface of the work 200. This includes a welding step for welding the work 200.
 ワーク200は、表面に亜鉛めっき層211が形成された第1板材210と表面に亜鉛めっき層221が形成された第2板材220とがギャップレスで重ね合わされた構造である。第1板材210及び第2板材220は、ともに鋼板である。 The work 200 has a structure in which the first plate material 210 having the zinc plating layer 211 formed on the surface and the second plate material 220 having the zinc plating layer 221 formed on the surface are overlapped without a gap. Both the first plate material 210 and the second plate material 220 are steel plates.
 溶接ステップでは、レーザ光LBをX方向に沿って周波数nに対応する第1周波数を有する正弦波状に振動させるとともに、Y方向(第2方向)に沿って周波数mに対応する第2周波数を有する正弦波状に振動させる。このことにより、ワーク200の表面で∞字形状のリサージュパターンを描くようにレーザ光LBを走査する。 In the welding step, the laser beam LB is vibrated in a sine wave shape having a first frequency corresponding to the frequency n along the X direction, and has a second frequency corresponding to the frequency m along the Y direction (second direction). Vibrate in a sine wave shape. As a result, the laser beam LB is scanned so as to draw an ∞-shaped resage pattern on the surface of the work 200.
 さらに、リサージュパターンのうち、溶接方向WD(X方向の+側方向)に沿ってリサージュパターンの原点Oの前方に位置する第1描画パターンLS1が、原点Oの後方に位置する第2描画パターンLS2よりもY方向に関して広いパターンとなるようにレーザ光LBを走査する。 Further, among the resage patterns, the first drawing pattern LS1 located in front of the origin O of the resage pattern along the welding direction WD (+ side direction in the X direction) is located behind the origin O, and the second drawing pattern LS2 is located behind the origin O. The laser beam LB is scanned so as to have a wider pattern in the Y direction than the above.
 第1描画パターンLS1を描画中のレーザ光LBの出力P1が、第2描画パターンLS2を描画中のレーザ光LBの出力P2よりも低くなるようにレーザ光LBの出力Pを制御する。 The output P of the laser beam LB is controlled so that the output P1 of the laser beam LB drawing the first drawing pattern LS1 is lower than the output P2 of the laser beam LB drawing the second drawing pattern LS2.
 また、第1描画パターンLS1を描画中に、第1板材210と第2板材220との界面に介在する亜鉛めっき層211,221が除去される。第2描画パターンLS2を描画中に、亜鉛めっき層211,221が除去された第1板材210と第2板材220とが互いに溶接される。 Further, while drawing the first drawing pattern LS1, the zinc-plated layers 211 and 221 intervening at the interface between the first plate material 210 and the second plate material 220 are removed. While drawing the second drawing pattern LS2, the first plate material 210 and the second plate material 220 from which the galvanized layers 211 and 221 have been removed are welded to each other.
 本実施形態によれば、第1板材210と第2板材220との界面に介在する亜鉛めっき層211,221を除去できるとともに、亜鉛蒸気の発生に伴う溶接欠陥の発生を抑制することができる。また、ワーク200に形成される溶接ビードの形状を良好なものとすることができる。 According to this embodiment, the zinc plating layers 211 and 221 intervening at the interface between the first plate material 210 and the second plate material 220 can be removed, and the generation of welding defects due to the generation of zinc vapor can be suppressed. Further, the shape of the weld bead formed on the work 200 can be made good.
 特許文献4に開示される方法では、溶接方向と交差する方向にレーザ光を走査しておらず、レーザ光の軌跡が、前進工程と後進工程とで重なっている。また、溶接方向と交差する方向におけるレーザ光の幅が、前進工程と後進工程とで同じである。このため、レーザ光のスポットサイズや出力によっては、溶接方向と交差する方向に関して、溶接幅に対する亜鉛めっき層が除去される幅が十分に確保できず、ワークの溶接時に亜鉛蒸気に起因した溶接欠陥を発生させるおそれがあった。また、溶接ビードの形状が崩れてしまうおそれがあった。 In the method disclosed in Patent Document 4, the laser beam is not scanned in the direction intersecting the welding direction, and the trajectory of the laser beam overlaps in the forward step and the reverse step. Further, the width of the laser beam in the direction intersecting the welding direction is the same in the forward step and the reverse step. Therefore, depending on the spot size and output of the laser beam, it is not possible to secure a sufficient width for removing the zinc plating layer with respect to the welding width in the direction intersecting the welding direction, and welding defects caused by zinc vapor during welding of the work. Was likely to occur. In addition, there is a risk that the shape of the weld bead will collapse.
 一方、本実施形態によれば、前述したように、Y方向に関し、亜鉛めっき層除去幅LACが、溶接幅LDFよりも広くなるようにレーザ光LBを走査している。このため、溶接領域に対する亜鉛めっき層が除去される領域が十分に確保でき、亜鉛蒸気の発生に伴う溶接欠陥の発生を抑制することができる。また、このことにより、ワーク200に形成される溶接ビードの形状を良好なものとすることができる。 On the other hand, according to the present embodiment, as described above, the laser beam LB is scanned so that the zinc plating layer removal width LAC is wider than the welding width LDF in the Y direction. Therefore, a region where the zinc plating layer is removed can be sufficiently secured for the welded region, and the generation of welding defects due to the generation of zinc vapor can be suppressed. Further, this makes it possible to improve the shape of the weld bead formed on the work 200.
 本実施形態に係るレーザ溶接装置100は、レーザ光LBを発生させるレーザ発振器10と、レーザ光LBを受け取ってワーク200に向けて照射するレーザヘッド30と、レーザヘッド30の動作及びレーザ光LBの出力Pを制御するコントローラ50と、を少なくとも備えている。 The laser welding apparatus 100 according to the present embodiment includes a laser oscillator 10 that generates a laser beam LB, a laser head 30 that receives the laser beam LB and irradiates the work 200, and an operation of the laser head 30 and a laser beam LB. It includes at least a controller 50 that controls the output P.
 ワーク200は、表面に亜鉛めっき層211が形成された第1板材210と表面に亜鉛めっき層221が形成された第2板材220とがギャップレスで重ね合わされた構造である。第1板材210及び第2板材220は、ともに鋼板である。 The work 200 has a structure in which the first plate material 210 having the zinc plating layer 211 formed on the surface and the second plate material 220 having the zinc plating layer 221 formed on the surface are overlapped without a gap. Both the first plate material 210 and the second plate material 220 are steel plates.
 レーザヘッド30は、レーザ光LBをX方向(第1方向)とX方向と交差するY方向(第2方向)のそれぞれに走査するレーザ光スキャナ40を有している。 The laser head 30 has a laser light scanner 40 that scans the laser light LB in each of the X direction (first direction) and the Y direction (second direction) intersecting the X direction.
 コントローラ50は、レーザ光LBをX方向に沿って第1周波数を有する正弦波状に振動させるとともに、Y方向に沿って第2周波数を有する正弦波状に振動させる。このことにより、コントローラ50は、レーザ光LBがワーク200の表面に∞字形状のリサージュパターンを描くように、レーザ光スキャナ40を駆動制御する。 The controller 50 vibrates the laser beam LB in a sinusoidal shape having a first frequency along the X direction and vibrates in a sinusoidal shape having a second frequency along the Y direction. As a result, the controller 50 drives and controls the laser light scanner 40 so that the laser light LB draws an ∞-shaped resage pattern on the surface of the work 200.
 さらに、コントローラ50は、リサージュパターンのうち、溶接方向であるX方向に沿ってリサージュパターンの原点Oよりも前方に位置する第1描画パターンLS1が、後方に位置する第2描画パターンLS2よりもY方向に関して広いパターンとなるように、レーザ光スキャナ40を駆動制御する。 Further, in the controller 50, among the resage patterns, the first drawing pattern LS1 located in front of the origin O of the resage pattern along the X direction, which is the welding direction, is Y more than the second drawing pattern LS2 located behind. The laser light scanner 40 is driven and controlled so as to have a wide pattern with respect to the direction.
 コントローラ50は、第1描画パターンLS1を描画中のレーザ光LBの出力P1が、第2描画パターンLS2を描画中のレーザ光LBの出力P2よりも低くなるようにレーザ光LBの出力Pを制御する。 The controller 50 controls the output P of the laser beam LB so that the output P1 of the laser beam LB drawing the first drawing pattern LS1 is lower than the output P2 of the laser beam LB drawing the second drawing pattern LS2. do.
 本実施形態のレーザ溶接装置によれば、第1板材210と第2板材220との界面に介在する亜鉛めっき層211,221を除去できるとともに、亜鉛蒸気の発生に伴う溶接欠陥の発生を抑制することができる。また、ワーク200に形成される溶接ビードの形状を良好なものとすることができる。 According to the laser welding apparatus of the present embodiment, the zinc plating layers 211 and 221 intervening at the interface between the first plate material 210 and the second plate material 220 can be removed, and the generation of welding defects due to the generation of zinc vapor is suppressed. be able to. Further, the shape of the weld bead formed on the work 200 can be made good.
 レーザ溶接装置100は、レーザヘッド30が取り付けられたマニピュレータ60をさらに備え、コントローラ50は、マニピュレータ60の動作を制御する。マニピュレータ60は、ワーク200の表面に対して、所定の方向にレーザヘッド30を移動させる。 The laser welding device 100 further includes a manipulator 60 to which the laser head 30 is attached, and the controller 50 controls the operation of the manipulator 60. The manipulator 60 moves the laser head 30 in a predetermined direction with respect to the surface of the work 200.
 このようにマニピュレータ60を設けることで、レーザ光LBの溶接方向を変化させることができる。また、複雑な形状、例えば、立体的な形状のワーク200に対して、レーザ溶接を容易に行うことができる。 By providing the manipulator 60 in this way, the welding direction of the laser beam LB can be changed. Further, laser welding can be easily performed on a work 200 having a complicated shape, for example, a three-dimensional shape.
 レーザ発振器10とレーザヘッド30とは光ファイバ20で接続されており、レーザ光LBは、光ファイバ20を通って、レーザ発振器10からレーザヘッド30に伝送される。 The laser oscillator 10 and the laser head 30 are connected by an optical fiber 20, and the laser light LB is transmitted from the laser oscillator 10 to the laser head 30 through the optical fiber 20.
 このように光ファイバ20を設けることで、レーザ発振器10から離れた位置に設置されたワーク200に対してレーザ溶接を行うことが可能となる。このことにより、レーザ溶接装置100の各部を配置する自由度が高められる。 By providing the optical fiber 20 in this way, it becomes possible to perform laser welding on the work 200 installed at a position away from the laser oscillator 10. This increases the degree of freedom in arranging each part of the laser welding apparatus 100.
