WO2022070932A1 - Edible ink jet printer and printing method - Google Patents

Edible ink jet printer and printing method Download PDF

Info

Publication number
WO2022070932A1
WO2022070932A1 PCT/JP2021/034024 JP2021034024W WO2022070932A1 WO 2022070932 A1 WO2022070932 A1 WO 2022070932A1 JP 2021034024 W JP2021034024 W JP 2021034024W WO 2022070932 A1 WO2022070932 A1 WO 2022070932A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
edible
degassing
inkjet
head
Prior art date
Application number
PCT/JP2021/034024
Other languages
French (fr)
Japanese (ja)
Inventor
篤生 小林
洋平 菅沼
和美 大井
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2022501281A priority Critical patent/JPWO2022070932A1/ja
Publication of WO2022070932A1 publication Critical patent/WO2022070932A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/19Ink jet characterised by ink handling for removing air bubbles

Definitions

  • the present invention relates to an inkjet printer using an inkjet ink containing an edible material and a printing method using the same.
  • inkjet ink using edible materials has been used to print characters and patterns on foods such as eggs and confectionery using inkjet.
  • Dyes are generally used as the coloring material for inkjet inks using edible materials, but pigments may also be used when water resistance and light resistance are required.
  • an inkjet ink in which titanium oxide or an aluminum lake pigment is dispersed as a coloring material is known (see, for example, Patent Document 1).
  • Ink for eggshell printing using red iron oxide pigment, which is recognized as a food additive see, for example, Patent Document 2
  • charcoal which is recognized as a food additive
  • inkjet ink using charcoal is also known (see, for example, Patent Document 3 and Patent Document 4).
  • These edible inkjet inks contain a liquid component, a pigment and a dispersant for satisfactorily dispersing the pigment in the liquid component.
  • the pigment is generally pulverized to a size that can be ejected by inkjet, and is dispersed so as not to aggregate, and is adjusted so that the stability of dispersion is not impaired over time.
  • a disperser generally called a bead mill is used.
  • a bead mill is a spherical medium called beads (also called “dispersion media") that is flipped off using a disc with a special shape to give strong kinetic energy to the beads, collide with the powder, and crush the powder into small pieces. It is a device that disperses.
  • zirconia (zirconium oxide) beads having a large specific gravity and a high surface hardness are often used. Also, the disc that flicks the zirconia beads is often made of zirconia for the same reason as the beads.
  • zirconia which is a material for the disc and the beads
  • zirconia beads are used as the dispersion medium and a zirconia disc is used for the dispersion treatment of the inkjet ink
  • zirconia is mixed in the inkjet ink, although the amount is small.
  • Zirconia and zirconium are considered to have no safety problems when taken orally into the human body, but since there are no specified values that regulate safety in particular, they are mixed into inkjet inks. It is considered preferable to avoid.
  • inkjet ink that is dispersed by a disperser using a dispersion medium and suppresses the mixing of zirconia and zirconium, and a method for producing the same. Further, the inkjet ink is used for a long period of time.
  • a printing method capable of continuous printing is provided (see Reference 5).
  • an object to be solved by the present invention is to provide a printing method using an edible inkjet printer having excellent ejection properties, and an edible inkjet printer used in the printing method.
  • the present inventors have found that the above problem can be solved by printing with an edible inkjet ink in the substantially absence of zirconium in an edible inkjet printer equipped with a hollow thread degassing module.
  • the present invention is a printing method using an edible inkjet printer having an ink path from an ink tank to a head, wherein the inkjet printer includes a hollow thread degassing module capable of degassing in the ink path.
  • the ink relates to a printing method, characterized in that the ink is an edible inkjet ink having a zirconium concentration of less than 0.01 ppm in the ink.
  • the present invention relates to an edible inkjet printer having an ink path from an ink tank to a head.
  • the inkjet printer is provided with a hollow thread degassing module capable of degassing in the ink path.
  • the ink is an edible inkjet ink having a zirconium concentration of less than 0.01 ppm in the ink. Regarding inkjet printers.
  • the printing method of the present invention is a printing method using an edible inkjet printer having an ink path from an ink tank to a head.
  • the inkjet printer is provided with a hollow thread degassing module capable of degassing in the ink path.
  • the ink is an edible inkjet ink having a zirconium concentration of less than 0.01 ppm in the ink. do.
  • the edible inkjet printer used in the present invention is not particularly limited as long as it has a conventionally known structure.
  • the inkjet printer of the present invention is an inkjet printer having an ink path from an ink tank to a head. Therefore, a hollow thread degassing module capable of degassing the ink is provided in the middle of the ink path, and the pressure of the ink at the ink inlet of the external or internal recirculation type hollow thread degassing module at the time of degassing is applied. It is preferable to provide an adjustable liquid feed pump and an image recording means for ejecting ink using a head and recording an image.
  • the hollow fiber degassing module used in the present invention may be either an external reflux type or an internal reflux type, but the degassing treatment may be performed under the condition that the pressure loss of the hollow fiber degassing module at the time of degassing is low.
  • the external reflux type is preferable because it can be used.
  • the external reflux type hollow fiber degassing module performs degassing by flowing ink 5 from the ink inlet 2 to the outside of the hollow fiber and depressurizing and evacuating the inside of the hollow fiber 1. Is. Even if the ink has a high viscosity, it can be degassed without reducing the pressure loss at the time of degassing and without reducing the efficiency by flowing a thick flow path and depressurizing and vacuuming the inside of the thin hollow fiber. It is possible, and it is possible to efficiently degas without impairing the dispersion stability of the pigment ink.
  • FIG. 1B schematically shows how the dissolved air and the like in the ink 5 pass through the hollow fiber 6 and move into the hollow fiber 1 under reduced pressure.
  • FIG. 1 (c) schematically shows a cross section of the three hollow fibers in the direction perpendicular to the length direction.
  • the outer diameter 61 of the hollow fiber is 150 ⁇ m or more and 250 ⁇ m or less, and the inner diameter 62 is 50 ⁇ m or more and 180 ⁇ m or less. If the outer diameter 61 of the hollow fiber is less than 150 ⁇ m, it becomes difficult to manufacture the hollow fiber in terms of strength. On the other hand, when the outer diameter 61 of the hollow fiber exceeds 250 ⁇ m, the specific surface area of the hollow fiber tends to be small, and the degassing efficiency tends to decrease. Further, if the inner diameter 62 is less than 50 ⁇ m, the degassing efficiency tends to decrease.
  • the wall thickness of the hollow fiber is preferably 30 ⁇ m or more from the viewpoint of strength.
  • the diameter refers to the diameter when the cross section is circular, and when the cross-sectional shape is not circular, it is the diameter when the cross-sectional area is replaced with a circle having the same area. It can be measured by observing the cross section with an electron microscope.
  • FIG. 1 (c) for convenience, only the configuration for three hollow fibers is shown, but the external reflux type hollow fiber degassing module of the present embodiment is shown in FIG. 1 (a).
  • the structure is such that a large number of hollow fibers are arranged.
  • the number of hollow fibers in the hollow fiber degassing module may be any number, and is not limited to the present embodiment.
  • the inner and outer diameters of all the hollow fibers are within the above-mentioned ranges.
  • the internal reflux type hollow fiber degassing module can perform degassing by flowing ink inside the hollow fiber having an inner diameter of 100 ⁇ m to 200 ⁇ m and depressurizing and vacuuming the outside of the hollow fiber. can.
  • an internal reflux type hollow fiber degassing module a commercially available one can be used, and examples thereof include DIC Corporation SEPAREL PF-001D and SEPAREL PF-004D.
  • various resins are used as the material of the hollow yarn, and in particular, a polyolefin resin such as polypropylene and poly-4-methylpentene 1 resin, or a fluororesin such as polytetrafluoroethylene resin. And so on. These are preferable because the degassing performance does not deteriorate even when a large amount of ink is processed, and the surfactants and dispersants contained in the ink do not easily adhere to the outer surface of the hollow fiber and the ink components do not change easily. Is mentioned as.
  • the hollow fiber membrane module used in the present invention is an internal recirculation type
  • the pressure outside the hollow fiber membrane (gas phase side) of the internal recirculation type hollow fiber membrane module is maintained under reduced pressure, and the pressure inside the hollow fiber membrane (liquid phase side) is maintained. Degas by passing liquid from.
  • the hollow fiber membrane module used in the present invention is an external recirculation type
  • the pressure inside the hollow fiber membrane (gas phase side) of the external recirculation type hollow fiber membrane module is kept under reduced pressure, and the outside of the hollow fiber membrane (liquid phase) is maintained. Degas by passing liquid from the side).
  • the liquid phase side is a skin layer (dense layer) and the gas phase side is a layer having pores (porous layer).
  • the inkjet printer used in the present invention preferably includes a liquid feed pump capable of adjusting the ink pressure at the ink inlet of the hollow thread degassing module at the time of degassing.
  • the pressure loss of the hollow fiber degassing module at the time of degassing is preferably 0.2 MPa or less, more preferably 0.1 MPa or less, and further preferably 0.05 MPa or less.
  • the pressure loss of the hollow fiber degassing module at the time of degassing is preferably 1.0 MPa or less, more preferably 0.5 MPa or less, and further preferably 0.025 MPa or less. preferable.
  • the pressure loss of the hollow thread degassing module at the time of degassing in the present invention means the pressure applied to the inlet of the hollow thread degassing module, and can be measured by a pressure gauge inserted upstream of the hollow thread degassing module. ..
  • the degree of degassing in the present invention can be measured by the dissolved oxygen concentration.
  • a method for measuring the dissolved oxygen concentration for example, the Ostwald method (see Experimental Chemistry Course 1 Basic Operation [I], page 241, 1975, Maruzen), the mass spectrum method, the galvanic cell type, and the polarograph type. It can be measured using a simple oxygen concentration meter or colorimetric analysis method. Further, the dissolved oxygen concentration can be easily measured by using a commercially available dissolved oxygen concentration meter (DO-30A type manufactured by Toa Denpa Kogyo Co., Ltd.).
  • the degree of degassing of the ink in the present invention is preferably 8.0 ppm (or “mg / L”; the same applies hereinafter) or less, preferably 6 It is more preferably 9.0 ppm or less, further preferably 4.0 ppm or less, particularly preferably 2.0 ppm or less, and the lower limit is not particularly limited, but is preferably 0 ppm or more, more preferably 1 ppb or more.
  • the degassing rate (%) is not particularly limited as long as the degassing degree of the ink is within the above dissolved oxygen concentration range, but is preferably 20% or more, more preferably 50% or more, and more preferably 80%. That is all.
  • the degassing rate (%) represents the percentage of the dissolved oxygen concentration in the ink removed by degassing.
  • the hollow fiber degassing module may be placed anywhere between the ink tank and the head, but since there are many air supply points such as thin resin pipes and joints in the ink flow path, it is as close to the head as possible. Is preferable.
  • An example of the configuration from the ink tank to the head is shown in FIG. 3, but the configuration of the present invention is not limited thereto.
  • the ink 5 filled in the ink tank 8 is sent to the head 12 by the liquid feed pump 9, and in the meantime, the hollow shown in FIG. 1 is connected to the vacuum pump 4 via the filter 100. It is sent to the thread degassing module 10, where it is degassed, and then the pressure is adjusted by the back pressure regulator 11 to reach the head 12 through the filter 100.
  • the ink tank in the present invention is a storage place for ink, and is a reserve tank when ink is circulated by a bottle and only liquid is poured into a printer, and ink is circulated in an ink cartridge or a bottle and is a cartridge. Or, if the bottle itself doubles as an ink tank, this is the case.
  • an inkjet printer having an ink circulation path for returning the ink jet ink discharged from the head to the head again an inkjet printer having an degassing step by the above-mentioned degassing method for ink jet ink in the middle of the ink circulation path will be described. do.
  • FIG. 4 shows an example of the configuration of the ink circulation path, but it goes without saying that the present invention is not limited to this.
  • the solenoid valve A is opened, the solenoid valve B is closed, the ink tank 8 is passed through the filter 100 by the liquid feed pump 9, the intermediate tank 30, the back pressure regulator 11 and the filter 100 are passed, and the ink is sent to the head 12. Meet.
  • the dissolved air in the ink 5 is degassed by the degassing module 10 shown in FIG. 1, which is arranged in the middle and connected to the vacuum pump 4.
