WO2022071219A1 - Water-based dispersion of graft-modified biodegradable polyester resin - Google Patents

Water-based dispersion of graft-modified biodegradable polyester resin Download PDF

Info

Publication number
WO2022071219A1
WO2022071219A1 PCT/JP2021/035353 JP2021035353W WO2022071219A1 WO 2022071219 A1 WO2022071219 A1 WO 2022071219A1 JP 2021035353 W JP2021035353 W JP 2021035353W WO 2022071219 A1 WO2022071219 A1 WO 2022071219A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
polyester resin
aqueous dispersion
parts
aliphatic
Prior art date
Application number
PCT/JP2021/035353
Other languages
French (fr)
Japanese (ja)
Inventor
博俊 木津本
万紀 木南
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2022553948A priority Critical patent/JPWO2022071219A1/ja
Publication of WO2022071219A1 publication Critical patent/WO2022071219A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/02Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonates or saturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/07Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/08Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to an aqueous dispersion of an acid-modified polyester resin having biodegradability suitable for applications such as coating agents, paints, inks and adhesives.
  • Patent Document 1 a dispersion using an anionic surfactant as an emulsifier is used.
  • Patent Document 3 the dispersion for ensuring stability was thickened and stabilized by coexisting a small amount of polysaccharide in an amine-neutralized aqueous dispersion of a biodegradable resin to which an acid value was added by depolymerization. Each dispersion has been proposed.
  • Patent Document 4 a biodegradable polyester resin and a hydrophilic polyester resin containing a sulfonic acid base are melt-mixed to prepare an emulsified aqueous dispersion as a mixture, and in Patent Document 5, polyvinyl alcohol is biodegradable.
  • a dispersion of a biodegradable polyester resin used as an emulsifier has been proposed. Further, in Patent Document 6, a relatively low molecular weight biodegradable polyester resin having a hydroxyl group is reacted with a polyvalent carboxylic acid anhydride to introduce an acid value, and a self-emulsifying aqueous dispersion is prepared by amine neutralization. In Tate and Patent Document 7, a dispersion obtained by emulsion-polymerizing a polymerizable unsaturated monomer in the coexistence of a biodegradable resin and encapsulating the biodegradable resin in micelle particles formed from a polymer of the unsaturated monomer. Proposed.
  • the biodegradable resin aqueous dispersion particles obtained in any case have a large average particle size or a wide particle size distribution and contain coarse particles, so that the dispersion is stable in storage. The sex is not enough.
  • Patent Document 6 although a dispersion of fine particles is obtained, an aqueous dispersion of fine particles cannot be formed while the biodegradable resin maintains a high molecular weight.
  • Patent Document 7 although a dispersion having a core / shell structure of relatively fine particles is obtained, many components do not have a biodegradable function constituting the shell, and the biodegradable resin originally forming the core is formed. There was a problem that the biodegradation function of was not fully exhibited.
  • the acid-modified polyester resin having a hydrophilic polar group introduced by graft-adding an unsaturated polyvalent carboxylic acid compound to the biodegradable polyester resin skeleton is biodegraded.
  • the present invention provides an aqueous dispersion of an acid-modified polyester resin (B) having a structure in which an unsaturated polyvalent carboxylic acid is grafted as a side chain of the biodegradable polyester resin (A).
  • the acid value of the acid-modified polyester resin (B) is preferably 150 equivalents / ton or more.
  • the unsaturated polyvalent carboxylic acid is preferably maleic acid, itaconic acid or an anhydrate thereof.
  • the biodegradable polyester resin (A) is at least one selected from the group consisting of aliphatic dibasic acid and aliphatic dibasic acid, and one or more selected from the group consisting of aliphatic glycol and aliphatic glycol. It is preferable that it is a polyester resin (A1) having the above as a structural unit or a polyester resin (A2) having an aliphatic oxycarboxylic acid as a structural unit.
  • the polyester resin (A1) has a total amount of aliphatic dibasic acid, alicyclic dibasic acid, aliphatic glycol and alicyclic glycol, which is 50 mol with respect to the total amount of monomers constituting the polyester resin (A1). It is preferable that the polyester (A2) has 40 mol% or more of the aliphatic oxycarboxylic acid with respect to the total amount of monomers constituting the polyester resin (A2).
  • the aqueous dispersion preferably contains the acid-modified polyester resin (B) and an organic amine compound.
  • the aqueous dispersion contains substantially no emulsifier.
  • the aqueous dispersion can be suitably used as a coating agent and an adhesive.
  • the acid-modified polyester resin having a structure in which an unsaturated polyvalent carboxylic acid is grafted as a side chain of the biodegradable polyester resin of the present invention is mainly composed of an unsaturated polyvalent carboxylic acid grafted to the side chain. It can be stably emulsified and dispersed in the form of fine particles in an aqueous medium without the presence of an emulsifier while leaving the skeleton. In addition, the content of components other than the original biodegradable resin skeleton is small, and the excellent biodegradable function of the biodegradable polyester resin is maintained.
  • the unsaturated polyvalent carboxylic acid used in the present invention is not particularly limited as long as it is a compound having at least one unsaturated bond and two or more carboxyl groups in one molecule. There may be two or more unsaturated bonds in one molecule.
  • unsaturated polyvalent carboxylic acids include maleic acid and its anhydride, itaconic acid and its anhydride, fumaric acid and its anhydride, citraconic acid and its anhydride, mesaconic acid and its anhydride, and 2-pentenylic acid.
  • the biodegradable polyester resin (A) used in the present invention is a biodegradable polyester resin and has the property of being decomposed by the action of microorganisms.
  • Examples of the origin of the biodegradable polyester resin include those derived from microorganisms, those derived from natural products, and those derived from chemical synthesis, including polylactic acid, polyhydroxyalkanoic acid, polyglycolic acid, aliphatic polyesters, and aromatic-modified aliphatic polyesters. Etc. are exemplified.
  • the biodegradable polyester resin (A) used in the present invention is not particularly limited as long as it has biodegradability, and is, for example, a group consisting of an aliphatic dibasic acid and an alicyclic dibasic acid as an acid component.
  • a polyester resin (A1) having one or more selected from the above and one or more selected from the group consisting of aliphatic glycols and aliphatic glycols as glycol components as structural units, or aliphatic oxycarboxylic acids.
  • Examples thereof include a polyester resin (A2) having a resin.
  • polyester resin (A1) examples include linear aliphatic dibasic acids such as amber acid, glutaric acid, adipic acid, pimelli acid, suberic acid, azelaic acid, sebacic acid and dodecandicarboxylic acid.
  • linear aliphatic dibasic acids such as amber acid, glutaric acid, adipic acid, pimelli acid, suberic acid, azelaic acid, sebacic acid and dodecandicarboxylic acid.
  • Branched aliphatic dizygous acid such as 2-ethyladipic acid, 3-ethyladipic acid, 2-isopropyladipic acid, 2,5-dimethyladipic acid, 2-methylsveric acid, 3-methylsveric acid, 4-methylsveric acid, etc.
  • amber acid, adipic acid and sebacic acid are preferable from the viewpoint of versatility, and amber acid and sebacic acid are more preferable from the viewpoint of raw materials for biomass.
  • alicyclic dibasic acid 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, hexahydrochloride anhydride, 4-methylhexahydrohydride phthalic acid, 4-cyclohexene- Examples thereof include alicyclic dibasic acid raw materials such as 1,2-dicarboxylic acid, and among these, 1,4-cyclohexanedicarboxylic acid is preferable in terms of versatility.
  • aliphatic glycol ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 2-n-butyl-2-ethyl-1,3-propylene glycol, 1,2-butylene glycol, 1, 3-butylene glycol, 2,3-butylene glycol, 1,4-butylene glycol, 2-methyl-1,3-propylene glycol, neopentyl glycol, 2,2-dimethyl-3-hydroxypropyl-2', 2' -Didimethyl-3-hydroxypropanol, 2,2-diethyl-1,3-propylene glycol, 1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,2-diethyl-1, 5-Pentanediol, 1,3-diethyl-1,5-pentanediol, 1,4-diethyl-1,5-pentanediol, 2,3-diethyl-1,5
  • ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butylene glycol, 1,3-butylene glycol, neopentyl glycol, 1,6-hexane Diol is preferable, and ethylene glycol and 1,3-propylene glycol are more preferable from the viewpoint of these internal biomass raw materials.
  • Examples thereof include alicyclic diol raw materials, and among these, 1,4-bis (hydroxymethyl) cyclohexane is preferable in terms of versatility.
  • the contents of the aliphatic dibasic acid, the alicyclic dibasic acid, the aliphatic glycol and the alicyclic glycol constituting the polyester resin (A1) are aliphatic with respect to the total amount of the monomers constituting the polyester resin (A1).
  • the total amount of the dibasic acid, the aliphatic dibasic acid, the aliphatic glycol and the alicyclic glycol is preferably 50 mol% or more. It is more preferably 70 mol% or more, further preferably 80% or more, most preferably 90 mol% or more, and may be 100 mol% or more.
  • the polyester resin (A1) contains an aromatic dibasic acid for the purpose of improving the physical properties of the acid-modified polyester resin (B) of the present invention.
  • the glycol component having an aromatic ring may be copolymerized as long as the biodegradability is not impaired.
  • the aromatic dibasic acid include terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, and aromatic dibasic acids such as anhydrides thereof.
  • terephthalic acid isophthalic acid, orthophthalic acid, and 2,6-naphthalenedicarboxylic acid are preferable.
  • examples of the glycol component having an aromatic ring include a polyalkylene oxide adduct to bisphenol A.
  • the copolymerization ratio of these aromatic dibasic acids and glycol components having an aromatic ring is preferably less than 50 mol% when the total dibasic acid component and the total glycol component are 100 mol%, respectively. More preferably less than 45 mol%.
  • the polyester resin (A1) of the present invention is copolymerized with a polyfunctional compound such as trimethylolpropane, trimellitic acid, or trimellitic anhydride as long as the polyester resin (A1) does not gel. It is also possible to make it easier to increase the molecular weight.
  • the copolymerization amount is preferably 0.1 mol% or more, more preferably 0.2 mol% or more, when the total copolymerization component is 100 mol%. ..
  • the upper limit is preferably 2 mol% or less, more preferably 1 mol% or less.
  • the polyester resin (A1) used in the present invention can be subjected to an addition modification reaction (post-addition) of an acid compound such as trimellitic acid at the molecular end after the completion of the polymerization reaction to add an acid value.
  • an acid compound such as trimellitic acid
  • the acid compound By adding the acid compound to the end of the molecule, unsaturated polyvalent carboxylic acid is added to facilitate water-based dispersion after the acid-modified polyester resin (B) is obtained, and the storage stability of the produced aqueous-based dispersion is stable. Can be improved.
  • the copolymerization amount in the case of copolymerizing the acid compound is preferably 0.1 mol% or more, more preferably 0.2 mol% or more.
  • the upper limit is preferably 2 mol% or less, more preferably 1 mol% or less.
  • the polyester resin (A1) can be copolymerized with a lactone-based monomer at an arbitrary copolymerization ratio in a random or block shape.
  • lactone-based monomers include ⁇ -acetolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, and ⁇ -caprolactone.
  • ⁇ -caprolactone is versatile and copolymerizable. Is preferable.
  • the polymerization of the polyester resin (A1) can be synthesized by a conventionally well-known method.
  • an oligomer is prepared by subjecting an esterification reaction with the acid component and an excess amount of the glycol component to the acid component in advance, and then the glycol component is removed under high temperature and high vacuum. This completes the polymerization reaction.
  • the acid component may be an alkyl ester compound and a transesterification reaction may be carried out.
  • the polymerization catalyst commonly used compounds such as titanium-based, zinc-based, antimony-based, magnesium-based, germanium-based, and aluminum-based compounds can be used.
  • it is preferable to carry out a modification addition reaction of the unsaturated polyvalent carboxylic acid component By performing such a polymerization and modification method, a modified polyester resin having a functional group grafted on a side chain other than the polymer terminal can be obtained.
  • the acid value of the polyester resin (A1) is preferably 200 equivalents / ton or less, more preferably 150 equivalents / ton or less, and further preferably 100 equivalents / ton or less.
  • an additional amount (acid value) exceeding 200 equivalents / ton it is necessary to lower the molecular weight in order to increase the number of terminal groups of the polyester resin (A1), and the cohesive force of the resulting resin is insufficient.
  • the risk of gelation increases due to the need to introduce a branching component having three or more functionalities.
  • aqueous dispersion having no brittleness, excellent physical characteristics and adhesiveness of the coating film, and excellent storage stability can be obtained.
  • the number average molecular weight of the polyester resin (A1) is preferably 8,000 to 50,000, more preferably 15,000 to 30,000 in GPC analysis using a polystyrene standard sample.
  • the content is 8,000 or more, the cohesive force of the polyester resin (A1) is increased, and a good coating film can be obtained.
  • it is set to 50,000 or less, the viscosity in the molten state or the solution state does not become too high, and the modification addition reaction of the unsaturated polyvalent carboxylic acid becomes easy.
  • the glass transition temperature of the polyester resin (A1) is preferably ⁇ 30 ° C. or higher, more preferably ⁇ 20 ° C. or higher, and even more preferably ⁇ 10 ° C. or higher. Further, it is preferably 80 ° C. or lower, more preferably 70 ° C. or lower, and further preferably 60 ° C. or lower.
  • the melting point is preferably 200 ° C. or lower, more preferably 180 ° C. or lower, and further preferably 160 ° C. or lower. Within the above range, the modification and addition reaction of the unsaturated polyvalent carboxylic acid becomes easy, and it becomes easy to obtain an aqueous dispersion having excellent biodegradability and storage stability.
  • polyester resin (A2) examples include the polyester resin (A1) and the polyester resin (A2) in which aliphatic oxycarboxylic acids are used alone or copolymerized.
  • the aliphatic oxycarboxylic acid examples include glycolic acid, lactic acid, glyceric acid, malic acid, tartaric acid, and a series of 3-hydroxyalkanoic acids that are raw materials for polyhydroxyalkanoic acid.
  • 3-hydroxyalkanoic acids are 3-hydroxybutanoic acid, 3-hydroxypentanoic acid, 3-hydroxyhexanoic acid, 3-hydroxyheptanoic acid, 3-hydroxyoctanoic acid, 3-hydroxynonanoic acid, and 3-hydroxydecanoic acid.
  • lactic acid a lactide compound obtained by dehydrating and dimerizing a lactic acid monomer may be used from the viewpoint of polymerization reactivity.
  • a metal catalyst similar to that of the polyester (A1) can be used, and tin-based, cobalt-based, manganese-based, and iron-based catalysts can also be used.
  • the content of the aliphatic oxycarboxylic acid constituting the polyester resin (A2) is preferably 40 mol% or more with respect to the total amount of the monomers constituting the polyester resin (A2) from the viewpoint of biodegradability. It is more preferably 60 mol% or more, further preferably 80% or more, most preferably 90 mol% or more, and may be 100 mol% or more.
  • the preferred ranges of acid value, number average molecular weight, glass transition temperature, and melting point of the polyester resin (A2) are the same as those of the polyester resin (A1).
  • a polyfunctional compound such as an aromatic dibasic acid, a glycol component having an aromatic ring, trimellitic propane, trimellitic acid, or trimellitic anhydride may be used, and the amount of copolymerization thereof. Is the same as that of the polyester resin (A1).
  • the acid-modified polyester resin (B) is a resin having a structure in which an unsaturated polyvalent carboxylic acid is grafted as a side chain of the biodegradable polyester resin (A).
  • the addition reaction of the unsaturated polyvalent carboxylic acid can be carried out by a solution reaction in which the reaction is carried out in an organic solvent or a melting reaction using a twin-screw extruder.
  • the unreacted unsaturated polyvalent carboxylic acid may be removed by reprecipitating the resin component of the product after the reaction using alcohol such as methanol, water, or a mixture thereof. I can.
  • radical initiator catalysts can be used as the reaction catalyst for the unsaturated polyvalent carboxylic acid addition reaction, but an organic peroxide catalyst is particularly preferable.
  • organic peroxide catalyst examples include di-tert-butylperoxyphthalate, tert-butylhydroperoxide, dicumyl peroxide, tert-butylcumyl peroxide, tert-butylperoxyisopropyl monocarbonate, 2,5-dimethyl-2, 5-Di (tert-butylperoxy) hexane, benzoyl peroxide, tert-butylperoxybenzoate, tert-butylperoxy-2-ethylhexanoate, tert-butylperoxypivalate, methylethylketone peroxide, di- Peroxides such as tert-butyl peroxide and lauroyl peroxide; azonitriles such as azobisisobutyronitrile and
  • the acid value of the acid-modified polyester resin (B) of the present invention is preferably 150 equivalents / ton or more, more preferably 200 equivalents / ton or more, and further preferably 300 equivalents / ton or more.
  • the acid value is 150 equivalents / ton or more, it becomes easy to form a fine particle-like aqueous dispersion having excellent storage stability.
  • the aqueous dispersion of the present invention is a dispersion containing an acid-modified polyester resin (B), water, and if necessary, a basic substance.
  • the resin concentration of the acid-modified polyester resin (B) in the aqueous dispersion is preferably 10% by mass or more, more preferably 20% by mass or more. Further, it is preferably 50% by mass or less, more preferably 40% by mass or less. If it is less than 10% by mass, the consumption of heat energy when producing a dry coating film is large, and if it exceeds 50% by mass, the viscosity of the dispersion becomes high and it becomes difficult to handle.
  • the basic substance is not particularly limited, but a volatile basic substance is preferable, and ammonia and organic amines are particularly preferable.
  • the organic amines are not particularly limited, but are monomethylamine, dimethylamine, trimethylamine, monoethylamine, mono-n-propylamine, dimethyl-n-propylamine, monoethanolamine, diethanolamine, triethanolamine, N-methylethanol.