 レーザ光スキャナ40は、レーザ光LBをX方向に走査する第1ガルバノミラー41と、レーザ光LBをY方向に走査する第2ガルバノミラー42と、で構成されている。 The laser light scanner 40 is composed of a first galvano mirror 41 that scans the laser light LB in the X direction and a second galvano mirror 42 that scans the laser light LB in the Y direction.
 レーザ光スキャナ40をこのように構成することで、レーザ光LBを簡便に二次元的に走査することができる。また、公知のガルバノスキャナをレーザ光スキャナ40として用いているため、レーザ溶接装置100のコストが上昇するのを抑制できる。 By configuring the laser light scanner 40 in this way, the laser light LB can be easily scanned two-dimensionally. Further, since a known galvano scanner is used as the laser light scanner 40, it is possible to suppress an increase in the cost of the laser welding apparatus 100.
 レーザヘッド30は、コリメーションレンズ32をさらに有し、コリメーションレンズ32は、X方向及びY方向のそれぞれに交差するZ方向に沿って、レーザ光LBの焦点位置を変化させるように構成されている。言い換えると、コリメーションレンズ32は、ワーク200の表面と交差するZ方向に沿って、レーザ光LBの焦点位置を変化させるように構成されている。つまり、コリメーションレンズ32は、図示しない駆動部との組み合わせにより、レーザ光LBの焦点位置調整機構としても機能している。 The laser head 30 further includes a collimation lens 32, and the collimation lens 32 is configured to change the focal position of the laser beam LB along the Z direction intersecting each of the X direction and the Y direction. In other words, the collimation lens 32 is configured to change the focal position of the laser beam LB along the Z direction intersecting the surface of the work 200. That is, the collimation lens 32 also functions as a focal position adjusting mechanism for the laser beam LB in combination with a drive unit (not shown).
 このようにすることで、レーザ光LBの焦点位置を簡便に変化させることができ、ワーク200の形状に応じて適切にレーザ光LBを照射させることができる。 By doing so, the focal position of the laser beam LB can be easily changed, and the laser beam LB can be appropriately irradiated according to the shape of the work 200.
 なお、本実施形態では、レーザヘッド30をX方向に移動させることで、レーザ光LBをX方向の+方向に進行させるようにしたが、レーザヘッド30をY方向に移動させることで、レーザ光LBをY方向に進行させてもよい。つまり、溶接方向をY方向としてもよい。この場合、前述の周波数nを2とし、周波数mを1として、リサージュパターンの形状を変更する必要がある。このようにすることで、コントローラ50は、リサージュパターンのうち、溶接方向であるY方向に沿ってリサージュパターンの原点Oの前方に位置する第1描画パターンLS1が、原点Oの後方に位置する第2描画パターンLS2よりもX方向に関して広いパターンとなるように、レーザ光スキャナ40を駆動制御することができる。つまり、第1描画パターンLS1が第2描画パターンLS2よりもX方向に関して広いパターンとなるように、レーザ光LBを走査することができる。このことにより、溶接幅に対して亜鉛めっき層211,221が除去される幅を十分に広く取ることができ、亜鉛蒸気に起因した溶接欠陥の発生を抑制できる。 In the present embodiment, the laser light LB is moved in the + direction in the X direction by moving the laser head 30 in the X direction, but the laser light is moved in the Y direction by moving the laser head 30. The LB may be advanced in the Y direction. That is, the welding direction may be the Y direction. In this case, it is necessary to change the shape of the Lissajous pattern by setting the frequency n to 2 and the frequency m to 1. By doing so, in the controller 50, among the resage patterns, the first drawing pattern LS1 located in front of the origin O of the resage pattern along the Y direction which is the welding direction is located behind the origin O. 2 The laser light scanner 40 can be driven and controlled so that the pattern is wider in the X direction than the drawing pattern LS2. That is, the laser beam LB can be scanned so that the first drawing pattern LS1 has a wider pattern in the X direction than the second drawing pattern LS2. As a result, the width from which the zinc plating layers 211 and 221 are removed can be made sufficiently wider than the welding width, and the generation of welding defects due to zinc vapor can be suppressed.
 また、リサージュパターンの描画方向も、前述した方向に特に限定されない。例えば、1周期の間に、原点Oから図4に示す矢印AR3及び矢印AR4の方向にレーザ光LBを走査してリサージュパターンを描画してもよい。具体的には、1周期の間に、原点Oから描画位置C→B→A→O→F→E→D→Oを通るようにレーザ光LBを走査してもよい。 Further, the drawing direction of the resage pattern is not particularly limited to the above-mentioned direction. For example, the laser beam LB may be scanned in the direction of the arrow AR3 and the arrow AR4 shown in FIG. 4 from the origin O during one cycle to draw a resage pattern. Specifically, the laser beam LB may be scanned so as to pass from the origin O to the drawing position C → B → A → O → F → E → D → O during one cycle.
 <変形例1>
 図8は、本変形例に係るレーザ光の描画位置と出力との関係を示し、図9は、レーザ光照射時の溶接方向に沿ったワークの状態変化を模式的に示す。図10は、レーザ光の出力とキーホールの深さとの関係を示す。なお、説明の便宜上、図8~10及び以降に示す各図面において、実施形態1と同様の箇所については、同一の符号を付して詳細な説明を省略する。
<Modification 1>
FIG. 8 shows the relationship between the drawing position of the laser beam and the output according to the present modification, and FIG. 9 schematically shows the state change of the work along the welding direction at the time of irradiation with the laser beam. FIG. 10 shows the relationship between the output of the laser beam and the depth of the keyhole. For convenience of explanation, in FIGS. 8 to 10 and the drawings shown thereafter, the same parts as those in the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted.
 本変形例は、以下に示す点で実施形態1に示す構成と異なる。すなわち、第1描画パターンLS1から第2描画パターンへLS2の遷移時に、レーザ光LBの出力Pが連続的に高くなるように制御している。また、第2描画パターンLS2から第1描画パターンLS1への遷移時に、レーザ光LBの出力Pが連続的に低くなるように制御している。 This modification differs from the configuration shown in the first embodiment in the following points. That is, the output P of the laser beam LB is controlled to be continuously increased at the transition of the LS2 from the first drawing pattern LS1 to the second drawing pattern. Further, at the time of transition from the second drawing pattern LS2 to the first drawing pattern LS1, the output P of the laser beam LB is controlled to be continuously lowered.
 具体的には、図8に破線で示すように、レーザ光LBの描画位置が原点OからDに移動する場合に、レーザ光LBが原点Oを通過した時点から期間t1を経過するまでに、レーザ光LBの出力PをP1からP2に連続的に高めている。この場合の出力Pの制御曲線S1は、直線状でも曲線状でもよい。また、レーザ光LBの描画位置が原点OからAに移動する場合に、レーザ光LBが原点Oを通過した時点から期間t2を経過するまでに、レーザ光LBの出力PをP2からP1に連続的に低下させている。この場合の出力Pの制御曲線S2は、直線状でも曲線状でもよい。 Specifically, as shown by the broken line in FIG. 8, when the drawing position of the laser beam LB moves from the origin O to D, from the time when the laser beam LB passes through the origin O until the period t1 elapses. The output P of the laser beam LB is continuously increased from P1 to P2. The control curve S1 of the output P in this case may be linear or curved. Further, when the drawing position of the laser beam LB moves from the origin O to A, the output P of the laser beam LB is continuously transmitted from P2 to P1 from the time when the laser beam LB passes through the origin O until the period t2 elapses. It is decreasing. The control curve S2 of the output P in this case may be linear or curved.
 このようにすることで、ワーク200の内部にポロシティが形成されるのを抑制できる。また、溶融池312を安定化することができる。このことについてさらに説明する。 By doing so, it is possible to suppress the formation of porosity inside the work 200. In addition, the molten pool 312 can be stabilized. This will be described further.
 図9に示すように、X方向に沿って原点Oの後方の位置O’’から原点Oの前方の位置O’にレーザ光LBの描画位置が移動した場合、すなわち、リサージュパターンにおける第2描画パターンLS2から第1描画パターンLS1への遷移時を考える。この場合、レーザ光LBの出力PをP2からP1にステップ状に低下させると、深さがLK2のキーホール302が、深さがLK1(LK1<LK2)のキーホール301へと急激に形状変化する。このことにより、キーホール302の底部から図9に示す長さLK12までの部分が、溶融金属の表面張力により急激に閉じてしまう。底部から上方にかけてキーホール302が順次閉じていく場合はあまり問題にならないが、多くの場合、底部から長さLK12までの部分において、1箇所または複数箇所でキーホール302がほぼ同じタイミングで閉じてしまうことが多い。このようなことが起こると、閉じた部分の下方または上方に空洞が残り、ワーク200の内部にポロシティが形成されるおそれがある。 As shown in FIG. 9, when the drawing position of the laser beam LB moves from the position O'' behind the origin O to the position O'in front of the origin O along the X direction, that is, the second drawing in the resage pattern. Consider the transition time from the pattern LS2 to the first drawing pattern LS1. In this case, when the output P of the laser beam LB is stepped down from P2 to P1, the shape of the keyhole 302 having a depth of LK2 suddenly changes to the keyhole 301 having a depth of LK1 (LK1 <LK2). do. As a result, the portion from the bottom of the keyhole 302 to the length LK12 shown in FIG. 9 is rapidly closed due to the surface tension of the molten metal. It does not matter much if the keyholes 302 are closed sequentially from the bottom to the top, but in many cases, the keyholes 302 are closed at one or more locations from the bottom to the length LK12 at almost the same timing. It often ends up. When such a situation occurs, a cavity may remain below or above the closed portion, and porosity may be formed inside the work 200.
 一方、本変形例によれば、図8に示すように、制御曲線S2に則ってレーザ光LBの出力PをP2からP1に連続的に低下させているため、キーホール302からキーホール301への形状変化が緩やかになり、途中で空洞が残るのを抑制できる。このことにより、ワーク200の内部にポロシティが形成されるのを抑制できる。 On the other hand, according to this modification, as shown in FIG. 8, since the output P of the laser beam LB is continuously reduced from P2 to P1 according to the control curve S2, the keyhole 302 is changed to the keyhole 301. The shape change of the sword becomes gradual, and it is possible to prevent the cavity from remaining on the way. This can prevent the formation of porosity inside the work 200.
