WO2022074278A1 - Synchronous control method for a power conversion unit - Google Patents

Synchronous control method for a power conversion unit Download PDF

Info

Publication number
WO2022074278A1
WO2022074278A1 PCT/ES2021/070735 ES2021070735W WO2022074278A1 WO 2022074278 A1 WO2022074278 A1 WO 2022074278A1 ES 2021070735 W ES2021070735 W ES 2021070735W WO 2022074278 A1 WO2022074278 A1 WO 2022074278A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
synchronous
power
voltage
conversion unit
Prior art date
Application number
PCT/ES2021/070735
Other languages
Spanish (es)
French (fr)
Inventor
Pedro RODRÍGUEZ CORTÉS
Andrés TARRASÓ MARTÍNEZ
Ngoc Bao LAI
José Ignacio CANDELA GARCÍA
Original Assignee
Universitat Politecnica De Catalunya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politecnica De Catalunya filed Critical Universitat Politecnica De Catalunya
Publication of WO2022074278A1 publication Critical patent/WO2022074278A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention belongs to the field of electrical system controllers and presents a control structure capable of emulating the electromechanical response of a synchronous generator, allowing to regulate the active and reactive power that is generated, while providing inherent support for maintenance. of the level of voltage and frequency in the electrical network by using the control voltage generated through the current controller.
  • This invention makes it possible to avoid the use of an external network voltage measurement, as well as a synchronization system based on this measurement, allowing direct synchronization embedded in the current control loop, maintaining the functionalities of active and reactive power control. generated as well as the voltage and frequency regulation characteristics of a synchronous generator, which allows a dynamic response to disturbances in the electrical network, interconnected to a larger or isolated network, just as synchronous generators operate, without sacrificing a fast response in power control.
  • Renewable energies such as photovoltaic and wind energy, present a great intermittence in the injection of energy as they depend largely on weather conditions.
  • its dynamic behavior presents clear differences with the way in which the rest of the generation units are controlled and operated, not only due to its response speed but also due to its lack of inertia and network support functionalities.
  • the new power injection systems to the grid have begun to emulate the more conventional power injection systems to the electricity grid.
  • they take synchronous generators as a reference, which are capable of contributing to the stability of both frequency and voltage of the electrical network thanks to their ability to store energy in their rotating axis as mechanical energy. This energy can be delivered to the electrical grid as additional electrical power during grid disturbances. Similarly, they support the level of tension.
  • the new renewable energy plants connected to the grid through power converters despite having a much faster and more effective behavior than traditional generation systems, lack mechanical elements in which to store additional mechanical energy to deliver to the plant.
  • power grid in the event of sharp transitions or grid disturbances. This translates into a great reduction in the stability of the systems connected to the electrical network, which increases their vulnerability to imbalances and disturbances in the electrical network.
  • Document WO2017044922 presents a control method for frequency variations by means of a power conversion unit, represented as a voltage source in series with an impedance, which is modified to control the network frequency.
  • a power conversion unit represented as a voltage source in series with an impedance
  • two control strategies are presented that emulate the dynamics of the rotor of a synchronous machine, allowing the power conversion unit to provide the dynamic support functionalities in both frequency and voltage of the synchronous generator.
  • a control modifies the virtual impedance control and performs a control based on the virtual admittance.
  • the difference between the voltage at the inverter terminals and the voltage generated by the virtual rotor generates a reference current to be followed by a current control that acts on an internal control loop.
  • the converter acts as a controlled current source against the electrical network, thus avoiding the problem of the derivative component of the virtual impedance.
  • the present invention proposes a new synchronization method for a current controller, capable of emulating the electromechanical characteristic of a synchronous generator and providing a synchronous compensation current to maintain a power conversion unit, or power converter, stable and provide support in frequency and voltage to the electrical network.
  • the synchronous control method for a power conversion unit object of this invention which is particularly based on synchronization by means of the current controller, is a control system that allows emulating the dynamic behavior of a synchronous generator, without the need to use of a specific synchronization system or an external voltage measurement.
  • it is capable of acting in interconnected networks, as well as in isolated systems, providing network-forming features.
  • This control method operates the power conversion system using the classic current control strategies for a power converter connected to the electrical network or in an isolated system acting as a former, being also capable of emulating the characteristics and behavior of a synchronous machine.
  • Classical control systems are composed of a current controller in synchronous coordinates, dq , or a controller in stationary coordinates, a/3 .
