WO2022075030A1 - Resin composition, molded object, layered product, gas-barrier material, coating material, and adhesive - Google Patents

Resin composition, molded object, layered product, gas-barrier material, coating material, and adhesive Download PDF

Info

Publication number
WO2022075030A1
WO2022075030A1 PCT/JP2021/034027 JP2021034027W WO2022075030A1 WO 2022075030 A1 WO2022075030 A1 WO 2022075030A1 JP 2021034027 W JP2021034027 W JP 2021034027W WO 2022075030 A1 WO2022075030 A1 WO 2022075030A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
coating
composition according
clay mineral
layered clay
Prior art date
Application number
PCT/JP2021/034027
Other languages
French (fr)
Japanese (ja)
Inventor
祐章 宇佐見
久美子 秋葉
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2022555335A priority Critical patent/JPWO2022075030A1/ja
Publication of WO2022075030A1 publication Critical patent/WO2022075030A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/04Polyamides derived from alpha-amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D177/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D177/04Polyamides derived from alpha-amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J177/00Adhesives based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Adhesives based on derivatives of such polymers
    • C09J177/04Polyamides derived from alpha-amino carboxylic acids

Definitions

  • the present invention relates to a resin composition, a molded body, a laminated body, a gas barrier material, a coating material and an adhesive.
  • polyvinyl alcohol (PVA) or the like is known as a barrier material for an aqueous resin, but since the hydrophilicity of the resin is high and the barrier property under high humidity is not exhibited, various improvements are being attempted. ..
  • a gas barrier film for example, see Patent Document 1 organically crosslinked with a crosslinking agent such as polyamine and / or a polyol in order to reduce humidity dependence, and a water-insoluble biodegradable resin such as polyamino acid.
  • Patent Document 2 A water-insoluble biodegradable resin composition containing a layered silicate has been proposed (see, for example, Patent Document 2).
  • Cited Document 1 a carboxyl group-containing polyamino acid is mentioned as a polycarboxylic acid used for forming a gas barrier film, and polyaspartic acid is mentioned as the polyamino acid.
  • a gas barrier film using polyaspartic acid there is no specific example of a gas barrier film using polyaspartic acid in Cited Document 1. From the contents described in Cited Document 1, it is not possible to provide a gas barrier film using polyaspartic acid having a better gas barrier property.
  • Cited Document 1 it is necessary to use a cross-linking agent of a polyamine or a polyol for the gas barrier film, and in order to form a film of the gas barrier film, a cross-linking step (post-treatment step of the cross-linking reaction) is performed after applying the coating liquid.
  • a cross-linking step post-treatment step of the cross-linking reaction
  • the film-forming method that requires a post-treatment step for the cross-linking reaction has problems such as an increase in manufacturing steps and a high temperature during the thermal cross-linking reaction, and if the post-treatment step for the cross-linking reaction is unnecessary. , It is practically preferable because a gas barrier film can be obtained by a simpler process.
  • Cited Document 2 polyamino acids are mentioned as water-insoluble biodegradable resins.
  • polyaspartic acid is a water-soluble biodegradable resin, it is not possible to provide a resin composition using polyaspartic acid having a better gas barrier property from the contents described in Cited Document 2.
  • Cited Document 2 a layered clay mineral which has been organically treated is blended in the resin composition.
  • the organically treated layered clay mineral has a reduced packing property of clay, and there is room for improvement from the viewpoint of improving the gas barrier property.
  • the present invention is a resin composition containing polyaspartic acid, which is a biodegradable material, has excellent gas barrier properties, and further requires a post-treatment step of a crosslinking reaction when forming a laminate. It is an object of the present invention to provide a resin composition which does not.
  • the present invention includes the following aspects.
  • the inorganic component contains the non-organized layered clay mineral, the content of the layered clay mineral is 5 to 70% by mass with respect to the total solid content of the resin composition. , [2] to any one of [4].
  • the content of the metal oxide is 10 to 65 mol% with respect to the molar equivalent number of the carboxylic acid group of the polyaspartic acid [2]. ] To [5]. [7] The molded product of the resin composition according to any one of [1] to [6]. [8] A laminate comprising a base material and a coating layer formed by applying the resin composition according to any one of [1] to [6] onto the base material. [9] The laminate according to [8], which is used as a packaging material. [10] A gas barrier material containing the resin composition according to any one of [1] to [6]. [11] A coating material containing the resin composition according to any one of [1] to [6]. [12] An adhesive containing the resin composition according to any one of [1] to [6].
  • a resin composition containing polyaspartic acid which is a biodegradable material, has excellent gas barrier properties, and further requires a post-treatment step of a crosslinking reaction when producing a laminate. It is possible to provide a resin composition that does not.
  • the resin composition of the present invention contains polyaspartic acid and an inorganic component. Using the resin composition of the present invention, a laminate can be obtained without performing a post-treatment step of a crosslinking reaction. Further, the obtained laminate is excellent in gas barrier property.
  • Polyaspartic acid is used as the main material of the resin composition, and the resin composition and the laminate formed by using the resin composition have film forming property, water resistance, durability, physical strength, gas barrier property, and biodegradability. Etc. are given.
  • the polyaspartic acid according to the present invention contains both a free state polyaspartic acid and a salt of polyaspartic acid derived from the free state polyaspartic acid.
  • the salt of polyaspartic acid is not particularly limited, and for example, an alkali metal salt such as a sodium salt or a potassium salt, an organic amine salt such as a diethanolamine salt or a triethanolamine salt, or a basic amino acid salt may be used.
  • polyaspartic acid polyaspartic acid produced by a conventionally known method can be used.
  • the method for producing polyaspartic acid include a method of heat-polymerizing aspartic acid.
  • the content of polyaspartic acid is not particularly limited, but is preferably 30% by mass or more, more preferably 30% by mass or more, based on the total solid content of the resin composition from the viewpoint of biodegradability and moldability. It is 40% by mass or more, more preferably 50% by mass or more, preferably 95% by mass or less, more preferably 80% by mass or less, still more preferably 70% by mass or less.
  • the inorganic component according to the present invention it is preferable to use a layered clay mineral and / or a metal oxide.
  • at least one of the above as an inorganic component may be contained in the resin composition, and each of them may be contained alone or in combination.
  • a layered clay mineral and a metal oxide are combined and contained in a resin composition as an inorganic component, the effect of the present invention can be sufficiently exhibited while suppressing the content of a relatively expensive metal oxide.
  • the resin composition of the present invention contains a layered clay mineral that is water-dispersible, so that the layered clay mineral is highly dispersed and complexed in the resin, and has excellent gas barrier properties.
  • layered clay minerals include kaolinite-serpentine clay minerals (haloisite, kaolinite, enderite, dikite, naphthyl, etc., antigolite, chrysotile, etc.), pyrophyllite-talc (pyrophyllite, etc.).
  • mice Tarku, Kerorai, etc.
  • Smectite clay minerals Montmorillonite, Byderite, Nontronite, Saponite, Hectrite, Sauconite, Stevensite, etc.
  • Vermiculite clay minerals Vermiculite, etc.
  • Mica or Mica clay minerals White mica, gold
  • examples include mica such as mica, margarite, tetrasilic mica, teniolite, etc.), green mudstones (cookate, sudowite, clinochloa, chamosite, nimite, etc.).
  • smectite group clay minerals (hereinafter abbreviated as smectite) are preferable, and montmorillonite is more preferable, from the viewpoint of easy cleavage (peeling) in an aqueous solution.
  • smectite smectite group clay minerals
  • montmorillonite is more preferable, from the viewpoint of easy cleavage (peeling) in an aqueous solution.
  • the layered clay mineral one kind may be used alone, or a plurality of kinds may be used in combination.
  • the interlayer cation of the layered clay mineral is not particularly limited and can be appropriately selected according to the type of the layered clay mineral used.
  • smectite may be obtained by exchanging the interlayer cation of smectite (mostly sodium in the case of natural smectite) with lithium ion, ammonium ion, proton or the like.
  • smectites preferably used in the present invention include sodium-type smectites, lithium-type smectites, ammonium-type smectites, proton-type smectites and the like.
  • sodium-type smectite and lithium-ion-type smectite are preferable, and lithium-ion-type smectite having a smaller ionic radius is preferable. Tends to be more preferable.
  • the total of the ammonium ion equivalent, the lithium ion equivalent, and the hydrogen ion equivalent of smectite may be 50 to 120 meq / 100 g.
  • the sum of the ammonium ion equivalent, the lithium ion equivalent, and the hydrogen ion equivalent of smectite may be 50 meq / 100 g or more, 80 meq / 100 g or more, or 100 meq / 100 g or more, and 120 meq / 100 g or less, or 110 meq / 100 g or less. It's okay.
  • the ammonium ion equivalent of smectite is determined by measuring the amount of cations eluted in a 1N potassium chloride solution, and the lithium ion equivalent is determined by measuring the amount of cations eluted in a 1N ammonium acetate solution by ion chromatography. be able to. Further, the hydrogen ion equivalent can be obtained from the difference between the amount of cations before ion exchange and the amount of cations after ion exchange.
  • a conventionally known method can also be used.
  • a method of adding a lithium salt such as lithium hydroxide or lithium chloride to a dispersion of natural sodium-type smectite and exchanging cations can be mentioned.
  • the amount of lithium added to the dispersion By adjusting the amount of lithium added to the dispersion, the amount of lithium ions in the amount of leached cations of the obtained lithium-type smectite can be appropriately adjusted.
  • the lithium-type smectite can also be obtained by a column method or a batch method using a resin in which a cation exchange resin is ion-exchanged with lithium ions.
  • a modified layered clay mineral that has been organically treated may be used, but it is more preferable to use a layered clay mineral that has not been organically treated.
  • layered clay minerals have been blended into resins as fillers for the purpose of improving the heat resistance of resins such as plastics.
  • layered clay minerals having high water dispersibility are hydrophilic, they have a low affinity for hydrophobic resins, and it is difficult to disperse them in the resin as they are and to combine them. Therefore, when the layered clay mineral is compounded with the resin, the layered clay mineral is usually modified by an organic treatment to control the hydrophilicity / hydrophobicity.
  • the organically treated layered clay mineral is not suitable from the viewpoint of improving the gas barrier property because the packing property of the clay is lowered.
  • a separate step for organic treatment is required, which increases the number of manufacturing steps. Since the resin composition of the present invention contains hydrophilic polyaspartic acid, the layered clay mineral has a high affinity for the resin. Therefore, the layered clay mineral that has not been organically treated can be highly dispersed and compounded in the resin. Therefore, as the layered clay mineral according to the present invention, it is more preferable to use a layered clay mineral that has not been organically treated.
  • the content of the layered clay mineral is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 20% by mass or more, and particularly preferably 30% by mass or more, based on the total solid content in the resin composition. It is preferably 70% by mass or less, more preferably 60% by mass or less, and further preferably 50% by mass or less.
  • the content of the layered clay mineral is at least the above lower limit, the water vapor barrier property and the oxygen barrier property (for example, the oxygen barrier property under high humidity) become excellent.
  • the content of the layered clay mineral is not more than the above upper limit, the formability of the laminated body is excellent and the adhesion to the substrate is improved. In addition, higher gas barrier properties tend to be obtained under high humidity.
  • the resin composition of the present invention may use a metal oxide as an inorganic component.
  • a metal oxide By mixing polyaspartic acid and a metal oxide in a coating liquid such as water or an aqueous solvent, the carboxylic acid group of polyaspartic acid and the metal oxide are crosslinked in the coating liquid. Therefore, when forming a laminate using the resin composition of the present invention, it is not necessary to separately perform a cross-linking step (post-treatment step of the cross-linking reaction) after applying the coating liquid.
  • the temperature in the crosslinking reaction in the coating liquid is about 20 to 60 ° C., which is lower than the temperature in the post-treatment step of the crosslinking reaction (about 200 ° C. or higher). Therefore, the method for forming a laminate using the resin composition of the present invention is simple and excellent in production efficiency. In addition, the obtained laminate has excellent gas barrier properties.
  • the metal oxide is not particularly limited as long as it can crosslink the carboxylic acid group of polyaspartic acid, and is, for example, an oxide of an alkaline earth metal (magnesium Mg, calcium Ca, strontium Sr, barium Ba, etc.), Periodic Table 8 Oxides of group metals (iron Fe, ruthenium Ru, etc.), oxides of group 11 metals of the periodic table (copper Cu, etc.), oxides of metals of group 12 of the periodic table (zinc Zn, etc.), metals of group 13 of the periodic table (aluminum Al) Etc.) and other oxides.
  • an oxide of an alkaline earth metal magnesium Mg, calcium Ca, strontium Sr, barium Ba, etc.
  • Periodic Table 8 Oxides of group metals iron Fe, ruthenium Ru, etc.
  • oxides of group 11 metals of the periodic table copper Cu, etc.
  • oxides of metals of group 12 of the periodic table zinc Zn, etc.
  • a metal having a high ionization tendency is preferable from the viewpoint of easily reacting with polyaspartic acid constituting the resin composition, and a divalent metal oxide is preferable from the viewpoint of gas barrier property.
  • the metal oxide according to the present invention is preferably at least one of zinc oxide (ZnO), magnesium oxide (MgO) and calcium oxide (CaO), and zinc oxide is more preferable.
  • the metal oxide is granular and the particle size is small.
  • the particle size of the metal oxide is not particularly limited, but is fine particles having an average particle size of 500 nm or less and 10 nm or more. Particularly preferably, it is fine particles having a diameter of 20 nm to 300 nm.
  • the average particle size here can be measured using a dynamic light scattering type particle size distribution measuring device, for example, LB-500 (manufactured by HORIBA, Ltd.).
  • the content of the metal oxide is preferably 5 mol% or more, more preferably 10 mol% or more, still more preferably 20 mol% or more, and particularly preferably 30 mol%, based on the molar equivalent number of the carboxylic acid groups of polyaspartic acid.
  • the above is preferably 80 mol% or less, more preferably 70 mol% or less, still more preferably 65 mol% or less.
  • the content of the metal oxide is at least the above lower limit, the water vapor barrier property and the oxygen barrier property (for example, the oxygen barrier property under high humidity) become excellent.
  • the content of the metal oxide is not more than the above upper limit, the formability of the laminate is excellent and the adhesion to the substrate is improved. In addition, higher oxygen barrier properties can be obtained under high humidity.
  • the resin composition may contain other components in addition to the above-mentioned polyaspartic acid and inorganic components, depending on the intended purpose.
  • the resin composition may further contain a modifier.
  • the modifier include a coupling agent, a silane compound, an acid anhydride and the like.
  • the resin composition contains these modifiers, for example, when the layered clay mineral is contained as an inorganic component, the wettability of the layered clay mineral is improved and the dispersibility in the resin composition is improved. Can be done.
  • the modifier one type may be used alone, or a plurality of types may be used in combination.
  • the coupling agent include a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, an aluminum coupling agent and the like.
  • the resin composition may contain a solvent depending on the intended use.
  • the solvent include organic solvents such as methyl ethyl ketone, acetone, ethyl acetate, butyl acetate, toluene, dimethylformamide, acetonitrile, methyl isobutyl ketone, methanol, ethanol, propanol, methoxypropanol, cyclohexanone, methyl cellosolve, ethyl diglycol acetate, and the like.
  • examples thereof include propylene glycol monomethyl ether acetate.
  • the type and amount of the solvent may be appropriately selected depending on the intended use.
  • the resin composition may contain various additives (excluding the above-mentioned polyaspartic acid, inorganic components, and compounds corresponding to modifiers) as long as the effects of the present invention are not impaired.
  • Additives include, for example, organic fillers, inorganic fillers, stabilizers (antioxidants, heat stabilizers, UV absorbers, etc.), plasticizers, antistatic agents, lubricants, antiblocking agents, colorants, crystal nucleating agents, etc. Examples thereof include oxygen scavengers (compounds having an oxygen scavenging function), tackifiers and the like. These various additives are used alone or in combination of two or more.
  • Preferred embodiments of the method of using the resin composition include use in gas barrier materials, coating materials, adhesives and the like.
  • the resin composition of the present invention can be used as a gas barrier material or a coating material.
  • the resin composition of the present invention has adhesive performance, it can be used as an adhesive.
  • Gas barrier material Since the resin composition of the present invention is excellent in water vapor barrier property and oxygen barrier property, it can be suitably used as a gas barrier material.
  • the gas barrier material may be any material containing the above-mentioned resin composition.
  • the resin composition of the present invention can be suitably used as a coating material.
  • the coating material may be any material containing the above resin composition.
  • the form of the coating material is not limited as long as it satisfies various properties as a barrier coating material.
