WO2022075202A1 - Power conversion device and drive device - Google Patents

Power conversion device and drive device Download PDF

Info

Publication number
WO2022075202A1
WO2022075202A1 PCT/JP2021/036345 JP2021036345W WO2022075202A1 WO 2022075202 A1 WO2022075202 A1 WO 2022075202A1 JP 2021036345 W JP2021036345 W JP 2021036345W WO 2022075202 A1 WO2022075202 A1 WO 2022075202A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
fuse
current
blown
short
Prior art date
Application number
PCT/JP2021/036345
Other languages
French (fr)
Japanese (ja)
Inventor
遼一 稲田
信康 金川
洋 中野
哲 重田
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2022075202A1 publication Critical patent/WO2022075202A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to a power conversion device and a drive device.
  • Patent Document 1 discloses an electric motor drive device including a fuse for overcurrent protection and controlling a predetermined switching element to be turned on so as to blow the fuse when a part of the switching element of the inverter fails due to a short circuit. Have been described.
  • the motor drive device described in Patent Document 1 turns on a switching element in a normal phase for the purpose of surely blowing a fuse in a phase in which a short-circuit failure of the switching element occurs.
  • a larger current is passed through the faulty phase, a larger current is also passed through the normal phase, and not only the fuse in the faulty phase but also the fuse in the normal phase may be erroneously blown.
  • the power conversion device as one means for solving the above-mentioned problems is provided with a fuse that blows at a predetermined rated current or more on each of the three-phase output lines, and causes a short-circuit failure of the switching element constituting the three-phase power conversion circuit.
  • the output currents of the short-circuit failure detection unit to be detected and the phase in which the short-circuit failure detection unit detects the short-circuit failure are equal to or higher than the rated current of the fuse, and the output currents of the remaining two phases different from the phase in which the short-circuit failure is detected are different.
  • a fuse blown current control unit for controlling the remaining two-phase switching elements is provided so that each of the currents is less than the rated current of the fuse.
  • Example 1 Configuration example of power conversion device 100 and drive device 200 (Example 1) Configuration example of power conversion circuit 30 and motor 190 (Embodiment 1) A table showing the internal state 19a determination of the state determination unit 19.
  • Example 1 Setting example of target current value 14a for each phase when the fuse is blown (Example 1) Example of current waveform during fuse blowout control (Example 2) Configuration example of power conversion device 100 and drive device 200 (Example 2) Configuration example of power conversion circuit 30 and motor 190 (Example 3) Configuration example of power conversion device 100 and drive device 200 (Example 3) Configuration example of power conversion circuit 30 and motor 190 (Example 3)
  • Target current setting example of the target current calculation unit 14 when the fuse is blown Example of current waveform during fuse blowout control (Example 3) Current phase of the remaining two phases after the fuse is blown (Example 3) Example of current waveform and motor output torque waveform after fuse blown
  • FIG. 1 is a diagram showing a configuration example of the power conversion device 100 and the drive device 200 in this embodiment.
  • an example of a power conversion device and a drive device that blows only the fuse of the failed phase without blowing the fuse of the normal phase when a short-circuit failure of the power semiconductor occurs is shown.
  • the drive device 200 has a power conversion device 100 and a motor 190.
  • the motor 190 is a three-phase motor having three windings inside, and corresponds to, for example, a synchronous motor using a permanent magnet or an induction motor not using a permanent magnet. Further, the motor 190 is equipped with an angle sensor (not shown) for measuring the electric angle of the motor, and this angle sensor outputs the measured electric angle as an angle sensor value ⁇ to the power conversion device 100. do.
  • the drive device there are an electronic control device (not shown), a DC power supply 210, and an abnormality notification device 220.
  • the electronic control device notifies the drive device 200 of information such as a target torque.
  • the DC power supply 210 is a power supply for driving the motor 190, and corresponds to, for example, a battery.
  • the abnormality notification device 220 receives the failure notification signal from the drive device 200 and notifies the passenger of the occurrence of the failure. Examples of the failure notification method include a method of turning on a lamp, generating a warning sound, and notifying by voice.
  • the power conversion device 100 converts the DC power obtained from the DC power supply 210 into AC power to drive the motor 190. Further, the power conversion device 100 also has a function of converting the power of the motor 190 into DC power to charge the DC power supply 210.
  • the power conversion device 100 has a control circuit 10, a driver circuit 20, a power conversion circuit 30, a voltage sensor 40, an alternating current sensor 50, and a fuse 60 inside.
  • the power conversion circuit 30 receives a drive signal 21 from the driver circuit 20 to drive an internal power semiconductor and controls the current flowing through the motor 190.
  • the internal configuration of the power conversion circuit 30 will be described first with reference to FIG. 2, and the internal configuration and other configurations of the control circuit 10 will be described later.
  • FIG. 2 is a diagram showing a configuration example of the power conversion circuit 30 and the motor 190 in this embodiment.
  • the power conversion circuit 30 has a smoothing capacitor 31 and six power semiconductor elements 32 inside.
  • the smoothing capacitor 31 is a capacitor for smoothing the current generated by turning on / off the power semiconductor element 32 and suppressing the ripple of the DC current supplied from the DC power supply 210 to the power conversion circuit 30.
  • the smoothing capacitor 31 for example, an electrolytic capacitor or a film capacitor is used.
  • the power semiconductor element 32 switches on / off according to the drive signal 21 input from the driver circuit 20, and converts DC power and AC power.
  • the power semiconductor element 32 corresponds to, for example, a power MOSFET (Metal Oxide Semiconductor Field Transistor), an IGBT (Insulated Gate Bipolar Transistor), or the like.
  • the power semiconductor element 32 of this embodiment has a sense terminal 33. From the sense terminal 33, a certain percentage of the current flowing between the collector and the emitter (between the drain and the source) of the power semiconductor element 32, for example, a current of 1/1000 or 1/1000 is output as a sense current. The sense current is output from the power conversion circuit 30 to the driver circuit 20.
  • an IGBT is used as the power semiconductor element 32 will be described.
  • the six power semiconductor elements 32 are divided into upper and lower two for each phase, and the output is connected to the winding of each phase of the motor 190. Further, in this embodiment, the upper three power semiconductor elements 32 are collectively referred to as an upper arm, and the lower three power semiconductor elements 32 are collectively referred to as a lower arm.
  • the motor neutral point 191 is in a floating state in this embodiment, it may be connected to the ground (not shown).
  • Methods for connecting the motor neutral point 191 to the ground include a direct grounding method, a resistance grounding method, a compensating reactor grounding method, an arc extinguishing reactor grounding method, and the like.
  • the fuse 60 is installed on the output line of each phase between the power conversion circuit 30 and the motor 190, respectively.
  • the fuse 60 blows when a current equal to or higher than the fuse rated current flows for a certain period of time or longer, and cuts off the current between the power conversion circuit 30 and the motor 190.
  • the fuse 60 is installed in the power conversion device 100, but it may be installed in the motor 190 as in the case of the second embodiment described later, or the power conversion device 100 and the motor 190. It may be provided independently of.
  • the fuse 60 is installed in the power conversion device 100, there is an advantage that the replacement work of the fuse 60 becomes easy.
  • the voltage sensor 40 is a sensor that measures the output voltage of the DC power supply 210, and outputs the measured voltage value to the control circuit 10 as the voltage sensor value 40a.
  • the AC current sensor 50 is a sensor that measures the AC current flowing in each phase (U phase, V phase, W phase) of the motor 190, and the measured AC current of each phase is set as the AC current sensor value 50a in the control circuit 10. Output.
  • three AC current sensors 50 are provided, one for each phase, but AC current sensors may be provided only for two phases.
  • the control circuit 10 calculates the AC current sensor value for the remaining one phase by calculation.
  • the current flowing from the power conversion circuit 30 to the motor 190 is treated as a positive current
  • the current flowing from the motor 190 to the power conversion circuit 30 is treated as a negative current.
  • the driver circuit 20 receives the PWM (Pulse Width Modulation) signal 16a output by the PWM signal generation unit 16 described later, and outputs a drive signal 20a for switching on / off of the power semiconductor element 32. Further, the driver circuit 20 detects the occurrence of a short-circuit failure of the power semiconductor element 32 by using the sense current 33a output from the power semiconductor element 32, and outputs the short-circuit failure detection signal 20b to the control circuit 10.
  • PWM Pulse Width Modulation
  • the PWM signal 16a is generated so that the upper and lower power semiconductor elements 32 are not turned on at the same time, but if the power semiconductor element 32 fails in a short circuit, the upper and lower power semiconductor elements 32 can be turned on at the same time.
  • the driver circuit 20 monitors whether the sense current 33a of each power semiconductor element 32 is equal to or higher than a certain threshold value, and if the sense current 33a is equal to or higher than a certain value, the power semiconductor element 32 fails in a short circuit in the corresponding phase. It is determined that there is. Then, the driver circuit 20 outputs a short-circuit failure detection signal 20b separated for each phase.
  • the short-circuit failure of the power semiconductor element 32 is determined by using the sense current 33a of the power semiconductor element 32, but the short-circuit failure of the power semiconductor element 32 may be detected by another method.
  • a shunt resistor for current measurement is arranged on the collector side or the emitter side of the power semiconductor element 32, and the current value flowing through the shunt resistor is measured to detect a short-circuit failure of the power semiconductor element 32.
  • the collector-emitter voltage of the power semiconductor element 32 increases according to the flowing current, there is also a method of measuring the collector-emitter voltage to detect a short-circuit failure of the power semiconductor element 32.
  • the control circuit 10 communicates with an external electronic control device (not shown) and receives the target torque T * of the motor 190 from the electronic control device.
  • the control circuit 10 When the power conversion device 100 is normal, the control circuit 10 outputs a PWM signal 16a so as to control the current of each phase output from the power conversion device 100 to a predetermined value based on this target torque T *. Then, the power conversion circuit 30 is driven via the driver circuit 20. Further, when the control circuit 10 determines that a failure has occurred inside the power conversion device 100, the control circuit 10 outputs an abnormality notification signal to the external abnormality notification device 220.
  • the control circuit 10 has a CPU, RAM, ROM, and a communication circuit inside (none of them are shown).
  • This ROM may be an electrically rewritable EEPROM (Electrically Erasable Project ROM) or a flash ROM.
  • control circuit 10 includes a motor speed calculation unit 11, a torque control target current calculation unit 12, a torque control current control unit 13, a fuse blow target current calculation unit 14, a fuse blow current control unit 15, and a PWM signal generation. It has a unit 16, a short-circuit failure location determination unit 17, a fuse blowout determination unit 18, and a state determination unit 19.
  • the motor speed calculation unit 11 calculates the motor rotation speed from the change in the angle sensor value ⁇ of the motor, and outputs the calculated motor speed value 11a to the torque control target current calculation unit 12.
  • the torque control target current calculation unit 12 outputs the target current value 12a to the torque control current control unit 13 using the target torque T *, the voltage sensor value 40a, and the motor speed value 11a output by the motor speed calculation unit 11. do.
  • the target current value 12a is calculated as a current value to be passed through the motor 190 in order for the motor 190 to output the same torque as the target torque T *.
  • the target current value 12a is represented, for example, in the form of a d-axis target current value and a q-axis target current value.
  • the torque control current control unit 13 uses the target current value 12a output by the torque control target current calculation unit 12, the motor angle sensor value ⁇ , the AC current sensor value 50a of each phase, and the voltage sensor value 40a for each phase.
  • the duty value 13a is calculated, and the duty value 13a is output to the PWM signal generation unit 16.
  • the fuse blown target current calculation unit 14 determines the target current of each phase during fuse blown control based on the short-circuit failure location information 17a of the power semiconductor element 32 output by the short-circuit failure location determination unit 17, and this target.
  • the current value 14a is output to the current control unit 15 when the fuse is blown. Details of the method for determining the target current value 14a will be described later.
  • the fuse blown current control unit 15 has a target current value 14a output by the fuse blown target current calculation unit 14, a motor angle sensor value ⁇ , an AC current sensor value 50a for each phase, a voltage sensor value 40a, and a power semiconductor element 32. Using the short-circuit failure location information 17a, the duty value 15a for each phase is calculated and output to the PWM signal generation unit 16.
  • the PWM signal generation unit 16 switches the signal to be output to the driver circuit 20 according to the internal state 19a output from the state determination unit 19.
  • the PWM signal generation unit 16 has a timer inside, and when the internal state 19a is the "normal state”, the timer value and the duty 13a of each phase output by the torque control current control unit 13 are set.
  • the PWM signal 16a is output to the driver circuit 20 by the use.
  • the PWM signal generation unit 16 drives the PWM signal 16a using the timer value and the duty 15a of each phase output by the current control unit 15 when the fuse is blown. Output to circuit 20.
  • the PWM signal generation unit 16 When the internal state 19a is the "state after the fuse is blown", the PWM signal generation unit 16 outputs the PWM signal 16a so that the motor 190 is not driven to the driver circuit 20.
  • the state in which the motor 190 is not driven includes, for example, a state in which all six power semiconductor elements 32 in the power conversion circuit 30 are turned off (referred to as a freewheel state in this embodiment).
  • the short-circuit failure location determination unit 17 determines the short-circuit failure location of the power semiconductor element 32 based on the PWM signal 16a and the short-circuit failure detection signal 20b output by the driver circuit 20. Since the short-circuit failure detection signal 20b output by the driver circuit 20 is separated for each phase, it is possible to specify in which phase the failure occurred, but it is not possible to specify which of the upper and lower arms is failed. Therefore, by comparing the timing at which the short-circuit failure detection signal 20b is output with the state of the PWM signal 16a, the short-circuit failure detection signal 20b of the PWM signals 16a of the upper and lower arms of the phase in which the failure has occurred is in the off state. It is determined that a short circuit failure has occurred in the arm.
  • the short-circuit failure location determination unit 17 uses the short-circuit failure location information 17a of the power semiconductor element 32 as a fuse blown target current calculation unit 14, a fuse blown current control unit 15, a fuse blowout determination unit 18, a state determination unit 19, and an external abnormality. Output to the notification device 220.
  • the fuse blown determination unit 18 determines whether the fuse 60 of the failed phase has blown based on the short-circuit failure location information 17a output from the short-circuit failure location determination unit 17 and the AC current sensor value 50a of each phase.
  • the fuse blowout determination signal 18a is output to the state determination unit 19.
  • the control circuit 10 controls the current of each phase so as to blow the fuse 60 of the failed phase. Therefore, a current exceeding the rated current of the fuse 60 flows in the failed phase, but when the fuse 60 is blown, no current flows in the failed phase.
  • the fuse blown determination unit 18 monitors the AC current sensor value 50a of the phase in which the short-circuit failure has occurred, and when the state in which the AC current sensor value 50a is below the threshold value continues for a certain period of time or longer, the fuse 60 of the failed phase is released. It is determined that the fuse has been blown.
  • the state determination unit 19 of the power conversion device 100 is based on the short-circuit failure location information 17a of the power semiconductor element 32 output by the short-circuit failure location determination unit 17 and the fuse blowout determination signal 18a output by the fuse blowout determination unit 18. It is determined whether the state is any of "normal state”, "power semiconductor element short circuit failure state”, and "fuse blown state”. Then, the current state (19a) is output to the PWM signal generation unit 16.
  • FIG. 3 is a table showing the internal state determination of the state determination unit 19.
  • the state determination unit 19 determines the next state from the current state and the occurrence item at regular time intervals, and updates the next state to the current state.
  • the initial state is the "normal state”.
  • the state determination unit 19 sets the next state to "power semiconductor element short circuit”. Change to "failure state”. Otherwise, the next state remains "normal”.
  • the state determination unit 19 changes the next state to the "fuse blown state". .. In other cases, the next state remains the "power semiconductor device short circuit failure state".
  • the state determination unit 19 keeps the next state as the "state after the fuse is blown”.
  • the torque control target current calculation unit 12 shown in FIG. 1 first determines the d-axis target current value and the q-axis target current value according to the target torque T *.
  • the torque control current control unit 13 calculates the duty value 13a of each phase that achieves the d-axis target current value and the q-axis target current value determined by the torque control target current calculation unit 12.
  • the PWM signal generation unit 16 generates the PWM signal 16a of each phase according to the duty value 13a of each phase calculated by the torque control current control unit 13.
  • the torque control current control unit 13 converts the three-phase AC current sensor value 50a output from the AC current sensor 50 into the d-axis and q-axis current values using the motor angle sensor value ⁇ . Next, the torque control current control unit 13 takes the difference between the d-axis current and the d-axis target current value, and the difference between the q-axis current and the q-axis target current value. Then, the torque control current control unit 13 performs feedback control on the d-axis current difference and the q-axis current difference, and determines the d-axis target voltage value and the q-axis target voltage value.
