WO2022070653A1 - Multi-stage screw rotating machine and compressed air storage power generation device - Google Patents
Multi-stage screw rotating machine and compressed air storage power generation device Download PDFInfo
- Publication number
- WO2022070653A1 WO2022070653A1 PCT/JP2021/030210 JP2021030210W WO2022070653A1 WO 2022070653 A1 WO2022070653 A1 WO 2022070653A1 JP 2021030210 W JP2021030210 W JP 2021030210W WO 2022070653 A1 WO2022070653 A1 WO 2022070653A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotary machine
- screw rotary
- pressure
- screw
- stage screw
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/16—Arrangement of bearings; Supporting or mounting bearings in casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/12—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
- F01K23/16—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled all the engines being turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C1/00—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
- F02C1/02—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being an unheated pressurised gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/12—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
- F04C18/14—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
- F04C18/16—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/12—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
- F04C18/14—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
- F04C18/18—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/22—Rotary-piston pumps specially adapted for elastic fluids of internal-axis type with equidirectional movement of co-operating members at the points of engagement, or with one of the co-operating members being stationary, the inner member having more teeth or tooth equivalents than the outer member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/04—Heating; Cooling; Heat insulation
Definitions
- the present invention relates to a multi-stage screw rotary machine and a compressed air storage power generation device.
- CAES compressed air storage
- the CAES power generator uses renewable energy to drive a compressor with an electric motor to generate compressed air, stores the compressed air in a tank, etc., and uses the compressed air to generate a turbine generator with an expander when necessary. It is a device that drives and generates electricity.
- Patent Document 1 discloses a CAES power generation device provided with a screw rotary machine as a compressor and an expander in multiple stages.
- An object of the present invention is to secure durability while adopting a rolling bearing for a screw rotary machine having the highest pressure stage in a multi-stage screw rotary machine equipped with a screw rotary machine in multiple stages.
- the present invention It is equipped with a multi-stage screw rotation machine that compresses or expands the fluid with a pair of rotating male and female low-task crus.
- each screw rotary machine the pair of male low screw and female low screw are supported by rolling bearings.
- the compression ratio or expansion ratio of each screw rotary machine is set so that the differential pressure between the intake port and the discharge port of each screw rotary machine is equal to or less than the first predetermined pressure.
- the first predetermined pressure is a multi-stage screw rotary machine in which the radial load and thrust load generated in the male low task cru and the female low task cru due to the differential pressure do not exceed the allowable load in the rolling bearing. offer.
- the differential pressure at the entrance and exit of the screw rotary machine is set to be equal to or less than the first predetermined pressure at which the load generated in the low task cru due to the differential pressure does not exceed the allowable load of the rolling bearing. .. Therefore, the durability of the bearing can be ensured while adopting the rolling bearing.
- the support accuracy of the low task cru is improved and the runout is reduced as compared with the case where the low task cru is supported by the slide bearing.
- the gap between the pair of low task crus can be reduced while suppressing interference, so that the amount of energy can be increased during compression and the decrease in the amount of energy can be suppressed during expansion.
- the rolling bearing only needs to have a lubricating oil or a lubricating material such as grease interposed in the sliding portion, and does not require the formation of an oil film by the lubricating oil unlike the sliding bearing. Therefore, in the rolling bearing, it is easy to maintain the lubrication state of the sliding portion properly and to secure the durability of the bearing even under the usage condition in which the low task clue frequently repeats starting (rotating) and stopping.
- the above effect is preferably exhibited when start / stop occurs frequently, such as when renewable energy generated by solar power generation or wind power generation is converted into compressed air by a multi-stage screw rotary machine and stored. ..
- the internal parts such as low screw and bearing that make up each screw rotation machine are less likely to have special specifications, and it is easy to adopt existing standard products.
- only the casing may be configured as a special product so as to satisfy a desired pressure resistance strength according to the discharge pressure or the supply pressure. Therefore, since the main part of the screw rotating machine can be configured with a standard product, it is easy to reduce the cost.
- a plurality of the screw rotation machines having at least four stages or more are provided.
- the plurality of screw rotary machines include a maximum pressure stage screw rotation machine located at the highest pressure stage and a next high pressure stage screw rotation machine located on the low pressure stage side.
- the compression ratio or expansion ratio in the maximum pressure stage screw rotary machine and the next high pressure stage screw rotary machine may be set so that the differential pressure is equal to or higher than the second predetermined pressure.
- the maximum pressure stage screw rotary machine and the next high pressure stage screw rotary machine are respectively.
- the male low task cru has four teeth and has four teeth.
- the female low task clue may have 6 teeth.
- the effect of the above invention is suitably exhibited in a screw rotary machine in which the male low-task cru has four teeth and the female low-task cru has six teeth.
- Each of the screw rotary machines is equipped with a balance piston that resists the thrust load.
- the balance piston may be common to the maximum pressure stage screw rotary machine and the next high pressure stage screw rotary machine.
- the thrust load generated in the low screw due to the differential pressure is also approximately equal. .. Therefore, in these screw rotary machines, the balance piston that resists the thrust load can be standardized, so that it is not necessary to individually design the balance piston, and the cost can be reduced by standardization.
- Each of the screw rotating machines is provided with a sealing portion that seals the internal pressure of the casing from the outside.
- the seal portion may be common to the maximum pressure stage screw rotation machine and the next high pressure stage screw rotation machine.
- the seal part of the highest pressure stage screw rotary machine which requires the highest sealing performance, is diverted to the next high pressure stage screw rotary machine, which requires the next highest pressure resistance.
- the seal portion can be standardized, and it is not necessary to individually design the seal portion, so that the cost can be reduced by standardization.
- the screw rotating machine comprises a casing that accommodates the pair of male and female low screw and delimits a compression chamber or expansion chamber that compresses or expands the fluid, respectively.