 また、前述の位置O’から位置O’’にレーザ光LBの描画位置が移動した場合、すなわち、リサージュパターンにおける第1描画パターンLS1から第2描画パターンLS1への遷移時を考える。この場合、レーザ光LBの出力Pが、P1からP2にステップ状に高くなり、深さがLK1のキーホール301が、深さがLK2のキーホール302へと急激に形状変化する。このことにより、溶融池312に過度の衝撃が加わるおそれがある。溶融池312が不安定になって波立ってしまうと、溶接ビードの形状に反映されてしまい、良好な形状の溶接ビードを形成できないおそれがある。 Further, consider the case where the drawing position of the laser beam LB moves from the above-mentioned position O'to the position O'", that is, the transition time from the first drawing pattern LS1 to the second drawing pattern LS1 in the resage pattern. In this case, the output P of the laser beam LB increases stepwise from P1 to P2, and the shape of the keyhole 301 having a depth of LK1 suddenly changes to the keyhole 302 having a depth of LK2. As a result, an excessive impact may be applied to the molten pool 312. If the molten pool 312 becomes unstable and undulates, it will be reflected in the shape of the weld bead, and there is a possibility that a weld bead having a good shape cannot be formed.
 一方、本変形例によれば、図8に示すように、制御曲線S1に則ってレーザ光LBの出力PをP1からP2に連続的に高めているため、キーホール301からキーホール302への形状変化が緩やかになり、溶融池312が不安定になるのを抑制できる。このことにより、溶接ビードの形状が悪化するのを抑制でき、良好な形状の溶接ビードが得られる。 On the other hand, according to this modification, as shown in FIG. 8, since the output P of the laser beam LB is continuously increased from P1 to P2 according to the control curve S1, the keyhole 301 is changed to the keyhole 302. The shape change becomes gradual, and it is possible to suppress the instability of the molten pool 312. As a result, deterioration of the shape of the weld bead can be suppressed, and a weld bead having a good shape can be obtained.
 なお、制御曲線S1、S2に示すように出力Pを制御することで、出力Pを目標値に安定して到達させることが容易となる。また、レーザ光LBの出力Pの制御は、コントローラ50によって行われる。 By controlling the output P as shown in the control curves S1 and S2, it becomes easy to stably reach the target value of the output P. Further, the control of the output P of the laser beam LB is performed by the controller 50.
 また、図10に示すように、ワーク200にキーホールを形成するには、レーザ光LBの出力Pを所定値以上にする必要がある。この所定値よりも出力Pが小さい領域(熱伝導溶接領域Rc)では、レーザ光LBによる入熱でワーク200が軟化あるいは溶融するもののキーホールは形成されない。この領域から出力Pを高めていくと、遷移領域Rtを経てキーホール溶接領域Rkに達する。この領域になると、ワーク200にキーホールが形成されるとともに、キーホールの深さが出力Pの上昇につれて深くなる。前述した出力P1,P2ともに、キーホール溶接領域Rkに含まれる。 Further, as shown in FIG. 10, in order to form a keyhole in the work 200, it is necessary to set the output P of the laser beam LB to a predetermined value or more. In the region where the output P is smaller than the predetermined value (heat conduction welding region Rc), the work 200 is softened or melted by the heat input by the laser beam LB, but no keyhole is formed. When the output P is increased from this region, the keyhole welding region Rk is reached via the transition region Rt. In this region, a keyhole is formed in the work 200, and the depth of the keyhole becomes deeper as the output P increases. Both the outputs P1 and P2 described above are included in the keyhole welding region Rk.
 <変形例2>
 図11Aは、本変形例に係るレーザ光の第1の走査パターンを、図11Bは、第2の走査パターンを、図11Cは、レーザ光の第3の走査パターンをそれぞれ示す。
<Modification 2>
11A shows the first scanning pattern of the laser beam according to the present modification, FIG. 11B shows the second scanning pattern, and FIG. 11C shows the third scanning pattern of the laser beam.
 実際のレーザ溶接では、ワーク200の材質、継手形状、求められるビード形状幅などに応じ、式(1)~(4)に示す前述のパラメータa1,b1,a2,b2,n,mは、適宜変更されうる。したがって、レーザ光LBの走査パターンは、図4に示したパターンに特に限定されない。 In actual laser welding, the above-mentioned parameters a1, b1, a2, b2, m shown in the formulas (1) to (4) are appropriately set according to the material of the work 200, the joint shape, the required bead shape width, and the like. Can be changed. Therefore, the scanning pattern of the laser beam LB is not particularly limited to the pattern shown in FIG.
 例えば、図11Aに示すように、描画パターンLS1において、パラメータa1とb1の比を2:1とし、描画パターンLS2において、パラメータa2とb2の比を2:1としたまま、a2及びb2をそれぞれa1、b2の1/2としてもよい。また、図11Bに示すように、描画パターンLS2においてのみ、パラメータa2とb2を図4に示すパターンから変更して、a2=1、b2=0.5としてもよい。また、図11Cに示すように、描画パターンLS1において、パラメータa1とb1の比を2:1とし、描画パターンLS2において、パラメータa2とb2の比を4:1としてもよい。 For example, as shown in FIG. 11A, in the drawing pattern LS1, the ratio of the parameters a1 and b1 is 2: 1, and in the drawing pattern LS2, the ratio of the parameters a2 and b2 is 2: 1, and a2 and b2 are set respectively. It may be 1/2 of a1 and b2. Further, as shown in FIG. 11B, the parameters a2 and b2 may be changed from the pattern shown in FIG. 4 so that a2 = 1 and b2 = 0.5 only in the drawing pattern LS2. Further, as shown in FIG. 11C, in the drawing pattern LS1, the ratio of the parameters a1 and b1 may be 2: 1 and in the drawing pattern LS2, the ratio of the parameters a2 and b2 may be 4: 1.
 なお、式(1)~(4)に示すパラメータa1,b1,a2,b2の値は、図4及び図11A~11Cに示す例に特に限定されないことは言うまでもない。 Needless to say, the values of the parameters a1, b1, a2, and b2 shown in the equations (1) to (4) are not particularly limited to the examples shown in FIGS. 4 and 11A to 11C.
 なお、前述したように、第1ミラー41aの周波数n及び第2ミラー42aの周波数mの比、言い換えると、レーザ光LBのX方向の振動周波数である第1周波数とY方向の振動周波数である第2周波数の比n:mを1:2とする。このことにより、溶接方向と交差するY方向に関して原点Oの前方に位置する第1描画パターンLS1を原点Oの後方に位置する第2描画パターンLS2よりも広いパターンとなるようにすることができる。一方、溶接方向がY方向の場合は、第1周波数と第2周波数の比n:mを2:1とする。このことにより、溶接方向と交差するX方向に関して原点Oの前方に位置する第1描画パターンLS1を原点Oの後方に位置する第2描画パターンLS2よりも広いパターンとなるようにすることができる。また、この周波数の比率さえ守れば、ワーク200の形状または要求されるビード形状に応じ第1ミラー41a及び第2ミラー42aの駆動周波数をそれぞれ変更してもよい。 As described above, the ratio of the frequency n of the first mirror 41a to the frequency m of the second mirror 42a, in other words, the vibration frequency in the X direction of the laser beam LB, which is the vibration frequency in the first frequency and the vibration frequency in the Y direction. The ratio n: m of the second frequency is 1: 2. This makes it possible to make the first drawing pattern LS1 located in front of the origin O in the Y direction intersecting the welding direction wider than the second drawing pattern LS2 located behind the origin O. On the other hand, when the welding direction is the Y direction, the ratio n: m of the first frequency and the second frequency is 2: 1. This makes it possible to make the first drawing pattern LS1 located in front of the origin O in the X direction intersecting the welding direction wider than the second drawing pattern LS2 located behind the origin O. Further, as long as this frequency ratio is maintained, the drive frequencies of the first mirror 41a and the second mirror 42a may be changed according to the shape of the work 200 or the required bead shape.
 (実施形態2)
 図12は、本実施形態に係る溶接線に沿ったレーザ光の走査軌跡を示す。図13Aは、溶接開始時のレーザ光の描画位置と出力との関係を示し、図13Bは、溶接終了時のレーザ光の描画位置と出力との関係を示す。
(Embodiment 2)
FIG. 12 shows a scanning locus of a laser beam along a welding line according to the present embodiment. FIG. 13A shows the relationship between the drawing position of the laser beam at the start of welding and the output, and FIG. 13B shows the relationship between the drawing position of the laser beam at the end of welding and the output.
 図12、図13Aに示すように、本実施形態では、レーザ溶接開始後の所定の期間(第1期間)では、第1描画パターンLS1を描画中のレーザ光LBの出力をP1とする一方、第2描画パターンLS2を描画するときのレーザ光LBの出力を零としている点で、実施形態1に示す構成と異なる。第1期間に、リサージュパターンの後端、つまり、図4に示す描画位置Eに対応する箇所が溶接方向WDに沿って移動する距離は、図12に示す長さL2に相当する。また、長さL2は、第2描画パターンLS2のX方向の長さの約2倍に相当する。 As shown in FIGS. 12 and 13A, in the present embodiment, in a predetermined period (first period) after the start of laser welding, the output of the laser beam LB during drawing of the first drawing pattern LS1 is set to P1. It differs from the configuration shown in the first embodiment in that the output of the laser beam LB when drawing the second drawing pattern LS2 is set to zero. In the first period, the distance that the rear end of the resage pattern, that is, the portion corresponding to the drawing position E shown in FIG. 4 moves along the welding direction WD, corresponds to the length L2 shown in FIG. Further, the length L2 corresponds to about twice the length of the second drawing pattern LS2 in the X direction.
 また、図12、図13Bに示すように、本実施形態では、レーザ溶接終了前の所定の期間(第2期間)では、第2描画パターンLS2を描画中のレーザ光LBの出力をP2とする一方、第1描画パターンLS1を描画するときのレーザ光LBの出力を零としている点で、実施形態1に示す構成と異なる。第2期間に、リサージュパターンの前端、つまり、図4に示す描画位置Bに対応する箇所が溶接方向WDに沿って移動する距離は、図12に示す長さL1に相当する。また、長さL1は、第1描画パターンLS1のX方向の長さと、第2描画パターンLS2のY方向の長さの総和にほぼ相当する。 Further, as shown in FIGS. 12 and 13B, in the present embodiment, the output of the laser beam LB during drawing of the second drawing pattern LS2 is P2 in a predetermined period (second period) before the end of laser welding. On the other hand, it differs from the configuration shown in the first embodiment in that the output of the laser beam LB when drawing the first drawing pattern LS1 is set to zero. In the second period, the distance that the front end of the resage pattern, that is, the portion corresponding to the drawing position B shown in FIG. 4 moves along the welding direction WD corresponds to the length L1 shown in FIG. Further, the length L1 substantially corresponds to the sum of the length of the first drawing pattern LS1 in the X direction and the length of the second drawing pattern LS2 in the Y direction.