  • Amine, N-aminoethylethanolamine, N-methyldiethanolamine, monoisopropanolamine, diisopropanolamine, triisopropanolamine, N, N-dimethylethanolamine, N, N-dimethylpropanolamine and the like are particularly preferable.
  • the basic substance is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and 2 parts by mass or more with respect to 100 parts by mass of the acid-modified polyester resin (B) of the present invention. It is more preferably present, and particularly preferably 3 parts by mass or more. Further, it is preferably 10 parts by mass or less, more preferably 9 parts by mass or less, further preferably 8 parts by mass or less, and particularly preferably 7 parts by mass or less. Within the above range, the particle size of the dispersed particles does not become too large, so that the storage stability is good. Further, a coating film having good water resistance can be obtained.
  • the average particle size of the aqueous dispersion particles of the present invention is preferably 500 nm or less, more preferably 400 nm or less, further preferably 300 nm or less, and particularly preferably 250 nm or less.
  • the lower limit is not particularly limited, but industrially, there is no problem as long as it is 10 nm or more. Within the above range, the water dispersion is excellent in storage stability and easy to handle when used in paints, inks, coating agents, adhesives and the like.
  • the aqueous dispersion is preferably basic.
  • the pH of the aqueous dispersion is preferably 6 or more, more preferably 6.5 or more, still more preferably 7 or more, and particularly preferably 7.5 or more.
  • the upper limit is not particularly limited, but is 10 or less, more preferably 9.5 or less. Within the above range, the storage stability of the aqueous dispersion is good.
  • the viscosity of the aqueous dispersion is preferably 5 mPa ⁇ s or more, more preferably 10 mPa ⁇ s or more. Further, it is preferably 50 mPa ⁇ s or less, and more preferably 40 mPa ⁇ s or less. Within the above range, the water dispersion is excellent in storage stability and easy to handle when used in paints, inks, coating agents, adhesives and the like.
  • the aqueous dispersion of the present invention contains substantially no emulsifier.
  • substantially free of emulsifier means that the emulsifier is 5% by mass or less, preferably 1% by mass or less, more preferably 0.5% by mass or less, and particularly preferably. Is 0.1% by mass or less, and may be 0% by mass.
  • the water resistance of the coating film is improved by substantially containing no emulsifier.
  • the method for producing the aqueous dispersion of the present invention is not particularly limited, but is limited to a water-soluble ketone solvent such as methyl ethyl ketone (MEK) and water, or tetrahydrofuran (THF), 1,4-dioxane, 1,3-dioxane, 1,
  • MEK methyl ethyl ketone
  • THF tetrahydrofuran
  • 1,4-dioxane 1,3-dioxane
  • the acid-modified polyester resin (B) is heat-dissolved or swollen in a water-soluble ether solvent such as 3-dioxolane and water, a basic substance is added thereto, and the ketone solvent or the ether solvent is removed after cooling. It is possible to obtain a stable aqueous dispersion that does not contain an organic solvent substantially without using an emulsifier.
  • “Substantially free of organic solvent” means that the content of organic solvent in the
  • the aqueous dispersion of the present invention can contain a small amount of a water-soluble organic solvent for the purpose of improving the film-forming characteristics when applied to the substrate and the storage stability of the aqueous dispersion.
  • a water-soluble organic solvent include monoalkyl ethers of various alkylene glycols. Among them, ethylene glycol monobutyl ether, propylene glycol monopropyl ether, and propylene glycol monobutyl ether are preferable from the viewpoint of film forming properties and drying property.
  • the content of these water-soluble organic solvents is preferably 1% by mass or more, more preferably 5% by mass or more, preferably 20% by mass or less, and more preferably 15% by mass in the aqueous dispersion. It is as follows.
  • the aqueous dispersion of the present invention contains various curing agents and curing reaction catalysts for the purpose of improving coating strength, solvent resistance, heat resistance, and base material adhesive strength as long as the biodegradability is not impaired.
  • the curing agent include a polyfunctional epoxy compound, a compound of a polyfunctional epoxy compound and an oxazoline compound and / or an anhydride compound, or a polyfunctional isocyanate compound.
  • a general catalyst such as an organic amine type or an organic phosphorus type is effective for the polyfunctional epoxy compound.
  • general organic tin-based, organic bismuth-based, organic amine-based, etc. are effective, but the curing reaction proceeds even without a catalyst.
  • the polyfunctional epoxy resin is not particularly limited as long as it has two or more epoxy groups in one molecule.
  • glycidyl ether of bisphenol-A and its oligomer orthophthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, terephthalic acid diglycidyl ester, tetrahydrophthalic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, Kohaku.
  • Acid diglycidyl ester adipic acid diglycidyl ester, sebacic acid diglycidyl ester, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether , Polyalkylene glycol diglycidyl ethers, trimellitic acid triglycidyl ester, triglycidyl isocyanurate, 1,4-glycidyloxybenzene, diglycidyl propylene urea, glycerol triglycidyl ether, trimethylol ethane triglycidyl ether, trimethylol propane Examples thereof include triglycidyl ether, pentaerythritol tetraglycidyl ether, and triglycidyl ether as a glycerol alky
  • the polyfunctional isocyanate compound is not particularly limited as long as it has two or more isocyanate groups in one molecule. Specifically, although not particularly limited, there are aromatic, alicyclic, and aliphatic polyisocyanate compounds, and any of low molecular weight type and high molecular weight type may be used.
  • tetramethylene diisocyanate hexamethylene diisocyanate, toluene diisocyanate, diphenylmethane diisocyanate, hydride diphenylmethane diisocyanate, xylylene diisocyanate, hydride xylylene diisocyanate, isophorone diisocyanate, or trimerics of these isocyanate compounds, and the above-mentioned isocyanate compounds and ethylene glycol.
  • Trimethylol propane Trimethylol propane, propylene glycol, glycerin, sorbitol, ethylenediamine, monoethanolamine, diethanolamine, triethanolamine, polyester polyols, polyether polyols, polyamides and other active hydrogen compounds. Can be mentioned. These can be used alone or in combination of two or more.
  • the curing agent is preferably 1 part by mass or more, more preferably 5 parts by mass or more, and 8 parts by mass or more with respect to 100 parts by mass of the acid-modified polyester resin (B) of the present invention. Is even more preferable. Further, it is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and further preferably 30 parts by mass or less. Within the above range, the hardness, toughness, adhesion strength and flexibility of the coating film obtained from the aqueous dispersion are improved.
  • ⁇ Preliminary GPC LC-9210NEXT analysis conditions> Column: 1 JAIGEL-2H, 1 JAIGEL-1H in series Detector: RI detector and UV detector (detection wavelength: 254 nm) Sample: Chloroform 4 ml solution in which 100 mg of acid-modified polyester resin (B) is dissolved Injection amount: 3 ml Developing solvent: Chloroform ⁇ preparation procedure and NMR, HMBC measurement procedure> An acid-modified polyester resin (B) having a molecular weight of 1000 or more was separated based on a calibration curve prepared using a polystyrene standard sample.
  • the preparative solution was dried by spraying nitrogen, it was redissolved in chloroform-d or chloroform-d / DMSO (dimethyl sulfoxide) -d (1/1 vol ratio), and 1 H-NMR measurement and 1 H- 13 C- HMBC measurements were performed.
  • an NMR device AVANCE-NEO600 manufactured by BRUKER was used as a measuring device.
  • 1 H-NMR measurement 30 mg of the preparative solution was dissolved in 0.6 ml of the above-mentioned solvent, and then the solution was filled in an NMR tube to perform 1 H-NMR measurement.
  • Chloroform-d or DMSO-d was used as the lock solvent, the waiting time was 1 second, the uptake time was 4 seconds, and the number of integrations was 64 times.
  • the CH 2 and CH peaks at the ⁇ -position of the carbonyl bond of maleic acid and itaconic acid after addition are 2 to 3.5 ppm in 1 H-NMR when the peak of chloroform is 7.28 ppm or the peak of DMSO is 2.5 ppm. It is detected as a broad peak in the region of.
  • HMBC Heteronuclear Multiple Bond Coherence, which is a measurement method of two-dimensional NMR.
  • T Terephthalic acid I: Isophthalic acid CHDA: 1,4-Cyclohexanedicarboxylic acid SA: Sebacic acid AA: Adipic acid TMA: Trimellitic anhydride NPG: Neopentyl glycol CHDM: 1,4-bis (hydroxymethyl) cyclohexane EG: Ethylene glycol 2MG: 2-methyl-1,3-propylene glycol MPD: 3-methyl-1,5-pentanediol 1,6-HD: 1,6-hexanediol 1,4-BD: 1,4-butanediol LLD: L-lactide DLD: D-lactide
  • the inside of the reaction system was returned to normal pressure, and the melted copolymerized polyester resin was taken out from the flask into a heat-resistant bat, and the resin composition, number average molecular weight, acid value, melting point, and glass transition temperature were measured.
  • the obtained measurement results are specified in Table 1 together with the number average molecular weight: 22000, acid value: 8 equivalents / ton, melting point: 108 ° C., glass transition temperature: -12 ° C., and resin composition analysis results.
  • Synthesis example 2 [Polyester resin (A-2) polymerization] 93 parts of dimethyl terephthalate, 78 parts of dimethyl isophthalate, 55 parts of neopentyl glycol, 60 parts of ethylene glycol, and tetra-n-butyl titanate 0 as a catalyst in a 1L 4-neck flask equipped with a stirring rod, a thermometer, and a Liebig condenser. .1 part was charged and transesterification reaction was carried out at 190 ° C to 230 ° C for 3 hours. After confirming that a predetermined amount of methanol was distilled off, the reaction temperature was cooled to 180 ° C.
  • Synthesis example 3 [Polyester resin (A-3) polymerization] 1.2 parts of 3-methyl-1,5-pentanediol, 320 parts of L-lactide, 80 parts of D-lactide, 200 parts of toluene and a reaction catalyst in a 1L 4-neck flask equipped with a stirring rod, a thermometer and a Leibich cooling tube. 0.2 part of tin octylate and 1 part of ethyldiethylphosphonoacetate were charged as a catalyst deactivating agent, and the reaction system was heated to 180 ° C while co-boiling and dehydrating toluene under a nitrogen gas stream for 3 hours at the same temperature. Stirred.
  • the system was then depressurized to distill off unreacted residual monomers.
  • the obtained polylactic acid resin was poured into a bat, and the number average molecular weight, acid value, and glass transition temperature were measured.
  • the obtained measurement results are specified in Table 1 together with the number average molecular weight: 36000, acid value: 12 equivalents / ton, glass transition temperature: 48 ° C., and resin composition analysis results.
  • Comparative synthesis example 1 [Polyester resin (A-4) polymerization] A 1L 4-neck flask equipped with a stir bar, a thermometer, and a Liebig condenser was charged with 155 parts of dimethyl terephthalate, 360 parts of 1,4-butanjiol, and 0.2 parts of tetra-n-butyl titanate as a catalyst, 190 parts. The transesterification reaction was carried out at ° C. to 230 ° C. for 3 hours. After confirming that a predetermined amount of methanol was distilled off, the reaction temperature was cooled to 180 ° C.
  • Comparative synthesis example 2 [Polyester resin (A-5) polymerization] 116 parts of dimethyl terephthalate, 39 parts of dimethyl isophthalate, 97 parts of 1,4-bis (hydroxymethyl) cyclohexane, 2-methyl-1,3- in a 1L 4-neck flask equipped with a stir bar, a thermometer, and a Liebig condenser. 74 parts of propylene glycol and 0.1 part of tetra-n-butyl titanate as a catalyst were charged, and a transesterification reaction was carried out at 190 ° C. to 230 ° C. for 3 hours. After confirming that a predetermined amount of methanol was distilled off, the reaction temperature was cooled to 180 ° C.
  • the mixture was stirred under a nitrogen atmosphere for 45 minutes to complete the addition reaction of trimellitic anhydride.
  • the melted copolymerized polyester resin was taken out from the flask into a heat-resistant bat, and the resin composition, number average molecular weight, acid value, and glass transition temperature were measured.
  • the obtained measurement results had a number average molecular weight: 24000, an acid value: 104 equivalents / ton, and a glass transition temperature: 55 ° C., which are specified in Table 1 together with the resin composition analysis results.
  • Comparative synthesis example 3 [Polyester resin (A-6) polymerization] 78 parts of dimethyl terephthalate, 62 parts of dimethyl isophthalate, 65 parts of 1,4-bis (hydroxymethyl) cyclohexane, 2-methyl-1,3- in a 1L 4-neck flask equipped with a stir bar, a thermometer, and a Leibich cooling tube. 41 parts of propylene glycol, 37 parts of ethylene glycol, and 0.1 part of tetra-n-butyl titanate as a catalyst were charged, and a transesterification reaction was carried out at 190 ° C. to 230 ° C. for 3 hours.
  • the reaction temperature was cooled to 180 ° C. 26 parts of 1,4-cyclohexanedicarboxylic acid and 6 parts of trimellitic anhydride were charged, and the reaction temperature was raised to 230 ° C. Next, the reaction temperature was gradually raised to 250 ° C. while distilling off the generated condensed water under normal pressure, and when the distillate of water almost disappeared, the reaction temperature was gradually raised and the degree of decompression was gradually lowered. Finally, the temperature reached 270 ° C. and 3 Torr in 1 minute, and the polymerization reaction was completed. Next, the inside of the reaction system was returned to normal pressure, the temperature inside the system was cooled to 220 ° C.
  • Emulsified aqueous dispersions of unsaturated polyvalent carboxylic acid graft modified products obtained in the above synthetic examples and comparative synthetic examples were prepared, and the obtained aqueous dispersions were evaluated.
  • Example-1 50 parts of the acid-modified polyester resin (B-1) obtained in Synthesis Example 1, 100 parts of tetrahydrofuran, 30 parts of ethylene glycol monobutyl ether, and 15 parts of isopropyl alcohol were placed in a 1L 4-neck flask equipped with a thermometer, a stirring blade, and a condenser. It was charged and the resin component was uniformly dissolved at 60 ° C. Then, 160 parts of deionized water was gradually injected and stirred at the same temperature for 90 minutes. 18 parts of a 50% aqueous solution of dimethylethanolamine was added, and the mixture was cooled to 40 ° C. over 120 minutes with stirring.
  • the organic solvent component was distilled off at a reduced pressure of 91 kPa to obtain an aqueous dispersion (emulsion) E-1 having a solid content concentration of about 25% by mass.
  • the average particle size, pH, viscosity, solid content concentration and number average molecular weight of E-1 were measured.
  • the average particle size was 27 nm
  • the pH was 9.3
  • the viscosity was 10.6 mPa ⁇ s
  • the solid content concentration was 24.5% by mass
  • the number average molecular weight was 27,000, which are shown in Table 3.
  • changes over time after being left at 25 ° C for 3 months (standing) were measured and are also shown in the same table.
  • E-1 was coated on a 25 ⁇ m thick PET film substrate so that the dry thickness was 5 ⁇ m, and the HAZE value was measured and specified separately in Table 4.
  • the HAZE value was 5.4%.
  • Example-2 The acid-modified polyester resin (B-2) was dispersed in emulsified water by the same method as in Example-1 to obtain an aqueous dispersion (emulsion) E-2.
  • the average particle size, pH, viscosity, solid content concentration and number average molecular weight of E-2 were measured.
  • the average particle size was 73 nm
  • the pH was 9.0
  • the viscosity was 11.7 mPa ⁇ s
  • the solid content concentration was 25.2 mass%
  • the number average molecular weight was 20000, which are shown in Table 3.
  • changes over time after being left at 25 ° C for 3 months (standing) were measured and are also shown in the same table.
  • the HAZE value of the coated film of E-2 prepared in the same manner as in Example 1 was measured, and the results are separately specified in Table 4.
  • the HAZE value was 3.9%.
  • Example-3 The acid-modified polyester resin (B-3) was dispersed in emulsified water by the same method as in Example 1 to obtain an aqueous dispersion (emulsion) E-3.
  • the average particle size, pH, viscosity, solid content concentration and number average molecular weight of E-3 were measured.
  • the average particle size was 183 nm
  • the pH was 9.4
  • the viscosity was 9.0 mPa ⁇ s
  • the solid content concentration was 23.8 mass%
  • the number average molecular weight was 33000, which are shown in Table 3.
  • changes over time after being left at 25 ° C for 3 months (standing) were measured and are also shown in the same table.
  • the HAZE value of the coated film of E-3 prepared in the same manner as in Example 1 was measured, and the results are separately specified in Table 4.
  • the HAZE value was 4.1%.
  • Comparative Examples-1 and 2 Using the polyester resins (A-4) and (A-5) obtained in Comparative Synthesis Examples-1 and 2, respectively, an attempt was made to disperse the emulsified water in the same manner as in Example 1, but in any case. However, no aqueous dispersion was obtained.
  • Comparative Example-3 Seven parts of a 50% aqueous solution of dimethylethanolamine was added to the polyester resin (A-6) in the same manner as in Example 1 and dispersed in emulsified water to obtain an aqueous dispersion (emulsion) E-4.
  • the average particle size, pH, viscosity, solid content concentration and number average molecular weight of E-4 were measured. As a result, the average particle size was 87 nm, the pH was 9.1, the viscosity was 7.3 mPa ⁇ s, the solid content concentration was 31.8% by mass, and the number average molecular weight was 6500, which are shown in Table 3.
  • Comparative Examples 1 and 2 since the modification treatment for graft-adding the unsaturated polyvalent carboxylic acid to each of the polyester resins (A-4) and (A-5) was not performed, a sufficient hydrophilic polar group was introduced. It was not possible to form an emulsified aqueous dispersion. Further, in Comparative Example 3, the polyester resin (A-6) was not modified by graft-adding an unsaturated polyvalent carboxylic acid, but it had a low molecular weight and a highly branched molecular structure, and was hydrophilic for dispersion of emulsified water. The amount of sexual polar groups has been introduced.
  • the unsaturated polyvalent carboxylic acid graft-modified biodegradable polyester resin of the present invention can form an emulsified aqueous dispersion having excellent storage stability with fine particles without using an emulsifier. Therefore, it is useful as an environment-friendly paint, ink, coating agent, adhesive, etc., and can exhibit excellent features in the working environment at the time of painting, printing, adhesion, and coating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