  • Adhesive When the resin composition of the present invention has adhesive performance, it can be suitably used as an adhesive.
  • the adhesive may be any one containing the above resin composition.
  • the form of the adhesive is not particularly limited, and it may be a liquid or paste-like adhesive, or it may be a solid adhesive. Since the resin composition of the present invention has excellent gas barrier properties, this adhesive can be suitably used as an adhesive for gas barriers.
  • a liquid or pasty adhesive it may be a one-component adhesive or a two-component adhesive with a separate curing agent.
  • the method of use is not particularly limited, but it may be applied to one adhesive surface, then the other adhesive surface may be bonded and adhered, and after being injected into the interface of the adhesive surface, the adhesive may be used. It may be glued.
  • an adhesive formed into a powder, a chip, or a sheet may be placed at the interface of the adhesive surface and thermally melted to adhere and cure.
  • the resin composition of the present invention is not particularly limited and can be produced according to a conventionally known method.
  • each component is well mixed in water or a water-soluble solvent such as methyl alcohol, ethyl alcohol, isopropyl alcohol, acetone, and methyl ethyl ketone, and then stirred under the conditions of 20 ° C to 60 ° C for about 0.1 to 24 hours. And so on.
  • the molded product of the present invention can be obtained by molding the above-mentioned resin composition.
  • the molding method is arbitrary and may be selected in a timely manner depending on the intended use.
  • the molded product may be made of a resin composition or may be made of a cured product of the resin composition. Further, as long as the molded body is formed by molding a resin composition, there is no particular limitation on whether or not the molded body itself is a self-supporting film.
  • the shape of the molded body is not limited, and may be, for example, a plate or sheet having a film thickness of more than 250 ⁇ m, or a film having a film thickness of 250 ⁇ m or less, and has a three-dimensional shape. It may be coated on a base material, or may be molded in a form existing between the base materials.
  • the resin composition is molded by using, for example, an extrusion molding method, a flat press, a deformed extrusion molding method, a blow molding method, a compression molding method, a vacuum molding method, an injection molding method, or the like. There is a way to do it.
  • an extrusion molding method for example, melt extrusion method, solution casting method, inflation film molding, cast molding, extrusion lamination molding, calendar molding, sheet molding, fiber molding, blow molding, injection molding, rotation molding, Coating molding can be mentioned.
  • the resin composition is cured by heat or active energy rays
  • the resin composition may be molded by using various curing methods using heat or active energy rays.
  • the resin composition is liquid, it may be molded by coating.
  • the coating method include a spray method, a spin coating method, a dip method, a roll coating method, a blade coating method, a doctor roll method, a doctor blade method, a curtain coating method, a slit coating method, a screen printing method, an inkjet method, and a dispense method. Can be mentioned.
  • the molded product of the present invention exhibits excellent gas barrier properties (water vapor barrier properties and oxygen barrier properties).
  • the molded product of the present invention is excellent in oxygen barrier property, especially in the medium humidity range (barrier measurement under 75% humidity RH condition).
  • the oxygen permeability of the molded product under a humidity of 75% RH condition is preferably 15 cc / m 2 / day / atm or less, more preferably 5 cc / m 2 / day / atm or less, still more preferably 2 cc / m 2 . It is less than / day / atm.
  • a preferred embodiment using the resin composition of the present invention includes a laminate having a coating layer containing the above-mentioned resin composition on a substrate.
  • the laminated body may have a two-layer structure or may have a three-layer structure or more.
  • the material of the base material is not particularly limited and may be appropriately selected depending on the intended use. Examples thereof include wood, metal, resin film, paper, silicon, modified silicon and the like, and a base material obtained by joining different materials. It may be.
  • the shape of the base material is not particularly limited, and may be any shape depending on the purpose, such as a flat plate, a sheet shape, or a three-dimensional shape having a curvature on the entire surface or a part thereof. Further, there are no restrictions on the hardness, transparency, etc. of the base material.
  • the resin film to be used may be appropriately selected according to the purpose.
  • the outermost layer is a thermoplastic resin film selected from polyethylene terephthalate (hereinafter abbreviated as PET), biaxially stretched polypropylene (hereinafter abbreviated as OPP), and polyamide, and the innermost layer is unstretched.
  • PET polyethylene terephthalate
  • OPP biaxially stretched polypropylene
  • polyamide polyamide
  • the innermost layer is unstretched.
  • CPP polypropylene
  • LLDPE low-density polyethylene film
  • thermoplastic resin film to be formed consists of three layers using a thermoplastic resin film to be formed, a thermoplastic resin film to form an intermediate layer selected from OPP, PET and polyamide, and a thermoplastic resin film to form an innermost layer selected from CPP and LLDPE.
  • thermoplastic resin film examples thereof include a composite film and a film having more layers than this.
  • PET film when PET using ethylene glycol based on a non-petroleum-derived raw material is used as a raw material, the plant-derived content of the entire laminate can be increased, and the laminate is more environmentally friendly. It is especially preferable because you can get a body.
  • the surface of the laminate may be subjected to various surface treatments such as flame treatment and corona discharge treatment, if necessary, so that an adhesive layer without defects such as film breakage and repelling is formed.
  • the thickness of the base material is not particularly limited and is appropriately selected depending on the intended use of the laminate of the present invention, but is preferably 0. It is 1 to 500 ⁇ m, more preferably 1 to 300 ⁇ m, and even more preferably 10 to 200 ⁇ m.
  • the thickness of the coating layer is not particularly limited and is appropriately selected depending on the application in which the laminate of the present invention is used, but from the viewpoint of more reliably obtaining the gas barrier property of the laminate, it is 0.05 ⁇ m or more. It is preferable to do so.
  • the upper limit of the thickness of the coating layer is not particularly limited, but is preferably about 0.5 to 5 ⁇ m from the viewpoint of economic efficiency and the like.
  • the laminate of the present invention exhibits excellent gas barrier properties (water vapor barrier properties and oxygen barrier properties).
  • the laminate of the present invention is excellent in oxygen barrier property, especially in the medium humidity range (barrier measurement under 75% humidity RH condition).
  • the oxygen permeability of the laminate under 75% RH humidity conditions is preferably 15 cc / m 2 / day / atm or less, more preferably 5 cc / m 2 / day / atm or less, still more preferably 2 cc / m 2 . It is less than / day / atm.
  • the laminate may be provided with a coating layer containing the above-mentioned resin composition, and the coating layer may be formed by direct coating or direct molding on the substrate, or the molded body of the resin composition may be laminated. May be good.
  • the application method is not particularly limited, and the spray method, spin coating method, dip method, roll coating method, blade coating method, doctor roll method, doctor blade method, curtain coating method, slit coating method, screen printing Examples include the method and the inkjet method.
  • direct molding in-mold molding, insert molding, vacuum forming, extrusion laminating molding, press molding and the like can be mentioned.
  • the laminate may be obtained by applying a substrate precursor to a cured product of the resin composition and curing it, and the substrate precursor or the resin composition is in an uncured or semi-cured state. It may be obtained by curing after adhering with.
  • the precursor of the base material is not particularly limited, and examples thereof include various curable resin compositions.
  • the resin composition of the present invention does not require a post-treatment step of a crosslinking reaction when forming a laminate. When the resin composition of the present invention is used, a laminate can be obtained in a simpler process.
  • a film in which a vapor-deposited layer of a metal such as aluminum or a metal oxide such as silica or alumina is laminated, polyvinyl alcohol, or ethylene / vinyl alcohol are used together.
  • a barrier film containing a gas barrier layer such as a polymer or vinylidene chloride can be used in combination to impart higher gas barrier properties.
  • the coating layer is reinforced to impart extremely high gas barrier properties. Can be done.
  • Gases that can be blocked by the laminate of the present invention include oxygen, inert gases such as carbon dioxide, nitrogen and argon, alcohol components such as methanol, ethanol and propanol, phenols such as phenol and cresol, and low molecules.
  • oxygen inert gases such as carbon dioxide, nitrogen and argon
  • alcohol components such as methanol, ethanol and propanol
  • phenols such as phenol and cresol
  • low molecules examples thereof include aroma components composed of compounds such as soy sauce, sauce, miso, lemonen, menthol, methyl salicylate, coffee, cocoa shampoo, and rinse.
  • the laminate of the present invention provided with the resin composition of the present invention on a substrate and the molded body of the present invention obtained by molding the resin composition of the present invention are excellent in gas barrier properties, particularly oxygen barrier properties. It can be suitably used in various fields such as electric / electronic parts, automobile parts, mechanical parts, and structural parts. It can also be applied to packaging applications such as foods, pharmaceuticals, and electronic members. Preferred embodiments of applying the laminate include, for example, packaging materials and barrier paper.
  • Packaging material The resin composition of the present invention and the laminate having the resin composition can be used as a packaging material used for packaging foods and the like.
  • Packaging materials used for packaging foods and the like are required to have functions such as protection of contents, retort resistance, heat resistance, transparency, and processability.
  • the gas barrier function is especially important for maintaining the quality of the contents.
  • the laminate of the present invention can be used as a barrier paper as a paper material having a barrier property.
  • a barrier paper having a coating layer formed on a paper substrate by coating or impregnating the paper substrate in the form of an aqueous solution or an aqueous dispersion of a resin composition shall be applied to various paper sheets and paper containers. Can be done.
  • it can be used as a barrier paper as a paper packaging material for acceptable foods such as dry food and coffee, or as a barrier paper as a paper packaging material for non-appropriate foods such as powder detergent.
  • an aqueous solution, an aqueous emulsion, or an aqueous dispersion containing the resin composition of the present invention on a paper substrate for example, air knife coating, bar coating, roll coating, gravure coating, cast coating, blade Examples include coating, gate roll coating, kiss roll coating, dipping method, spray coating and the like.
  • the resin composition of the present invention can be applied to or impregnated into a paper substrate, and further, for example, by impregnating with a size press, the inside of the paper substrate can be impregnated.
  • the obtained product was washed 4 times with 400 parts of distilled water and then dried under reduced pressure at 80 ° C. for 24 hours to obtain 72 parts of porris succinimide powder.
  • the weight average molecular weight of the obtained succinimide was 64,000.
  • the acid value was 470 mg-KOH / g.
  • the weight average molecular weight of polyaspartic acid was 100,000.
  • the acid value was measured according to the acid value measuring method described in JIS-K0070.
  • ZnO (manufactured by Sakai Chemical Industry Co., Ltd., FINEX-50) with a primary particle diameter of 20 nm and distilled water: 700 g are mixed, and the diameter is 0.3 mm in a bead mill (manufactured by Ashizawa Finetech Co., Ltd .: Labostar Mini LMZ015). After dispersion treatment using the zirconia beads of No. 1 for 1 hour, the beads were sieved to obtain a ZnO dispersion having a solid content concentration of 30%. The particle size of ZnO in this dispersion was 88 nm.
  • Example 1 To 100 parts of the aqueous solution of polyaspartic acid (concentration 14.3% by weight) obtained in the production example, 280 parts of an aqueous dispersion (concentration 4%) of sodium-type montmorillonite (Kunipia F manufactured by Kunimine Industry Co., Ltd.) was added. The mixture was stirred and held for 1 hour to prepare a coating liquid. Apply this coating solution to the corona-treated surface of a 12 ⁇ m PET film (E-5100 manufactured by Toyobo Co., Ltd.) using a bar coater so that the coating thickness becomes 2 ⁇ m after drying, and immediately after coating, a dryer at 80 ° C. It was heat-treated in it for 2 minutes.
  • a 12 ⁇ m PET film E-5100 manufactured by Toyobo Co., Ltd.
  • the oxygen permeability was measured.
  • the oxygen permeability is measured according to JIS-K7126 (isopressure method) at a temperature of 23 ° C, 0% RH, and using an oxygen permeability measuring device "OX-TRAN1 / 50" manufactured by MOCON. The test was carried out at a temperature of 23 ° C. and an atmosphere of 75% RH. In addition, RH represents relative humidity.
  • the measurement results of the oxygen permeability of the obtained laminated film are shown in Table 1 below.
  • Example 2 ⁇ Example 2> In Example 1, 280 parts of an aqueous dispersion (concentration 4%) of sodium-type montmorillonite (Kunipia F, manufactured by Kunimine Industry Co., Ltd.) was used as an aqueous dispersion (concentration) of lithium-type montmorillonite (Kunipia M, manufactured by Kunimine Industry Co., Ltd.). 4%) The laminated film of Example 2 was obtained by the same method except that it was changed to 280 parts. The montmorillonite content at this time is 44 wt% with respect to the total solid content. The measurement results of the oxygen permeability of the obtained laminated film are shown in Table 1 below.
  • Example 3 In Example 1, an aqueous dispersion (concentration 4%) of sodium-type montmorillonite (Kunipia F, manufactured by Kunimine Industry Co., Ltd.) and an aqueous dispersion (concentration 4%) of lithium-type montmorillonite (Kunipia M, manufactured by Kunimine Industry Co., Ltd.) were used. )
  • the laminated film of Example 3 was obtained by the same method except that it was changed to 154 parts.
  • the montmorillonite content at this time is 30 wt% with respect to the total solid content.
  • the measurement results of the oxygen permeability of the obtained laminated film are shown in Table 1 below.
  • Example 4 In Example 1, an aqueous dispersion (concentration 4%) of sodium-type montmorillonite (Kunipia F, manufactured by Kunimine Industry Co., Ltd.) and an aqueous dispersion (concentration 4%) of lithium-type montmorillonite (Kunipia M, manufactured by Kunimine Industry Co., Ltd.) were used. )
  • the laminated film of Example 4 was obtained by the same method except that it was changed to 357 parts.
  • the montmorillonite content at this time is 50 wt% with respect to the total solid content.
  • the measurement results of the oxygen permeability of the obtained laminated film are shown in Table 1 below.
  • Example 5 Seven parts of the ZnO dispersion (concentration: 30 wt%) obtained in the preparation example was mixed with 100 parts of an aqueous solution of polyaspartic acid (concentration: 10% by weight), and the mixture was stirred and held for 30 minutes to prepare a coating liquid. Apply this coating solution to the corona-treated surface of a 12 ⁇ m PET film (E-5100 manufactured by Toyobo Co., Ltd.) using a bar coater so that the coating thickness becomes 2 ⁇ m after drying, and immediately after coating, a dryer at 80 ° C. It was heat-treated in it for 2 minutes. As a result, a molded body of each resin composition was formed on the PET film, and the laminated film of Example 5 was obtained. The ZnO content at this time is 60 mol% with respect to the carboxylic acid group of polyaspartic acid.
  • Table 1 The measurement results of the oxygen permeability of the obtained laminated film are shown in Table 1 below.
  • Example 6 3.5 parts of the ZnO dispersion (concentration: 30 wt%) obtained in the preparation example was mixed with 100 parts of an aqueous solution of polyaspartic acid (concentration: 10% by weight), and the mixture was stirred and held for 30 minutes, and then sodium-type montmorillonite (concentration: 30 wt%). 3 parts of Kunipia F) powder manufactured by Kunimine Kogyo Co., Ltd. was slowly added and stirred and held for 3 hours to prepare a uniformly dispersed coating liquid.
  • Kunipia F Kunimine Kogyo Co., Ltd.
  • Example 7 In Example 6, the same method was used except that 3 parts of sodium-type montmorillonite (Kunipia F, manufactured by Kunimine Industry Co., Ltd.) was changed to 1 part of lithium-type montmorillonite (Kunipia M, manufactured by Kunimine Industry Co., Ltd.). , The laminated film of Example 7 was obtained. The montmorillonite content at this time is 8 wt% with respect to the total solid content, and the ZnO content is 30 mol% with respect to the carboxylic acid group of polyaspartic acid. The measurement results of the oxygen permeability of the obtained laminated film are shown in Table 1 below.
  • ⁇ Comparative Example 1> An aqueous solution of polyaspartic acid (concentration 14.3% by weight) obtained in the production example was used as a coating liquid, and a 12 ⁇ m PET film (E-5100 manufactured by Toyobo Co., Ltd.) was dried using a bar coater on the corona-treated surface. The coating was applied so that the coating thickness was 2 ⁇ m, and immediately after the coating, heat treatment was performed in a dryer at 80 ° C. for 2 minutes. As a result, a molded product of each resin composition was formed on the PET film, and the laminated film of Comparative Example 1 was obtained. The measurement results of the oxygen permeability of the obtained laminated film are shown in Table 1 below.
  • the laminated film formed by using the resin composition according to the present invention exhibits excellent oxygen barrier properties (particularly oxygen barrier properties in the medium humidity range).
  • the laminated film of Comparative Example 1 containing no inorganic component according to the present invention was inferior in oxygen barrier property in the medium humidity range.
  • the laminated films of Examples 1 to 4 do not require a cross-linking step when forming the laminated film, and the laminated film can be formed by a simple step.
  • a crosslinked structure is formed in the coating liquid under low temperature conditions when forming the laminated film. Therefore, in the laminated films of Examples 5 to 7, it is not necessary to separately perform a cross-linking step (post-treatment step of the cross-linking reaction) after applying the coating liquid, and the laminated film can be formed by a simple step. Is.

