WO2022073175A1 - Reliable cell identification on mmw frequency - Google Patents

Reliable cell identification on mmw frequency Download PDF

Info

Publication number
WO2022073175A1
WO2022073175A1 PCT/CN2020/119906 CN2020119906W WO2022073175A1 WO 2022073175 A1 WO2022073175 A1 WO 2022073175A1 CN 2020119906 W CN2020119906 W CN 2020119906W WO 2022073175 A1 WO2022073175 A1 WO 2022073175A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection window
smtc
frequency range
cell
window
Prior art date
Application number
PCT/CN2020/119906
Other languages
French (fr)
Inventor
Jiaheng LIU
Arvind Vardarajan Santhanam
Xiaoning Lu
Yuanbo Wang
Cameron Matthew WEST
Yue HONG
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/119906 priority Critical patent/WO2022073175A1/en
Publication of WO2022073175A1 publication Critical patent/WO2022073175A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to wireless communication systems, and more particularly, to techniques for reliable cell identification on millimeter wave (mmW) frequency.
  • mmW millimeter wave
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single-carrier frequency division multiple access (SC-FDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • 5G communications technology can include: enhanced mobile broadband addressing human-centric use cases for access to multimedia content, services and data; ultra-reliable-low latency communications (URLLC) with certain specifications for latency and reliability; and massive machine type communications, which can allow a very large number of connected devices and transmission of a relatively low volume of non-delay-sensitive information.
  • URLLC ultra-reliable-low latency communications
  • massive machine type communications which can allow a very large number of connected devices and transmission of a relatively low volume of non-delay-sensitive information.
  • a method for wireless communication implemented by a UE may include establishing, at a user equipment (UE) , communication with a network via a first frequency range cell of an operating band.
  • the method may further include receiving, at the UE, a radio resource control (RRC) reconfiguration message from the network that includes a request for the UE to perform signal measurements for a second frequency range cell of the operating band.
  • RRC radio resource control
  • the method may further include selecting a detection window between a wide detection window or a synchronization signal block measurement timing configuration (SMTC) window in response to receiving the RRC reconfiguration message.
  • the method may further include initiating cell detection of the second frequency range cell based on selection of the detection window.
  • RRC radio resource control
  • an apparatus for wireless communications may include a memory having instructions and a processor configured to execute the instructions to establish, at a UE, communication with a network via a first frequency range cell of an operating band.
  • the processor may further be configured to execute the instructions to receive, at the UE, a RRC reconfiguration message from the network that includes a request for the UE to perform signal measurements for a second frequency range cell of the operating band.
  • the processor may further be configured to execute the instructions to select a detection window between a wide detection window or a SMTC window in response to receiving the RRC reconfiguration message.
  • the processor may further be configured to execute the instructions to initiate cell detection of the second frequency range cell based on selection of the detection window.
  • a non-transitory computer readable medium includes instructions stored therein that, when executed by a processor, cause the processor to perform the steps of establishing, at a UE, communication with a network via a first frequency range cell of an operating band.
  • the processor may further perform the steps of receiving, at the UE, a RRC reconfiguration message from the network that includes a request for the UE to perform signal measurements for a second frequency range cell of the operating band.
  • the processor may further perform the steps of selecting a detection window between a wide detection window or a SMTC window in response to receiving the RRC reconfiguration message.
  • the processor may further perform the steps of initiating cell detection of the second frequency range cell based on selection of the detection window.
  • FIG. 1 is a schematic diagram of an example of a wireless communications system in accordance with aspects of the present disclosure
  • FIG. 3B is a timing diagram of an example of wide detection window to monitor for SMTC signals in accordance with aspects of the present disclosure
  • mmW 5G NR systems leverage the small wavelengths of mmW at the higher frequencies to make use of multiple input multiple output (MIMO) antenna arrays to create highly directional beams that focus transmitted radio frequency (RF) energy in order to attempt to overcome the propagation and path loss challenges in both the uplink and downlink links.
  • MIMO multiple input multiple output
  • RF radio frequency
  • a UE may use a number of antenna ports (e.g., 1, 2, 4, or 8 antenna ports) associated with arrays of antennas to form beams in various directions using a number of analog weighting factors (e.g., antenna configurations) .
  • a base station may transmit downlink signals using directional beams.
  • the UE may need to support dual carrier connectivity on both FR1 and FR2 frequency ranges.
  • SA stand-alone
  • the network may send radio resource control (RRC) reconfiguration message with a request for the UE to perform signal measurements for a second frequency range cell of the operating band.
  • RRC radio resource control
  • frequencies associated with FR2 may be added in the measurement request that is transmitted by the network in the RRC reconfiguration message.
  • the network may expect the UE to provide a measurement report on the FR2 so that the network may add a second dedicated radio bearer in order to activate the dual carrier connectivity capability of the UE.
  • the UE may not be able to detect cells on FR2 because the UE may be configured with an incorrect signal block measurement timing configuration (SMTC) window information.
  • SMTC signal block measurement timing configuration
  • the UE may be configured to perform cell signal measurement by using SS/PBCH Block (SSB) , which is composed of synchronizations signal (SS) and physical broadcast channel (PBCH) .
  • SSB SS/PBCH Block
  • PBCH physical broadcast channel
  • the number of SSB that may be transmitted in a single burst may depend on the operating frequency.
  • the possible SSB burst periodicity may be 5, 10, 20, 40, 80 and 160 millisecond (ms) .
  • the UE may be configured with an SMTC window that may notify the UE of the measurement periodicity and timings of SSBs that the UE can use for measurements.
  • the UE may detect and measure the SSBs within that window and reports the measurement results back to the base station.
  • Such configuration may allow the UE to avoid unnecessary measurements and save the UE power resources.
  • the UE may be configured with a “wide detection window” parameter that may be enabled or disabled by the UE to identify FR2 frequency cells.
  • the wide detection window may be configurable to control the detection window such that the UE may select between a wide detection window or the SMTC window based on the system configurations.
  • FIGS. 1-5 Various aspects are now described in more detail with reference to the FIGS. 1-5.
  • component as used herein may be one of the parts that make up a system, may be hardware, firmware, and/or software stored on a computer-readable medium, and may be divided into other components.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system (also referred to as a wireless wide area network (WWAN) ) can include base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and/or a 5G Core (5GC) 190.
  • the base stations 102 may include macro cells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macro cells can include base stations.
  • the small cells can include femtocells, picocells, and microcells.
  • the base stations 102 may also include gNBs 180, as described further herein.
  • the base stations 102 may wirelessly communicate with one or more UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102.
  • a network that includes both small cell and macro cells may be referred to as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group, which can be referred to as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc.
  • D2D communication link 158 may use the DL/UL WWAN spectrum.
  • the D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, FlashLinQ, WiMedia,
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • a base station 102 may include an eNB, gNodeB (gNB) , or other type of base station.
  • Some base stations, such as gNB 180 may operate one or more frequency bands within the electromagnetic spectrum.
  • the electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc.
  • two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) .
  • the frequencies between FR1 and FR2 are often referred to as mid-band frequencies.
  • FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” (mmW) band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • sub-6 GHz or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, or may be within the EHF band.
  • Communications using the mmW radio frequency band have extremely high path loss and a short range.
  • the mmW base station 180 may utilize beamforming 182 with the UE 110 to compensate for the path loss and short range.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • IP Internet protocol
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the base station may also be referred to as a gNB, Node B, evolved Node B (eNB) , an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology.
  • the base station 102 provides an access point to the EPC 160 or 5GC 190 for a UE 104.
  • Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • IoT devices e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc.
  • IoT UEs may include machine type communication (MTC) /enhanced MTC (eMTC, also referred to as category (CAT) -M, Cat M1) UEs, NB-IoT (also referred to as CAT NB1) UEs, as well as other types of UEs.
  • MTC machine type communication
  • eMTC also referred to as category (CAT) -M, Cat M1
  • NB-IoT also referred to as CAT NB1 UEs
  • eMTC and NB-IoT may refer to future technologies that may evolve from or may be based on these technologies.
  • eMTC may include FeMTC (further eMTC) , eFeMTC (enhanced further eMTC) , mMTC (massive MTC) , etc.
  • NB-IoT may include eNB-IoT (enhanced NB-IoT) , FeNB-IoT (further enhanced NB-IoT) , etc.
  • the UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • FIG. 2 is a timing diagram 200 of an example of SMTC detection in accordance with aspects of the present disclosure.
  • the UE may need to support dual carrier connectivity on both FR1 and FR2 frequency ranges.
  • the network may send RRC reconfiguration message with a request for the UE to perform signal measurements for a second frequency range cell of the operating band.
  • frequencies associated with FR2 may be added in the measurement request that is transmitted by the network in the RRC reconfiguration message.
  • the network may expect the UE to provide a measurement report on the FR2 so that the network may add a second dedicated radio bearer in order to activate the dual carrier connectivity capability of the UE.
  • the UE may not be able to detect cells on FR2 because the UE may be configured with an incorrect SMTC window information.
  • the UE may be configured with SMTC detection window 205 for SSB periodicity of 20 ms with zero offset.
  • the SMTC window 205 that may notify the UE of the measurement periodicity and timings of SSBs that the UE can use for measurements.
  • the UE may detect first SMTC signals 210 that include a plurality of SSBs for cell measurement and reporting.
  • the first SMTC signals 210 may not be associated with the frequencies of the second cell (e.g., FR2 cell) , and thus may be considered the wrong SMTC for purposes of second cell measurement and reporting. Instead, the base station may transmit a second SMTC signals 215 that fall outside of the detection window 205 that may indeed correspond to the second cell frequencies for which the base station may have intended the UE to measure signal quality and provide a measurement report.
  • the base station may transmit a second SMTC signals 215 that fall outside of the detection window 205 that may indeed correspond to the second cell frequencies for which the base station may have intended the UE to measure signal quality and provide a measurement report.
  • the SSB burst associated with the second cell (FR2) that is included in second SMTC 215 may be transmitted by the base station during a time period that is outside of the detection window 205 that the UE may be monitoring, the UE may be unable to detect the correct SMTC or SSB burst associated with the second cell, thereby preventing the UE from establishing dual carrier connectivity on both FR1 and FR2 cells.