[Problem] To provide a water-based dispersion of fine particles that have excellent dispersion stability while maintaining the excellent biodegradability that is inherent to biodegradable polyester resins. [Solution] This water-based dispersion is of an acid-modified polyester resin (B) having a structure obtained through graft addition of an unsaturated polycarboxylate as a side chain to a biodegradable polyester resin (A).

Description

グラフト変性生分解性ポリエステル樹脂水系分散体Graft-modified biodegradable polyester resin aqueous dispersion
 本発明はコーティング剤、塗料、インキ、接着剤等の用途に適した生分解性を有する酸変性ポリエステル樹脂の水系分散体に関するものである。 The present invention relates to an aqueous dispersion of an acid-modified polyester resin having biodegradability suitable for applications such as coating agents, paints, inks and adhesives.
 近年、環境への配慮から環境負荷の少ない素材への関心が益々高まりつつあり、これまでポリ乳酸や澱粉を初めとする原料が天然物由来で、かつ生分解性を有する高分子材料が提案されて来た。また揮発性有機化合物(VOC)規制も厳しくなり、コーティング剤や塗料を扱う業界では従来の有機溶剤型から水系分散体型、無溶剤型へ移行しつつある中で取り分け水系分散体は取扱作業性の面からも汎用性が高く、採用事例が増加している。
 この様な状況下で、生分解性樹脂の水系分散体は種々の分野で着目されており、それら分散体の調製方法に付いては多様な提案がなされている。例えば特許文献1ではアニオン系界面活性剤を乳化剤とした分散体が、特許文献2では乳化剤を配合すると共に炭酸ジエステル化合物やポリイソシアネート化合物により生分解性樹脂を高分子量化増粘させ、分散体の安定性を確保しようとする分散体が、特許文献3では解重合により酸価を付加した生分解性樹脂のアミン中和水分散体に少量の多糖類を共存させる事で増粘安定化させた分散体が各々提案されている。また、特許文献4では生分解性ポリエステル樹脂とスルホン酸塩基を含有する親水性ポリエステル樹脂を溶融混合させる事で混合物として乳化水分散体を調製したものや、特許文献5ではポリビニルアルコールを生分解性乳化剤とした生分解性ポリエステル樹脂の分散体が提案されている。更には特許文献6では水酸基を有する比較的低分子量の生分解性ポリエステル樹脂を多価カルボン酸無水物と反応させる事で酸価を導入し、アミン中和により自己乳化型水分散体を調製させたものや特許文献7では生分解性樹脂の共存下に重合性不飽和モノマーを乳化重合し、不飽和モノマーの重合体から形成されるミセル粒子中に生分解性樹脂を内包させた分散体が提案されている。
In recent years, there has been increasing interest in materials that have a low environmental impact due to consideration for the environment, and so far, polymer materials that are derived from natural products and have biodegradability, such as polylactic acid and starch, have been proposed. Came. In addition, volatile organic compound (VOC) regulations have become stricter, and in the industry dealing with coating agents and paints, the conventional organic solvent type is shifting to water-based dispersion type and solvent-free type. In terms of versatility, it is highly versatile, and the number of adoption cases is increasing.
Under such circumstances, aqueous dispersions of biodegradable resins have attracted attention in various fields, and various proposals have been made for methods for preparing these dispersions. For example, in Patent Document 1, a dispersion using an anionic surfactant as an emulsifier is used. In Patent Document 3, the dispersion for ensuring stability was thickened and stabilized by coexisting a small amount of polysaccharide in an amine-neutralized aqueous dispersion of a biodegradable resin to which an acid value was added by depolymerization. Each dispersion has been proposed. Further, in Patent Document 4, a biodegradable polyester resin and a hydrophilic polyester resin containing a sulfonic acid base are melt-mixed to prepare an emulsified aqueous dispersion as a mixture, and in Patent Document 5, polyvinyl alcohol is biodegradable. A dispersion of a biodegradable polyester resin used as an emulsifier has been proposed. Further, in Patent Document 6, a relatively low molecular weight biodegradable polyester resin having a hydroxyl group is reacted with a polyvalent carboxylic acid anhydride to introduce an acid value, and a self-emulsifying aqueous dispersion is prepared by amine neutralization. In Tate and Patent Document 7, a dispersion obtained by emulsion-polymerizing a polymerizable unsaturated monomer in the coexistence of a biodegradable resin and encapsulating the biodegradable resin in micelle particles formed from a polymer of the unsaturated monomer. Proposed.
特開平10-101911Japanese Patent Application Laid-Open No. 10-101911 特開平11-92712Japanese Patent Application Laid-Open No. 11-92712 特開2002-241629JP-A-2002-241629 特開2003-96281Japanese Patent Application Laid-Open No. 2003-96281 特開2004-204038JP-A-2004-204038 特開2000-7789JP 2000-7789 特開2005-344013JP-A-2005-344013
 しかしながら特許文献1から5の事例では何れの場合でも得られる生分解性樹脂の水分散体粒子の平均粒子径が大きいものや粒子径分布が広く粗大粒子を含有しており、分散体の貯蔵安定性が十分とは言えない。また、特許文献6では微粒子の分散体も得られてはいるものの、生分解性樹脂が高分子量を維持した状態で微粒子の水分散体を形成出来ていない。また特許文献7では比較的微粒子のコア/シェル構造の分散体は得られているものの、シェルを構成する生分解性機能を有さない成分が多く、コアを形成している生分解性樹脂本来の生分解機能が十分発揮されないという問題があった。 However, in the cases of Patent Documents 1 to 5, the biodegradable resin aqueous dispersion particles obtained in any case have a large average particle size or a wide particle size distribution and contain coarse particles, so that the dispersion is stable in storage. The sex is not enough. Further, in Patent Document 6, although a dispersion of fine particles is obtained, an aqueous dispersion of fine particles cannot be formed while the biodegradable resin maintains a high molecular weight. Further, in Patent Document 7, although a dispersion having a core / shell structure of relatively fine particles is obtained, many components do not have a biodegradable function constituting the shell, and the biodegradable resin originally forming the core is formed. There was a problem that the biodegradation function of was not fully exhibited.
 上記課題解決のため本発明者らが鋭意検討した結果、生分解性ポリエステル樹脂骨格に不飽和多価カルボン酸化合物をグラフト付加する事により親水性極性基を導入した酸変性ポリエステル樹脂が、生分解性ポリエステル樹脂本来の優れた生分解性を保持したまま分散安定性に優れた微粒子の水系分散体を形成できる事を見出し、本発明に至った。 As a result of diligent studies by the present inventors to solve the above problems, the acid-modified polyester resin having a hydrophilic polar group introduced by graft-adding an unsaturated polyvalent carboxylic acid compound to the biodegradable polyester resin skeleton is biodegraded. We have found that it is possible to form an aqueous dispersion of fine particles having excellent dispersion stability while maintaining the original excellent biodegradability of the polyester resin, and have reached the present invention.
 すなわち本発明は、生分解性ポリエステル樹脂(A)の側鎖として不飽和多価カルボン酸がグラフト付加した構造を有する酸変性ポリエステル樹脂(B)の水系分散体を提供するものである。 That is, the present invention provides an aqueous dispersion of an acid-modified polyester resin (B) having a structure in which an unsaturated polyvalent carboxylic acid is grafted as a side chain of the biodegradable polyester resin (A).
 酸変性ポリエステル樹脂(B)の酸価は、150当量/ton以上であることが好ましい。 The acid value of the acid-modified polyester resin (B) is preferably 150 equivalents / ton or more.
 前記不飽和多価カルボン酸は、マレイン酸、イタコン酸或いはそれらの無水物である事が好ましい。 The unsaturated polyvalent carboxylic acid is preferably maleic acid, itaconic acid or an anhydrate thereof.
 前記生分解性ポリエステル樹脂(A)は脂肪族二塩基酸および脂環族二塩基酸からなる群から選ばれる1種以上、並びに脂肪族グリコールおよび脂環族グリコールからなる群から選ばれる1種以上を構造単位として有するポリエステル樹脂(A1)または脂肪族オキシカルボン酸を構造単位として有するポリエステル樹脂(A2)であることが好ましい。 The biodegradable polyester resin (A) is at least one selected from the group consisting of aliphatic dibasic acid and aliphatic dibasic acid, and one or more selected from the group consisting of aliphatic glycol and aliphatic glycol. It is preferable that it is a polyester resin (A1) having the above as a structural unit or a polyester resin (A2) having an aliphatic oxycarboxylic acid as a structural unit.
 前記ポリエステル樹脂(A1)は、脂肪族二塩基酸、脂環族二塩基酸、脂肪族グリコールおよび脂環族グリコールの合計量として、前記ポリエステル樹脂(A1)を構成する全モノマー量に対し50モル%以上有していることが好ましく、また前記ポリエステル(A2)は、脂肪族オキシカルボン酸が前記ポリエステル樹脂(A2)を構成する全モノマー量に対し40モル%以上有していることが好ましい。 The polyester resin (A1) has a total amount of aliphatic dibasic acid, alicyclic dibasic acid, aliphatic glycol and alicyclic glycol, which is 50 mol with respect to the total amount of monomers constituting the polyester resin (A1). It is preferable that the polyester (A2) has 40 mol% or more of the aliphatic oxycarboxylic acid with respect to the total amount of monomers constituting the polyester resin (A2).
 前記水系分散体は、前記酸変性ポリエステル樹脂(B)および有機アミン化合物を含有していることが好ましい。 The aqueous dispersion preferably contains the acid-modified polyester resin (B) and an organic amine compound.
 前記水系分散体は、実質的に乳化剤を含有しないことが好ましい。 It is preferable that the aqueous dispersion contains substantially no emulsifier.
 前記水系分散体は、コーティング剤、接着剤として好適に使用できる。 The aqueous dispersion can be suitably used as a coating agent and an adhesive.
 本発明の生分解性ポリエステル樹脂の側鎖として不飽和多価カルボン酸がグラフト付加された構造を有する酸変性ポリエステル樹脂は、側鎖にグラフト状に付加された不飽和多価カルボン酸により、主骨格を残したまま乳化剤の存在無しに水系媒体中に微粒子状に安定乳化分散させる事が出来る。また、本来の生分解性樹脂骨格以外の成分の含有量が少なく、生分解性ポリエステル樹脂の優れた生分解機能が保持される。 The acid-modified polyester resin having a structure in which an unsaturated polyvalent carboxylic acid is grafted as a side chain of the biodegradable polyester resin of the present invention is mainly composed of an unsaturated polyvalent carboxylic acid grafted to the side chain. It can be stably emulsified and dispersed in the form of fine particles in an aqueous medium without the presence of an emulsifier while leaving the skeleton. In addition, the content of components other than the original biodegradable resin skeleton is small, and the excellent biodegradable function of the biodegradable polyester resin is maintained.
発明の実施形態Embodiment of the invention
 以下この発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described.
<不飽和多価カルボン酸>
 本発明に用いられる不飽和多価カルボン酸としては、1分子中に少なくとも1個の不飽和結合と2個以上のカルボキシル基を有する化合物であれば特に限定されない。不飽和結合は1分子中に2個以上あっても差し支えない。不飽和多価カルボン酸としては、例えばマレイン酸及びその無水物、イタコン酸及びその無水物、フマル酸及びその無水物、シトラコン酸及びその無水物、メサコン酸及びその無水物、2-ペンテン二酸及びその無水物、3-ドデセニル琥珀酸及びその無水物、オクテニル琥珀酸及びその無水物、ダイマー酸、または植物油に含まれる種々不飽和脂肪酸等が挙げられる。これらは単独で使用することもできるし、2種以上を併用することもできる。反応性と汎用性の面からマレイン酸とイタコン酸及び各々の酸無水物が好ましい。不飽和多価カルボン酸のグラフト付加反応は加熱状態で実施され、生分解性樹脂によっては加熱状態においてカルボン酸が高濃度に共存すると劣化するものがある。そのため無水マレイン酸、無水イタコン酸が最も好ましい。
<Unsaturated polyvalent carboxylic acid>
The unsaturated polyvalent carboxylic acid used in the present invention is not particularly limited as long as it is a compound having at least one unsaturated bond and two or more carboxyl groups in one molecule. There may be two or more unsaturated bonds in one molecule. Examples of unsaturated polyvalent carboxylic acids include maleic acid and its anhydride, itaconic acid and its anhydride, fumaric acid and its anhydride, citraconic acid and its anhydride, mesaconic acid and its anhydride, and 2-pentenylic acid. And its anhydrides, 3-dodecenyl autic acid and its anhydrides, octenyl amber acid and its anhydrides, dimer acid, various unsaturated fatty acids contained in vegetable oils and the like. These can be used alone or in combination of two or more. Maleic acid, itaconic acid and their respective acid anhydrides are preferable from the viewpoint of reactivity and versatility. The graft addition reaction of unsaturated polyvalent carboxylic acid is carried out in a heated state, and some biodegradable resins deteriorate when the carboxylic acid coexists at a high concentration in the heated state. Therefore, maleic anhydride and itaconic anhydride are most preferable.
<生分解性ポリエステル樹脂(A)>
 本発明に用いられる生分解性ポリエステル樹脂(A)は、生分解性を有するポリエステル樹脂であり、微生物の働きにより分解される性質を有するものを言う。生分解性ポリエステル樹脂の由来としては微生物由来のもの、天然物由来のもの、化学合成によるものが挙げられ、ポリ乳酸、ポリヒドロキシアルカン酸、ポリグリコール酸、脂肪族ポリエステル、芳香族変性脂肪族ポリエステルなどが例示される。
 本発明に用いられる生分解性ポリエステル樹脂(A)は生分解性を有していれば特に限定されるものでは無く、例えば酸成分として脂肪族二塩基酸および脂環族二塩基酸からなる群から選ばれる1種以上、並びにグリコール成分として脂肪族グリコールおよび脂環族系グリコールからなる群から選ばれる1種以上を構造単位として有するポリエステル樹脂(A1)、または脂肪族オキシカルボン酸を構造単位として有するポリエステル樹脂(A2)が挙げられる。
<Biodegradable polyester resin (A)>
The biodegradable polyester resin (A) used in the present invention is a biodegradable polyester resin and has the property of being decomposed by the action of microorganisms. Examples of the origin of the biodegradable polyester resin include those derived from microorganisms, those derived from natural products, and those derived from chemical synthesis, including polylactic acid, polyhydroxyalkanoic acid, polyglycolic acid, aliphatic polyesters, and aromatic-modified aliphatic polyesters. Etc. are exemplified.
The biodegradable polyester resin (A) used in the present invention is not particularly limited as long as it has biodegradability, and is, for example, a group consisting of an aliphatic dibasic acid and an alicyclic dibasic acid as an acid component. As a structural unit, a polyester resin (A1) having one or more selected from the above and one or more selected from the group consisting of aliphatic glycols and aliphatic glycols as glycol components as structural units, or aliphatic oxycarboxylic acids. Examples thereof include a polyester resin (A2) having a resin.
<ポリエステル樹脂(A1)>
 ポリエステル樹脂(A1)を構成する脂肪族二塩基酸としては琥珀酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等の直鎖型脂肪族二塩基酸、2-エチルアジピン酸、3-エチルアジピン酸、2-イソプロピルアジピン酸、2,5-ジメチルアジピン酸、2-メチルスベリン酸、3-メチルスベリン酸、4-メチルスベリン酸等の分岐型脂肪族二塩基酸が挙げられるが、これらの内、汎用性からは琥珀酸、アジピン酸、セバシン酸が好ましく、これらの内バイオマス原料の観点からは琥珀酸とセバシン酸が更に好ましい。脂環族二塩基酸としては1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、ヘキサヒドロ無水フタル酸、4-メチルヘキサヒドロ無水フタル酸、4-シクロヘキセン-1,2-ジカルボン酸等の脂環式二塩基酸原料が挙げられるが、これらの内1,4-シクロヘキサンジカルボン酸が汎用性の面で好ましい。
<Polyester resin (A1)>
Examples of the aliphatic dibasic acid constituting the polyester resin (A1) include linear aliphatic dibasic acids such as amber acid, glutaric acid, adipic acid, pimelli acid, suberic acid, azelaic acid, sebacic acid and dodecandicarboxylic acid. Branched aliphatic dizygous acid such as 2-ethyladipic acid, 3-ethyladipic acid, 2-isopropyladipic acid, 2,5-dimethyladipic acid, 2-methylsveric acid, 3-methylsveric acid, 4-methylsveric acid, etc. Although basic acids can be mentioned, among these, amber acid, adipic acid and sebacic acid are preferable from the viewpoint of versatility, and amber acid and sebacic acid are more preferable from the viewpoint of raw materials for biomass. As the alicyclic dibasic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, hexahydrochloride anhydride, 4-methylhexahydrohydride phthalic acid, 4-cyclohexene- Examples thereof include alicyclic dibasic acid raw materials such as 1,2-dicarboxylic acid, and among these, 1,4-cyclohexanedicarboxylic acid is preferable in terms of versatility.
 また、脂肪族グリコールとしてはエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、2-n-ブチル-2-エチル-1,3-プロピレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、2,3-ブチレングリコール、1,4-ブチレングリコール、2-メチル-1,3-プロピレングリコール、ネオペンチルグリコール、2,2-ジメチル-3-ヒドロキシプロピル-2’,2’-ジメチル-3-ヒドロキシプロパネート、2,2-ジエチル-1,3-プロピレングリコール、1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,2-ジエチル-1,5-ペンタンジオール、1,3-ジエチル-1,5-ペンタンジオール、1,4-ジエチル-1,5-ペンタンジオール、2,3-ジエチル-1,5-ペンタンジオール、2-エチル-4-イソプロピル-1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、3-エチル-1,5-ペンタンジオール、3-プロピル-1,5-ペンタンジオール、3-オクチル-1,5-ペンタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、3-オクチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2-エチル-1,3-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール等の脂肪族ジオール等が挙げられる。これらの内、汎用性の面からはエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,4-ブチレングリコール、1,3-ブチレングリコール、ネオペンチルグリコール、1,6-ヘキサンジオールが好ましく、これらの内バイオマス原料の観点から、エチレングリコール、1,3-プロピレングリコールが更に好ましい。 As the aliphatic glycol, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 2-n-butyl-2-ethyl-1,3-propylene glycol, 1,2-butylene glycol, 1, 3-butylene glycol, 2,3-butylene glycol, 1,4-butylene glycol, 2-methyl-1,3-propylene glycol, neopentyl glycol, 2,2-dimethyl-3-hydroxypropyl-2', 2' -Didimethyl-3-hydroxypropanol, 2,2-diethyl-1,3-propylene glycol, 1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,2-diethyl-1, 5-Pentanediol, 1,3-diethyl-1,5-pentanediol, 1,4-diethyl-1,5-pentanediol, 2,3-diethyl-1,5-pentanediol, 2-ethyl-4- Isopropyl-1,5-pentanediol, 3-methyl-1,5-pentanediol, 3-ethyl-1,5-pentanediol, 3-propyl-1,5-pentanediol, 3-octyl-1,5- Pentandiol, 2,2,4-trimethyl-1,3-pentanediol, 3-octyl-1,5-pentanediol, 1,6-hexanediol, 2-ethyl-1,3-hexanediol, 1,7 Examples thereof include aliphatic diols such as -heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol and 1,12-dodecanediol. Of these, from the aspect of versatility, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butylene glycol, 1,3-butylene glycol, neopentyl glycol, 1,6-hexane Diol is preferable, and ethylene glycol and 1,3-propylene glycol are more preferable from the viewpoint of these internal biomass raw materials.
 脂環族グリコールとしては1,3-ビス(ヒドロキシメチル)シクロヘキサン、1,4-ビス(ヒドロキシメチル)シクロヘキサン、1,4-ビス(ヒドロキシエチル)シクロヘキサン、1,4-ビス(ヒドロキシプロピル)シクロヘキサン、1,4-ビス(ヒドロキシメトキシ)シクロヘキサン、1,4-ビス(ヒドロキシエトキシ)シクロヘキサン、2,2-ビス(4-ヒドロキシメトキシシクロヘキシル)プロパン、2,2-ビス(4-ヒドロキシエトキシシクロヘキシル)プロパン、ビス(4-ヒドロキシシクロヘキシル)メタン、2,2-ビス(4-ヒドロキシシクロヘキシル)プロパン、3(4),8(9)-トリシクロ[5.2.1.02,6]デカンジメタノール等の脂環族ジオール原料が挙げられるがこれらの内、1,4-ビス(ヒドロキシメチル)シクロヘキサンが汎用性の面で好ましい。 As the alicyclic glycol, 1,3-bis (hydroxymethyl) cyclohexane, 1,4-bis (hydroxymethyl) cyclohexane, 1,4-bis (hydroxyethyl) cyclohexane, 1,4-bis (hydroxypropyl) cyclohexane, 1,4-bis (hydroxymethoxy) cyclohexane, 1,4-bis (hydroxyethoxy) cyclohexane, 2,2-bis (4-hydroxymethoxycyclohexyl) propane, 2,2-bis (4-hydroxyethoxycyclohexyl) propane, Bis (4-hydroxycyclohexyl) methane, 2,2-bis (4-hydroxycyclohexyl) propane, 3 (4), 8 (9) -tricyclo [5.2.1.0 2,6 ] decandimethanol, etc. Examples thereof include alicyclic diol raw materials, and among these, 1,4-bis (hydroxymethyl) cyclohexane is preferable in terms of versatility.