Abstract

Provided is a resin composition containing poly(aspartic acid), which is a biodegradable material. This resin composition has excellent gas-barrier properties and, when used in layered-product formation, does not especially require a post-treatment step for crosslinking reaction. Specifically, this resin composition comprises poly(aspartic acid) and an inorganic component. The inorganic component is preferably an unorganized layered clay mineral and/or a metal oxide. The layered clay mineral preferably includes montmorillonite. The metal oxide preferably includes zinc oxide.

Description

樹脂組成物、成形体、積層体、ガスバリア材、コーティング材及び接着剤Resin compositions, molded bodies, laminates, gas barrier materials, coating materials and adhesives
 本発明は、樹脂組成物、成形体、積層体、ガスバリア材、コーティング材及び接着剤に関する。 The present invention relates to a resin composition, a molded body, a laminated body, a gas barrier material, a coating material and an adhesive.
 食品等の包装に用いられる軟包装材料分野では、内容物の品質保持(食の安全性)やフードロス削減という目的から高いバリア性が要求されている。
 また、包装パッケージが内容物保護等で有用である一方、内容物が消費された後は不要となり廃棄され、廃プラスチック問題、海洋汚染、環境・食品汚染といった問題を引き起こしている。本問題の深刻化に伴い、パッケージ業界では環境に配慮した新素材開発が活発化している。その中で、バイオマス資源を原料とした高生分解性のプラスチックの利用が拡大してきている。
 ポリアスパラギン酸は生分解性材料であり上記課題に対応し得る材料である。そこで、ポリアスパラギン酸を用いたガスバリアフィルムの提供が望まれている。
 ところで、従来、水系樹脂のバリア材料としては、ポリビニルアルコール(PVA)等が知られているが、樹脂の親水性が高く高湿度下のバリア性が発現されないため、各種の改良が試みられている。
 例えば、湿度依存性を低減するため、ポリアミン及び/又はポリオール等の架橋剤を用いて有機架橋処理されたガスバリアフィルム(例えば、特許文献1参照)、ポリアミノ酸などの非水溶性生分解性樹脂と、層状珪酸塩とを含む非水溶性生分解性樹脂組成物が提案されている(例えば、特許文献2参照)。
In the field of flexible packaging materials used for packaging foods and the like, high barrier properties are required for the purpose of maintaining the quality of contents (food safety) and reducing food loss.
In addition, while packaging is useful for protecting the contents, it is no longer needed after the contents are consumed and is discarded, causing problems such as waste plastic problems, marine pollution, and environmental / food contamination. As this problem becomes more serious, the packaging industry is actively developing new environmentally friendly materials. Under these circumstances, the use of highly biodegradable plastics made from biomass resources is expanding.
Polyaspartic acid is a biodegradable material and is a material that can meet the above-mentioned problems. Therefore, it is desired to provide a gas barrier film using polyaspartic acid.
By the way, conventionally, polyvinyl alcohol (PVA) or the like is known as a barrier material for an aqueous resin, but since the hydrophilicity of the resin is high and the barrier property under high humidity is not exhibited, various improvements are being attempted. ..
For example, a gas barrier film (for example, see Patent Document 1) organically crosslinked with a crosslinking agent such as polyamine and / or a polyol in order to reduce humidity dependence, and a water-insoluble biodegradable resin such as polyamino acid. , A water-insoluble biodegradable resin composition containing a layered silicate has been proposed (see, for example, Patent Document 2).
特開2005-225940号公報Japanese Unexamined Patent Publication No. 2005-225940 特開2003-113326号公報Japanese Patent Application Laid-Open No. 2003-113326
 上記引用文献1には、ガスバリアフィルムを製膜する際に用いられるポリカルボン酸として、カルボキシル基含有ポリアミノ酸が挙げられており、係るポリアミノ酸としてポリアスパラギン酸が挙げられている。しかし、引用文献1には、ポリアスパラギン酸を用いたガスバリアフィルムの具体例は全くない。引用文献1に記載の内容からは、より優れたガスバリア性を有するポリアスパラギン酸を用いたガスバリアフィルムを提供することはできない。
 さらに、引用文献1では、ガスバリアフィルムは、ポリアミン又はポリオールの架橋剤を用いる必要があり、ガスバリアフィルムを製膜するため、塗布液を塗布した後、架橋工程(架橋反応の後処理工程)を行う必要がある。架橋反応の後処理工程を必要とする製膜方法は、製造時の工程が増えることや熱架橋反応時の温度が高いなど課題が残されており、架橋反応の後処理工程が不要であれば、より簡便な工程でガスバリアフィルムが得られるため実用上好ましい。
In the above-mentioned Cited Document 1, a carboxyl group-containing polyamino acid is mentioned as a polycarboxylic acid used for forming a gas barrier film, and polyaspartic acid is mentioned as the polyamino acid. However, there is no specific example of a gas barrier film using polyaspartic acid in Cited Document 1. From the contents described in Cited Document 1, it is not possible to provide a gas barrier film using polyaspartic acid having a better gas barrier property.
Further, in Cited Document 1, it is necessary to use a cross-linking agent of a polyamine or a polyol for the gas barrier film, and in order to form a film of the gas barrier film, a cross-linking step (post-treatment step of the cross-linking reaction) is performed after applying the coating liquid. There is a need. The film-forming method that requires a post-treatment step for the cross-linking reaction has problems such as an increase in manufacturing steps and a high temperature during the thermal cross-linking reaction, and if the post-treatment step for the cross-linking reaction is unnecessary. , It is practically preferable because a gas barrier film can be obtained by a simpler process.
 上記引用文献2には、非水溶性生分解性樹脂としてポリアミノ酸が挙げられている。しかし、ポリアスパラギン酸は水溶性生分解性樹脂であるため、引用文献2に記載の内容からは、より優れたガスバリア性を有するポリアスパラギン酸を用いた樹脂組成物を提供することはできない。
 さらに、引用文献2では、樹脂組成物中に有機化処理された層状粘土鉱物を配合している。しかし、有機化処理された層状粘土鉱物は粘土のパッキング性が低下することが知られており、ガスバリア性改善の観点からは改善の余地があった。
In Cited Document 2 above, polyamino acids are mentioned as water-insoluble biodegradable resins. However, since polyaspartic acid is a water-soluble biodegradable resin, it is not possible to provide a resin composition using polyaspartic acid having a better gas barrier property from the contents described in Cited Document 2.
Further, in Cited Document 2, a layered clay mineral which has been organically treated is blended in the resin composition. However, it is known that the organically treated layered clay mineral has a reduced packing property of clay, and there is room for improvement from the viewpoint of improving the gas barrier property.
 そこで、本発明は、生分解性材料であるポリアスパラギン酸を含有する樹脂組成物であって、優れたガスバリア性を有し、さらに積層体を形成する際の架橋反応の後処理工程を特に必要としない樹脂組成物を提供することを目的とする。 Therefore, the present invention is a resin composition containing polyaspartic acid, which is a biodegradable material, has excellent gas barrier properties, and further requires a post-treatment step of a crosslinking reaction when forming a laminate. It is an object of the present invention to provide a resin composition which does not.
 本発明者らは、上記課題を解決するために鋭意検討した結果、ポリアスパラギン酸と、無機成分とを含有する、樹脂組成物を用いることによって、上記課題が解決されることを見出し、本発明を完成させるに至った。 As a result of diligent studies to solve the above problems, the present inventors have found that the above problems can be solved by using a resin composition containing polyaspartic acid and an inorganic component, and the present invention has been made. Has been completed.
 すなわち、本発明は、以下の態様を包含するものである。
[1]ポリアスパラギン酸と、無機成分とを含有する、樹脂組成物。
[2]前記無機成分が、有機化処理されていない層状粘土鉱物および/または金属酸化物である、[1]に記載の樹脂組成物。
[3]前記層状粘土鉱物が、モンモリロナイトを含む、[2]に記載の樹脂組成物。
[4]前記金属酸化物が、酸化亜鉛を含む、[2]に記載の樹脂組成物。
[5]前記無機成分が、前記有機化処理されていない層状粘土鉱物を含む場合、前記層状粘土鉱物の含有量が、前記樹脂組成物の全固形分量に対して、5~70質量%である、[2]~[4]のいずれかに記載の樹脂組成物。
[6]前記無機成分が、前記金属酸化物を含む場合、前記金属酸化物の含有量が、前記ポリアスパラギン酸のカルボン酸基のモル当量数に対して、10~65mol%である、[2]~[5]のいずれかに記載の樹脂組成物。
[7][1]~[6]のいずれかに記載の樹脂組成物の成形体。
[8]基材と、[1]~[6]のいずれかに記載の樹脂組成物を基材上に塗布してなる被覆層と、を備える積層体。
[9]包装材料として用いられる、[8]に記載の積層体。
[10][1]~[6]のいずれかに記載の樹脂組成物を含むガスバリア材。
[11][1]~[6]のいずれかに記載の樹脂組成物を含むコーティング材。
[12][1]~[6]のいずれかに記載の樹脂組成物を含む接着剤。
That is, the present invention includes the following aspects.
[1] A resin composition containing polyaspartic acid and an inorganic component.
[2] The resin composition according to [1], wherein the inorganic component is a layered clay mineral and / or a metal oxide that has not been organically treated.
[3] The resin composition according to [2], wherein the layered clay mineral contains montmorillonite.
[4] The resin composition according to [2], wherein the metal oxide contains zinc oxide.
[5] When the inorganic component contains the non-organized layered clay mineral, the content of the layered clay mineral is 5 to 70% by mass with respect to the total solid content of the resin composition. , [2] to any one of [4].
[6] When the inorganic component contains the metal oxide, the content of the metal oxide is 10 to 65 mol% with respect to the molar equivalent number of the carboxylic acid group of the polyaspartic acid [2]. ] To [5].
[7] The molded product of the resin composition according to any one of [1] to [6].
[8] A laminate comprising a base material and a coating layer formed by applying the resin composition according to any one of [1] to [6] onto the base material.
[9] The laminate according to [8], which is used as a packaging material.
[10] A gas barrier material containing the resin composition according to any one of [1] to [6].
[11] A coating material containing the resin composition according to any one of [1] to [6].
[12] An adhesive containing the resin composition according to any one of [1] to [6].
 本発明によれば、生分解性材料であるポリアスパラギン酸を含有する樹脂組成物であって、優れたガスバリア性を有し、さらに積層体を製造する際の架橋反応の後処理工程を必要としない樹脂組成物を提供することができる。 According to the present invention, a resin composition containing polyaspartic acid, which is a biodegradable material, has excellent gas barrier properties, and further requires a post-treatment step of a crosslinking reaction when producing a laminate. It is possible to provide a resin composition that does not.
 以下、本発明について詳細に説明する。なお、以下に記載する構成要件の説明は、本発明を説明するための例示であり、本発明はこれらの内容に限定されるものではない。 Hereinafter, the present invention will be described in detail. The description of the constituent elements described below is an example for explaining the present invention, and the present invention is not limited to these contents.
(樹脂組成物)
 本発明の樹脂組成物は、ポリアスパラギン酸と、無機成分とを含有する。
 本発明の樹脂組成物を用いて、架橋反応の後処理工程を行うことなく、積層体を得ることができる。さらに、得られる積層体はガスバリア性に優れる。
(Resin composition)
The resin composition of the present invention contains polyaspartic acid and an inorganic component.
Using the resin composition of the present invention, a laminate can be obtained without performing a post-treatment step of a crosslinking reaction. Further, the obtained laminate is excellent in gas barrier property.
<ポリアスパラギン酸>
 ポリアスパラギン酸は樹脂組成物の主材料として用いられ、樹脂組成物および樹脂組成物を用いて形成される積層体に成膜性、耐水性、耐久性、物理的強度、ガスバリア性、生分解性等を付与する。
<Polyaspartic acid>
Polyaspartic acid is used as the main material of the resin composition, and the resin composition and the laminate formed by using the resin composition have film forming property, water resistance, durability, physical strength, gas barrier property, and biodegradability. Etc. are given.
 本発明にかかるポリアスパラギン酸は、遊離状態のポリアスパラギン酸及びそれから誘導されたポリアスパラギン酸の塩の両方を含む。ポリアスパラギン酸の塩としては、特に限定されず、例えばナトリウム塩、カリウム塩等のアルカリ金属塩、ジエタノールアミン塩、トリエタノールアミン塩等の有機アミン塩又は塩基性アミノ酸塩などを用いてもよい。 The polyaspartic acid according to the present invention contains both a free state polyaspartic acid and a salt of polyaspartic acid derived from the free state polyaspartic acid. The salt of polyaspartic acid is not particularly limited, and for example, an alkali metal salt such as a sodium salt or a potassium salt, an organic amine salt such as a diethanolamine salt or a triethanolamine salt, or a basic amino acid salt may be used.
 ポリアスパラギン酸は、従来公知の方法により製造されたポリアスパラギン酸を用いることができる。ポリアスパラギン酸の製造方法としてはアスパラギン酸を加熱重合する方法が挙げられる。 As the polyaspartic acid, polyaspartic acid produced by a conventionally known method can be used. Examples of the method for producing polyaspartic acid include a method of heat-polymerizing aspartic acid.
 ポリアスパラギン酸の含有量としては、特に制限されるものではないが、生分解性および成形性などの観点から、樹脂組成物の全固形分量に対して、好ましくは30質量%以上、より好ましくは40質量%以上、さらに好ましくは50質量%以上であり、好ましくは95質量%以下、より好ましくは80質量%以下、さらに好ましく70質量%以下である。 The content of polyaspartic acid is not particularly limited, but is preferably 30% by mass or more, more preferably 30% by mass or more, based on the total solid content of the resin composition from the viewpoint of biodegradability and moldability. It is 40% by mass or more, more preferably 50% by mass or more, preferably 95% by mass or less, more preferably 80% by mass or less, still more preferably 70% by mass or less.
<無機成分>
 本発明にかかる無機成分としては、層状粘土鉱物および/または金属酸化物を用いるのが好ましい。
 本発明は、無機成分として上記のものが少なくとも1種、樹脂組成物中に含有されていればよく、それぞれ単独または両者を組み合わせて含有されていてもよい。無機成分として層状粘土鉱物と金属酸化物とを組み合わせて樹脂組成物に含有させた場合、比較的高価な金属酸化物の含有量を抑えつつ、本発明の効果を十分に発揮することができる。
<Inorganic component>
As the inorganic component according to the present invention, it is preferable to use a layered clay mineral and / or a metal oxide.
In the present invention, at least one of the above as an inorganic component may be contained in the resin composition, and each of them may be contained alone or in combination. When a layered clay mineral and a metal oxide are combined and contained in a resin composition as an inorganic component, the effect of the present invention can be sufficiently exhibited while suppressing the content of a relatively expensive metal oxide.
<<層状粘土鉱物>>
 本発明の樹脂組成物は、水分散性である層状粘土鉱物を含有することにより、層状粘土鉱物が樹脂に高分散して複合化し、優れたガスバリア性を有する。
 層状粘土鉱物の具体例としては、例えばカオリナイト-蛇紋族粘土鉱物(ハロイサイト、カオリナイト、エンデライト、ディッカイト、ナクライト等、アンチゴライト、クリソタイル等)、パイロフィライト-タルク族(パイロフィライト、タルク、ケロライ等)、スメクタイト族粘土鉱物(モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、スチブンサイト等)、バーミキュライト族粘土鉱物(バーミキュライト等)、雲母又はマイカ族粘土鉱物(白雲母、金雲母等の雲母、マーガライト、テトラシリリックマイカ、テニオライト等)、緑泥石族(クッケアイト、スドーアイト、クリノクロア、シャモサイト、ニマイト等)等が挙げられる。これらのなかでも、水溶液中でへき開(剥離)し易いという観点から、スメクタイト族粘土鉱物(以下スメクタイトと略す)が好ましく、モンモリロナイトがより好ましい。層状粘土鉱物は、1種を単独で用いてよく、複数種を組み合わせて用いてもよい。
<< Layered clay minerals >>
The resin composition of the present invention contains a layered clay mineral that is water-dispersible, so that the layered clay mineral is highly dispersed and complexed in the resin, and has excellent gas barrier properties.
Specific examples of layered clay minerals include kaolinite-serpentine clay minerals (haloisite, kaolinite, enderite, dikite, naphthyl, etc., antigolite, chrysotile, etc.), pyrophyllite-talc (pyrophyllite, etc.). Tarku, Kerorai, etc.), Smectite clay minerals (Montmorillonite, Byderite, Nontronite, Saponite, Hectrite, Sauconite, Stevensite, etc.), Vermiculite clay minerals (Vermiculite, etc.), Mica or Mica clay minerals (White mica, gold) Examples include mica such as mica, margarite, tetrasilic mica, teniolite, etc.), green mudstones (cookate, sudowite, clinochloa, chamosite, nimite, etc.). Among these, smectite group clay minerals (hereinafter abbreviated as smectite) are preferable, and montmorillonite is more preferable, from the viewpoint of easy cleavage (peeling) in an aqueous solution. As the layered clay mineral, one kind may be used alone, or a plurality of kinds may be used in combination.
 層状粘土鉱物の層間カチオンは、特に制限されず、用いる層状粘土鉱物の種類に応じて適宜選択することができる。例えば、スメクタイトの層間カチオン(天然スメクタイトの場合、ほとんどがナトリウムである)をリチウムイオン、アンモニウムイオン、プロトン等に交換したスメクタイトであってもよい。本発明で好ましく用いられるスメクタイトとしては、例えば、ナトリウム型スメクタイト、リチウム型スメクタイト、アンモニウム型スメクタイト、プロトン型スメクタイト等が挙げられる。用いるスメクタイトの種類によっても変わるため特に制限されるものではないが、バリア性を向上させる観点からは、これらのなかでもナトリウム型スメクタイト、リチウムイオン型スメクタイトが好ましく、よりイオン半径の小さいリチウムイオン型スメクタイトがより好ましい傾向がある。 The interlayer cation of the layered clay mineral is not particularly limited and can be appropriately selected according to the type of the layered clay mineral used. For example, smectite may be obtained by exchanging the interlayer cation of smectite (mostly sodium in the case of natural smectite) with lithium ion, ammonium ion, proton or the like. Examples of smectites preferably used in the present invention include sodium-type smectites, lithium-type smectites, ammonium-type smectites, proton-type smectites and the like. It is not particularly limited because it varies depending on the type of smectite used, but from the viewpoint of improving the barrier property, sodium-type smectite and lithium-ion-type smectite are preferable, and lithium-ion-type smectite having a smaller ionic radius is preferable. Tends to be more preferable.