 本実施形態によれば、亜鉛めっき層211,221が確実に除去された領域に対して、出力P2でレーザ光LBを照射してワーク200を溶接することにより、亜鉛蒸気に起因した溶接欠陥の発生を確実に抑制できる。また、溶接ビードの形状を良好なものとすることができる。このことについてさらに説明する。 According to the present embodiment, the work 200 is welded by irradiating the region where the zinc plating layers 211 and 221 are surely removed with the laser beam LB at the output P2 to cause welding defects caused by zinc vapor. The occurrence can be reliably suppressed. In addition, the shape of the weld bead can be made good. This will be described further.
 溶接開始点にリサージュパターンの原点Oを合わせてワーク200の溶接を開始する場合、溶接方向WDに沿って溶接開始点の前方では第1描画パターンLS1が描画され、溶接開始点の後方では第2描画パターンLS2が描画される。このとき、図6に示すように、レーザ光LBの出力Pを制御すると、溶接開始点の後方では、亜鉛めっき層211,221が除去されていない状態で、出力P2のレーザ光LBが照射されることになる。このようなことが起こると、亜鉛めっき層がまだ除去されていない部分では亜鉛蒸気が発生し、さらに溶接欠陥が発生することは既に述べたとおりである。 When the origin O of the resage pattern is aligned with the welding start point and the welding of the work 200 is started, the first drawing pattern LS1 is drawn in front of the welding start point along the welding direction WD, and the second drawing pattern LS1 is drawn behind the welding start point. The drawing pattern LS2 is drawn. At this time, as shown in FIG. 6, when the output P of the laser beam LB is controlled, the laser beam LB of the output P2 is irradiated behind the welding start point in a state where the zinc plating layers 211 and 221 are not removed. Will be. As described above, when such a situation occurs, zinc vapor is generated in the portion where the zinc plating layer has not been removed, and welding defects are further generated.
 このような不具合を回避するため、本実施形態において、レーザ溶接開始後の第1期間では、第2描画パターンLS2を描画するときのレーザ光LBの出力を零としている。このようにすることで、亜鉛めっき層211,221がまだ除去されていない領域に高出力(=P2)のレーザ光LBが照射されるのを防止し、亜鉛蒸気の発生に起因した溶接欠陥が発生するのを確実に抑制している。 In order to avoid such a problem, in the first period after the start of laser welding, the output of the laser beam LB when drawing the second drawing pattern LS2 is set to zero in the present embodiment. By doing so, it is possible to prevent the high-power (= P2) laser beam LB from being irradiated to the region where the zinc-plated layers 211 and 221 have not been removed yet, and welding defects caused by the generation of zinc vapor are generated. It surely suppresses the occurrence.
 また、溶接欠陥の発生を抑制するために、溶接開始点から溶接終了点までは、少なくとも亜鉛めっき層211,221が除去されている必要がある。しかし、例えば、溶接終了点を超えて、必要以上に亜鉛めっき層211,221が除去されると、鋼板である第1板材210や第2板材220に耐食性の低下が発生するおそれがある。 Further, in order to suppress the occurrence of welding defects, it is necessary that at least the zinc plating layers 211 and 221 are removed from the welding start point to the welding end point. However, for example, if the galvanized layers 211 and 221 are removed more than necessary beyond the welding end point, the corrosion resistance of the first plate material 210 and the second plate material 220, which are steel plates, may decrease.
 このような不具合を回避するため、本実施形態において、レーザ溶接終了前の第2期間では、第1描画パターンLS1を描画するときのレーザ光LBの出力を零としている。このようにすることで、溶接領域の長さLWを所望の値としつつ、亜鉛めっき層211,221が除去される長さLZNを短くすることができる。このことにより、必要以上に亜鉛めっき層211,221が除去されて、鋼板である第1板材210や第2板材220における耐食性の低下を抑制できる。 In order to avoid such a problem, in the second period before the end of laser welding, the output of the laser beam LB when drawing the first drawing pattern LS1 is set to zero in the present embodiment. By doing so, it is possible to shorten the length LZN from which the galvanized layers 211 and 221 are removed while setting the length LW of the welded region to a desired value. As a result, the zinc plating layers 211 and 221 are removed more than necessary, and the deterioration of the corrosion resistance of the first plate material 210 and the second plate material 220, which are steel plates, can be suppressed.
 また、溶接欠陥の抑制と第1板材210や第2板材220での耐食性の低下の抑制とを両立させる観点から、ワーク200の溶接終了後に、溶接方向WDに沿った亜鉛めっき層211,221が除去された部分の長さLZNは、溶接方向WDに沿ったワーク200が溶接された部分の長さLWと同じかそれ以上であることが好ましいことは言うまでもない。そのため、図中、L2期間において点線にて示されたLS2Sの部分と、L1期間において点線にて示されたLS1Eの部分とでは、レーザ出力がともに零である。 Further, from the viewpoint of suppressing welding defects and suppressing deterioration of corrosion resistance in the first plate material 210 and the second plate material 220, after the welding of the work 200 is completed, the zinc plating layers 211 and 221 along the welding direction WD are formed. Needless to say, it is preferable that the length LZN of the removed portion is the same as or longer than the length LW of the welded portion of the work 200 along the welding direction WD. Therefore, in the figure, the laser output is zero in both the LS2S portion shown by the dotted line in the L2 period and the LS1E portion shown by the dotted line in the L1 period.
 <変形例3>
 図14A~14Cは、本変形例に係るレーザ光の第1~第3の走査パターンをそれぞれ示す。なお、図14A~14Cにおいて、走査パターン中に描かれる矢印はレーザ光LBの描画方向を示す。
<Modification 3>
14A to 14C show the first to third scanning patterns of the laser beam according to this modification. In FIGS. 14A to 14C, the arrows drawn in the scanning pattern indicate the drawing direction of the laser beam LB.
 本開示のレーザ光LBの走査パターンは、実施形態1や変形例2に示したリサージュパターンに限られない。例えば、図14Aに示すように、それぞれ原点Oで接してY軸を挟んで配置された、互いに非対称な形状を有する2つの円形パターンの合成パターンであってもよい。また、図14Bに示すように、それぞれ原点Oで接してY軸を挟んで配置された、互いに非対称な形状を有する2つの楕円パターンの合成パターンであってもよい。図14Bに示す例では、2つの楕円パターンのそれぞれにおいて、長軸はY方向であり、短軸はX方向であるが、長軸をX方向、短軸をY方向としてもよい。図14Cに示すように、それぞれ原点Oで接してY軸を挟んで配置された、互いに非対称な形状を有する2つのひし形パターンの合成パターンであってもよい。なお、溶接方向WDがY方向に平行な場合は、図14A~図14Cに示す各走査パターンが、Y軸に関して非対称に配置された2つの環状のパターンの合成パターンであってもよい。また、2つの環状のパターンのそれぞれの大きさも適宜変更されうる。 The scanning pattern of the laser beam LB of the present disclosure is not limited to the resage pattern shown in the first embodiment and the second modification. For example, as shown in FIG. 14A, it may be a composite pattern of two circular patterns having asymmetrical shapes and arranged so as to be in contact with each other at the origin O and sandwiching the Y axis. Further, as shown in FIG. 14B, it may be a composite pattern of two elliptical patterns having asymmetrical shapes and arranged so as to be in contact with each other at the origin O and sandwiching the Y axis. In the example shown in FIG. 14B, in each of the two elliptical patterns, the long axis is in the Y direction and the short axis is in the X direction, but the long axis may be in the X direction and the short axis may be in the Y direction. As shown in FIG. 14C, it may be a composite pattern of two rhombus patterns having asymmetrical shapes and arranged so as to be in contact with each other at the origin O and sandwiching the Y axis. When the welding direction WD is parallel to the Y direction, each scanning pattern shown in FIGS. 14A to 14C may be a composite pattern of two annular patterns arranged asymmetrically with respect to the Y axis. Also, the size of each of the two annular patterns can be changed as appropriate.
 つまり、本願明細書におけるレーザ光LBの走査パターンは、2つの環状のパターンが一点で接して連続したパターンであればよく、図14A~図14Cに示す例やその変形例に限定されない。なお、これらのパターンは、第1ミラー41a及び第2ミラー42aをそれぞれ所定の駆動パターンに則って駆動させることで得られる。 That is, the scanning pattern of the laser beam LB in the present specification may be a pattern in which two annular patterns are in contact with each other at one point and are continuous, and is not limited to the examples shown in FIGS. 14A to 14C and the modifications thereof. These patterns can be obtained by driving the first mirror 41a and the second mirror 42a according to a predetermined drive pattern, respectively.
 レーザ溶接方法及びレーザ溶接装置100をこのように構成することで、実施形態1,2及び変形例1,2に示す構成が奏するのと同様の効果を奏することができる。 By configuring the laser welding method and the laser welding apparatus 100 in this way, it is possible to obtain the same effect as the configurations shown in the first and second embodiments and the first and second modifications.
 なお、レーザ光LBの走査パターンである「所定のパターン」とは、互いに非対称な形状である2つの環状のパターンが一点、この場合は原点Oで接して連続したパターンである。当該「所定のパターン」に本願明細書に開示したリサージュパターンが含まれることは言うまでもない。 The "predetermined pattern", which is the scanning pattern of the laser beam LB, is a pattern in which two annular patterns having asymmetrical shapes are at one point, and in this case, they are in contact with each other at the origin O and are continuous. Needless to say, the "predetermined pattern" includes the resage pattern disclosed in the present specification.
 (実施形態3)
 図15は、本実施形態3に係るレーザ光の走査軌跡の概略を示し、図16A~16Gは、第1~第7のスポットパターンをそれぞれ示す。
(Embodiment 3)
FIG. 15 shows an outline of the scanning locus of the laser beam according to the third embodiment, and FIGS. 16A to 16G show the first to seventh spot patterns, respectively.
 実施形態1では、レーザ光LBをX方向の+側に進行させながら、ワーク200をレーザ溶接する、いわゆる線溶接を例に取って説明したが、本開示のレーザ溶接方法は、スポット溶接にも適用可能である。 In the first embodiment, the so-called line welding, in which the work 200 is laser-welded while advancing the laser beam LB to the + side in the X direction, has been described as an example, but the laser welding method of the present disclosure can also be used for spot welding. Applicable.
 例えば、図15に示すように、レーザ光LBを二点鎖線で示す円形のスポットパターンSPに沿って進行させる場合を考える。なお、図15に示すレーザ光LBの走査パターンSP1は、図4に示す走査パターンと相似の形状である。 For example, consider a case where the laser beam LB is advanced along a circular spot pattern SP indicated by a two-dot chain line, as shown in FIG. The scanning pattern SP1 of the laser beam LB shown in FIG. 15 has a shape similar to the scanning pattern shown in FIG.