  • the torque control current control unit 13 converts the d-axis target voltage value and the q-axis target voltage value into the form of the ⁇ -axis target voltage value and the ⁇ -axis target voltage value so as to be the values of the ⁇ -axis and the ⁇ -axis. Then, the torque control current control unit 13 converts the ⁇ -axis target voltage value and the ⁇ -axis target voltage value into the target voltage values of each of the U phase / V phase / W phase. Finally, the torque control current control unit 13 calculates the duty value 13a of each phase from the target voltage value and the voltage sensor value 40a of each phase.
  • the target current calculation unit 14 when the fuse is blown determines the target current value 14a of each phase when the fuse is blown. Then, using [Equation 3], the U-phase target current value (Iu), the V-phase target current value (Iv), and the W-phase target current value (Iw) are set to the d-axis target current value (Id) and the q-axis target current. Convert to value (Iq). Note that ⁇ in [Equation 3] is an angle sensor value.
  • the duty value 15a of each phase that achieves the d-axis target current value and the q-axis target current value determined by the fuse blown target current calculation unit 14 is calculated.
  • the PWM signal generation unit 16 generates the PWM signal 16a for each phase according to the duty value 15a for each phase calculated by the current control unit 15 when the fuse is blown.
  • FIG. 4 is an example of setting the target current value 14a of each phase when the fuse is blown.
  • the target current value 14a of the failed phase is set so that the absolute value of the target current value is equal to or larger than the fuse rated current.
  • the target current calculation unit 14 at the time of fuse blowing is the target of the faulty phase.
  • the current value is set to a positive value.
  • the target current calculation unit 14 at the time of fuse blown sets the target current value of the faulty phase. Set to a negative value.
  • the U-phase target current value 14a is set to 1.8 times the fuse rated current, and the V-phase and W-phase target current values 14a are set to the fuse rated current. It is set to -0.9 times.
  • the reason why the target current value 14a of V phase and W phase is set to -0.9 times instead of -1.0 times the fuse rated current is that the current actually flowing in the control process exceeds the target current value. This is because the target current value is set a little lower in anticipation of this. It should be noted that this control error does not necessarily have to be 0.1 times the fuse rated current.
  • the U-phase target current value 14a is set to -1.8 times the fuse rated current, and the V-phase and W-phase target current values 14a are set to 0.9 times the fuse rated current. are doing.
  • the V-phase target current value 14a is set to 1.8 times the fuse rated current, and the U-phase and W-phase target current values 14a are set to -0.9 times the fuse rated current. ing.
  • the V-phase target current value 14a is set to -1.8 times the fuse rated current, and the U-phase and W-phase target current values 14a are set to 0.9 times the fuse rated current. ..
  • the W-phase target current value 14a is set to 1.8 times the fuse rated current, and the U-phase and V-phase target current values 14a are set to -0.9 times the fuse rated current. ing.
  • the W-phase target current value 14a is set to -1.8 times the fuse rated current, and the U-phase and V-phase target current values 14a are set to 0.9 times the fuse rated current. ..
  • the normal two-phase target current value 14a is set to the same value and the same direction, but it is not always necessary to set the same value and the target current value 14a in the same direction.
  • the normal two-phase target current value 14a is set in the same direction and the absolute value of the normal two-phase target current value 14a is made as large as possible within the range that does not exceed the fuse rated current, the target of the failed phase
  • the absolute value of the current value 14a can be made larger. As a result, a large current can be passed through the faulty phase, and the fuse 60 in the faulty phase can be blown in a shorter time.
  • the duty value calculation by the fuse blown current control unit 15 is basically performed by the same procedure as the torque control current control unit 13. The difference is from the ⁇ -axis target voltage value (V ⁇ ) and ⁇ -axis target voltage value (V ⁇ ) to the U-phase target voltage value (Vu), V-phase target voltage value (Vv), and W-phase target voltage value (Vw). Is the conversion part of. For example, in the case of a short-circuit failure of the U-phase upper arm power semiconductor element, when the voltage of the DC power supply is Vdc, the voltage output from the power semiconductor elements above and below the U-phase is fixed at 1/2 Vdc.
  • the voltage output from the U-phase upper and lower power semiconductor elements is fixed at ⁇ 1 / 2 ⁇ Vdc. Therefore, even if the normal U-phase, V-phase, and W-phase target voltages are converted, the power conversion circuit 30 cannot output the voltage as the target voltage. Therefore, it is necessary to calculate the target voltage of the remaining two phases in consideration of the deviation of the output voltage of the faulty phase.
  • the target voltage values for the V-phase and W-phase are calculated by [Equation 4].
  • the value of the U-phase target voltage value (Vu) is 1/2 ⁇ Vdc, U-phase lower when the U-phase upper arm power semiconductor element is short-circuited. If the arm power semiconductor element has a short-circuit failure, it will be -1 / 2 ⁇ Vdc.
  • the target voltage values for the U-phase and W-phase are calculated by [Equation 5].
  • the value of the V-phase target voltage value (Vv) is 1/2 ⁇ Vdc when the V-phase upper arm power semiconductor element has a short-circuit failure, and when the V-phase lower arm power semiconductor element has a short-circuit failure. Is -1 / 2 ⁇ Vdc.
  • the target voltage values for the U-phase and V-phase are calculated by [Equation 6].
  • the value of the W phase target voltage value (Vw) is 1/2 ⁇ Vdc when the W phase upper arm power semiconductor element has a short circuit failure, and when the W phase lower arm power semiconductor element has a short circuit failure. Is -1 / 2 ⁇ Vdc.
  • FIG. 5 is a diagram showing an example of a current waveform at the time of fuse blowout control in this embodiment.
  • the U-phase target current value is 1.4 times the fuse rated current and the V-phase target current value is ⁇ 0.9 times the fuse rated current.
  • the W phase target current value is set to -0.5 times the fuse rated current.
  • the current flowing through each phase is almost the same as the target current value, the current value of the failed U phase is equal to or higher than the fuse rated current, and the normal V phase and W phase currents are lower than the fuse rated current. It can be controlled so as to be.
  • the current continues to flow even after the short-circuit failure occurs.
  • the fuse of the U phase blows after a predetermined time elapses after the current of the fuse rated current or more starts to flow in the U phase, and the fuse shifts to the free wheel state.
  • the target current values may be set as in the example shown in FIG. It may be set to the value of.
  • the current flowing through the failed phase is equal to or greater than the rated current of the fuse, and the current flowing through the remaining two phases is equal to or less than the rated current of the fuse.
  • FIG. 6 is a diagram showing a configuration example of the power conversion device 100 and the drive device 200 in this embodiment.
  • the power conversion device 100 and the drive device 200 in this embodiment have different installation positions of fuses 60 from those in the first embodiment. Other elements are the same as in the first embodiment.
  • FIG. 7 is a diagram showing a configuration example of the power conversion circuit 30 and the motor 190 in this embodiment.
  • the fuse 60 is installed between the power conversion circuit and the motor winding, but in the configuration of the second embodiment, the fuse 60 is installed on the motor neutral point side from the motor winding.
  • the fuse 60 cannot cut off the current flowing through the motor winding of the faulty phase.
  • the fuse 60 When the fuse 60 is installed on the neutral point side of the motor with respect to the motor winding as in this embodiment, even if the motor winding has a ceiling fault or a ground fault, the fuse 60 is blown to create a motor with a failed phase. The current flowing through the winding can be cut off.
  • the fuse 60 of the normal phase is not blown, only the fuse of the failed phase is blown in a shorter time, and the rotary electric machine is continued to be driven even after the fuse is blown.
  • An example of the power conversion device 100 and the drive device 200 that can be used is shown.
  • FIG. 8 is a diagram showing a configuration example of the power conversion device 100 and the drive device 200 in this embodiment.
  • the power conversion device 100 and the drive device 200 in this embodiment have a driver circuit 20, a power conversion circuit 30, and a motor 190 having different configurations from those in the first embodiment.
  • the control circuit 10 in the power conversion circuit in the present embodiment has a current control unit 313 after the fuse is blown in addition to the control circuit of the first embodiment, and is different from the first embodiment in the target current when the fuse is blown. It has a calculation unit 14, a fuse blown current control unit 15, and a PWM signal generation unit 16. The description of the components common to the first embodiment will be omitted.
  • FIG. 9 is a diagram showing a configuration example of the power conversion circuit 30 and the motor 190 in this embodiment.
  • the power conversion circuit 30 of the present embodiment has upper and lower power semiconductor elements for driving the motor neutral point voltage.
  • the output of the power semiconductor element for driving the motor neutral point voltage is connected to the neutral point 191 of the motor 190.
  • the driver circuit 20 of the present embodiment has, in addition to the circuit of the first embodiment, a circuit for driving a power semiconductor element for driving the upper and lower motor neutral points connected to the motor neutral point 191. ..
  • the fuse 60 is installed between the power conversion circuit and the motor winding, but even if the fuse 60 is installed on the motor neutral point side of the motor winding as in the second embodiment. good. Further, the fuse 60 may be installed between the output of the power semiconductor element for driving the motor neutral point voltage and the neutral point 191 of the motor 190.
  • the current control unit 313 after the fuse is blown in FIG. 8 uses the target current value 12a, the motor angle sensor value ⁇ , the AC current sensor value 50a of each phase, and the voltage sensor value 40a output by the target current calculation unit 12 during torque control. , The duty value 313a of each phase and the neutral point of the motor is calculated and output to the PWM signal generation unit 16. Specific control of the current control unit 313 after the fuse is blown will be described later.
  • the PWM signal generation unit 16 of this embodiment switches the signal to be output to the driver circuit 20 according to the internal state 19a output from the state determination unit 19.
  • the PWM signal generation unit 16 When the internal state 19a is the "normal state”, the PWM signal generation unit 16 generates the PWM signal 16a using the timer value and the duty value 13a of each phase output by the torque control current control unit 13. Output to the driver circuit 20.
  • the PWM signal generation unit 16 uses the timer value and the duty value 15a of each phase and the motor neutral point output by the current control unit 15 when the fuse is blown. Generates a PWM signal 16a and outputs it to the driver circuit 20.
  • the PWM signal generation unit 16 uses the timer value and the duty value 313a of each phase and the neutral point of the motor output by the current control unit 313 after the fuse is blown. Generates a PWM signal 16a and outputs it to the driver circuit 20.
  • the fuse blown target current calculation unit 14 of the present embodiment sets a target current for the motor neutral point current (hereinafter referred to as a neutral point target current) in addition to the target current of each phase.
  • FIG. 10 is a diagram showing a target current setting example of the target current calculation unit 14 when the fuse is blown in this embodiment.
  • the absolute value of the target current of the short-circuited phase should be greater than or equal to the fuse rated current, and the absolute value of the target current of the remaining two phases should be less than the fuse rated current, as in Example 1.
  • the absolute target current of the neutral point should not be blown by mistake. It is desirable that the value is less than the rated current of the fuse 60. If the fuse 60 is not installed between the output of the power semiconductor element for driving the motor neutral point voltage and the neutral point 191 of the motor 190, the absolute value of the neutral point target current is set to be less than the rated current of the fuse 60. However, the current may be set to be equal to or higher than the rated current of the fuse 60. Further, the neutral point target current is set so as to be in the direction opposite to the target current of the fault phase. By making the neutral point target current in the opposite direction to the target current of the faulty phase, the absolute value of the target current of the faulty phase can be increased, and a large current can be passed through the fuse of the faulty phase.
  • the fuse blown target current calculation unit 14 in the present embodiment sets the target currents of the set phases and the neutral points to the d-axis target current value (Id) and the q-axis target current value (Iq) using [Equation 7]. , Zero-phase target current value (Iz) is converted, and these values are output to the fuse blown current control unit 15.
  • U-phase target current + V-phase target current + W-phase target current 0 does not hold. Therefore, unlike the first embodiment, the zero-phase target current value is also calculated.
  • the fuse blown current control unit 15 of this embodiment calculates the duty of each phase in the same manner as the fuse blown current control unit of the first embodiment. Further, in this embodiment, since it is necessary to control the on / off of the power semiconductor element for driving the motor neutral point, the duty value for the motor neutral point is also calculated. The duty value for the neutral point of the motor is calculated as follows. First, the fuse blown current control unit 15 converts the AC current sensor value 50a for three phases output from the AC current sensor 50 into a zero-phase current value by using the motor angle sensor value ⁇ . Next, the fuse blown current control unit 15 takes the difference between the zero-phase current and the zero-phase target current value.
  • the fuse blown current control unit 15 performs feedback control on the zero-phase current difference to determine the zero-phase target voltage value.
  • the fuse blowing current control unit 15 uses the equation of [Equation 8] to obtain a neutral point target voltage value (Vn) from the zero-phase target voltage (Vz) and the target voltage value (Vu, Vv, Vw) of each phase. To calculate.
  • the target voltage value of the phase in which the short-circuit failure of the power semiconductor element occurs is 1/2 ⁇ Vdc if the upper arm has a short-circuit failure when the voltage of the DC power supply 210 is Vdc, and the lower arm. If is short-circuited, calculate as -1 / 2 ⁇ Vdc.
  • the fuse blown current control unit 15 calculates the duty value of the motor neutral point from the neutral point target voltage value and the voltage sensor value.
  • FIG. 11 is a diagram showing an example of a current waveform at the time of fuse blowout control in this embodiment.
  • the U-phase target current value is 2.1 times the fuse rated current
  • the V-phase target current value is ⁇ 0.9 times the fuse rated current.
  • the W phase target current value is set to -0.5 times the fuse rated current
  • the neutral point target current value is set to -0.7 times the fuse rated current.
  • the current of each phase and the neutral point current are almost the same as the target current values, the current value of the failed U phase is equal to or higher than the fuse rated current, and the normal V phase and W phase currents are. It can be controlled so that it is less than the fuse rated current. Further, by controlling the neutral point current so as to be opposite to the failed U-phase current, the absolute value of the U-phase current can be increased as compared with the current waveform of the first embodiment.
  • FIG. 12 is a diagram showing the current phases of the remaining two phases after the fuse is blown. Note that FIG. 12 is controlled in a state where the current phase of the V phase is delayed by 120 degrees from the current phase of the U phase and the current phase of the W phase is advanced by 120 degrees from the current phase of the U phase in the normal state. This is an example of the case. After the U-phase fuse is blown, the current is controlled so that the current phase of the W phase is advanced by 30 degrees from the normal phase and the current phase of the V phase is delayed by 30 degrees from the normal phase. After the V-phase fuse is blown, the current is controlled so that the U-phase current phase is advanced by 30 degrees and the W-phase current phase is delayed by 30 degrees.
  • the current phase of the V phase is advanced by 30 degrees from the normal, and the current is controlled so as to delay the current phase of the W phase by 30 degrees from the normal.
  • the current control unit 313 calculates the duty of each phase and the neutral point of the motor so that the current phases of the remaining two phases are the values shown in FIG.
  • FIG. 13 is a diagram showing an example of a current waveform and a motor output torque waveform after the fuse is blown.
  • (A) is the current and torque waveform in the normal state
  • (b) is the current and torque waveform when the V-phase and W-phase currents are controlled with the same current phase as in the normal state after the U-phase fuse is blown.
  • c) is a waveform of current and torque when the current phases of V phase and W phase are controlled as shown in FIG. 12 after the fuse of U phase is blown.
  • the uppermost graph shows the current waveform of U phase / V phase / W phase.
  • the middle graph shows the waveforms of the d-axis current and the q-axis current.
  • the graph at the bottom shows the waveform of the output torque of the motor.
  • the values of the d-axis current and the q-axis current at that time can be the same as those in the normal state.
  • the output torque can also be set to the same value as in the normal state.
  • the absolute value of the faulty phase current can be increased by controlling the neutral point current so as to be in the opposite direction to the faulty phase current. Since the blown time of the fuse 60 becomes shorter as the current value flowing through the fuse 60 becomes larger, the fuse 60 in the failed phase can be blown faster by controlling the neutral point current as described above. Further, as in the present embodiment, by controlling the current phase difference of the remaining two phases to be 60 degrees after the fuse is blown, the torque control in which the torque ripple is suppressed can be continued even after the fuse is blown.
  • Control circuit 11 Motor speed calculation unit 11a: Motor speed value 12: Torque control target current calculation unit 12a: Target current value 13: Torque control current control unit 13a: Duty value 14: Fuse blow target current calculation unit 14a: Target current value 15: Current control unit at the time of fuse blown 15a: Duty value 16: PWM signal generation unit 16a: PWM signal 17: Short circuit failure location determination unit 17a: Short circuit failure location information 18: Fuse blowout determination unit 18a: Fuse blown Judgment signal 19: State determination unit 19a: Internal state 20: Driver circuit 20a: Drive signal 20b: Short circuit failure detection signal 30: Power conversion circuit 31: Smoothing capacitor 32: Power semiconductor element 33: Sense terminal 33a: Sense current 40: Voltage Sensor 40a: Voltage sensor value 50: AC current sensor 50a: AC current sensor value 60: Fuse 100: Power conversion device 190: Motor 191: Motor neutral point 200: Drive device 210: DC power supply 220: Abnormality notification device 313: Fuse Post-fusing current control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