 スメクタイトのアンモニウムイオン当量、リチウムイオン当量、及び水素イオン当量の合計が、50~120meq/100gであってよい。スメクタイトのアンモニウムイオン当量、リチウムイオン当量、及び水素イオン当量の合計は、50meq/100g以上、80meq/100g以上、又は100meq/100g以上であってよく、120meq/100g以下、又は110meq/100g以下であってよい。スメクタイトのアンモニウムイオン当量は、1Nの塩化カリウム溶液に溶出してくる陽イオン量、リチウムイオン当量は、1Nの酢酸アンモニウム溶液に溶出してくる陽イオン量をそれぞれイオンクロマトグラフィーにより測定することで求めることができる。また、水素イオン当量はイオン交換前の陽イオン量とイオン交換後の陽イオン量の差から求めることができる。例えば、層間イオンがナトリウムであるモンモリトナイトを用いた場合は、イオン交換操作前後のモンモリロナイトから1Nの酢酸アンモニウム溶液に溶出してくるナトリウムイオン量をイオンクロマトグラフィー測定し、その差分から水素イオン当量を求めることができる。 The total of the ammonium ion equivalent, the lithium ion equivalent, and the hydrogen ion equivalent of smectite may be 50 to 120 meq / 100 g. The sum of the ammonium ion equivalent, the lithium ion equivalent, and the hydrogen ion equivalent of smectite may be 50 meq / 100 g or more, 80 meq / 100 g or more, or 100 meq / 100 g or more, and 120 meq / 100 g or less, or 110 meq / 100 g or less. It's okay. The ammonium ion equivalent of smectite is determined by measuring the amount of cations eluted in a 1N potassium chloride solution, and the lithium ion equivalent is determined by measuring the amount of cations eluted in a 1N ammonium acetate solution by ion chromatography. be able to. Further, the hydrogen ion equivalent can be obtained from the difference between the amount of cations before ion exchange and the amount of cations after ion exchange. For example, when montmorillonite whose interlayer ion is sodium is used, the amount of sodium ions eluted from montmorillonite before and after the ion exchange operation into a 1N ammonium acetate solution is measured by ion chromatography, and the hydrogen ion equivalent is measured from the difference. Can be asked.
 スメクタイトの層間カチオンをリチウムイオンに交換する方法としては、従来公知の方法も用いることができる。例えば天然のナトリウム型スメクタイトの分散液に、水酸化リチウム、塩化リチウム等のリチウム塩を添加し、陽イオン交換させる方法が挙げられる。分散液中に添加するリチウムの量を調節することで、得られるリチウム型スメクタイトの浸出陽イオン量に占めるリチウムイオンの量を適宜に調節することができる。また、リチウム型スメクタイトは、陽イオン交換樹脂をリチウムイオンにイオン交換した樹脂を用いたカラム法、又はバッチ法によっても得ることができる。 As a method for exchanging the interlayer cation of smectite with lithium ion, a conventionally known method can also be used. For example, a method of adding a lithium salt such as lithium hydroxide or lithium chloride to a dispersion of natural sodium-type smectite and exchanging cations can be mentioned. By adjusting the amount of lithium added to the dispersion, the amount of lithium ions in the amount of leached cations of the obtained lithium-type smectite can be appropriately adjusted. The lithium-type smectite can also be obtained by a column method or a batch method using a resin in which a cation exchange resin is ion-exchanged with lithium ions.
 層状粘土鉱物は、有機化処理した変性層状粘土鉱物を用いてもよいが、有機化処理されていない層状粘土鉱物を用いるのがより好ましい。
 従来、プラスチックなどの樹脂の耐熱性などを向上させることを目的として、層状粘土鉱物をフィラーとして樹脂に配合されてきた。しかし、水分散性の高い層状粘土鉱物などは、親水性であるため、疎水性の樹脂に対する親和性が低く、そのまま樹脂に高分散化して複合化することが困難である。そこで樹脂に層状粘土鉱物を複合化する場合は、通常、層状粘土鉱物を有機化処理により改質し、親水性/疎水性をコントロールした層状粘土鉱物を用いている。しかしながら、有機化処理された層状粘土鉱物は粘土のパッキング性が低下するため、ガスバリア性改善の観点からは適さない。また、有機化処理する工程を別途必要とし、製造時の工程が増える。
 本発明の樹脂組成物は、親水性のポリアスパラギン酸を含有しているため、樹脂に対する層状粘土鉱物の親和性が高い。このため、有機化処理していない層状粘土鉱物は、樹脂に高分散化して複合化することができる。したがって、本発明にかかる層状粘土鉱物としては、有機化処理されていない層状粘土鉱物を用いるのがより好ましい。
As the layered clay mineral, a modified layered clay mineral that has been organically treated may be used, but it is more preferable to use a layered clay mineral that has not been organically treated.
Conventionally, layered clay minerals have been blended into resins as fillers for the purpose of improving the heat resistance of resins such as plastics. However, since layered clay minerals having high water dispersibility are hydrophilic, they have a low affinity for hydrophobic resins, and it is difficult to disperse them in the resin as they are and to combine them. Therefore, when the layered clay mineral is compounded with the resin, the layered clay mineral is usually modified by an organic treatment to control the hydrophilicity / hydrophobicity. However, the organically treated layered clay mineral is not suitable from the viewpoint of improving the gas barrier property because the packing property of the clay is lowered. In addition, a separate step for organic treatment is required, which increases the number of manufacturing steps.
Since the resin composition of the present invention contains hydrophilic polyaspartic acid, the layered clay mineral has a high affinity for the resin. Therefore, the layered clay mineral that has not been organically treated can be highly dispersed and compounded in the resin. Therefore, as the layered clay mineral according to the present invention, it is more preferable to use a layered clay mineral that has not been organically treated.
 層状粘土鉱物の含有量は、樹脂組成物中の全固形分量に対し、好ましくは5質量%以上であり、より好ましくは10質量%以上、さらに好ましくは20質量%以上、特に好ましくは30質量以上であり、好ましくは70質量%以下、より好ましくは60質量%以下、さらに好ましくは50質量%以下である。層状粘土鉱物の含有量が上記下限以上であると、水蒸気バリア性及び酸素バリア性(例えば高湿度下での酸素バリア性)が優れたものとなる。一方、層状粘土鉱物の含有量が上記上限以下であると、積層体の成形性が優れたものとなり、かつ、基材への密着性が向上する。また、高湿度下においてより高いガスバリア性が得られる傾向がある。 The content of the layered clay mineral is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 20% by mass or more, and particularly preferably 30% by mass or more, based on the total solid content in the resin composition. It is preferably 70% by mass or less, more preferably 60% by mass or less, and further preferably 50% by mass or less. When the content of the layered clay mineral is at least the above lower limit, the water vapor barrier property and the oxygen barrier property (for example, the oxygen barrier property under high humidity) become excellent. On the other hand, when the content of the layered clay mineral is not more than the above upper limit, the formability of the laminated body is excellent and the adhesion to the substrate is improved. In addition, higher gas barrier properties tend to be obtained under high humidity.
<<金属酸化物>>
 本発明の樹脂組成物は、無機成分として金属酸化物を用いてもよい。水または水系溶剤等である塗布液中でポリアスパラギン酸と金属酸化物とを混合させることにより、塗布液中でポリアスパラギン酸のカルボン酸基と金属酸化物が架橋される。このため、本発明の樹脂組成物を用いて積層体を形成する際、塗布液を塗布した後、架橋工程(架橋反応の後処理工程)を別途行う必要がない。さらに、塗布液中での架橋反応における温度は20~60℃程度であり、架橋反応の後処理工程における温度(200℃程度以上)と比較して低い。このため、本発明の樹脂組成物を用いた積層体の形成方法は、簡便で製造効率に優れる。また、得られる積層体はガスバリア性に優れる。
<< Metal Oxide >>
The resin composition of the present invention may use a metal oxide as an inorganic component. By mixing polyaspartic acid and a metal oxide in a coating liquid such as water or an aqueous solvent, the carboxylic acid group of polyaspartic acid and the metal oxide are crosslinked in the coating liquid. Therefore, when forming a laminate using the resin composition of the present invention, it is not necessary to separately perform a cross-linking step (post-treatment step of the cross-linking reaction) after applying the coating liquid. Further, the temperature in the crosslinking reaction in the coating liquid is about 20 to 60 ° C., which is lower than the temperature in the post-treatment step of the crosslinking reaction (about 200 ° C. or higher). Therefore, the method for forming a laminate using the resin composition of the present invention is simple and excellent in production efficiency. In addition, the obtained laminate has excellent gas barrier properties.
 金属酸化物としては、ポリアスパラギン酸のカルボン酸基を架橋可能であれば特に制限されず、例えばアルカリ土類金属(マグネシウムMg,カルシウムCa、ストロンチウムSr,バリウムBa等)の酸化物、周期表8族金属(鉄Fe,ルテニウムRu等)の酸化物、周期表11族金属(銅Cu等)の酸化物、周期表12族金属(亜鉛Zn等)の酸化物、周期表13族金属(アルミニウムAl等)等の酸化物などが挙げられる。金属酸化物は、1種を単独で用いてよく、複数種を組み合わせて用いてもよい。 The metal oxide is not particularly limited as long as it can crosslink the carboxylic acid group of polyaspartic acid, and is, for example, an oxide of an alkaline earth metal (magnesium Mg, calcium Ca, strontium Sr, barium Ba, etc.), Periodic Table 8 Oxides of group metals (iron Fe, ruthenium Ru, etc.), oxides of group 11 metals of the periodic table (copper Cu, etc.), oxides of metals of group 12 of the periodic table (zinc Zn, etc.), metals of group 13 of the periodic table (aluminum Al) Etc.) and other oxides. As the metal oxide, one type may be used alone, or a plurality of types may be used in combination.
 上記のなかでも、樹脂組成物を構成するポリアスパラギン酸と反応しやすいという観点からイオン化傾向の高い金属が好ましく、ガスバリア性という観点から2価の金属酸化物が好ましい。本発明にかかる金属酸化物としては、酸化亜鉛(ZnO)、酸化マグネシウム(MgO)および酸化カルシウム(CaO)の少なくとも1種であることが好ましく、酸化亜鉛がより好ましい。 Among the above, a metal having a high ionization tendency is preferable from the viewpoint of easily reacting with polyaspartic acid constituting the resin composition, and a divalent metal oxide is preferable from the viewpoint of gas barrier property. The metal oxide according to the present invention is preferably at least one of zinc oxide (ZnO), magnesium oxide (MgO) and calcium oxide (CaO), and zinc oxide is more preferable.
 優れたガスバリア性を得る観点からは、金属酸化物は粒状で、その粒径は小さい方が好ましい。金属酸化物の粒径は、特に制限されるものではないが、平均粒子径が500nm以下10nm以上の微粒子である。特に好ましくは20nm~300nmの微粒子である。ここでの平均粒子径は、動的光散乱式粒径分布測定装置、例えばLB-500(堀場製作所製)を用いて測定することができる。 From the viewpoint of obtaining excellent gas barrier properties, it is preferable that the metal oxide is granular and the particle size is small. The particle size of the metal oxide is not particularly limited, but is fine particles having an average particle size of 500 nm or less and 10 nm or more. Particularly preferably, it is fine particles having a diameter of 20 nm to 300 nm. The average particle size here can be measured using a dynamic light scattering type particle size distribution measuring device, for example, LB-500 (manufactured by HORIBA, Ltd.).
 金属酸化物の含有量は、ポリアスパラギン酸のカルボン酸基のモル当量数に対して、好ましくは5mol%以上であり、より好ましくは10mol%以上、さらに好ましくは20mol%以上、特に好ましくは30mol%以上であり、好ましくは80mol%以下、より好ましくは70mol%以下、さらに好ましくは65mol%以下である。金属酸化物の含有量が上記下限以上であると、水蒸気バリア性及び酸素バリア性(例えば高湿度下での酸素バリア性)が優れたものとなる。一方、金属酸化物の含有量が上記上限以下であると、積層体の成形性が優れたものとなり、かつ、基材への密着性が向上する。また、高湿度下においてより高い酸素バリア性が得られる。 The content of the metal oxide is preferably 5 mol% or more, more preferably 10 mol% or more, still more preferably 20 mol% or more, and particularly preferably 30 mol%, based on the molar equivalent number of the carboxylic acid groups of polyaspartic acid. The above is preferably 80 mol% or less, more preferably 70 mol% or less, still more preferably 65 mol% or less. When the content of the metal oxide is at least the above lower limit, the water vapor barrier property and the oxygen barrier property (for example, the oxygen barrier property under high humidity) become excellent. On the other hand, when the content of the metal oxide is not more than the above upper limit, the formability of the laminate is excellent and the adhesion to the substrate is improved. In addition, higher oxygen barrier properties can be obtained under high humidity.
<その他の成分>
 樹脂組成物には、適宜目的に応じて、上記ポリアスパラギン酸や無機成分の他に、その他の成分を含有してもよい。
<Other ingredients>
The resin composition may contain other components in addition to the above-mentioned polyaspartic acid and inorganic components, depending on the intended purpose.
<<修飾剤>>
 樹脂組成物は、更に修飾剤を含有してもよい。修飾剤としては、例えば、カップリング剤、シラン化合物、酸無水物等が挙げられる。樹脂組成物がこれらの修飾剤を含有する場合、例えば、無機成分として層状粘土鉱物を含有していると、該層状粘土鉱物の濡れ性を向上させ、樹脂組成物への分散性を向上させることができる。修飾剤は、1種を単独で用いてよく、複数種を組み合わせて用いてもよい。
 カップリング剤としては、例えばシランカップリング剤、チタンカップリング剤、ジルコニウムカップリング剤、アルミカップリング剤等が挙げられる。
<< Modifier >>
The resin composition may further contain a modifier. Examples of the modifier include a coupling agent, a silane compound, an acid anhydride and the like. When the resin composition contains these modifiers, for example, when the layered clay mineral is contained as an inorganic component, the wettability of the layered clay mineral is improved and the dispersibility in the resin composition is improved. Can be done. As the modifier, one type may be used alone, or a plurality of types may be used in combination.
Examples of the coupling agent include a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, an aluminum coupling agent and the like.
<<溶剤>>
 樹脂組成物は、使用用途に応じて溶剤を含有してもよい。溶剤としては有機溶剤が挙げられ、例えばメチルエチルケトン、アセトン、酢酸エチル、酢酸ブチル、トルエン、ジメチルホルムアミド、アセトニトリル、メチルイソブチルケトン、メタノール、エタノール、プロパノール、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。溶剤の種類及び使用量は使用用途によって適宜選択すればよい。
<< Solvent >>
The resin composition may contain a solvent depending on the intended use. Examples of the solvent include organic solvents such as methyl ethyl ketone, acetone, ethyl acetate, butyl acetate, toluene, dimethylformamide, acetonitrile, methyl isobutyl ketone, methanol, ethanol, propanol, methoxypropanol, cyclohexanone, methyl cellosolve, ethyl diglycol acetate, and the like. Examples thereof include propylene glycol monomethyl ether acetate. The type and amount of the solvent may be appropriately selected depending on the intended use.
<<添加剤>>
 樹脂組成物は、本発明の効果を損なわない範囲で、各種の添加剤(上記ポリアスパラギン酸、無機成分、及び修飾剤に該当する化合物は除く。)を含有してもよい。添加剤としては、例えば、有機フィラー、無機フィラー、安定剤(酸化防止剤、熱安定剤、紫外線吸収剤等)、可塑剤、帯電防止剤、滑剤、ブロッキング防止剤、着色剤、結晶核剤、酸素捕捉剤(酸素捕捉機能を有する化合物)、粘着付与剤等が挙げられる。これらの各種添加剤は、単独で又は二種以上組み合わせて使用される。
<< Additives >>
The resin composition may contain various additives (excluding the above-mentioned polyaspartic acid, inorganic components, and compounds corresponding to modifiers) as long as the effects of the present invention are not impaired. Additives include, for example, organic fillers, inorganic fillers, stabilizers (antioxidants, heat stabilizers, UV absorbers, etc.), plasticizers, antistatic agents, lubricants, antiblocking agents, colorants, crystal nucleating agents, etc. Examples thereof include oxygen scavengers (compounds having an oxygen scavenging function), tackifiers and the like. These various additives are used alone or in combination of two or more.
<樹脂組成物の利用>
 樹脂組成物の利用方法の好ましい実施態様としては、ガスバリア材、コーティング材、接着剤等への利用が挙げられる。例えば、本発明の樹脂組成物をガスバリア材、コーティング材として用いることができる。
 また、本発明の樹脂組成物が接着性能を有している場合には、接着剤として用いることができる。
<Use of resin composition>
Preferred embodiments of the method of using the resin composition include use in gas barrier materials, coating materials, adhesives and the like. For example, the resin composition of the present invention can be used as a gas barrier material or a coating material.
Further, when the resin composition of the present invention has adhesive performance, it can be used as an adhesive.
<<ガスバリア材>>
 本発明の樹脂組成物は、水蒸気バリア性及び酸素バリア性に優れるため、ガスバリア材として好適に用いることができる。ガスバリア材は、上述した樹脂組成物を含むものであればよい。
<< Gas barrier material >>
Since the resin composition of the present invention is excellent in water vapor barrier property and oxygen barrier property, it can be suitably used as a gas barrier material. The gas barrier material may be any material containing the above-mentioned resin composition.
<<コーティング材>>
 本発明の樹脂組成物は、コーティング材として好適に用いることができる。コーティング材は、上記樹脂組成物を含むものであればよい。バリアコーティング材料としての諸特性を満たせば、コーティング材の形態は限定されない。
 コーティング材のコーティング方法としては特に制限はない。具体的な方法としては、ロールコート、グラビアコート等の各種コーティング方法を例示することができる。また、コーティング装置についても特に限定はない。
<< Coating material >>
The resin composition of the present invention can be suitably used as a coating material. The coating material may be any material containing the above resin composition. The form of the coating material is not limited as long as it satisfies various properties as a barrier coating material.
There is no particular limitation on the coating method of the coating material. As a specific method, various coating methods such as roll coating and gravure coating can be exemplified. Further, the coating device is not particularly limited.
<<接着剤>>
 本発明の樹脂組成物が、接着性能を有する場合には、接着剤として好適に用いることができる。接着剤は、上記樹脂組成物を含むものであればよい。接着剤の形態には特に限定はなく、液状又はペースト状の接着剤としてもよく、固形状の接着剤としてもよい。
 本発明の樹脂組成物は、ガスバリア性に優れていることから、この接着剤はガスバリア用接着剤として好適に利用可能である。
<< Adhesive >>
When the resin composition of the present invention has adhesive performance, it can be suitably used as an adhesive. The adhesive may be any one containing the above resin composition. The form of the adhesive is not particularly limited, and it may be a liquid or paste-like adhesive, or it may be a solid adhesive.
Since the resin composition of the present invention has excellent gas barrier properties, this adhesive can be suitably used as an adhesive for gas barriers.