- the casing may be common to the maximum pressure stage screw rotary machine and the next high pressure stage screw rotary machine.
- the casing of the highest pressure stage screw rotary machine which requires the highest pressure resistance performance
- the casing of the highest pressure stage screw rotary machine is diverted to the next high pressure stage screw rotation machine, which requires the next highest pressure resistance performance.
- the casing can be standardized, and it is not necessary to design the casing individually, so that the cost can be reduced by standardizing.
- a cooling jacket may not be formed on the casing of the maximum pressure stage screw rotary machine and the next high pressure stage screw rotary machine.
- the compression ratio is set so that the differential pressure is equal to or less than the first predetermined pressure, so that the compression ratio is unlikely to increase. Therefore, it is not necessary to cool the casing because the temperature rise due to compression is small. Further, in the maximum pressure stage screw rotary machine and the next high pressure stage screw rotary machine, cast steel may be adopted as the casing material due to the high internal pressure of the casing, but it is easy to secure the castability of the casing by not forming the jacket.
- a plurality of compressors that are mechanically connected to the plurality of motors and are fluidly connected in multiple stages to compress air.
- a pressure accumulator that is fluidly connected to the plurality of compressors and stores compressed air compressed by the plurality of compressors.
- a plurality of expanders fluidly connected to the accumulator and driven by the compressed air supplied from the accumulator. It comprises the plurality of expanders and a generator mechanically connected to the plurality of expanders.
- At least one of the plurality of compressors and the plurality of expanders is provided with a screw rotating machine in multiple stages. Each screw rotary machine has a pair of male low screw and female low screw supported by rolling bearings.
- the compression ratio or expansion ratio of each screw rotary machine is set so that the differential pressure between the intake port and the discharge port of each screw rotary machine is equal to or less than the first predetermined pressure.
- the first predetermined pressure is a pressure at which the radial load and the thrust load generated in the male low task cru and the female low task cru due to the differential pressure do not exceed the allowable load in the rolling bearing. offer.
- the effect of the present invention is suitably exhibited in a compressed air storage power generation device having a multi-stage screw rotary machine.
- FIG. 2 is a cross-sectional view taken along the line III-III of FIG. Sectional drawing which passes through the axis of a pair of low task crus of a 4th compressor.
- the compression ratio is set as high as possible within 2 or more and 3 or less, the intake pressure becomes higher in the higher pressure stage, so even if the compression ratio is about the same, it is between the intake port and the discharge port of the screw rotary machine.
- the differential pressure of is increased.
- the radial load and thrust load generated in the rotor due to the increase in differential pressure become excessive, so the rotor is supported by a slide bearing that has a larger load capacity than rolling bearings. Has been done.
- the sliding bearing needs to constantly supply the lubricating oil so that an oil film is formed on the sliding portion, but if the supply of the lubricating oil is stopped at the time of stopping, the oil film is likely to run out. If the operation is restarted with the oil film running out, the bearings are likely to be damaged. Therefore, it is difficult to ensure the durability of the slide bearing under the conditions of use where start and stop may occur frequently.
- the screw rotary machine located at the highest pressure stage adopts a slide bearing due to the high differential pressure, and the bearing part is specially designed, resulting in high cost.
- CAES compressed air storage
- the power generated by the power generation facility 2 using renewable energy such as wind power or solar power is stored in the form of compressed air.
- the stored compressed air is used to generate electricity when necessary, and the generated electric power is supplied to the consumer equipment 3 such as a factory or sold to an electric power company.
- the CAES power generation device 1 includes a charging unit 4, a discharging unit 5, and a pressure accumulating tank 6.
- the charging unit 4 generates compressed air using the electric power generated by the power generation facility 2.
- the accumulator tank 6 stores the compressed air generated by the charging unit 4.
- the discharge unit 5 uses compressed air to generate electricity when necessary.
- the charging unit 4 includes first to fifth compressors (screw rotating machines) 11 to 15 (referred to as compressor 10 when described without distinction), first to fourth electric motors 21 to 24, and first to first. It has 5 heat exchangers 31 to 35.
- the compressor 10 is a screw rotating machine provided with a pair of male and female low-task crus, and the electric motors 21 to 24 are mechanically connected to the low-task crus.
- the fifth compressor 15 constitutes the highest pressure stage screw rotary machine of the present invention
- the fourth compressor 14 constitutes the next high pressure stage screw rotary machine of the present invention.
- the first to fifth compressors 11 to 15 are fluidly connected to the five stages. Specifically, the first stage compressor 11, the second stage second compressor 12, the third stage third compressor 13, the fourth stage fourth compressor 14, and the fifth stage.
- the fifth compressor 15 of the eye is fluidly connected in series in this order.
- the first to fifth compressors 11 to 15 take in air from the intake ports 11a to 15a, compress the air inside, and discharge the compressed air from the discharge ports 11b to 15b.
- the intake port 11a of the first compressor 11 is open to the outside air through the air pipe 41.
- the discharge port 11b of the first compressor 11 is fluidly connected to the intake port 12a of the second compressor 12 through an air pipe 42.
- the discharge port 12b of the second compressor 12 is fluidly connected to the intake port 13a of the third compressor 13 through the air pipe 43.
- the discharge port 13b of the third compressor 13 is fluidly connected to the intake port 14a of the fourth compressor 14 through the air pipe 44.
- the discharge port 14b of the fourth compressor 14 is fluidly connected to the intake port 15a of the fifth compressor 15 through the air pipe 45.
- the discharge port 15b of the fifth compressor 15 is fluidly connected to the accumulator tank 6 through an air pipe 46.
- the first electric motor 21 is mechanically connected to the first and second compressors 11 and 12, and the first and second compressors 11 and 12 are rotationally driven by using the electric power generated by the power generation facility 2. do.