 ポリエステル樹脂(A1)を構成する脂肪族二塩基酸、脂環族二塩基酸、脂肪族グリコールおよび脂環族グリコールの含有量は、ポリエステル樹脂(A1)を構成する全モノマー量に対し、脂肪族二塩基酸、脂環族二塩基酸、脂肪族グリコールおよび脂環族グリコールの合計量で50モル%以上であることが生分解性の観点から好ましい。より好ましくは70モル%以上、さらに好ましくは80%以上、もっとも好ましくは90モル%以上であり、100モル%であっても差し支えない。 The contents of the aliphatic dibasic acid, the alicyclic dibasic acid, the aliphatic glycol and the alicyclic glycol constituting the polyester resin (A1) are aliphatic with respect to the total amount of the monomers constituting the polyester resin (A1). From the viewpoint of biodegradability, the total amount of the dibasic acid, the aliphatic dibasic acid, the aliphatic glycol and the alicyclic glycol is preferably 50 mol% or more. It is more preferably 70 mol% or more, further preferably 80% or more, most preferably 90 mol% or more, and may be 100 mol% or more.
 前記ポリエステル樹脂(A1)には前記脂肪族、脂環族二塩基酸及び脂肪族、脂環族グリコール以外に、本発明の酸変性ポリエステル樹脂(B)の物性向上の目的で芳香族二塩基酸や、芳香環を有するグリコール成分を生分解性が損なわれない範囲で共重合してもよい。芳香族二塩基酸としてはテレフタル酸、イソフタル酸、オルソフタル酸、2,6-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、およびそれらの無水物等の芳香族系二塩基酸が挙げられるが、汎用性と重合反応性の面からテレフタル酸、イソフタル酸、オルソフタル酸、2,6-ナフタレンジカルボン酸が好ましい。また、芳香環を有するグリコール成分としてはビスフェノールAへのポリアルキレンオキサイド付加物が挙げられる。これら芳香族二塩基酸や芳香環を有するグリコール成分の共重合割合は生分解性の観点から、各々全二塩基酸成分、全グリコール成分を100モル%としたとき、50モル%未満が好ましく、45モル%未満がより好ましい。 In addition to the aliphatic and alicyclic dibasic acids and aliphatic and alicyclic glycols, the polyester resin (A1) contains an aromatic dibasic acid for the purpose of improving the physical properties of the acid-modified polyester resin (B) of the present invention. Alternatively, the glycol component having an aromatic ring may be copolymerized as long as the biodegradability is not impaired. Examples of the aromatic dibasic acid include terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, and aromatic dibasic acids such as anhydrides thereof. From the viewpoint of versatility and polymerization reactivity, terephthalic acid, isophthalic acid, orthophthalic acid, and 2,6-naphthalenedicarboxylic acid are preferable. In addition, examples of the glycol component having an aromatic ring include a polyalkylene oxide adduct to bisphenol A. From the viewpoint of biodegradability, the copolymerization ratio of these aromatic dibasic acids and glycol components having an aromatic ring is preferably less than 50 mol% when the total dibasic acid component and the total glycol component are 100 mol%, respectively. More preferably less than 45 mol%.
 上記酸成分、グリコール成分以外にも本発明のポリエステル樹脂(A1)にはトリメチロールプロパンやトリメリット酸、無水トリメリット酸等の多官能化合物をポリエステル樹脂(A1)がゲル化しない範囲で共重合させ、より高分子量化し易くすることも可能である。前記多官能化合物を共重合させる場合の共重合量は、全共重合成分を100モル%としたとき、0.1モル%以上であることが好ましく、より好ましくは0.2モル%以上である。上限は2モル%以下であることが好ましく、より好ましくは1モル%以下である。また、本発明に用いられるポリエステル樹脂(A1)には重合反応終了後に分子末端にトリメリット酸等の酸化合物の付加変性反応(後付加)を施し、酸価を付加させる事が出来る。前記酸化合物を分子末端に酸付加させる事で、不飽和多価カルボン酸付加し、酸変性ポリエステル樹脂(B)とした後の水系分散化をより容易にし、生成した水系分散体の保存安定性を向上させる事ができる。前記酸化合物を共重合する場合の共重合量は、全共重合成分を100モル%としたとき、0.1モル%以上であることが好ましく、より好ましくは0.2モル%以上である。上限は2モル%以下であることが好ましく、より好ましくは1モル%以下である。 In addition to the above acid component and glycol component, the polyester resin (A1) of the present invention is copolymerized with a polyfunctional compound such as trimethylolpropane, trimellitic acid, or trimellitic anhydride as long as the polyester resin (A1) does not gel. It is also possible to make it easier to increase the molecular weight. When the polyfunctional compound is copolymerized, the copolymerization amount is preferably 0.1 mol% or more, more preferably 0.2 mol% or more, when the total copolymerization component is 100 mol%. .. The upper limit is preferably 2 mol% or less, more preferably 1 mol% or less. Further, the polyester resin (A1) used in the present invention can be subjected to an addition modification reaction (post-addition) of an acid compound such as trimellitic acid at the molecular end after the completion of the polymerization reaction to add an acid value. By adding the acid compound to the end of the molecule, unsaturated polyvalent carboxylic acid is added to facilitate water-based dispersion after the acid-modified polyester resin (B) is obtained, and the storage stability of the produced aqueous-based dispersion is stable. Can be improved. When the total copolymerization component is 100 mol%, the copolymerization amount in the case of copolymerizing the acid compound is preferably 0.1 mol% or more, more preferably 0.2 mol% or more. The upper limit is preferably 2 mol% or less, more preferably 1 mol% or less.
 更にポリエステル樹脂(A1)には任意の共重合割合でラクトン系モノマーをランダム、或いはブロック状に共重合させる事ができる。これらラクトン系モノマーとはα-アセトラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン、ε-カプロラクトン等が挙げられるが、これらのうちε-カプロラクトンが汎用性と共重合性の面から好ましい。 Further, the polyester resin (A1) can be copolymerized with a lactone-based monomer at an arbitrary copolymerization ratio in a random or block shape. Examples of these lactone-based monomers include α-acetolactone, β-propiolactone, γ-butyrolactone, δ-valerolactone, and ε-caprolactone. Of these, ε-caprolactone is versatile and copolymerizable. Is preferable.
 ポリエステル樹脂(A1)の重合は、従来良く知られた方法によって合成することができる。その一例を挙げると、あらかじめ前記酸成分と前記酸成分に対して過剰量の前記グリコール成分とでエステル化反応を行ってオリゴマーを調製しておき、その後、高温高真空下に前記グリコール成分を除く事で重合反応が完結される。酸成分をアルキルエステル化合物とし、エステル交換反応としてもよい。重合触媒としてはチタン系、亜鉛系、アンチモン系、マグネシウム系、ゲルマニウム系、アルミニウム系等一般に使用される化合物を使用できる。
 次いで前記不飽和多価カルボン酸成分の変性付加反応が施されることが好ましい。このような重合および変性方法を行うことにより、ポリマー末端以外の側鎖にも官能基がグラフト付加された変性ポリエステル樹脂を得ることができる。
The polymerization of the polyester resin (A1) can be synthesized by a conventionally well-known method. As an example, an oligomer is prepared by subjecting an esterification reaction with the acid component and an excess amount of the glycol component to the acid component in advance, and then the glycol component is removed under high temperature and high vacuum. This completes the polymerization reaction. The acid component may be an alkyl ester compound and a transesterification reaction may be carried out. As the polymerization catalyst, commonly used compounds such as titanium-based, zinc-based, antimony-based, magnesium-based, germanium-based, and aluminum-based compounds can be used.
Next, it is preferable to carry out a modification addition reaction of the unsaturated polyvalent carboxylic acid component. By performing such a polymerization and modification method, a modified polyester resin having a functional group grafted on a side chain other than the polymer terminal can be obtained.
 ポリエステル樹脂(A1)の酸価は200当量/ton以下が好ましく、より好ましくは150当量/ton以下であり、さらに好ましくは100当量/ton以下である。200当量/tonを超える付加量(酸価)を得るためにはポリエステル樹脂(A1)の末端基数を増やすために分子量を低くする必要があり、結果として得られる樹脂の凝集力が不足してしまうことがある。或いは3官能以上の分岐成分を導入する必要性からゲル化の危険性が増えることになる。一方3当量/ton以上であることが好ましく、より好ましくは10当量/ton以上であり、さらに好ましくは30当量/ton以上であり、特に好ましくは50当量/ton以上である。前記範囲内とすることで脆さがなく、塗膜物性や接着性に優れ、保存安定性にも優れた水系分散体を得ることができる。 The acid value of the polyester resin (A1) is preferably 200 equivalents / ton or less, more preferably 150 equivalents / ton or less, and further preferably 100 equivalents / ton or less. In order to obtain an additional amount (acid value) exceeding 200 equivalents / ton, it is necessary to lower the molecular weight in order to increase the number of terminal groups of the polyester resin (A1), and the cohesive force of the resulting resin is insufficient. Sometimes. Alternatively, the risk of gelation increases due to the need to introduce a branching component having three or more functionalities. On the other hand, it is preferably 3 equivalents / ton or more, more preferably 10 equivalents / ton or more, still more preferably 30 equivalents / ton or more, and particularly preferably 50 equivalents / ton or more. Within the above range, an aqueous dispersion having no brittleness, excellent physical characteristics and adhesiveness of the coating film, and excellent storage stability can be obtained.
 前記ポリエステル樹脂(A1)の数平均分子量はポリスチレン標準サンプルを使用したGPC分析で、8,000~50,000が好ましく、より好ましくは15,000~30,000である。8,000以上とすることでポリエステル樹脂(A1)の凝集力が増し、良好な塗膜が得られる。一方、50,000以下とすることで溶融状態や溶液状態での粘度が高くなりすぎることがなく、不飽和多価カルボン酸の変性付加反応が容易となる。 The number average molecular weight of the polyester resin (A1) is preferably 8,000 to 50,000, more preferably 15,000 to 30,000 in GPC analysis using a polystyrene standard sample. When the content is 8,000 or more, the cohesive force of the polyester resin (A1) is increased, and a good coating film can be obtained. On the other hand, when it is set to 50,000 or less, the viscosity in the molten state or the solution state does not become too high, and the modification addition reaction of the unsaturated polyvalent carboxylic acid becomes easy.
 前記ポリエステル樹脂(A1)のガラス転移温度は-30℃以上であることが好ましく、より好ましくは-20℃以上であり、さらに好ましくは-10℃以上である。また、80℃以下であることが好ましく、より好ましくは70℃以下であり、さらに好ましくは60℃以下である。また、前記ポリエステル樹脂(A1)が結晶性を有する場合、融点は200℃以下が好ましく、より好ましくは180℃以下、更に好ましくは160℃以下である。前記範囲内とすることで不飽和多価カルボン酸の変性付加反応が容易となり、生分解性に優れ、保存安定性に優れた水系分散体を得易くなる。 The glass transition temperature of the polyester resin (A1) is preferably −30 ° C. or higher, more preferably −20 ° C. or higher, and even more preferably −10 ° C. or higher. Further, it is preferably 80 ° C. or lower, more preferably 70 ° C. or lower, and further preferably 60 ° C. or lower. When the polyester resin (A1) has crystallinity, the melting point is preferably 200 ° C. or lower, more preferably 180 ° C. or lower, and further preferably 160 ° C. or lower. Within the above range, the modification and addition reaction of the unsaturated polyvalent carboxylic acid becomes easy, and it becomes easy to obtain an aqueous dispersion having excellent biodegradability and storage stability.
<ポリエステル樹脂(A2)>
 本発明に用いられるポリエステル樹脂(A)には前記ポリエステル樹脂(A1)の他、脂肪族オキシカルボン酸類が単独或いは共重合されたポリエステル樹脂(A2)も挙げられる。脂肪族オキシカルボン酸としてはグリコール酸、乳酸、グリセリン酸、リンゴ酸、酒石酸の他、ポリヒドロキシアルカン酸の原料モノマーとなる一連の3-ヒドロキシアルカン酸類が挙げられる。それら3-ヒドロキシアルカン酸とは、3-ヒドロキシブタン酸、3-ヒドロキシペンタン酸、3-ヒドロキシヘキサン酸、3-ヒドロキシヘプタン酸、3-ヒドロキシオクタン酸、3-ヒドロキシノナン酸、3-ヒドロキシデカン酸、3-ヒドロキシウンデカン酸、3-ヒドロキシドデカン酸、3-ヒドロキシトリデカン酸、3-ヒドロキシテトラデカン酸、3-ヒドロキシペンタデカン酸、3-ヒドロキシヘキサデカン酸等が挙げられ、本発明に用いられるポリエステル樹脂(A2)にはこれら各々原料モノマー類を単独或いは複数個組み合わせて使用しても良い。これら単量体のうち、乳酸、3-ヒドロキシブタン酸、3-ヒドロキシヘキサン酸が汎用性の面から好ましい。また乳酸は重合反応性の観点から乳酸モノマーが脱水2量化したラクチド化合物を用いてもよい。これらオキシカルボン酸類の重合反応触媒としては前記ポリエステル(A1)と同様の金属触媒を用いる事が出来る他、錫系、コバルト系、マンガン系、鉄系触媒を使用する事も出来る。
<Polyester resin (A2)>
Examples of the polyester resin (A) used in the present invention include the polyester resin (A1) and the polyester resin (A2) in which aliphatic oxycarboxylic acids are used alone or copolymerized. Examples of the aliphatic oxycarboxylic acid include glycolic acid, lactic acid, glyceric acid, malic acid, tartaric acid, and a series of 3-hydroxyalkanoic acids that are raw materials for polyhydroxyalkanoic acid. These 3-hydroxyalkanoic acids are 3-hydroxybutanoic acid, 3-hydroxypentanoic acid, 3-hydroxyhexanoic acid, 3-hydroxyheptanoic acid, 3-hydroxyoctanoic acid, 3-hydroxynonanoic acid, and 3-hydroxydecanoic acid. , 3-Hydroxyundecanoic acid, 3-hydroxydodecanoic acid, 3-hydroxytridecanoic acid, 3-hydroxytetradecanoic acid, 3-hydroxypentadecylic acid, 3-hydroxyhexadecanoic acid and the like, and the polyester resin used in the present invention ( In A2), each of these raw material monomers may be used alone or in combination of two or more. Of these monomers, lactic acid, 3-hydroxybutanoic acid, and 3-hydroxycaproic acid are preferable from the viewpoint of versatility. Further, as lactic acid, a lactide compound obtained by dehydrating and dimerizing a lactic acid monomer may be used from the viewpoint of polymerization reactivity. As the polymerization reaction catalyst of these oxycarboxylic acids, a metal catalyst similar to that of the polyester (A1) can be used, and tin-based, cobalt-based, manganese-based, and iron-based catalysts can also be used.
 ポリエステル樹脂(A2)を構成する脂肪族オキシカルボン酸の含有量は、ポリエステル樹脂(A2)を構成する全モノマー量に対し、40モル%以上であることが生分解性の観点から好ましい。より好ましくは60モル%以上、さらに好ましくは80%以上、もっとも好ましくは90モル%以上であり、100モル%であっても差し支えない。 The content of the aliphatic oxycarboxylic acid constituting the polyester resin (A2) is preferably 40 mol% or more with respect to the total amount of the monomers constituting the polyester resin (A2) from the viewpoint of biodegradability. It is more preferably 60 mol% or more, further preferably 80% or more, most preferably 90 mol% or more, and may be 100 mol% or more.
 ポリエステル樹脂(A2)の酸価、数平均分子量、ガラス転移温度、融点の好適な範囲は、ポリエステル樹脂(A1)と同様である。また、脂肪族オキシカルボン酸以外に芳香族二塩基酸や芳香環を有するグリコール成分、トリメチロールプロパンやトリメリット酸、無水トリメリット酸等の多官能化合物を用いてもよい点やその共重合量についても、ポリエステル樹脂(A1)と同様である。 The preferred ranges of acid value, number average molecular weight, glass transition temperature, and melting point of the polyester resin (A2) are the same as those of the polyester resin (A1). Further, in addition to the aliphatic oxycarboxylic acid, a polyfunctional compound such as an aromatic dibasic acid, a glycol component having an aromatic ring, trimellitic propane, trimellitic acid, or trimellitic anhydride may be used, and the amount of copolymerization thereof. Is the same as that of the polyester resin (A1).
<酸変性ポリエステル樹脂(B)>
 酸変性ポリエステル樹脂(B)は、生分解性ポリエステル樹脂(A)の側鎖として不飽和多価カルボン酸がグラフト付加した構造を有する樹脂である。
<Acid-modified polyester resin (B)>
The acid-modified polyester resin (B) is a resin having a structure in which an unsaturated polyvalent carboxylic acid is grafted as a side chain of the biodegradable polyester resin (A).
 不飽和多価カルボン酸の付加反応は有機溶剤中で反応させる溶液反応、或いは2軸押出し機を使用した溶融反応により施す事が出来る。このうち、溶液反応では反応後の生成物をメタノール等のアルコール、水、或いはそれらの混合液を用いて樹脂成分を再沈殿処理する事で未反応の不飽和多価カルボン酸を除去する事も出来る。 The addition reaction of the unsaturated polyvalent carboxylic acid can be carried out by a solution reaction in which the reaction is carried out in an organic solvent or a melting reaction using a twin-screw extruder. Of these, in the solution reaction, the unreacted unsaturated polyvalent carboxylic acid may be removed by reprecipitating the resin component of the product after the reaction using alcohol such as methanol, water, or a mixture thereof. I can.
 前記不飽和多価カルボン酸付加反応の反応触媒としては種々のラジカル開始剤触媒を用いる事が出来るが、特に有機過酸化物触媒が好ましい。例としては、ジ-tert-ブチルパーオキシフタレート、tert-ブチルヒドロパーオキサイド、ジクミルパーオキサイド、tert-ブチルクミルパーオキサイド、tert-ブチルパーオキシイソプロピルモノカルボネート、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、ベンゾイルパーオキサイド、tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシ-2-エチルヘキサノエート、tert-ブチルパーオキシピバレート、メチルエチルケトンパーオキサイド、ジ-tert-ブチルパーオキサイド、ラウロイルパーオキサイド等の過酸化物;アゾビスイソブチロニトリル、アゾビスイソプロピオニトリル等のアゾニトリル類等が挙げられるが、これらのうちジ-tert-ブチルパーオキサイド、tert-ブチルクミルパーオキサイド、tert-ブチルパーオキシイソプロピルモノカルボネート、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサンが付加反応効率、反応開始温度、取り扱い易さの観点から好ましい。 Various radical initiator catalysts can be used as the reaction catalyst for the unsaturated polyvalent carboxylic acid addition reaction, but an organic peroxide catalyst is particularly preferable. Examples include di-tert-butylperoxyphthalate, tert-butylhydroperoxide, dicumyl peroxide, tert-butylcumyl peroxide, tert-butylperoxyisopropyl monocarbonate, 2,5-dimethyl-2, 5-Di (tert-butylperoxy) hexane, benzoyl peroxide, tert-butylperoxybenzoate, tert-butylperoxy-2-ethylhexanoate, tert-butylperoxypivalate, methylethylketone peroxide, di- Peroxides such as tert-butyl peroxide and lauroyl peroxide; azonitriles such as azobisisobutyronitrile and azobisisopropionitrile are mentioned, and among these, di-tert-butyl peroxide and tert- Butylcumyl peroxide, tert-butylperoxyisopropyl monocarbonate, and 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane are preferable from the viewpoints of addition reaction efficiency, reaction start temperature, and ease of handling. ..
 本発明の酸変性ポリエステル樹脂(B)の酸価は150当量/ton以上が好ましく、より好ましくは200当量/ton以上、更に好ましくは300当量/ton以上である。酸価が150当量/ton以上であることで、保存安定性に優れた微粒子状の水系分散体を形成しやすくなる。 The acid value of the acid-modified polyester resin (B) of the present invention is preferably 150 equivalents / ton or more, more preferably 200 equivalents / ton or more, and further preferably 300 equivalents / ton or more. When the acid value is 150 equivalents / ton or more, it becomes easy to form a fine particle-like aqueous dispersion having excellent storage stability.
<水系分散体>
 本発明の水系分散体は、酸変性ポリエステル樹脂(B)と水、必要に応じ塩基性物質を含有する分散体である。水系分散体中の酸変性ポリエステル樹脂(B)の樹脂濃度としては、10質量%以上であることが好ましく、より好ましくは20質量%以上である。また、50質量%以下であることが好ましく、より好ましくは40質量%以下である。10質量%未満では乾燥塗膜を作製する際の熱エネルギーの消費が大きく、50質量%を超えると分散体の粘度が高くなり、取り扱い難くなる。
<Aqueous dispersion>
The aqueous dispersion of the present invention is a dispersion containing an acid-modified polyester resin (B), water, and if necessary, a basic substance. The resin concentration of the acid-modified polyester resin (B) in the aqueous dispersion is preferably 10% by mass or more, more preferably 20% by mass or more. Further, it is preferably 50% by mass or less, more preferably 40% by mass or less. If it is less than 10% by mass, the consumption of heat energy when producing a dry coating film is large, and if it exceeds 50% by mass, the viscosity of the dispersion becomes high and it becomes difficult to handle.