This power conversion device comprises fuses that fuse at a prescribed rated current or higher on respective three-phase output lines, the power conversion device comprising: a short-circuit failure sensing unit that senses short-circuit failures of switching elements that form a three-phase power conversion circuit; and a fuse fusing current control unit that, so that output current in a phase for which the short-circuit failure sensing unit sensed a short-circuit failure is at or higher than the rated current of the fuse, and output currents of the remaining two phases other than the phase for which the short-circuit failure was sensed are respectively below the rated currents of the fuses, controls the switching elements of the remaining two phases.

Description

電力変換装置および駆動装置Power converter and drive
 本発明は電力変換装置および駆動装置に関する。 The present invention relates to a power conversion device and a drive device.
 インバータを構成するスイッチング素子が短絡故障すると、故障した相の電流が制御できなくなり、モータ出力トルクが過大になったり、モータの巻線焼損を招くおそれがある。そのため、短絡故障時に故障した相の電流をヒューズなどを用いて遮断する技術が知られている。 If the switching element that constitutes the inverter fails due to a short circuit, the current of the failed phase cannot be controlled, and the motor output torque may become excessive or the winding of the motor may burn out. Therefore, a technique is known in which a fuse or the like is used to cut off the current of the phase that has failed in the event of a short-circuit failure.
 特許文献1には、過電流保護用のヒューズを備え、インバータのスイッチング素子の一部が短絡故障した場合に、ヒューズを溶断するように所定のスイッチング素子をオンに制御する電動機駆動装置の発明が記載されている。 Patent Document 1 discloses an electric motor drive device including a fuse for overcurrent protection and controlling a predetermined switching element to be turned on so as to blow the fuse when a part of the switching element of the inverter fails due to a short circuit. Have been described.
日本国特開2011-223788号公報Japanese Patent Application Laid-Open No. 2011-223788
 特許文献1に記載された電動機駆動装置は、スイッチング素子の短絡故障が生じた相におけるヒューズを確実に溶断することを目的として、正常相のスイッチング素子をオン動作させるものである。この場合、故障相により大きな電流を流すため、正常相にも大きな電流を流しており、故障相のヒューズだけでなく、正常相のヒューズも誤って溶断されてしまうおそれがある。 The motor drive device described in Patent Document 1 turns on a switching element in a normal phase for the purpose of surely blowing a fuse in a phase in which a short-circuit failure of the switching element occurs. In this case, since a larger current is passed through the faulty phase, a larger current is also passed through the normal phase, and not only the fuse in the faulty phase but also the fuse in the normal phase may be erroneously blown.
 上記課題を解決するための一手段としての電力変換装置は、3相の出力線上のそれぞれに所定の定格電流以上で溶断するヒューズを備え、3相電力変換回路を構成するスイッチング素子の短絡故障を検知する短絡故障検知部と、前記短絡故障検知部が短絡故障を検知した相の出力電流が前記ヒューズの定格電流以上となり、かつ前記短絡故障が検知された相とは異なる残り2相の出力電流がそれぞれ前記ヒューズの定格電流未満となるように、当該残り2相のスイッチング素子を制御するヒューズ溶断時電流制御部と、を備える。 The power conversion device as one means for solving the above-mentioned problems is provided with a fuse that blows at a predetermined rated current or more on each of the three-phase output lines, and causes a short-circuit failure of the switching element constituting the three-phase power conversion circuit. The output currents of the short-circuit failure detection unit to be detected and the phase in which the short-circuit failure detection unit detects the short-circuit failure are equal to or higher than the rated current of the fuse, and the output currents of the remaining two phases different from the phase in which the short-circuit failure is detected are different. A fuse blown current control unit for controlling the remaining two-phase switching elements is provided so that each of the currents is less than the rated current of the fuse.
 スイッチング素子の短絡故障が発生した場合に、故障相のヒューズを溶断させつつ、正常相のヒューズも誤って溶断されてしまうことを抑制することができる。 When a short-circuit failure of the switching element occurs, it is possible to prevent the fuse of the normal phase from being blown by mistake while blowing the fuse of the failed phase.
(実施例1)電力変換装置100および駆動装置200の構成例(Example 1) Configuration example of power conversion device 100 and drive device 200 (実施例1)電力変換回路30およびモータ190の構成例(Example 1) Configuration example of power conversion circuit 30 and motor 190 (実施例1)状態判定部19の内部状態19a判定を表した表(Embodiment 1) A table showing the internal state 19a determination of the state determination unit 19. (実施例1)ヒューズ溶断時の各相の目標電流値14aの設定例(Example 1) Setting example of target current value 14a for each phase when the fuse is blown (実施例1)ヒューズ溶断制御時の電流波形の例(Example 1) Example of current waveform during fuse blowout control (実施例2)電力変換装置100および駆動装置200の構成例(Example 2) Configuration example of power conversion device 100 and drive device 200 (実施例2)電力変換回路30およびモータ190の構成例(Example 2) Configuration example of power conversion circuit 30 and motor 190 (実施例3)電力変換装置100および駆動装置200の構成例(Example 3) Configuration example of power conversion device 100 and drive device 200 (実施例3)電力変換回路30およびモータ190の構成例(Example 3) Configuration example of power conversion circuit 30 and motor 190 (実施例3)ヒューズ溶断時目標電流計算部14の目標電流設定例(Example 3) Target current setting example of the target current calculation unit 14 when the fuse is blown (実施例3)ヒューズ溶断制御時の電流波形の例(Example 3) Example of current waveform during fuse blowout control (実施例3)ヒューズ溶断後の残り2相の電流位相(Example 3) Current phase of the remaining two phases after the fuse is blown (実施例3)ヒューズ溶断後の電流波形およびモータ出力トルク波形の例(Example 3) Example of current waveform and motor output torque waveform after fuse blown
 図1は、本実施例における電力変換装置100および駆動装置200の構成例を表した図である。本実施例では、パワー半導体の短絡故障が発生した際に、正常な相のヒューズを溶断せずに故障した相のヒューズのみを溶断する電力変換装置および駆動装置の例を示す。 FIG. 1 is a diagram showing a configuration example of the power conversion device 100 and the drive device 200 in this embodiment. In this embodiment, an example of a power conversion device and a drive device that blows only the fuse of the failed phase without blowing the fuse of the normal phase when a short-circuit failure of the power semiconductor occurs is shown.
 駆動装置200は、電力変換装置100とモータ190とを有する。モータ190は、内部に3個の巻き線を有した3相電動機であり、例えば永久磁石を用いた同期モータや、永久磁石を用いない誘導モータが該当する。また、このモータ190には、モータの電気角度を測定するための角度センサ(図示せず)が搭載されており、この角度センサは測定した電気角度を角度センサ値θとして電力変換装置100に出力する。 The drive device 200 has a power conversion device 100 and a motor 190. The motor 190 is a three-phase motor having three windings inside, and corresponds to, for example, a synchronous motor using a permanent magnet or an induction motor not using a permanent magnet. Further, the motor 190 is equipped with an angle sensor (not shown) for measuring the electric angle of the motor, and this angle sensor outputs the measured electric angle as an angle sensor value θ to the power conversion device 100. do.
 駆動装置の周辺には、電子制御装置(図示せず)、直流電源210、異常通知装置220がある。電子制御装置は、駆動装置200に対して目標トルクなどの情報を通知する。直流電源210はモータ190を駆動させるための電源であり、例えばバッテリなどが該当する。異常通知装置220は、駆動装置200からの故障通知信号を受け付け、搭乗者に対して故障の発生を通知する。故障の通知方法としては、例えば、ランプを点灯させる、警告音を発生させる、音声で通知するなどの方法が挙げられる。 Around the drive device, there are an electronic control device (not shown), a DC power supply 210, and an abnormality notification device 220. The electronic control device notifies the drive device 200 of information such as a target torque. The DC power supply 210 is a power supply for driving the motor 190, and corresponds to, for example, a battery. The abnormality notification device 220 receives the failure notification signal from the drive device 200 and notifies the passenger of the occurrence of the failure. Examples of the failure notification method include a method of turning on a lamp, generating a warning sound, and notifying by voice.
 電力変換装置100は、直流電源210から得られる直流電力を交流電力に変換してモータ190を駆動する。また、電力変換装置100は、モータ190の動力を直流電力に変換して直流電源210を充電する機能も有する。電力変換装置100は、内部に制御回路10、ドライバ回路20、電力変換回路30、電圧センサ40、交流電流センサ50、ヒューズ60を有する。電力変換回路30は、ドライバ回路20からの駆動信号21を受けて内部のパワー半導体を駆動し、モータ190に流れる電流を制御する。図2を用いて電力変換回路30の内部構成を先に説明し、制御回路10の内部構成やその他構成は後述する。 The power conversion device 100 converts the DC power obtained from the DC power supply 210 into AC power to drive the motor 190. Further, the power conversion device 100 also has a function of converting the power of the motor 190 into DC power to charge the DC power supply 210. The power conversion device 100 has a control circuit 10, a driver circuit 20, a power conversion circuit 30, a voltage sensor 40, an alternating current sensor 50, and a fuse 60 inside. The power conversion circuit 30 receives a drive signal 21 from the driver circuit 20 to drive an internal power semiconductor and controls the current flowing through the motor 190. The internal configuration of the power conversion circuit 30 will be described first with reference to FIG. 2, and the internal configuration and other configurations of the control circuit 10 will be described later.
 図2は、本実施例における電力変換回路30およびモータ190の構成例を示した図である。電力変換回路30は、内部に平滑コンデンサ31と6つのパワー半導体素子32を有する。 FIG. 2 is a diagram showing a configuration example of the power conversion circuit 30 and the motor 190 in this embodiment. The power conversion circuit 30 has a smoothing capacitor 31 and six power semiconductor elements 32 inside.
 平滑コンデンサ31は、パワー半導体素子32のオン/オフによって生じる電流を平滑化し、直流電源210から電力変換回路30へ供給される直流電流のリップルを抑制するためのコンデンサである。この平滑コンデンサ31には、例えば電解コンデンサやフィルムコンデンサが使用される。 The smoothing capacitor 31 is a capacitor for smoothing the current generated by turning on / off the power semiconductor element 32 and suppressing the ripple of the DC current supplied from the DC power supply 210 to the power conversion circuit 30. For the smoothing capacitor 31, for example, an electrolytic capacitor or a film capacitor is used.
 パワー半導体素子32は、ドライバ回路20から入力される駆動信号21に応じてオン/オフを切り替え、直流電力と交流電力の変換を行う。このパワー半導体素子32には、例えばパワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)や、IGBT(Insulated Gate Bipolar Transistor)などが該当する。また、本実施例のパワー半導体素子32は、センス端子33を有している。センス端子33からは、センス電流としてパワー半導体素子32のコレクタ-エミッタ間(ドレイン-ソース間)を流れる電流のうちの一定割合、例えば100分の1や1000分の1の電流が出力される。センス電流は、電力変換回路30からドライバ回路20に対して出力される。以下の実施例では、パワー半導体素子32としてIGBTを用いた例で説明する。 The power semiconductor element 32 switches on / off according to the drive signal 21 input from the driver circuit 20, and converts DC power and AC power. The power semiconductor element 32 corresponds to, for example, a power MOSFET (Metal Oxide Semiconductor Field Transistor), an IGBT (Insulated Gate Bipolar Transistor), or the like. Further, the power semiconductor element 32 of this embodiment has a sense terminal 33. From the sense terminal 33, a certain percentage of the current flowing between the collector and the emitter (between the drain and the source) of the power semiconductor element 32, for example, a current of 1/1000 or 1/1000 is output as a sense current. The sense current is output from the power conversion circuit 30 to the driver circuit 20. In the following examples, an example in which an IGBT is used as the power semiconductor element 32 will be described.
 6つのパワー半導体素子32は、相ごとに上下2つずつに分けられ、出力がモータ190の各相の巻き線に接続される。また、本実施例では、上側3つのパワー半導体素子32をまとめて上アーム、下側3つのパワー半導体素子32をまとめて下アームと呼ぶ。 The six power semiconductor elements 32 are divided into upper and lower two for each phase, and the output is connected to the winding of each phase of the motor 190. Further, in this embodiment, the upper three power semiconductor elements 32 are collectively referred to as an upper arm, and the lower three power semiconductor elements 32 are collectively referred to as a lower arm.
 なお、本実施例において、モータ中性点191は浮遊状態であるが、グラウンド(図示せず)と接続しても良い。モータ中性点191をグラウンドと接続する際の方法には、直接接地方式、抵抗接地方式、補償リアクトル接地方式、消弧リアクトル接地方式などがある。 Although the motor neutral point 191 is in a floating state in this embodiment, it may be connected to the ground (not shown). Methods for connecting the motor neutral point 191 to the ground include a direct grounding method, a resistance grounding method, a compensating reactor grounding method, an arc extinguishing reactor grounding method, and the like.
 図1に戻って本実施例の構成を説明する。ヒューズ60は、電力変換回路30とモータ190との間の各相の出力線上にそれぞれ設置される。ヒューズ60は、ヒューズ定格電流以上の電流が一定時間以上流れた場合に溶断し、電力変換回路30とモータ190との間の電流を遮断する。 Returning to FIG. 1, the configuration of this embodiment will be described. The fuse 60 is installed on the output line of each phase between the power conversion circuit 30 and the motor 190, respectively. The fuse 60 blows when a current equal to or higher than the fuse rated current flows for a certain period of time or longer, and cuts off the current between the power conversion circuit 30 and the motor 190.
 なお、本実施例では、ヒューズ60は、電力変換装置100内に設置されるが、後述する実施例2の場合のようにモータ190内に設置してもよいし、電力変換装置100およびモータ190とは独立して設けても良い。ヒューズ60を電力変換装置100内に設置した場合は、ヒューズ60の交換作業が容易になるという利点がある。 In this embodiment, the fuse 60 is installed in the power conversion device 100, but it may be installed in the motor 190 as in the case of the second embodiment described later, or the power conversion device 100 and the motor 190. It may be provided independently of. When the fuse 60 is installed in the power conversion device 100, there is an advantage that the replacement work of the fuse 60 becomes easy.
 電圧センサ40は、直流電源210の出力電圧を測定するセンサであり、測定した電圧値を電圧センサ値40aとして制御回路10に出力する。 The voltage sensor 40 is a sensor that measures the output voltage of the DC power supply 210, and outputs the measured voltage value to the control circuit 10 as the voltage sensor value 40a.
 交流電流センサ50は、モータ190の各相(U相、V相、W相)に流れる交流電流を測定するセンサであり、測定した各相の交流電流を交流電流センサ値50aとして制御回路10に出力する。本実施例においては、交流電流センサ50を各相に1つずつ計3つ設けているが、交流電流センサを2相分にのみ設けてもよい。この場合、U相電流+V相電流+W相電流=0の関係が成り立つため、制御回路10が残り1相分の交流電流センサ値を計算によって算出する。なお、本実施例においては、電力変換回路30からモータ190への方向に流れる電流をプラスの電流として取り扱い、モータ190から電力変換回路30への方向に流れる電流をマイナスの電流として取り扱う。 The AC current sensor 50 is a sensor that measures the AC current flowing in each phase (U phase, V phase, W phase) of the motor 190, and the measured AC current of each phase is set as the AC current sensor value 50a in the control circuit 10. Output. In this embodiment, three AC current sensors 50 are provided, one for each phase, but AC current sensors may be provided only for two phases. In this case, since the relationship of U-phase current + V-phase current + W-phase current = 0 is established, the control circuit 10 calculates the AC current sensor value for the remaining one phase by calculation. In this embodiment, the current flowing from the power conversion circuit 30 to the motor 190 is treated as a positive current, and the current flowing from the motor 190 to the power conversion circuit 30 is treated as a negative current.