  • control systems in synchronous coordinates establish synchronization systems to be able to rotate at the same network speed, which usually measure the voltage of the electrical network and use it to synchronize the entire control system.
  • These synchronization loops can be made up of different algorithms, where the most common are the so-called PLLs (Phase Lock Loop), which allow synchronization to the grid voltage by means of a grid voltage monitoring algorithm.
  • PLLs Phase Lock Loop
  • the synchronous control method object of this invention avoids the use of traditional electrical grid synchronization systems and uses the control voltage reference itself generated by the current controller as a synchronization element, which has the ability to emulate the electromechanical and electromagnetic behavior of a synchronous machine, thus allowing the control of active and reactive power against voltage and frequency variations in the electrical network.
  • Synchronization based on the use of the current controller is performed by the control voltage generated by the current controller.
  • This generated voltage subtracted from the internal electromotive force (EMF) of the virtual synchronous machine is capable of providing the difference in voltage between them.
  • EMF electromotive force
  • the input of this control loop is linked to the power generated by the synchronization system, which is defined by the synchronous compensation current and the inverter control voltage.
  • the system is able to determine the necessary phase angle for the internal EMF of the control system, so that the virtual impedance generates the synchronous compensation current. In this way improving the stability of the control system, and generating compensation currents during transients of the electrical network, both in frequency and voltage.
  • Figure 1 shows the general scheme of a power converter connected to the electrical network.
  • Figure 2 shows the internal control structure, where the current controller and the synchronization system to determine the synchronous compensation current are presented.
  • Figure 3 shows the control structure of the synchronization system in detail.
  • Figure 4 shows the internal control structure where the synchronization system generates a synchronous compensation power.
  • Fig. 5 shows the internal control structure of compensation synchronous power generation in detail.
  • Figure 6 shows the internal control structure, where the current controller and the synchronization system are integrated, in addition to the droop regulation loops.
  • the power converter consists of an external DC source (1) which can be generated by any type of renewable energy, a power inverter (2) with the corresponding controller (3) and an output filter (4) to reduce the noise level at the converter output.
  • the internal control of the power converter is made up of a current control loop (8), which through the error between the current measurement (7) and the current references, the external reference (5) and the compensation current (6), is capable of generating a control voltage (9), which defines the voltage level at the output of the power inverter (2).
  • This voltage is used as input for the synchronization system (10) which is capable of determining its phase (1 1) and generating a synchronous compensation current (6).
  • the synchronization system uses an FEM (12) called E v .
  • E v By means of the voltage difference between the internal voltage of the FEM virtual machine (12) and the control voltage (9) a compensation current (6) is generated, which depends directly on the parameters of the virtual impedance (13).
  • This element consists of a resistance and inductance value that generate the synchronous compensation current (6) depending on the error between the control and internal voltages.
  • the output power of the power inverter (2) is calculated, which enters an active power control block (14).
  • This block (14) has the capacity to generate a variation in angular speed Aro (15) depending on the variation in active power previously calculated by means of the compensation current and the control voltage.
  • This speed added to the nominal angular speed of the system (16) determines the angular speed of the electrical network.
  • the integration of this variable allows to generate the phase angle of the EMF, thus allowing to generate variables in phase with the control voltage.
  • the system may be implemented in a synchronous coordinate system, dq, which defines the variables at stationary values.
  • the virtual impedance (13) can be defined in the synchronous coordinate system with the necessary inductive and resistive values.
  • the system can be implemented in a stationary coordinate system, cr/3, which defines the control variables as rotating vectors in time.
  • cr/3 defines the control variables as rotating vectors in time.
  • the virtual impedance (13) can work with the traditional impedance transfer function.
  • the virtual admittance can be represented only as a matrix of values, which do not depend on a transfer function and only present the average value of the virtual impedance. In this way, the transfer function presented by the virtual impedance for different harmonic frequencies is avoided.
  • the compensation system can be defined by a compensation synchronous power (19), which is defined by the synchronization system, represented in Figure 4.
  • This reference added to the possible external active power reference (18 ) and reactive (17), are sent to the power to current transformation equations (20), which through the control voltage (9) is capable of defining the reference current of the current controller, as shown in Fig. figure 5.
  • droop type control loops can be integrated into the current control system.
  • the system is capable of defining the droop -f curve characteristic for active power (22) and Q- ⁇ / for reactive power (21).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