 塩基性物質は、特に限定されないが、揮発性の塩基性物質が好ましく、中でもアンモニアや有機アミン類が好ましい。有機アミン類としては、特に限定されないが、モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、モノ-n-プロピルアミン、ジメチル-n-プロピルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N-メチルエタノールアミン、N-アミノエチルエタノールアミン、N-メチルジエタノールアミン、モノイソプロパノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、N,N-ジメチルエタノールアミン、およびN,N-ジメチルプロパノールアミン等が挙げられ、特に好ましいのはトリエチルアミン、N,N-ジメチルエタノールアミンである。これらの揮発性アミン類を単独でまたは2種以上を併用して使用できる。 The basic substance is not particularly limited, but a volatile basic substance is preferable, and ammonia and organic amines are particularly preferable. The organic amines are not particularly limited, but are monomethylamine, dimethylamine, trimethylamine, monoethylamine, mono-n-propylamine, dimethyl-n-propylamine, monoethanolamine, diethanolamine, triethanolamine, N-methylethanol. Amine, N-aminoethylethanolamine, N-methyldiethanolamine, monoisopropanolamine, diisopropanolamine, triisopropanolamine, N, N-dimethylethanolamine, N, N-dimethylpropanolamine and the like are particularly preferable. Is triethylamine, N, N-dimethylethanolamine. These volatile amines can be used alone or in combination of two or more.
 塩基性物質は、本発明の酸変性ポリエステル樹脂(B)100質量部に対して、0.5質量部以上であることが好ましく、1質量部以上であることがより好ましく、2質量部以上であることがさらに好ましく、3質量部以上であることが特に好ましい。また、10質量部以下であることが好ましく、9質量部以下であることがより好ましく、8質量部以下であることがさらに好ましく、7質量部以下であることが特に好ましい。前記範囲内とすることで、分散粒子の粒子径が大きくなり過ぎないため、保存安定性が良好となる。さらに耐水性が良好な塗膜が得られる。 The basic substance is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and 2 parts by mass or more with respect to 100 parts by mass of the acid-modified polyester resin (B) of the present invention. It is more preferably present, and particularly preferably 3 parts by mass or more. Further, it is preferably 10 parts by mass or less, more preferably 9 parts by mass or less, further preferably 8 parts by mass or less, and particularly preferably 7 parts by mass or less. Within the above range, the particle size of the dispersed particles does not become too large, so that the storage stability is good. Further, a coating film having good water resistance can be obtained.
 本発明の水系分散体粒子の平均粒子径は500nm以下であることが好ましく、より好ましくは400nm以下であり、さらに好ましくは300nm以下であり、特に好ましくは250nm以下である。下限は特に限定されないが、工業的には10nm以上であれば問題ない。前記範囲内であれば、水分散体の保存安定性に優れ、塗料、インキ、コーティング剤、接着剤等に使用した際の取り扱い性が良好である。 The average particle size of the aqueous dispersion particles of the present invention is preferably 500 nm or less, more preferably 400 nm or less, further preferably 300 nm or less, and particularly preferably 250 nm or less. The lower limit is not particularly limited, but industrially, there is no problem as long as it is 10 nm or more. Within the above range, the water dispersion is excellent in storage stability and easy to handle when used in paints, inks, coating agents, adhesives and the like.
 水系分散体は、塩基性であることが好ましい。水系分散体のpHは6以上であることが好ましく、より好ましくは6.5以上であり、さらに好ましくは7以上であり、特に好ましくは7.5以上である。上限は特に限定されないが、10以下であり、より好ましくは9.5以下である。前記範囲内であれば、水系分散体の保存安定性が良好となる。 The aqueous dispersion is preferably basic. The pH of the aqueous dispersion is preferably 6 or more, more preferably 6.5 or more, still more preferably 7 or more, and particularly preferably 7.5 or more. The upper limit is not particularly limited, but is 10 or less, more preferably 9.5 or less. Within the above range, the storage stability of the aqueous dispersion is good.
 水系分散体の粘度は、5mPa・s以上であることが好ましく、より好ましくは10mPa・s以上である。また50mPa・s以下であることが好ましく、より好ましくは40mPa・s以下である。前記範囲内であれば、水分散体の保存安定性に優れ、塗料、インキ、コーティング剤、接着剤等に使用した際の取り扱い性が良好である。 The viscosity of the aqueous dispersion is preferably 5 mPa · s or more, more preferably 10 mPa · s or more. Further, it is preferably 50 mPa · s or less, and more preferably 40 mPa · s or less. Within the above range, the water dispersion is excellent in storage stability and easy to handle when used in paints, inks, coating agents, adhesives and the like.
 本発明の水系分散体は、実質的に乳化剤を含有しないことが好ましい。実質的に乳化剤を含有しないとは、水系分散体中、乳化剤が5質量%以下であることであり、好ましくは1質量%以下であり、さらに好ましくは0.5質量%以下であり、特に好ましくは0.1質量%以下であり、0質量%であっても差し支えない。実質的に乳化剤を含有しないことで塗膜の耐水性が良好となる。 It is preferable that the aqueous dispersion of the present invention contains substantially no emulsifier. The term "substantially free of emulsifier" means that the emulsifier is 5% by mass or less, preferably 1% by mass or less, more preferably 0.5% by mass or less, and particularly preferably. Is 0.1% by mass or less, and may be 0% by mass. The water resistance of the coating film is improved by substantially containing no emulsifier.
 本発明の水系分散体の製造方法としては特に限定されないが、メチルエチルケトン(MEK)等の水溶性ケトン系溶剤及び水、またはテトラヒドロフラン(THF)、1,4-ジオキサン、1,3-ジオキサン、1,3-ジオキソラン等の水溶性エーテル系溶剤及び水に酸変性ポリエステル樹脂(B)を加熱溶解或いは膨潤させ、これに塩基性物質を添加し、冷却後ケトン系溶剤またはエーテル系溶剤を除去することで実質的に乳化剤を使用する事なく、実質的に有機溶剤を含有しない安定な水分散体を得る事が出来る。「実質的に有機溶剤を含有しない」とは水分散体中の有機溶剤含有量が1質量%以下であることをいう。 The method for producing the aqueous dispersion of the present invention is not particularly limited, but is limited to a water-soluble ketone solvent such as methyl ethyl ketone (MEK) and water, or tetrahydrofuran (THF), 1,4-dioxane, 1,3-dioxane, 1, The acid-modified polyester resin (B) is heat-dissolved or swollen in a water-soluble ether solvent such as 3-dioxolane and water, a basic substance is added thereto, and the ketone solvent or the ether solvent is removed after cooling. It is possible to obtain a stable aqueous dispersion that does not contain an organic solvent substantially without using an emulsifier. "Substantially free of organic solvent" means that the content of organic solvent in the aqueous dispersion is 1% by mass or less.
 本発明の水系分散体には、基材に塗工した際の造膜特性や、水系分散体の保存安定性向上を目的として少量の水溶性有機溶剤を含有させる事が出来る。前記水溶性有機溶剤としては種々アルキレングリコールのモノアルキルエーテル類が挙げられる。それらの内、エチレングリコールモノブチルエーテルやプロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテルが造膜特性と乾燥性の観点から好ましい。これら水溶性有機溶剤の含有量は水系分散体中、1質量%以上であることが好ましく、より好ましくは5質量%以上であり、20質量%以下であることが好ましく、より好ましくは15質量%以下である。 The aqueous dispersion of the present invention can contain a small amount of a water-soluble organic solvent for the purpose of improving the film-forming characteristics when applied to the substrate and the storage stability of the aqueous dispersion. Examples of the water-soluble organic solvent include monoalkyl ethers of various alkylene glycols. Among them, ethylene glycol monobutyl ether, propylene glycol monopropyl ether, and propylene glycol monobutyl ether are preferable from the viewpoint of film forming properties and drying property. The content of these water-soluble organic solvents is preferably 1% by mass or more, more preferably 5% by mass or more, preferably 20% by mass or less, and more preferably 15% by mass in the aqueous dispersion. It is as follows.
 本発明の水系分散体には生分解性を損なわない範囲で塗膜強度の向上、耐溶剤性、耐熱性付与、基材接着強度の向上等の目的で、種々硬化剤や硬化反応触媒を配合し、コーティング剤、または接着剤として使用する事が出来る。硬化剤としては多官能エポキシ化合物、多官能エポキシ化合物とオキサゾリン化合物及び/又は無水酸化合物を配合したもの、または多官能イソシアネート化合物が挙げられる。硬化反応触媒としては、多官能エポキシ化合物に対しては有機アミン系、有機リン系等の一般的な触媒が効果的である。多官能イソシアネート化合物に対しては一般的な有機錫系、有機ビスマス系、有機アミン系等が効果的であるが、無触媒でも硬化反応は進行する。 The aqueous dispersion of the present invention contains various curing agents and curing reaction catalysts for the purpose of improving coating strength, solvent resistance, heat resistance, and base material adhesive strength as long as the biodegradability is not impaired. However, it can be used as a coating agent or an adhesive. Examples of the curing agent include a polyfunctional epoxy compound, a compound of a polyfunctional epoxy compound and an oxazoline compound and / or an anhydride compound, or a polyfunctional isocyanate compound. As the curing reaction catalyst, a general catalyst such as an organic amine type or an organic phosphorus type is effective for the polyfunctional epoxy compound. For polyfunctional isocyanate compounds, general organic tin-based, organic bismuth-based, organic amine-based, etc. are effective, but the curing reaction proceeds even without a catalyst.
 多官能エポキシ樹脂としては、1分子中に2個以上のエポキシ基を有しているものであれば、特に限定されない。具体的には、例えばビスフェノール-Aのグリシジルエーテル及びそのオリゴマー、オルトフタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル、テトラヒドロフタル酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル、コハク酸ジグリシジルエステル、アジピン酸ジグリシジルエステル、セバシン酸ジグリシジルエステル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエ-テル、およびポリアルキレングリコールジグリシジルエーテル類、トリメリット酸トリグリシジルエステル、トリグリシジルイソシアヌレート、1,4-グリシジルオキシベンゼン、ジグリシジルプロピレン尿素、グリセロールトリグリシジルエーテル、トリメチロールエタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、グリセロールアルキレンオキシド付加物のトリグリシジルエーテルなどを挙げることが出来る。これらは1種、または2種以上を併用して使用することができる。 The polyfunctional epoxy resin is not particularly limited as long as it has two or more epoxy groups in one molecule. Specifically, for example, glycidyl ether of bisphenol-A and its oligomer, orthophthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, terephthalic acid diglycidyl ester, tetrahydrophthalic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, Kohaku. Acid diglycidyl ester, adipic acid diglycidyl ester, sebacic acid diglycidyl ester, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether , Polyalkylene glycol diglycidyl ethers, trimellitic acid triglycidyl ester, triglycidyl isocyanurate, 1,4-glycidyloxybenzene, diglycidyl propylene urea, glycerol triglycidyl ether, trimethylol ethane triglycidyl ether, trimethylol propane Examples thereof include triglycidyl ether, pentaerythritol tetraglycidyl ether, and triglycidyl ether as a glycerol alkylene oxide adduct. These can be used alone or in combination of two or more.
 多官能イソシアネート化合物としては、1分子中に2個以上のイソシアネート基を有しているものであれば、特に限定されない。具体的には、特に限定されないが、芳香族、脂環族、脂肪族のポリイソシアネート化合物があり、低分子量タイプ、高分子量タイプのいずれでもよい。例えばテトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トルエンジイソシアネート、ジフェニルメタンジイソシアネート、水素化ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、水素化キシリレンジイソシアネート、イソホロンジイソシアネート、或いはこれらイソシアネート化合物の3量体、および前記したイソシアネート化合物とエチレングリコール、トリメチロールプロパン、プロピレングリコール、グリセリン、ソルビトール、エチレンジアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ポリエステルポリオール類、ポリエーテルポリオール類、ポリアミド類などの活性水素化合物と反応させて得られる末端イソシアネート化合物が挙げられる。これらは1種、または2種以上の併用ができる。 The polyfunctional isocyanate compound is not particularly limited as long as it has two or more isocyanate groups in one molecule. Specifically, although not particularly limited, there are aromatic, alicyclic, and aliphatic polyisocyanate compounds, and any of low molecular weight type and high molecular weight type may be used. For example, tetramethylene diisocyanate, hexamethylene diisocyanate, toluene diisocyanate, diphenylmethane diisocyanate, hydride diphenylmethane diisocyanate, xylylene diisocyanate, hydride xylylene diisocyanate, isophorone diisocyanate, or trimerics of these isocyanate compounds, and the above-mentioned isocyanate compounds and ethylene glycol. , Trimethylol propane, propylene glycol, glycerin, sorbitol, ethylenediamine, monoethanolamine, diethanolamine, triethanolamine, polyester polyols, polyether polyols, polyamides and other active hydrogen compounds. Can be mentioned. These can be used alone or in combination of two or more.
 前記硬化剤は、本発明の酸変性ポリエステル樹脂(B)100質量部に対して、1質量部以上であることが好ましく、5質量部以上であることがより好ましく、8質量部以上であることがさらに好ましい。また、50質量部以下であることが好ましく、40質量部以下であることがより好ましく、30質量部以下であることがさらに好ましい。前記範囲内とすることで、水系分散体から得られる塗膜の堅さ、堅牢さ、密着強度および屈曲性が良好となる。 The curing agent is preferably 1 part by mass or more, more preferably 5 parts by mass or more, and 8 parts by mass or more with respect to 100 parts by mass of the acid-modified polyester resin (B) of the present invention. Is even more preferable. Further, it is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and further preferably 30 parts by mass or less. Within the above range, the hardness, toughness, adhesion strength and flexibility of the coating film obtained from the aqueous dispersion are improved.
 以下に、本発明を実施例によって具体的に説明するが、本発明はこれらの実施例に限定されるものではない。実施例中および比較例中に単に部とあるのは質量部を示す。尚、本明細書中で採用した測定、評価方法は次の通りである。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. In the examples and comparative examples, the term "part" simply indicates a part by mass. The measurement and evaluation methods adopted in this specification are as follows.
(1)数平均分子量
 ウォーターズ社製ゲル浸透クロマトグラフィー(GPC)150Cを用い、テトラヒドロフランをキャリアー溶剤として流速1ml/分で測定した。カラムとして昭和電工(株)製 Shodex KF-802、KF-804、KF-806を3本連結しカラム温度は30℃に設定した。分子量標準サンプルとしてはポリスチレン標準物質を用いた。
(1) Number average molecular weight Using gel permeation chromatography (GPC) 150C manufactured by Waters, measurement was performed at a flow rate of 1 ml / min using tetrahydrofuran as a carrier solvent. As a column, three Shodex KF-802, KF-804, and KF-806 manufactured by Showa Denko KK were connected, and the column temperature was set to 30 ° C. A polystyrene standard material was used as the molecular weight standard sample.
(2)生分解性ポリエステル樹脂(A)の酸価
 生分解性ポリエステル樹脂(A)0.2gを20mlのクロロホルムに溶解後、0.1N-NaOHエタノール溶液でフェノールフタレインを指示薬として測定し、測定値を樹脂固形分1ton中の当量で示した。
(2) Acid value of biodegradable polyester resin (A) 0.2 g of biodegradable polyester resin (A) was dissolved in 20 ml of chloroform, and then measured with a 0.1 N-NaOH ethanol solution using phenolphthalein as an indicator. The measured value is shown by the equivalent in 1 ton of resin solid content.
(3)ガラス転移温度
 サンプル5mgをアルミニウム製サンプルパンに入れて密封し、セイコーインスツルメンツ(株)製示差走査熱量分析計DSC-220を用いて、200℃まで、昇温速度20℃/分にて測定し、ガラス転移温度以下のベースラインの延長線と遷移部における最大傾斜を示す接線との交点の温度で求めた。
(3) Glass transition temperature 5 mg of the sample is placed in an aluminum sample pan and sealed, and the temperature rises to 200 ° C. at a temperature rise rate of 20 ° C./min using a differential scanning calorimeter DSC-220 manufactured by Seiko Instruments Co., Ltd. It was measured and determined by the temperature at the intersection of the extension of the baseline below the glass transition temperature and the tangent showing the maximum slope at the transition.
(4)ポリエステル樹脂(A1)及び(A2)の樹脂組成分析
 クロロホルム-dに樹脂を溶解し、ヴァリアン社製核磁気共鳴分析計(NMR)“MR-400”を用い、H-NMRにより樹脂組成比を求めた。
(4) Resin composition analysis of polyester resins (A1) and (A2) The resin was dissolved in chloroform-d, and the resin was subjected to 1 H-NMR using a nuclear magnetic resonance analyzer (NMR) "MR-400" manufactured by Varian. The composition ratio was determined.
(5)酸変性ポリエステル樹脂(B)の不飽和多価カルボン酸グラフト付加の確認
 上記酸の付加体か否かの確認は、日本分析工業社製LC-9210NEXT(分取GPC)を用いて下記の条件にて数平均分子量1000以上の成分を分取し、H-NMR、HMBCスペクトル解析により行った。
<分取GPC:LC-9210NEXT分析条件>
 カラム:JAIGEL-2H 1本、JAIGEL-1H 1本の直列接続
 検出器:RI検出器およびUV検出器(検出波長:254nm)
 サンプル:100mgの酸変性ポリエステル樹脂(B)を溶解したクロロホルム4ml溶液
 注入量:3ml
 展開溶媒:クロロホルム
<分取手順、及びNMR、HMBC測定手順>
 ポリスチレン標準サンプルを用いて作製した検量線を基に、分子量1000以上の酸変性ポリエステル樹脂(B)を分取した。分取液を窒素吹付により乾固した後、クロロホルム-dまたはクロロホルム-d/DMSO(ジメチルスルホキシド)-d(1/1vol比)に再溶解し、H-NMR測定およびH-13C-HMBC測定を実施した。
 測定装置はBRUKER社製NMR装置AVANCE-NEO600を用いた。H-NMR測定においては、分取液30mgを先述した溶媒0.6mlに溶解後、その溶液をNMRチューブに充填しH-NMR測定を行った。ロック溶媒にはクロロホルム-dまたはDMSO-dを用い、待ち時間は1秒、取り込み時間は4秒、積算回数は64回とした。
 付加後のマレイン酸およびイタコン酸のカルボニル結合α位のCHおよびCHピークはH-NMRにおいて、クロロホルムのピークを7.28ppmまたはDMSOのピークを2.5ppmとした時に、2から3.5ppmの領域にブロードなピークとして検出される。分子量1000以上の分取成分に該当ピークを確認し、その後、HMBCスペクトルより、そのピークと13C-NMRにおける173ppm付近のC=O由来ピークとの間に相関ピークが確認された場合、酸付加体であると判断した。
 なお、HMBCとは二次元NMRの測定方法であるHeteronuclear Multiple Bond Coherenceを指す。
(5) Confirmation of addition of unsaturated polyvalent carboxylic acid graft of acid-modified polyester resin (B) Confirmation of whether or not it is an acid adduct is described below using LC-9210NEXT (prepared GPC) manufactured by Nippon Analytical Industry Co., Ltd. The components having a number average molecular weight of 1000 or more were fractionated under the above conditions, and 1 H-NMR and HMBC spectral analysis were performed.
<Preliminary GPC: LC-9210NEXT analysis conditions>
Column: 1 JAIGEL-2H, 1 JAIGEL-1H in series Detector: RI detector and UV detector (detection wavelength: 254 nm)
Sample: Chloroform 4 ml solution in which 100 mg of acid-modified polyester resin (B) is dissolved Injection amount: 3 ml
Developing solvent: Chloroform <preparation procedure and NMR, HMBC measurement procedure>
An acid-modified polyester resin (B) having a molecular weight of 1000 or more was separated based on a calibration curve prepared using a polystyrene standard sample. After the preparative solution was dried by spraying nitrogen, it was redissolved in chloroform-d or chloroform-d / DMSO (dimethyl sulfoxide) -d (1/1 vol ratio), and 1 H-NMR measurement and 1 H- 13 C- HMBC measurements were performed.
As a measuring device, an NMR device AVANCE-NEO600 manufactured by BRUKER was used. In 1 H-NMR measurement, 30 mg of the preparative solution was dissolved in 0.6 ml of the above-mentioned solvent, and then the solution was filled in an NMR tube to perform 1 H-NMR measurement. Chloroform-d or DMSO-d was used as the lock solvent, the waiting time was 1 second, the uptake time was 4 seconds, and the number of integrations was 64 times.