  • the UE may be configured with a “wide detection window” parameter that may be enabled or disabled by the UE to identify FR2 frequency cells.
  • the wide detection window may be configurable to control the detection window such that the UE may select between a wide detection window or the SMTC window based on the system configurations.
  • FIG. 3A is a block diagram 300 for the process to enable or disable wide detection window.
  • the method may include establishing, at a UE, communication with a network via a first frequency range cell of an operating band. Specifically, during a first time period, the UE may establish communication and camp on FR1 SA cell and establish a dedicated bearer into connected mode over the FR1 cell.
  • the network via the base station, may transmit an RRC reconfiguration message to the UE that includes mmW frequency measurement object.
  • the UE may receive a RRC reconfiguration message from the network that includes a request for the UE to perform signal measurements for a second frequency range (FR2) cell of the operating band.
  • FR2 second frequency range
  • the UE may determine whether a wide detection window parameter at the UE is enabled or disabled based on system configurations that have been embedded in the UE. If, at 315, the UE determines that the wide detection window parameter is enabled, the UE, at block 320 may use wide detection window to initiate cell detection. However, if at block 315, the UE determines that the wide detection window parameter is disabled, the UE, at block 325 may use the network configured SMTC window to initiate cell detection. The SMTC window may be configured for the UE by the network.
  • the UE may initiate cell detection of the second frequency range cell based on selection of the detection window (e.g., either wide detection window or SMTC window) .
  • the UE may set the wide detection window value to a first time period (e.g., 21ms window) to detect FR2 frequencies and sweep all the beams within the FR2 frequencies when the SMTC periodicity is set for a first time value (e.g., 20 ms window) .
  • a first time period e.g. 21ms window
  • the SSB burst periodicity that is included in the SMTC may be 5, 10, 20, 40, 80 and 160ms.
  • the UE may first determine the SMTC periodicity (e.g., 5, 10, 20, 40, 80 and 160ms) and adjust the wide detection window to be larger than the SMTC periodicity in order to ensure that the detects the FR2 frequencies.
  • the SMTC periodicity e.g., 5, 10, 20, 40, 80 and 160ms
  • the UE may adjust the first time value of the wide detection window to be a certain period greater than the SMTC periodicity.
  • the wide detection window may thus be set to 21ms when the SMTC periodicity is 20ms.
  • the UE may initially set the wide detection window time value to 11ms in order to perform beam sweep of FR2 cell frequencies.
  • the first time value of the wide detection window may set for 41ms.
  • the UE may disable the wide detection window parameter such that the UE may select the network configured SMTC window. As such, if the SMTC periodicity is either 80 or 160ms, the UE may default back to SMTC detection window as opposed to utilizing the wide detection window.
  • the UE successfully detects FR2 frequencies during the first time value (e.g., 21ms) of the wide detection window and may adjust the wide detection window timing to a narrower window (e.g., set a second time value for 5ms detection window) based on the cell timing for all subsequent measurements. However, if no cell is detected during the wide detection window for the first time value (e.g., 21ms) , the UE may continue to use the first time value (e.g., 21ms) for subsequent detection periods in order to search for second cell frequencies.
  • the first time value e.g., 21ms
  • FIG. 3B is an example of a timing diagram 350 when the wide detection window 355 is enabled to monitor for SMTC signals 360.
  • the UE may adjust the first time value of the wide detection window 355 to be a certain period (e.g., 1ms) greater than the SMTC periodicity (e.g., 20ms) .
  • the wide detection window may thus be set to 21ms when the SMTC periodicity is 20ms.
  • the UE may attempt to detect and measure the SSB signals included in the SMTC 360.
  • the UE may adjust the wide detection window timing to a narrower window (e.g., set a second time value for 5ms detection window for subsequent measurements because the UE was able to detect the SMTC and the length of the SMTC that is 5ms during first wide detection window period) .
  • a narrower window e.g., set a second time value for 5ms detection window for subsequent measurements because the UE was able to detect the SMTC and the length of the SMTC that is 5ms during first wide detection window period
  • the UE may continue to use the first time value (e.g., 21ms) for subsequent detection periods in order to search for second cell frequencies.
  • FIG. 4 illustrates a hardware components and subcomponents of a device that may be a UE 104 for implementing one or more methods (e.g., method 500) described herein in accordance with various aspects of the present disclosure.
  • the UE 104 may include a variety of components, some of which have already been described above, but including components such as one or more processors 412, memory 416 and transceiver 402 in communication via one or more buses 444, which may operate in conjunction with the communication management component 450 to perform functions described herein related to including one or more methods (e.g., 500) of the present disclosure.
  • the one or more processors 412, modem 414, memory 416, transceiver 402, RF front end 488 and one or more antennas 465 may be configured to support voice and/or data calls (simultaneously or non-simultaneously) in one or more radio access technologies.
  • the one or more processors 412 can include a modem 414 that uses one or more modem processors.
  • the various functions related to HARQ-ACK reporting component 450 may be included in modem 414 and/or processors 412 and, in an aspect, can be executed by a single processor, while in other aspects, different ones of the functions may be executed by a combination of two or more different processors.
  • the one or more processors 412 may include any one or any combination of a modem processor, or a baseband processor, or a digital signal processor, or a transmit processor, or a receiver processor, or a transceiver processor associated with transceiver 402. In other aspects, some of the features of the one or more processors 412 and/or modem 414 associated with communication management component 450 may be performed by transceiver 402.
  • the memory 416 may be a non-transitory computer-readable storage medium that stores one or more computer-executable codes defining communication management component 450 and/or one or more of its subcomponents, and/or data associated therewith, when the UE 104 is operating at least one processor 412 to execute communication management component 450 and/or one or more of its subcomponents.
  • the transceiver 402 may include at least one receiver 406 and at least one transmitter 408.
  • the receiver 406 may include hardware, firmware, and/or software code executable by a processor for receiving data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) .
  • the receiver 406 may be, for example, a radio frequency (RF) receiver.
  • RF radio frequency
  • the receiver 406 may receive signals transmitted by at least one UE 104. Additionally, receiver 406 may process such received signals, and also may obtain measurements of the signals, such as, but not limited to, Ec/Io, SNR, RSRP, RSSI, etc.
  • the transmitter 408 may include hardware, firmware, and/or software code executable by a processor for transmitting data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) .
  • a suitable example of the transmitter 408 may including, but is not limited to, an RF transmitter.
  • transmitting device may include the RF front end 488, which may operate in communication with one or more antennas 465 and transceiver 402 for receiving and transmitting radio transmissions, for example, wireless communications transmitted by at least one base station 102 or wireless transmissions transmitted by UE 104.
  • the RF front end 488 may be connected to one or more antennas 465 and can include one or more low-noise amplifiers (LNAs) 490, one or more switches 492, one or more power amplifiers (PAs) 498, and one or more filters 496 for transmitting and receiving RF signals.
  • LNAs low-noise amplifiers
  • PAs power amplifiers
  • the LNA 490 can amplify a received signal at a desired output level.
  • each LNA 490 may have a specified minimum and maximum gain values.
  • the RF front end 488 may use one or more switches 492 to select a particular LNA 490 and its specified gain value based on a desired gain value for a particular application.
  • one or more PA (s) 498 may be used by the RF front end 488 to amplify a signal for an RF output at a desired output power level.
  • each PA 498 may have specified minimum and maximum gain values.
  • the RF front end 488 may use one or more switches 492 to select a particular PA 498 and its specified gain value based on a desired gain value for a particular application.
  • one or more filters 496 can be used by the RF front end 488 to filter a received signal to obtain an input RF signal.
  • a respective filter 496 can be used to filter an output from a respective PA 498 to produce an output signal for transmission.
  • each filter 496 can be connected to a specific LNA 490 and/or PA 498.
  • the RF front end 488 can use one or more switches 492 to select a transmit or receive path using a specified filter 496, LNA 490, and/or PA 498, based on a configuration as specified by the transceiver 402 and/or processor 412.
  • the transceiver 402 may be configured to transmit and receive wireless signals through one or more antennas 465 via the RF front end 488.
  • the transceiver 402 may be tuned to operate at specified frequencies such that transmitting device can communicate with, for example, one or more base stations 102 or one or more cells associated with one or more base stations 102 or other UEs 104.
  • the modem 414 can configure the transceiver 402 to operate at a specified frequency and power level based on the configuration of the transmitting device and the communication protocol used by the modem 414.
  • the modem configuration can be based on the mode of the modem 414 and the frequency band in use. In another aspect, the modem configuration can be based on UE configuration information associated with transmitting device as provided by the network during cell selection and/or cell reselection.
  • an example method 500 for wireless communications in accordance with aspects of the present disclosure may be performed by one or more UEs 104 discussed with reference to FIGs. 1 and 4. Although the method 500 is described below with respect to the elements of the UE 104, other components may be used to implement one or more of the steps described herein.
  • the method 500 may include receiving, at the UE, a radio resource control (RRC) reconfiguration message from the network that includes a request for the UE to perform signal measurements for a second frequency range cell of the operating band.
  • RRC radio resource control
  • Aspects of block 510 may be performed by communication management component 450 as described with reference to FIG. 4.
  • communication management component 450, one or more antennas 465, modem 414, processor 412, and/or the UE 104 or one of its subcomponents may define the means for receiving, at the UE, a radio resource control (RRC) reconfiguration message from the network that includes a request for the UE to perform signal measurements for a second frequency range cell of the operating band.
  • RRC radio resource control
  • the method 500 may include initiating cell detection of the second frequency range cell based on selection of the detection window. Aspects of block 520 may be performed by the communication management component 450 as described with reference to FIG. 4. Thus, communication management component 450, modem 414, processor 412, and/or the UE 104 or one of its subcomponents may define the means for initiating cell detection of the second frequency range cell based on selection of the detection window.
  • Disk and disc include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Aspects of the present disclosure provide techniques for establishing dual carrier connectivity for user equipment (UE) between a first cell with operating frequency in a first frequency range (FR1) and a second cell with operating frequency in a second frequency range (FR2). To this end, features of the present disclosure allow the UE to adjust a detection window for synchronization signal block measurement timing configuration (SMTC) in order to identify the frequencies for cell measurement and reporting for a second cell in instances where the UE has established communication with the first cell. Specifically, in some cases, the UE may be configured with a "wide detection window" parameter that may be enabled or disabled by the UE to identify FR2 frequency cells.