  • the head cap 7 is brought into close contact with the head 12, and then the inside of the cap is depressurized by the liquid feed pump 9, and ink is sucked out from the head 12 or ink is ejected from the head 12 to the head cap 7.
  • the ink in the head cap is again degassed by the degassing module 10 and then sent to the head 12, and is used again for ejection.
  • FIG. 4 shows an example in which ink is circulated from the head cap, but the ink is not limited to the head cap, and may be circulated from a common ink chamber of the head or a gutter for ejection, for example.
  • the degassing module may be placed anywhere between the ink tank and the head, but since there are many air supply points such as thin resin pipes and joints in the ink flow path, it is as close to the head as possible. Is preferable.
  • the inkjet printer having an ink circulation path for returning the ink jet ink discharged from the head of the present invention to the head again, the inkjet printer having an degassing step by the above-mentioned degassing method for ink jet ink in the middle of the ink circulation path.
  • inkjet recording is possible, which has excellent ejection stability, high reliability, and eliminates unnecessary ink other than that used for recording as much as possible.
  • the present invention is particularly suitable for printing for industrial printing applications.
  • the form of the head 12 in the above embodiment is not particularly limited, but may be any recording head used in an on-demand method such as a piezo method using a piezo element or a thermal inkjet method using heat energy.
  • the amount of ink ejected droplets is preferably 0.5 pL or more, more preferably 1.0 pL or more, still more preferably 1.0 pL or more per drop, from the viewpoint of avoiding the influence of air flow and maintaining the accuracy of the landing position of the ink droplets. It is 1.5 pL or more, more preferably 3.0 pL or more. Further, when small characters are printed, it is preferably 30 pL or less, more preferably 10 pL or less, still more preferably 5.0 pL or less, from the viewpoint of avoiding the possibility that the characters are crushed due to the thickening of the characters and improving the obtained image quality. ..
  • the average ejection speed of the ink droplets is preferably 6 m / s or more, more preferably 8 m / s or more, still more preferably 10 m / s or more, and preferably 20 m / s or less, more preferably 18 m / s or less. It is more preferably 15 m / s or less.
  • the edible inkjet ink used in the present invention is not particularly limited as long as it is an inkjet ink used in an on-demand inkjet method using an edible material, but for example, at least water, ethanol, and an edible polymer dispersant. , Contains edible resins and edible pigments.
  • ethanol used in the present invention known ethanol can be used, and examples thereof include fermented ethanol for beverages and foods.
  • a water-soluble organic solvent such as propylene glycol and glycerin, which has a boiling point higher than that of water and can be taken orally into the human body, is added to ethanol as a wetting agent to add 0 to 0 to the entire inkjet ink. It can be used in the range of 10% by weight.
  • the edible polymer dispersant used in the present invention known ones can be used, but for example, a cellulosic resin is preferably used.
  • the cellulosic resin include methyl cellulose, ethyl cellulose, carboxymethyl cellulose, hydroxypropyl cellulose, hydroxypropylmethyl cellulose and the like.
  • the content in the inkjet ink is not particularly limited, but when the total amount of the inkjet ink is 100 parts by mass, it is preferably 0.1 part by mass or more, more preferably 0.2 part by mass or more, and preferably 20 parts by mass. It is in the range of 10 parts or less, more preferably 15 parts by mass or less.
  • the edible resin used in the present invention known ones can be used, and examples thereof include edible resins obtained by purifying a resinous substance derived from an animal or a plant, which are naturally derived. Therefore, it may be a mixture of many kinds of resin acids and their esterified products, waxes, dyes and the like, and alcohol-soluble types are particularly preferably used.
  • examples of such an edible resin include shellac resin (edible resin obtained by purifying a resinous substance derived from scale insects).
  • the edible pigment used in the present invention known ones can be used, but for example, those approved as food additives or pigments compliant with the Pharmaceutical Affairs Law are used.
  • examples of such pigments include titanium oxide, aluminum lake of food coloring, iron oxide, charcoal powder pigment, squid ink and the like.
  • the charcoal powder pigment crushed Bincho charcoal, bamboo charcoal, activated carbon and the like can be used.
  • the particle size of these pigments is not particularly limited, but the average particle size is preferably in the range of 0.01 ⁇ m or more, and preferably 10 ⁇ m or less, from the viewpoint of improving efficiency during dispersion treatment and improving ejectability during printing. be.
  • the content of the edible pigment in the inkjet ink is related to the content by weight of other components, but when the total amount of the inkjet ink is 100 parts by mass, it is preferably 0.1 part by mass or more, more preferably 0.5 part by mass. It is in the range of 7 parts by mass or more, more preferably 1 part by mass or more, and preferably 20 parts by mass or less, more preferably 10 parts by mass or less, still more preferably 5 parts by mass or less.
  • the edible inkjet ink of the present invention containing water, ethanol, an edible resin, an edible pigment and an edible polymer dispersant is produced, for example, by the method for producing an inkjet ink of the present invention described in detail below. Is preferable.
  • the method for producing an edible inkjet ink of the present invention includes a step (1) for producing an edible polymer dispersant solution.
  • the edible polymer dispersant solution can be prepared by dissolving the edible polymer dispersant in water.
  • the cellulosic resin is dissolved in water alone or in a mixed solution of water and alcohol (preferably ethanol).
  • the water content is 50 parts by mass or more and the ethanol content is less than 50 parts by mass when the total amount of the inkjet ink is 100 parts by mass. Dispersion in a solution containing 50 parts by mass or more of ethanol may make the dispersion of the edible pigment unstable in the step (2).
  • the method for producing an edible inkjet ink of the present invention next includes a step (2) of mixing an edible pigment with the edible polymer dispersant solution and using a disperser to produce a pigment dispersion.
  • a medialess disperser as a disperser for mixing and dispersing the edible pigment in the edible polymer dispersant solution.
  • the medialess disperser include a microfluidizer (trade name), a nanomizer (trade name), and a starburst (registered trademark).
  • a step (3) of stirring and mixing the edible resin solution in which the edible resin is dissolved in a solvent containing 50% by mass or more of ethanol and the pigment dispersion is subsequently performed.
  • a pH adjuster can be added in order to adjust the solubility and stability of the edible resin and the edible polymer dispersant contained in the inkjet ink.
  • Acetic acid, citric acid and the like can be exemplified for the adjustment to acidity
  • ammonium carbonate and the like can be exemplified for the adjustment to alkalinity.
  • the edible inkjet ink produced by the above method can be filled in the edible inkjet printer of the present invention and printed on pharmaceuticals, foods, packaging materials thereof, and tableware.
  • HPC Hydroxypropyl cellulose
  • a polymer dispersant solution having a solid content concentration of 20%.
  • 20 parts by mass of Bincho charcoal made from Ubamekashi was mixed in the polymer dispersant solution, and the jacket temperature was 60 ° C. using a beadless dispersion (Aikosha mixer "ACM-0.8LLVT”). Kneading was performed for 3 hours at a stirring blade rotation speed of 25 rpm (revolution number of 80 rpm).
  • 50 parts by mass of purified water was added little by little and stirred to obtain a dispersion 1.
  • HPC Manufacturing of dispersion 2
  • HPC was dissolved in purified water to prepare 35 parts by mass of a polymer dispersant solution having a solid content concentration of 20%.
  • 20 parts by mass of titanium oxide was mixed in the polymer dispersant solution, and the jacket temperature was 60 ° C. and the stirring blade rotation speed was 25 rpm (Aikosha mixer "ACM-0.8LLVT”) by beadless dispersion (Aikosha mixer "ACM-0.8LLVT”). Kneading was carried out for 3 hours at a revolution number of 80 rpm).
  • 45 parts by mass of purified water was added little by little and stirred to obtain a dispersion 2.
  • HPC Manufacturing of dispersion 3
  • HPC was dissolved in purified water to prepare 40 parts by mass of a polymer dispersant solution having a solid content concentration of 20%.
  • 20 parts by mass of iron sesquioxide was mixed in the polymer dispersant solution, and the jacket temperature was 60 ° C. and the stirring blade rotation speed was 25 rpm by beadless dispersion (Aikosha mixer "ACM-0.8LLVT”). Kneading was carried out at (revolution number 80 rpm) for 3 hours.
  • a mixed solution of 20 parts by mass of purified water and 20 parts by mass of ethanol was added little by little and stirred to obtain a dispersion 3.
  • HPC Manufacturing of dispersion 4
  • HPC was dissolved in purified water to prepare 45 parts by mass of a polymer dispersant solution having a solid content concentration of 20%.
  • 15 parts by mass of food coloring No. 1 lake was mixed in the polymer dispersant solution, and the jacket temperature was 60 ° C. and the stirring blade was rotated by beadless dispersion (Aikosha mixer "ACM-0.8LLVT”). Kneading was carried out at several 25 rpm (revolution number 80 rpm) for 3 hours.
  • 40 parts by mass of purified water was added little by little and stirred to obtain a dispersion 4.
  • HPC Manufacturing of dispersion 5
  • HPC was dissolved in purified water to prepare 45 parts by mass of a polymer dispersant solution having a solid content concentration of 20%.
  • 15 parts by mass of food coloring No. 5 rake was mixed in the polymer dispersant solution, and the jacket temperature was 60 ° C. and the stirring blade was rotated by beadless dispersion (Aikosha mixer "ACM-0.8LLVT”). Kneading was carried out at several 25 rpm (revolution number 80 rpm) for 3 hours.
  • 40 parts by mass of purified water was added little by little and stirred to obtain a dispersion 5.
  • HPC Hydroxypropyl cellulose
  • Dispersion treatment was performed at 12 m / sec for 2 hours to prepare a dispersion for comparative examples (referred to as “comparative dispersion” in the table).
  • Ethanol solution (1) represents a 25% white shellac (acid value 83) ethanol solution.
  • Ethanol solution (2) represents a 50% white shellac (acid value 85) ethanol solution.
  • zirconium content The zirconium concentration was measured by an ICP emission spectrometer (HORIBA, Ltd. model ULTIMA2).
  • the median diameter (d50) of the pigment in the inkjet ink was measured using a particle size distribution meter (UPA type) manufactured by Nikkiso Co., Ltd.
  • the object to be printed was a pseudo-tablet, and printing was performed on the tablet using the inkjet ink prepared in each example, and the presence or absence of peeling when the printed portion was rubbed with a cotton swab was confirmed.
  • Print performance Using an in-house manufactured inkjet ejection observation device having an electronic balance capable of adjusting the applied voltage, pulse width, and drive frequency as an evaluation device, the equipment is arranged as an inkjet printer as shown in FIG. 3, and a hollow thread degassing module (DIC) is used.
  • DIC hollow thread degassing module
  • vacuum pump 4 is operated at a vacuum degree of 6.7 kPa (absolute pressure), and the pressure of the hollow thread degassing module when degassing is "Yes".
  • the loss is 0.02 MPa when the degassing rate is 80 (%), 0.06 MPa when the degassing rate is 60 (%), and 0.10 MPa when the degassing rate is 40 (%).
  • the degassing treatment device was installed using the pressure loss of the module (with 0.02 MPa), and two circulation type (drop-on-demand) DOD inkjet heads were installed. While the inkjet device is operating and one of the above two inkjet heads is printing on the object to be printed, the other inkjet head is made to stand by at the maintenance station, and the precursor, flushing, and wiping are constant during the standby. It was carried out at intervals. Then, among the two inkjet heads, the inkjet head used for printing and the inkjet head made to stand by at the maintenance station were changed at predetermined time intervals to continue printing.
  • the dissolved oxygen concentration was measured using an organic solvent compatible DO meter B-506S manufactured by Iijima Denshi Kogyo Co., Ltd.
  • the dissolved oxygen concentration of the ink before degassing was the dissolved oxygen concentration of the ink in the ink tank 8.
  • the inkjet printer was operated for a certain period of time, and the dissolved oxygen concentration was measured when the flow rate became stable. Since it is difficult to attach the dissolved oxygen meter directly to the inkjet printer, the ink degassed in the container is collected from the outlet of the filter 100 from the back pressure regulator at the time of measurement, and the dissolved oxygen meter is used. The dissolved oxygen concentration was measured.
  • Print performance in high temperature environment The printing performance was evaluated on a 5-point scale according to the following criteria based on the presence or absence of printing defects, font abnormalities, etc. when a printing test was performed with an inkjet printer in an environment room where the room temperature was maintained at 45 ° C. 5: Very good 4: Good 3: Slightly inferior to good product 2: Obvious defect 1: No evaluation
  • Print performance in a low room temperature environment When a printing test was performed with an inkjet printer in an environment room where the room temperature was maintained at 5 ° C., the printing performance was evaluated on a 5-point scale according to the above criteria based on the presence or absence of printing defects, font abnormalities, and the like.