The CH 2 and CH peaks at the α-position of the carbonyl bond of maleic acid and itaconic acid after addition are 2 to 3.5 ppm in 1 H-NMR when the peak of chloroform is 7.28 ppm or the peak of DMSO is 2.5 ppm. It is detected as a broad peak in the region of. If a corresponding peak is confirmed in a preparative component having a molecular weight of 1000 or more, and then a correlation peak is confirmed between the peak and the C = O-derived peak near 173 ppm in 13 C-NMR from the HMBC spectrum, acid addition is performed. I judged it to be a body.
In addition, HMBC refers to Heteronuclear Multiple Bond Coherence, which is a measurement method of two-dimensional NMR.
(6)酸変性ポリエステル樹脂(B)の不飽和多価カルボン酸付加量の定量
 メタノールに再沈殿させ、精製した酸変性ポリエステル樹脂(B)を前記(2)酸価測定方法に従って酸価を測定した酸価測定値※から、以下の計算式で付加量を算出した。
無水マレイン酸付加量(質量%)=(酸価測定値※-生分解性ポリエステル樹脂(A)の酸価)×99÷(2×10
無水イタコン酸付加量(質量%)=(酸価測定値※-生分解性ポリエステル樹脂(A)の酸価)×113÷(2×10
(6) Quantification of the amount of unsaturated polyvalent carboxylic acid added to the acid-modified polyester resin (B) The acid value of the purified acid-modified polyester resin (B) reprecipitated in methanol was measured according to the above-mentioned (2) acid value measuring method. The added amount was calculated from the measured acid value * using the following formula.
Maleic anhydride added amount (% by mass) = (measured acid value * -acid value of biodegradable polyester resin (A)) x 99 ÷ (2 x 106 )
Addition of anhydrous itaconic acid (mass%) = (measured acid value * -acid value of biodegradable polyester resin (A)) x 113 ÷ (2 x 106 )
(7)水系分散体の粘度の測定
 東機産業(株)製“Viscometer TV-22”(E型粘度計)を用い、0.6gの水系分散体サンプルをローターNo.0.8°(=48’)×R24、レンジH、回転数5rpm、25℃の条件で測定した。
(7) Measurement of Viscosity of Aqueous Dispersion Using "Vicometer TV-22" (E-type viscometer) manufactured by Toki Sangyo Co., Ltd., 0.6 g of the aqueous dispersion sample was subjected to rotor No. The measurement was performed under the conditions of 0.8 ° (= 48') × R24, range H, rotation speed 5 rpm, and 25 ° C.
(8)水系分散体のpHの測定
 堀場製作所製“pH meter F-52”を用い、25℃での値を測定した。尚、測定器の校正は和光純薬工業(株)製、フタル酸塩pH標準液(pH:4.01)、中性燐酸塩pH標準液(pH:6.86)、ホウ酸塩pH標準液(pH9.18)を用い、3点測定で実施した。
(8) Measurement of pH of aqueous dispersion Using "pH meter F-52" manufactured by HORIBA, Ltd., the value at 25 ° C. was measured. The measuring instrument is calibrated by Wako Pure Chemical Industries, Ltd., phthalate pH standard solution (pH: 4.01), neutral phosphate pH standard solution (pH: 6.86), borate pH standard. A three-point measurement was carried out using a solution (pH 9.18).
(9)水系分散体の平均粒子径の測定
大塚電子(株)製“FPAR-1000”を用い、0.05g/Lの樹脂濃度に調製した水系分散体サンプルを25℃で3回測定し、その平均値とした。なお、平均粒子径はキュムラント平均粒子径である。
(9) Measurement of average particle size of aqueous dispersion Using "FPAR-1000" manufactured by Otsuka Electronics Co., Ltd., an aqueous dispersion sample prepared to a resin concentration of 0.05 g / L was measured three times at 25 ° C. The average value was used. The average particle size is the cumulant average particle size.
(10)水系分散体の固形分濃度の測定
 50mlガラス製秤量瓶に水系分散体のサンプル約1gを採り、精秤する。次いでサンプルを採取した秤量瓶を120℃の熱風乾燥機で2時間乾燥させ、取り出した秤量瓶をデシケーターに入れ、室温で30分放置・冷却する。デシケーターから秤量瓶を取り出し、質量を精秤し、熱風乾燥前後の質量変化(下記式)から水系分散体の固形分濃度の質量%を算出する。
 水系分散体固形分濃度(質量%)=(熱風乾燥後のサンプル質量)/(熱風乾燥前のサンプル質量)×100
(10) Measurement of solid content concentration of the aqueous dispersion Take about 1 g of a sample of the aqueous dispersion in a 50 ml glass weighing bottle and weigh it precisely. Next, the weighing bottle from which the sample was collected is dried in a hot air dryer at 120 ° C. for 2 hours, and the removed weighing bottle is placed in a desiccator and left at room temperature for 30 minutes to cool. The weighing bottle is taken out from the desiccator, the mass is precisely weighed, and the mass% of the solid content concentration of the aqueous dispersion is calculated from the mass change before and after hot air drying (the following formula).
Aqueous dispersion solid content concentration (mass%) = (sample mass after hot air drying) / (sample mass before hot air drying) × 100
(11)水系分散体の保存安定性評価
 水系分散体を25℃、静置状態で3ヶ月保存し、水系分散体の平均粒子径、pH及び分子量の経時変化を観察した。測定結果を表3に記載した。
(11) Evaluation of storage stability of the aqueous dispersion The aqueous dispersion was stored at 25 ° C. for 3 months in a stationary state, and changes in the average particle size, pH and molecular weight of the aqueous dispersion with time were observed. The measurement results are shown in Table 3.
(14)コート膜のHAZE値の測定
 水系分散体を25μm厚PETフィルムに乾燥厚み5μm厚で塗布し、日本電色工業(株)製ヘイズメーター、NDH 7000IIでHAZE値を測定した。数値はn=5の測定値の平均値とした。測定結果を表4に記載した。
(14) Measurement of HAZE value of the coated film The aqueous dispersion was applied to a 25 μm thick PET film with a dry thickness of 5 μm, and the HAZE value was measured with a haze meter manufactured by Nippon Denshoku Kogyo Co., Ltd., NDH 7000II. The numerical value was the average value of the measured values of n = 5. The measurement results are shown in Table 4.
 以下に本発明の実施例、比較例に使用した酸変性ポリエステル樹脂(B)及びそれらの水系分散体の合成例、比較合成例を示す。 Below are examples of synthesis and comparative synthesis of the acid-modified polyester resin (B) used in Examples and Comparative Examples of the present invention and their aqueous dispersions.
 以下、実施例中の表に示した化合物の略号はそれぞれ以下の化合物を示す。
T:テレフタル酸
I:イソフタル酸
CHDA:1,4-シクロヘキサンジカルボン酸
SA:セバシン酸
AA:アジピン酸
TMA:無水トリメリット酸
NPG:ネオペンチルグリコール
CHDM:1,4-ビス(ヒドロキシメチル)シクロヘキサン
EG:エチレングリコール
2MG:2-メチル-1,3-プロピレングリコール
MPD:3-メチル-1,5-ペンタンジオール
1,6-HD:1,6-ヘキサンジオール
1,4-BD:1,4-ブタンジオール
LLD:L-ラクチド
DLD:D-ラクチド
Hereinafter, the abbreviations of the compounds shown in the table in the examples indicate the following compounds, respectively.
T: Terephthalic acid I: Isophthalic acid CHDA: 1,4-Cyclohexanedicarboxylic acid SA: Sebacic acid AA: Adipic acid TMA: Trimellitic anhydride NPG: Neopentyl glycol CHDM: 1,4-bis (hydroxymethyl) cyclohexane EG: Ethylene glycol 2MG: 2-methyl-1,3-propylene glycol MPD: 3-methyl-1,5-pentanediol 1,6-HD: 1,6-hexanediol 1,4-BD: 1,4-butanediol LLD: L-lactide DLD: D-lactide
〔酸変性ポリエステル樹脂(B)の合成〕
合成例1
〔ポリエステル樹脂(A-1)の重合〕
 攪拌棒、温度計、リービッヒ冷却管を具備した1L4つ口フラスコにテレフタル酸ジメチル155部、1,4-ブタンジオ-ル360部、及び触媒としてテトラ-n-ブチルチタネート0.2部を仕込み、190℃~230℃で3時間エステル交換反応を行った。所定量のメタノールが留出した事を確認し、反応温度を180℃まで冷却した。1,4-シクロヘキサンジカルボン酸138部及びアジピン酸58部を仕込み、反応温度を230℃まで昇温した。次いで生成する縮合水を常圧下に留去しつつ反応温度を250℃まで徐々に昇温し、水の留出が殆ど無くなった時点で反応温度を徐々に上げると共に減圧度を徐々に下げ、45分間で最終的に270℃、3Torrに到達させ、重合反応を終了した。反応系内を常圧に戻し、溶融状態の共重合ポリエステル樹脂をフラスコから耐熱バットに取り出し、樹脂組成、数平均分子量、酸価、融点、ガラス転移温度の測定を行った。得られた測定結果は数平均分子量:22000、酸価:8当量/ton、融点:108℃、ガラス転移温度:-12℃、樹脂組成分析結果と合わせて表-1に明記した。
[Synthesis of acid-modified polyester resin (B)]
Synthesis example 1
[Polyester resin (A-1) polymerization]
A 1L 4-neck flask equipped with a stir bar, a thermometer, and a Liebig condenser was charged with 155 parts of dimethyl terephthalate, 360 parts of 1,4-butanjiol, and 0.2 parts of tetra-n-butyl titanate as a catalyst, 190 parts. The transesterification reaction was carried out at ° C. to 230 ° C. for 3 hours. After confirming that a predetermined amount of methanol was distilled off, the reaction temperature was cooled to 180 ° C. 138 parts of 1,4-cyclohexanedicarboxylic acid and 58 parts of adipic acid were charged, and the reaction temperature was raised to 230 ° C. Next, the reaction temperature was gradually raised to 250 ° C. while distilling off the generated condensed water under normal pressure, and when the distillate of water was almost eliminated, the reaction temperature was gradually raised and the degree of decompression was gradually lowered. Finally, the temperature reached 270 ° C. and 3 Torr in 1 minute, and the polymerization reaction was completed. The inside of the reaction system was returned to normal pressure, and the melted copolymerized polyester resin was taken out from the flask into a heat-resistant bat, and the resin composition, number average molecular weight, acid value, melting point, and glass transition temperature were measured. The obtained measurement results are specified in Table 1 together with the number average molecular weight: 22000, acid value: 8 equivalents / ton, melting point: 108 ° C., glass transition temperature: -12 ° C., and resin composition analysis results.
〔ポリエステル樹脂(A-1)への不飽和多価カルボン酸付加反応〕
 攪拌棒、温度計、コンデンサーを具備した内容積1Lの4つ口フラスコにフレーク状に砕いた前記共重合ポリエステル樹脂(A-1)を100部、キシレン140部、無水イタコン酸24部を仕込み反応系内を窒素置換した。ゆっくりと攪拌しつつフラスコ内温を120℃に昇温、1時間攪拌し、ポリエステル樹脂(A-1)と無水イタコン酸を溶解させた。次いでジ-tert-ブチルパーオキサイドを4部投入し、高速で攪拌しつつ反応系内の温度を140℃に昇温した。140℃で4時間反応後冷却し、100℃以下の温度に下がった時点でメタノール630部を入れた1Lコニカルビーカーに激しく攪拌しつつ徐々に注ぎ込み、樹脂分を析出させた。30分間そのまま攪拌させた後、析出した樹脂分をバットに取り出し、フレーク状に砕いて窒素気流下に乾燥させ、酸変性ポリエステル樹脂(B-1)を得た。無水イタコン酸が付加している事の確認と付加量の定量、及び数平均分子量の測定を実施した。結果、無水イタコン酸が付加している事が確認され、付加量の定量値は4.8質量%、酸価840当量/ton及び数平均分子量は29000であった。これらの結果を表-2に記載した。
[Saturated polyvalent carboxylic acid addition reaction to polyester resin (A-1)]
A four-necked flask with an internal volume of 1 L equipped with a stirring rod, a thermometer, and a condenser was charged with 100 parts of the copolymerized polyester resin (A-1) crushed into flakes, 140 parts of xylene, and 24 parts of anhydrous itaconic acid. The inside of the system was replaced with nitrogen. The temperature inside the flask was raised to 120 ° C. while stirring slowly, and the mixture was stirred for 1 hour to dissolve the polyester resin (A-1) and itaconic anhydride. Next, 4 parts of di-tert-butyl peroxide was added, and the temperature in the reaction system was raised to 140 ° C. while stirring at high speed. After reacting at 140 ° C. for 4 hours, the mixture was cooled, and when the temperature dropped to 100 ° C. or lower, it was gradually poured into a 1 L conical beaker containing 630 parts of methanol with vigorous stirring to precipitate the resin component. After stirring as it was for 30 minutes, the precipitated resin component was taken out into a vat, crushed into flakes and dried under a nitrogen stream to obtain an acid-modified polyester resin (B-1). It was confirmed that itaconic anhydride was added, the added amount was quantified, and the number average molecular weight was measured. As a result, it was confirmed that itaconic anhydride was added, and the quantitative value of the added amount was 4.8% by mass, the acid value was 840 equivalents / ton, and the number average molecular weight was 29000. These results are shown in Table-2.
合成例2
〔ポリエステル樹脂(A-2)の重合〕
 攪拌棒、温度計、リービッヒ冷却管を具備した1L4つ口フラスコにテレフタル酸ジメチル93部、イソフタル酸ジメチル78部、ネオペンチルグリコール55部、エチレングリコール60部、及び触媒としてテトラ-n-ブチルチタネート0.1部を仕込み、190℃~230℃で3時間エステル交換反応を行った。所定量のメタノールが留出した事を確認し、反応温度を180℃まで冷却した。セバシン酸25部を仕込み、反応温度を230℃まで昇温した。次いで生成する縮合水を常圧下に留去しつつ反応温度を250℃まで徐々に昇温し、水の留出が殆ど無くなった時点で反応温度を徐々に上げると共に減圧度を徐々に下げ、40分間で最終的に270℃、3Torrに到達させ、重合反応を終了した。反応系内を常圧に戻し、溶融状態の共重合ポリエステル樹脂をフラスコから耐熱バットに取り出し、樹脂組成、数平均分子量、酸価、ガラス転移温度の測定を行った。得られた測定結果は数平均分子量:20000、酸価:3当量/ton、ガラス転移温度:47℃、樹脂組成分析結果と合わせて表-1に明記した。
Synthesis example 2
[Polyester resin (A-2) polymerization]
93 parts of dimethyl terephthalate, 78 parts of dimethyl isophthalate, 55 parts of neopentyl glycol, 60 parts of ethylene glycol, and tetra-n-butyl titanate 0 as a catalyst in a 1L 4-neck flask equipped with a stirring rod, a thermometer, and a Liebig condenser. .1 part was charged and transesterification reaction was carried out at 190 ° C to 230 ° C for 3 hours. After confirming that a predetermined amount of methanol was distilled off, the reaction temperature was cooled to 180 ° C. 25 parts of sebacic acid was charged and the reaction temperature was raised to 230 ° C. Next, the reaction temperature was gradually raised to 250 ° C. while distilling off the generated condensed water under normal pressure, and when the distillate of water was almost eliminated, the reaction temperature was gradually raised and the degree of decompression was gradually lowered. Finally, the temperature reached 270 ° C. and 3 Torr in 1 minute, and the polymerization reaction was completed. The pressure inside the reaction system was returned to normal pressure, and the melted copolymerized polyester resin was taken out from the flask into a heat-resistant bat, and the resin composition, number average molecular weight, acid value, and glass transition temperature were measured. The obtained measurement results are specified in Table 1 together with the number average molecular weight: 20000, acid value: 3 equivalents / ton, glass transition temperature: 47 ° C., and resin composition analysis results.
〔ポリエステル樹脂(A-2)への不飽和多価カルボン酸付加反応〕
 攪拌棒、温度計、コンデンサーを具備した内容積1Lの4つ口フラスコにフレーク状に砕いた前記ポリエステル樹脂(A-2)を100部、キシレン140部、無水マレイン酸23部を仕込み反応系内を窒素置換した。ゆっくりと攪拌しつつフラスコ内温を120℃に昇温、1時間攪拌し、ポリエステル樹脂(A-2)と無水マレイン酸を溶解させた。次いでジ-tert-ブチルパーオキサイドを4部投入し、高速で攪拌しつつ反応系内の温度を140℃に昇温した。140℃で4時間反応後冷却し、100℃以下の温度に下がった時点でメタノール630部を入れた1Lコニカルビーカーに激しく攪拌しつつ徐々に注ぎ込み、樹脂分を析出させた。30分間そのまま攪拌させた後、析出した樹脂分をバットに取り出し、フレーク状に砕いて窒素気流下に乾燥させ、酸変性ポリエステル樹脂(B-2)を得た。無水マレイン酸が付加している事の確認と付加量の定量、及び数平均分子量の測定を実施した。結果、無水マレイン酸が付加している事が確認され、付加量の定量値は2.0質量%、酸価400当量/ton及び数平均分子量は22000であった。これらの結果を表-2に記載した。
[Addition reaction of unsaturated polyvalent carboxylic acid to polyester resin (A-2)]
In the reaction system, 100 parts of the polyester resin (A-2) crushed into flakes, 140 parts of xylene, and 23 parts of maleic anhydride were placed in a 4-necked flask having an internal volume of 1 L equipped with a stirring rod, a thermometer, and a condenser. Was replaced with nitrogen. The temperature inside the flask was raised to 120 ° C. while stirring slowly, and the mixture was stirred for 1 hour to dissolve the polyester resin (A-2) and maleic anhydride. Next, 4 parts of di-tert-butyl peroxide was added, and the temperature in the reaction system was raised to 140 ° C. while stirring at high speed. After reacting at 140 ° C. for 4 hours, the mixture was cooled, and when the temperature dropped to 100 ° C. or lower, it was gradually poured into a 1 L conical beaker containing 630 parts of methanol with vigorous stirring to precipitate the resin component. After stirring as it was for 30 minutes, the precipitated resin component was taken out into a vat, crushed into flakes and dried under a nitrogen stream to obtain an acid-modified polyester resin (B-2). Confirmation that maleic anhydride was added, quantification of the added amount, and measurement of the number average molecular weight were carried out. As a result, it was confirmed that maleic anhydride was added, and the quantitative value of the added amount was 2.0% by mass, the acid value was 400 equivalents / ton, and the number average molecular weight was 22000. These results are shown in Table-2.
合成例3
〔ポリエステル樹脂(A-3)の重合〕
 攪拌棒、温度計、リービッヒ冷却管を具備した1L4つ口フラスコに3-メチル-1,5-ペンタンジオール1.2部、L-ラクチド320部、D-ラクチド80部、トルエン200部及び反応触媒としてオクチル酸錫0.2部、触媒失活剤としてエチルジエチルホスホノアセテート1部を仕込み、窒素ガス気流下でトルエン共沸脱水しながら反応系を180℃まで昇温し、同温度で3時間攪拌した。次いで系を減圧し、未反応残留モノマーを留去した。得られたポリ乳酸樹脂をバットに流し出し、数平均分子量、酸価、ガラス転移温度の測定を行った。得られた測定結果は数平均分子量:36000、酸価:12当量/ton、ガラス転移温度:48℃、樹脂組成分析結果と合わせて表-1に明記した。
Synthesis example 3
[Polyester resin (A-3) polymerization]
1.2 parts of 3-methyl-1,5-pentanediol, 320 parts of L-lactide, 80 parts of D-lactide, 200 parts of toluene and a reaction catalyst in a 1L 4-neck flask equipped with a stirring rod, a thermometer and a Leibich cooling tube. 0.2 part of tin octylate and 1 part of ethyldiethylphosphonoacetate were charged as a catalyst deactivating agent, and the reaction system was heated to 180 ° C while co-boiling and dehydrating toluene under a nitrogen gas stream for 3 hours at the same temperature. Stirred. The system was then depressurized to distill off unreacted residual monomers. The obtained polylactic acid resin was poured into a bat, and the number average molecular weight, acid value, and glass transition temperature were measured. The obtained measurement results are specified in Table 1 together with the number average molecular weight: 36000, acid value: 12 equivalents / ton, glass transition temperature: 48 ° C., and resin composition analysis results.
〔ポリエステル樹脂(A-3)への不飽和多価カルボン酸付加反応〕
 攪拌棒、温度計、コンデンサーを具備した内容積1Lの4つ口フラスコにフレーク状に砕いた前記ポリエステル樹脂(A-3)を100部、キシレン140部、無水マレイン酸23部を仕込み反応系内を窒素置換した。ゆっくりと攪拌しつつフラスコ内温を120℃に昇温、1時間攪拌し、ポリエステル樹脂(A-3)と無水マレイン酸を溶解させた。次いでジ-tert-ブチルパーオキサイドを4部投入し、高速で攪拌しつつ反応系内の温度を140℃に昇温した。140℃で4時間反応後冷却し、100℃以下の温度に下がった時点でメタノール630部を入れた1Lコニカルビーカーに激しく攪拌しつつ徐々に注ぎ込み、樹脂分を析出させた。30分間そのまま攪拌させた後、析出した樹脂分をバットに取り出し、フレーク状に砕いて窒素気流下に乾燥させ、酸変性ポリエステル樹脂(B-3)を得た。無水マレイン酸が付加している事の確認と付加量の定量、及び数平均分子量の測定を実施した。結果、無水マレイン酸が付加している事が確認され、付加量の定量値は1.5質量%、酸価310当量/ton及び数平均分子量は34000であった。これらの結果を表-2に記載した。
[Addition reaction of unsaturated polyvalent carboxylic acid to polyester resin (A-3)]