- the second to fourth electric motors 22 to 24 rotate and drive the third to fifth compressors 13 to 15, respectively.
- the first to fifth heat exchangers 31 to 35 are provided in the air pipes 42 to 46, respectively, and cool the compressed air discharged from the first to fifth compressors 11 to 15 located on the upstream side.
- Each of the first to fifth heat exchangers 31 to 35 lowers the compressed and heated compressed air to, for example, 40 ° to 45 °.
- the first compressor 11 takes in air from the outside air and compresses it.
- the second compressor 12 further compresses the compressed air compressed by the first compressor 11.
- the third compressor 13 further compresses the compressed air compressed by the second compressor 12.
- the fourth compressor 14 further compresses the compressed air compressed by the third compressor 13.
- the fifth compressor 15 further compresses the compressed air compressed by the fourth compressor 14.
- the compressed air compressed by the fifth compressor 15 is stored in the accumulator tank 6.
- a multi-stage compressor multi-stage screw rotary machine in which the first to fifth compressors 11 to 15 are arranged in multiple stages is configured.
- the air taken in from the atmosphere is gradually compressed from the first compressor 11 toward the fifth compressor 15, and the pressure rises.
- the mass flow rate of compressed air does not change at each stage, but the volumetric flow rate of compressed air decreases as it is compressed. Therefore, when a plurality of first to fifth compressors 11 to 15 are configured according to the required air flow rate, the number may be reduced toward the high pressure stage.
- the discharge unit 5 includes the first to fifth expanders (screw rotary machines) 51 to 55 (referred to simply as the expander 50 when described without distinction), and the first to fourth generators which are rotationally driven by these. It has 61 to 64.
- the expander 50 is a screw rotating machine provided with a pair of male and female low-task crus, and generators 61 to 64 are mechanically connected to the low-task crus.
- the first expander 51 constitutes the maximum pressure stage screw rotary machine
- the second expander 52 constitutes the next high pressure stage screw rotary machine.
- the first to fifth expanders 51 to 55 are fluidly connected to the five stages. Specifically, the first inflator 51 in the first stage, the second inflator 52 in the second stage, the third inflator 53 in the third stage, the fourth inflator 54 in the fourth stage, and the fifth stage.
- the fifth expander 55 of the eye is fluidly connected in series in this order. In the first to fifth expanders 51 to 55, compressed air is supplied from the air supply ports 51a to 55a, the compressed air is expanded inside, and the air is exhausted from the exhaust ports 51b to 55b.
- the accumulator tank 6 is fluidly connected to the air supply port 51a of the first expander 51 through the air pipe 71.
- the exhaust port 51b of the first expander 51 is fluidly connected to the intake port 52a of the second expander 52 through an air pipe 72.
- the exhaust port 52b of the second expander 52 is fluidly connected to the air supply port 53a of the third expander 53 through the air pipe 73.
- the exhaust port 53b of the third expander 53 is fluidly connected to the air supply port 54a of the fourth expander 54 through the air pipe 74.
- the exhaust port 54b of the fourth expander 54 is fluidly connected to the air supply port 55a of the fifth expander 55 through the air pipe 75.
- the exhaust port 55b of the fifth expander 55 is open to the outside air through the air pipe 76.
- the fourth generator 64 is mechanically connected to the fifth expander 55 and the fourth expander 54, and is driven by the fifth expander 55 and the fourth expander 54 using the compressed air supplied. To generate electricity. Similarly, the second and third generators 62, 63 are driven by the second and third expanders 52, 53 to generate electricity. The first generator 61 is driven by the first expander 51 to generate electricity.
- a multi-stage expander (multi-stage screw rotary machine) in which the first to fifth expanders 51 to 55 are arranged in multiple stages is configured.
- the compressed air supplied from the accumulator tank 6 is gradually expanded from the first expander 51 toward the fifth expander 55, and the pressure drops.
- the mass flow rate of compressed air does not change in each stage, the volumetric flow rate of compressed air increases as it expands. Therefore, when a plurality of first to fifth expanders 11 to 15 are configured according to the required air flow rate, the number may be increased toward the low pressure stage.
- FIG. 2 shows a horizontal cross section of the third compressor 13 passing through the axis of a pair of low task crus.
- the schematic structure of the compressor 10 will be described with reference to FIG. 2 by taking the third compressor 13 as an example.
- the third compressor 13 has a rotor casing 81 and a bearing casing 82, and has a compression chamber 83 defined by a cylindrical inner peripheral surface 81a of the rotor casing 81.
- a pair of male low task cru 84 and female low task cru 85 are housed in the compression chamber 83.
- the third compressor 13 takes in air from the intake port 13a, compresses it in the compression chamber 83, and causes it from the discharge port 13b. Discharge.
- the intake port 13a is located corresponding to the left end portion of the compression chamber 83
- the discharge port 13b is located corresponding to the right end portion of the compression chamber 83. Therefore, the compressed air is compressed in the compression chamber 83 toward the discharge port 13b from the intake port 13a, and the pressure gradually increases.
- the direction from the intake port 13a to the discharge port 13b is referred to as a high pressure side
- the direction from the discharge port 13b to the intake port 13a is referred to as a low pressure side in the axial direction of the low task clew 84, 85.
- FIG. 3 is a cross-sectional view taken along the line III-III of FIG. 2, showing a cross section orthogonal to the axis of the pair of male low task cru 84 and female low task cru 85.
- FIG. 3 only the inner peripheral surface 81a of the rotor casing 81 is shown.
- the male low task cru 84 has a four-toothed shape and the female low-task cru 85 has a six-toothed shape.