 この場合も、ワーク200の亜鉛めっき層211,221を高速かつ確実に除去するには、レーザ光LBの走査パターンSP1を互いに非対称な形状である2つの環状のパターンが原点Oで接して連続したパターンにするのがよく、∞字状のリサージュパターンとするのが好ましい。なお、説明の便宜上、レーザ光LBの走査パターンSP1をリサージュパターンとして図示しているが、走査パターンSP1の実際の波形は、レーザ光LBの進行速度に応じて変化する。例えば、図示しないが、第1描画パターンLS1と第2描画パターンLS2とは、溶接方向WD、この場合は、スポットパターンSPに沿って時計回り方向に沿って離間しており、レーザ光LBの進行速度に応じて離間距離が変化する。また、第1描画パターンLS1及び第2描画パターンLS2ともに、スポットパターンSPの円周方向に沿って延びて変形した形状となる。 Also in this case, in order to remove the zinc-plated layers 211 and 221 of the work 200 at high speed and surely, the scanning pattern SP1 of the laser beam LB has two annular patterns having asymmetrical shapes in contact with each other at the origin O and are continuous. It is preferable to use a pattern, and it is preferable to use an ∞-shaped laserge pattern. For convenience of explanation, the scanning pattern SP1 of the laser beam LB is shown as a Lissajous pattern, but the actual waveform of the scanning pattern SP1 changes according to the traveling speed of the laser beam LB. For example, although not shown, the first drawing pattern LS1 and the second drawing pattern LS2 are separated from each other along the welding direction WD, in this case, in the clockwise direction along the spot pattern SP, and the progress of the laser beam LB The separation distance changes according to the speed. Further, both the first drawing pattern LS1 and the second drawing pattern LS2 have a deformed shape extending along the circumferential direction of the spot pattern SP.
 本実施形態においても、溶接方向WDに沿って、走査パターンSP1の原点Oの前方に位置する第1描画パターンLS1が、原点Oの後方に位置する第2描画パターンLS2よりもY方向に関して広いパターンとなるようにレーザ光LBを走査する。 Also in this embodiment, the first drawing pattern LS1 located in front of the origin O of the scanning pattern SP1 along the welding direction WD is wider in the Y direction than the second drawing pattern LS2 located behind the origin O. The laser beam LB is scanned so as to be.
 このようにすることで、第1描画パターンLS1を描画中に、第1板材210と第2板材220との界面に介在する亜鉛めっき層211,221が除去される。第2描画パターンLS2を描画中に、亜鉛めっき層211,221が除去された第1板材210と第2板材220とが互いにスポット溶接される。 By doing so, the zinc-plated layers 211 and 221 intervening at the interface between the first plate material 210 and the second plate material 220 are removed while drawing the first drawing pattern LS1. While drawing the second drawing pattern LS2, the first plate material 210 and the second plate material 220 from which the galvanized layers 211 and 221 have been removed are spot welded to each other.
 なお、スポットパターンSPを挟んで、スポットパターンSPの半径方向の内側と外側とで、レーザ光LBの照射幅を同じにするためには、原点Oを通り、かつ走査パターンSP1を第1描画パターンLS1と第2描画パターンLS2とに分割する中心線(図示せず)が、スポットパターンSPにおける原点Oでの接線方向と常に直交するようにレーザ光LBを走査することが望ましい。 In order to make the irradiation width of the laser beam LB the same on the inside and outside of the spot pattern SP in the radial direction with the spot pattern SP sandwiched between them, the scanning pattern SP1 is drawn as the first drawing pattern while passing through the origin O. It is desirable to scan the laser beam LB so that the center line (not shown) divided into the LS1 and the second drawing pattern LS2 is always orthogonal to the tangential direction at the origin O in the spot pattern SP.
 また、実施形態1,2及び変形例1~3、さらに本実施形態に示した構成を総合してみると、本開示のレーザ溶接方法は、以下に示す構成を備えていると言える。つまり、本開示のレーザ溶接方法は、レーザ光LBを溶接方向WDに進行させながら、レーザ光LBを二次元的に走査してワーク200の表面に照射することで、ワーク200を溶接する溶接ステップを備えている。 Further, when the configurations shown in the first and second embodiments, the first to third embodiments, and the present embodiment are combined, it can be said that the laser welding method of the present disclosure has the following configurations. That is, in the laser welding method of the present disclosure, the welding step of welding the work 200 by scanning the laser beam LB two-dimensionally and irradiating the surface of the work 200 while advancing the laser beam LB in the welding direction WD. Is equipped with.
 ワーク200は、表面に亜鉛めっき層211が形成された第1板材210と表面に亜鉛めっき層221が形成された第2板材220とがギャップレスで重ね合わされた構造である。第1板材210及び第2板材220は、ともに鋼板である。 The work 200 has a structure in which the first plate material 210 having the zinc plating layer 211 formed on the surface and the second plate material 220 having the zinc plating layer 221 formed on the surface are overlapped without a gap. Both the first plate material 210 and the second plate material 220 are steel plates.
 溶接ステップでは、レーザ光LBをワーク200の表面で所定のパターンを描くように走査する。所定のパターンとは、互いに非対称な形状である2つの環状のパターンが原点Oで接して連続したパターンである。 In the welding step, the laser beam LB is scanned so as to draw a predetermined pattern on the surface of the work 200. The predetermined pattern is a continuous pattern in which two annular patterns having asymmetrical shapes are in contact with each other at the origin O.
 さらに、所定のパターンのうち、溶接方向WDに沿って所定のパターンの原点Oの前方に位置する第1描画パターンLS1が、原点Oの後方に位置する第2描画パターンLS2よりも溶接方向WDと交差する方向に関して広いパターンとなるようにレーザ光LBを走査する。 Further, among the predetermined patterns, the first drawing pattern LS1 located in front of the origin O of the predetermined pattern along the welding direction WD has a welding direction WD more than the second drawing pattern LS2 located behind the origin O. The laser beam LB is scanned so as to have a wide pattern in the intersecting direction.
 第1描画パターンLS1を描画中のレーザ光LBの出力P1が、第2描画パターンLS2を描画中のレーザ光LBの出力P2よりも低くなるようにレーザ光LBの出力Pを制御する。 The output P of the laser beam LB is controlled so that the output P1 of the laser beam LB drawing the first drawing pattern LS1 is lower than the output P2 of the laser beam LB drawing the second drawing pattern LS2.
 また、第1描画パターンLS1を描画中に、第1板材210と第2板材220との界面に介在する亜鉛めっき層211,221が除去される。第2描画パターンLS2を描画中に、亜鉛めっき層211,221が除去された第1板材210と第2板材220とが互いに溶接される。この場合、第1板材210と第2板材220とが互いにスポット溶接される場合も含まれる。 Further, while drawing the first drawing pattern LS1, the zinc-plated layers 211 and 221 intervening at the interface between the first plate material 210 and the second plate material 220 are removed. While drawing the second drawing pattern LS2, the first plate material 210 and the second plate material 220 from which the galvanized layers 211 and 221 have been removed are welded to each other. In this case, the case where the first plate material 210 and the second plate material 220 are spot welded to each other is also included.
 このようにすることで、第1板材210と第2板材220との間にギャップがなくても、第1板材210と第2板材220との界面に介在する亜鉛めっき層211,221を除去できるとともに、亜鉛蒸気の発生に伴う溶接欠陥の発生を抑制することができる。また、ワーク200に形成される溶接ビードの形状を良好なものとすることができる。 By doing so, even if there is no gap between the first plate material 210 and the second plate material 220, the zinc plating layers 211 and 221 intervening at the interface between the first plate material 210 and the second plate material 220 can be removed. At the same time, it is possible to suppress the generation of welding defects due to the generation of zinc vapor. Further, the shape of the weld bead formed on the work 200 can be made good.
 本開示のレーザ溶接装置100は、レーザ光LBを発生させるレーザ発振器10と、レーザ光LBを受け取ってワーク200に向けて照射するレーザヘッド30と、レーザヘッド30の動作及びレーザ光LBの出力Pを制御するコントローラ50と、を少なくとも備えている。 The laser welding apparatus 100 of the present disclosure includes a laser oscillator 10 that generates a laser beam LB, a laser head 30 that receives the laser beam LB and irradiates the work 200, an operation of the laser head 30, and an output P of the laser beam LB. At least includes a controller 50 for controlling the above.
 ワーク200は、表面に亜鉛めっき層211が形成された第1板材210と表面に亜鉛めっき層221が形成された第2板材220とがギャップレスで重ね合わされた構造である。第1板材210及び第2板材220は、ともに鋼板である。 The work 200 has a structure in which the first plate material 210 having the zinc plating layer 211 formed on the surface and the second plate material 220 having the zinc plating layer 221 formed on the surface are overlapped without a gap. Both the first plate material 210 and the second plate material 220 are steel plates.
 レーザヘッド30は、レーザ光LBをX方向(第1方向)とX方向と交差するY方向(第2方向)のそれぞれに走査するレーザ光スキャナ40を有している。 The laser head 30 has a laser light scanner 40 that scans the laser light LB in each of the X direction (first direction) and the Y direction (second direction) intersecting the X direction.
 レーザ光LBがワーク200の表面に所定のパターンを描くように、レーザ光スキャナ40を駆動制御する。 The laser light scanner 40 is driven and controlled so that the laser light LB draws a predetermined pattern on the surface of the work 200.
 さらに、コントローラ50は、所定のパターンのうち、溶接方向WDに沿ってリサージュパターンの原点Oよりも前方に位置する第1描画パターンLS1が、後方に位置する第2描画パターンLS2よりも溶接方向WDと交差する方向に関して広いパターンとなるように、レーザ光スキャナ40を駆動制御する。 Further, in the controller 50, among the predetermined patterns, the first drawing pattern LS1 located in front of the origin O of the resage pattern along the welding direction WD is in the welding direction WD with respect to the second drawing pattern LS2 located behind. The laser light scanner 40 is driven and controlled so as to have a wide pattern in the direction intersecting with.
 コントローラ50は、第1描画パターンLS1を描画中のレーザ光LBの出力P1が、第2描画パターンLS2を描画中のレーザ光LBの出力P2よりも低くなるようにレーザ光LBの出力Pを制御する。 The controller 50 controls the output P of the laser beam LB so that the output P1 of the laser beam LB drawing the first drawing pattern LS1 is lower than the output P2 of the laser beam LB drawing the second drawing pattern LS2. do.