Proposed is a synchronous control method for a power conversion unit. The method allows the synchronous characteristic of a conventional generator to be emulated, the implementation of said method being based on a traditional current controller and on the control voltage generated. By defining a virtual electromotive force and the system control voltage, the method implements a synchronisation structure to maintain the stability of the system and generate a synchronous compensation current, thereby promoting the stability of the frequency and the voltage at the point of common coupling of the power conversion unit. The method also enables control and adjustment of the basic parameters of the system, inertia, the damping factor and the virtual impedance value, allowing the mains voltage and frequency to be improved and supported dynamically.

Description

MÉTODO DE CONTROL SÍNCRONO PARA UNA UNIDAD DE CONVERSIÓN DE POTENCIA SYNCHRONOUS CONTROL METHOD FOR A POWER CONVERSION UNIT
SECTOR DE LA TÉCNICA TECHNICAL SECTOR
La presente invención pertenece al sector de los controladores de sistemas eléctricos y presenta una estructura de control capaz de emular la respuesta electromecánica de un generador síncrono, permitiendo regular la potencia activa y reactiva que se genera, a la par que dar soporte inherente para el mantenimiento del nivel de tensión y frecuencia en la red eléctrica mediante el uso de la tensión de control generada a través del controlador de corriente. Esta invención permite evitar el uso de una medida externa de tensión de red, así como de un sistema de sincronización basado en esta medida, permitiendo una sincronización directa embebida en el lazo de control de corriente, manteniendo las funcionalidades de control de potencia activa y reactiva generada así como las características de regulación de tensión y frecuencia de un generador síncrono, lo que permite responder dinámicamente a perturbaciones en la red eléctrica, interconectada a una red mayor o aislada, tal y como operan los generadores síncronos, sin renunciar a una respuesta rápida en el control de potencia. The present invention belongs to the field of electrical system controllers and presents a control structure capable of emulating the electromechanical response of a synchronous generator, allowing to regulate the active and reactive power that is generated, while providing inherent support for maintenance. of the level of voltage and frequency in the electrical network by using the control voltage generated through the current controller. This invention makes it possible to avoid the use of an external network voltage measurement, as well as a synchronization system based on this measurement, allowing direct synchronization embedded in the current control loop, maintaining the functionalities of active and reactive power control. generated as well as the voltage and frequency regulation characteristics of a synchronous generator, which allows a dynamic response to disturbances in the electrical network, interconnected to a larger or isolated network, just as synchronous generators operate, without sacrificing a fast response in power control.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Durante los últimos años, los sistemas de generación de energía eléctrica han presentado un gran cambio dando lugar a un sistema de generación más heterogéneo y distribuido. Este cambio ha sido en gran medida una consecuencia del fuerte impulso de las energías renovables en este sector, que ha propiciado la sustitución de sistemas tradicionales de generación por plantas de generación basadas energías renovables. Las energías fotovoltaica y eólica han resultado ser opciones con un gran potencial para el avance en la integración de fuentes renovables a la red eléctrica, acumulando una gran parte de la energía inyectada a la red eléctrica a nivel mundial. Estas fuentes renovables están conectadas a la red eléctrica mediante convertidores electrónicos de potencia, también conocidos como convertidores de potencia o inversores. Estos elementos de conversión trabajan comúnmente en fuente de tensión (VSC, Voltage Source Converter), y están encargados de regular el flujo de potencia activa y reactiva inyectada a la red eléctrica mediante el control de la tensión de salida de la unidad de conversión. In recent years, electrical power generation systems have undergone a major change, giving rise to a more heterogeneous and distributed generation system. This change has been largely a consequence of the strong push for renewable energy in this sector, which has led to the replacement of traditional generation systems by generation plants based on renewable energy. Photovoltaic and wind energy have turned out to be options with great potential for progress in the integration of renewable sources into the electricity grid, accumulating a large part of the energy injected into the electricity grid worldwide. These renewable sources are connected to the electrical grid through power electronic converters, also known as power converters or inverters. These conversion elements commonly work as a voltage source (VSC, Voltage Source Converter), and are responsible for regulating the flow of active and reactive power injected into the electrical network by controlling the output voltage of the conversion unit.
Las energías renovables, como la energía fotovoltaica y eólica presentan una gran intermitencia en la inyección de energía ya que dependen en gran medida de las condiciones climáticas. Asimismo, su comportamiento dinámico presenta claras divergencias con el modo en el que se controlan y operan el resto de unidades de generación, no únicamente por su velocidad de respuesta sino por su falta de inercia y de funcionalidades de soporte a la red. Por esta razón, a medida que aumenta la proporción de renovables en el mix energético, los nuevos sistemas de inyección de potencia a la red han comenzado a emular a los sistemas más convencionales de inyección de potencia a la red eléctrica. Para ello toman como referencia los generadores síncronos, que son capaces de contribuir a la estabilidad tanto en frecuencia como en tensión de la red eléctrica gracias a su capacidad de almacenar energía en su eje rotatorio como energía mecánica. Esta energía se puede entregar a la red eléctrica como potencia eléctrica adicional durante perturbaciones de red. De forma análoga prestan soporte al nivel de tensión. Renewable energies, such as photovoltaic and wind energy, present a great intermittence in the injection of energy as they depend largely on weather conditions. Likewise, its dynamic behavior presents clear differences with the way in which the rest of the generation units are controlled and operated, not only due to its response speed but also due to its lack of inertia and network support functionalities. For this reason, as the proportion of renewables in the energy mix increases, the new power injection systems to the grid have begun to emulate the more conventional power injection systems to the electricity grid. For this, they take synchronous generators as a reference, which are capable of contributing to the stability of both frequency and voltage of the electrical network thanks to their ability to store energy in their rotating axis as mechanical energy. This energy can be delivered to the electrical grid as additional electrical power during grid disturbances. Similarly, they support the level of tension.