- the compressor 10 according to the present embodiment is a dry type in which lubricating oil is not supplied into the compression chamber 83. Therefore, a predetermined gap C is secured between the inner peripheral surface 81a of the rotor casing 81, the male low task cru 84, and the female low task cru 85, respectively, to prevent mutual interference.
- a cooling jacket 81b through which a cooling medium (for example, water) is refluxed is formed on the outer peripheral portion of the rotor casing 81.
- the cooling jacket 81b prevents thermal deformation of the rotor casing 81 due to an excessive temperature rise of the compressed air in the compression chamber 83. This also suppresses the interference between the inner peripheral surface 81a of the rotor casing 81 and the low task crus 84 and 85.
- the male low-pressure clew 84 has a high-pressure side male rotor shaft 86 extending from the high-pressure side end in the axial direction to the high-pressure side, and a low-pressure side male rotor shaft 87 extending from the low-pressure side end in the axial direction to the low-pressure side.
- the high-pressure side male rotor shaft 86 has a first rotor shaft 86a located on the proximal end side and a second rotor shaft 86b located on the distal end side and having a smaller diameter than the first rotor shaft 86a.
- the low pressure side male rotor shaft 87 has a first rotor shaft 87a located on the proximal end side and a second rotor shaft 87b located on the distal end side and having a smaller diameter than the first rotor shaft 87a. There is.
- An air seal portion 92 located on the proximal end side and an oil seal portion 93 located on the distal end side are attached to the first rotor shafts 86a and 87a, respectively.
- the air seal portion 92 seals the compression chamber 83 with respect to the outside, and is appropriately selected based on the pressure of the compression chamber 83.
- the oil seal portion 93 prevents the lubricating oil applied or supplied to the bearings 88 and 89, which will be described later, from leaking to the compression chamber 83 side.
- Bearings 88 and 89 are attached to the second rotor shafts 86b and 87b, respectively.
- the male low task crown 84 is pivotally supported on the rotor casing 81 via the bearing 88 on the second rotor shaft 86b, and pivotally supported on the bearing casing 82 via the bearing 89 on the second rotor shaft 87b. There is.
- the bearings 88 and 89 are located on the proximal end side of the second rotor shafts 86b and 87b and can support the radial load, respectively, and the radial bearings 88a and 89a are located on the distal end side and can support the thrust load.
- the radial bearings 88a and 89a are roller bearings, and the thrust bearings 88b and 89b are ball bearings. Therefore, the bearings 88 and 89 are all composed of rolling bearings.
- a driven gear 90 is attached to the end of the male low-pressure cru 84 on the high-pressure side, that is, the end of the second rotor shaft 86b so that it cannot rotate relative to each other.
- the driven gear 90 meshes with the drive gear 22a (see FIG. 1) of the second motor 22, and the driving force of the second motor 22 is transmitted to rotate the male low task clew 84.
- a timing gear 91a is attached to the low-pressure side end of the male low-speed clew 84, that is, the tip of the second rotor shaft 87b so as not to rotate relative to each other.
- the female low task clue 85 is also configured in the same manner, and has a high-pressure side female rotor shaft 96 and a low-pressure side female rotor shaft 97 extending in the axial direction from both ends in the axial direction, respectively.
- the high-pressure side female rotor shaft 96 and the low-pressure side female rotor shaft 97 have first rotor shafts 96a and 97a located on the proximal end side and second rotor shafts 96b and 97b located on the distal end side and having a small diameter, respectively.
- An air seal portion 92 and an oil seal portion 93 are attached to the first rotor shafts 96a and 97a.
- the female low-task clue 85 is pivotally supported on the rotor casing 81 and the bearing casing 82 in the second rotor shafts 96b and 97b via the radial bearings 88a and 89a and the thrust bearings 88b and 89b.
- a timing gear 91b is attached to the end of the female low-speed clue 85 on the low pressure side, that is, the tip of the second rotor shaft 97b so that it cannot rotate relative to each other.
- the timing gear 91b meshes with the timing gear 91a attached to the male low task clew 84. Therefore, the female low task cru 85 rotates in synchronization with the rotation of the male low task cru 84, and interference in each tooth portion is prevented.
- a balance piston 98 is attached to the end of the male low task cru 84 on the low pressure side.
- the balance piston 98 uses compressed air supplied from a compressor (not shown) from the pneumatic inlet 99 to apply a force against the thrust force (pushing pressure) acting on the male low task cru 84 to the male low task cru 84. That is, the balance piston 98 reduces the thrust force acting on the thrust bearings 88b and 89b.
- a load in the radial direction and the thrust direction acts on the male low task cru 84 and the female low task cru 85 due to the difference between the suction pressure at the intake port 13a and the discharge pressure at the discharge port 13b.
- the larger the differential pressure the larger the load. Therefore, the bearings 88 and 89 take into consideration the load acting on the low task crus 84 and 85 due to the differential pressure and the reaction force due to the balance piston 98, and the respective bearings are more than the loads in the radial direction and the thrust direction. It is selected so that the allowable load of 88 and 89 is large.
- the load acting on the low task crus 84 and 85 is excessive by setting the compression ratios of the first to fifth compressors 11 to 15 so that the differential pressure does not exceed the first predetermined pressure. It is prevented from becoming too high.
- the compression ratios of the first to fifth compressors 11 to 15 are set so that the first predetermined pressure does not exceed the allowable load of the rolling bearing so that the load generated on the low task crus 84 and 85 due to the differential pressure does not exceed the allowable load.
- the male low task cru 84 has four teeth and the female low task cru 85 has six teeth. Therefore, if the differential pressure is 1.3 MPa or less as an actual value, the allowable load in the rolling bearing may not be exceeded. I know. Therefore, the first predetermined pressure is set to 1.3 MPa.
- Table 1 shows the main specifications of the 1st to 5th compressors 11 to 15. The specifications of the first to fifth compressors 11 to 15 will be described with reference to Table 1.