 液状又はペースト状の接着剤の場合、1液型の接着剤としてもよく、硬化剤を別にした2液型の接着剤としてもよい。液状又はペースト状の接着剤の場合は、使用方法としては特に限定はないが、一方の接着面に塗布後、他方の接着面を貼り合わせ、接着させてよく、接着面の界面に注入後、接着させてよい。
 固形状の接着剤の場合は、粉末状、チップ状、又はシート状に成形した接着剤を、接着面の界面に設置し、熱溶解させることで接着し、硬化させてよい。
In the case of a liquid or pasty adhesive, it may be a one-component adhesive or a two-component adhesive with a separate curing agent. In the case of a liquid or paste-like adhesive, the method of use is not particularly limited, but it may be applied to one adhesive surface, then the other adhesive surface may be bonded and adhered, and after being injected into the interface of the adhesive surface, the adhesive may be used. It may be glued.
In the case of a solid adhesive, an adhesive formed into a powder, a chip, or a sheet may be placed at the interface of the adhesive surface and thermally melted to adhere and cure.
(樹脂組成物の製造方法)
 本発明の樹脂組成物は、特に制限されず、従来公知の方法に従って製造することができる。例えば、各成分を水または、メチルアルコール、エチルアルコール、イソプロピルアルコール、アセトン、メチルエチルケトン等の水溶性溶剤中でよく混合し、次いで20℃~60℃の条件下、0.1~24時間程度撹拌することなどが挙げられる。
(Manufacturing method of resin composition)
The resin composition of the present invention is not particularly limited and can be produced according to a conventionally known method. For example, each component is well mixed in water or a water-soluble solvent such as methyl alcohol, ethyl alcohol, isopropyl alcohol, acetone, and methyl ethyl ketone, and then stirred under the conditions of 20 ° C to 60 ° C for about 0.1 to 24 hours. And so on.
(成形体)
 本発明の成形体は、上述した樹脂組成物を成形して得ることができる。成形方法は任意であり、用途によって適時選択すればよい。成形体は、樹脂組成物からなっていてよく、樹脂組成物の硬化物からなっていてもよい。また、成形体は、樹脂組成物を成形してなるものであれば、成形体自体が自立膜であるか否かは特に制限はない。成形体の形状に制限はなく、例えば、膜厚が250μmよりも厚い板状やシート状であってもよく、又は膜厚が250μm以下のフィルム状であってもよく、立体形状を有していてもよく、基材に塗布されたものであってもよく、基材と基材の間に存在する形で成形されたものであってもよい。
(Molded body)
The molded product of the present invention can be obtained by molding the above-mentioned resin composition. The molding method is arbitrary and may be selected in a timely manner depending on the intended use. The molded product may be made of a resin composition or may be made of a cured product of the resin composition. Further, as long as the molded body is formed by molding a resin composition, there is no particular limitation on whether or not the molded body itself is a self-supporting film. The shape of the molded body is not limited, and may be, for example, a plate or sheet having a film thickness of more than 250 μm, or a film having a film thickness of 250 μm or less, and has a three-dimensional shape. It may be coated on a base material, or may be molded in a form existing between the base materials.
 板状、シート状の成形体を製造する場合、例えば押し出し成形法、平面プレス、異形押し出し成形法、ブロー成形法、圧縮成形法、真空成形法、射出成形法等を用いて樹脂組成物を成形する方法が挙げられる。また、フィルム状の成形体を製造する場合、例えば溶融押出法、溶液キャスト法、インフレーションフィルム成形、キャスト成形、押出ラミネーション成形、カレンダー成形、シート成形、繊維成形、ブロー成形、射出成形、回転成形、被覆成形が挙げられる。熱又は活性エネルギー線で硬化する樹脂組成物である場合、熱又は活性エネルギー線を用いた各種硬化方法を用いて樹脂組成物を成形してもよい。 When producing a plate-shaped or sheet-shaped molded body, the resin composition is molded by using, for example, an extrusion molding method, a flat press, a deformed extrusion molding method, a blow molding method, a compression molding method, a vacuum molding method, an injection molding method, or the like. There is a way to do it. When producing a film-shaped molded product, for example, melt extrusion method, solution casting method, inflation film molding, cast molding, extrusion lamination molding, calendar molding, sheet molding, fiber molding, blow molding, injection molding, rotation molding, Coating molding can be mentioned. When the resin composition is cured by heat or active energy rays, the resin composition may be molded by using various curing methods using heat or active energy rays.
 樹脂組成物が液状である場合、塗布により成形してもよい。塗布方法としては、スプレー法、スピンコート法、ディップ法、ロールコート法、ブレードコート法、ドクターロール法、ドクターブレード法、カーテンコート法、スリットコート法、スクリーン印刷法、インクジェット法、ディスペンス法等が挙げられる。 If the resin composition is liquid, it may be molded by coating. Examples of the coating method include a spray method, a spin coating method, a dip method, a roll coating method, a blade coating method, a doctor roll method, a doctor blade method, a curtain coating method, a slit coating method, a screen printing method, an inkjet method, and a dispense method. Can be mentioned.
 本発明の成形体は、優れたガスバリア性(水蒸気バリア性や酸素バリア性)を示す。特に本発明の成形体は、酸素バリア性、中でも中湿度域(湿度75%RH条件下のバリア測定)における酸素バリア性に優れている。
 湿度75%RH条件下での成形体の酸素透過率は、好ましくは15cc/m/day/atm以下であり、より好ましくは5cc/m/day/atm以下、さらに好ましくは2cc/m/day/atm以下である。
The molded product of the present invention exhibits excellent gas barrier properties (water vapor barrier properties and oxygen barrier properties). In particular, the molded product of the present invention is excellent in oxygen barrier property, especially in the medium humidity range (barrier measurement under 75% humidity RH condition).
The oxygen permeability of the molded product under a humidity of 75% RH condition is preferably 15 cc / m 2 / day / atm or less, more preferably 5 cc / m 2 / day / atm or less, still more preferably 2 cc / m 2 . It is less than / day / atm.
(積層体)
 本発明の樹脂組成物を用いた好ましい実施態様として、基材上に上述した樹脂組成物を含有する被覆層を備えた積層体が挙げられる。
 積層体は2層構造であってもよく、3層構造以上であってもよい。
(Laminated body)
A preferred embodiment using the resin composition of the present invention includes a laminate having a coating layer containing the above-mentioned resin composition on a substrate.
The laminated body may have a two-layer structure or may have a three-layer structure or more.
 基材の材質は特に限定はなく、用途に応じて適宜選択すればよく、例えば木材、金属、樹脂フィルム、紙、シリコン又は変性シリコン等が挙げられ、異なる素材を接合して得られた基材であってもよい。基材の形状は特に制限はなく、平板、シート状、又は3次元形状全面に、若しくは一部に、曲率を有するもの等目的に応じた任意の形状であってよい。また、基材の硬度、透明度等にも制限はない。 The material of the base material is not particularly limited and may be appropriately selected depending on the intended use. Examples thereof include wood, metal, resin film, paper, silicon, modified silicon and the like, and a base material obtained by joining different materials. It may be. The shape of the base material is not particularly limited, and may be any shape depending on the purpose, such as a flat plate, a sheet shape, or a three-dimensional shape having a curvature on the entire surface or a part thereof. Further, there are no restrictions on the hardness, transparency, etc. of the base material.
 基材として樹脂フィルムを使用する場合、使用する樹脂フィルムは、目的に応じて適宜選択すればよい。例えば包装材として使用する際は、最外層をポリエチレンテレフタレート(以下PETと略す)、二軸延伸ポリプロピレン(以下OPPと略す)、ポリアミドから選択された熱可塑性樹脂フィルムを使用し、最内層を無延伸ポリプロピレン(以下CPPと略す)、低密度ポリエチレンフィルム(以下LLDPEと略す)から選ばれる熱可塑性樹脂フィルムを使用した2層からなる複合フィルム、あるいは、例えばPET、ポリアミド、OPPから選ばれた最外層を形成する熱可塑性樹脂フィルムと、OPP、PET、ポリアミドから選ばれた中間層を形成する熱可塑性樹脂フィルム、CPP、LLDPEから選ばれた最内層を形成する熱可塑性樹脂フィルムを使用した3層からなる複合フィルムやこれよりもさらに多層のフィルムが例示できる。特にPETフィルムの場合には、非石油由来原料ベースのエチレングリコールを用いたPETを原料として使用した場合には、積層体全体の植物由来の含有率を高めることができ、より環境に配慮した積層体を得ることができるため、特に好ましい。また、積層体表面には、膜切れやはじきなどの欠陥のない接着層が形成されるように必要に応じて火炎処理やコロナ放電処理などの各種表面処理を施してもよい。 When a resin film is used as the base material, the resin film to be used may be appropriately selected according to the purpose. For example, when used as a packaging material, the outermost layer is a thermoplastic resin film selected from polyethylene terephthalate (hereinafter abbreviated as PET), biaxially stretched polypropylene (hereinafter abbreviated as OPP), and polyamide, and the innermost layer is unstretched. A composite film consisting of two layers using a thermoplastic resin film selected from polypropylene (hereinafter abbreviated as CPP) and a low-density polyethylene film (hereinafter abbreviated as LLDPE), or an outermost layer selected from, for example, PET, polyamide, and OPP. It consists of three layers using a thermoplastic resin film to be formed, a thermoplastic resin film to form an intermediate layer selected from OPP, PET and polyamide, and a thermoplastic resin film to form an innermost layer selected from CPP and LLDPE. Examples thereof include a composite film and a film having more layers than this. In particular, in the case of PET film, when PET using ethylene glycol based on a non-petroleum-derived raw material is used as a raw material, the plant-derived content of the entire laminate can be increased, and the laminate is more environmentally friendly. It is especially preferable because you can get a body. Further, the surface of the laminate may be subjected to various surface treatments such as flame treatment and corona discharge treatment, if necessary, so that an adhesive layer without defects such as film breakage and repelling is formed.
 基材の厚みは特に限定されるものではなく、本発明の積層体が使用される用途に応じて適宜選択されるが、積層体の機械的強度やハンドリング性などの点から、好ましくは0.1~500μm、より好ましくは1~300μm、更に好ましくは10~200μmである。 The thickness of the base material is not particularly limited and is appropriately selected depending on the intended use of the laminate of the present invention, but is preferably 0. It is 1 to 500 μm, more preferably 1 to 300 μm, and even more preferably 10 to 200 μm.
 被覆層の厚みは特に限定されるものではなく、本発明の積層体が使用される用途に応じて適宜選択されるが、積層体のガスバリア性をより確実に得る観点からは0.05μm以上とすることが好ましい。被覆層の厚みの上限値は、特に制限されないが、経済性等の見地より0.5~5μm程度とすることが好ましい。 The thickness of the coating layer is not particularly limited and is appropriately selected depending on the application in which the laminate of the present invention is used, but from the viewpoint of more reliably obtaining the gas barrier property of the laminate, it is 0.05 μm or more. It is preferable to do so. The upper limit of the thickness of the coating layer is not particularly limited, but is preferably about 0.5 to 5 μm from the viewpoint of economic efficiency and the like.
 本発明の積層体は、優れたガスバリア性(水蒸気バリア性や酸素バリア性)を示す。特に本発明の積層体は、酸素バリア性、中でも中湿度域(湿度75%RH条件下のバリア測定)における酸素バリア性に優れている。湿度75%RH条件下での積層体の酸素透過率は、好ましくは15cc/m/day/atm以下であり、より好ましくは5cc/m/day/atm以下、さらに好ましくは2cc/m/day/atm以下である。 The laminate of the present invention exhibits excellent gas barrier properties (water vapor barrier properties and oxygen barrier properties). In particular, the laminate of the present invention is excellent in oxygen barrier property, especially in the medium humidity range (barrier measurement under 75% humidity RH condition). The oxygen permeability of the laminate under 75% RH humidity conditions is preferably 15 cc / m 2 / day / atm or less, more preferably 5 cc / m 2 / day / atm or less, still more preferably 2 cc / m 2 . It is less than / day / atm.
<積層体の製造方法>
 積層体は、上述した樹脂組成物を含有する被覆層を備えていればよく、被覆層は基材に対し直接塗布又は直接成形により形成してもよく、樹脂組成物の成形体を積層してもよい。
 直接塗布する場合、塗布方法としては特に限定はなく、スプレー法、スピンコート法、ディップ法、ロールコート法、ブレードコート法、ドクターロール法、ドクターブレード法、カーテンコート法、スリットコート法、スクリーン印刷法、インクジェット法等が挙げられる。直接成形する場合は、インモールド成形、インサート成形、真空成形、押出ラミネート成形、プレス成形等が挙げられる。
 また、積層体は、樹脂組成物の硬化物に対して基材の前駆体を塗布して硬化させることで得てもよく、基材の前駆体又は樹脂組成物が未硬化若しくは半硬化の状態で接着させた後に硬化させて得てもよい。基材の前駆体としては特に限定はなく、各種硬化性樹脂組成物等が挙げられる。
 また、本発明の樹脂組成物は、積層体を形成する際、架橋反応の後処理工程を必要としない。本発明の樹脂組成物を用いるとより簡便な工程で積層体を得ることができる。
<Manufacturing method of laminated body>
The laminate may be provided with a coating layer containing the above-mentioned resin composition, and the coating layer may be formed by direct coating or direct molding on the substrate, or the molded body of the resin composition may be laminated. May be good.
In the case of direct application, the application method is not particularly limited, and the spray method, spin coating method, dip method, roll coating method, blade coating method, doctor roll method, doctor blade method, curtain coating method, slit coating method, screen printing Examples include the method and the inkjet method. In the case of direct molding, in-mold molding, insert molding, vacuum forming, extrusion laminating molding, press molding and the like can be mentioned.
Further, the laminate may be obtained by applying a substrate precursor to a cured product of the resin composition and curing it, and the substrate precursor or the resin composition is in an uncured or semi-cured state. It may be obtained by curing after adhering with. The precursor of the base material is not particularly limited, and examples thereof include various curable resin compositions.
Further, the resin composition of the present invention does not require a post-treatment step of a crosslinking reaction when forming a laminate. When the resin composition of the present invention is used, a laminate can be obtained in a simpler process.
 本発明では、さらに高いガスバリア性を付与するために、必要に応じてアルミニウム等の金属、或いはシリカやアルミナ等の金属酸化物の蒸着層を積層したフィルムや、ポリビニルアルコールや、エチレン・ビニールアルコール共重合体、塩化ビニリデン等のガスバリア層を含有するバリア性フィルムを併用して、より高いガスバリア性を付与することもできる。中でもアルミニウム、シリカ、アルミナ等の金属酸化物の蒸着層を設けたフィルム(いわゆる蒸着フィルム)を本発明の積層体と併用することにより、被覆層を補強することで極めて高いガスバリア性を付与することができる。 In the present invention, in order to impart even higher gas barrier properties, a film in which a vapor-deposited layer of a metal such as aluminum or a metal oxide such as silica or alumina is laminated, polyvinyl alcohol, or ethylene / vinyl alcohol are used together. A barrier film containing a gas barrier layer such as a polymer or vinylidene chloride can be used in combination to impart higher gas barrier properties. Above all, by using a film provided with a thin-film film of a metal oxide such as aluminum, silica, or alumina (so-called thin-film film) in combination with the laminate of the present invention, the coating layer is reinforced to impart extremely high gas barrier properties. Can be done.
<透過を遮断できるガス成分種類>
 本発明の積層体が遮断できるガスとしては、酸素の他、二酸化炭素、窒素、アルゴン等の不活性ガス、メタノール、エタノール、プロパノール等のアルコール成分、フェノール、クレゾール等のフェノール類の他、低分子化合物からなる香気成分類、例えば、醤油、ソース、味噌、レモネン、メントール、サリチル酸メチル、コーヒー、ココアシャンプー、リンス等を例示することができる。
<Types of gas components that can block permeation>
Gases that can be blocked by the laminate of the present invention include oxygen, inert gases such as carbon dioxide, nitrogen and argon, alcohol components such as methanol, ethanol and propanol, phenols such as phenol and cresol, and low molecules. Examples thereof include aroma components composed of compounds such as soy sauce, sauce, miso, lemonen, menthol, methyl salicylate, coffee, cocoa shampoo, and rinse.
<積層体及び成形体の適用>
 本発明の樹脂組成物を基材上に備えた本発明の積層体や、本発明の樹脂組成物を成形してなる本発明の成形体は、ガスバリア性、特に酸素バリア性に優れることから、電気・電子部品、自動車部品、機械部品、構造部品等、様々な分野に好適に使用可能である。
 また、食品、医薬品、電子部材などの包装用途に適用することができる。
 積層体を適用する好ましい態様として、例えば、包装材やバリア紙が挙げられる。
<Application of laminated body and molded body>
The laminate of the present invention provided with the resin composition of the present invention on a substrate and the molded body of the present invention obtained by molding the resin composition of the present invention are excellent in gas barrier properties, particularly oxygen barrier properties. It can be suitably used in various fields such as electric / electronic parts, automobile parts, mechanical parts, and structural parts.
It can also be applied to packaging applications such as foods, pharmaceuticals, and electronic members.
Preferred embodiments of applying the laminate include, for example, packaging materials and barrier paper.
<<包装材>>
 本発明の樹脂組成物や該樹脂組成物を有する積層体は、食品等の包装に用いる包装材料として利用することができる。
 食品等の包装に用いられる包装材には、内容物の保護、耐レトルト性、耐熱性、透明性、加工性といった機能が要求される。内容物の品質保持のためには、特にガスバリア機能が重要となる。
 本発明の積層体を利用すれば、優れたガスバリア性(特に酸素バリア性)を有する包装材を提供することができる。
<< Packaging material >>
The resin composition of the present invention and the laminate having the resin composition can be used as a packaging material used for packaging foods and the like.
Packaging materials used for packaging foods and the like are required to have functions such as protection of contents, retort resistance, heat resistance, transparency, and processability. The gas barrier function is especially important for maintaining the quality of the contents.
By utilizing the laminate of the present invention, it is possible to provide a packaging material having excellent gas barrier properties (particularly oxygen barrier properties).
<<バリア紙>>
 本発明の積層体は、バリア性を有する紙素材のバリア紙として利用することができる。
 例えば、樹脂組成物の水溶液又は水分散液の形態で紙基材に塗布又は含浸によって、紙基材上に形成された被覆層を有するバリア紙は、各種の紙シートや紙容器に適用することができる。