Description

RELIABLE CELL IDENTIFICATION ON MMW FREQUENCY TECHNICAL FIELD
The present disclosure relates to wireless communication systems, and more particularly, to techniques for reliable cell identification on millimeter wave (mmW) frequency.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single-carrier frequency division multiple access (SC-FDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. For example, a fifth generation (5G) wireless communications technology (which can be referred to as new radio (NR) ) is envisaged to expand and support diverse usage scenarios and applications with respect to current mobile network generations. In an aspect, 5G communications technology can include: enhanced mobile broadband addressing human-centric use cases for access to multimedia content, services and data; ultra-reliable-low latency communications (URLLC) with certain specifications for latency and reliability; and massive machine type communications, which can allow a very large number of connected devices and transmission of a relatively low volume of non-delay-sensitive information. As the demand for mobile broadband access continues to increase, however, further improvements in NR communications technology and beyond may be desired.
SUMMARY
Aspects of the present disclosure provide techniques for establishing dual carrier connectivity for user equipment (UE) between a first cell with operating frequency in a  first frequency range (FR1) and a second cell with operating frequency in a second frequency range (FR2) . To this end, features of the present disclosure allow the UE to adjust a detection window for synchronization signal block measurement timing configuration (SMTC) in order to identify the frequencies for cell measurement and reporting for a second cell in instances where the UE has established communication with the first cell. Specifically, in some cases, the UE may be configured with a “wide detection window” parameter that may be enabled or disabled by the UE to identify FR2 frequency cells.
In one example, a method for wireless communication implemented by a UE is disclosed. The method may include establishing, at a user equipment (UE) , communication with a network via a first frequency range cell of an operating band. The method may further include receiving, at the UE, a radio resource control (RRC) reconfiguration message from the network that includes a request for the UE to perform signal measurements for a second frequency range cell of the operating band. The method may further include selecting a detection window between a wide detection window or a synchronization signal block measurement timing configuration (SMTC) window in response to receiving the RRC reconfiguration message. The method may further include initiating cell detection of the second frequency range cell based on selection of the detection window.
In another example, an apparatus for wireless communications. The apparatus may include a memory having instructions and a processor configured to execute the instructions to establish, at a UE, communication with a network via a first frequency range cell of an operating band. The processor may further be configured to execute the instructions to receive, at the UE, a RRC reconfiguration message from the network that includes a request for the UE to perform signal measurements for a second frequency range cell of the operating band. The processor may further be configured to execute the instructions to select a detection window between a wide detection window or a SMTC window in response to receiving the RRC reconfiguration message. The processor may further be configured to execute the instructions to initiate cell detection of the second frequency range cell based on selection of the detection window.
In some aspects, a non-transitory computer readable medium includes instructions stored therein that, when executed by a processor, cause the processor to perform the steps of establishing, at a UE, communication with a network via a first frequency range cell  of an operating band. The processor may further perform the steps of receiving, at the UE, a RRC reconfiguration message from the network that includes a request for the UE to perform signal measurements for a second frequency range cell of the operating band. The processor may further perform the steps of selecting a detection window between a wide detection window or a SMTC window in response to receiving the RRC reconfiguration message. The processor may further perform the steps of initiating cell detection of the second frequency range cell based on selection of the detection window.
In certain aspects, another apparatus for wireless communication is disclosed. The apparatus may include means for establishing, at a UE, communication with a network via a first frequency range cell of an operating band. The apparatus may further include means for receiving, at the UE, a RRC reconfiguration message from the network that includes a request for the UE to perform signal measurements for a second frequency range cell of the operating band. The apparatus may further include means for selecting a detection window between a wide detection window or a SMTC window in response to receiving the RRC reconfiguration message. The apparatus may further include means for initiating cell detection of the second frequency range cell based on selection of the detection window.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
The disclosed aspects will hereinafter be described in conjunction with the appended drawings, provided to illustrate and not to limit the disclosed aspects, wherein like designations denote like elements, and in which:
FIG. 1 is a schematic diagram of an example of a wireless communications system in accordance with aspects of the present disclosure;
FIG. 2 is a timing diagram of an example of SMTC detection in accordance with aspects of the present disclosure;
FIG. 3A is a block diagram for the process to enable or disable wide detection window in accordance with aspects of the present disclosure;
FIG. 3B is a timing diagram of an example of wide detection window to monitor for SMTC signals in accordance with aspects of the present disclosure;
FIG. 4 is a schematic diagram of an example implementation of various components of a user equipment in accordance with various aspects of the present disclosure; and
FIG. 5 is a flow diagram of an example of a method of wireless communication implemented by the UE in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
One aspect of the 5G NR communications technology includes the use of high-frequency spectrum bands which may be referred to as millimeter wave (mmW) bands. Specifically, the electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc. In 5G NR, two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . The use of these bands enables extremely high data rates and significant increases in data processing capacity. However, compared to LTE, mmW bands are susceptible to rapid channel variations and suffer from severe free-space path loss and atmospheric absorption. In addition, mmW bands are highly vulnerable to blockage (e.g. hand, head, body, foliage, building penetration) . Particularly, at mmW frequencies, even small variations in the environment, such as the turn of the head, movement of the hand, or a passing car, may change the channel conditions between the base station (BS) and the user equipment (UE) , and thus impact communication performance.
Current mmW 5G NR systems leverage the small wavelengths of mmW at the higher frequencies to make use of multiple input multiple output (MIMO) antenna arrays to create highly directional beams that focus transmitted radio frequency (RF) energy in order to attempt to overcome the propagation and path loss challenges in both the uplink and downlink links. Thus, a UE may use a number of antenna ports (e.g., 1, 2, 4, or 8 antenna ports) associated with arrays of antennas to form beams in various directions using a number of analog weighting factors (e.g., antenna configurations) . Similarly, a base station may transmit downlink signals using directional beams.
In order to reach high throughput in 5G cell, the UE may need to support dual carrier connectivity on both FR1 and FR2 frequency ranges. To this end, generally once the UE camps on a FR1 stand-alone (SA) cell and establishes a first dedicated radio  bearer, the network may send radio resource control (RRC) reconfiguration message with a request for the UE to perform signal measurements for a second frequency range cell of the operating band. Specifically, in order to setup RRC connection on FR1 and FR2 dual carrier, frequencies associated with FR2 may be added in the measurement request that is transmitted by the network in the RRC reconfiguration message. In turn, the network may expect the UE to provide a measurement report on the FR2 so that the network may add a second dedicated radio bearer in order to activate the dual carrier connectivity capability of the UE.
However, in some scenarios, the UE may not be able to detect cells on FR2 because the UE may be configured with an incorrect signal block measurement timing configuration (SMTC) window information. Specifically, in 5G NR, the UE may be configured to perform cell signal measurement by using SS/PBCH Block (SSB) , which is composed of synchronizations signal (SS) and physical broadcast channel (PBCH) . The number of SSB that may be transmitted in a single burst may depend on the operating frequency. In some aspects, the possible SSB burst periodicity may be 5, 10, 20, 40, 80 and 160 millisecond (ms) . However, in order for the UE to avoid unnecessary measurements and reduce the power consumption of the UE to conduct such measurements, the UE may forego conducting cell measurements during each of the above SSB burst periodicity (e.g., 5, 10, 20, 40, 80 and 160ms) .
Instead, in some aspects, the UE may be configured with an SMTC window that may notify the UE of the measurement periodicity and timings of SSBs that the UE can use for measurements. When the UE has been notified or configured with an SMTC window by base station, the UE may detect and measure the SSBs within that window and reports the measurement results back to the base station. Such configuration may allow the UE to avoid unnecessary measurements and save the UE power resources.