Landscapes

  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)

Abstract

The present invention provides: a printing method using an edible ink jet printer having excellent ejectability; and an edible ink jet printer using the printing method. More specifically, this edible ink jet printer has a path for an ink extending from an ink tank to a head, and this printing method uses the same. The ink jet printer is characterized in that the ink path is provided with a hollow-fiber degassing module that can perform degassing, and that the ink is an edible inkjet ink having a zirconium concentration in the ink of less than 0.01 ppm.

Description

可食用インクジェットプリンタおよび印刷方法Edible inkjet printer and printing method
 本発明は、可食用の材料を含むインクジェットインクを用いるインクジェットプリンタおよびそれを用いる印刷方法に関する。 The present invention relates to an inkjet printer using an inkjet ink containing an edible material and a printing method using the same.
 従来、インクジェットを用いて卵や菓子等の食品類に文字や図柄を印字するため、可食用の材料を用いたインクジェットインクが使用されている。可食用の材料を用いたインクジェットインクの色材としては、一般的に染料を用いることが多いが、耐水性や耐光性が求められる場合には顔料が用いられることもある。 Conventionally, inkjet ink using edible materials has been used to print characters and patterns on foods such as eggs and confectionery using inkjet. Dyes are generally used as the coloring material for inkjet inks using edible materials, but pigments may also be used when water resistance and light resistance are required.
 例えば、色材として酸化チタンやアルミレーキ顔料を分散したインクジェットインクが知られている(例えば、特許文献1参照)。また、食品添加物として認められているベンガラ(赤色酸化鉄顔料)を用いた卵殻印刷用インクジェットインク(例えば、特許文献2参照)、食品添加物として認められている木炭、炭を用いたインクジェットインクなども知られている(例えば、特許文献3及び特許文献4参照)。 For example, an inkjet ink in which titanium oxide or an aluminum lake pigment is dispersed as a coloring material is known (see, for example, Patent Document 1). Ink for eggshell printing using red iron oxide pigment, which is recognized as a food additive (see, for example, Patent Document 2), charcoal, which is recognized as a food additive, and inkjet ink using charcoal. Etc. are also known (see, for example, Patent Document 3 and Patent Document 4).
 これらの可食用インクジェットインクは、液体成分、顔料及び当該顔料を液体成分に良好に分散させるための分散剤を含む。当該顔料は、一般に、インクジェットで吐出可能な大きさに粉砕され、かつ凝集の無いよう分散処理され、時間が経っても分散の安定性が損なわれないよう調整されている。 These edible inkjet inks contain a liquid component, a pigment and a dispersant for satisfactorily dispersing the pigment in the liquid component. The pigment is generally pulverized to a size that can be ejected by inkjet, and is dispersed so as not to aggregate, and is adjusted so that the stability of dispersion is not impaired over time.
 そして、このように色材として顔料を含むインクジェットインクを製造する場合における分散処理では、一般的に、ビーズミルと呼ばれる分散機を用いる。ビーズミルとは、ビーズと呼ばれる球体の媒体(「分散メディア」ともいう)を特殊な形状を持つディスクを用いて弾き飛ばしてビーズに強い運動エネルギーを与え、粉体と衝突させ、粉体を細かく粉砕し分散させる装置である。粉体をより微細化し、安定に分散させるためには、比重が大きく、表面硬度が高いジルコニア(酸化ジルコニウム)のビーズが用いられることが多い。また、ジルコニアビーズを弾き飛ばすディスクもビーズ同様の理由からジルコニア製が用いられることが多い。 And, in the dispersion processing in the case of producing the inkjet ink containing the pigment as the coloring material in this way, a disperser generally called a bead mill is used. A bead mill is a spherical medium called beads (also called "dispersion media") that is flipped off using a disc with a special shape to give strong kinetic energy to the beads, collide with the powder, and crush the powder into small pieces. It is a device that disperses. In order to make the powder finer and more stably dispersed, zirconia (zirconium oxide) beads having a large specific gravity and a high surface hardness are often used. Also, the disc that flicks the zirconia beads is often made of zirconia for the same reason as the beads.
 分散機としてビーズミルを使用すると、ディスクとビーズが衝突しそれぞれが磨耗するため、当該粉体中に微量ながらディスク及びビーズの材料であるジルコニアが混入することは避けられない。同様に、インクジェットインクの分散処理に、分散メディアとしてジルコニアビーズを用いてかつジルコニア製ディスクを用いた場合にも、微量ではあるが当該インクジェットインクにはジルコニアが混入している。ジルコニアやジルコニウムは、人体への経口摂取に対して安全性に問題がないと考えられているが、とりわけ安全性を規制する規定値等は定められていないため、逆に、インクジェットインクへの混入を避けた方が好ましいと考えられる。 When a bead mill is used as a disperser, the disc and the beads collide with each other and wear each other. Therefore, it is inevitable that zirconia, which is a material for the disc and the beads, is mixed in the powder in a small amount. Similarly, when zirconia beads are used as the dispersion medium and a zirconia disc is used for the dispersion treatment of the inkjet ink, zirconia is mixed in the inkjet ink, although the amount is small. Zirconia and zirconium are considered to have no safety problems when taken orally into the human body, but since there are no specified values that regulate safety in particular, they are mixed into inkjet inks. It is considered preferable to avoid.
 そこで、インクジェットインクの製造において分散メディアを用いた分散機により分散処理を行い、かつ、ジルコニアやジルコニウムの混入を抑制させたインクジェットインク及びその作製方法を提供し、さらに当該インクジェットインクを用いて長期の連続した印字が可能な印字方法が提供されている(引用文献5参照) Therefore, in the production of inkjet ink, we provide an inkjet ink that is dispersed by a disperser using a dispersion medium and suppresses the mixing of zirconia and zirconium, and a method for producing the same. Further, the inkjet ink is used for a long period of time. A printing method capable of continuous printing is provided (see Reference 5).
特開2000-507820号公報Japanese Unexamined Patent Publication No. 2000-507820 特開2007-106913号公報JP-A-2007-106913 特開2007-106915号公報JP-A-2007-106915 特開2010-248313号公報Japanese Unexamined Patent Publication No. 2010-248313 特開2015-224270号公報Japanese Unexamined Patent Publication No. 2015-224270
 しかしながら、中空糸脱気モジュールを備えた可食用インクジェットプリンタにおいて、極微量であってもジルコニウムが存在すると脱気性能に影響を与え、ひいてはインクジェットプリンタの吐出性が低下する傾向にあることが明らかとなった。 However, in an edible inkjet printer equipped with a hollow fiber degassing module, it is clear that the presence of zirconium even in a very small amount affects the degassing performance, which in turn tends to reduce the ejection property of the inkjet printer. became.
 そこで、本発明が解決しようとする課題は、吐出性に優れた可食用インクジェットプリンタを用いる印刷方法、当該印刷方法に用いる可食用インクジェットプリンタを提供することにある。 Therefore, an object to be solved by the present invention is to provide a printing method using an edible inkjet printer having excellent ejection properties, and an edible inkjet printer used in the printing method.
 本発明者らは、中空糸脱気モジュールを備えた可食用インクジェットプリンタにおいて、ジルコニウムの実質的に不存在下の可食用インクジェットインクを用いて印刷することで上記課題を解決できることを見出した。 The present inventors have found that the above problem can be solved by printing with an edible inkjet ink in the substantially absence of zirconium in an edible inkjet printer equipped with a hollow thread degassing module.
 すなわち、本発明は、 インクタンクからヘッドまでのインク経路を有する可食用インクジェットプリンタを用いる印刷方法において、  前記インクジェットプリンタは、前記インク経路に、脱気することができる中空糸脱気モジュールを備えること
 前記インクは、インク中のジルコニウム濃度が0.01ppm未満の可食用インクジェットインクであること、を特徴とする、印刷方法に関する。
That is, the present invention is a printing method using an edible inkjet printer having an ink path from an ink tank to a head, wherein the inkjet printer includes a hollow thread degassing module capable of degassing in the ink path. The ink relates to a printing method, characterized in that the ink is an edible inkjet ink having a zirconium concentration of less than 0.01 ppm in the ink.
 また、本発明は、インクタンクからヘッドまでのインク経路を有する可食用インクジェットプリンタにおいて、
 前記インクジェットプリンタは、前記インク経路に、脱気することができる中空糸脱気モジュールを備えること
 前記インクは、インク中のジルコニウム濃度が0.01ppm未満の可食用インクジェットインクであること、を特徴とする、インクジェットプリンタに関する。
Further, the present invention relates to an edible inkjet printer having an ink path from an ink tank to a head.
The inkjet printer is provided with a hollow thread degassing module capable of degassing in the ink path. The ink is an edible inkjet ink having a zirconium concentration of less than 0.01 ppm in the ink. Regarding inkjet printers.
 本発明により、吐出性に優れた可食用インクジェットプリンタを用いる印刷方法、当該印刷方法に用いる可食用インクジェットプリンタを提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a printing method using an edible inkjet printer having excellent ejection properties, and an edible inkjet printer used for the printing method.
脱気モジュールの構成模式図。Schematic diagram of the configuration of the degassing module. 脱気時の脱気モジュールの配置図。Layout of the degassing module during degassing. 本発明のインクタンクからヘッドまでの構成例を示す図である。It is a figure which shows the structural example from the ink tank to the head of this invention. 本発明のインク循環経路の1例を示す概略図である。It is a schematic diagram which shows an example of the ink circulation path of this invention.
 本発明の印刷方法は、インクタンクからヘッドまでのインク経路を有する可食用インクジェットプリンタを用いる印刷方法において、
 前記インクジェットプリンタは、前記インク経路に、脱気することができる中空糸脱気モジュールを備えること
 前記インクは、インク中のジルコニウム濃度が0.01ppm未満の可食用インクジェットインクであること、を特徴とする。
The printing method of the present invention is a printing method using an edible inkjet printer having an ink path from an ink tank to a head.
The inkjet printer is provided with a hollow thread degassing module capable of degassing in the ink path. The ink is an edible inkjet ink having a zirconium concentration of less than 0.01 ppm in the ink. do.
 本発明に用いる可食用インクジェットプリンタは、従来公知の構造を有するものであれば特に限定されるものではないが、例えば、本発明のインクジェットプリンタは、インクタンクからヘッドまでのインク経路を有するインクジェットプリンタであって、前記インク経路の途中にインクを脱気することができる中空糸脱気モジュールを備えること、脱気時の前記外部又は内部還流型中空糸脱気モジュールのインク入り口におけるインクの圧力を調整可能な送液ポンプを備えること、ヘッドを用いてインクを吐出させ画像を記録する画像記録手段を備えること、が好ましい。 The edible inkjet printer used in the present invention is not particularly limited as long as it has a conventionally known structure. For example, the inkjet printer of the present invention is an inkjet printer having an ink path from an ink tank to a head. Therefore, a hollow thread degassing module capable of degassing the ink is provided in the middle of the ink path, and the pressure of the ink at the ink inlet of the external or internal recirculation type hollow thread degassing module at the time of degassing is applied. It is preferable to provide an adjustable liquid feed pump and an image recording means for ejecting ink using a head and recording an image.
 本発明に用いる中空糸脱気モジュールは、外部還流型でも内部還流型でもいずれでも構わないが、脱気時の中空糸脱気モジュールの圧力損失が低い条件下で脱気処理を実施することができることから外部還流型が好ましい。 The hollow fiber degassing module used in the present invention may be either an external reflux type or an internal reflux type, but the degassing treatment may be performed under the condition that the pressure loss of the hollow fiber degassing module at the time of degassing is low. The external reflux type is preferable because it can be used.