 例えば、ドライフードやコーヒー等の可食品の紙包材としてのバリア紙に、あるいは粉洗剤等の非可食品の紙包材としてのバリア紙に使用することができる。
 本発明の樹脂組成物を含有する水溶液、水性エマルジョン、あるいは水分散液の紙基材への塗布、あるいは含浸方法としては、例えば、エアナイフコーティング、バーコーティング、ロールコーティング、グラビアコーティング、キャストコーティング、ブレードコーティング、ゲートロールコーティング、キスロールコーティング、ディピング法、スプレーコーティング等が挙げられる。上記方法を用いて、本発明の樹脂組成物を紙基材へ塗布、あるいは含浸させることが可能であり、さらに例えば、サイズプレス含浸すれば、紙基材の内部まで含浸可能である。
<< Barrier paper >>
The laminate of the present invention can be used as a barrier paper as a paper material having a barrier property.
For example, a barrier paper having a coating layer formed on a paper substrate by coating or impregnating the paper substrate in the form of an aqueous solution or an aqueous dispersion of a resin composition shall be applied to various paper sheets and paper containers. Can be done.
For example, it can be used as a barrier paper as a paper packaging material for acceptable foods such as dry food and coffee, or as a barrier paper as a paper packaging material for non-appropriate foods such as powder detergent.
As a method for applying or impregnating an aqueous solution, an aqueous emulsion, or an aqueous dispersion containing the resin composition of the present invention on a paper substrate, for example, air knife coating, bar coating, roll coating, gravure coating, cast coating, blade Examples include coating, gate roll coating, kiss roll coating, dipping method, spray coating and the like. Using the above method, the resin composition of the present invention can be applied to or impregnated into a paper substrate, and further, for example, by impregnating with a size press, the inside of the paper substrate can be impregnated.
 以下、実施例を挙げて本発明を具体的に説明する。なお、以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. The materials, amounts used, ratios, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the present invention is not limited to the following examples.
(ポリスクシンイミドの製造例)
 撹拌装置を備えた四つ口フラスコ内に、L-アスパラギン酸(江蘇杰成生物工程有限公司(Yixing Qiancheng Bio-Engineering Co.Ltd.)製)100部、85%リン酸10部、メシチレン224部、及びスルホラン96部を仕込んだ。
 常圧下、150~160℃まで昇温し5時間保持し重縮合反応を行った。反応中に生じた水は170℃まで更に昇温し系外へ留去した。反応終了後、反応液を濾過して反応生成物を得た。
 得られた生成物を蒸留水400部で4回洗浄し、その後、減圧下80℃/24時間乾燥させ、ポリスクシンイミドの粉末72部を得た。得られたポリスクシンイミドのポリスチレン換算の分子量をGPC測定により求めたところ、重量平均分子量が64,000であった。
(Production example of porris succinimide)
100 parts of L-aspartic acid (manufactured by Jiangsu Qiancheng Bio-Engineering Co. Ltd.), 10 parts of 85% phosphoric acid, 224 parts of mesitylene in a four-necked flask equipped with a stirrer. , And 96 parts of sulfolan.
Under normal pressure, the temperature was raised to 150 to 160 ° C. and held for 5 hours to carry out a polycondensation reaction. The water generated during the reaction was further heated to 170 ° C. and distilled off the system. After completion of the reaction, the reaction solution was filtered to obtain a reaction product.
The obtained product was washed 4 times with 400 parts of distilled water and then dried under reduced pressure at 80 ° C. for 24 hours to obtain 72 parts of porris succinimide powder. When the polystyrene-equivalent molecular weight of the obtained succinimide was determined by GPC measurement, the weight average molecular weight was 64,000.
(ポリアスパラギン酸の製造例)
 上記製造例で得たポリスクシンイミド100部に対して、蒸留水450部中でスラリー化した(濃度18wt%)。本スラリーに2N-NaOHを500部(ポリスクシンイミドに対して1.0当量)を6時間かけ滴下した。その後、イオン交換樹脂(オルガノ株式会社製 アンバーライトIR120B-H)1000部を1700部の蒸留水中に入れた液中に、前記ポリスクシンイミドのNaOH処理液を投入した。30分ほど撹拌保持した後、濾過しイオン交換樹脂を分別、凍結乾燥してポリアスパラギン酸の粉末を得た。ポリアスパラギン酸の酸価測定から、酸価=470mg-KOH/gであった。また、ポリアスパラギン酸の重量平均分子量は100,000であった。
 酸価は、JIS-K0070に記載の酸価測定方法に準拠して測定した。
(Production example of polyaspartic acid)
100 parts of porris succinimide obtained in the above production example was slurried in 450 parts of distilled water (concentration 18 wt%). 500 parts of 2N-NaOH (1.0 eq with respect to porris succinimide) was added dropwise to this slurry over 6 hours. Then, the NaOH-treated liquid of the porris succinimide was put into a liquid containing 1000 parts of an ion exchange resin (Amberlite IR120B-H manufactured by Organo Corporation) in 1700 parts of distilled water. After stirring and holding for about 30 minutes, the ion exchange resin was separated by filtration and freeze-dried to obtain a powder of polyaspartic acid. From the acid value measurement of polyaspartic acid, the acid value was 470 mg-KOH / g. The weight average molecular weight of polyaspartic acid was 100,000.
The acid value was measured according to the acid value measuring method described in JIS-K0070.
(ZnO分散液の調製例)
 一次粒子径20nmのZnO(堺化学工業株式会社製、FINEX-50):300gと蒸留水:700gを混合し、ビーズミル(アシザワ・ファインテック株式会社製:ラボスターミニLMZ015)中で直径0.3mmのジルコニアビーズを使って1時間分散処理した後、ビーズをふるい分け、固形分濃度:30%のZnO分散液を得た。この分散液中のZnOの粒径は88nmであった。
(Preparation example of ZnO dispersion)
ZnO (manufactured by Sakai Chemical Industry Co., Ltd., FINEX-50) with a primary particle diameter of 20 nm and distilled water: 700 g are mixed, and the diameter is 0.3 mm in a bead mill (manufactured by Ashizawa Finetech Co., Ltd .: Labostar Mini LMZ015). After dispersion treatment using the zirconia beads of No. 1 for 1 hour, the beads were sieved to obtain a ZnO dispersion having a solid content concentration of 30%. The particle size of ZnO in this dispersion was 88 nm.
<実施例1>
 製造例で得たポリアスパラギン酸の水溶液(濃度14.3重量%)100部に対して、ナトリウム型モンモリロナイト(クニミネ工業株式会社製、クニピアF)の水分散液(濃度4%)280部を加え、1時間撹拌保持して塗布液とした。本塗布液を12μmのPETフィルム(東洋紡(株)製、E-5100)のコロナ処理面にバーコーターを用いて乾燥後塗布厚みが2μmになるように塗布し、塗布後直ぐに80℃の乾燥機中で2分加熱処理した。これにより、PETフィルム上に各樹脂組成物の成形体を形成し、実施例1の積層フィルム(積層体)を得た。この時のモンモリロナイト含有量は全固形分量に対して44wt%である。
 該積層フィルムのガスバリア性を評価するため、酸素透過率を測定した。
 酸素透過率の測定は、JIS-K7126(等圧法)に準じ、モコン(MOCON)社製の酸素透過率測定装置「OX-TRAN1/50」を用いて、温度23℃、0%RH、および、温度23℃、75%RHの雰囲気下で実施した。なお、RHとは相対湿度を表す。
 得られた積層フィルムの酸素透過率の測定結果を下記表1に示す。
<Example 1>
To 100 parts of the aqueous solution of polyaspartic acid (concentration 14.3% by weight) obtained in the production example, 280 parts of an aqueous dispersion (concentration 4%) of sodium-type montmorillonite (Kunipia F manufactured by Kunimine Industry Co., Ltd.) was added. The mixture was stirred and held for 1 hour to prepare a coating liquid. Apply this coating solution to the corona-treated surface of a 12 μm PET film (E-5100 manufactured by Toyobo Co., Ltd.) using a bar coater so that the coating thickness becomes 2 μm after drying, and immediately after coating, a dryer at 80 ° C. It was heat-treated in it for 2 minutes. As a result, a molded body of each resin composition was formed on the PET film, and the laminated film (laminated body) of Example 1 was obtained. The montmorillonite content at this time is 44 wt% with respect to the total solid content.
In order to evaluate the gas barrier property of the laminated film, the oxygen permeability was measured.
The oxygen permeability is measured according to JIS-K7126 (isopressure method) at a temperature of 23 ° C, 0% RH, and using an oxygen permeability measuring device "OX-TRAN1 / 50" manufactured by MOCON. The test was carried out at a temperature of 23 ° C. and an atmosphere of 75% RH. In addition, RH represents relative humidity.
The measurement results of the oxygen permeability of the obtained laminated film are shown in Table 1 below.
<実施例2>
 実施例1において、ナトリウム型モンモリロナイト(クニミネ工業株式会社製、クニピアF)の水分散液(濃度4%)280部を、リチウム型モンモリロナイト(クニミネ工業株式会社製、クニピアM)の水分散液(濃度4%)280部に変更した以外は同様の方法で、実施例2の積層フィルムを得た。この時のモンモリロナイト含有量は全固形分量に対して44wt%である。
 得られた積層フィルムの酸素透過率の測定結果を下記表1に示す。
<Example 2>
In Example 1, 280 parts of an aqueous dispersion (concentration 4%) of sodium-type montmorillonite (Kunipia F, manufactured by Kunimine Industry Co., Ltd.) was used as an aqueous dispersion (concentration) of lithium-type montmorillonite (Kunipia M, manufactured by Kunimine Industry Co., Ltd.). 4%) The laminated film of Example 2 was obtained by the same method except that it was changed to 280 parts. The montmorillonite content at this time is 44 wt% with respect to the total solid content.
The measurement results of the oxygen permeability of the obtained laminated film are shown in Table 1 below.
<実施例3>
 実施例1において、ナトリウム型モンモリロナイト(クニミネ工業株式会社製、クニピアF)の水分散液(濃度4%)を、リチウム型モンモリロナイト(クニミネ工業株式会社製、クニピアM)の水分散液(濃度4%)154部に変更した以外は同様の方法で、実施例3の積層フィルムを得た。この時のモンモリロナイト含有量は全固形分量に対して30wt%である。
 得られた積層フィルムの酸素透過率の測定結果を下記表1に示す。
<Example 3>
In Example 1, an aqueous dispersion (concentration 4%) of sodium-type montmorillonite (Kunipia F, manufactured by Kunimine Industry Co., Ltd.) and an aqueous dispersion (concentration 4%) of lithium-type montmorillonite (Kunipia M, manufactured by Kunimine Industry Co., Ltd.) were used. ) The laminated film of Example 3 was obtained by the same method except that it was changed to 154 parts. The montmorillonite content at this time is 30 wt% with respect to the total solid content.
The measurement results of the oxygen permeability of the obtained laminated film are shown in Table 1 below.
<実施例4>
 実施例1において、ナトリウム型モンモリロナイト(クニミネ工業株式会社製、クニピアF)の水分散液(濃度4%)を、リチウム型モンモリロナイト(クニミネ工業株式会社製、クニピアM)の水分散液(濃度4%)357部に変更した以外は同様の方法で、実施例4の積層フィルムを得た。この時のモンモリロナイト含有量は全固形分量に対して50wt%である。
 得られた積層フィルムの酸素透過率の測定結果を下記表1に示す。
<Example 4>
In Example 1, an aqueous dispersion (concentration 4%) of sodium-type montmorillonite (Kunipia F, manufactured by Kunimine Industry Co., Ltd.) and an aqueous dispersion (concentration 4%) of lithium-type montmorillonite (Kunipia M, manufactured by Kunimine Industry Co., Ltd.) were used. ) The laminated film of Example 4 was obtained by the same method except that it was changed to 357 parts. The montmorillonite content at this time is 50 wt% with respect to the total solid content.
The measurement results of the oxygen permeability of the obtained laminated film are shown in Table 1 below.
<実施例5>
 ポリアスパラギン酸の水溶液(濃度10重量%)100部に対して、調製例で得られたZnO分散液(濃度30wt%)7部を混合し30分撹拌保持して塗布液とした。本塗布液を12μmのPETフィルム(東洋紡(株)製、E-5100)のコロナ処理面にバーコーターを用いて乾燥後塗布厚みが2μmになるように塗布し、塗布後直ぐに80℃の乾燥機中で2分加熱処理した。これにより、PETフィルム上に各樹脂組成物の成形体を形成し、実施例5の積層フィルムを得た。この時のZnO含有量はポリアスパラギン酸のカルボン酸基に対して60mol%である。
 得られた積層フィルムの酸素透過率の測定結果を下記表1に示す。
<Example 5>
Seven parts of the ZnO dispersion (concentration: 30 wt%) obtained in the preparation example was mixed with 100 parts of an aqueous solution of polyaspartic acid (concentration: 10% by weight), and the mixture was stirred and held for 30 minutes to prepare a coating liquid. Apply this coating solution to the corona-treated surface of a 12 μm PET film (E-5100 manufactured by Toyobo Co., Ltd.) using a bar coater so that the coating thickness becomes 2 μm after drying, and immediately after coating, a dryer at 80 ° C. It was heat-treated in it for 2 minutes. As a result, a molded body of each resin composition was formed on the PET film, and the laminated film of Example 5 was obtained. The ZnO content at this time is 60 mol% with respect to the carboxylic acid group of polyaspartic acid.
The measurement results of the oxygen permeability of the obtained laminated film are shown in Table 1 below.
<実施例6>
 ポリアスパラギン酸の水溶液(濃度10重量%)100部に対して、調製例で得られたZnO分散液(濃度30wt%)3.5部を混合し30分撹拌保持した後、更にナトリウム型モンモリロナイト(クニミネ工業株式会社製、クニピアF)の粉末3部をゆっくり加え3時間撹拌保持して均質に分散した塗布液とした。本塗布液を12μmのPETフィルム(東洋紡(株)製、E-5100)のコロナ処理面にバーコーターを用いて乾燥後塗布厚みが2μmになるように塗布し、塗布後直ぐに80℃の乾燥機中で2分加熱処理した。これにより、PETフィルム上に各樹脂組成物の成形体を形成し、実施例6の積層フィルムを得た。この時のモンモリロナイト含有量は全固形分量に対して21wt%であり、ZnO含有量はポリアスパラギン酸のカルボン酸基に対して30mol%である。
 得られた積層フィルムの酸素透過率の測定結果を下記表1に示す。
<Example 6>
3.5 parts of the ZnO dispersion (concentration: 30 wt%) obtained in the preparation example was mixed with 100 parts of an aqueous solution of polyaspartic acid (concentration: 10% by weight), and the mixture was stirred and held for 30 minutes, and then sodium-type montmorillonite (concentration: 30 wt%). 3 parts of Kunipia F) powder manufactured by Kunimine Kogyo Co., Ltd. was slowly added and stirred and held for 3 hours to prepare a uniformly dispersed coating liquid. Apply this coating solution to the corona-treated surface of a 12 μm PET film (E-5100 manufactured by Toyobo Co., Ltd.) using a bar coater so that the coating thickness becomes 2 μm after drying, and immediately after coating, a dryer at 80 ° C. It was heat-treated in it for 2 minutes. As a result, a molded body of each resin composition was formed on the PET film, and the laminated film of Example 6 was obtained. The montmorillonite content at this time is 21 wt% with respect to the total solid content, and the ZnO content is 30 mol% with respect to the carboxylic acid group of polyaspartic acid.
The measurement results of the oxygen permeability of the obtained laminated film are shown in Table 1 below.
<実施例7>
 実施例6において、ナトリウム型モンモリロナイト(クニミネ工業株式会社製、クニピアF)の粉末3部を、リチウム型モンモリロナイト(クニミネ工業株式会社製、クニピアM)の粉末1部に変更した以外は同様の方法で、実施例7の積層フィルムを得た。この時のモンモリロナイト含有量は全固形分量に対して8wt%であり、ZnO含有量はポリアスパラギン酸のカルボン酸基に対して30mol%である。
 得られた積層フィルムの酸素透過率の測定結果を下記表1に示す。
<Example 7>
In Example 6, the same method was used except that 3 parts of sodium-type montmorillonite (Kunipia F, manufactured by Kunimine Industry Co., Ltd.) was changed to 1 part of lithium-type montmorillonite (Kunipia M, manufactured by Kunimine Industry Co., Ltd.). , The laminated film of Example 7 was obtained. The montmorillonite content at this time is 8 wt% with respect to the total solid content, and the ZnO content is 30 mol% with respect to the carboxylic acid group of polyaspartic acid.
The measurement results of the oxygen permeability of the obtained laminated film are shown in Table 1 below.
<比較例1>
 製造例で得たポリアスパラギン酸の水溶液(濃度14.3重量%)を塗布液とし、12μmのPETフィルム(東洋紡(株)製、E-5100)のコロナ処理面にバーコーターを用いて乾燥後塗布厚みが2μmになるように塗布し、塗布後直ぐに80℃の乾燥機中で2分加熱処理した。これにより、PETフィルム上に各樹脂組成物の成形体を形成し、比較例1の積層フィルムを得た。
 得られた積層フィルムの酸素透過率の測定結果を下記表1に示す。
<Comparative Example 1>
An aqueous solution of polyaspartic acid (concentration 14.3% by weight) obtained in the production example was used as a coating liquid, and a 12 μm PET film (E-5100 manufactured by Toyobo Co., Ltd.) was dried using a bar coater on the corona-treated surface. The coating was applied so that the coating thickness was 2 μm, and immediately after the coating, heat treatment was performed in a dryer at 80 ° C. for 2 minutes. As a result, a molded product of each resin composition was formed on the PET film, and the laminated film of Comparative Example 1 was obtained.
The measurement results of the oxygen permeability of the obtained laminated film are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~7の積層フィルムの酸素透過率の結果から、本発明にかかる樹脂組成物を用いて形成した積層フィルムは、優れた酸素バリア性(特に中湿度域の酸素バリア性)を示すことが確認できた。一方、本発明にかかる無機成分を含有しない比較例1の積層フィルムは、中湿度域の酸素バリア性に劣るものであった。
 また、実施例1~4の積層フィルムは、積層フィルムを形成する際、架橋工程が不要であり、簡便な工程で積層フィルムを形成することができるものである。さらに、実施例5~7の積層フィルムは、積層フィルムを形成する際、低温度条件下、塗布液中で架橋構造が生成される。このため、実施例5~7の積層フィルムは、塗布液を塗布した後、架橋工程(架橋反応の後処理工程)を別途行う必要がなく、簡便な工程で積層フィルムを形成することができるものである。
From the results of the oxygen permeability of the laminated films of Examples 1 to 7, the laminated film formed by using the resin composition according to the present invention exhibits excellent oxygen barrier properties (particularly oxygen barrier properties in the medium humidity range). Was confirmed. On the other hand, the laminated film of Comparative Example 1 containing no inorganic component according to the present invention was inferior in oxygen barrier property in the medium humidity range.
Further, the laminated films of Examples 1 to 4 do not require a cross-linking step when forming the laminated film, and the laminated film can be formed by a simple step. Further, in the laminated films of Examples 5 to 7, a crosslinked structure is formed in the coating liquid under low temperature conditions when forming the laminated film. Therefore, in the laminated films of Examples 5 to 7, it is not necessary to separately perform a cross-linking step (post-treatment step of the cross-linking reaction) after applying the coating liquid, and the laminated film can be formed by a simple step. Is.