However, as noted above, the UE may be configured with an incorrect SMTC window that prevents the UE from detecting the frequencies associated with the second cell. For example, in some cases, the UE may be configured with a first SMTC window. However, the SSB burst associated with the second cell (FR2) may be transmitted by the base station during a time period that is outside of the first SMTC window that the UE may be monitoring for SSB signals. In such instances, the UE may be unable to detect the correct SMTC or SSB burst associated with the second cell, thereby preventing the UE from establishing dual carrier connectivity on both FR1 and FR2 cells.
Aspects of the present disclosure solve the above-identified problem by configuring the UE to adjust a detection window for SMTC in order to identify the frequencies associated with a second cells for signal measurement and reporting. Specifically, the UE may be configured with a “wide detection window” parameter that may be enabled or disabled by the UE to identify FR2 frequency cells. The wide detection window may be configurable to control the detection window such that the UE may select between a wide detection window or the SMTC window based on the system configurations.
Various aspects are now described in more detail with reference to the FIGS. 1-5. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of one or more aspects. It may be evident, however, that such aspect (s) may be practiced without these specific details. Additionally, the term “component” as used herein may be one of the parts that make up a system, may be hardware, firmware, and/or software stored on a computer-readable medium, and may be divided into other components.
The following description provides examples, and is not limiting of the scope, applicability, or examples set forth in the claims. Changes may be made in the function and arrangement of elements discussed without departing from the scope of the disclosure. Various examples may omit, substitute, or add various procedures or components as appropriate. For instance, the methods described may be performed in an order different from that described, and various steps may be added, omitted, or combined. Also, features described with respect to some examples may be combined in other examples.
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN) ) can include base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and/or a 5G Core (5GC) 190. The base stations 102 may include macro cells (high power cellular base station) and/or small cells (low power cellular base station) . The macro cells can include base stations. The small cells can include femtocells, picocells, and microcells. In an example, the base stations 102 may also include gNBs 180, as described further herein.
In one example, some UEs 104 of the wireless communication system may have a modem 414 and a communication management component 450 (see FIG. 4) for  configuring the UE to adjust a detection window for SMTC in order to identify the frequencies associated with a second cells for signal measurement and reporting. Specifically, the UE may be configured with a “wide detection window” parameter that may be enabled or disabled by the UE to identify FR2 frequency cells. The wide detection window may be configurable to control the detection window such that the UE may select between a wide detection window or the SMTC window based on the system configurations.
The base stations 102 may wirelessly communicate with one or more UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102. A network that includes both small cell and macro cells may be referred to as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group, which can be referred to as a closed subscriber group (CSG) . The communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc. MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (e.g., for x component carriers) used for transmission in the DL and/or the UL direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or less carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
In another example, certain UEs 104 may communicate with each other using device-to-device (D2D) communication link 158. The D2D communication link 158 may use the DL/UL WWAN spectrum. The D2D communication link 158 may use one or  more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) . D2D communication may be through a variety of wireless D2D communications systems, such as for example, FlashLinQ, WiMedia, Bluetooth, ZigBee, Wi-Fi based on the IEEE 802.11 standard, LTE, or NR.
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum. When communicating in an unlicensed frequency spectrum, the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
base station 102, whether a small cell 102' or a large cell (e.g., macro base station) , may include an eNB, gNodeB (gNB) , or other type of base station. Some base stations, such as gNB 180 may operate one or more frequency bands within the electromagnetic spectrum. The electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc. In 5G NR two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles. A similar nomenclature issue sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a “millimeter wave” (mmW) band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
With the above aspects in mind, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band  frequencies. Further, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, or may be within the EHF band. Communications using the mmW radio frequency band have extremely high path loss and a short range. The mmW base station 180 may utilize beamforming 182 with the UE 110 to compensate for the path loss and short range.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160. Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
The 5GC 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195. The AMF 192 may be in communication with a Unified Data Management (UDM) 196. The AMF 192 can be a control node that processes the signaling between the UEs 104 and the 5GC 190. Generally, the AMF 192 can provide QoS flow and session management. User Internet protocol (IP) packets (e.g., from one or more UEs 104) can be transferred through the UPF 195. The UPF 195 can provide UE  IP address allocation for one or more UEs, as well as other functions. The UPF 195 is connected to the IP Services 197. The IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
The base station may also be referred to as a gNB, Node B, evolved Node B (eNB) , an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology. The base station 102 provides an access point to the EPC 160 or 5GC 190 for a UE 104. Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device. Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) . IoT UEs may include machine type communication (MTC) /enhanced MTC (eMTC, also referred to as category (CAT) -M, Cat M1) UEs, NB-IoT (also referred to as CAT NB1) UEs, as well as other types of UEs. In the present disclosure, eMTC and NB-IoT may refer to future technologies that may evolve from or may be based on these technologies. For example, eMTC may include FeMTC (further eMTC) , eFeMTC (enhanced further eMTC) , mMTC (massive MTC) , etc., and NB-IoT may include eNB-IoT (enhanced NB-IoT) , FeNB-IoT (further enhanced NB-IoT) , etc. The UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
FIG. 2 is a timing diagram 200 of an example of SMTC detection in accordance with aspects of the present disclosure. As noted above, in order to reach high throughput in 5G cell, the UE may need to support dual carrier connectivity on both FR1 and FR2 frequency ranges. To this end, generally once the UE camps on a FR1 SA cell and establishes a first dedicated radio bearer, the network may send RRC reconfiguration  message with a request for the UE to perform signal measurements for a second frequency range cell of the operating band. Specifically, in order to setup RRC connection on FR1 and FR2 dual carrier, frequencies associated with FR2 may be added in the measurement request that is transmitted by the network in the RRC reconfiguration message. In turn, the network may expect the UE to provide a measurement report on the FR2 so that the network may add a second dedicated radio bearer in order to activate the dual carrier connectivity capability of the UE.
However, in some scenarios, the UE may not be able to detect cells on FR2 because the UE may be configured with an incorrect SMTC window information. For example, the UE may be configured with SMTC detection window 205 for SSB periodicity of 20 ms with zero offset. The SMTC window 205 that may notify the UE of the measurement periodicity and timings of SSBs that the UE can use for measurements. Based on the SMTC window 205, the UE may detect first SMTC signals 210 that include a plurality of SSBs for cell measurement and reporting.
However, the first SMTC signals 210 may not be associated with the frequencies of the second cell (e.g., FR2 cell) , and thus may be considered the wrong SMTC for purposes of second cell measurement and reporting. Instead, the base station may transmit a second SMTC signals 215 that fall outside of the detection window 205 that may indeed correspond to the second cell frequencies for which the base station may have intended the UE to measure signal quality and provide a measurement report. Because, the SSB burst associated with the second cell (FR2) that is included in second SMTC 215 may be transmitted by the base station during a time period that is outside of the detection window 205 that the UE may be monitoring, the UE may be unable to detect the correct SMTC or SSB burst associated with the second cell, thereby preventing the UE from establishing dual carrier connectivity on both FR1 and FR2 cells.
Aspects of the present disclosure solve the above-identified problem by configuring the UE to adjust a detection window for SMTC in order to identify the frequencies associated with a second cells for signal measurement and reporting. Specifically, the UE may be configured with a “wide detection window” parameter that may be enabled or disabled by the UE to identify FR2 frequency cells. The wide detection window may be configurable to control the detection window such that the UE may select between a wide detection window or the SMTC window based on the system configurations.
FIG. 3A is a block diagram 300 for the process to enable or disable wide detection window. At block 305, the method may include establishing, at a UE, communication with a network via a first frequency range cell of an operating band. Specifically, during a first time period, the UE may establish communication and camp on FR1 SA cell and establish a dedicated bearer into connected mode over the FR1 cell. Subsequently, at block 310, the network, via the base station, may transmit an RRC reconfiguration message to the UE that includes mmW frequency measurement object. In other words, the UE may receive a RRC reconfiguration message from the network that includes a request for the UE to perform signal measurements for a second frequency range (FR2) cell of the operating band.