 レーザ溶接装置100をこのように構成することで、第1板材210と第2板材220との間にギャップがなくても、第1板材210と第2板材220との界面に介在する亜鉛めっき層211,221を除去できるとともに、亜鉛蒸気の発生に伴う溶接欠陥の発生を抑制することができる。また、ワーク200に形成される溶接ビードの形状を良好なものとすることができる。この場合、第1板材210と第2板材220とが互いにスポット溶接される場合も含まれる。 By configuring the laser welding apparatus 100 in this way, even if there is no gap between the first plate material 210 and the second plate material 220, the zinc plating layer interposed at the interface between the first plate material 210 and the second plate material 220 211,221 can be removed, and the generation of welding defects due to the generation of zinc vapor can be suppressed. Further, the shape of the weld bead formed on the work 200 can be made good. In this case, the case where the first plate material 210 and the second plate material 220 are spot welded to each other is also included.
 なお、第1板材210と第2板材220とを互いにスポット溶接するにあたって、必ずしもスポットパターンSPを図15に示す円形のパターンとしなくてもよい。第1板材210と第2板材220とがスポット溶接されていればよい。 In addition, when spot welding the first plate material 210 and the second plate material 220 to each other, the spot pattern SP does not necessarily have to be a circular pattern shown in FIG. It suffices if the first plate material 210 and the second plate material 220 are spot welded.
 この観点に立てば、スポットパターンSPは、種々の形状を取りうる。例えば、図16Aに示すように、スポットパターンSPを一部が開放されたオープンサークル形状としてもよいし、図16Fに示すように、スポットパターンSPを波形としてもよい。また、図16Gに示すように、スポットパターンSPを略U字状としてもよい。なお、図16A,図16C~16E及び図16Gに示すように、スポットパターンSPの一部が開放されていると、第1板材210と第2板材220との間にある空気やオイル等の抜け口ができるため、溶接ビードの形状を良好にすることができる。 From this point of view, the spot pattern SP can take various shapes. For example, as shown in FIG. 16A, the spot pattern SP may be an open circle shape in which a part is open, or as shown in FIG. 16F, the spot pattern SP may be a waveform. Further, as shown in FIG. 16G, the spot pattern SP may be substantially U-shaped. As shown in FIGS. 16A, 16C to 16E, and 16G, when a part of the spot pattern SP is open, air, oil, or the like between the first plate material 210 and the second plate material 220 escapes. Since the mouth is formed, the shape of the weld bead can be improved.
 (その他の実施形態)
 実施形態1~3及び変形例1~3に示した各構成要素を適宜組み合わせて、新たな実施形態とすることもできる。例えば、実施形態2に示す各走査パターンを描画するにあたって、変形例1に示すようにレーザ光LBの出力Pを制御することも可能である。
(Other embodiments)
It is also possible to appropriately combine the components shown in the first to third embodiments and the first to third embodiments to form a new embodiment. For example, in drawing each scanning pattern shown in the second embodiment, it is possible to control the output P of the laser beam LB as shown in the first modification.
 また、実施形態2,3及び変形例1~3において、例えば、1周期の間に、原点Oから描画位置C→B→A→O→F→E→D→Oを通るようにレーザ光LBを走査してもよい。また、描画位置の順番が変更されるのに応じて、レーザ光LBの出力Pを変化させるタイミング等が変更されることは言うまでもない。 Further, in the second and third embodiments and the first to third modifications, for example, the laser beam LB passes from the origin O to the drawing position C → B → A → O → F → E → D → O during one cycle. May be scanned. Needless to say, the timing for changing the output P of the laser beam LB is changed according to the change in the order of the drawing positions.
 なお、図1に示す例では、集光レンズ34は、レーザ光スキャナ40の前段に配置されていたが、レーザ光スキャナ40の後段、つまり、レーザ光スキャナ40とレーザヘッド30の光出射口との間に配置されていてもよい。 In the example shown in FIG. 1, the condenser lens 34 is arranged in the front stage of the laser light scanner 40, but is in the rear stage of the laser light scanner 40, that is, the light emission port of the laser light scanner 40 and the laser head 30. It may be arranged between.
 また、レーザ光LBをX方向に沿って第1周波数を有する余弦波状に振動させるとともに、Y方向に沿って第2周波数を有する余弦波状に振動させることで、レーザ光LBの走査パターンがリサージュパターンとなるようにしてもよい。この場合、第1ミラー41a及び第2ミラー42aの振幅a,bや第1ミラー41a及び第2ミラー42aの周波数n,m、さらに位相φが適宜変更されることは言うまでもない。 Further, by vibrating the laser beam LB in a chordal wave shape having a first frequency along the X direction and vibrating in a chordal wave shape having a second frequency along the Y direction, the scanning pattern of the laser beam LB becomes a Lissajous pattern. It may be set to. In this case, it goes without saying that the amplitudes a and b of the first mirror 41a and the second mirror 42a, the frequencies n and m of the first mirror 41a and the second mirror 42a, and the phase φ are appropriately changed.
 また、変形例3及び実施形態3に示した構成を含めて考えると、レーザ光LBの走査パターンが∞字状のリサージュパターンとなるようにする場合、以下に示すようにレーザ光LBは走査される。つまり、レーザ光LBを溶接方向WDに沿って第1周波数を有する正弦波状または余弦波状に振動させるとともに、溶接方向WDと交差する方向に沿って第2周波数を有する正弦波状または余弦波状に振動させる。 Further, considering the configurations shown in the third modification and the third embodiment, when the scanning pattern of the laser beam LB is to be an ∞-shaped resage pattern, the laser beam LB is scanned as shown below. To. That is, the laser beam LB is vibrated in a sine and cosine wave shape having a first frequency along the welding direction WD, and also in a sine and cosine wave shape having a second frequency along the direction intersecting the welding direction WD. ..
 また、本願明細書では、図3に示すワーク200をレーザ溶接する場合を例に取って説明したが、特にこれに限定されない。例えば、ワーク200が、それぞれ板状の部分を含む2つの母材であって、板状の部分同士が重ね合わされ、少なくとも板状の部分の表面に亜鉛めっき層が形成された構造であってもよい。この場合の母材は、鉄でも軟鋼でも高張力鋼でもよい。これらの融点は、いずれも亜鉛の沸点よりも高い。また、亜鉛とアルミニウムとを含む亜鉛合金めっき層が2つの母材の表面に形成されていてもよい。つまり、亜鉛を主成分とするめっき層が2つの母材の表面に形成されていてもよい。ここで、「亜鉛を主成分とするめっき層」とは、亜鉛を60%以上含むめっき層をいう。また、亜鉛以外の材料からなる被覆層が2つの母材の表面にそれぞれ形成されていてもよい。この場合、被覆層を構成する材料の沸点は、母材を構成する材料の融点よりも低くなるように、被覆層と母材の材質がそれぞれ設定される。 Further, in the specification of the present application, the case where the work 200 shown in FIG. 3 is laser-welded has been described as an example, but the present invention is not particularly limited to this. For example, even if the work 200 is two base materials each including a plate-shaped portion and the plate-shaped portions are overlapped with each other and a zinc plating layer is formed on the surface of at least the plate-shaped portion. good. The base material in this case may be iron, mild steel, or high-strength steel. All of these melting points are higher than the boiling point of zinc. Further, a zinc alloy plating layer containing zinc and aluminum may be formed on the surfaces of the two base materials. That is, a plating layer containing zinc as a main component may be formed on the surfaces of the two base materials. Here, the "plating layer containing zinc as a main component" means a plating layer containing 60% or more of zinc. Further, a coating layer made of a material other than zinc may be formed on the surfaces of the two base materials, respectively. In this case, the materials of the coating layer and the base material are set so that the boiling points of the materials constituting the coating layer are lower than the melting points of the materials constituting the base material.
 このワーク200をレーザ溶接する場合、第1描画パターンLS1を描画中に、板状の部分の間にある被覆層が除去される。第2描画パターンLS2を描画中に、被覆層が除去された2つの板状の部分同士が溶接される。 When this work 200 is laser welded, the coating layer between the plate-shaped portions is removed while drawing the first drawing pattern LS1. While drawing the second drawing pattern LS2, the two plate-shaped portions from which the covering layer has been removed are welded to each other.
 このような構造のワーク200をレーザ溶接するにあたって、本開示のレーザ溶接方法及びレーザ溶接装置を適用することで、亜鉛めっき層211,221等の被覆層が蒸発して発生する蒸気に起因する溶接欠陥の発生を抑制でき、また、溶接ビードの形状を良好なものとすることができるのは言うまでもない。 When the work 200 having such a structure is laser welded, by applying the laser welding method and the laser welding apparatus of the present disclosure, welding caused by steam generated by evaporation of the coating layer such as the zinc plating layer 211,221 is performed. Needless to say, the occurrence of defects can be suppressed and the shape of the weld bead can be improved.
 本開示のレーザ溶接方法は、被覆層が蒸発して発生する蒸気に起因する溶接欠陥の発生を抑制できるため、亜鉛めっき層等の被覆層が表面に形成された2つの部材の重ね溶接を行う上で有用である。 Since the laser welding method of the present disclosure can suppress the generation of welding defects due to the vapor generated by evaporation of the coating layer, lap welding of two members having a coating layer such as a zinc plating layer formed on the surface is performed. Useful on.
10  レーザ発振器
20  光ファイバ
30  レーザヘッド
31  筐体
32  コリメーションレンズ
33  反射ミラー
34  集光レンズ
40  レーザ光スキャナ
41  第1ガルバノミラー
41a 第1ミラー
41b 第1回転軸
41c 第1駆動部
42  第2ガルバノミラー
42a 第2ミラー
42b 第2回転軸
42c 第2駆動部
50  コントローラ
60  マニピュレータ
200 ワーク
210 第1板材(母材)
211 亜鉛めっき層(被覆層)
220 第2板材(母材)
221 亜鉛めっき層(被覆層)
301,302 キーホール
311,312 溶融池
320 溶接部
10 Laser oscillator 20 Optical fiber 30 Laser head 31 Housing 32 Collimation lens 33 Reflective mirror 34 Condensing lens 40 Laser optical scanner 41 1st galvano mirror 41a 1st mirror 41b 1st rotating shaft 41c 1st drive unit 42 2nd galvano mirror 42a 2nd mirror 42b 2nd rotating shaft 42c 2nd drive unit 50 Controller 60 Manipulator 200 Work 210 1st plate material (base material)
211 Galvanized layer (coating layer)
220 Second plate material (base material)
221 Galvanized layer (coating layer)
301, 302 Keyholes 311, 312 Welded pond 320 Welded part