Claims (12)

  1.  ポリアスパラギン酸と、無機成分とを含有する、樹脂組成物。 A resin composition containing polyaspartic acid and an inorganic component.
  2.  前記無機成分が、有機化処理されていない層状粘土鉱物および/または金属酸化物である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the inorganic component is a layered clay mineral and / or a metal oxide that has not been organically treated.
  3.  前記層状粘土鉱物が、モンモリロナイトを含む、請求項2に記載の樹脂組成物。 The resin composition according to claim 2, wherein the layered clay mineral contains montmorillonite.
  4.  前記金属酸化物が、酸化亜鉛を含む、請求項2に記載の樹脂組成物。 The resin composition according to claim 2, wherein the metal oxide contains zinc oxide.
  5.  前記無機成分が、前記有機化処理されていない層状粘土鉱物を含む場合、
     前記層状粘土鉱物の含有量が、前記樹脂組成物の全固形分量に対して、5~70質量%である、請求項2~4のいずれか一項に記載の樹脂組成物。
    When the inorganic component contains the unorganized layered clay mineral,
    The resin composition according to any one of claims 2 to 4, wherein the content of the layered clay mineral is 5 to 70% by mass with respect to the total solid content of the resin composition.
  6.  前記無機成分が、前記金属酸化物を含む場合、
     前記金属酸化物の含有量が、前記ポリアスパラギン酸のカルボン酸基のモル当量数に対して、10~65mol%である、請求項2~5のいずれか一項に記載の樹脂組成物。
    When the inorganic component contains the metal oxide,
    The resin composition according to any one of claims 2 to 5, wherein the content of the metal oxide is 10 to 65 mol% with respect to the molar equivalent number of the carboxylic acid group of the polyaspartic acid.
  7.  請求項1~6のいずれか一項に記載の樹脂組成物の成形体。 A molded product of the resin composition according to any one of claims 1 to 6.
  8.  基材と、請求項1~6のいずれか一項に記載の樹脂組成物を前記基材上に塗布してなる被覆層と、を備える積層体。 A laminate comprising a base material and a coating layer obtained by applying the resin composition according to any one of claims 1 to 6 onto the base material.
  9.  包装材料として用いられる、請求項8に記載の積層体。 The laminate according to claim 8, which is used as a packaging material.
  10.  請求項1~6のいずれか一項に記載の樹脂組成物を含むガスバリア材。 A gas barrier material containing the resin composition according to any one of claims 1 to 6.
  11.  請求項1~6のいずれか一項に記載の樹脂組成物を含むコーティング材。 A coating material containing the resin composition according to any one of claims 1 to 6.
  12.  請求項1~6のいずれか一項に記載の樹脂組成物を含む接着剤。 An adhesive containing the resin composition according to any one of claims 1 to 6.
PCT/JP2021/034027 2020-10-08 2021-09-16 Resin composition, molded object, layered product, gas-barrier material, coating material, and adhesive WO2022075030A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022555335A JPWO2022075030A1 (en) 2020-10-08 2021-09-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020170418 2020-10-08
JP2020-170418 2020-10-08