- the first compressor 11 compresses the air taken in from the outside from the atmospheric pressure to 0.4 MPa.
- the second compressor 12 further compresses the compressed air discharged from the first compressor 11 to 1.0 MPa.
- the third compressor 13 further compresses the compressed air discharged from the second compressor 12 to 2.1 MPa.
- the fourth compressor 14 further compresses the compressed air discharged from the third compressor 13 to 3.3 MPa.
- the fifth compressor 15 further compresses the compressed air discharged from the fourth compressor 14 to 4.5 MPa.
- the first compressor 11 is approximately 3.5, which is the largest
- the second compressor 12 is approximately 3.0, which is the next largest
- the third to fifth compressors 13 to 15 are the smallest, approximately 2. It is less than or equal to 0.0.
- the rotor set of specification A having the largest compression ratio is adopted for the first compressor 11, and the rotor set of specification B having the next largest compression ratio is adopted for the second compressor 12.
- the rotor set of specification C having the smallest compression ratio is commonly used in the third to fifth compressors 13 to 15. Therefore, three types of rotor sets having different compression ratios, specifications A to C, are adopted. Although the same rotor set is adopted in the specification C, a desired compression ratio is realized by appropriately setting the position and size of each discharge port.
- the compression ratio is set to approximately 2 or less.
- the first compressor 11 is the smallest, the second compressor 12 is the second smallest, and the third to fifth compressors 13 to 15 are the largest.
- the thrust force due to the differential pressure is also small, so that the first compressor 11 is not provided with a balance piston.
- the second compressor having a differential pressure of 0.7 MPa is provided with a balance piston 98 of the specification I, and the differential pressure exceeds 1 MPa and is 1.2 MPa or less, which is substantially the same size.
- the fifth compressors 13 to 15 are provided with the balance piston 98 of the specification II in common.
- the discharge pressure is gradually increased from the first compressor 11 to the fifth compressor 15.
- cast iron for example, FC250
- FC250 is adopted as a material that can withstand the discharge pressure in the first to third compressors 11 to 13 having a discharge pressure of about 2 MPa or less, and the discharge pressure is 3.
- Cast steel for example, 13Cr system
- the rotor casing 81 is also different from the specifications a to c, respectively.
- the fourth and fifth compressors 14 and 15 have the same rotor set, the rotor casing 81 also has the same specification d.
- the air seal portion 92 is also set in relation to the discharge pressure. As described above, since the rotor sets of the first and second compressors 11 and 12 are different, the air seal portion 92 is also different from the specifications 1 and 2, respectively. On the other hand, since the third to fifth compressors 13 to 15 have a common rotor set, the air seal portion 92 of the specification 3 is commonly set. The air seal portion 92 of the specification 3 is selected so as to withstand the fifth compressor 15 having the highest discharge pressure and the strictest sealing condition, and the discharge pressure is lower than that of the fifth compressor 15, so that the sealing condition is satisfied. Can be used in loose third and fourth compressors 13, 14.
- the compression ratio becomes smaller as the compressor 10 is located in the high pressure stage where the pressure at the intake port becomes higher.
- the compression ratio of the fifth compressor 15 (highest pressure stage screw rotary machine) located in the highest pressure stage is 1.4, and then the fourth compressor 14 (second high pressure stage) located in the high pressure stage.
- the compression ratio of the screw rotary machine) is set as low as 1.6.
- the differential pressure on the high pressure stage side is set to be equal to or higher than the second predetermined pressure.
- the second predetermined pressure is 0.9 MPa.
- FIG. 4 shows a cross-sectional view similar to that of FIG. 2 of the fourth compressor 14.
- the same components as those of the third compressor 13 are designated by the same reference numerals, and the description thereof is omitted.
- the fourth compressor 14 does not need to cool the rotor casing 81 because the temperature rise due to compression in the compression chamber 83 is small as a result of the low compression ratio. Therefore, unlike the third compressor 13, a cooling jacket is not formed on the rotor casing 81 of the fourth compressor 14 (specification d in Table 1 above).
- the fifth compressor 15 is the same as the fourth compressor 14 except that the position and / or size of the discharge port 15b is different. Therefore, the 4th and 5th compressors 14 and 15 have the same material as the cast rotor casing 81, and only the discharge ports 14b and 15b are formed due to the difference in machining.
- the first to fifth expanders 51 to 55 differ from the first to fifth compressors 11 to 15 in that the rotation direction is opposite, and the others are configured in the same manner. Therefore, the description of the first to fifth expanders 51 to 55 will be omitted.
- the compression ratios of the first to fifth compressors 11 to 15 can be read and applied to the expansion ratios of the fifth to first expanders 55 to 51, respectively. Further, the compression chamber 83 in the compressor 10 is read as the expansion chamber in the expander 50.
- the following effects are obtained. Although the following effects have been described for the compressor 10, they also occur in the expander 50.
- the differential pressure between the intake port 10a and the discharge port 10b of the compressor 10 causes the load generated on the low task crus 84 and 85 due to the differential pressure.
- the allowable load of the rolling bearings 88 and 89 is not exceeded and the pressure is equal to or less than the first predetermined pressure. Therefore, the durability of the bearings 88 and 89 can be ensured while adopting the bearings 88 and 89 which are rolling bearings.
- the support accuracy of the low task crus 84 and 85 is improved and the runout is reduced as compared with the case where the low task crus 84 and 85 are supported by the slide bearings.
- the gap C (see FIG. 3) between the pair of low task crus 84 and 85 can be reduced while suppressing interference, so that the amount of energy can be increased during compression.
- the compressor 10 has four teeth for the male rotor and six teeth for the female rotor. Therefore, in the compressor used, the differential pressure is 1.3 MPa, which has a proven record in the market as a rolling bearing. It is set to the following. Therefore, the effect of the above invention is preferably exhibited.