At block 315, the UE may determine whether a wide detection window parameter at the UE is enabled or disabled based on system configurations that have been embedded in the UE. If, at 315, the UE determines that the wide detection window parameter is enabled, the UE, at block 320 may use wide detection window to initiate cell detection. However, if at block 315, the UE determines that the wide detection window parameter is disabled, the UE, at block 325 may use the network configured SMTC window to initiate cell detection. The SMTC window may be configured for the UE by the network. At block 330, the UE may initiate cell detection of the second frequency range cell based on selection of the detection window (e.g., either wide detection window or SMTC window) .
If the wide detection window parameter is enabled, the UE may set the wide detection window value to a first time period (e.g., 21ms window) to detect FR2 frequencies and sweep all the beams within the FR2 frequencies when the SMTC periodicity is set for a first time value (e.g., 20 ms window) . Specifically, as noted above, the SSB burst periodicity that is included in the SMTC may be 5, 10, 20, 40, 80 and 160ms. Thus, in order to accomplish the adjustment of the first time value associated with the wide detection window, the UE may first determine the SMTC periodicity (e.g., 5, 10, 20, 40, 80 and 160ms) and adjust the wide detection window to be larger than the SMTC periodicity in order to ensure that the detects the FR2 frequencies.
Thus, in the above example, if the UE determines that the SMTC periodicity is 20ms, the UE may adjust the first time value of the wide detection window to be a certain period greater than the SMTC periodicity. In the particular example, the wide detection window may thus be set to 21ms when the SMTC periodicity is 20ms. Thus as an  example, if the SMTC periodicity is 10ms, the UE may initially set the wide detection window time value to 11ms in order to perform beam sweep of FR2 cell frequencies. Similarly, if the SMTC periodicity is 40ms, the first time value of the wide detection window may set for 41ms.
However, if the SMTC periodicity exceeds 40ms, the UE may disable the wide detection window parameter such that the UE may select the network configured SMTC window. As such, if the SMTC periodicity is either 80 or 160ms, the UE may default back to SMTC detection window as opposed to utilizing the wide detection window.
Returning to the above example where the SMTC periodicity is determined to be 20ms, if the UE successfully detects FR2 frequencies during the first time value (e.g., 21ms) of the wide detection window and may adjust the wide detection window timing to a narrower window (e.g., set a second time value for 5ms detection window) based on the cell timing for all subsequent measurements. However, if no cell is detected during the wide detection window for the first time value (e.g., 21ms) , the UE may continue to use the first time value (e.g., 21ms) for subsequent detection periods in order to search for second cell frequencies.
FIG. 3B is an example of a timing diagram 350 when the wide detection window 355 is enabled to monitor for SMTC signals 360. In the illustrated example, if the UE determines that the SMTC periodicity is 20ms (e.g., SMTC signals 360 are transmitted every 20ms) , the UE may adjust the first time value of the wide detection window 355 to be a certain period (e.g., 1ms) greater than the SMTC periodicity (e.g., 20ms) . In the illustrated example, the wide detection window may thus be set to 21ms when the SMTC periodicity is 20ms. Based on the wide detection window 355, the UE may attempt to detect and measure the SSB signals included in the SMTC 360.
If the UE successfully detects FR2 frequencies during the first time value (e.g., 21ms) of the wide detection window 355, the UE may adjust the wide detection window timing to a narrower window (e.g., set a second time value for 5ms detection window for subsequent measurements because the UE was able to detect the SMTC and the length of the SMTC that is 5ms during first wide detection window period) . However, if no cell is detected during the wide detection window for the first wide detection window period (e.g., 21ms) , the UE may continue to use the first time value (e.g., 21ms) for subsequent detection periods in order to search for second cell frequencies.
FIG. 4 illustrates a hardware components and subcomponents of a device that may be a UE 104 for implementing one or more methods (e.g., method 500) described herein in accordance with various aspects of the present disclosure. For example, one example of an implementation of the UE 104 may include a variety of components, some of which have already been described above, but including components such as one or more processors 412, memory 416 and transceiver 402 in communication via one or more buses 444, which may operate in conjunction with the communication management component 450 to perform functions described herein related to including one or more methods (e.g., 500) of the present disclosure.
Particularly, the communication management component 450 may configure the UE to adjust a detection window for SMTC in order to identify the frequencies associated with a second cells for signal measurement and reporting. Specifically, the UE may be configured with a “wide detection window” parameter that may be enabled or disabled by the UE to identify FR2 frequency cells. The wide detection window may be configurable to control the detection window such that the UE may select between a wide detection window or the SMTC window based on the system configurations.
The one or more processors 412, modem 414, memory 416, transceiver 402, RF front end 488 and one or more antennas 465, may be configured to support voice and/or data calls (simultaneously or non-simultaneously) in one or more radio access technologies. In an aspect, the one or more processors 412 can include a modem 414 that uses one or more modem processors. The various functions related to HARQ-ACK reporting component 450 may be included in modem 414 and/or processors 412 and, in an aspect, can be executed by a single processor, while in other aspects, different ones of the functions may be executed by a combination of two or more different processors. For example, in an aspect, the one or more processors 412 may include any one or any combination of a modem processor, or a baseband processor, or a digital signal processor, or a transmit processor, or a receiver processor, or a transceiver processor associated with transceiver 402. In other aspects, some of the features of the one or more processors 412 and/or modem 414 associated with communication management component 450 may be performed by transceiver 402.
The memory 416 may be configured to store data used herein and/or local versions of application (s) 475 or communication management component 450 and/or one or more of its subcomponents being executed by at least one processor 412. The memory 416 can  include any type of computer-readable medium usable by a computer or at least one processor 412, such as random access memory (RAM) , read only memory (ROM) , tapes, magnetic discs, optical discs, volatile memory, non-volatile memory, and any combination thereof. In an aspect, for example, the memory 416 may be a non-transitory computer-readable storage medium that stores one or more computer-executable codes defining communication management component 450 and/or one or more of its subcomponents, and/or data associated therewith, when the UE 104 is operating at least one processor 412 to execute communication management component 450 and/or one or more of its subcomponents.
The transceiver 402 may include at least one receiver 406 and at least one transmitter 408. The receiver 406 may include hardware, firmware, and/or software code executable by a processor for receiving data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) . The receiver 406 may be, for example, a radio frequency (RF) receiver. In an aspect, the receiver 406 may receive signals transmitted by at least one UE 104. Additionally, receiver 406 may process such received signals, and also may obtain measurements of the signals, such as, but not limited to, Ec/Io, SNR, RSRP, RSSI, etc. The transmitter 408 may include hardware, firmware, and/or software code executable by a processor for transmitting data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) . A suitable example of the transmitter 408 may including, but is not limited to, an RF transmitter.
Moreover, in an aspect, transmitting device may include the RF front end 488, which may operate in communication with one or more antennas 465 and transceiver 402 for receiving and transmitting radio transmissions, for example, wireless communications transmitted by at least one base station 102 or wireless transmissions transmitted by UE 104. The RF front end 488 may be connected to one or more antennas 465 and can include one or more low-noise amplifiers (LNAs) 490, one or more switches 492, one or more power amplifiers (PAs) 498, and one or more filters 496 for transmitting and receiving RF signals.
In an aspect, the LNA 490 can amplify a received signal at a desired output level. In an aspect, each LNA 490 may have a specified minimum and maximum gain values. In an aspect, the RF front end 488 may use one or more switches 492 to select a particular LNA 490 and its specified gain value based on a desired gain value for a particular application.
Further, for example, one or more PA (s) 498 may be used by the RF front end 488 to amplify a signal for an RF output at a desired output power level. In an aspect, each PA 498 may have specified minimum and maximum gain values. In an aspect, the RF front end 488 may use one or more switches 492 to select a particular PA 498 and its specified gain value based on a desired gain value for a particular application.
Also, for example, one or more filters 496 can be used by the RF front end 488 to filter a received signal to obtain an input RF signal. Similarly, in an aspect, for example, a respective filter 496 can be used to filter an output from a respective PA 498 to produce an output signal for transmission. In an aspect, each filter 496 can be connected to a specific LNA 490 and/or PA 498. In an aspect, the RF front end 488 can use one or more switches 492 to select a transmit or receive path using a specified filter 496, LNA 490, and/or PA 498, based on a configuration as specified by the transceiver 402 and/or processor 412.