 ドライバ回路20は、後述するPWM信号生成部16が出力するPWM(Pulse Width Modulation)信号16aを受けて、パワー半導体素子32のオン/オフを切り替えるための駆動信号20aを出力する。また、ドライバ回路20は、パワー半導体素子32から出力されるセンス電流33aを用いて、パワー半導体素子32の短絡故障の発生を検知し、短絡故障検知信号20bを制御回路10に出力する。 The driver circuit 20 receives the PWM (Pulse Width Modulation) signal 16a output by the PWM signal generation unit 16 described later, and outputs a drive signal 20a for switching on / off of the power semiconductor element 32. Further, the driver circuit 20 detects the occurrence of a short-circuit failure of the power semiconductor element 32 by using the sense current 33a output from the power semiconductor element 32, and outputs the short-circuit failure detection signal 20b to the control circuit 10.
 通常は上下のパワー半導体素子32が同時にオン状態にならないようにPWM信号16aが生成されるが、パワー半導体素子32が短絡故障した場合は上下のパワー半導体素子32が同時にオン状態になりえる。上下のパワー半導体素子32が同時にオン状態になると、パワー半導体素子32には大きな貫通電流が流れる。ドライバ回路20は、各パワー半導体素子32のセンス電流33aが一定閾値以上であるかを監視し、センス電流33aが一定値以上である場合には、該当相でパワー半導体素子32が短絡故障していると判定する。そして、ドライバ回路20は、相ごとに分かれた短絡故障検知信号20bを出力する。 Normally, the PWM signal 16a is generated so that the upper and lower power semiconductor elements 32 are not turned on at the same time, but if the power semiconductor element 32 fails in a short circuit, the upper and lower power semiconductor elements 32 can be turned on at the same time. When the upper and lower power semiconductor elements 32 are turned on at the same time, a large through current flows through the power semiconductor element 32. The driver circuit 20 monitors whether the sense current 33a of each power semiconductor element 32 is equal to or higher than a certain threshold value, and if the sense current 33a is equal to or higher than a certain value, the power semiconductor element 32 fails in a short circuit in the corresponding phase. It is determined that there is. Then, the driver circuit 20 outputs a short-circuit failure detection signal 20b separated for each phase.
 なお、本実施例では、パワー半導体素子32のセンス電流33aを用いてパワー半導体素子32の短絡故障を判定しているが、他の方法でパワー半導体素子32の短絡故障を検知してもよい。例えば、パワー半導体素子32のコレクタ側もしくはエミッタ側に電流測定用のシャント抵抗を配置し、そのシャント抵抗を流れる電流値を測定してパワー半導体素子32の短絡故障を検知する方法がある。また、パワー半導体素子32のコレクタ-エミッタ間電圧は流れる電流に応じて増加するため、コレクタ-エミッタ間電圧を測定してパワー半導体素子32の短絡故障を検知する方法もある。 In this embodiment, the short-circuit failure of the power semiconductor element 32 is determined by using the sense current 33a of the power semiconductor element 32, but the short-circuit failure of the power semiconductor element 32 may be detected by another method. For example, there is a method in which a shunt resistor for current measurement is arranged on the collector side or the emitter side of the power semiconductor element 32, and the current value flowing through the shunt resistor is measured to detect a short-circuit failure of the power semiconductor element 32. Further, since the collector-emitter voltage of the power semiconductor element 32 increases according to the flowing current, there is also a method of measuring the collector-emitter voltage to detect a short-circuit failure of the power semiconductor element 32.
 制御回路10は、外部の電子制御装置(図示せず)と通信を行い、電子制御装置からモータ190の目標トルクT*を受け取る。制御回路10は、電力変換装置100が正常の場合は、この目標トルクT*に基づいて、電力変換装置100から出力される各相の電流を所定の値に制御するようにPWM信号16aを出力し、ドライバ回路20を介して電力変換回路30を駆動させる。また、制御回路10は、電力変換装置100内部に故障が発生したと判断した場合、外部の異常通知装置220に対して異常通知信号を出力する。 The control circuit 10 communicates with an external electronic control device (not shown) and receives the target torque T * of the motor 190 from the electronic control device. When the power conversion device 100 is normal, the control circuit 10 outputs a PWM signal 16a so as to control the current of each phase output from the power conversion device 100 to a predetermined value based on this target torque T *. Then, the power conversion circuit 30 is driven via the driver circuit 20. Further, when the control circuit 10 determines that a failure has occurred inside the power conversion device 100, the control circuit 10 outputs an abnormality notification signal to the external abnormality notification device 220.
 制御回路10は内部にCPU、RAM、ROM、通信回路を有している(いずれも図示せず)。このROMは、電気的に書き換え可能なEEPROM(Electrically Erasable Programmable ROM)やフラッシュROMでも良い。 The control circuit 10 has a CPU, RAM, ROM, and a communication circuit inside (none of them are shown). This ROM may be an electrically rewritable EEPROM (Electrically Erasable Project ROM) or a flash ROM.
 また、制御回路10は、モータ速度計算部11、トルク制御時目標電流計算部12、トルク制御時電流制御部13、ヒューズ溶断時目標電流計算部14、ヒューズ溶断時電流制御部15、PWM信号生成部16、短絡故障箇所判定部17、ヒューズ溶断判定部18、状態判定部19を有する。 Further, the control circuit 10 includes a motor speed calculation unit 11, a torque control target current calculation unit 12, a torque control current control unit 13, a fuse blow target current calculation unit 14, a fuse blow current control unit 15, and a PWM signal generation. It has a unit 16, a short-circuit failure location determination unit 17, a fuse blowout determination unit 18, and a state determination unit 19.
 モータ速度計算部11は、モータの角度センサ値θの変化からモータ回転速度を計算し、計算したモータ速度値11aをトルク制御時目標電流計算部12に出力する。 The motor speed calculation unit 11 calculates the motor rotation speed from the change in the angle sensor value θ of the motor, and outputs the calculated motor speed value 11a to the torque control target current calculation unit 12.
 トルク制御時目標電流計算部12は、目標トルクT*、電圧センサ値40a、モータ速度計算部11が出力するモータ速度値11aを用いて、目標電流値12aをトルク制御時電流制御部13に出力する。目標電流値12aは、モータ190が目標トルクT*と同じトルクを出力するためにモータ190に流すべき電流値として計算される。目標電流値12aは、例えばd軸目標電流値とq軸目標電流値の形で表される。 The torque control target current calculation unit 12 outputs the target current value 12a to the torque control current control unit 13 using the target torque T *, the voltage sensor value 40a, and the motor speed value 11a output by the motor speed calculation unit 11. do. The target current value 12a is calculated as a current value to be passed through the motor 190 in order for the motor 190 to output the same torque as the target torque T *. The target current value 12a is represented, for example, in the form of a d-axis target current value and a q-axis target current value.
 トルク制御時電流制御部13は、トルク制御時目標電流計算部12が出力した目標電流値12aとモータ角度センサ値θ、各相の交流電流センサ値50a、電圧センサ値40aを用いて、各相のデューティ値13aを計算し、当該デューティ値13aをPWM信号生成部16に出力する。 The torque control current control unit 13 uses the target current value 12a output by the torque control target current calculation unit 12, the motor angle sensor value θ, the AC current sensor value 50a of each phase, and the voltage sensor value 40a for each phase. The duty value 13a is calculated, and the duty value 13a is output to the PWM signal generation unit 16.
 ヒューズ溶断時目標電流計算部14は、短絡故障箇所判定部17が出力するパワー半導体素子32の短絡故障箇所情報17aをもとに、ヒューズ溶断制御時の各相の目標電流を決定し、この目標電流値14aをヒューズ溶断時電流制御部15に出力する。この目標電流値14aの決定方法の詳細は後述する。 The fuse blown target current calculation unit 14 determines the target current of each phase during fuse blown control based on the short-circuit failure location information 17a of the power semiconductor element 32 output by the short-circuit failure location determination unit 17, and this target. The current value 14a is output to the current control unit 15 when the fuse is blown. Details of the method for determining the target current value 14a will be described later.
 ヒューズ溶断時電流制御部15は、ヒューズ溶断時目標電流計算部14が出力した目標電流値14aとモータ角度センサ値θ、各相の交流電流センサ値50a、電圧センサ値40a、パワー半導体素子32の短絡故障箇所情報17aを用いて、各相のデューティ値15aを計算し、PWM信号生成部16に出力する。 The fuse blown current control unit 15 has a target current value 14a output by the fuse blown target current calculation unit 14, a motor angle sensor value θ, an AC current sensor value 50a for each phase, a voltage sensor value 40a, and a power semiconductor element 32. Using the short-circuit failure location information 17a, the duty value 15a for each phase is calculated and output to the PWM signal generation unit 16.
 PWM信号生成部16は、状態判定部19から出力される内部状態19aに応じて、ドライバ回路20に出力する信号を切り替える。PWM信号生成部16は、内部にタイマを有しており、内部状態19aが「正常状態」である場合には、このタイマ値とトルク制御時電流制御部13が出力する各相のデューティ13aを用いてPWM信号16aをドライバ回路20に対して出力する。内部状態19aが「パワー半導体素子短絡故障中」の場合には、PWM信号生成部16は、タイマ値とヒューズ溶断時電流制御部15が出力する各相のデューティ15aを用いてPWM信号16aをドライバ回路20に対して出力する。内部状態19aが「ヒューズ溶断後状態」の場合には、PWM信号生成部16は、モータ190が駆動しないようなPWM信号16aをドライバ回路20に出力する。モータ190が駆動しない状態とは、例えば、電力変換回路30内の6個のパワー半導体素子32をすべてオフにする状態(本実施例ではフリーホイール状態と呼ぶ)が挙げられる。 The PWM signal generation unit 16 switches the signal to be output to the driver circuit 20 according to the internal state 19a output from the state determination unit 19. The PWM signal generation unit 16 has a timer inside, and when the internal state 19a is the "normal state", the timer value and the duty 13a of each phase output by the torque control current control unit 13 are set. The PWM signal 16a is output to the driver circuit 20 by the use. When the internal state 19a is "during a short-circuit failure of the power semiconductor element", the PWM signal generation unit 16 drives the PWM signal 16a using the timer value and the duty 15a of each phase output by the current control unit 15 when the fuse is blown. Output to circuit 20. When the internal state 19a is the "state after the fuse is blown", the PWM signal generation unit 16 outputs the PWM signal 16a so that the motor 190 is not driven to the driver circuit 20. The state in which the motor 190 is not driven includes, for example, a state in which all six power semiconductor elements 32 in the power conversion circuit 30 are turned off (referred to as a freewheel state in this embodiment).
 短絡故障箇所判定部17は、PWM信号16aとドライバ回路20が出力する短絡故障検知信号20bをもとに、パワー半導体素子32の短絡故障箇所を判定する。ドライバ回路20が出力する短絡故障検知信号20bは相ごとに分かれているため、どの相で故障が発生したかは特定できるが、上下アームのどちらが故障しているかまでは特定できない。そのため、短絡故障検知信号20bが出力されたタイミングとPWM信号16aの状態を照らし合わせて、故障が発生した相の上下アームのPWM信号16aのうち、短絡故障検知信号20bがオフ状態であるほうのアームで短絡故障が発生したと判定する。これは、通常は上下のパワー半導体素子32が同時にオン状態になることはないため、パワー半導体素子32の短絡故障が検知されたということは、本来オフ状態であるはずのパワー半導体素子32で短絡故障が発生し、上下のパワー半導体素子32が同時にオン状態になったと考えられるためである。短絡故障箇所判定部17は、パワー半導体素子32の短絡故障箇所情報17aをヒューズ溶断時目標電流計算部14、ヒューズ溶断時電流制御部15、ヒューズ溶断判定部18、状態判定部19、外部の異常通知装置220に出力する。 The short-circuit failure location determination unit 17 determines the short-circuit failure location of the power semiconductor element 32 based on the PWM signal 16a and the short-circuit failure detection signal 20b output by the driver circuit 20. Since the short-circuit failure detection signal 20b output by the driver circuit 20 is separated for each phase, it is possible to specify in which phase the failure occurred, but it is not possible to specify which of the upper and lower arms is failed. Therefore, by comparing the timing at which the short-circuit failure detection signal 20b is output with the state of the PWM signal 16a, the short-circuit failure detection signal 20b of the PWM signals 16a of the upper and lower arms of the phase in which the failure has occurred is in the off state. It is determined that a short circuit failure has occurred in the arm. This is because the upper and lower power semiconductor elements 32 are not normally turned on at the same time, so that a short-circuit failure of the power semiconductor element 32 is detected is a short circuit in the power semiconductor element 32 that should be in the off state. This is because it is considered that a failure has occurred and the upper and lower power semiconductor elements 32 are turned on at the same time. The short-circuit failure location determination unit 17 uses the short-circuit failure location information 17a of the power semiconductor element 32 as a fuse blown target current calculation unit 14, a fuse blown current control unit 15, a fuse blowout determination unit 18, a state determination unit 19, and an external abnormality. Output to the notification device 220.
 ヒューズ溶断判定部18は、短絡故障箇所判定部17から出力された短絡故障箇所情報17aと各相の交流電流センサ値50aをもとに、故障した相のヒューズ60が溶断したかを判定し、ヒューズ溶断判定信号18aを状態判定部19に出力する。パワー半導体素子32の短絡故障を検知すると、制御回路10は、故障した相のヒューズ60を溶断するように、各相の電流を制御する。そのため、故障した相にはヒューズ60の定格電流を超える電流が流れるが、ヒューズ60が溶断すると故障した相には電流が流れなくなる。ヒューズ溶断判定部18は、短絡故障が発生した相の交流電流センサ値50aを監視し、交流電流センサ値50aが閾値未満となる状態が一定時間以上継続した場合に、故障した相のヒューズ60が溶断したと判定する。 The fuse blown determination unit 18 determines whether the fuse 60 of the failed phase has blown based on the short-circuit failure location information 17a output from the short-circuit failure location determination unit 17 and the AC current sensor value 50a of each phase. The fuse blowout determination signal 18a is output to the state determination unit 19. When the short-circuit failure of the power semiconductor element 32 is detected, the control circuit 10 controls the current of each phase so as to blow the fuse 60 of the failed phase. Therefore, a current exceeding the rated current of the fuse 60 flows in the failed phase, but when the fuse 60 is blown, no current flows in the failed phase. The fuse blown determination unit 18 monitors the AC current sensor value 50a of the phase in which the short-circuit failure has occurred, and when the state in which the AC current sensor value 50a is below the threshold value continues for a certain period of time or longer, the fuse 60 of the failed phase is released. It is determined that the fuse has been blown.