- the bearings 88 and 89 which are rolling bearings, need only have a lubricating oil or a lubricating material such as grease interposed in the sliding portion, and do not require the formation of an oil film by the lubricating oil unlike the sliding bearing.
- the rolling bearings 88 and 89 are durable because it is easy to maintain an appropriate lubrication state of the sliding portion even under usage conditions in which the low task crus 84 and 85 frequently repeat start (rotation) and stop. Easy to secure.
- the above effect is preferably exhibited when start-up and stoppage can occur frequently, such as when the CAES power generation device 1 converts renewable energy from solar power generation or wind power generation into compressed air and stores it. Will be done.
- the built-in components such as the low task cru 84, 85, bearings 88, 89, etc. of each compressor 10 are less likely to have special specifications, and the existing standard products are adopted.
- the rotor casing 81 may be configured as a dedicated product so as to satisfy a desired withstand voltage according to the discharge pressure. Therefore, since the main part of the compressor 10 can be configured with a standard product, it is easy to reduce the cost.
- the differential pressure of the third to fifth compressors 13 to 15 located on the high pressure stage side is appropriately set. Specifically, the respective compression ratios are set so that the differential pressure in the third to fifth compressors 13 to 15 located on the high pressure stage side is 0.9 MPa or more. This prevents the number of stages of the compressor 10 from being excessively increased in order to realize compressed air at a desired pressure.
- the thrust load generated in the low task crus 84 and 85 due to the differential pressure is also substantially equal. Therefore, in the third to fifth compressors 13 to 15, the balance piston 98 that resists the thrust load can be standardized, so that it is not necessary to individually design the balance piston 98, and the cost can be reduced by standardization.
- the rotor casing 81 of the fifth compressor 15 located at the highest compression stage where the highest withstand voltage performance is required is also diverted to the fourth compressor 14 which requires the next highest withstand voltage performance.
- the rotor casing 81 can be standardized, and it is not necessary to individually design the rotor casing 81, so that the cost can be reduced by standardization.
- the rotor casing 81 is made of cast steel, but the flow of hot water in casting is inferior to that of cast iron. Therefore, there is a drawback that it is difficult to form a complicated shape.
- the rotor casings 81 of the 4th and 5th compressors 14 and 15 are not formed with a cooling jacket that is not easy to form by casting. Therefore, in the 4th and 5th compressors 14 and 15, deterioration of manufacturability is suppressed while the rotor casing 81 is formed of cast steel.
- the charging unit 4 is configured by five-stage compression including the first to fifth compressors 11 to 15, but the present invention is not limited to this. It may be a 4-stage compression, or a compression may be configured with 6 or more stages.
- the combination of low task clue is composed of a combination of 4 male teeth and 6 female teeth, but the present invention is not limited to this.
- the compressor and the expander may be integrally configured as a compression / expansion combined machine, and the motor and the generator may be integrally configured as an electric power generation combined machine. According to this configuration, the installation space can be reduced and the cost can be reduced as compared with the case where the compressor and the expander are separately provided. Similarly, as compared with the case where the motor and the generator are separately provided, the installation space can be reduced and the cost can be reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Compressors 10 or expanders 50 that compress or expand air via paired male rotor screws 84 and female rotor screws 85 are provided in multiple stages. In each compressor 10 or each expander 50, the male rotor screw 84 and the female rotor screw 85 are supported by rolling bearings 88, 89, and the compression ratio in each compressor 10 or the expansion ratio in each expander 50 is set so that the differential pressure is equal to or less than a first predetermined pressure. The first predetermined pressure is a pressure at which a radial load and a thrust load generated in the male rotor screw 84 and the female rotor screw 85 due to the differential pressure do not exceed an allowable load in the rolling bearings 88, 89.
Description
本発明は、多段式スクリュ回転機械および圧縮空気貯蔵発電装置に関する。
The present invention relates to a multi-stage screw rotary machine and a compressed air storage power generation device.
風力または太陽光等の再生可能エネルギを利用した発電は、気象条件に依存するため、出力が安定しないことがある。適時に必要な電力を得るためには、エネルギ貯蔵システムを使用する必要がある。そのようなシステムの一例として、例えば、圧縮空気貯蔵(CAES:compressed air energy storage)発電装置が知られている。
Power generation using renewable energy such as wind power or solar power depends on weather conditions, so the output may not be stable. To get the required power in a timely manner, it is necessary to use an energy storage system. As an example of such a system, for example, a compressed air storage (CAES) power generation device is known.
CAES発電装置は、再生可能エネルギを用いて電動機により圧縮機を駆動して圧縮空気を生成し、圧縮空気をタンクなどに貯蔵し、必要なときに圧縮空気を用いて膨張機によりタービン発電機を駆動して発電する装置である。
The CAES power generator uses renewable energy to drive a compressor with an electric motor to generate compressed air, stores the compressed air in a tank, etc., and uses the compressed air to generate a turbine generator with an expander when necessary. It is a device that drives and generates electricity.
特許文献1には、圧縮機および膨張機としてスクリュ回転機械を多段に備えたCAES発電装置が開示されている。
Patent Document 1 discloses a CAES power generation device provided with a screw rotary machine as a compressor and an expander in multiple stages.
本発明は、スクリュ回転機械を多段に備えた多段式スクリュ回転機械において、最高圧段のスクリュ回転機械に転がり軸受を採用しつつ耐久性を確保することを課題とする。
An object of the present invention is to secure durability while adopting a rolling bearing for a screw rotary machine having the highest pressure stage in a multi-stage screw rotary machine equipped with a screw rotary machine in multiple stages.