As such, the transceiver 402 may be configured to transmit and receive wireless signals through one or more antennas 465 via the RF front end 488. In an aspect, the transceiver 402 may be tuned to operate at specified frequencies such that transmitting device can communicate with, for example, one or more base stations 102 or one or more cells associated with one or more base stations 102 or other UEs 104. In an aspect, for example, the modem 414 can configure the transceiver 402 to operate at a specified frequency and power level based on the configuration of the transmitting device and the communication protocol used by the modem 414.
In an aspect, the modem 414 can be a multiband-multimode modem, which can process digital data and communicate with the transceiver 402 such that the digital data is sent and received using the transceiver 402. In an aspect, the modem 414 can be multiband and be configured to support multiple frequency bands for a specific communications protocol. In an aspect, the modem 414 can be multimode and be configured to support multiple operating networks and communications protocols. In an aspect, the modem 414 can control one or more components of transmitting device (e.g., RF front end 488, transceiver 402) to enable transmission and/or reception of signals from the network based on a specified modem configuration. In an aspect, the modem configuration can be based on the mode of the modem 414 and the frequency band in use. In another aspect, the modem configuration can be based on UE configuration  information associated with transmitting device as provided by the network during cell selection and/or cell reselection.
Referring to FIG. 5, an example method 500 for wireless communications in accordance with aspects of the present disclosure may be performed by one or more UEs 104 discussed with reference to FIGs. 1 and 4. Although the method 500 is described below with respect to the elements of the UE 104, other components may be used to implement one or more of the steps described herein.
At block 505, the method 500 may include establishing, at a user equipment (UE) , communication with a network via a first frequency range cell of an operating band. Aspects of block 505 may be performed by the transceiver 402 and communication management component 450 as described with reference to FIG. 4. Thus, communication management component 450, transceiver 402, one or more antennas 465, modem 414, processor 412, and/or the UE 104 or one of its subcomponents may define the means for establishing, at a user equipment (UE) , communication with a network via a first frequency range cell of an operating band.
At block 510, the method 500 may include receiving, at the UE, a radio resource control (RRC) reconfiguration message from the network that includes a request for the UE to perform signal measurements for a second frequency range cell of the operating band. Aspects of block 510 may be performed by communication management component 450 as described with reference to FIG. 4. Thus, communication management component 450, one or more antennas 465, modem 414, processor 412, and/or the UE 104 or one of its subcomponents may define the means for receiving, at the UE, a radio resource control (RRC) reconfiguration message from the network that includes a request for the UE to perform signal measurements for a second frequency range cell of the operating band.
At block 515, the method 500 may include selecting a detection window between a wide detection window or a synchronization signal block measurement timing configuration (SMTC) window in response to receiving the RRC reconfiguration message. In some examples, selecting the detection window between a wide detection window or the SMTC window may comprise determining whether a wide detection window parameter at the UE is enabled or disabled based on system configurations that are embedded in the UE.
The method may also include determining that the wide detection window parameter at the UE is enabled and identifying an SMTC periodicity of the SMTC signals that are transmitted by the network in response to determining that the wide detection window parameter at the UE is enabled. In some examples, the UE may set a first wide detection window period for the detection window that is greater than the SMTC periodicity for the UE to initiate the cell detection of the second frequency range cell.
In some examples, the method may further include detecting, during a first time period, the second frequency range cell during the detection window that is set to the first wide detection window period. As such, the method may include adjusting the detection window to a second wide detection window period during the second time period based on determining that the UE successfully detected the second frequency range cell during the first time period, wherein the second wide detection window period is less than the first wide detection window period.
In some aspects, the method may also include identifying an SMTC periodicity of the SMTC signals that are transmitted by the network and determining that the SMTC periodicity exceeds the periodicity threshold. The method may also include disabling the wide detection window parameter at the UE in response to determining that the SMTC periodicity exceeds the periodicity threshold.
Aspects of block 515 may be performed by communication management component 450 as described with reference to FIG. 4. Thus, communication management component 450, one or more antennas 465, modem 414, processor 412, and/or the UE 104 or one of its subcomponents may define the means for selecting a detection window between a wide detection window or a synchronization signal block measurement timing configuration (SMTC) window in response to receiving the RRC reconfiguration message.
At block 520, the method 500 may include initiating cell detection of the second frequency range cell based on selection of the detection window. Aspects of block 520 may be performed by the communication management component 450 as described with reference to FIG. 4. Thus, communication management component 450, modem 414, processor 412, and/or the UE 104 or one of its subcomponents may define the means for initiating cell detection of the second frequency range cell based on selection of the detection window.
The above detailed description set forth above in connection with the appended drawings describes examples and does not represent the only examples that may be implemented or that are within the scope of the claims. The term “example, ” when used in this description, means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, well-known structures and apparatuses are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
Information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, computer-executable code or instructions stored on a computer-readable medium, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a specially-programmed device, such as but not limited to a processor, a digital signal processor (DSP) , an ASIC, a FPGA or other programmable logic device, a discrete gate or transistor logic, a discrete hardware component, or any combination thereof designed to perform the functions described herein. A specially-programmed processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A specially-programmed processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a non-transitory computer-readable medium. Other examples and implementations are within the scope and spirit of the disclosure and appended claims. For example, due to the nature of software, functions described above may be implemented using software executed by a specially programmed processor,  hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations. Also, as used herein, including in the claims, “or” as used in a list of items prefaced by “at least one of” indicates a disjunctive list such that, for example, a list of “at least one of A, B, or C” means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .
Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage medium may be any available medium that may be accessed by a general purpose or special purpose computer. By way of example, and not limitation, computer-readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
The detailed description set forth above in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems are also presented with reference to various apparatus and methods. These apparatus and methods are described in the detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout the disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
It should be noted that the techniques described herein may be used for various wireless communication networks such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, and other systems. The terms “system” and “network” are often used interchangeably. A CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc. CDMA2000 covers IS-2000, IS-95, and IS-856 standards. IS-2000 Releases 0 and A are commonly referred to as CDMA2000 1X, 1X, etc. IS-856 (TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. A TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) . An OFDMA  system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , IEEE 902.11 (Wi-Fi) , IEEE 902.16 (WiMAX) , IEEE 902.20, Flash-OFDM TM, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) . 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are new releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) . CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the systems and radio technologies mentioned above as well as other systems and radio technologies, including cellular (e.g., LTE) communications over a shared radio frequency spectrum band. The description below, however, describes an LTE/LTE-A and/or 5G New Radio (NR) system for purposes of example, and LTE or 5G NR terminology is used in much of the description below, although the techniques are applicable beyond LTE/LTE-A and 5G NR applications, e.g., to other next generation communication systems) .
The previous description of the disclosure is provided to enable a person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the common principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. Furthermore, although elements of the described aspects and/or embodiments may be described or claimed in the singular, the plural is contemplated unless limitation to the singular is explicitly stated. Additionally, all or a portion of any aspect and/or embodiment may be utilized with all or a portion of any other aspect and/or embodiment, unless stated otherwise. Thus, the disclosure is not to be limited to the examples and designs described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (11)