 状態判定部19は、短絡故障箇所判定部17が出力するパワー半導体素子32の短絡故障箇所情報17aと、ヒューズ溶断判定部18が出力するヒューズ溶断判定信号18aをもとに、電力変換装置100の状態が、「正常状態」、「パワー半導体素子短絡故障状態」、「ヒューズ溶断後状態」のいずれかの状態であるかを判定する。そして、現在の状態(19a)をPWM信号生成部16に対して出力する。 The state determination unit 19 of the power conversion device 100 is based on the short-circuit failure location information 17a of the power semiconductor element 32 output by the short-circuit failure location determination unit 17 and the fuse blowout determination signal 18a output by the fuse blowout determination unit 18. It is determined whether the state is any of "normal state", "power semiconductor element short circuit failure state", and "fuse blown state". Then, the current state (19a) is output to the PWM signal generation unit 16.
 図3は、状態判定部19の内部状態判定を表した表である。状態判定部19は、一定時間ごとに現在の状態と発生事項とから次の状態を決定し、次の状態を現在の状態に更新する。なお、初期状態は「正常状態」である。まず、状態判定部19は、現在の状態が「正常状態」の場合において、短絡故障箇所判定部17からパワー半導体素子32の短絡故障箇所情報17aを受け取ると、次の状態を「パワー半導体素子短絡故障状態」に変化させる。それ以外の場合は、次の状態は「正常状態」のままとなる。また、状態判定部19は、現在の状態が「パワー半導体素子短絡故障状態」において、ヒューズ溶断判定部18からヒューズ溶断判定信号18aを受け取ると、次の状態を「ヒューズ溶断後状態」に変化させる。それ以外の場合は、次の状態は「パワー半導体素子短絡故障状態」のままとなる。状態判定部19は、現在の状態が「ヒューズ溶断後状態」である場合、次の状態は「ヒューズ溶断後状態」のままとする。 FIG. 3 is a table showing the internal state determination of the state determination unit 19. The state determination unit 19 determines the next state from the current state and the occurrence item at regular time intervals, and updates the next state to the current state. The initial state is the "normal state". First, when the state determination unit 19 receives the short-circuit failure location information 17a of the power semiconductor element 32 from the short-circuit failure location determination unit 17 when the current state is the "normal state", the state determination unit 19 sets the next state to "power semiconductor element short circuit". Change to "failure state". Otherwise, the next state remains "normal". Further, when the current state is the "power semiconductor element short circuit failure state" and the fuse blown determination signal 18a is received from the fuse blown determination unit 18, the state determination unit 19 changes the next state to the "fuse blown state". .. In other cases, the next state remains the "power semiconductor device short circuit failure state". When the current state is the "state after the fuse is blown", the state determination unit 19 keeps the next state as the "state after the fuse is blown".
 トルク制御時の電流制御は、まず図1に示すトルク制御時目標電流計算部12において、目標トルクT*に応じたd軸目標電流値とq軸目標電流値を決定する。次に、トルク制御時電流制御部13において、トルク制御時目標電流計算部12が決定したd軸目標電流値とq軸目標電流値を達成するような各相のデューティ値13aを計算する。そして、PWM信号生成部16は、トルク制御時電流制御部13が計算した各相のデューティ値13aに従って各相のPWM信号16aを生成する。 In the current control during torque control, the torque control target current calculation unit 12 shown in FIG. 1 first determines the d-axis target current value and the q-axis target current value according to the target torque T *. Next, the torque control current control unit 13 calculates the duty value 13a of each phase that achieves the d-axis target current value and the q-axis target current value determined by the torque control target current calculation unit 12. Then, the PWM signal generation unit 16 generates the PWM signal 16a of each phase according to the duty value 13a of each phase calculated by the torque control current control unit 13.
 トルク制御時電流制御部13は、モータ角度センサ値θを用いて、交流電流センサ50から出力された3相分の交流電流センサ値50aをd軸およびq軸の電流値に変換する。次に、トルク制御時電流制御部13は、このd軸電流とd軸目標電流値の差分、q軸電流とq軸目標電流値の差分を取る。そして、トルク制御時電流制御部13は、d軸電流差分とq軸電流差分に対してフィードバック制御を行なって、d軸目標電圧値とq軸目標電圧値を決定する。トルク制御時電流制御部13は、このd軸目標電圧値とq軸目標電圧値をα軸とβ軸の値になるようにα軸目標電圧値とβ軸目標電圧値の形に変換する。そして、トルク制御時電流制御部13は、α軸目標電圧値とβ軸目標電圧値をU相/V相/W相の各相の目標電圧値に変換する。最後に、トルク制御時電流制御部13は、各相の目標電圧値と電圧センサ値40aから、各相のデューティ値13aを計算する。 The torque control current control unit 13 converts the three-phase AC current sensor value 50a output from the AC current sensor 50 into the d-axis and q-axis current values using the motor angle sensor value θ. Next, the torque control current control unit 13 takes the difference between the d-axis current and the d-axis target current value, and the difference between the q-axis current and the q-axis target current value. Then, the torque control current control unit 13 performs feedback control on the d-axis current difference and the q-axis current difference, and determines the d-axis target voltage value and the q-axis target voltage value. The torque control current control unit 13 converts the d-axis target voltage value and the q-axis target voltage value into the form of the α-axis target voltage value and the β-axis target voltage value so as to be the values of the α-axis and the β-axis. Then, the torque control current control unit 13 converts the α-axis target voltage value and the β-axis target voltage value into the target voltage values of each of the U phase / V phase / W phase. Finally, the torque control current control unit 13 calculates the duty value 13a of each phase from the target voltage value and the voltage sensor value 40a of each phase.
 α軸目標電圧値(Vα)とβ軸目標電圧値(Vβ)から、U相目標電圧値(Vu)、V相目標電圧値(Vv)、W相目標電圧値(Vw)への変換は、絶対変換の係数を用いる場合には[数1]を用いて変換する。絶対変換の係数を用いて、各相の目標電圧値からα軸/β軸目標電圧値に変換する場合は[数2]を用いる。 The conversion from the α-axis target voltage value (Vα) and β-axis target voltage value (Vβ) to the U-phase target voltage value (Vu), V-phase target voltage value (Vv), and W-phase target voltage value (Vw) is When using the absolute conversion coefficient, the conversion is performed using [Equation 1]. [Equation 2] is used when converting from the target voltage value of each phase to the α-axis / β-axis target voltage value using the coefficient of absolute conversion.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ヒューズ溶断時の電流制御は、まずヒューズ溶断時目標電流計算部14において、ヒューズ溶断時の各相の目標電流値14aを決定する。そして、[数3]を用いて、U相目標電流値(Iu)、V相目標電流値(Iv)、W相目標電流値(Iw)をd軸目標電流値(Id)およびq軸目標電流値(Iq)に変換する。なお、[数3]におけるθは角度センサ値である。 To control the current when the fuse is blown, first, the target current calculation unit 14 when the fuse is blown determines the target current value 14a of each phase when the fuse is blown. Then, using [Equation 3], the U-phase target current value (Iu), the V-phase target current value (Iv), and the W-phase target current value (Iw) are set to the d-axis target current value (Id) and the q-axis target current. Convert to value (Iq). Note that θ in [Equation 3] is an angle sensor value.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 次に、ヒューズ溶断時電流制御部15において、ヒューズ溶断時目標電流計算部14が決定したd軸目標電流値とq軸目標電流値を達成するような各相のデューティ値15aを計算する。そして、PWM信号生成部16は、ヒューズ溶断時電流制御部15が計算した各相のデューティ値15aに従って各相のPWM信号16aを生成する。 Next, in the fuse blown current control unit 15, the duty value 15a of each phase that achieves the d-axis target current value and the q-axis target current value determined by the fuse blown target current calculation unit 14 is calculated. Then, the PWM signal generation unit 16 generates the PWM signal 16a for each phase according to the duty value 15a for each phase calculated by the current control unit 15 when the fuse is blown.
 図4は、ヒューズ溶断時の各相の目標電流値14aの設定例である。ヒューズ溶断制御では、ある相のパワー半導体素子32が短絡故障した場合、故障した相にはヒューズ定格電流以上の電流を流し、残りの2相にはヒューズ定格電流未満の電流を流すように制御する。そのため、故障した相の目標電流値14aは、目標電流値の絶対値がヒューズ定格電流以上になるように設定される。そして、残り2相の目標電流値14aは、目標電流値の絶対値がヒューズ定格電流未満になるように設定される。また、各相の目標電流値14aは、U相目標電流値+V相目標電流値+W相目標電流値=0を満たすように設定される。 FIG. 4 is an example of setting the target current value 14a of each phase when the fuse is blown. In the fuse blowout control, when the power semiconductor element 32 of a certain phase is short-circuited, a current equal to or higher than the fuse rated current is passed through the failed phase, and a current less than the fuse rated current is passed through the remaining two phases. .. Therefore, the target current value 14a of the failed phase is set so that the absolute value of the target current value is equal to or larger than the fuse rated current. The target current value 14a of the remaining two phases is set so that the absolute value of the target current value is less than the fuse rated current. Further, the target current value 14a of each phase is set so as to satisfy the U phase target current value + V phase target current value + W phase target current value = 0.
 なお、上アームのパワー半導体素子が短絡故障した場合には、故障相の電流は電力変換回路30からモータ190に向けて流れやすくなるため、ヒューズ溶断時目標電流計算部14は、故障相の目標電流値をプラスの値に設定する。下アームのパワー半導体が短絡故障した場合には、故障相の電流はモータ190から電力変換回路30に向けて流れやすくなるため、ヒューズ溶断時目標電流計算部14は、故障相の目標電流値をマイナスの値に設定する。 When the power semiconductor element of the upper arm is short-circuited, the current of the faulty phase tends to flow from the power conversion circuit 30 toward the motor 190. Therefore, the target current calculation unit 14 at the time of fuse blowing is the target of the faulty phase. Set the current value to a positive value. When the power semiconductor of the lower arm is short-circuited, the current of the faulty phase tends to flow from the motor 190 toward the power conversion circuit 30, so that the target current calculation unit 14 at the time of fuse blown sets the target current value of the faulty phase. Set to a negative value.
 これらを踏まえて、図4の例では、U相上アーム短絡故障時にはU相の目標電流値14aをヒューズ定格電流の1.8倍に、V相およびW相の目標電流値14aをヒューズ定格電流の-0.9倍に設定している。 Based on these, in the example of FIG. 4, when the U-phase upper arm short-circuit failure occurs, the U-phase target current value 14a is set to 1.8 times the fuse rated current, and the V-phase and W-phase target current values 14a are set to the fuse rated current. It is set to -0.9 times.
 V相およびW相の目標電流値14aをヒューズ定格電流の-1.0倍ではなく-0.9倍にしているのは、制御の過程で実際に流れる電流が目標電流値を超えてしまうことがあるため、それを見越して目標電流値を少し低めに設定しているためである。なお、この制御誤差分は必ずしもヒューズ定格電流の0.1倍である必要はない。 The reason why the target current value 14a of V phase and W phase is set to -0.9 times instead of -1.0 times the fuse rated current is that the current actually flowing in the control process exceeds the target current value. This is because the target current value is set a little lower in anticipation of this. It should be noted that this control error does not necessarily have to be 0.1 times the fuse rated current.
 同様に、U相下アーム短絡故障時にはU相の目標電流値14aをヒューズ定格電流の-1.8倍に、V相およびW相の目標電流値14aをヒューズ定格電流の0.9倍に設定している。 Similarly, when the U-phase lower arm short-circuit failure occurs, the U-phase target current value 14a is set to -1.8 times the fuse rated current, and the V-phase and W-phase target current values 14a are set to 0.9 times the fuse rated current. are doing.
 また、V相上アーム短絡故障時にはV相の目標電流値14aをヒューズ定格電流の1.8倍に、U相およびW相の目標電流値14aをヒューズ定格電流の-0.9倍に設定している。V相下アーム短絡故障時にはV相の目標電流値14aをヒューズ定格電流の-1.8倍に、U相およびW相の目標電流値14aをヒューズ定格電流の0.9倍に設定している。 When the V-phase upper arm short-circuit failure occurs, the V-phase target current value 14a is set to 1.8 times the fuse rated current, and the U-phase and W-phase target current values 14a are set to -0.9 times the fuse rated current. ing. When the V-phase lower arm short-circuit failure occurs, the V-phase target current value 14a is set to -1.8 times the fuse rated current, and the U-phase and W-phase target current values 14a are set to 0.9 times the fuse rated current. ..
 また、W相上アーム短絡故障時にはW相の目標電流値14aをヒューズ定格電流の1.8倍に、U相およびV相の目標電流値14aをヒューズ定格電流の-0.9倍に設定している。W相下アーム短絡故障時にはW相の目標電流値14aをヒューズ定格電流の-1.8倍に、U相およびV相の目標電流値14aをヒューズ定格電流の0.9倍に設定している。 When the W-phase upper arm short-circuit failure occurs, the W-phase target current value 14a is set to 1.8 times the fuse rated current, and the U-phase and V-phase target current values 14a are set to -0.9 times the fuse rated current. ing. When the W-phase lower arm short-circuit failure occurs, the W-phase target current value 14a is set to -1.8 times the fuse rated current, and the U-phase and V-phase target current values 14a are set to 0.9 times the fuse rated current. ..
 なお、図4において、正常な2相の目標電流値14aを同じ値、同じ方向に設定しているが、必ずしも同じ値、同じ方向の目標電流値14aを設定する必要はない。ただし、正常な2相の目標電流値14aを同じ方向に設定し、かつ正常な2相の目標電流値14aの絶対値をヒューズ定格電流を超えない範囲でできる限り大きくすると、故障した相の目標電流値14aの絶対値をより大きくできる。それにより、故障相に大きな電流を流すことができ、故障相のヒューズ60をより短時間で溶断できる。 In FIG. 4, the normal two-phase target current value 14a is set to the same value and the same direction, but it is not always necessary to set the same value and the target current value 14a in the same direction. However, if the normal two-phase target current value 14a is set in the same direction and the absolute value of the normal two-phase target current value 14a is made as large as possible within the range that does not exceed the fuse rated current, the target of the failed phase The absolute value of the current value 14a can be made larger. As a result, a large current can be passed through the faulty phase, and the fuse 60 in the faulty phase can be blown in a shorter time.
 ヒューズ溶断時電流制御部15でのデューティ値計算は、基本的にトルク制御時電流制御部13と同じ手順で実施される。異なる点は、α軸目標電圧値(Vα)とβ軸目標電圧値(Vβ)から、U相目標電圧値(Vu)、V相目標電圧値(Vv)、W相目標電圧値(Vw)への変換部分である。例えば、U相上アームパワー半導体素子の短絡故障が発生した場合、直流電源の電圧がVdcであるとき、U相上下のパワー半導体素子から出力される電圧は1/2・Vdcで固定される。また、例えばU相下アームパワー半導体素子の短絡故障が発生した場合、U相上下のパワー半導体素子から出力される電圧は-1/2・Vdcで固定される。そのため、通常通りのU相、V相、W相の目標電圧を変換しても、電力変換回路30は目標電圧通りの電圧を出力できない。そのため、故障相の出力電圧のずれを考慮して、残り2相の目標電圧を計算する必要がある。 The duty value calculation by the fuse blown current control unit 15 is basically performed by the same procedure as the torque control current control unit 13. The difference is from the α-axis target voltage value (Vα) and β-axis target voltage value (Vβ) to the U-phase target voltage value (Vu), V-phase target voltage value (Vv), and W-phase target voltage value (Vw). Is the conversion part of. For example, in the case of a short-circuit failure of the U-phase upper arm power semiconductor element, when the voltage of the DC power supply is Vdc, the voltage output from the power semiconductor elements above and below the U-phase is fixed at 1/2 Vdc. Further, for example, when a short-circuit failure occurs in the U-phase lower arm power semiconductor element, the voltage output from the U-phase upper and lower power semiconductor elements is fixed at −1 / 2 · Vdc. Therefore, even if the normal U-phase, V-phase, and W-phase target voltages are converted, the power conversion circuit 30 cannot output the voltage as the target voltage. Therefore, it is necessary to calculate the target voltage of the remaining two phases in consideration of the deviation of the output voltage of the faulty phase.