In the reaction system, 100 parts of the polyester resin (A-3) crushed into flakes, 140 parts of xylene, and 23 parts of maleic anhydride were charged in a 4-necked flask having an internal volume of 1 L equipped with a stirring rod, a thermometer, and a condenser. Was replaced with nitrogen. The temperature inside the flask was raised to 120 ° C. while stirring slowly, and the mixture was stirred for 1 hour to dissolve the polyester resin (A-3) and maleic anhydride. Next, 4 parts of di-tert-butyl peroxide was added, and the temperature in the reaction system was raised to 140 ° C. while stirring at high speed. After reacting at 140 ° C. for 4 hours, the mixture was cooled, and when the temperature dropped to 100 ° C. or lower, it was gradually poured into a 1 L conical beaker containing 630 parts of methanol with vigorous stirring to precipitate the resin component. After stirring as it was for 30 minutes, the precipitated resin component was taken out into a vat, crushed into flakes and dried under a nitrogen stream to obtain an acid-modified polyester resin (B-3). Confirmation that maleic anhydride was added, quantification of the added amount, and measurement of the number average molecular weight were carried out. As a result, it was confirmed that maleic anhydride was added, and the quantitative value of the added amount was 1.5% by mass, the acid value was 310 equivalents / ton, and the number average molecular weight was 34000. These results are shown in Table-2.
比較合成例1
〔ポリエステル樹脂(A-4)の重合〕
 攪拌棒、温度計、リービッヒ冷却管を具備した1L4つ口フラスコにテレフタル酸ジメチル155部、1,4-ブタンジオ-ル360部、及び触媒としてテトラ-n-ブチルチタネート0.2部を仕込み、190℃~230℃で3時間エステル交換反応を行った。所定量のメタノールが留出した事を確認し、反応温度を180℃まで冷却した。1,4-シクロヘキサンジカルボン酸138部及びアジピン酸58部を仕込み、反応温度を230℃まで昇温した。次いで生成する縮合水を常圧下に留去しつつ反応温度を250℃まで徐々に昇温し、水の留出が殆ど無くなった時点で反応温度を徐々に上げると共に減圧度を徐々に下げ、45分間で最終的に270℃、3Torrに到達させ、重合反応を終了した。次いで反応系内を常圧に戻し、窒素ガスを封入しつつ系内温度を220℃まで冷却させ、無水トリメリット酸2部を投入した。系内温度を220℃に保ちつつ、窒素雰囲気下に45分間攪拌し、無水トリメリット酸の付加反応を終了した。溶融状態の共重合ポリエステル樹脂をフラスコから耐熱バットに取り出し、樹脂組成、数平均分子量、酸価、融点、ガラス転移温度測定を行った。得られた測定結果は数平均分子量:20000、酸価:54当量/ton、融点:102℃、ガラス転移温度:-13℃、樹脂組成分析結果と合わせて表-1に明記した。
Comparative synthesis example 1
[Polyester resin (A-4) polymerization]
A 1L 4-neck flask equipped with a stir bar, a thermometer, and a Liebig condenser was charged with 155 parts of dimethyl terephthalate, 360 parts of 1,4-butanjiol, and 0.2 parts of tetra-n-butyl titanate as a catalyst, 190 parts. The transesterification reaction was carried out at ° C. to 230 ° C. for 3 hours. After confirming that a predetermined amount of methanol was distilled off, the reaction temperature was cooled to 180 ° C. 138 parts of 1,4-cyclohexanedicarboxylic acid and 58 parts of adipic acid were charged, and the reaction temperature was raised to 230 ° C. Next, the reaction temperature was gradually raised to 250 ° C. while distilling off the generated condensed water under normal pressure, and when the distillate of water was almost eliminated, the reaction temperature was gradually raised and the degree of decompression was gradually lowered. Finally, the temperature reached 270 ° C. and 3 Torr in 1 minute, and the polymerization reaction was completed. Next, the inside of the reaction system was returned to normal pressure, the temperature inside the system was cooled to 220 ° C. while enclosing nitrogen gas, and 2 parts of anhydrous trimellitic acid was added. While maintaining the temperature inside the system at 220 ° C., the mixture was stirred under a nitrogen atmosphere for 45 minutes to complete the addition reaction of trimellitic anhydride. The melted copolymerized polyester resin was taken out from the flask into a heat-resistant bat, and the resin composition, number average molecular weight, acid value, melting point, and glass transition temperature were measured. The obtained measurement results are specified in Table 1 together with the number average molecular weight: 20000, acid value: 54 equivalents / ton, melting point: 102 ° C., glass transition temperature: -13 ° C., and resin composition analysis results.
比較合成例2
〔ポリエステル樹脂(A-5)の重合〕
 攪拌棒、温度計、リービッヒ冷却管を具備した1L4つ口フラスコにテレフタル酸ジメチル116部、イソフタル酸ジメチル39部、1,4-ビス(ヒドロキシメチル)シクロヘキサン97部、2-メチル-1,3-プロピレングリコール74部、及び触媒としてテトラ-n-ブチルチタネート0.1部を仕込み、190℃~230℃で3時間エステル交換反応を行った。所定量のメタノールが留出した事を確認し、反応温度を180℃まで冷却した。1,4-シクロヘキサンジカルボン酸33部及び無水トリメリット酸2部を仕込み、反応温度を230℃まで昇温した。次いで生成する縮合水を常圧下に留去しつつ反応温度を250℃まで徐々に昇温し、水の留出が殆ど無くなった時点で反応温度を徐々に上げると共に減圧度を徐々に下げ、30分間で最終的に270℃、3Torrに到達させ、重合反応を終了した。次いで反応系内を常圧に戻し、窒素ガスを封入しつつ系内温度を220℃まで冷却させ、無水トリメリット酸2部を投入した。系内温度を220℃に保ちつつ、窒素雰囲気下に45分間攪拌し、無水トリメリット酸の付加反応を終了した。溶融状態の共重合ポリエステル樹脂をフラスコから耐熱バットに取り出し、樹脂組成、数平均分子量、酸価、ガラス転移温度測定を行った。得られた測定結果は数平均分子量:24000、酸価:104当量/ton、ガラス転移温度:55℃であり、樹脂組成分析結果と合わせて表-1に明記した。
Comparative synthesis example 2
[Polyester resin (A-5) polymerization]
116 parts of dimethyl terephthalate, 39 parts of dimethyl isophthalate, 97 parts of 1,4-bis (hydroxymethyl) cyclohexane, 2-methyl-1,3- in a 1L 4-neck flask equipped with a stir bar, a thermometer, and a Liebig condenser. 74 parts of propylene glycol and 0.1 part of tetra-n-butyl titanate as a catalyst were charged, and a transesterification reaction was carried out at 190 ° C. to 230 ° C. for 3 hours. After confirming that a predetermined amount of methanol was distilled off, the reaction temperature was cooled to 180 ° C. 33 parts of 1,4-cyclohexanedicarboxylic acid and 2 parts of trimellitic anhydride were charged, and the reaction temperature was raised to 230 ° C. Next, the reaction temperature was gradually raised to 250 ° C. while distilling off the generated condensed water under normal pressure, and when the distillate of water almost disappeared, the reaction temperature was gradually raised and the degree of decompression was gradually lowered to 30. Finally, the temperature reached 270 ° C. and 3 Torr in 1 minute, and the polymerization reaction was completed. Next, the inside of the reaction system was returned to normal pressure, the temperature inside the system was cooled to 220 ° C. while enclosing nitrogen gas, and 2 parts of anhydrous trimellitic acid was added. While maintaining the temperature inside the system at 220 ° C., the mixture was stirred under a nitrogen atmosphere for 45 minutes to complete the addition reaction of trimellitic anhydride. The melted copolymerized polyester resin was taken out from the flask into a heat-resistant bat, and the resin composition, number average molecular weight, acid value, and glass transition temperature were measured. The obtained measurement results had a number average molecular weight: 24000, an acid value: 104 equivalents / ton, and a glass transition temperature: 55 ° C., which are specified in Table 1 together with the resin composition analysis results.
比較合成例3
〔ポリエステル樹脂(A-6)の重合〕
 攪拌棒、温度計、リービッヒ冷却管を具備した1L4つ口フラスコにテレフタル酸ジメチル78部、イソフタル酸ジメチル62部、1,4-ビス(ヒドロキシメチル)シクロヘキサン65部、2-メチル-1,3-プロピレングリコール41部、エチレングリコール37部、及び触媒としてテトラ-n-ブチルチタネート0.1部を仕込み、190℃~230℃で3時間エステル交換反応を行った。所定量のメタノールが留出した事を確認し、反応温度を180℃まで冷却した。1,4-シクロヘキサンジカルボン酸26部及び無水トリメリット酸6部を仕込み、反応温度を230℃まで昇温した。次いで生成する縮合水を常圧下に留去しつつ反応温度を250℃まで徐々に昇温し、水の留出が殆ど無くなった時点で反応温度を徐々に上げると共に減圧度を徐々に下げ、16分間で最終的に270℃、3Torrに到達させ、重合反応を終了した。次いで反応系内を常圧に戻し、窒素ガスを封入しつつ系内温度を220℃まで冷却させ、無水トリメリット酸6部を投入した。系内温度を220℃に保ちつつ、窒素雰囲気下に45分間攪拌し、無水トリメリット酸の付加反応を終了した。溶融状態の共重合ポリエステル樹脂をフラスコから耐熱バットに取り出し、樹脂組成、数平均分子量、酸価、ガラス転移温度測定を行った。得られた測定結果は数平均分子量:5500、酸価:370当量/ton、ガラス転移温度:53℃であり、樹脂組成分析結果と合わせて表-1に明記した。
Comparative synthesis example 3
[Polyester resin (A-6) polymerization]
78 parts of dimethyl terephthalate, 62 parts of dimethyl isophthalate, 65 parts of 1,4-bis (hydroxymethyl) cyclohexane, 2-methyl-1,3- in a 1L 4-neck flask equipped with a stir bar, a thermometer, and a Leibich cooling tube. 41 parts of propylene glycol, 37 parts of ethylene glycol, and 0.1 part of tetra-n-butyl titanate as a catalyst were charged, and a transesterification reaction was carried out at 190 ° C. to 230 ° C. for 3 hours. After confirming that a predetermined amount of methanol was distilled off, the reaction temperature was cooled to 180 ° C. 26 parts of 1,4-cyclohexanedicarboxylic acid and 6 parts of trimellitic anhydride were charged, and the reaction temperature was raised to 230 ° C. Next, the reaction temperature was gradually raised to 250 ° C. while distilling off the generated condensed water under normal pressure, and when the distillate of water almost disappeared, the reaction temperature was gradually raised and the degree of decompression was gradually lowered. Finally, the temperature reached 270 ° C. and 3 Torr in 1 minute, and the polymerization reaction was completed. Next, the inside of the reaction system was returned to normal pressure, the temperature inside the system was cooled to 220 ° C. while enclosing nitrogen gas, and 6 parts of anhydrous trimellitic acid was added. While maintaining the temperature inside the system at 220 ° C., the mixture was stirred under a nitrogen atmosphere for 45 minutes to complete the addition reaction of trimellitic anhydride. The melted copolymerized polyester resin was taken out from the flask into a heat-resistant bat, and the resin composition, number average molecular weight, acid value, and glass transition temperature were measured. The obtained measurement results had a number average molecular weight: 5500, an acid value: 370 equivalents / ton, and a glass transition temperature: 53 ° C., which are specified in Table 1 together with the resin composition analysis results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記合成例、比較合成例で得られた不飽和多価カルボン酸グラフト変性体の乳化水分散体を調製し、得られた水系分散体の評価を実施した。 Emulsified aqueous dispersions of unsaturated polyvalent carboxylic acid graft modified products obtained in the above synthetic examples and comparative synthetic examples were prepared, and the obtained aqueous dispersions were evaluated.
 実施例-1
 温度計、攪拌翼、コンデンサーを具備した1L4つ口フラスコに合成例1で得られた酸変性ポリエステル樹脂(B-1)50部、テトラヒドロフラン100部、エチレングリコールモノブチルエーテル30部、イソプロピルアルコール15部を仕込み、60℃で樹脂成分を均一溶解させた。次いで脱イオン水160部を徐々に注入し、同温度で90分間攪拌した。ジメチルエタノールアミンの50%水溶液18部を添加し、攪拌しつつ120分掛けて40℃まで冷却した。次いで91kPaの減圧度で有機溶剤成分を留去し、固形分濃度約25質量%の水系分散体(エマルション)E-1を得た。E-1の平均粒子径、pH、粘度、固形分濃度及び数平均分子量を測定した。結果、平均粒子径:27nm、pH:9.3、粘度:10.6mPa・s、固形分濃度:24.5質量%、数平均分子量:27000であり、表3に記載した。また、25℃、3ヶ月放置(静置)後の経時変化を測定し、同表に併記した。加えてE-1を25μm厚PETフィルム基材に乾燥厚みが5μmとなる様にコートし、HAZE値を測定して別途表4に明記した。HAZE値は5.4%であった。
Example-1
50 parts of the acid-modified polyester resin (B-1) obtained in Synthesis Example 1, 100 parts of tetrahydrofuran, 30 parts of ethylene glycol monobutyl ether, and 15 parts of isopropyl alcohol were placed in a 1L 4-neck flask equipped with a thermometer, a stirring blade, and a condenser. It was charged and the resin component was uniformly dissolved at 60 ° C. Then, 160 parts of deionized water was gradually injected and stirred at the same temperature for 90 minutes. 18 parts of a 50% aqueous solution of dimethylethanolamine was added, and the mixture was cooled to 40 ° C. over 120 minutes with stirring. Next, the organic solvent component was distilled off at a reduced pressure of 91 kPa to obtain an aqueous dispersion (emulsion) E-1 having a solid content concentration of about 25% by mass. The average particle size, pH, viscosity, solid content concentration and number average molecular weight of E-1 were measured. As a result, the average particle size was 27 nm, the pH was 9.3, the viscosity was 10.6 mPa · s, the solid content concentration was 24.5% by mass, and the number average molecular weight was 27,000, which are shown in Table 3. In addition, changes over time after being left at 25 ° C for 3 months (standing) were measured and are also shown in the same table. In addition, E-1 was coated on a 25 μm thick PET film substrate so that the dry thickness was 5 μm, and the HAZE value was measured and specified separately in Table 4. The HAZE value was 5.4%.
 実施例―2
 酸変性ポリエステル樹脂(B-2)を実施例―1と同様の方法により乳化水分散し、水系分散体(エマルション)E-2を得た。E-2の平均粒子径、pH、粘度、固形分濃度及び数平均分子量を測定した。結果、平均粒子径:73nm、pH:9.0、粘度:11.7mPa・s、固形分濃度:25.2質量%、数平均分子量:20000であり、表3に記載した。また、25℃、3ヶ月放置(静置)後の経時変化を測定し、同表に併記した。更に実施例1と同様に作製したE-2のコート膜のHAZE値を測定し、結果を別途表4に明記した。HAZE値は3.9%であった。
Example-2
The acid-modified polyester resin (B-2) was dispersed in emulsified water by the same method as in Example-1 to obtain an aqueous dispersion (emulsion) E-2. The average particle size, pH, viscosity, solid content concentration and number average molecular weight of E-2 were measured. As a result, the average particle size was 73 nm, the pH was 9.0, the viscosity was 11.7 mPa · s, the solid content concentration was 25.2 mass%, and the number average molecular weight was 20000, which are shown in Table 3. In addition, changes over time after being left at 25 ° C for 3 months (standing) were measured and are also shown in the same table. Further, the HAZE value of the coated film of E-2 prepared in the same manner as in Example 1 was measured, and the results are separately specified in Table 4. The HAZE value was 3.9%.
 実施例―3
 酸変性ポリエステル樹脂(B-3)を実施例―1と同様の方法により乳化水分散し、水系分散体(エマルション)E-3を得た。E-3の平均粒子径、pH、粘度、固形分濃度及び数平均分子量を測定した。結果、平均粒子径:183nm、pH:9.4、粘度:9.0mPa・s、固形分濃度:23.8質量%、数平均分子量:33000であり、表3に記載した。また、25℃、3ヶ月放置(静置)後の経時変化を測定し、同表に併記した。更に実施例1と同様に作製したE-3のコート膜のHAZE値を測定し、結果を別途表4に明記した。HAZE値は4.1%であった。
Example-3
The acid-modified polyester resin (B-3) was dispersed in emulsified water by the same method as in Example 1 to obtain an aqueous dispersion (emulsion) E-3. The average particle size, pH, viscosity, solid content concentration and number average molecular weight of E-3 were measured. As a result, the average particle size was 183 nm, the pH was 9.4, the viscosity was 9.0 mPa · s, the solid content concentration was 23.8 mass%, and the number average molecular weight was 33000, which are shown in Table 3. In addition, changes over time after being left at 25 ° C for 3 months (standing) were measured and are also shown in the same table. Further, the HAZE value of the coated film of E-3 prepared in the same manner as in Example 1 was measured, and the results are separately specified in Table 4. The HAZE value was 4.1%.
 比較例-1,2
 比較合成例-1,2で得られた各々ポリエステル樹脂(A-4)及び(A-5)を用い、実施例-1と同様の方法で乳化水分散体化を試みたが、何れの場合にも水系分散体は得られなかった。
Comparative Examples-1 and 2
Using the polyester resins (A-4) and (A-5) obtained in Comparative Synthesis Examples-1 and 2, respectively, an attempt was made to disperse the emulsified water in the same manner as in Example 1, but in any case. However, no aqueous dispersion was obtained.
 比較例-3
 ポリエステル樹脂(A-6)を実施例-1と同様の方法でジメチルエタノールアミンの50%水溶液を7部添加して乳化水分散し、水分散体(エマルション)E-4を得た。E-4の平均粒子径、pH、粘度、固形分濃度及び数平均分子量を測定した。結果、平均粒子径:87nm、pH:9.1、粘度:7.3mPa・s、固形分濃度:31.8質量%、数平均分子量:6500であり、表3に記載した。また、25℃、3ヶ月放置(静置)後の経時変化を測定し、同表に併記した。更に実施例1と同様の方法でコート膜の作製を試みたが、造膜性が不十分で膜が形成されなかった。
Comparative Example-3
Seven parts of a 50% aqueous solution of dimethylethanolamine was added to the polyester resin (A-6) in the same manner as in Example 1 and dispersed in emulsified water to obtain an aqueous dispersion (emulsion) E-4. The average particle size, pH, viscosity, solid content concentration and number average molecular weight of E-4 were measured. As a result, the average particle size was 87 nm, the pH was 9.1, the viscosity was 7.3 mPa · s, the solid content concentration was 31.8% by mass, and the number average molecular weight was 6500, which are shown in Table 3. In addition, changes over time after being left at 25 ° C for 3 months (standing) were measured and are also shown in the same table. Further, an attempt was made to prepare a coat film by the same method as in Example 1, but the film-forming property was insufficient and the film was not formed.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 比較例1及び2ではポリエステル樹脂(A-4)及び(A-5)各々に不飽和多価カルボン酸をグラフト付加させる変性処理が施されていないので、十分な親水性極性基が導入されておらず、乳化水分散体を形成する事が出来なかった。また比較例3ではポリエステル樹脂(A-6)にも不飽和多価カルボン酸をグラフト付加させる変性処理は施されていないが、低分子量で高分岐型分子構造により、乳化水分散のための親水性極性基量は導入されている。しかしながら分子量が低いため造膜性が得られず、PETフィルム基材上にコート膜を形成出来なかった。一方、表3から分かる様に実施例1~3では微粒子状の保存安定性に優れた水分散体が得られる。また表4から分かる様に、何れの分散体からも透明性の高いコート膜が形成できた。 In Comparative Examples 1 and 2, since the modification treatment for graft-adding the unsaturated polyvalent carboxylic acid to each of the polyester resins (A-4) and (A-5) was not performed, a sufficient hydrophilic polar group was introduced. It was not possible to form an emulsified aqueous dispersion. Further, in Comparative Example 3, the polyester resin (A-6) was not modified by graft-adding an unsaturated polyvalent carboxylic acid, but it had a low molecular weight and a highly branched molecular structure, and was hydrophilic for dispersion of emulsified water. The amount of sexual polar groups has been introduced. However, since the molecular weight was low, film-forming properties could not be obtained, and a coat film could not be formed on the PET film substrate. On the other hand, as can be seen from Table 3, in Examples 1 to 3, fine particle-like aqueous dispersions having excellent storage stability can be obtained. Further, as can be seen from Table 4, a highly transparent coat film could be formed from any of the dispersions.
 本発明の不飽和多価カルボン酸グラフト変性生分解性ポリエステル樹脂は乳化剤を使用する事無く、微粒子で保存安定性に優れた乳化水分散体を形成する事が出来る。従って、環境にやさしい塗料、インキ、コーティング剤、接着剤等の用途として有用であると共に、塗装、印刷、接着、コーティングの際の作業環境に優れた特長を発揮できる。
 