 以下、図1に示した模式図に基づき外部還流型の中空糸脱気モジュールを説明する。外部還流型の中空糸脱気モジュールは、図1の示すように、インク入り口2より中空糸の外側にインク5を流し、中空糸1の内側を減圧、真空にすることにより脱気を行うものである。粘度の高いインクであっても、太い流路を流し、細い中空糸の中を減圧、真空とすることにより、脱気時の圧力損失が小さいまま、且つ効率を落とさずに脱気することが可能であり、顔料インクの分散安定性を損ねること無く効率的に脱気を行うことが可能である。ここにおいて、3はインク出口、4は真空ポンプである。このような外部還流型の中空糸脱気モジュールとしては市販のものが利用可能であり、例えば、DIC(株)SEPAREL  EF-002A-P、SEPAREL EF-004Pが挙げられる。図1(ロ)は、インク5中の溶存空気等が中空膜6を通過して、減圧されている中空糸1内に移ってくる様子を模式化して示している。また、図1(ハ)は、3本の中空糸の長さ方向に垂直な方向の断面を模式化して示している。 Hereinafter, the external reflux type hollow fiber degassing module will be described based on the schematic diagram shown in FIG. As shown in FIG. 1, the external reflux type hollow fiber degassing module performs degassing by flowing ink 5 from the ink inlet 2 to the outside of the hollow fiber and depressurizing and evacuating the inside of the hollow fiber 1. Is. Even if the ink has a high viscosity, it can be degassed without reducing the pressure loss at the time of degassing and without reducing the efficiency by flowing a thick flow path and depressurizing and vacuuming the inside of the thin hollow fiber. It is possible, and it is possible to efficiently degas without impairing the dispersion stability of the pigment ink. Here, 3 is an ink outlet and 4 is a vacuum pump. As such an external reflux type hollow fiber degassing module, a commercially available one can be used, and examples thereof include DIC Corporation SEPAREL EF-002A-P and SEPAREL EF-004P. FIG. 1B schematically shows how the dissolved air and the like in the ink 5 pass through the hollow fiber 6 and move into the hollow fiber 1 under reduced pressure. Further, FIG. 1 (c) schematically shows a cross section of the three hollow fibers in the direction perpendicular to the length direction.
 図1(ハ)において、中空糸の外径61が150μm以上250μm以下であり、かつ、内径62が50μm以上180μm以下であることが好ましい。中空糸の外径61が150μm未満であると強度的に作製が難しくなる。一方、中空糸の外径61が250μmを超えた場合は、中空糸の比表面積が小さくなり、脱気効率が低下する傾向にある。また、内径62が50μm未満であると脱気効率が低下する傾向にある。一方、内径62が180μmを超えた場合は、強度的に作製が難しくなる傾向にある。なお、中空糸の肉厚は、強度的な観点から、30μm以上とすることが好ましい。
 ここで、径とは、断面円形の場合は直径を指し、断面形状が円形でない場合、断面積を同じ面積の円形に置き換えた場合の直径とする。断面を電子顕微鏡で観察することにより測定できる。
In FIG. 1 (c), it is preferable that the outer diameter 61 of the hollow fiber is 150 μm or more and 250 μm or less, and the inner diameter 62 is 50 μm or more and 180 μm or less. If the outer diameter 61 of the hollow fiber is less than 150 μm, it becomes difficult to manufacture the hollow fiber in terms of strength. On the other hand, when the outer diameter 61 of the hollow fiber exceeds 250 μm, the specific surface area of the hollow fiber tends to be small, and the degassing efficiency tends to decrease. Further, if the inner diameter 62 is less than 50 μm, the degassing efficiency tends to decrease. On the other hand, when the inner diameter 62 exceeds 180 μm, it tends to be difficult to manufacture in terms of strength. The wall thickness of the hollow fiber is preferably 30 μm or more from the viewpoint of strength.
Here, the diameter refers to the diameter when the cross section is circular, and when the cross-sectional shape is not circular, it is the diameter when the cross-sectional area is replaced with a circle having the same area. It can be measured by observing the cross section with an electron microscope.
 なお、図1(ハ)においては、便宜上、中空糸が3個分についての構成しか図示されていないが、本実施形態の外部還流型の中空糸脱気モジュールは、図1(イ)に示すように多数の中空糸が配置された構成になっている。ここで、本発明において、中空糸脱気モジュールの中空糸の数は、いくつでも良く、本実施形態に限定されるものではない。また、中空糸を複数有する場合は、全ての中空糸の内径、外径が前述の範囲に収まるようにすることが好ましい。 In FIG. 1 (c), for convenience, only the configuration for three hollow fibers is shown, but the external reflux type hollow fiber degassing module of the present embodiment is shown in FIG. 1 (a). The structure is such that a large number of hollow fibers are arranged. Here, in the present invention, the number of hollow fibers in the hollow fiber degassing module may be any number, and is not limited to the present embodiment. When a plurality of hollow fibers are provided, it is preferable that the inner and outer diameters of all the hollow fibers are within the above-mentioned ranges.
 一方、図示しないものの、内部還流型の中空糸脱気モジュールは、内径100μmから200μmである中空糸の内部にインクを流し、中空糸の外側を減圧・真空にすることにより脱気を行うことができる。このような内部還流型の中空糸脱気モジュールとしては市販のものが使用可能であり、例えば、DIC(株)SEPAREL PF-001D、SEPAREL PF-004D等が挙げられる。 On the other hand, although not shown, the internal reflux type hollow fiber degassing module can perform degassing by flowing ink inside the hollow fiber having an inner diameter of 100 μm to 200 μm and depressurizing and vacuuming the outside of the hollow fiber. can. As such an internal reflux type hollow fiber degassing module, a commercially available one can be used, and examples thereof include DIC Corporation SEPAREL PF-001D and SEPAREL PF-004D.
 内部還流型ないし外部還流型いずれにおいても、中空糸の材質としては各種樹脂が用いられるが、特にポリプロピレン、ポリ-4-メチルペンテン1樹脂などのポリオレフィン樹脂、あるいはポリテトラフルオロエチレン樹脂などのフッ素樹脂といったものが挙げられる。これらは、大量のインクを処理に対しても脱気性能が衰えにくいこと、インク中に含有する界面活性剤や分散剤が中空糸外面に付着しにくくインクの成分が変化し難いことから好ましいものとして挙げられる。 In both the internal reflux type and the external reflux type, various resins are used as the material of the hollow yarn, and in particular, a polyolefin resin such as polypropylene and poly-4-methylpentene 1 resin, or a fluororesin such as polytetrafluoroethylene resin. And so on. These are preferable because the degassing performance does not deteriorate even when a large amount of ink is processed, and the surfactants and dispersants contained in the ink do not easily adhere to the outer surface of the hollow fiber and the ink components do not change easily. Is mentioned as.
 本発明で用いる中空糸膜モジュールが内部環流型の場合、内部還流型中空糸膜モジュールの中空糸膜外(気相側)の圧力を減圧下に保ちつつ、中空糸膜内(液相側)から通液して脱気する。一方、本発明で用いる中空糸膜モジュールが外部環流型の場合、外部還流型中空糸膜モジュールの中空糸膜内(気相側)の圧力を減圧下に保ちつつ、中空糸膜外(液相側)から通液して脱気する。いずれの場合も、液相側がスキン層(緻密層)、気相側が細孔を有する層(多孔質層)となるようにすることが好ましい。多孔質層側でジルコニウムを含むインクと接すると、脱気性能の低下により影響を与える傾向が特に大きく、ひいてはインクジェットプリンタの吐出性を低下させる傾向も大きい。 When the hollow fiber membrane module used in the present invention is an internal recirculation type, the pressure outside the hollow fiber membrane (gas phase side) of the internal recirculation type hollow fiber membrane module is maintained under reduced pressure, and the pressure inside the hollow fiber membrane (liquid phase side) is maintained. Degas by passing liquid from. On the other hand, when the hollow fiber membrane module used in the present invention is an external recirculation type, the pressure inside the hollow fiber membrane (gas phase side) of the external recirculation type hollow fiber membrane module is kept under reduced pressure, and the outside of the hollow fiber membrane (liquid phase) is maintained. Degas by passing liquid from the side). In either case, it is preferable that the liquid phase side is a skin layer (dense layer) and the gas phase side is a layer having pores (porous layer). When it comes into contact with an ink containing zirconium on the porous layer side, it tends to have a particularly large effect on the deterioration of degassing performance, and thus also has a large tendency to reduce the ejection property of the inkjet printer.
 本発明に用いるインクジェットプリンタは、脱気時の中空糸脱気モジュールのインク入り口におけるインクの圧力を調整することができる送液ポンプを備えることが好ましい。 The inkjet printer used in the present invention preferably includes a liquid feed pump capable of adjusting the ink pressure at the ink inlet of the hollow thread degassing module at the time of degassing.
 外部還流型では、脱気時の中空糸脱気モジュールの圧力損失を0.2MPa以下とすることが好ましく、0.1MPa以下とすることがより好ましく、0.05MPa以下とすることがさらに好ましい。一方、内部還流型では、脱気時の中空糸脱気モジュールの圧力損失を1.0MPa以下とすることが好ましく、0.5MPa以下とすることがより好ましく、0.025MPa以下とすることがさらに好ましい。なお、 本発明における脱気時の中空糸脱気モジュールの圧力損失とは、中空糸脱気モジュールの入口にかかる圧力を意味し、中空糸脱気モジュールの上流側に挿入した圧力計で測定できる。 In the external reflux type, the pressure loss of the hollow fiber degassing module at the time of degassing is preferably 0.2 MPa or less, more preferably 0.1 MPa or less, and further preferably 0.05 MPa or less. On the other hand, in the internal reflux type, the pressure loss of the hollow fiber degassing module at the time of degassing is preferably 1.0 MPa or less, more preferably 0.5 MPa or less, and further preferably 0.025 MPa or less. preferable. The pressure loss of the hollow thread degassing module at the time of degassing in the present invention means the pressure applied to the inlet of the hollow thread degassing module, and can be measured by a pressure gauge inserted upstream of the hollow thread degassing module. ..
 本発明における脱気度は溶存酸素濃度により測定することが可能である。溶存酸素濃度を測定する方法としては、例えば、オストワルド法(実験化学講座1基本操作[I]、241頁、1975年、丸善  参照)や、マススペクトル法で測定する方法、ガルバニ電池型やポーラログラフ型などの簡便な酸素濃度計や比色分析法を用いて測定することができる。また、溶存酸素濃度は市販の溶存酸素濃度計(東亜電波工業(株)製DO-30A型)を用いても、簡便に測定することができる。 The degree of degassing in the present invention can be measured by the dissolved oxygen concentration. As a method for measuring the dissolved oxygen concentration, for example, the Ostwald method (see Experimental Chemistry Course 1 Basic Operation [I], page 241, 1975, Maruzen), the mass spectrum method, the galvanic cell type, and the polarograph type. It can be measured using a simple oxygen concentration meter or colorimetric analysis method. Further, the dissolved oxygen concentration can be easily measured by using a commercially available dissolved oxygen concentration meter (DO-30A type manufactured by Toa Denpa Kogyo Co., Ltd.).
 本発明におけるインクの脱気度としては、キャビテーションの発生を防止し、印刷時の粒状性の点から溶存酸素濃度で8.0ppm(または「mg/L」。以下同じ。)以下が好ましく、6.0ppm以下がより好ましく、4.0ppm以下がさらに好ましく、2.0ppm以下が特に好ましく、そして、下限値は特に限定されないが、好ましくは0ppm以上、より好ましくは1ppb以上でありうる。 The degree of degassing of the ink in the present invention is preferably 8.0 ppm (or “mg / L”; the same applies hereinafter) or less, preferably 6 It is more preferably 9.0 ppm or less, further preferably 4.0 ppm or less, particularly preferably 2.0 ppm or less, and the lower limit is not particularly limited, but is preferably 0 ppm or more, more preferably 1 ppb or more.