 U相パワー半導体素子が短絡故障した場合には、V相およびW相の目標電圧値は[数4]によって計算する。ここで、直流電源210の電圧がVdcであるとき、U相目標電圧値(Vu)の値は、U相上アームパワー半導体素子が短絡故障している場合は1/2・Vdc、U相下アームパワー半導体素子が短絡故障している場合は-1/2・Vdcとなる。 When the U-phase power semiconductor element has a short-circuit failure, the target voltage values for the V-phase and W-phase are calculated by [Equation 4]. Here, when the voltage of the DC power supply 210 is Vdc, the value of the U-phase target voltage value (Vu) is 1/2 · Vdc, U-phase lower when the U-phase upper arm power semiconductor element is short-circuited. If the arm power semiconductor element has a short-circuit failure, it will be -1 / 2 · Vdc.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 V相パワー半導体素子が短絡故障した場合には、U相およびW相の目標電圧値は[数5]によって計算する。ここで、V相目標電圧値(Vv)の値は、V相上アームパワー半導体素子が短絡故障している場合は1/2・Vdc、V相下アームパワー半導体素子が短絡故障している場合は-1/2・Vdcとなる。 When the V-phase power semiconductor element has a short-circuit failure, the target voltage values for the U-phase and W-phase are calculated by [Equation 5]. Here, the value of the V-phase target voltage value (Vv) is 1/2 · Vdc when the V-phase upper arm power semiconductor element has a short-circuit failure, and when the V-phase lower arm power semiconductor element has a short-circuit failure. Is -1 / 2 · Vdc.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 W相パワー半導体素子が短絡故障した場合には、U相およびV相の目標電圧値は[数6]によって計算する。ここで、W相目標電圧値(Vw)の値は、W相上アームパワー半導体素子が短絡故障している場合は1/2・Vdc、W相下アームパワー半導体素子が短絡故障している場合は-1/2・Vdcとなる。 When the W-phase power semiconductor element fails due to a short circuit, the target voltage values for the U-phase and V-phase are calculated by [Equation 6]. Here, the value of the W phase target voltage value (Vw) is 1/2 · Vdc when the W phase upper arm power semiconductor element has a short circuit failure, and when the W phase lower arm power semiconductor element has a short circuit failure. Is -1 / 2 · Vdc.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 図5は、本実施例におけるヒューズ溶断制御時の電流波形の例を示した図である。図5の例では、U相上アームパワー半導体素子が短絡故障した場合に、U相目標電流値をヒューズ定格電流の1.4倍、V相目標電流値をヒューズ定格電流の-0.9倍、W相目標電流値をヒューズ定格電流の-0.5倍に設定している。図5の例では、各相に流れる電流は目標電流値とほぼ同じとなっており、故障したU相の電流値はヒューズ定格電流以上、正常なV相とW相の電流はヒューズ定格電流未満となるように制御できている。 FIG. 5 is a diagram showing an example of a current waveform at the time of fuse blowout control in this embodiment. In the example of FIG. 5, when the U-phase upper arm power semiconductor element is short-circuited, the U-phase target current value is 1.4 times the fuse rated current and the V-phase target current value is −0.9 times the fuse rated current. , The W phase target current value is set to -0.5 times the fuse rated current. In the example of FIG. 5, the current flowing through each phase is almost the same as the target current value, the current value of the failed U phase is equal to or higher than the fuse rated current, and the normal V phase and W phase currents are lower than the fuse rated current. It can be controlled so as to be.
 なお、図5に示す例では、パワー半導体素子の短絡故障が発生した後におけるヒューズ溶断制御を説明するため、短絡故障発生後も継続してヒューズ溶断時電流が流れ続けている図となっているが、実際には、U相にヒューズ定格電流以上の電流が流れ始めて所定時間経過後にはU相のヒューズが溶断し、フリーホイール状態に移行する。また、V相電流およびW相電流の電流波形が図面上重ならないように異なる目標電流値に設定したが、当然、図4に示す例のように目標電流値を設定しても良いし、他の値に設定しても良い。 In the example shown in FIG. 5, in order to explain the fuse blown control after the short-circuit failure of the power semiconductor element occurs, the current continues to flow even after the short-circuit failure occurs. However, in reality, the fuse of the U phase blows after a predetermined time elapses after the current of the fuse rated current or more starts to flow in the U phase, and the fuse shifts to the free wheel state. Further, although different target current values are set so that the current waveforms of the V-phase current and the W-phase current do not overlap in the drawings, naturally, the target current values may be set as in the example shown in FIG. It may be set to the value of.
 以上のように、本実施例では、パワー半導体素子の短絡故障が発生した場合に、故障相に流れる電流をヒューズの定格電流以上、残り2相に流れる電流をヒューズの定格電流未満となるように制御することで、正常な2相のヒューズを溶断することなく故障相のヒューズのみを溶断できる。また、故障相のヒューズ溶断後は、電力変換回路内のパワー半導体素子をフリーホイール状態にすることで、モータを駆動しない状態を維持することができる。 As described above, in this embodiment, when a short-circuit failure of the power semiconductor element occurs, the current flowing through the failed phase is equal to or greater than the rated current of the fuse, and the current flowing through the remaining two phases is equal to or less than the rated current of the fuse. By controlling, only the fuse of the failed phase can be blown without blowing the normal two-phase fuse. Further, after the fuse in the faulty phase is blown, the power semiconductor element in the power conversion circuit is put into a freewheel state, so that the state in which the motor is not driven can be maintained.
 本実施例では、パワー半導体素子32の短絡故障時だけではなく、モータ巻き線の天絡故障または地絡故障時にも、正常な相のヒューズ60を溶断せずに故障した相のヒューズ60のみを溶断する電力変換装置100および駆動装置200の例を示す。 In this embodiment, not only in the case of a short-circuit failure of the power semiconductor element 32, but also in the case of a ceiling fault or a ground fault of the motor winding, only the fuse 60 of the phase that has failed without blowing the fuse 60 of the normal phase is used. An example of the power conversion device 100 and the drive device 200 to be blown is shown.
 図6は、本実施例における電力変換装置100および駆動装置200の構成例を示した図である。本実施例における電力変換装置100および駆動装置200は、実施例1とはヒューズ60の設置位置が異なる。それ以外の要素は実施例1と同じである。 FIG. 6 is a diagram showing a configuration example of the power conversion device 100 and the drive device 200 in this embodiment. The power conversion device 100 and the drive device 200 in this embodiment have different installation positions of fuses 60 from those in the first embodiment. Other elements are the same as in the first embodiment.
 図7は、本実施例における電力変換回路30およびモータ190の構成例を示した図である。実施例1では、電力変換回路とモータ巻き線の間にヒューズ60が設置されていたが、実施例2の構成では、モータ巻き線よりモータ中性点側にヒューズ60が設置されている。実施例1の場合、ヒューズよりもモータ巻き線側が故障によって直流電源210のプラス側に接続した場合(天絡故障)、あるいは故障によって直流電源210のマイナス側に接続した場合(地絡故障)は、ヒューズ60によって故障相のモータ巻き線に流れる電流を遮断することができない。本実施例のようにモータ巻き線よりもモータ中性点側にヒューズ60を設置した場合、モータ巻き線が天絡故障または地絡故障した場合でも、ヒューズ60を溶断することで故障相のモータ巻き線に流れる電流を遮断することができる。 FIG. 7 is a diagram showing a configuration example of the power conversion circuit 30 and the motor 190 in this embodiment. In the first embodiment, the fuse 60 is installed between the power conversion circuit and the motor winding, but in the configuration of the second embodiment, the fuse 60 is installed on the motor neutral point side from the motor winding. In the case of the first embodiment, when the motor winding side of the fuse is connected to the positive side of the DC power supply 210 due to a failure (heavenly fault), or when the motor winding side is connected to the negative side of the DC power supply 210 due to a failure (ground fault). , The fuse 60 cannot cut off the current flowing through the motor winding of the faulty phase. When the fuse 60 is installed on the neutral point side of the motor with respect to the motor winding as in this embodiment, even if the motor winding has a ceiling fault or a ground fault, the fuse 60 is blown to create a motor with a failed phase. The current flowing through the winding can be cut off.
 本実施例では、パワー半導体素子32の短絡故障時に、正常な相のヒューズ60を溶断せずに故障した相のヒューズのみをより短時間で溶断するとともに、ヒューズ溶断後も回転電機の駆動を継続することができる電力変換装置100および駆動装置200の例を示す。 In this embodiment, when the power semiconductor element 32 is short-circuited, the fuse 60 of the normal phase is not blown, only the fuse of the failed phase is blown in a shorter time, and the rotary electric machine is continued to be driven even after the fuse is blown. An example of the power conversion device 100 and the drive device 200 that can be used is shown.
 図8は、本実施例における電力変換装置100および駆動装置200の構成例を示した図である。本実施例における電力変換装置100および駆動装置200は、実施例1とは構成の異なるドライバ回路20、電力変換回路30、モータ190を有する。また、本実施例における電力変換回路内の制御回路10は、実施例1の制御回路に加えてヒューズ溶断後電流制御部313を有しているほか、実施例1とは異なるヒューズ溶断時目標電流計算部14、ヒューズ溶断時電流制御部15、PWM信号生成部16を有している。実施例1と共通する構成要素については、説明を省略する。 FIG. 8 is a diagram showing a configuration example of the power conversion device 100 and the drive device 200 in this embodiment. The power conversion device 100 and the drive device 200 in this embodiment have a driver circuit 20, a power conversion circuit 30, and a motor 190 having different configurations from those in the first embodiment. Further, the control circuit 10 in the power conversion circuit in the present embodiment has a current control unit 313 after the fuse is blown in addition to the control circuit of the first embodiment, and is different from the first embodiment in the target current when the fuse is blown. It has a calculation unit 14, a fuse blown current control unit 15, and a PWM signal generation unit 16. The description of the components common to the first embodiment will be omitted.
 図9は、本実施例における電力変換回路30およびモータ190の構成例を示した図である。本実施例の電力変換回路30は、実施例1の電力変換回路に加えて、モータ中性点電圧駆動用の上下のパワー半導体素子を有している。このモータ中性点電圧駆動用パワー半導体素子の出力は、モータ190の中性点191と接続されている。また、本実施例のドライバ回路20は、実施例1の回路に加えて、モータ中性点191に接続された上下のモータ中性点駆動用のパワー半導体素子を駆動させる回路を有している。 FIG. 9 is a diagram showing a configuration example of the power conversion circuit 30 and the motor 190 in this embodiment. In addition to the power conversion circuit of the first embodiment, the power conversion circuit 30 of the present embodiment has upper and lower power semiconductor elements for driving the motor neutral point voltage. The output of the power semiconductor element for driving the motor neutral point voltage is connected to the neutral point 191 of the motor 190. Further, the driver circuit 20 of the present embodiment has, in addition to the circuit of the first embodiment, a circuit for driving a power semiconductor element for driving the upper and lower motor neutral points connected to the motor neutral point 191. ..
 なお、本実施例において、ヒューズ60は電力変換回路とモータ巻き線の間に設置されているが、実施例2のようにヒューズ60をモータ巻き線よりもモータ中性点側に設置してもよい。また、ヒューズ60は、モータ中性点電圧駆動用パワー半導体素子の出力とモータ190の中性点191との間にも設置してよい。 In this embodiment, the fuse 60 is installed between the power conversion circuit and the motor winding, but even if the fuse 60 is installed on the motor neutral point side of the motor winding as in the second embodiment. good. Further, the fuse 60 may be installed between the output of the power semiconductor element for driving the motor neutral point voltage and the neutral point 191 of the motor 190.
 図8のヒューズ溶断後電流制御部313は、トルク制御時目標電流計算部12が出力する目標電流値12a、モータ角度センサ値θ、各相の交流電流センサ値50a、電圧センサ値40aを用いて、各相およびモータ中性点のデューティ値313aを計算し、PWM信号生成部16に出力する。ヒューズ溶断後電流制御部313の具体的な制御については後述する。 The current control unit 313 after the fuse is blown in FIG. 8 uses the target current value 12a, the motor angle sensor value θ, the AC current sensor value 50a of each phase, and the voltage sensor value 40a output by the target current calculation unit 12 during torque control. , The duty value 313a of each phase and the neutral point of the motor is calculated and output to the PWM signal generation unit 16. Specific control of the current control unit 313 after the fuse is blown will be described later.
 本実施例のPWM信号生成部16は、状態判定部19から出力される内部状態19aに応じて、ドライバ回路20に出力する信号を切り替える。PWM信号生成部16は、内部状態19aが「正常状態」である場合には、タイマ値とトルク制御時電流制御部13が出力する各相のデューティ値13aを用いてPWM信号16aを生成し、ドライバ回路20に対して出力する。内部状態19aが「パワー半導体素子短絡故障状態」の場合には、PWM信号生成部16は、タイマ値とヒューズ溶断時電流制御部15が出力する各相およびモータ中性点のデューティ値15aを用いてPWM信号16aを生成し、ドライバ回路20に対して出力する。そして、内部状態19aが「ヒューズ溶断後状態」の場合には、PWM信号生成部16は、タイマ値とヒューズ溶断後電流制御部313が出力する各相およびモータ中性点のデューティ値313aを用いてPWM信号16aを生成し、ドライバ回路20に対して出力する。 The PWM signal generation unit 16 of this embodiment switches the signal to be output to the driver circuit 20 according to the internal state 19a output from the state determination unit 19. When the internal state 19a is the "normal state", the PWM signal generation unit 16 generates the PWM signal 16a using the timer value and the duty value 13a of each phase output by the torque control current control unit 13. Output to the driver circuit 20. When the internal state 19a is a "power semiconductor element short-circuit failure state", the PWM signal generation unit 16 uses the timer value and the duty value 15a of each phase and the motor neutral point output by the current control unit 15 when the fuse is blown. Generates a PWM signal 16a and outputs it to the driver circuit 20. When the internal state 19a is the "state after the fuse is blown", the PWM signal generation unit 16 uses the timer value and the duty value 313a of each phase and the neutral point of the motor output by the current control unit 313 after the fuse is blown. Generates a PWM signal 16a and outputs it to the driver circuit 20.
 次に、本実施例におけるヒューズ溶断制御時の電流制御について述べる。本実施例でのヒューズ溶断制御時には、各相の電流に加えてモータ中性点電圧駆動用パワー半導体素子とモータ中性点の間を流れる電流(以降、モータ中性点電流と呼ぶ)も制御する。そのため、本実施例のヒューズ溶断時目標電流計算部14は、各相の目標電流に加えてモータ中性点電流に対する目標電流(以降、中性点目標電流と呼ぶ)も設定する。 Next, the current control at the time of fuse blown control in this embodiment will be described. At the time of fuse blown control in this embodiment, in addition to the current of each phase, the current flowing between the power semiconductor element for driving the motor neutral point voltage and the motor neutral point (hereinafter referred to as the motor neutral point current) is also controlled. do. Therefore, the fuse blown target current calculation unit 14 of the present embodiment sets a target current for the motor neutral point current (hereinafter referred to as a neutral point target current) in addition to the target current of each phase.