Claims (16)

  1.  レーザ光を溶接方向に進行させながら、前記レーザ光を二次元的に走査してワークの表面に照射することで、前記ワークを溶接する溶接ステップを備え、
     前記ワークは、それぞれ板状の部分を含む2つの母材において、前記板状の部分同士が重ね合わされ、少なくとも前記板状の部分の表面に被覆層が形成された構造であり、かつ前記被覆層の沸点は、前記母材の融点よりも低く、
     前記溶接ステップでは、
      前記ワークの表面で所定のパターンを描くように、
      かつ、前記所定のパターンのうち、溶接方向に沿って前記所定のパターンの原点の前方に位置する第1描画パターンは、前記原点の後方に位置する第2描画パターンよりも前記溶接方向と交差する方向に関して広いパターンとなるように前記レーザ光を走査し、
      前記第1描画パターンを描画中の前記レーザ光の出力が、前記第2描画パターンを描画中の前記レーザ光の出力よりも低くなるように前記レーザ光の出力を制御し、
     前記所定のパターンは、互いに非対称な形状の2つの環状のパターンが前記原点で接して連続したパターンであることを特徴とするレーザ溶接方法。
    A welding step for welding the work is provided by scanning the laser light two-dimensionally and irradiating the surface of the work while advancing the laser light in the welding direction.
    The work has a structure in which the plate-shaped portions are overlapped with each other in two base materials including the plate-shaped portions, and a coating layer is formed at least on the surface of the plate-shaped portions, and the coating layer is formed. The boiling point of is lower than the melting point of the base metal,
    In the welding step,
    As if drawing a predetermined pattern on the surface of the work
    Moreover, among the predetermined patterns, the first drawing pattern located in front of the origin of the predetermined pattern along the welding direction intersects the welding direction more than the second drawing pattern located behind the origin. The laser beam is scanned so as to have a wide pattern with respect to the direction.
    The output of the laser beam is controlled so that the output of the laser beam during drawing of the first drawing pattern is lower than the output of the laser beam during drawing of the second drawing pattern.
    The predetermined pattern is a laser welding method characterized in that two annular patterns having asymmetrical shapes are in contact with each other at the origin and are continuous patterns.
  2.  請求項1に記載のレーザ溶接方法において、
     前記所定のパターンは、前記溶接方向に延びる∞字状のリサージュパターンであり、
     前記溶接ステップでは、前記レーザ光を前記溶接方向に沿って第1周波数を有する正弦波状に振動させるとともに、前記溶接方向と交差する方向に沿って第2周波数を有する正弦波状に振動させることで、前記ワークの表面で前記リサージュパターンを描くように前記レーザ光を走査することを特徴とするレーザ溶接方法。
    In the laser welding method according to claim 1,
    The predetermined pattern is an ∞-shaped resage pattern extending in the welding direction.
    In the welding step, the laser beam is vibrated in a sinusoidal shape having a first frequency along the welding direction and in a sinusoidal shape having a second frequency along the direction intersecting the welding direction. A laser welding method comprising scanning the laser beam so as to draw the resage pattern on the surface of the work.
  3.  請求項2に記載のレーザ溶接方法において、
     前記第1周波数と前記第2周波数との比は、1:2であることを特徴とするレーザ溶接方法。
    In the laser welding method according to claim 2,
    A laser welding method characterized in that the ratio of the first frequency to the second frequency is 1: 2.
  4.  請求項1ないし3のいずれか1項に記載のレーザ溶接方法において、
     前記第1描画パターンから前記第2描画パターンへの遷移時に、前記レーザ光の出力が連続的に高くなるように制御し、
     前記第2描画パターンから前記第1描画パターンへの遷移時に、前記レーザ光の出力が連続的に低くなるように制御することを特徴とするレーザ溶接方法。
    In the laser welding method according to any one of claims 1 to 3,
    At the time of transition from the first drawing pattern to the second drawing pattern, the output of the laser beam is controlled to be continuously increased.
    A laser welding method characterized by controlling the output of the laser beam to be continuously reduced at the time of transition from the second drawing pattern to the first drawing pattern.
  5.  請求項1ないし4のいずれか1項に記載のレーザ溶接方法において、
     前記第1描画パターンを描画中に、前記板状の部分の間にある前記被覆層が除去され、
     前記第2描画パターンを描画中に、前記被覆層が除去された2つの前記板状の部分同士が溶接されることを特徴とするレーザ溶接方法。
    In the laser welding method according to any one of claims 1 to 4.
    While drawing the first drawing pattern, the covering layer between the plate-shaped portions is removed.
    A laser welding method comprising welding two plate-shaped portions from which the coating layer has been removed while drawing the second drawing pattern.
  6.  請求項1ないし5のいずれか1項に記載のレーザ溶接方法において、
     前記ワークの溶接開始後の第1期間では、前記第2描画パターンを描画するときの前記レーザ光の出力を所定の描画長さにおいて、零とし、
     前記ワークの溶接終了前の第2期間では、前記第1描画パターンを描画するときの前記レーザ光の出力を所定の描画長さにおいて、零とすることを特徴とするレーザ溶接方法。
    In the laser welding method according to any one of claims 1 to 5,
    In the first period after the start of welding of the work, the output of the laser beam when drawing the second drawing pattern is set to zero at a predetermined drawing length.
    A laser welding method characterized in that, in the second period before the completion of welding of the work, the output of the laser beam when drawing the first drawing pattern is set to zero at a predetermined drawing length.
  7.  請求項6に記載のレーザ溶接方法において、
     前記第1期間中に前記レーザ光の出力を零とする所定の描画長さは、前記第2描画パターンの1周期分の長さの約2倍とする一方、前記第2期間中に前記レーザ光の出力を零とする所定の描画長さは、前記第1描画パターンの1周期分の長さと前記第2描画パターンの1周期分の長さとの総和とほぼ同じ程度とすることを特徴とするレーザ溶接方法。
    In the laser welding method according to claim 6,
    The predetermined drawing length at which the output of the laser beam is set to zero during the first period is about twice the length for one cycle of the second drawing pattern, while the laser is used during the second period. The predetermined drawing length with the light output set to zero is characterized in that it is approximately the same as the sum of the length of one cycle of the first drawing pattern and the length of one cycle of the second drawing pattern. Laser welding method.
  8.  請求項1ないし7のいずれか1項に記載のレーザ溶接方法において、
     前記レーザ光を前記溶接方向に進行させることで、前記ワークがスポット溶接されることを特徴とするレーザ溶接方法。
    In the laser welding method according to any one of claims 1 to 7.
    A laser welding method characterized in that the work is spot-welded by advancing the laser beam in the welding direction.
  9.  請求項1ないし8のいずれか1項に記載のレーザ溶接方法において、
     前記被覆層は、亜鉛を主成分とするめっき層であることを特徴とするレーザ溶接方法。
    The laser welding method according to any one of claims 1 to 8.
    A laser welding method characterized in that the coating layer is a plating layer containing zinc as a main component.
  10.  レーザ光を発生させるレーザ発振器と、
     前記レーザ光を受け取ってワークに向けて照射するレーザヘッドと、
     前記レーザヘッドの動作及び前記レーザ光の出力を制御するコントローラと、を少なくとも備え、
     前記レーザヘッドは、前記レーザ光を第1方向と前記第1方向と交差する第2方向のそれぞれに走査するレーザ光スキャナを有し、
     前記ワークが、それぞれ板状の部分を含む2つの母材において、前記板状の部分同士が重ね合わされ、少なくとも前記板状の部分の表面に被覆層が形成された構造であり、かつ前記被覆層の沸点が前記母材の融点よりも低い場合に、
     前記コントローラは、前記レーザ光が前記ワークの表面で所定のパターンを描くように、かつ前記所定のパターンのうち、溶接方向に沿って前記所定のパターンの原点の前方に位置する第1描画パターンは、前記原点の後方に位置する第2描画パターンよりも前記溶接方向と交差する方向に関して広いパターンとなるように前記レーザ光スキャナを駆動制御し、
     さらに、前記コントローラは、前記第1描画パターンを描画中の前記レーザ光の出力が、前記第2描画パターンを描画中の前記レーザ光の出力よりも低くなるように前記レーザ光の出力を制御し、
     前記所定のパターンは、互いに非対称な形状の2つの環状のパターンが前記原点で接して連続したパターンであることを特徴とするレーザ溶接装置。
    A laser oscillator that generates laser light and
    A laser head that receives the laser beam and irradiates it toward the work,
    At least a controller for controlling the operation of the laser head and the output of the laser beam is provided.
    The laser head has a laser beam scanner that scans the laser beam in each of a first direction and a second direction intersecting the first direction.
    The work has a structure in which the plate-shaped portions are overlapped with each other in two base materials including the plate-shaped portions, and a coating layer is formed at least on the surface of the plate-shaped portions, and the coating layer is formed. When the boiling point of is lower than the melting point of the base metal,
    In the controller, the first drawing pattern located in front of the origin of the predetermined pattern along the welding direction in the predetermined pattern so that the laser beam draws a predetermined pattern on the surface of the work. The laser light scanner is driven and controlled so that the pattern is wider in the direction intersecting the welding direction than the second drawing pattern located behind the origin.
    Further, the controller controls the output of the laser beam so that the output of the laser beam during drawing the first drawing pattern is lower than the output of the laser beam during drawing the second drawing pattern. ,
    The predetermined pattern is a laser welding apparatus characterized in that two annular patterns having asymmetrical shapes are in contact with each other at the origin and are continuous patterns.
  11.  請求項10に記載のレーザ溶接装置において、
     前記所定のパターンは、前記溶接方向に延びる∞字状のリサージュパターンであり、
     前記コントローラは、前記レーザ光を前記溶接方向に沿って第1周波数を有する正弦波状に振動させるとともに、前記溶接方向と交差する方向に沿って第2周波数を有する正弦波状に振動させることで、前記ワークの表面で前記リサージュパターンを描くように前記レーザ光スキャナを駆動制御することを特徴とするレーザ溶接装置。
    In the laser welding apparatus according to claim 10,
    The predetermined pattern is an ∞-shaped resage pattern extending in the welding direction.
    The controller vibrates the laser beam in a sinusoidal shape having a first frequency along the welding direction and vibrates in a sinusoidal shape having a second frequency along the direction intersecting the welding direction. A laser welding apparatus characterized in that the laser light scanner is driven and controlled so as to draw the resage pattern on the surface of the work.
  12.  請求項11に記載のレーザ溶接装置において、
     前記第1周波数と前記第2周波数との比は、1:2であることを特徴とするレーザ溶接装置。
    In the laser welding apparatus according to claim 11,
    A laser welding apparatus characterized in that the ratio of the first frequency to the second frequency is 1: 2.
  13.  請求項10ないし12のいずれか1項に記載のレーザ溶接装置において、
     前記レーザヘッドが取り付けられたマニピュレータをさらに備え、
     前記コントローラは、前記マニピュレータの動作を制御し、
     前記マニピュレータは、前記ワークの表面に対して、所定の方向に前記レーザヘッドを移動させることを特徴とするレーザ溶接装置。
    The laser welding apparatus according to any one of claims 10 to 12.
    Further equipped with a manipulator to which the laser head is attached
    The controller controls the operation of the manipulator, and the controller controls the operation of the manipulator.
    The manipulator is a laser welding apparatus characterized by moving the laser head in a predetermined direction with respect to the surface of the work.
  14.  請求項10ないし13のいずれか1項に記載のレーザ溶接装置において、
     前記レーザ発振器と前記レーザヘッドとは光ファイバで接続されており、
     前記レーザ光は、前記光ファイバを通って、前記レーザ発振器から前記レーザヘッドに伝送されることを特徴とするレーザ溶接装置。
    In the laser welding apparatus according to any one of claims 10 to 13.
    The laser oscillator and the laser head are connected by an optical fiber.
    A laser welding apparatus characterized in that the laser light is transmitted from the laser oscillator to the laser head through the optical fiber.
  15.  請求項10ないし14のいずれか1項に記載のレーザ溶接装置において、
     前記レーザ光スキャナは、前記レーザ光を前記第1方向に走査する第1ガルバノミラーと、前記レーザ光を前記第1方向と交差する第2方向に走査する第2ガルバノミラーと、で構成されていることを特徴とするレーザ溶接装置。
    The laser welding apparatus according to any one of claims 10 to 14.
    The laser light scanner is composed of a first galvano mirror that scans the laser light in the first direction and a second galvano mirror that scans the laser light in a second direction that intersects the first direction. Laser welding equipment characterized by being
  16.  請求項10ないし15のいずれか1項に記載のレーザ溶接装置において、
     前記レーザヘッドは、焦点位置調整機構をさらに有し、
     前記焦点位置調整機構は、前記ワークの表面に交差する方向に沿って、前記レーザ光の焦点位置を変化させるように構成されていることを特徴とするレーザ溶接装置。
    The laser welding apparatus according to any one of claims 10 to 15.
    The laser head further has a focal position adjusting mechanism.
    The laser welding apparatus is characterized in that the focal position adjusting mechanism is configured to change the focal position of the laser beam along a direction intersecting the surface of the work.
PCT/JP2021/036382 2020-10-05 2021-10-01 Laser welding method and laser welding device WO2022075211A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022555436A JP7213440B2 (en) 2020-10-05 2021-10-01 LASER WELDING METHOD AND LASER WELDING APPARATUS
CN202180045914.8A CN115812015A (en) 2020-10-05 2021-10-01 Laser welding method and laser welding apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-168507 2020-10-05
JP2020168507 2020-10-05