  1. A method for wireless communications, comprising:
    establishing, at a user equipment (UE) , communication with a network via a first frequency range cell of an operating band;
    receiving, at the UE, a radio resource control (RRC) reconfiguration message from the network that includes a request for the UE to perform signal measurements for a second frequency range cell of the operating band;
    selecting a detection window between a wide detection window or a synchronization signal block measurement timing configuration (SMTC) window in response to receiving the RRC reconfiguration message; and
    initiating cell detection of the second frequency range cell based on selection of the detection window.
  2. The method of claim 1, wherein selecting the detection window between a wide detection window or the SMTC window, comprises:
    determining whether a wide detection window parameter at the UE is enabled or disabled based on system configurations that are embedded in the UE.
  3. The method of claims 1 or 2, further comprising:
    determining that the wide detection window parameter at the UE is enabled;
    identifying an SMTC periodicity of the SMTC signals that are transmitted by the network in response to determining that the wide detection window parameter at the UE is enabled; and
    setting a first wide detection window period for the detection window that is greater than the SMTC periodicity for the UE to initiate the cell detection of the second frequency range cell.
  4. The method of any of the claims 1-3, further comprising:
    detecting, during a first time period, the second frequency range cell during the detection window that is set to the first wide detection window period; and
    adjusting the detection window to a second wide detection window period during the second time period based on determining that the UE successfully detected the second frequency range cell during the first time period, wherein the second wide detection window period is less than the first wide detection window period.
  5. The method of any of claims 1-4, further comprising:
    identifying an SMTC periodicity of the SMTC signals that are transmitted by the network;
    determining that the SMTC periodicity exceeds the periodicity threshold; and
    disabling the wide detection window parameter at the UE in response to determining that the SMTC periodicity exceeds the periodicity threshold.
  6. An apparatus for wireless communications, comprising:
    at least one processor;
    and memory coupled to the at least one processor, the memory including instructions executable by the at least one processor to cause the apparatus to:
    establish, at a user equipment (UE) , communication with a network via a first frequency range cell of an operating band;
    receive, at the UE, a radio resource control (RRC) reconfiguration message from the network that includes a request for the UE to perform signal measurements for a second frequency range cell of the operating band;
    select a detection window between a wide detection window or a synchronization signal block measurement timing configuration (SMTC) window in response to receiving the RRC reconfiguration message; and
    initiate cell detection of the second frequency range cell based on selection of the detection window.
  7. The apparatus of claim 6, wherein the processor is further configured to execute the instructions to of any of the method of claims 2-5.
  8. A non-transitory computer readable medium storing instructions, executable by a processor, for wireless communications, comprising instructions for:
    establishing, at a user equipment (UE) , communication with a network via a first frequency range cell of an operating band;
    receiving, at the UE, a radio resource control (RRC) reconfiguration message from the network that includes a request for the UE to perform signal measurements for a second frequency range cell of the operating band;
    selecting a detection window between a wide detection window or a synchronization signal block measurement timing configuration (SMTC) window in response to receiving the RRC reconfiguration message; and
    initiating cell detection of the second frequency range cell based on selection of the detection window.
  9. The non-transitory computer readable medium of claim 8, wherein the processor further includes instructions for performing the method of claims 2-5.
  10. An apparatus for wireless communications, comprising:
    means for establishing, at a user equipment (UE) , communication with a network via a first frequency range cell of an operating band;
    means for receiving, at the UE, a radio resource control (RRC) reconfiguration message from the network that includes a request for the UE to perform signal measurements for a second frequency range cell of the operating band;
    means for selecting a detection window between a wide detection window or a synchronization signal block measurement timing configuration (SMTC) window in response to receiving the RRC reconfiguration message; and
    means for initiating cell detection of the second frequency range cell based on selection of the detection window.
  11. The apparatus of claim 10, further comprising means for performing any of the method of claims 2-5.
PCT/CN2020/119906 2020-10-09 2020-10-09 Reliable cell identification on mmw frequency WO2022073175A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119906 WO2022073175A1 (en) 2020-10-09 2020-10-09 Reliable cell identification on mmw frequency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119906 WO2022073175A1 (en) 2020-10-09 2020-10-09 Reliable cell identification on mmw frequency