 図10は、本実施例におけるヒューズ溶断時目標電流計算部14の目標電流設定例を示した図である。本実施例においても、実施例1と同様に短絡故障した相の目標電流の絶対値はヒューズ定格電流以上となるように、かつ残り2相の目標電流の絶対値はヒューズ定格電流未満となるように設定する。また、各相と中性点の目標電流値14aを設定する際に、U相目標電流値+V相目標電流値+W相目標電流値+中性点目標電流=0を満たすように設定する。 FIG. 10 is a diagram showing a target current setting example of the target current calculation unit 14 when the fuse is blown in this embodiment. Also in this embodiment, the absolute value of the target current of the short-circuited phase should be greater than or equal to the fuse rated current, and the absolute value of the target current of the remaining two phases should be less than the fuse rated current, as in Example 1. Set to. Further, when setting the target current value 14a for each phase and the neutral point, it is set so as to satisfy the U phase target current value + V phase target current value + W phase target current value + neutral point target current = 0.
 ヒューズ60をモータ中性点電圧駆動用パワー半導体素子の出力とモータ190の中性点191との間に設置する場合は、設置したヒューズを誤って溶断しないように、中性点目標電流の絶対値をヒューズ60の定格電流未満にすることが望ましい。ヒューズ60をモータ中性点電圧駆動用パワー半導体素子の出力とモータ190の中性点191との間に設置しない場合は、中性点目標電流の絶対値はヒューズ60の定格電流未満に設定してもヒューズ60の定格電流以上に設定してもよい。また、中性点目標電流は、故障相の目標電流とは逆方向になるように設定する。中性点目標電流を故障相の目標電流と逆向きにすることで、故障相の目標電流の絶対値を大きくでき、故障相のヒューズにより大きな電流を流すことができる。 When installing the fuse 60 between the output of the power semiconductor element for driving the neutral point voltage of the motor and the neutral point 191 of the motor 190, the absolute target current of the neutral point should not be blown by mistake. It is desirable that the value is less than the rated current of the fuse 60. If the fuse 60 is not installed between the output of the power semiconductor element for driving the motor neutral point voltage and the neutral point 191 of the motor 190, the absolute value of the neutral point target current is set to be less than the rated current of the fuse 60. However, the current may be set to be equal to or higher than the rated current of the fuse 60. Further, the neutral point target current is set so as to be in the direction opposite to the target current of the fault phase. By making the neutral point target current in the opposite direction to the target current of the faulty phase, the absolute value of the target current of the faulty phase can be increased, and a large current can be passed through the fuse of the faulty phase.
 本実施例におけるヒューズ溶断時目標電流計算部14は、設定した各相および中性点の目標電流を[数7]を用いてd軸目標電流値(Id)、q軸目標電流値(Iq)、零相目標電流値(Iz)に変換し、これらの値をヒューズ溶断時電流制御部15に出力する。本実施例では、中性点目標電流を設定するため、U相目標電流+V相目標電流+W相目標電流=0とならない。よって実施例1とは異なり、零相目標電流値も計算する。 The fuse blown target current calculation unit 14 in the present embodiment sets the target currents of the set phases and the neutral points to the d-axis target current value (Id) and the q-axis target current value (Iq) using [Equation 7]. , Zero-phase target current value (Iz) is converted, and these values are output to the fuse blown current control unit 15. In this embodiment, since the neutral point target current is set, U-phase target current + V-phase target current + W-phase target current = 0 does not hold. Therefore, unlike the first embodiment, the zero-phase target current value is also calculated.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 本実施例のヒューズ溶断時電流制御部15は、実施例1のヒューズ溶断時電流制御部と同様に各相のデューティを計算する。また、本実施例では、モータ中性点駆動用パワー半導体素子のオン/オフも制御する必要があるため、モータ中性点に対するデューティ値も計算する。モータ中性点に対するデューティ値は以下のように計算する。まず、ヒューズ溶断時電流制御部15は、モータ角度センサ値θを用いて、交流電流センサ50から出力された3相分の交流電流センサ値50aを零相電流値に変換する。次に、ヒューズ溶断時電流制御部15は、この零相電流と零相目標電流値の差分を取る。そして、ヒューズ溶断時電流制御部15は、零相電流差分に対してフィードバック制御を行なって、零相目標電圧値を決定する。ヒューズ溶断時電流制御部15は、[数8]の式を用いて、零相目標電圧(Vz)と各相の目標電圧値(Vu、Vv、Vw)から中性点目標電圧値(Vn)を計算する。このとき、パワー半導体素子の短絡故障が発生している相の目標電圧値は、直流電源210の電圧をVdcとしたとき、上アームが短絡故障しているならば1/2・Vdc、下アームが短絡故障しているならば-1/2・Vdcとして計算する。最後に、ヒューズ溶断時電流制御部15は、中性点目標電圧値と電圧センサ値から、モータ中性点のデューティ値を計算する。 The fuse blown current control unit 15 of this embodiment calculates the duty of each phase in the same manner as the fuse blown current control unit of the first embodiment. Further, in this embodiment, since it is necessary to control the on / off of the power semiconductor element for driving the motor neutral point, the duty value for the motor neutral point is also calculated. The duty value for the neutral point of the motor is calculated as follows. First, the fuse blown current control unit 15 converts the AC current sensor value 50a for three phases output from the AC current sensor 50 into a zero-phase current value by using the motor angle sensor value θ. Next, the fuse blown current control unit 15 takes the difference between the zero-phase current and the zero-phase target current value. Then, the fuse blown current control unit 15 performs feedback control on the zero-phase current difference to determine the zero-phase target voltage value. The fuse blowing current control unit 15 uses the equation of [Equation 8] to obtain a neutral point target voltage value (Vn) from the zero-phase target voltage (Vz) and the target voltage value (Vu, Vv, Vw) of each phase. To calculate. At this time, the target voltage value of the phase in which the short-circuit failure of the power semiconductor element occurs is 1/2 · Vdc if the upper arm has a short-circuit failure when the voltage of the DC power supply 210 is Vdc, and the lower arm. If is short-circuited, calculate as -1 / 2 · Vdc. Finally, the fuse blown current control unit 15 calculates the duty value of the motor neutral point from the neutral point target voltage value and the voltage sensor value.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 図11は、本実施例におけるヒューズ溶断制御時の電流波形の例を示した図である。図11の例では、U相上アームパワー半導体素子が短絡故障した場合に、U相目標電流値をヒューズ定格電流の2.1倍、V相目標電流値をヒューズ定格電流の-0.9倍、W相目標電流値をヒューズ定格電流の-0.5倍、中性点目標電流値をヒューズ定格電流の-0.7倍に設定している。 FIG. 11 is a diagram showing an example of a current waveform at the time of fuse blowout control in this embodiment. In the example of FIG. 11, when the U-phase upper arm power semiconductor element is short-circuited, the U-phase target current value is 2.1 times the fuse rated current, and the V-phase target current value is −0.9 times the fuse rated current. , The W phase target current value is set to -0.5 times the fuse rated current, and the neutral point target current value is set to -0.7 times the fuse rated current.
 図11の例では、各相の電流および中性点電流は目標電流値とほぼ同じとなっており、故障したU相の電流値はヒューズ定格電流以上、正常なV相とW相の電流はヒューズ定格電流未満となるように制御できている。また、中性点電流を故障したU相の電流とは逆向きなるように制御することで、実施例1の電流波形と比べてU相電流の絶対値を増加させることができている。 In the example of FIG. 11, the current of each phase and the neutral point current are almost the same as the target current values, the current value of the failed U phase is equal to or higher than the fuse rated current, and the normal V phase and W phase currents are. It can be controlled so that it is less than the fuse rated current. Further, by controlling the neutral point current so as to be opposite to the failed U-phase current, the absolute value of the U-phase current can be increased as compared with the current waveform of the first embodiment.
 次に、本実施例におけるヒューズ溶断後の電流制御について述べる。短絡故障が発生した相のヒューズ60が溶断すると、その相には電流が流れなくなり、欠相と同じ状態になる。このとき、残り2相の電流位相差が60度になるように、残り2相のパワー半導体素子とモータ中性点電圧駆動用パワー半導体素子のオン/オフを制御することで、トルクリプルを抑制したトルク制御を行うことができる。 Next, the current control after the fuse is blown in this embodiment will be described. When the fuse 60 of the phase in which the short-circuit failure has occurred is blown, no current flows in that phase, and the state becomes the same as that of the open phase. At this time, torque ripple was suppressed by controlling the on / off of the power semiconductor element of the remaining two phases and the power semiconductor element for driving the neutral point voltage of the motor so that the current phase difference of the remaining two phases becomes 60 degrees. Torque control can be performed.
 図12は、ヒューズ溶断後の残り2相の電流位相を示した図である。なお、図12は、正常時にV相の電流位相がU相の電流位相よりも120度遅れた状態、W相の電流位相がU相の電流位相よりも120度進んだ状態で制御されている場合の例である。U相のヒューズ溶断後は、W相の電流位相を通常より30度進め、V相の電流位相を通常より30度遅らせるように電流を制御する。V相のヒューズ溶断後は、U相の電流位相を通常より30度進め、W相の電流位相を通常より30度遅らせるように電流を制御する。W相のヒューズ溶断後は、V相の電流位相を通常より30度進め、W相の電流位相を通常より30度遅らせるように電流を制御する。ヒューズ溶断後電流制御部313は、残り2相の電流位相が図12の値となるように、各相とモータ中性点のデューティを計算する。 FIG. 12 is a diagram showing the current phases of the remaining two phases after the fuse is blown. Note that FIG. 12 is controlled in a state where the current phase of the V phase is delayed by 120 degrees from the current phase of the U phase and the current phase of the W phase is advanced by 120 degrees from the current phase of the U phase in the normal state. This is an example of the case. After the U-phase fuse is blown, the current is controlled so that the current phase of the W phase is advanced by 30 degrees from the normal phase and the current phase of the V phase is delayed by 30 degrees from the normal phase. After the V-phase fuse is blown, the current is controlled so that the U-phase current phase is advanced by 30 degrees and the W-phase current phase is delayed by 30 degrees. After the fuse of the W phase is blown, the current phase of the V phase is advanced by 30 degrees from the normal, and the current is controlled so as to delay the current phase of the W phase by 30 degrees from the normal. After the fuse is blown, the current control unit 313 calculates the duty of each phase and the neutral point of the motor so that the current phases of the remaining two phases are the values shown in FIG.
 図13は、ヒューズ溶断後の電流波形およびモータ出力トルク波形の例を示した図である。(a)は正常時の電流とトルクの波形、(b)はU相のヒューズ溶断後に正常時と同じ電流位相のままV相とW相の電流を制御した場合の電流とトルクの波形、(c)はU相のヒューズ溶断後に図12で示したようにV相とW相の電流位相を制御した場合の電流とトルクの波形である。(a)(b)(c)共に、一番上側のグラフはU相/V相/W相の電流波形を表している。中段のグラフはd軸電流とq軸電流の波形を表している。一番下のグラフはモータの出力トルクの波形を表している。 FIG. 13 is a diagram showing an example of a current waveform and a motor output torque waveform after the fuse is blown. (A) is the current and torque waveform in the normal state, and (b) is the current and torque waveform when the V-phase and W-phase currents are controlled with the same current phase as in the normal state after the U-phase fuse is blown. c) is a waveform of current and torque when the current phases of V phase and W phase are controlled as shown in FIG. 12 after the fuse of U phase is blown. In both (a), (b) and (c), the uppermost graph shows the current waveform of U phase / V phase / W phase. The middle graph shows the waveforms of the d-axis current and the q-axis current. The graph at the bottom shows the waveform of the output torque of the motor.
 図13(a)に示されるように、正常時は各相の電流はそれぞれ120度の電流位相差を保って制御され、このときのd軸電流とq軸電流はどちらも一定値となる。そのため、出力トルクも一定の値を保っている。 As shown in FIG. 13 (a), in the normal state, the current of each phase is controlled while maintaining a current phase difference of 120 degrees, and the d-axis current and the q-axis current at this time are both constant values. Therefore, the output torque also keeps a constant value.
 図13(b)に示されるように、U相のヒューズ溶断後にV相とW相の電流位相を通常と同じ値にすると、d軸電流とq軸電流は電気角の変化に応じて振動的に増減する。そのため、出力トルクも電気角の変化に応じて振動的に増減し、トルクリプルが発生する。 As shown in FIG. 13 (b), when the current phases of the V phase and the W phase are set to the same values as usual after the fuse of the U phase is blown, the d-axis current and the q-axis current are oscillating according to the change in the electric angle. Increase or decrease to. Therefore, the output torque also vibrates and increases or decreases according to the change in the electric angle, and torque ripple occurs.
 図13(c)に示されるように、U相のヒューズ溶断後にV相とW相の電流位相差が60度になるように制御すると、d軸電流とq軸電流の値は正常時の1/√3になるものの、電気角の変化によらず一定の値を保つことができる。そのため、この時の出力トルクは正常時のおおよそ1/√3になるが、電気角の変化によらず一定値を保つことができ、図13(b)のようなトルクリプルの発生を抑制できる。 As shown in FIG. 13 (c), when the current phase difference between the V phase and the W phase is controlled to be 60 degrees after the fuse of the U phase is blown, the values of the d-axis current and the q-axis current are 1 in the normal state. Although it becomes / √3, it can maintain a constant value regardless of the change in the electric angle. Therefore, the output torque at this time is about 1 / √3 in the normal state, but a constant value can be maintained regardless of the change in the electric angle, and the occurrence of torque ripple as shown in FIG. 13B can be suppressed.
 なお、図13(c)の例において、V相とW相の電流振幅を正常時の√3倍にすると、そのときのd軸電流とq軸電流の値は正常時と同じ値にでき、出力トルクも正常時と同じ値にすることができる。 In the example of FIG. 13C, if the current amplitudes of the V phase and the W phase are √3 times the normal value, the values of the d-axis current and the q-axis current at that time can be the same as those in the normal state. The output torque can also be set to the same value as in the normal state.
 以上のように、本実施例では、中性点電流を故障相の電流とは逆向きになるように制御することで、故障相の電流の絶対値を増加することができる。ヒューズ60を流れる電流値が大きくなるほどヒューズ60の溶断時間は短くなるため、前述のように中性点電流を制御することで故障相のヒューズ60をより早く溶断することができる。また、本実施例のように、ヒューズ溶断後に残り2相の電流位相差が60度となるように制御することで、ヒューズ溶断後もトルクリプルを抑制したトルク制御を継続することができる。 As described above, in this embodiment, the absolute value of the faulty phase current can be increased by controlling the neutral point current so as to be in the opposite direction to the faulty phase current. Since the blown time of the fuse 60 becomes shorter as the current value flowing through the fuse 60 becomes larger, the fuse 60 in the failed phase can be blown faster by controlling the neutral point current as described above. Further, as in the present embodiment, by controlling the current phase difference of the remaining two phases to be 60 degrees after the fuse is blown, the torque control in which the torque ripple is suppressed can be continued even after the fuse is blown.
10:制御回路
11:モータ速度計算部
11a:モータ速度値
12:トルク制御時目標電流計算部
12a:目標電流値
13:トルク制御時電流制御部
13a:デューティ値
14:ヒューズ溶断時目標電流計算部
14a:目標電流値
15:ヒューズ溶断時電流制御部
15a:デューティ値
16:PWM信号生成部
16a:PWM信号
17:短絡故障箇所判定部
17a:短絡故障箇所情報
18:ヒューズ溶断判定部
18a:ヒューズ溶断判定信号
19:状態判定部
19a:内部状態
20:ドライバ回路
20a:駆動信号
20b:短絡故障検知信号
30:電力変換回路
31:平滑コンデンサ
32:パワー半導体素子
33:センス端子
33a:センス電流
40:電圧センサ
40a:電圧センサ値
50:交流電流センサ
50a:交流電流センサ値
60:ヒューズ
100:電力変換装置
190:モータ
191:モータ中性点
200:駆動装置
210:直流電源
220:異常通知装置
313:ヒューズ溶断後電流制御部
 