Las nuevas plantas de energía renovable conectadas a la red a través de convertidores de potencia, a pesar de tener un comportamiento mucho más rápido y efectivo que los sistemas de generación tradicionales, carecen de elementos mecánicos en los que almacenar energía mecánica adicional para entregar a la red eléctrica en caso de transiciones bruscas o perturbaciones de red. Lo cual se traduce en una gran reducción de la estabilidad de los sistemas conectados a la red eléctrica, el cual aumenta su vulnerabilidad frente a desequilibrios y perturbaciones en la red eléctrica. The new renewable energy plants connected to the grid through power converters, despite having a much faster and more effective behavior than traditional generation systems, lack mechanical elements in which to store additional mechanical energy to deliver to the plant. power grid in the event of sharp transitions or grid disturbances. This translates into a great reduction in the stability of the systems connected to the electrical network, which increases their vulnerability to imbalances and disturbances in the electrical network.
Esto ha incitado a investigar y desarrollar nuevas soluciones para poder integrar la falta de inercia internamente en los sistemas de energía renovables, ampliando de esta manera su funcionalidad y permitiendo una alta integración de este tipo de energía manteniendo los niveles de estabilidad de sistema que proveen los generadores tradicionales. Fruto de ese trabajo, se han propuesto diferentes estrategias de control para modificar las referencias de potencia activa y reactiva, consiguiendo una mejora en la estabilidad del sistema sin renunciar a las prestaciones genéricas de control de potencia activa y reactiva. Estas estrategias se central en emular las características electromecánicas y electromagnéticas de los generadores síncronos, las cuales proporcionan la capacidad de almacenar energía en forma de energía cinética en un rotor virtual. This has prompted research and development of new solutions to be able to integrate the lack of inertia internally in renewable energy systems, thus expanding their functionality and allowing a high level of integration of this type of energy while maintaining the levels of system stability provided by renewable energy systems. traditional generators. As a result of this work, different control strategies have been proposed to modify the references of active and reactive power, achieving an improvement in the stability of the system without giving up the generic features of active and reactive power control. These strategies focus on emulating the electromechanical and electromagnetic characteristics of synchronous generators, which provide the ability to store energy in the form of kinetic energy in a virtual rotor.
En el documento WO2017044922 se presenta un método de control para variaciones de frecuencia mediante una unidad de conversión de potencia, representada esta como una fuente de tensión en serie con una impedancia, la cual es modificada para efectuar el control sobre la frecuencia de red. En CN104377697A y US201 101531 13A1 se presentan dos estrategias de control que emulan la dinámica del rotor de una maquina síncrona, permitiendo que la unidad de conversión de potencia provea las funcionalidades de soporte dinámico tanto en frecuencia como en tensión del generador síncrono. Document WO2017044922 presents a control method for frequency variations by means of a power conversion unit, represented as a voltage source in series with an impedance, which is modified to control the network frequency. In CN104377697A and US201 101531 13A1, two control strategies are presented that emulate the dynamics of the rotor of a synchronous machine, allowing the power conversion unit to provide the dynamic support functionalities in both frequency and voltage of the synchronous generator.
Una gran parte de los métodos para integrar los sistemas síncronos se basan en el cálculo de la tensión a ser generada por la unidad de conversión de potencia, y utilizan la impedancia virtual para producir la caída de tensión necesaria para controlar el sistema. De esta manera el sistema se comporta de modo equivalente a una fuente de tensión controlada. Estas estrategias presentan problemas de estabilidad debido a la componente derivativa de la impedancia virtual, la cual presenta un comportamiento poco estable, dando lugar a una respuesta dinámica poco apropiada ante la aparición de perturbaciones y fenómenos transitorios en la red eléctrica. A large part of the methods to integrate synchronous systems are based on the calculation of the voltage to be generated by the power conversion unit, and use the virtual impedance to produce the necessary voltage drop to control the system. In this way the system behaves in an equivalent way to a controlled voltage source. These strategies present stability problems due to the derivative component of the virtual impedance, which presents an unstable behavior, giving rise to an inappropriate dynamic response to the appearance of disturbances and transient phenomena in the electrical network.
En ES2402465B1 se presenta un control que modifica el control de la impedancia virtual y efectúa un control basado en la admitancia virtual. La diferencia entre la tensión en bornes de inversor y la tensión generada por el rotor virtual, genera una corriente de referencia a seguir por parte de un control de corriente que actúa en un lazo de control interno. De esta manera el convertidor actúa como una fuente de corriente controlada frente a la red eléctrica, evitando así el problema de la componente derivativa de la impedancia virtual. Estos métodos precisan conocer la tensión del punto de acoplo del convertidor de potencia, ya que gracias a ese valor se realizan los lazos de control anidados para emular el comportamiento electromecánico y electromagnético de la maquina síncrona. In ES2402465B1 a control is presented that modifies the virtual impedance control and performs a control based on the virtual admittance. The difference between the voltage at the inverter terminals and the voltage generated by the virtual rotor generates a reference current to be followed by a current control that acts on an internal control loop. In this way, the converter acts as a controlled current source against the electrical network, thus avoiding the problem of the derivative component of the virtual impedance. These methods require knowing the voltage of the coupling point of the power converter, since thanks to this value the nested control loops are made to emulate the electromechanical and electromagnetic behavior of the synchronous machine.