The unsaturated polyvalent carboxylic acid graft-modified biodegradable polyester resin of the present invention can form an emulsified aqueous dispersion having excellent storage stability with fine particles without using an emulsifier. Therefore, it is useful as an environment-friendly paint, ink, coating agent, adhesive, etc., and can exhibit excellent features in the working environment at the time of painting, printing, adhesion, and coating.

Claims (9)

  1.  生分解性ポリエステル樹脂(A)の側鎖として不飽和多価カルボン酸がグラフト付加した構造を有する酸変性ポリエステル樹脂(B)の水系分散体。 An aqueous dispersion of an acid-modified polyester resin (B) having a structure in which an unsaturated polyvalent carboxylic acid is grafted as a side chain of the biodegradable polyester resin (A).
  2.  酸変性ポリエステル樹脂(B)の酸価が150当量/ton以上である、請求項1に記載の水系分散体。 The aqueous dispersion according to claim 1, wherein the acid value of the acid-modified polyester resin (B) is 150 equivalents / ton or more.
  3.  前記不飽和多価カルボン酸が、マレイン酸およびイタコン酸、並びにそれらの無水物からなる群から選ばれる1種以上である請求項1または2に記載の水系分散体。 The aqueous dispersion according to claim 1 or 2, wherein the unsaturated polyvalent carboxylic acid is at least one selected from the group consisting of maleic acid, itaconic acid, and anhydrides thereof.
  4.  前記生分解性ポリエステル樹脂(A)が脂肪族二塩基酸および脂環族二塩基酸からなる群から選ばれる1種以上、並びに脂肪族グリコール及び脂環族グリコールからなる群から選ばれる1種以上を構造単位として有するポリエステル樹脂(A1)、または脂肪族オキシカルボン酸を構造単位として有するポリエステル樹脂(A2)である請求項1~3のいずれかに記載の水系分散体。 The biodegradable polyester resin (A) is at least one selected from the group consisting of aliphatic dibasic acid and aliphatic dibasic acid, and one or more selected from the group consisting of aliphatic glycol and aliphatic glycol. The aqueous dispersion according to any one of claims 1 to 3, which is a polyester resin (A1) having an aliphatic oxycarboxylic acid as a structural unit or a polyester resin (A2) having an aliphatic oxycarboxylic acid as a structural unit.
  5.  前記ポリエステル樹脂(A1)が、脂肪族二塩基酸、脂環族二塩基酸、脂肪族グリコールおよび脂環族グリコールの合計量として、前記ポリエステル樹脂(A1)を構成する全モノマー量に対し50モル%以上有するか、または前記ポリエステル樹脂(A2)が、脂肪族オキシカルボン酸が前記ポリエステル樹脂(A2)を構成する全モノマー量に対し40モル%以上を有する、請求項4に記載の水系分散体。 The total amount of the polyester resin (A1) including the aliphatic dibasic acid, the alicyclic dibasic acid, the aliphatic glycol and the alicyclic glycol is 50 mol with respect to the total amount of the monomers constituting the polyester resin (A1). 40% or more, or the aqueous dispersion according to claim 4, wherein the polyester resin (A2) has 40 mol% or more based on the total amount of the monomers constituting the polyester resin (A2). ..
  6.  前記水系分散体が、酸変性ポリエステル樹脂(B)および有機アミン化合物を含有する請求項1~5のいずれかに記載の水系分散体。 The aqueous dispersion according to any one of claims 1 to 5, wherein the aqueous dispersion contains an acid-modified polyester resin (B) and an organic amine compound.
  7.  実質的に乳化剤を含有しない、請求項1~6のいずれかに記載の水系分散体。 The aqueous dispersion according to any one of claims 1 to 6, which contains substantially no emulsifier.
  8.  請求項1~7のいずれかに記載の水系分散体を含有するコーティング剤。 A coating agent containing the aqueous dispersion according to any one of claims 1 to 7.
  9.  請求項1~7のいずれかに記載の水系分散体を含有する接着剤。
     

     
    An adhesive containing the aqueous dispersion according to any one of claims 1 to 7.


PCT/JP2021/035353 2020-09-30 2021-09-27 Water-based dispersion of graft-modified biodegradable polyester resin WO2022071219A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022553948A JPWO2022071219A1 (en) 2020-09-30 2021-09-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020166164 2020-09-30
JP2020-166164 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022071219A1 true WO2022071219A1 (en) 2022-04-07

Family

ID=80949174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035353 WO2022071219A1 (en) 2020-09-30 2021-09-27 Water-based dispersion of graft-modified biodegradable polyester resin

Country Status (2)

Country Link
JP (1) JPWO2022071219A1 (en)
WO (1) WO2022071219A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256437A (en) * 1993-01-05 1994-09-13 Toyobo Co Ltd Aqueous copolyester resin dispersion and its production
JPH11511804A (en) * 1996-06-13 1999-10-12 リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミネソタ Method for grafting functional groups to synthetic polymers to produce biodegradable plastics
JP2004323804A (en) * 2003-04-30 2004-11-18 Miyoshi Oil & Fat Co Ltd Biodegradable resin aqueous dispersion
JP2014098111A (en) * 2012-11-15 2014-05-29 Mitsubishi Chemicals Corp Modified aliphatic polyester copolymer and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256437A (en) * 1993-01-05 1994-09-13 Toyobo Co Ltd Aqueous copolyester resin dispersion and its production
JPH11511804A (en) * 1996-06-13 1999-10-12 リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミネソタ Method for grafting functional groups to synthetic polymers to produce biodegradable plastics
JP2004323804A (en) * 2003-04-30 2004-11-18 Miyoshi Oil & Fat Co Ltd Biodegradable resin aqueous dispersion
JP2014098111A (en) * 2012-11-15 2014-05-29 Mitsubishi Chemicals Corp Modified aliphatic polyester copolymer and method for producing the same

Also Published As

Publication number Publication date
JPWO2022071219A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
AU2013360756B2 (en) A coating composition
US10400111B2 (en) Radiation curable aqueous coating compositions
JP5310565B2 (en) Copolyurethane resin containing polylactic acid segment, aqueous emulsion containing the same, and coating liquid composition
Gustini et al. Enzymatic synthesis and preliminary evaluation as coating of sorbitol-based, hydroxy-functional polyesters with controlled molecular weights
US10730998B2 (en) Bio-based thermosets
Geeti et al. Environmentally benign bio-based waterborne polyesters: Synthesis, thermal-and bio-degradation studies
JPWO2014088023A1 (en) Copolymer polyurethane resin and water-based emulsion
WO2022071219A1 (en) Water-based dispersion of graft-modified biodegradable polyester resin
CN113490721B (en) Modified copolyester resin and aqueous dispersion thereof
JP5560530B2 (en) Copolyester resin
JPS59172555A (en) Use of unsaturated polyester in coating agent for metal surface coating as adhesion-improving additional binder
JP2010174170A (en) Binder for polylactic acid-based aqueous ink, aqueous emulsion, and aqueous ink
US3499855A (en) Water-soluble polyester coatings
JP2023074138A (en) Modified copolyester resin, aqueous dispersion and adhesive composition
AU2016252895B2 (en) Water-dispersible polyester resin having improved water resistance and chemical resistance, water-dispersion emulsion containing same, and preparation method thereof
JP2021001254A (en) Polyester resin excellent in pigment dispersibility and heat stability
Rokicki et al. Water-based air-drying alkyd polyester resins modified with glycerol allyl ether
KR20000070606A (en) Coating composition for food containers
KR20240038090A (en) Polyester resin compositions, water dispersions, paint compositions and coating films
KR20230142751A (en) Polyester resin compositions, water dispersions, paint compositions and coating films
KR20230158509A (en) Polyester resin compositions, water dispersions, paint compositions and coating films
KR20230142543A (en) Polyester resin compositions, water dispersions, paint compositions and coating films
KR20230142750A (en) Polyester resin compositions, water dispersions, paint compositions and coating films
JPH08311394A (en) Aqueous polyester resin varnish composition
JP2015189779A (en) Copolymerized polyurethane resin, emulsion and methods for producing them

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875521

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553948

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875521

Country of ref document: EP

Kind code of ref document: A1