10: Control circuit 11: Motor speed calculation unit 11a: Motor speed value 12: Torque control target current calculation unit 12a: Target current value 13: Torque control current control unit 13a: Duty value 14: Fuse blow target current calculation unit 14a: Target current value 15: Current control unit at the time of fuse blown 15a: Duty value 16: PWM signal generation unit 16a: PWM signal 17: Short circuit failure location determination unit 17a: Short circuit failure location information 18: Fuse blowout determination unit 18a: Fuse blown Judgment signal 19: State determination unit 19a: Internal state 20: Driver circuit 20a: Drive signal 20b: Short circuit failure detection signal 30: Power conversion circuit 31: Smoothing capacitor 32: Power semiconductor element 33: Sense terminal 33a: Sense current 40: Voltage Sensor 40a: Voltage sensor value 50: AC current sensor 50a: AC current sensor value 60: Fuse 100: Power conversion device 190: Motor 191: Motor neutral point 200: Drive device 210: DC power supply 220: Abnormality notification device 313: Fuse Post-fusing current control unit

Claims (9)

  1.  3相の出力線上のそれぞれに所定の定格電流以上で溶断するヒューズを備えた電力変換装置であって、
     3相電力変換回路を構成するスイッチング素子の短絡故障を検知する短絡故障検知部と、
     前記短絡故障検知部が短絡故障を検知した相の出力電流が前記ヒューズの定格電流以上となり、かつ前記短絡故障が検知された相とは異なる残り2相の出力電流がそれぞれ前記ヒューズの定格電流未満となるように、当該残り2相のスイッチング素子を制御するヒューズ溶断時電流制御部と、を備えた電力変換装置。
    It is a power conversion device equipped with a fuse that blows at a predetermined rated current or more on each of the three-phase output lines.
    A short-circuit failure detector that detects short-circuit failures of switching elements that make up a three-phase power conversion circuit, and a short-circuit failure detector.
    The output current of the phase in which the short-circuit failure detection unit detects the short-circuit failure is equal to or higher than the rated current of the fuse, and the output currents of the remaining two phases different from the phase in which the short-circuit failure is detected are less than the rated current of the fuse. A power conversion device including a fuse blown current control unit that controls the remaining two-phase switching elements.
  2.  請求項1に記載の電力変換装置であって、
     出力がモータの中性点に接続される中性点駆動スイッチング回路を備え、
     前記ヒューズ溶断時電流制御部は、前記短絡故障が検知された相の出力電流とは反対向きの電流を出力するように前記中性点駆動スイッチング回路を制御する電力変換装置。
    The power conversion device according to claim 1.
    It has a neutral drive switching circuit whose output is connected to the neutral point of the motor.
    The fuse blown current control unit is a power conversion device that controls the neutral point drive switching circuit so as to output a current in the direction opposite to the output current of the phase in which the short circuit failure is detected.
  3.  請求項2に記載の電力変換装置であって、
     いずれかの相の前記ヒューズの溶断を判定するヒューズ溶断判定部と、
     前記ヒューズ溶断判定部によって前記ヒューズの溶断が判定された後に、前記ヒューズが溶断された相とは異なる残り2相のスイッチング素子と、前記中性点駆動スイッチング回路とを制御するヒューズ溶断後電流制御部と、を備えた電力変換装置。
    The power conversion device according to claim 2.
    A fuse blown determination unit that determines the blown fuse in any phase,
    After the fuse is determined to be blown by the fuse blown determination unit, the current control after the fuse is blown to control the remaining two-phase switching element different from the phase in which the fuse is blown and the neutral point drive switching circuit. A power converter equipped with a unit.
  4.  請求項3に記載の電力変換装置であって、
     前記ヒューズ溶断後電流制御部は、前記ヒューズが溶断された相とは異なる残り2相のスイッチング素子の電流位相差が60度となるように制御する電力変換装置。
    The power conversion device according to claim 3.
    The fuse-blown current control unit is a power conversion device that controls the current phase difference between the remaining two phases of the switching element, which is different from the phase in which the fuse is blown, to be 60 degrees.
  5.  3相交流を出力する電力変換装置と、前記3相交流により駆動する回転電機と、所定の定格電流以上で溶断するヒューズと、を備えた駆動装置であって、
     前記ヒューズは、前記回転電機の中性点と前記電力変換装置との間において各相それぞれに設けられ、
     前記電力変換装置は、
     3相電力変換回路を構成するスイッチング素子の短絡故障を検知する短絡故障検知部と、
     前記短絡故障検知部が短絡故障を検知した相の出力電流が前記ヒューズの定格電流以上となり、かつ前記短絡故障が検知された相とは異なる残り2相の出力電流がそれぞれ前記ヒューズの定格電流未満となるように、当該残り2相のスイッチング素子を制御するヒューズ溶断時電流制御部と、を備えた駆動装置。
    A drive device including a power conversion device that outputs a three-phase alternating current, a rotary electric machine that is driven by the three-phase alternating current, and a fuse that blows at a predetermined rated current or higher.
    The fuse is provided in each phase between the neutral point of the rotary electric machine and the power conversion device.
    The power converter is
    A short-circuit failure detector that detects short-circuit failures of switching elements that make up a three-phase power conversion circuit, and a short-circuit failure detector.
    The output current of the phase in which the short-circuit failure detection unit detects the short-circuit failure is equal to or higher than the rated current of the fuse, and the output currents of the remaining two phases different from the phase in which the short-circuit failure is detected are less than the rated current of the fuse. A drive device including a fuse blown current control unit that controls the remaining two-phase switching elements.
  6.  請求項5に記載の駆動装置であって、
     前記ヒューズは、前記回転電機の巻線と前記中性点との間に設けられる駆動装置。
    The drive device according to claim 5.
    The fuse is a drive device provided between the winding of the rotary electric machine and the neutral point.
  7.  請求項5又は6に記載の駆動装置であって、
     出力が前記中性点に接続される中性点駆動スイッチング回路を備え、
     前記ヒューズ溶断時電流制御部は、前記短絡故障が検知された相の出力電流とは反対向きの電流を出力するように前記中性点駆動スイッチング回路を制御する駆動装置。
    The driving device according to claim 5 or 6.
    A neutral point drive switching circuit whose output is connected to the neutral point is provided.
    The fuse blown current control unit is a drive device that controls the neutral point drive switching circuit so as to output a current in the direction opposite to the output current of the phase in which the short circuit failure is detected.
  8.  請求項7に記載の駆動装置であって、
     いずれかの相の前記ヒューズの溶断を判定するヒューズ溶断判定部と、
     前記ヒューズ溶断判定部によって前記ヒューズの溶断が判定された後に、前記ヒューズが溶断された相とは異なる残り2相のスイッチング素子と、前記中性点駆動スイッチング回路とを制御するヒューズ溶断後電流制御部と、を備えた駆動装置。
    The drive device according to claim 7.
    A fuse blown determination unit that determines the blown fuse in any phase,
    After the fuse is determined to be blown by the fuse blown determination unit, the current control after the fuse is blown to control the remaining two-phase switching element different from the phase in which the fuse is blown and the neutral point drive switching circuit. A drive unit equipped with a unit.
  9.  請求項8に記載の駆動装置であって、
     前記ヒューズ溶断後電流制御部は、前記ヒューズが溶断された相とは異なる残り2相のスイッチング素子の電流位相差が60度となるように制御する駆動装置。
     
    The drive device according to claim 8.
    The current control unit after the fuse is blown is a drive device that controls the current phase difference between the remaining two phases of the switching element, which is different from the phase in which the fuse is blown, to be 60 degrees.
PCT/JP2021/036345 2020-10-09 2021-09-30 Power conversion device and drive device WO2022075202A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020170896A JP2022062768A (en) 2020-10-09 2020-10-09 Power conversion device and drive device
JP2020-170896 2020-10-09

Publications (1)

Publication Number Publication Date
WO2022075202A1 true WO2022075202A1 (en) 2022-04-14

Family

ID=81126889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036345 WO2022075202A1 (en) 2020-10-09 2021-09-30 Power conversion device and drive device

Country Status (2)

Country Link
JP (1) JP2022062768A (en)
WO (1) WO2022075202A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5469351A (en) * 1994-07-05 1995-11-21 Ford Motor Company Fault isolation in an induction motor control system
US20070030606A1 (en) * 2005-07-25 2007-02-08 Honeywell International, Inc. System and method for fault protection for permanent magnet machines
JP2011223788A (en) * 2010-04-13 2011-11-04 Toshiba Mitsubishi-Electric Industrial System Corp Motor drive device
JP2012070615A (en) * 2010-08-24 2012-04-05 Asmo Co Ltd Method of driving brushless motor, circuit of driving brushless motor, method of detecting rotational position of brushless motor, and circuit of detecting rotational position of brushless motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5469351A (en) * 1994-07-05 1995-11-21 Ford Motor Company Fault isolation in an induction motor control system
US20070030606A1 (en) * 2005-07-25 2007-02-08 Honeywell International, Inc. System and method for fault protection for permanent magnet machines
JP2011223788A (en) * 2010-04-13 2011-11-04 Toshiba Mitsubishi-Electric Industrial System Corp Motor drive device
JP2012070615A (en) * 2010-08-24 2012-04-05 Asmo Co Ltd Method of driving brushless motor, circuit of driving brushless motor, method of detecting rotational position of brushless motor, and circuit of detecting rotational position of brushless motor

Also Published As

Publication number Publication date
JP2022062768A (en) 2022-04-21

Similar Documents

Publication Publication Date Title
US8878477B2 (en) Electric motor driving apparatus having failure detection circuit, and failure detection method for the electric motor driving apparatus having failure detection circuit
US9543857B2 (en) Load driving device with failure detection
US20070093359A1 (en) Vehicular power control apparatus
US20160028342A1 (en) Electric motor drive device
EP2299587A2 (en) Motor drive device capable of detecting a fault condition
US20190207508A1 (en) Inverter device
US20170077835A1 (en) Three-phase inverter system
JP2015033149A (en) Drive unit of semiconductor element and power conversion device using the same
US10224860B2 (en) Control device for rotary electrical machine and control method
JP6173003B2 (en) Power converter
WO2022075202A1 (en) Power conversion device and drive device
JPH09247805A (en) Electric car controller
JP3999226B2 (en) Electric motor control device
WO2022230328A1 (en) Power conversion device and drive device
WO2021049230A1 (en) Power conversion device and method for controlling power conversion device
US20170070179A1 (en) Motor drive having function of detecting dc link current
CN112350550B (en) Switch driving circuit and switch driving device
JP6203318B1 (en) Electric motor control apparatus and electric motor control method
JP7307704B2 (en) Inverter controller
JP6165683B2 (en) Inverter device
WO2023171096A1 (en) Power conversion device and drive device
JP3179951B2 (en) Power converter
JP7501355B2 (en) MOTOR CONTROL DEVICE, MOTOR, MOTOR CONTROL METHOD, AND PROGRAM
JP2001157460A (en) Method for detecting failure in current detector
JP2017103840A (en) Inverter device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877503

Country of ref document: EP

Kind code of ref document: A1