EXPLICACIÓN DE LA INVENCIÓN EXPLANATION OF THE INVENTION
Según lo expuesto, la presente invención propone un nuevo método de sincronización para un controlador de corriente, capaz de emular la característica electromecánica de un generador síncrono y proporcionar una corriente de compensación síncrona para mantener una unidad de conversión de potencia, o convertidor de potencia, estable y proveer de soporte en frecuencia y tensión a la red eléctrica. Evitando de esta manera el uso de un sistema de sincronización exclusivo y el uso de las medidas de tensión externas del convertidor de potencia. El método de control síncrono para una unidad de conversión de potencia objeto de esta invención, que particularmente está basado en la sincronización mediante el controlador de corriente, es un sistema de control que permite emular el comportamiento dinámico de un generador síncrono, sin necesidad del uso de un sistema de sincronización específico ni una medida externa de tensión. Aportando de esta manera, una mejora en la estabilidad del sistema tanto en frecuencia como en tensión. Asimismo, es capaz de actuar en redes interconectadas, así como en sistemas aislados, dando prestaciones de formador de red. According to the above, the present invention proposes a new synchronization method for a current controller, capable of emulating the electromechanical characteristic of a synchronous generator and providing a synchronous compensation current to maintain a power conversion unit, or power converter, stable and provide support in frequency and voltage to the electrical network. Thus avoiding the use of an exclusive synchronization system and the use of external voltage measurements of the power converter. The synchronous control method for a power conversion unit object of this invention, which is particularly based on synchronization by means of the current controller, is a control system that allows emulating the dynamic behavior of a synchronous generator, without the need to use of a specific synchronization system or an external voltage measurement. Thus providing an improvement in the stability of the system both in frequency and voltage. Likewise, it is capable of acting in interconnected networks, as well as in isolated systems, providing network-forming features.
Este método de control opera el sistema de conversión de potencia utilizando las estrategias clásicas de control de corriente para un convertidor de potencia conectado a la red eléctrica o en un sistema aislado actuando como formador, siendo además capaz de emular las características y el comportamiento de una maquina síncrona. Los sistemas clásicos de control están compuestos por un controlador de corriente en coordenadas síncronas, dq , o un controlador en coordenadas estacionarias, a/3 . Comúnmente los sistemas de control en coordenadas síncronas establecen sistemas de sincronización para poder rotar a la misma velocidad de red, los cuales suelen medir la tensión de la red eléctrica y utilizarla para sincronizar todo el sistema de control. Estos lazos de sincronización pueden estar compuestos por diferentes algoritmos, donde los más comunes son las denominadas PLLs (Phase Lock Loop), que permiten sincronizarse a la tensión de red mediante un algoritmo de seguimiento de la tensión de la red eléctrica. This control method operates the power conversion system using the classic current control strategies for a power converter connected to the electrical network or in an isolated system acting as a former, being also capable of emulating the characteristics and behavior of a synchronous machine. Classical control systems are composed of a current controller in synchronous coordinates, dq , or a controller in stationary coordinates, a/3 . Commonly, control systems in synchronous coordinates establish synchronization systems to be able to rotate at the same network speed, which usually measure the voltage of the electrical network and use it to synchronize the entire control system. These synchronization loops can be made up of different algorithms, where the most common are the so-called PLLs (Phase Lock Loop), which allow synchronization to the grid voltage by means of a grid voltage monitoring algorithm.
El método de control síncrono objeto de esta invención evita el uso de los sistemas tradicionales de sincronización a la red eléctrica y utiliza la propia referencia de tensión de control generada por el controlador de corriente como elemento de sincronización, el cual cuenta con la capacidad de emular el comportamiento electromecánico y electromagnético de una maquina síncrona, permitiendo de esta manera, el control de potencia activa y reactiva frente a variaciones de tensión y frecuencia en la red eléctrica. La sincronización basada en el uso del controlador de corriente se realiza mediante la tensión de control generada por el mismo. Esta tensión generada restada a la fuerza electromotriz interna (FEM) de la maquina síncrona virtual es capaz de proveer la diferencia de tensión existente entre ellas. Definiendo de esta manera una diferencia en magnitud y en fase, la cual mediante una impedancia virtual se traduce a una corriente de compensación síncrona. Para generar la FEM interna de la máquina síncrona virtual, se utiliza el ángulo de fase obtenido por el lazo electromecánico. La entrada de este lazo de control está vinculada a la potencia generada por el sistema de sincronización, la cual está definida por la corriente de compensación síncrona y la tensión de control del inversor. De esta manera, el sistema es capaz de determinar el ángulo de fase necesario para la FEM interna del sistema de control, para que la impedancia virtual genere la corriente de compensación síncrona. Mejorando de esta manera la estabilidad del sistema de control, y generando corrientes de compensación durante transitorios de la red eléctrica, tanto en frecuencia como en tensión. The synchronous control method object of