Publications (1)

Publication Number Publication Date
WO2022075211A1 true WO2022075211A1 (en) 2022-04-14

Family

ID=81126847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036382 WO2022075211A1 (en) 2020-10-05 2021-10-01 Laser welding method and laser welding device

Country Status (3)

Country Link
JP (1) JP7213440B2 (en)
CN (1) CN115812015A (en)
WO (1) WO2022075211A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003305581A (en) * 2002-04-11 2003-10-28 Toyota Motor Corp Laser beam welding method and laser beam welding device
JP2005537937A (en) * 2002-09-05 2005-12-15 ダイムラークライスラー・アクチェンゲゼルシャフト Laser machining method for plated plate
WO2015104781A1 (en) * 2014-01-10 2015-07-16 パナソニックIpマネジメント株式会社 Laser welding method and laser welding device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003305581A (en) * 2002-04-11 2003-10-28 Toyota Motor Corp Laser beam welding method and laser beam welding device
JP2005537937A (en) * 2002-09-05 2005-12-15 ダイムラークライスラー・アクチェンゲゼルシャフト Laser machining method for plated plate
WO2015104781A1 (en) * 2014-01-10 2015-07-16 パナソニックIpマネジメント株式会社 Laser welding method and laser welding device

Also Published As

Publication number Publication date
CN115812015A (en) 2023-03-17
JPWO2022075211A1 (en) 2022-04-14
JP7213440B2 (en) 2023-01-27

Similar Documents

Publication Publication Date Title
JP6799755B2 (en) Laser welding method
CN109202287B (en) Laser welding method and laser welding device
WO2015129231A1 (en) Laser welding method
WO2020050379A1 (en) Welding method and welding device
JP2019123008A (en) Manufacturing method of joining body
JP2004136307A (en) Method and device of laser beam machining
JP5446334B2 (en) Laser welding apparatus and laser welding method
JP2005279730A (en) Laser cutting method and device
WO2022075212A1 (en) Laser welding method and laser welding device
JP7369915B2 (en) Laser welding device and laser welding method using the same
US20230013501A1 (en) Laser welding method and laser welding device
WO2022075211A1 (en) Laser welding method and laser welding device
WO2022075210A1 (en) Laser welding method and laser welding device
WO2022075209A1 (en) Laser welding method and laser welding device
WO2022075208A1 (en) Laser welding method and laser welding device
JP2022060808A (en) Laser welding method and laser welding device
JP2021194673A (en) Laser processing method
WO2021241387A1 (en) Laser welding method and laser welding device
JP7397406B2 (en) Laser welding method and laser welding device
JP7105912B2 (en) LASER WELDING METHOD AND LAMINATED BODY
JP6465125B2 (en) Dissimilar metal member joining apparatus and joining method
JP5013720B2 (en) Laser processing method
JP7443661B2 (en) Laser welding method and laser welding device
JP7291527B2 (en) Laser processing machine and laser processing method
JP7289509B2 (en) LASER WELDING METHOD AND LASER WELDING APPARATUS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877510

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555436

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877510

Country of ref document: EP

Kind code of ref document: A1