本発明は、
回転する一対の雄ロータスクリュおよび雌ロータスクリュによって流体を圧縮または膨張させるスクリュ回転機械を多段に備え、
それぞれのスクリュ回転機械は、前記一対の雄ロータスクリュおよび雌ロータスクリュが転がり軸受で支持されており、
それぞれのスクリュ回転機械における圧縮比または膨張比は、それぞれのスクリュ回転機械の吸気口と吐出口との間の差圧が第1所定圧以下になるように設定されており、
前記第1所定圧は、前記差圧に起因して前記雄ロータスクリュおよび前記雌ロータスクリュに生じるラジアル荷重およびスラスト荷重が前記転がり軸受における許容荷重を超えない圧力である、多段式スクリュ回転機械を提供する。 The present invention
It is equipped with a multi-stage screw rotation machine that compresses or expands the fluid with a pair of rotating male and female low-task crus.
In each screw rotary machine, the pair of male low screw and female low screw are supported by rolling bearings.
The compression ratio or expansion ratio of each screw rotary machine is set so that the differential pressure between the intake port and the discharge port of each screw rotary machine is equal to or less than the first predetermined pressure.
The first predetermined pressure is a multi-stage screw rotary machine in which the radial load and thrust load generated in the male low task cru and the female low task cru due to the differential pressure do not exceed the allowable load in the rolling bearing. offer.
回転する一対の雄ロータスクリュおよび雌ロータスクリュによって流体を圧縮または膨張させるスクリュ回転機械を多段に備え、
それぞれのスクリュ回転機械は、前記一対の雄ロータスクリュおよび雌ロータスクリュが転がり軸受で支持されており、
それぞれのスクリュ回転機械における圧縮比または膨張比は、それぞれのスクリュ回転機械の吸気口と吐出口との間の差圧が第1所定圧以下になるように設定されており、
前記第1所定圧は、前記差圧に起因して前記雄ロータスクリュおよび前記雌ロータスクリュに生じるラジアル荷重およびスラスト荷重が前記転がり軸受における許容荷重を超えない圧力である、多段式スクリュ回転機械を提供する。 The present invention
It is equipped with a multi-stage screw rotation machine that compresses or expands the fluid with a pair of rotating male and female low-task crus.
In each screw rotary machine, the pair of male low screw and female low screw are supported by rolling bearings.
The compression ratio or expansion ratio of each screw rotary machine is set so that the differential pressure between the intake port and the discharge port of each screw rotary machine is equal to or less than the first predetermined pressure.
The first predetermined pressure is a multi-stage screw rotary machine in which the radial load and thrust load generated in the male low task cru and the female low task cru due to the differential pressure do not exceed the allowable load in the rolling bearing. offer.
本発明によれば、スクリュ回転機械の出入り口の差圧が、該差圧に起因してロータスクリュに生じる荷重が転がり軸受の許容荷重を超えない第1所定圧以下になるように設定されている。よって、転がり軸受を採用しつつ、軸受の耐久性を確保できる。ロータスクリュを転がり軸受で支持することによって、滑り軸受で支持する場合に比べて、ロータスクリュの支持精度が向上して振れ回りが低減する。この結果、一対のロータスクリュ間の隙間を、干渉を抑制しつつ低減できるので、圧縮時にはエネルギ量の増大を図ることができ、膨張時にはエネルギ量の減少を抑制することができる。
According to the present invention, the differential pressure at the entrance and exit of the screw rotary machine is set to be equal to or less than the first predetermined pressure at which the load generated in the low task cru due to the differential pressure does not exceed the allowable load of the rolling bearing. .. Therefore, the durability of the bearing can be ensured while adopting the rolling bearing. By supporting the low task cru with rolling bearings, the support accuracy of the low task cru is improved and the runout is reduced as compared with the case where the low task cru is supported by the slide bearing. As a result, the gap between the pair of low task crus can be reduced while suppressing interference, so that the amount of energy can be increased during compression and the decrease in the amount of energy can be suppressed during expansion.
また、転がり軸受は、摺動部に潤滑油又はグリス等の潤滑材が介在していればよく、滑り軸受のように潤滑油による油膜形成を要しない。このため、転がり軸受は、ロータスクリュが起動(回転)と停止とを頻繁に繰り返すような使用条件下においても、摺動部の潤滑状態を適切に維持しやすく軸受の耐久性を確保しやすい。特に、太陽光発電また風力発電等による再生可能エネルギを多段式スクリュ回転機械によって圧縮空気に変換して貯蔵する場合のように起動停止が頻繁に生じ得る場合において、上記効果が好適に発揮される。
Further, the rolling bearing only needs to have a lubricating oil or a lubricating material such as grease interposed in the sliding portion, and does not require the formation of an oil film by the lubricating oil unlike the sliding bearing. Therefore, in the rolling bearing, it is easy to maintain the lubrication state of the sliding portion properly and to secure the durability of the bearing even under the usage condition in which the low task clue frequently repeats starting (rotating) and stopping. In particular, the above effect is preferably exhibited when start / stop occurs frequently, such as when renewable energy generated by solar power generation or wind power generation is converted into compressed air by a multi-stage screw rotary machine and stored. ..
さらにまた、差圧を制限することで、それぞれのスクリュ回転機械を構成する、ロータスクリュ、軸受等の内蔵物が特殊仕様になりにくく、既存の標準品を採用しやすい。一方で、ケーシングのみ吐出圧または給気圧に応じて所望の耐圧強度を満たすように専用品を構成すればよい。よって、スクリュ回転機械の主要部分を標準品で構成することができるのでコストを低減しやすい。
Furthermore, by limiting the differential pressure, the internal parts such as low screw and bearing that make up each screw rotation machine are less likely to have special specifications, and it is easy to adopt existing standard products. On the other hand, only the casing may be configured as a special product so as to satisfy a desired pressure resistance strength according to the discharge pressure or the supply pressure. Therefore, since the main part of the screw rotating machine can be configured with a standard product, it is easy to reduce the cost.