this invention avoids the use of traditional electrical grid synchronization systems and uses the control voltage reference itself generated by the current controller as a synchronization element, which has the ability to emulate the electromechanical and electromagnetic behavior of a synchronous machine, thus allowing the control of active and reactive power against voltage and frequency variations in the electrical network. Synchronization based on the use of the current controller is performed by the control voltage generated by the current controller. This generated voltage subtracted from the internal electromotive force (EMF) of the virtual synchronous machine is capable of providing the difference in voltage between them. Thus defining a difference in magnitude and phase, which through a virtual impedance is translated into a synchronous compensation current. To generate the internal EMF of the machine virtual synchronous, the phase angle obtained by the electromechanical loop is used. The input of this control loop is linked to the power generated by the synchronization system, which is defined by the synchronous compensation current and the inverter control voltage. In this way, the system is able to determine the necessary phase angle for the internal EMF of the control system, so that the virtual impedance generates the synchronous compensation current. In this way improving the stability of the control system, and generating compensation currents during transients of the electrical network, both in frequency and voltage.
BREVE DESCRIPCIÓN DE LOS DIBUJOS BRIEF DESCRIPTION OF THE DRAWINGS
Para complementar la descripción de la invención y con objeto de aclarar el funcionamiento del método de control, se describen las figuras en donde con carácter ilustrativo y no limitativo se presenta lo siguiente: To complement the description of the invention and in order to clarify the operation of the control method, the figures are described where the following is presented by way of illustration and not limitation:
La figura 1 muestra el esquema general de un convertidor de potencia conectado a la red eléctrica. Figure 1 shows the general scheme of a power converter connected to the electrical network.
La figura 2 muestra la estructura de control interna, donde se presenta el controlador de corriente y el sistema de sincronización para determinar la corriente de compensación síncrona. Figure 2 shows the internal control structure, where the current controller and the synchronization system to determine the synchronous compensation current are presented.
La figura 3 muestra la estructura de control del sistema de sincronización en detalle.Figure 3 shows the control structure of the synchronization system in detail.
La figura 4 muestra la estructura de control interna donde el sistema de sincronización genera una potencia de compensación síncrona. Figure 4 shows the internal control structure where the synchronization system generates a synchronous compensation power.
La figura 5 muestra la estructura interna de control de la generación de la potencia síncrona de compensación en detalle. Fig. 5 shows the internal control structure of compensation synchronous power generation in detail.
La figura 6 muestra la estructura interna de control, donde se integra el controlador de corriente y el sistema de sincronización además de los lazos de regulación droop.Figure 6 shows the internal control structure, where the current controller and the synchronization system are integrated, in addition to the droop regulation loops.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN PREFERRED EMBODIMENT OF THE INVENTION
A continuación, se presenta una realización preferente de la invención haciendo referencia a las figuras mencionadas previamente. Next, a preferred embodiment of the invention is presented with reference to the previously mentioned figures.
En una posible realización preferente del sistema y método de control síncrono para una unidad de conversión de potencia basado en la sincronización mediante el controlador de corriente, se presenta para una configuración clásica de la citada unidad de conversión de potencia (o convertidor de potencia) que se encuentra conectada a la red en la figura 1. En particular, el convertidor de potencia consta de una fuente de continua externa (1 ) la cual puede estar generada por cualquier tipo de energía renovable, un inversor de potencia (2) con el correspondiente controlador (3) y un filtro de salida (4) para reducir el nivel de ruido a la salida del convertidor. In a possible preferred embodiment of the synchronous control system and method for a power conversion unit based on synchronization by means of the current controller, is presented for a classic configuration of the aforementioned power conversion unit (or power converter) that is connected to the network in Figure 1. In particular, the power converter consists of an external DC source (1) which can be generated by any type of renewable energy, a power inverter (2) with the corresponding controller (3) and an output filter (4) to reduce the noise level at the converter output.
Como se presenta en la figura 2, el control interno del convertidor de potencia está compuesto por un lazo de control de corriente (8), el cual mediante el error entre la medida de corriente (7) y las referencias de corriente, la referencia externa (5) y la corriente de compensación (6), es capaz de generar una tensión de control (9), que define el nivel de tensión a la salida del inversor de potencia (2). Esta tensión se utiliza como entrada para el sistema de sincronización (10) el cual es capaz de determinar la fase de la misma (1 1 ) y generar una corriente de compensación síncrona (6). Como se presenta en la figura 3, el sistema de sincronización utiliza una FEM (12) denominada Ev. Mediante la diferencia de tensión entre la tensión interna de la máquina virtual FEM (12) y la tensión de control (9) se genera una corriente de compensación (6), que depende directamente de los parámetros de la impedancia virtual (13). Este elemento consta de un valor de resistencia y de inductancia que generan la corriente de compensación síncrona (6) dependiendo del error entre las tensiones de control e interna. Mediante esta corriente de compensación y la tensión de control de convertidor de potencia, se calcula la potencia de salida del inversor de potencia (2), la cual entra en un bloque de control de potencia activa (14). Este bloque (14) tiene la capacidad de generar una variación de velocidad angular Aro (15) dependiendo de la variación de potencia activa calculada anteriormente mediante la corriente de compensación y la tensión de control. Esta