 本発明において、脱気率(%)は、インクの脱気度が上記溶存酸素濃度の範囲となれば特に限定されないが、好ましくは20%以上、より好ましくは50%以上、より好ましくは80%以上である。
 なお脱気率(%)とは、インク中の溶存酸素濃度が脱気で取り除かれた百分率を表す。
In the present invention, the degassing rate (%) is not particularly limited as long as the degassing degree of the ink is within the above dissolved oxygen concentration range, but is preferably 20% or more, more preferably 50% or more, and more preferably 80%. That is all.
The degassing rate (%) represents the percentage of the dissolved oxygen concentration in the ink removed by degassing.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 中空糸脱気モジュールはインクタンクからヘッドまでの間であればどこに配置されても構わないが、インク流路には細い樹脂配管やジョイント部など給気箇所が多いため、出来るだけヘッドに近い場所が好ましい。インクタンクからヘッドまでの構成例を図3に示すが、本発明の構成はこれに限定されるものではない。 The hollow fiber degassing module may be placed anywhere between the ink tank and the head, but since there are many air supply points such as thin resin pipes and joints in the ink flow path, it is as close to the head as possible. Is preferable. An example of the configuration from the ink tank to the head is shown in FIG. 3, but the configuration of the present invention is not limited thereto.
 図3において、インクタンク8に充填されているインク5は、送液ポンプ9によりヘッド12に送られるが、その間に、フィルター100を経て、真空ポンプ4に接続された、図1に示した中空糸脱気モジュール10に送られ、ここで脱気されてから、背圧調整器11で圧力が調整され、フィルター100を通ってヘッド12に到達する。 In FIG. 3, the ink 5 filled in the ink tank 8 is sent to the head 12 by the liquid feed pump 9, and in the meantime, the hollow shown in FIG. 1 is connected to the vacuum pump 4 via the filter 100. It is sent to the thread degassing module 10, where it is degassed, and then the pressure is adjusted by the back pressure regulator 11 to reach the head 12 through the filter 100.
 また、本発明におけるインクタンクとは、インクの貯蔵場所でありインクがボトルにより流通されプリンタに液体のみを流し込まれている場合にはそのリザーブタンクであり、インクがインクカートリッジまたはボトルで流通されカートリッジまたはボトル自体がインクタンクを兼ねる場合にはこれを指す。 Further, the ink tank in the present invention is a storage place for ink, and is a reserve tank when ink is circulated by a bottle and only liquid is poured into a printer, and ink is circulated in an ink cartridge or a bottle and is a cartridge. Or, if the bottle itself doubles as an ink tank, this is the case.
 続いて、ヘッドから排出されたインクジェットインクを再びヘッドに戻すインク循環経路を有するインクジェットプリンタにおいて、前記インク循環経路の途中に、前述のインクジェットインクの脱気方法による脱気工程を有するインクジェットプリンタについて説明する。 Subsequently, in an inkjet printer having an ink circulation path for returning the ink jet ink discharged from the head to the head again, an inkjet printer having an degassing step by the above-mentioned degassing method for ink jet ink in the middle of the ink circulation path will be described. do.
 図4にインク循環経路の構成例を示すが、言う迄もなく本発明はこれに限定されない。インク5の導入時には電磁弁Aを開け、電磁弁Bを閉じ、送液ポンプ9によりインクタンク8からフィルター100を経て、中間タンク30、背圧調整器11及びフィルター100を経て、ヘッド12にインクを満たす。この時に、途中に配置され、真空ポンプ4に接続された、図1に示した脱気モジュール10でインク5中の溶存空気が脱気される。ヘッドメンテナンス時はヘッドキャップ7をヘッド12に密着し、次いで送液ポンプ9にでキャップ内を減圧し、ヘッド12から外へインクを吸い出すか、ヘッド12からヘッドキャップ7にインクが吐出される。この時、同時に電磁弁Aを閉じ電磁弁Bを開くことにより、ヘッドキャップ内のインクは再び脱気モジュール10により脱気された後にヘッド12へと送り込まれ、再度、吐出に使用される。 FIG. 4 shows an example of the configuration of the ink circulation path, but it goes without saying that the present invention is not limited to this. When the ink 5 is introduced, the solenoid valve A is opened, the solenoid valve B is closed, the ink tank 8 is passed through the filter 100 by the liquid feed pump 9, the intermediate tank 30, the back pressure regulator 11 and the filter 100 are passed, and the ink is sent to the head 12. Meet. At this time, the dissolved air in the ink 5 is degassed by the degassing module 10 shown in FIG. 1, which is arranged in the middle and connected to the vacuum pump 4. At the time of head maintenance, the head cap 7 is brought into close contact with the head 12, and then the inside of the cap is depressurized by the liquid feed pump 9, and ink is sucked out from the head 12 or ink is ejected from the head 12 to the head cap 7. At this time, by closing the solenoid valve A and opening the solenoid valve B at the same time, the ink in the head cap is again degassed by the degassing module 10 and then sent to the head 12, and is used again for ejection.
 ここで、図4はヘッドキャップよりインクを循環させる例を示したが、ヘッドキャップには限定されず、例えばヘッドの共通インク室や吐棄てのためのガターからの循環でもよい。 Here, FIG. 4 shows an example in which ink is circulated from the head cap, but the ink is not limited to the head cap, and may be circulated from a common ink chamber of the head or a gutter for ejection, for example.
 脱気モジュールは、インクタンクからヘッド迄の間であれば何処に配置されても構わないが、インク流路には細い樹脂配管やジョイント部など給気箇所が多いため、出来るだけヘッドに近い場所が好ましい。 The degassing module may be placed anywhere between the ink tank and the head, but since there are many air supply points such as thin resin pipes and joints in the ink flow path, it is as close to the head as possible. Is preferable.
 本発明のヘッドから排出されたインクジェットインクを再びヘッドに戻すインク循環経路を有するインクジェットプリンタにおいて、前記インク循環経路の途中に、前述のインクジェットインクの脱気方法による脱気工程を有するインクジェットプリンタによれば、吐出安定性に優れ、信頼性が高く、かつ記録に使用される以外の無駄なインクを極力排した、インクジェット記録が可能となる。本発明は、特に工業印刷用途の印刷に好適である。 In an inkjet printer having an ink circulation path for returning the ink jet ink discharged from the head of the present invention to the head again, the inkjet printer having an degassing step by the above-mentioned degassing method for ink jet ink in the middle of the ink circulation path. For example, inkjet recording is possible, which has excellent ejection stability, high reliability, and eliminates unnecessary ink other than that used for recording as much as possible. The present invention is particularly suitable for printing for industrial printing applications.
 以上の実施形態におけるヘッド12の形態は特に限定されないが、ピエゾ素子を用いるピエゾ方式あるいは熱エネルギーを利用するサーマルインクジェット方式といったオンデマンド方式に用いられるいずれの記録ヘッドであってよい。 The form of the head 12 in the above embodiment is not particularly limited, but may be any recording head used in an on-demand method such as a piezo method using a piezo element or a thermal inkjet method using heat energy.
 インクの吐出液滴の量は、気流の影響を避け、インク液滴の着弾位置の精度を維持する観点から、1滴あたり好ましくは0.5pL以上、より好ましくは1.0pL以上、更に好ましくは1.5pL以上、より更に好ましくは3.0pL以上である。また、小さな文字を印刷した場合に、文字太りによって文字がつぶれるおそれを回避し、得られる画質を向上する観点から、好ましくは30pL以下、より好ましくは10pL以下、更に好ましくは5.0pL以下である。 The amount of ink ejected droplets is preferably 0.5 pL or more, more preferably 1.0 pL or more, still more preferably 1.0 pL or more per drop, from the viewpoint of avoiding the influence of air flow and maintaining the accuracy of the landing position of the ink droplets. It is 1.5 pL or more, more preferably 3.0 pL or more. Further, when small characters are printed, it is preferably 30 pL or less, more preferably 10 pL or less, still more preferably 5.0 pL or less, from the viewpoint of avoiding the possibility that the characters are crushed due to the thickening of the characters and improving the obtained image quality. ..
 インク液滴の平均吐出速度は、好ましくは6m/s以上、より好ましくは8m/s以上、更に好ましくは10m/s以上であり、そして、好ましくは20m/s以下、より好ましくは18m/s以下、更に好ましくは15m/s以下である。 The average ejection speed of the ink droplets is preferably 6 m / s or more, more preferably 8 m / s or more, still more preferably 10 m / s or more, and preferably 20 m / s or less, more preferably 18 m / s or less. It is more preferably 15 m / s or less.
 次に、本発明で用いるインクジェットインクについて説明する。本発明に用いる可食用インクジェットインクは、可食用の材料を用い、オンデマンド方式のインクジェット方式に用いられるインクジェットインクであれば特に限定されないが、例えば、少なくとも、水、エタノール、可食用高分子分散剤、可食用樹脂及び可食用顔料を含む。 Next, the inkjet ink used in the present invention will be described. The edible inkjet ink used in the present invention is not particularly limited as long as it is an inkjet ink used in an on-demand inkjet method using an edible material, but for example, at least water, ethanol, and an edible polymer dispersant. , Contains edible resins and edible pigments.
 ここで、本発明に用いられるエタノールとしては、公知のものを使用することができるが、例えば、飲料ないし食品用の発酵エタノールが挙げられる。また、任意成分であるが、プロピレングリコール、グリセリン等、水よりも沸点が高く、かつ人体へ経口摂取されても問題ない水溶性の有機溶剤を湿潤剤としてエタノールに加え、インクジェットインク全体の0~10重量%の範囲で用いることができる。 Here, as the ethanol used in the present invention, known ethanol can be used, and examples thereof include fermented ethanol for beverages and foods. In addition, although it is an optional component, a water-soluble organic solvent such as propylene glycol and glycerin, which has a boiling point higher than that of water and can be taken orally into the human body, is added to ethanol as a wetting agent to add 0 to 0 to the entire inkjet ink. It can be used in the range of 10% by weight.
 ここで、本発明に用いられる可食用高分子分散剤としては、公知のものを使用することができるが、例えば、セルロース系樹脂が好ましく用いられる。セルロース系樹脂としては、さらに、メチルセルロース、エチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等が挙げられる。インクジェットインク中の含有量は特に限定されないが、インクジェットインク全量を100質量部とするとき、好ましくは0.1質量部以上、より好ましくは0.2質量部以上であり、そして、好ましくは20質量部以下、より好ましくは15質量部以下の範囲である。 Here, as the edible polymer dispersant used in the present invention, known ones can be used, but for example, a cellulosic resin is preferably used. Further, examples of the cellulosic resin include methyl cellulose, ethyl cellulose, carboxymethyl cellulose, hydroxypropyl cellulose, hydroxypropylmethyl cellulose and the like. The content in the inkjet ink is not particularly limited, but when the total amount of the inkjet ink is 100 parts by mass, it is preferably 0.1 part by mass or more, more preferably 0.2 part by mass or more, and preferably 20 parts by mass. It is in the range of 10 parts or less, more preferably 15 parts by mass or less.
 ここで、本発明に用いられる可食用樹脂としては、公知のものを使用することができるが、例えば、動物ないし植物由来の樹脂状物質を精製して得た可食用樹脂が挙げられ、天然由来ゆえ多種類の樹脂酸およびそのエステル化物、ワックス、色素等の混合物であってもよく、アルコール可溶性タイプのものが特に好ましく用いられる。このような可食用樹脂として、セラック樹脂(ラックカイガラ虫由来の樹脂状物質を精製して得た可食用樹脂)が挙げられる。 Here, as the edible resin used in the present invention, known ones can be used, and examples thereof include edible resins obtained by purifying a resinous substance derived from an animal or a plant, which are naturally derived. Therefore, it may be a mixture of many kinds of resin acids and their esterified products, waxes, dyes and the like, and alcohol-soluble types are particularly preferably used. Examples of such an edible resin include shellac resin (edible resin obtained by purifying a resinous substance derived from scale insects).