Publications (1)

Publication Number Publication Date
WO2022075030A1 true WO2022075030A1 (en) 2022-04-14

Family

ID=81126793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034027 WO2022075030A1 (en) 2020-10-08 2021-09-16 Resin composition, molded object, layered product, gas-barrier material, coating material, and adhesive

Country Status (2)

Country Link
JP (1) JPWO2022075030A1 (en)
WO (1) WO2022075030A1 (en)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08507100A (en) * 1993-02-16 1996-07-30 ドンラー・コーポレイシヨン Polyaspartic acid and its salts for dispersing suspended solids
JPH10128391A (en) * 1996-07-16 1998-05-19 Nalco Chem Co Composition for reducing sedimentation of inorganic scale on surface of metal
JPH11116798A (en) * 1997-10-14 1999-04-27 Mitsui Chem Inc Resin composition
JP2000319532A (en) * 1999-05-10 2000-11-21 Canon Inc Flame retardant composite resin composition
JP2001098249A (en) * 1999-09-15 2001-04-10 Bayer Ag Low-emission biodegradable adhesive
JP2003013391A (en) * 2001-06-26 2003-01-15 Toppan Printing Co Ltd Biodegradable paper sheet and paper container
JP2008222886A (en) * 2007-03-14 2008-09-25 Pilot Ink Co Ltd Oil-based ink composition for writing utensil and marking pen housing the same
WO2013129515A1 (en) * 2012-02-28 2013-09-06 凸版印刷株式会社 Gas barrier film
CN102432954B (en) * 2011-08-16 2013-12-18 南京工业大学 Water-absorbing expanded rubber containing polyaspartic-acid water-absorbing material and preparation method thereof
WO2014034627A1 (en) * 2012-08-28 2014-03-06 ユニチカ株式会社 Gas barrier laminate, gas barrier complex involving said laminate, and packaging material comprising said laminate or said complex
WO2014181560A1 (en) * 2013-05-08 2014-11-13 日本製紙株式会社 Barrier paper packaging material
WO2017135292A1 (en) * 2016-02-03 2017-08-10 国立研究開発法人産業技術総合研究所 Standard gas barrier film
WO2018043127A1 (en) * 2016-08-29 2018-03-08 東レ株式会社 Laminate
WO2018110529A1 (en) * 2016-12-16 2018-06-21 Dic株式会社 Sealing material composition for display element, and display element in which said composition is used
CN108893058A (en) * 2018-06-21 2018-11-27 湖州知维技术服务有限公司 A kind of environment friendly emulsion paint
CN109336620A (en) * 2018-09-27 2019-02-15 安徽青花坊瓷业股份有限公司 A kind of binder for ceramic batch
WO2019088130A1 (en) * 2017-10-31 2019-05-09 住友大阪セメント株式会社 Zinc oxide powder, dispersion, cosmetic material, and method for producing zinc oxide powder

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005225940A (en) * 2004-02-12 2005-08-25 Toray Ind Inc Gas barrier film
US7807272B2 (en) * 2006-04-26 2010-10-05 Kureha Corporation Coating solution, and gas barrier film, gas barrier laminate and gas barrier multilayer film, using the coating solution, and their manufacturing methods
WO2015022991A1 (en) * 2013-08-15 2015-02-19 東洋製罐株式会社 Gas barrier material and gas barrier laminate
JP6954281B2 (en) * 2016-06-17 2021-10-27 凸版印刷株式会社 Multi-layer sheet manufacturing method, molding container manufacturing method, and multi-layer sheet manufacturing method

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08507100A (en) * 1993-02-16 1996-07-30 ドンラー・コーポレイシヨン Polyaspartic acid and its salts for dispersing suspended solids
JPH10128391A (en) * 1996-07-16 1998-05-19 Nalco Chem Co Composition for reducing sedimentation of inorganic scale on surface of metal
JPH11116798A (en) * 1997-10-14 1999-04-27 Mitsui Chem Inc Resin composition
JP2000319532A (en) * 1999-05-10 2000-11-21 Canon Inc Flame retardant composite resin composition
JP2001098249A (en) * 1999-09-15 2001-04-10 Bayer Ag Low-emission biodegradable adhesive
JP2003013391A (en) * 2001-06-26 2003-01-15 Toppan Printing Co Ltd Biodegradable paper sheet and paper container
JP2008222886A (en) * 2007-03-14 2008-09-25 Pilot Ink Co Ltd Oil-based ink composition for writing utensil and marking pen housing the same
CN102432954B (en) * 2011-08-16 2013-12-18 南京工业大学 Water-absorbing expanded rubber containing polyaspartic-acid water-absorbing material and preparation method thereof
WO2013129515A1 (en) * 2012-02-28 2013-09-06 凸版印刷株式会社 Gas barrier film
WO2014034627A1 (en) * 2012-08-28 2014-03-06 ユニチカ株式会社 Gas barrier laminate, gas barrier complex involving said laminate, and packaging material comprising said laminate or said complex
WO2014181560A1 (en) * 2013-05-08 2014-11-13 日本製紙株式会社 Barrier paper packaging material
WO2017135292A1 (en) * 2016-02-03 2017-08-10 国立研究開発法人産業技術総合研究所 Standard gas barrier film
WO2018043127A1 (en) * 2016-08-29 2018-03-08 東レ株式会社 Laminate
WO2018110529A1 (en) * 2016-12-16 2018-06-21 Dic株式会社 Sealing material composition for display element, and display element in which said composition is used
WO2019088130A1 (en) * 2017-10-31 2019-05-09 住友大阪セメント株式会社 Zinc oxide powder, dispersion, cosmetic material, and method for producing zinc oxide powder
CN108893058A (en) * 2018-06-21 2018-11-27 湖州知维技术服务有限公司 A kind of environment friendly emulsion paint
CN109336620A (en) * 2018-09-27 2019-02-15 安徽青花坊瓷业股份有限公司 A kind of binder for ceramic batch

Also Published As

Publication number Publication date
JPWO2022075030A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
CN101516614B (en) Gas barrier film
JP5440892B2 (en) Resin composition for adhesive containing plate-like inorganic compound, and adhesive
CN101535040A (en) Gas barrier film laminate
WO2007026751A1 (en) Gas barrier multilayer film
WO2014103994A1 (en) Polyester resin composition, adhesive, and film
JP2008188975A (en) Multi-layered structural article
JP6075623B2 (en) Gas barrier polyester resin composition and gas barrier film
JP5320924B2 (en) Gas barrier laminate
WO2021111941A1 (en) Laminated layered body
KR101616588B1 (en) Process for producing gas-barrier layered product
WO2023286679A1 (en) Laminated film for forming inorganic thin film layer
JPWO2018123734A1 (en) Resin composition, molded body, laminate, gas barrier material, coating material and adhesive
JP5648855B2 (en) Resin composition for adhesive having water vapor barrier property, and adhesive
JP5626587B2 (en) Gas barrier film
JP7123336B2 (en) Resin compositions, moldings, laminates, coating materials and adhesives
WO2022075030A1 (en) Resin composition, molded object, layered product, gas-barrier material, coating material, and adhesive
JP2013234220A (en) Method of manufacturing resin dispersion, adhesive, and coating agent
JP4655399B2 (en) Gas barrier laminated film
WO2023127594A1 (en) Packaging material
JP6405874B2 (en) Resin composition containing polyamide polyester and adhesive
JP6901086B2 (en) Resin composition, molded body, laminate, gas barrier material, coating material and adhesive
JP2022062371A (en) Resin composition, molding, laminate, oxygen barrier material, coating material and adhesive
JP2013014722A (en) Polyester resin composition with gas barrier properties, and gas-barrier film
JP4742848B2 (en) Gas barrier container
JP2008222761A (en) Method for preventing permeation of amine-based volatile material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877332

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555335

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877332

Country of ref document: EP

Kind code of ref document: A1