velocidad sumada a la velocidad angular nominal del sistema (16) determinan la velocidad angular de la red eléctrica. La integración de esta variable permite generar el ángulo de fase de la FEM, permitiendo de esta manera generar variables en fase con la tensión de control. As shown in figure 2, the internal control of the power converter is made up of a current control loop (8), which through the error between the current measurement (7) and the current references, the external reference (5) and the compensation current (6), is capable of generating a control voltage (9), which defines the voltage level at the output of the power inverter (2). This voltage is used as input for the synchronization system (10) which is capable of determining its phase (1 1) and generating a synchronous compensation current (6). As shown in Figure 3, the synchronization system uses an FEM (12) called E v . By means of the voltage difference between the internal voltage of the FEM virtual machine (12) and the control voltage (9) a compensation current (6) is generated, which depends directly on the parameters of the virtual impedance (13). This element consists of a resistance and inductance value that generate the synchronous compensation current (6) depending on the error between the control and internal voltages. By means of this compensation current and the power converter control voltage, the output power of the power inverter (2) is calculated, which enters an active power control block (14). This block (14) has the capacity to generate a variation in angular speed Aro (15) depending on the variation in active power previously calculated by means of the compensation current and the control voltage. This speed added to the nominal angular speed of the system (16) determines the angular speed of the electrical network. The integration of this variable allows to generate the phase angle of the EMF, thus allowing to generate variables in phase with the control voltage.
En una realización, el sistema puede estar implementado en un sistema de coordenadas síncronas, dq, el cual define las variables en valores estacionarios. De esta manera la impedancia virtual (13) puede ser definida en el sistema de coordenadas síncronas con los valores inductivo y resistivo necesarios. Habilitando así que el sistema sea capaz de generar la corriente de compensación en coordenadas síncronas, definiendo además la fase local del sistema mediante el lazo de control de potencia activa (14) para realizar las transformadas necesarias para el control interno. In one embodiment, the system may be implemented in a synchronous coordinate system, dq, which defines the variables at stationary values. In this way the virtual impedance (13) can be defined in the synchronous coordinate system with the necessary inductive and resistive values. Thus enabling the system to be able to generate the compensation current in synchronous coordinates, also defining the local phase of the system by means of the active power control loop (14) to carry out the transformations necessary for internal control.
En otra realización, el sistema puede estar implementado en un sistema de coordenadas estacionarias, cr/3, el cual define las variables de control como vectores rotativos en el tiempo. De esta manera, la impedancia virtual (13) puede trabajar con la función de transferencia tradicional de la impedancia. Definiendo así el nivel de corriente de compensación síncrona en el sistema. Forzando al sistema a definir el ángulo de fase (11 ) para generar la FEM interna de la máquina virtual. In another embodiment, the system can be implemented in a stationary coordinate system, cr/3, which defines the control variables as rotating vectors in time. In this way, the virtual impedance (13) can work with the traditional impedance transfer function. Thus defining the level of synchronous compensation current in the system. Forcing the system to define the phase angle (11 ) to generate the internal EMF of the virtual machine.
En otra realización, la admitancia virtual puede estar representada únicamente como una matriz de valores, las cuales no dependen de una función de transferencia y únicamente presentan el valor promedio de la impedancia virtual. De esta manera, se evita la función de transferencia presentada por la impedancia virtual para diferentes frecuencias harmónicas. In another embodiment, the virtual admittance can be represented only as a matrix of values, which do not depend on a transfer function and only present the average value of the virtual impedance. In this way, the transfer function presented by the virtual impedance for different harmonic frequencies is avoided.
En otra realización, el sistema de compensación puede estar definido por una potencia síncrona de compensación (19), la cual está definida por el sistema de sincronización, representado en la figura 4. Esta referencia sumada a la posible referencia externa de potencia activa (18) y reactiva (17), se envían a las ecuaciones de transformación de potencia a corriente (20), las cuales mediante la tensión de control (9) es capaz de definir la corriente de referencia del controlador de corriente, como se muestra en la figura 5. In another embodiment, the compensation system can be defined by a compensation synchronous power (19), which is defined by the synchronization system, represented in Figure 4. This reference added to the possible external active power reference (18 ) and reactive (17), are sent to the power to current transformation equations (20), which through the control voltage (9) is capable of defining the reference current of the current controller, as shown in Fig. figure 5.
En otra realización, los lazos de control de tipo droop se puede integrar dentro del sistema de control de corriente. Mediante el bloque de transformación de potencia a corriente de referencia el sistema es capaz de definir la característica de curva droop -f para potencia activa (22) y Q-\/para potencia reactiva (21 ). In another embodiment, droop type control loops can be integrated into the current control system. By means of the power to reference current transformation block, the system is capable of defining the droop -f curve characteristic for active power (22) and Q-\/ for reactive power (21).
Un experto en la materia podría introducir cambios y modificaciones en los ejemplos de realización descritos anteriormente, sin apartarse del alcance de la invención, según queda definido en las reivindicaciones adjuntas. A person skilled in the art could make changes and modifications to the embodiments described above, without departing from the scope of the invention, as defined in the attached claims.