 ここで、本発明に用いられる可食用顔料としては、公知のものを使用することができるが、例えば、食品添加物として認められているもの、又は、薬事法に準拠した顔料を用いる。このような顔料としては、酸化チタン、食用色素のアルミニウムレーキ、酸化鉄、炭末色素、イカスミ等が挙げられる。とりわけ、炭末色素としては、備長炭、竹炭、活性炭等を粉砕したものを用いることができる。これらの顔料の粒子径は特に限定されないが、分散処理時の効率化と印刷時の吐出性向上の観点から、平均粒子径が、好ましくは0.01μm以上、そして、好ましくは10μm以下の範囲である。 Here, as the edible pigment used in the present invention, known ones can be used, but for example, those approved as food additives or pigments compliant with the Pharmaceutical Affairs Law are used. Examples of such pigments include titanium oxide, aluminum lake of food coloring, iron oxide, charcoal powder pigment, squid ink and the like. In particular, as the charcoal powder pigment, crushed Bincho charcoal, bamboo charcoal, activated carbon and the like can be used. The particle size of these pigments is not particularly limited, but the average particle size is preferably in the range of 0.01 μm or more, and preferably 10 μm or less, from the viewpoint of improving efficiency during dispersion treatment and improving ejectability during printing. be.
 インクジェットインク中の可食用顔料の含有量は、他の成分の含有重量部と関連するが、インクジェットインク全量を100質量部とするとき、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、さらに好ましくは1質量部以上であり、そして、好ましくは20質量部以下、より好ましくは10質量部以下、さらに好ましくは5質量部以下の範囲である。 The content of the edible pigment in the inkjet ink is related to the content by weight of other components, but when the total amount of the inkjet ink is 100 parts by mass, it is preferably 0.1 part by mass or more, more preferably 0.5 part by mass. It is in the range of 7 parts by mass or more, more preferably 1 part by mass or more, and preferably 20 parts by mass or less, more preferably 10 parts by mass or less, still more preferably 5 parts by mass or less.
 以上、水、エタノール、可食用樹脂、可食用顔料及び可食用高分子分散剤を含む本発明の可食用インクジェットインクは、例えば、以下に詳述する本発明のインクジェットインクの作製方法によって、作製することが好ましい。 As described above, the edible inkjet ink of the present invention containing water, ethanol, an edible resin, an edible pigment and an edible polymer dispersant is produced, for example, by the method for producing an inkjet ink of the present invention described in detail below. Is preferable.
 本発明の可食用インクジェットインクの製造方法は、可食用高分子分散剤溶液を作製する工程(1)を有する。工程(1)において、可食用高分子分散剤溶液の作製は、水に可食用高分子分散剤を溶解させることにより行うことができる。とりわけ、可食用高分子分散剤としてセルロース系樹脂を用いる場合には、水のみ、又は、水とアルコール(好ましくはエタノール)との混合溶液にセルロース系樹脂を溶解させる。 The method for producing an edible inkjet ink of the present invention includes a step (1) for producing an edible polymer dispersant solution. In the step (1), the edible polymer dispersant solution can be prepared by dissolving the edible polymer dispersant in water. In particular, when a cellulosic resin is used as an edible polymer dispersant, the cellulosic resin is dissolved in water alone or in a mixed solution of water and alcohol (preferably ethanol).
 セルロース系樹脂を溶解させる溶液としては、インクジェットインク全量を100質量部とするとき、水の含有量が50質量部以上、エタノールの含有量が50質量部未満であることが好ましい。エタノールを50質量部以上含有する溶液での分散は、工程(2)において、可食用顔料の分散が安定しなくなる恐れがある。 As the solution for dissolving the cellulosic resin, it is preferable that the water content is 50 parts by mass or more and the ethanol content is less than 50 parts by mass when the total amount of the inkjet ink is 100 parts by mass. Dispersion in a solution containing 50 parts by mass or more of ethanol may make the dispersion of the edible pigment unstable in the step (2).
 本発明の可食用インクジェットインクの製造方法は、次に、前記可食用高分子分散剤溶液に可食用顔料を混合し分散機を用いて顔料分散体を作製する工程(2)を有する。 The method for producing an edible inkjet ink of the present invention next includes a step (2) of mixing an edible pigment with the edible polymer dispersant solution and using a disperser to produce a pigment dispersion.
 工程(2)において、可食用高分子分散剤溶液に可食用顔料を混合して分散させるための分散機としては、メディアレス分散機を用いることが好ましい。メディアレス分散機としては、マイクロフルイダイザー(商品名)、ナノマイザー(商品名)、スターバースト(登録商標)などが挙げられる。 In the step (2), it is preferable to use a medialess disperser as a disperser for mixing and dispersing the edible pigment in the edible polymer dispersant solution. Examples of the medialess disperser include a microfluidizer (trade name), a nanomizer (trade name), and a starburst (registered trademark).
 本発明の可食用インクジェットインクの製造方法は、続いて、エタノールを50質量%以上含有する溶剤に可食用樹脂を溶解させた可食用樹脂溶液と前記顔料分散体を撹拌混合する工程(3)を有する。 In the method for producing an edible inkjet ink of the present invention, a step (3) of stirring and mixing the edible resin solution in which the edible resin is dissolved in a solvent containing 50% by mass or more of ethanol and the pigment dispersion is subsequently performed. Have.
 上記工程(1)~(3)において、インクジェットインクに含まれる可食用樹脂や可食用高分子分散剤の溶解性や安定性を調整するために、pH調整剤を加えることもできる。酸性への調整には、酢酸、クエン酸等、アルカリ性への調整には、炭酸アンモニウム等が例示できる。 In the above steps (1) to (3), a pH adjuster can be added in order to adjust the solubility and stability of the edible resin and the edible polymer dispersant contained in the inkjet ink. Acetic acid, citric acid and the like can be exemplified for the adjustment to acidity, and ammonium carbonate and the like can be exemplified for the adjustment to alkalinity.
 以上の方法で製造した可食用インクジェットインクは、本発明の可食用インクジェットプリンタに充填して、医薬品や食品、それらの包装材料、食器類に対して印刷することができる。 The edible inkjet ink produced by the above method can be filled in the edible inkjet printer of the present invention and printed on pharmaceuticals, foods, packaging materials thereof, and tableware.
 以下の製造例、調製例、実施例及び比較例において、「部」及び「%」は特記しない限り「質量部」及び「質量%」である。なお、各測定方法は以下のとおりである。 In the following production examples, preparation examples, examples and comparative examples, "parts" and "%" are "parts by mass" and "% by mass" unless otherwise specified. Each measurement method is as follows.
(分散体1の製造)
 精製水にヒドロキシプロピルセルロース(以下、「HPC」と記載)を溶解させて、固形分濃度が20%の高分子分散剤溶液30質量部を作製した。次に、前記高分子分散剤溶液中に、うばめかしを原料とする備長炭20質量部を混合し、ビーズレス分散(愛工舎ミキサー「ACM-0.8LLVT」)にて、ジャケット温度60℃、攪拌羽根回転数25rpm(公転数80rpm)にて3時間混練を行なった。次に、50質量部の精製水を少量ずつ添加し攪拌することで分散体1を得た。
(Manufacturing of dispersion 1)
Hydroxypropyl cellulose (hereinafter referred to as "HPC") was dissolved in purified water to prepare 30 parts by mass of a polymer dispersant solution having a solid content concentration of 20%. Next, 20 parts by mass of Bincho charcoal made from Ubamekashi was mixed in the polymer dispersant solution, and the jacket temperature was 60 ° C. using a beadless dispersion (Aikosha mixer "ACM-0.8LLVT"). Kneading was performed for 3 hours at a stirring blade rotation speed of 25 rpm (revolution number of 80 rpm). Next, 50 parts by mass of purified water was added little by little and stirred to obtain a dispersion 1.
(分散体2の製造)
 精製水にHPCを溶解させて、固形分濃度が20%の高分子分散剤溶液35質量部を作製した。次に、前記高分子分散剤溶液中に、酸化チタン20質量部を混合し、ビーズレス分散(愛工舎ミキサー「ACM-0.8LLVT」)にて、ジャケット温度60℃、攪拌羽根回転数25rpm(公転数80rpm)にて3時間混練を行なった。次に、45質量部の精製水を少量ずつ添加し攪拌することで分散体2を得た。
(Manufacturing of dispersion 2)
HPC was dissolved in purified water to prepare 35 parts by mass of a polymer dispersant solution having a solid content concentration of 20%. Next, 20 parts by mass of titanium oxide was mixed in the polymer dispersant solution, and the jacket temperature was 60 ° C. and the stirring blade rotation speed was 25 rpm (Aikosha mixer "ACM-0.8LLVT") by beadless dispersion (Aikosha mixer "ACM-0.8LLVT"). Kneading was carried out for 3 hours at a revolution number of 80 rpm). Next, 45 parts by mass of purified water was added little by little and stirred to obtain a dispersion 2.
(分散体3の製造)
 精製水にHPCを溶解させて、固形分濃度が20%の高分子分散剤溶液40質量部を作製した。次に、前記高分子分散剤溶液中に、三二酸化鉄20質量部を混合し、ビーズレス分散(愛工舎ミキサー「ACM-0.8LLVT」)にて、ジャケット温度60℃、攪拌羽根回転数25rpm(公転数80rpm)にて3時間混練を行なった。次に、20質量部の精製水と20質量部のエタノールの混合溶液を少量ずつ添加し攪拌することで分散体3を得た。
(Manufacturing of dispersion 3)
HPC was dissolved in purified water to prepare 40 parts by mass of a polymer dispersant solution having a solid content concentration of 20%. Next, 20 parts by mass of iron sesquioxide was mixed in the polymer dispersant solution, and the jacket temperature was 60 ° C. and the stirring blade rotation speed was 25 rpm by beadless dispersion (Aikosha mixer "ACM-0.8LLVT"). Kneading was carried out at (revolution number 80 rpm) for 3 hours. Next, a mixed solution of 20 parts by mass of purified water and 20 parts by mass of ethanol was added little by little and stirred to obtain a dispersion 3.
(分散体4の製造)
 精製水にHPCを溶解させて、固形分濃度が20%の高分子分散剤溶液45質量部を作製した。次に、前記高分子分散剤溶液中に、食用色素1号レーキ15質量部を混合し、ビーズレス分散(愛工舎ミキサー「ACM-0.8LLVT」)にて、ジャケット温度60℃、攪拌羽根回転数25rpm(公転数80rpm)にて3時間混練を行なった。次に、40質量部の精製水を少量ずつ添加し攪拌することで分散体4を得た。
(Manufacturing of dispersion 4)
HPC was dissolved in purified water to prepare 45 parts by mass of a polymer dispersant solution having a solid content concentration of 20%. Next, 15 parts by mass of food coloring No. 1 lake was mixed in the polymer dispersant solution, and the jacket temperature was 60 ° C. and the stirring blade was rotated by beadless dispersion (Aikosha mixer "ACM-0.8LLVT"). Kneading was carried out at several 25 rpm (revolution number 80 rpm) for 3 hours. Next, 40 parts by mass of purified water was added little by little and stirred to obtain a dispersion 4.
(分散体5の製造)
 精製水にHPCを溶解させて、固形分濃度が20%の高分子分散剤溶液45質量部を作製した。次に、前記高分子分散剤溶液中に、食用色素5号レーキ15質量部を混合し、ビーズレス分散(愛工舎ミキサー「ACM-0.8LLVT」)にて、ジャケット温度60℃、攪拌羽根回転数25rpm(公転数80rpm)にて3時間混練を行なった。次に、40質量部の精製水を少量ずつ添加し攪拌することで分散体5を得た。
(Manufacturing of dispersion 5)
HPC was dissolved in purified water to prepare 45 parts by mass of a polymer dispersant solution having a solid content concentration of 20%. Next, 15 parts by mass of food coloring No. 5 rake was mixed in the polymer dispersant solution, and the jacket temperature was 60 ° C. and the stirring blade was rotated by beadless dispersion (Aikosha mixer "ACM-0.8LLVT"). Kneading was carried out at several 25 rpm (revolution number 80 rpm) for 3 hours. Next, 40 parts by mass of purified water was added little by little and stirred to obtain a dispersion 5.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