Publications (1)

Publication Number Publication Date
WO2022073175A1 true WO2022073175A1 (en) 2022-04-14

Family

ID=81125694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119906 WO2022073175A1 (en) 2020-10-09 2020-10-09 Reliable cell identification on mmw frequency

Country Status (1)

Country Link
WO (1) WO2022073175A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107211428A (en) * 2015-01-30 2017-09-26 高通股份有限公司 Based on the RRM without the signal strength measurement in the LTE on license frequency spectrum
US20180062981A1 (en) * 2016-08-25 2018-03-01 Zih Corp. Methods and apparatus to mitigate interference and to extend field of view in ultra-wideband systems
US20190044676A1 (en) * 2017-08-02 2019-02-07 Telefonaktieboaget Lm Ericsson (Publ) Method, Base Station and User Equipment for Transmission
US20190254110A1 (en) * 2018-02-14 2019-08-15 Samsung Electronics Co., Ltd. Method and apparatus for power savings at a user equipment
US20200252822A1 (en) * 2019-02-01 2020-08-06 Samsung Electronics Co., Ltd. Method and apparatus for communication in next generation mobile communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107211428A (en) * 2015-01-30 2017-09-26 高通股份有限公司 Based on the RRM without the signal strength measurement in the LTE on license frequency spectrum
US20180062981A1 (en) * 2016-08-25 2018-03-01 Zih Corp. Methods and apparatus to mitigate interference and to extend field of view in ultra-wideband systems
US20190044676A1 (en) * 2017-08-02 2019-02-07 Telefonaktieboaget Lm Ericsson (Publ) Method, Base Station and User Equipment for Transmission
US20190254110A1 (en) * 2018-02-14 2019-08-15 Samsung Electronics Co., Ltd. Method and apparatus for power savings at a user equipment
US20200252822A1 (en) * 2019-02-01 2020-08-06 Samsung Electronics Co., Ltd. Method and apparatus for communication in next generation mobile communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "RRC Connection Mobility Control in IAB Networks", 3GPP DRAFT; R4-2002128, vol. RAN WG4, 14 February 2020 (2020-02-14), pages 1 - 8, XP051851964 *

Similar Documents

Publication Publication Date Title
US11848737B2 (en) Techniques for autonomously determining candidate beams to support full-duplex communication
US11291006B2 (en) Techniques for configuring active spatial relations in wireless communications
US11924895B2 (en) Techniques for new radio layer two relay
US11510274B2 (en) Proactive wake-up beam management for connected mode discontinuous reception (C-DRX) operation
EP3895488B1 (en) Techniques for communicating using multiple transmission points wireless communications
US20190394662A1 (en) Techniques to reduce scell measurements in millimeter wave frequency range
US20230275802A1 (en) Techniques for radio link failure recovery and beam failure recovery on secondary cell group in dormancy state
US11758458B2 (en) Techniques for managing base station beam panic for new radio technologies
US11742927B2 (en) Techniques for determining candidate beams to support full-duplex communication
WO2022051034A1 (en) Techniques for switching receive beams for cell measurement in wireless communications
US11792861B2 (en) Beam specific RACH occasion density
US20220337360A1 (en) Techniques for modifying component carrier or layer configuration in multi-subscription wireless communications
WO2021258389A1 (en) Techniques for configuring supplementary uplink support for half-duplex fdd ue
US11641675B2 (en) Indication of traffic direction for sidelink
WO2022073175A1 (en) Reliable cell identification on mmw frequency
US20230269600A1 (en) Techniques for beam sweeping during loop processing in wireless communications
WO2021258390A1 (en) Techniques for configuring supplementary downlink support for half-duplex ue
WO2021151235A1 (en) Techniques for using capability information in wireless communications
WO2021138885A1 (en) Techniques for improving non-standalone device user experience
WO2020252653A1 (en) Techniques for secondary node switching in wireless communications
WO2022226449A1 (en) Techniques for modifying component carrier or layer configuration in multi-subscription wireless communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956490

Country of ref document: EP

Kind code of ref document: A1