Claims

8 8
REIVINDICACIONES Método de control síncrono para una unidad de conversión de potencia, que está basado en una sincronización mediante un controlador de corriente, caracterizado por que comprende definir una corriente de compensación síncrona y un ángulo de fase de la tensión utilizando la propia tensión de control de la unidad de conversión de potencia. Método según la reivindicación 1 , que comprende además generar una corriente de compensación síncrona utilizando una impedancia virtual, en donde la corriente de compensación síncrona depende de la tensión de control y de una fuerza electromotriz interna, FEM, de una máquina síncrona virtual. Método según la reivindicación 2, en donde la impedancia virtual está definida por una función de transferencia o por unos parámetros promediados. Método según la reivindicación 2, que comprende además utilizar un bloque de control de potencia activa para calcular un ángulo de fase de la FEM, en donde el bloque de control de potencia activa tiene como entrada una diferencia de potencia generada por la corriente de compensación síncrona. Método según la reivindicación 2, que comprende además definir una potencia de compensación síncrona utilizando la corriente de compensación síncrona y la tensión de control de la unidad de conversión de potencia, definiéndose de este modo un control de potencia en la unidad de conversión de potencia. Método según la reivindicación 2, que comprende además integrar unos lazos de control droop o consignas externas de potencia o corriente dentro de un lazo de control de corriente de la unidad de conversión de potencia. CLAIMS Synchronous control method for a power conversion unit, which is based on synchronization by means of a current controller, characterized in that it comprises defining a synchronous compensation current and a phase angle of the voltage using the control voltage itself the power conversion unit. Method according to claim 1, further comprising generating a synchronous compensation current using a virtual impedance, wherein the synchronous compensation current depends on the control voltage and an internal electromotive force, EMF, of a virtual synchronous machine. Method according to claim 2, wherein the virtual impedance is defined by a transfer function or by averaged parameters. Method according to claim 2, further comprising using an active power control block to calculate a phase angle of the EMF, wherein the active power control block has as input a power difference generated by the synchronous compensation current . The method according to claim 2, further comprising defining a synchronous compensation power using the synchronous compensation current and the control voltage of the power conversion unit, thereby defining a power control in the power conversion unit. Method according to claim 2, further comprising integrating droop control loops or external power or current setpoints within a current control loop of the power conversion unit.
PCT/ES2021/070735 2020-10-09 2021-10-08 Synchronous control method for a power conversion unit WO2022074278A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP202031027 2020-10-09
ES202031027A ES2905693A1 (en) 2020-10-09 2020-10-09 Synchronous control method for a power conversion unit (Machine-translation by Google Translate, not legally binding)

Publications (1)

Publication Number Publication Date
WO2022074278A1 true WO2022074278A1 (en) 2022-04-14

Family

ID=81126474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2021/070735 WO2022074278A1 (en) 2020-10-09 2021-10-08 Synchronous control method for a power conversion unit

Country Status (2)

Country Link
ES (1) ES2905693A1 (en)
WO (1) WO2022074278A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2683076A1 (en) * 2011-02-28 2014-01-08 Abengoa Solar New Technologies, S.A. Virtual admittance controller based on static power converters

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2683076A1 (en) * 2011-02-28 2014-01-08 Abengoa Solar New Technologies, S.A. Virtual admittance controller based on static power converters

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG WEIYI ET AL.: "Synchronous Power Controller with Flexible Droop Characteristics for RenewablewPower Generation Systems", IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, vol. 7, no. 4, 10 January 2016 (2016-01-10), USA, pages 1572 - 1582, XP011623289, ISSN: 1949-3029, [retrieved on 20211222], DOI: 10.1109/TSTE.2016.2565059 *

Also Published As

Publication number Publication date
ES2905693A1 (en) 2022-04-11

Similar Documents

Publication Publication Date Title
ES2874658T3 (en) Procedure and control system for controlling a power converter
ES2428390T3 (en) Power control system of a wind farm
ES2919781T3 (en) Maximum power point tracking for a power conversion system and method thereof
ES2918984T3 (en) Synchronous power controller for a generation system based on a static power converter
WO2012117132A1 (en) Virtual controller of electromechanical characteristics for static power converters
Thomas et al. Virtual synchronous generator and its comparison to droop control in microgrids
Gao et al. Stability analysis of grid-following and grid-forming converters based on state-space model
Raisz et al. Linear and uniform system dynamics of future converter-based power systems
Biel et al. Passivity-based control of active and reactive power in single-phase PV inverters
ES2900555T3 (en) Improvements in the stabilization of hydraulic machines with characteristic with zone in S
ES2724564A1 (en) SYSTEM AND METHOD OF SYNCHRONOUS ADDED CONTROL OF A POWER PLANT WITH MULTIPLE POWER CONVERSION STATIONS (Machine-translation by Google Translate, not legally binding)
WO2022074278A1 (en) Synchronous control method for a power conversion unit
Vasudevan et al. Variable-speed PICO hydel energy storage with synchronverter control to emulate virtual inertia in autonomous microgrids
BR102018008374A2 (en) WIND PLANT AND ITS CONTROL METHOD
CN107591848A (en) A kind of droop control method and system
Sadnan et al. Fast real and reactive power flow control of grid-tie Photovoltaic inverter
Pillai et al. Design and implementation of a three phase inverter for renewable energy source with unified control strategy
Lu et al. Consensus-based Pf/QV droop control in autonomous micro-grids with wind generators and energy storage systems
Charles et al. Field oriented control of Doubly Fed Induction Generator in wind power system
Dehini et al. STATCOM Dc-bus Voltage Controller Based on Fuzzy logic
Chiumeo et al. Contribution of HVDC systems in increasing the electrical network inertia: A case study
Wang et al. Modeling and analysis of droop based hybrid control strategy for parallel inverters in islanded microgrids
Ashabani Synchronous converter and synchronous-VSC-state of art of universal control strategies for smart grid integration
Shyama et al. Design of FGSPI controller based combined LFC and AVR of two area interconnected power generating system
Sun et al. Adaptive virtual inertia control method based on droop control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877055

Country of ref document: EP

Kind code of ref document: A1