(比較例用分散体の製造)
 表2に記載した配合組成および配合量で水にヒドロキシプロピルセルロース(以下、「HPC」と記載)を溶解させて高分子分散剤溶液を作製した。次に、前記高分子分散剤溶液中に、うばめかしを原料とする備長炭を混合し、ジルコニアビーズ(ビーズ組成:ZrOを95重量%含有する他、HfO及びYを微量含有、ビーズ粒径:φ0.3mm)を充填した横型サンドミル(ウレタン樹脂製のビーズ撹拌ディスクを備え、ジルコニア強化アルミナライニングを施したウィリー・エ・バッコーフェン社製のダイノーミルマルチラボ)にて周速12m/secで2時間分散処理して比較例用の分散体(表中「比較分散体」と称する)を作製した。
(Manufacturing of dispersion for comparative example)
Hydroxypropyl cellulose (hereinafter referred to as "HPC") was dissolved in water with the blending composition and blending amount shown in Table 2 to prepare a polymer dispersant solution. Next, Bicho charcoal made from Ubamekashi is mixed in the polymer dispersant solution, and zirconia beads (bead composition: ZrO 2 is contained in an amount of 95% by weight, and HfO 2 and Y 2 O 3 are contained in a trace amount. , Bead particle size: φ0.3 mm) with a horizontal sand mill (Dynomill Multilab manufactured by Willy et Bacoffen, equipped with a bead stirring disk made of urethane resin and zirconia reinforced alumina lining). Dispersion treatment was performed at 12 m / sec for 2 hours to prepare a dispersion for comparative examples (referred to as “comparative dispersion” in the table).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

(インクジェットインクの製造)
 上記分散体1~5、比較分散体1~5を用いて、下表に示す配合組成および配合量になるよう家庭用ミキサー(象印社製ヘルシーミックス)に投入し密栓し15分間撹拌溶解して、インクジェットインクを製造した。
(Manufacturing of inkjet ink)
Using the above dispersions 1 to 5 and comparative dispersions 1 to 5, put them into a household mixer (healthy mix manufactured by Zojirushi Co., Ltd.) so as to have the composition and amount shown in the table below, seal them tightly, and stir and dissolve for 15 minutes. , Manufactured inkjet ink.
Figure JPOXMLDOC01-appb-T000004


 「エタノール溶液(1)」は、25%白色セラック(酸価83)エタノール溶液を表す。
 「エタノール溶液(2)」は、50%白色セラック(酸価85)エタノール溶液を表す。
Figure JPOXMLDOC01-appb-T000004


"Ethanol solution (1)" represents a 25% white shellac (acid value 83) ethanol solution.
"Ethanol solution (2)" represents a 50% white shellac (acid value 85) ethanol solution.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006

Figure JPOXMLDOC01-appb-T000007


表中の各評価は以下の方法で行った。
Figure JPOXMLDOC01-appb-T000007


Each evaluation in the table was performed by the following method.
(ジルコニウム含有量)
 ジルコニウム濃度はICP発光分析装置(堀場製作所製型式ULTIMA2)で測定した。
(Zirconium content)
The zirconium concentration was measured by an ICP emission spectrometer (HORIBA, Ltd. model ULTIMA2).
(平均粒子径)
 日機装株式会社製の粒度分布計(UPA型)を用いてインクジェットインク中の顔料のメジアン径(d50)を測定した。
(Average particle size)
The median diameter (d50) of the pigment in the inkjet ink was measured using a particle size distribution meter (UPA type) manufactured by Nikkiso Co., Ltd.
 (粘度)
 TOKI産業社製の粘度計(EHコーン型)を用いて測定した。
(viscosity)
The measurement was performed using a viscometer (EH cone type) manufactured by TOKI Sangyo Co., Ltd.
 (pH)
 pHメーターを用いて測定した。
(PH)
It was measured using a pH meter.
 (再分散性)
 作製後24時間以上放置したインクジェットインクを、20回強く振とうさせた後に濾過し、その濾紙に顔料が残留するか否かで評価した。
(Redispersity)
The inkjet ink left for 24 hours or more after production was vigorously shaken 20 times and then filtered, and evaluated by whether or not the pigment remained on the filter paper.
 (耐水性(溶出))
 各実施例にて作製したインクジェットインクで印字した印字対象物の印字面を、水で湿らせたときのインクの溶け出しの有無とその水への着色により確認した。
(Water resistance (elution))
The printed surface of the object to be printed printed with the inkjet ink produced in each example was confirmed by the presence or absence of ink leaching when moistened with water and the coloring of the ink.
 (密着性(剥離))
 印字対象物を疑似錠剤とし、当該錠剤に対して各実施例にて作製したインクジェットインクを用いて印字し、印字部分を綿棒で擦ったときの剥離の有無により確認した。
(Adhesion (peeling))
The object to be printed was a pseudo-tablet, and printing was performed on the tablet using the inkjet ink prepared in each example, and the presence or absence of peeling when the printed portion was rubbed with a cotton swab was confirmed.
(印字性能)
 印加電圧、パルス幅、駆動周波数を調整可能な電子天秤を有する自社製インクジェット吐出観察装置を評価装置として用いて、インクジェットプリンタとして図3のように機器を配置して、中空糸脱気モジュール(DIC株式会社製「SEPAREL EF-AG5-B」(膜面積0.5m)、真空度6.7kPa(絶対圧)で真空ポンプ4作動させ、脱気「有」時の中空糸脱気モジュールの圧力損失を脱気率80(%)時に0.02MPa、脱気率60(%)時に0.06MPa、脱気率40(%)時に0.10MPaとし、脱気「無」時の中空糸脱気モジュールの圧力損失を0.02MPaとした)を使用して脱気処理装置を設け、循環型(ドロップオンデマンド)DODのインクジェットヘッドを2台設置した。インクジェット装置が稼働し、上記2台の内、一方のインクジェットヘッドが印字対象物へ印字を行っている間、他方のインクジェットヘッドをメンテステーションに待機させ、待機中に、プリカーサ、フラッシング、ワイピングを一定間隔にて実施した。そして、2台のインクジェットヘッドの内、印字に用いるインクジェットヘッドと、メンテナンスステーションに待機させるインクジェットヘッドとを、所定の時間ごとに変更することで、印字を継続した。
(Printing performance)
Using an in-house manufactured inkjet ejection observation device having an electronic balance capable of adjusting the applied voltage, pulse width, and drive frequency as an evaluation device, the equipment is arranged as an inkjet printer as shown in FIG. 3, and a hollow thread degassing module (DIC) is used. "SEPAREL EF-AG5-B" manufactured by Co., Ltd. (film area 0.5 m 2 ), vacuum pump 4 is operated at a vacuum degree of 6.7 kPa (absolute pressure), and the pressure of the hollow thread degassing module when degassing is "Yes". The loss is 0.02 MPa when the degassing rate is 80 (%), 0.06 MPa when the degassing rate is 60 (%), and 0.10 MPa when the degassing rate is 40 (%). The degassing treatment device was installed using the pressure loss of the module (with 0.02 MPa), and two circulation type (drop-on-demand) DOD inkjet heads were installed. While the inkjet device is operating and one of the above two inkjet heads is printing on the object to be printed, the other inkjet head is made to stand by at the maintenance station, and the precursor, flushing, and wiping are constant during the standby. It was carried out at intervals. Then, among the two inkjet heads, the inkjet head used for printing and the inkjet head made to stand by at the maintenance station were changed at predetermined time intervals to continue printing.
(溶存酸素濃度測定と脱気率)
溶存酸素濃度は飯島電子工業株式会社製 有機溶媒対応型DOメーター B-506Sを用いて測定した。脱気前のインクの溶存酸素濃度は、インクタンク8内のインクの溶存酸素濃度とした。脱気後の溶存酸素は、インクジェットプリンタを一定時間運転し流量が安定したところで溶存酸素濃度を測定した。インクジェットプリンタに直接、溶存酸素計を取り付けることは困難であることから、測定時に背圧調整器から先のフィルター100出口から、容器に脱気されたインクを採取して、前記溶存酸素計を用いて溶存酸素濃度を測定した。
(Measurement of dissolved oxygen concentration and degassing rate)
The dissolved oxygen concentration was measured using an organic solvent compatible DO meter B-506S manufactured by Iijima Denshi Kogyo Co., Ltd. The dissolved oxygen concentration of the ink before degassing was the dissolved oxygen concentration of the ink in the ink tank 8. For the dissolved oxygen after degassing, the inkjet printer was operated for a certain period of time, and the dissolved oxygen concentration was measured when the flow rate became stable. Since it is difficult to attach the dissolved oxygen meter directly to the inkjet printer, the ink degassed in the container is collected from the outlet of the filter 100 from the back pressure regulator at the time of measurement, and the dissolved oxygen meter is used. The dissolved oxygen concentration was measured.
(高温環境での印字性能)
 室温を45℃に保持した環境室内にてインクジェットプリンタでの印字テストを行なったときの印字不良、フォント異常等の有無で、印字性能を下記基準に従って5段階で評価した。
5:非常に良好
4:良好
3:良好品よりも若干劣る
2:明らかな不良
1:評価なし
(Printing performance in high temperature environment)
The printing performance was evaluated on a 5-point scale according to the following criteria based on the presence or absence of printing defects, font abnormalities, etc. when a printing test was performed with an inkjet printer in an environment room where the room temperature was maintained at 45 ° C.
5: Very good 4: Good 3: Slightly inferior to good product 2: Obvious defect 1: No evaluation
(低室温環境での印字性能)
 室温を5℃に保持した環境室内にてインクジェットプリンタでの印字テストを行なったときの、印字不良、フォント異常等の有無で、印字性能を前記基準に従って5段階で評価した。
(Printing performance in a low room temperature environment)
When a printing test was performed with an inkjet printer in an environment room where the room temperature was maintained at 5 ° C., the printing performance was evaluated on a 5-point scale according to the above criteria based on the presence or absence of printing defects, font abnormalities, and the like.
(連続吐出性)
 室温を25℃に保持した環境室内にてインクジェットプリンタでの1時間印字テストを行ったときの、ノズルの詰りで5段階評価した。
5:非常に良好
4:良好
3:良好品よりも若干劣る
2:明らかな不良
1:評価なし
(Continuous ejection)
When a printing test was performed with an inkjet printer for 1 hour in an environment room where the room temperature was maintained at 25 ° C., the nozzle was clogged and evaluated on a 5-point scale.
5: Very good 4: Good 3: Slightly inferior to good product 2: Obvious defect 1: No evaluation
 1 中空糸
 2 インク入り口
 3 インク出口
 4 真空ポンプ
 5 インク
 6 中空糸膜
 61  (中空糸)外径
 62  (中空糸)内径
 V  減圧・真空
 S  溶存酸素
 7  ヘッドキャップ
 8  インクタンク
 9  加圧ポンプ(送液ポンプ)
 P  圧力計
 F  流量計
 D  溶存酸素計
10  脱気モジュール
11  背圧調整器
12  ヘッド
30  中間タンク
41  ノズル
100 フィルター
A,B 電磁弁
51  ヒーター部
52  インク供給口
1 Hollow fiber 2 Ink inlet 3 Ink outlet 4 Vacuum pump 5 Ink 6 Hollow fiber membrane 61 (Hollow fiber) Outer diameter 62 (Hollow fiber) Inner diameter V Decompression / Vacuum S Dissolved oxygen 7 Head cap 8 Ink tank 9 Pressurized pump (feed) Liquid pump)
P Pressure gauge F Flow meter D Dissolved oxygen meter 10 Degassing module 11 Back pressure regulator 12 Head 30 Intermediate tank 41 Nozzle 100 Filter A, B Solenoid valve 51 Heater section 52 Ink supply port

Claims (4)

  1.   インクタンクからヘッドまでのインク経路を有する可食用インクジェットプリンタを用いる印刷方法において、
      前記インクジェットプリンタは、前記インク経路に、脱気することができる中空糸脱気モジュールを備えること
     前記インクは、インク中のジルコニウム濃度が0.01ppm未満の可食用インクジェットインクであること、を特徴とする、印刷方法。
    In a printing method using an edible inkjet printer having an ink path from an ink tank to a head.
    The inkjet printer is provided with a hollow thread degassing module capable of degassing in the ink path. The ink is an edible inkjet ink having a zirconium concentration of less than 0.01 ppm in the ink. How to print.
  2.  前記中空糸脱気モジュールによりインクの溶存酸素濃度を8.0ppm以下の範囲まで脱気しながら印刷を行う、請求項1記載の印刷方法。 The printing method according to claim 1, wherein printing is performed while degassing the dissolved oxygen concentration of the ink to a range of 8.0 ppm or less by the hollow fiber degassing module.
  3.  前記脱気は、インク中のジルコニウムの不存在下で行う、請求項1又は2記載の印刷方法。 The printing method according to claim 1 or 2, wherein the degassing is performed in the absence of zirconium in the ink.
  4.   インクタンクからヘッドまでのインク経路を有する可食用インクジェットプリンタにおいて、
      前記インクジェットプリンタは、前記インク経路に、脱気することができる中空糸脱気モジュールを備えること
     前記インクは、インク中のジルコニウム濃度が0.01ppm未満の可食用インクジェットインクであること、を特徴とする、インクジェットプリンタ。
    In an edible inkjet printer that has an ink path from the ink tank to the head
    The inkjet printer is provided with a hollow thread degassing module capable of degassing in the ink path. The ink is an edible inkjet ink having a zirconium concentration of less than 0.01 ppm in the ink. Inkjet printer.
PCT/JP2021/034024 2020-09-29 2021-09-16 Edible ink jet printer and printing method WO2022070932A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022501281A JPWO2022070932A1 (en) 2020-09-29 2021-09-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-163203 2020-09-29
JP2020163203 2020-09-29

Publications (1)

Publication Number Publication Date
WO2022070932A1 true WO2022070932A1 (en) 2022-04-07

Family

ID=80950307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034024 WO2022070932A1 (en) 2020-09-29 2021-09-16 Edible ink jet printer and printing method

Country Status (2)

Country Link
JP (1) JPWO2022070932A1 (en)
WO (1) WO2022070932A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7302725B1 (en) * 2022-11-10 2023-07-04 凸版印刷株式会社 Edible ink for inkjet printing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013237276A (en) * 2005-11-30 2013-11-28 Konica Minolta Inc Method for degassing of inkjet ink, method for production of inkjet ink, and inkjet printer
US20150015645A1 (en) * 2013-07-11 2015-01-15 Loc V. Bui Degassing apparatus and methods thereof
WO2015022780A1 (en) * 2013-08-14 2015-02-19 コニカミノルタ株式会社 Inkjet ink degassing method, inkjet recording method, and recording apparatus
JP2017008275A (en) * 2015-06-26 2017-01-12 紀州技研工業株式会社 Inkjet ink, method for producing the same and printing method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6060102B2 (en) * 2014-03-13 2017-01-11 紀州技研工業株式会社 Ink jet ink, method for producing the same, and printing method using the ink jet ink
JP6648766B2 (en) * 2015-12-24 2020-02-14 Dic株式会社 Beverage and method for producing the same
JP6729685B2 (en) * 2016-04-22 2020-07-22 Dic株式会社 Milk production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013237276A (en) * 2005-11-30 2013-11-28 Konica Minolta Inc Method for degassing of inkjet ink, method for production of inkjet ink, and inkjet printer
US20150015645A1 (en) * 2013-07-11 2015-01-15 Loc V. Bui Degassing apparatus and methods thereof
WO2015022780A1 (en) * 2013-08-14 2015-02-19 コニカミノルタ株式会社 Inkjet ink degassing method, inkjet recording method, and recording apparatus
JP2017008275A (en) * 2015-06-26 2017-01-12 紀州技研工業株式会社 Inkjet ink, method for producing the same and printing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7302725B1 (en) * 2022-11-10 2023-07-04 凸版印刷株式会社 Edible ink for inkjet printing

Also Published As

Publication number Publication date
JPWO2022070932A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
JP7001112B2 (en) Pigment dispersion, ink composition, inkjet recording method, and recorded material
JP5744082B2 (en) Ink jet ink, method for producing the same, and method for using the same
WO2022070932A1 (en) Edible ink jet printer and printing method
JP6101666B2 (en) Ink jet ink and printing method thereof
US20180126731A1 (en) Ink discharge device and ink discharge method
JP6120910B2 (en) Ink jet ink, method for producing the same, and method for printing the same
JP6106703B2 (en) Ink jet ink and printing method thereof
JP2020029537A (en) Inkjet ink and method for producing the same
JP5995910B2 (en) Ink jet ink, method for producing the same, and printing method using the ink jet ink
JP6060102B2 (en) Ink jet ink, method for producing the same, and printing method using the ink jet ink
JP5094653B2 (en) Inkjet ink
JP2011089028A (en) Moisture content-reduced solvent ink composition, and method for producing the same
JP2015166424A (en) Inkjet ink and method of producing the same
CN112745714B (en) Inkjet ink
JP5713949B2 (en) Ink for ink jet recording apparatus, storage solution, and image forming method
JP4244621B2 (en) Kneaded material for aqueous pigment dispersion and method for producing aqueous pigment dispersion and ink composition using the same
JP5621691B2 (en) Water-based ink for ink jet recording, ink cartridge, ink jet recording method and ink jet recording apparatus
JP2020033468A (en) Inkjet ink
JP2007091846A (en) Cleaning fluid for ink passage
JP2000038533A (en) Solvent-based pigment ink for jet printer
JP2004285171A (en) Method for producing aqueous pigment dispersion and method for producing aqueous pigment recording solution
WO2023195424A1 (en) Aqueous ink for inkjet recording, fixing agent, inkjet recording method, inkjet recording device, and ink holding container
JP2019085474A (en) Inkjet ink for film coated tablet
JP2018111289A (en) Liquid discharge device
JPH04220473A (en) Recording fluid

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022501281

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875234

Country of ref document: EP

Kind code of ref document: A1