少なくとも4段以上の複数の前記スクリュ回転機械を備え、
前記複数のスクリュ回転機械は、最高圧段に位置する最高圧段スクリュ回転機械と、この1つ低圧段側に位置する次高圧段スクリュ回転機械とを含み、
前記最高圧段スクリュ回転機械および次高圧段スクリュ回転機械における圧縮比または膨張比はそれぞれ、前記差圧が第2所定圧以上になるように設定されていてもよい。 A plurality of the screw rotation machines having at least four stages or more are provided.
The plurality of screw rotary machines include a maximum pressure stage screw rotation machine located at the highest pressure stage and a next high pressure stage screw rotation machine located on the low pressure stage side.
The compression ratio or expansion ratio in the maximum pressure stage screw rotary machine and the next high pressure stage screw rotary machine may be set so that the differential pressure is equal to or higher than the second predetermined pressure.
前記複数のスクリュ回転機械は、最高圧段に位置する最高圧段スクリュ回転機械と、この1つ低圧段側に位置する次高圧段スクリュ回転機械とを含み、
前記最高圧段スクリュ回転機械および次高圧段スクリュ回転機械における圧縮比または膨張比はそれぞれ、前記差圧が第2所定圧以上になるように設定されていてもよい。 A plurality of the screw rotation machines having at least four stages or more are provided.
The plurality of screw rotary machines include a maximum pressure stage screw rotation machine located at the highest pressure stage and a next high pressure stage screw rotation machine located on the low pressure stage side.
The compression ratio or expansion ratio in the maximum pressure stage screw rotary machine and the next high pressure stage screw rotary machine may be set so that the differential pressure is equal to or higher than the second predetermined pressure.
本構成によれば、最高圧段側のスクリュ回転機械の差圧が適度に設定されているので、所望の圧縮圧または膨張圧を実現するための、スクリュ回転機械の段数が過度に増大することが抑制される。
According to this configuration, since the differential pressure of the screw rotating machine on the maximum pressure stage side is appropriately set, the number of stages of the screw rotating machine for achieving the desired compression pressure or expansion pressure is excessively increased. Is suppressed.
前記最高圧段スクリュ回転機械および次高圧段スクリュ回転機械はそれぞれ、
前記雄ロータスクリュは4枚歯であり、
前記雌ロータスクリュは6枚歯であってもよい。 The maximum pressure stage screw rotary machine and the next high pressure stage screw rotary machine are respectively.
The male low task cru has four teeth and has four teeth.
The female low task clue may have 6 teeth.
前記雄ロータスクリュは4枚歯であり、
前記雌ロータスクリュは6枚歯であってもよい。 The maximum pressure stage screw rotary machine and the next high pressure stage screw rotary machine are respectively.
The male low task cru has four teeth and has four teeth.
The female low task clue may have 6 teeth.
本構成によれば、雄ロータスクリュが4枚歯であり雌ロータスクリュが6枚歯であるスクリュ回転機械において、上記発明の効果が好適に発揮される。
According to this configuration, the effect of the above invention is suitably exhibited in a screw rotary machine in which the male low-task cru has four teeth and the female low-task cru has six teeth.
前記スクリュ回転機械はそれぞれ、前記スラスト荷重に抗するバランスピストンを備え、
前記バランスピストンは、前記最高圧段スクリュ回転機械および次高圧段スクリュ回転機械において共通していてもよい。 Each of the screw rotary machines is equipped with a balance piston that resists the thrust load.
The balance piston may be common to the maximum pressure stage screw rotary machine and the next high pressure stage screw rotary machine.
前記バランスピストンは、前記最高圧段スクリュ回転機械および次高圧段スクリュ回転機械において共通していてもよい。 Each of the screw rotary machines is equipped with a balance piston that resists the thrust load.
The balance piston may be common to the maximum pressure stage screw rotary machine and the next high pressure stage screw rotary machine.
本構成によれば、出入り口間の差圧が概ね等しく設定されている最高圧段スクリュ回転機械および次高圧段スクリュ回転機械それぞれにおいて、差圧に起因してロータスクリュに生じるスラスト荷重も概ね等しくなる。よって、これらのスクリュ回転機械において、スラスト荷重に抗するバランスピストンを共通化できるので、個別にバランスピストンを設計することを要せず、共通化によりコストを低減できる。
According to this configuration, in each of the maximum pressure stage screw rotary machine and the next high pressure stage screw rotary machine in which the differential pressure between the entrance and exit is set to be substantially equal, the thrust load generated in the low screw due to the differential pressure is also approximately equal. .. Therefore, in these screw rotary machines, the balance piston that resists the thrust load can be standardized, so that it is not necessary to individually design the balance piston, and the cost can be reduced by standardization.
前記スクリュ回転機械はそれぞれ、ケーシング内圧を外部からシールするシール部を備え、
前記シール部は、前記最高圧段スクリュ回転機械および次高圧段スクリュ回転機械において共通していてもよい。 Each of the screw rotating machines is provided with a sealing portion that seals the internal pressure of the casing from the outside.
The seal portion may be common to the maximum pressure stage screw rotation machine and the next high pressure stage screw rotation machine.
前記シール部は、前記最高圧段スクリュ回転機械および次高圧段スクリュ回転機械において共通していてもよい。 Each of the screw rotating machines is provided with a sealing portion that seals the internal pressure of the casing from the outside.
The seal portion may be common to the maximum pressure stage screw rotation machine and the next high pressure stage screw rotation machine.
本構成によれば、最も高いシール性能が要求される最高圧段スクリュ回転機械のシール部を、次に高い耐圧性能が要求される次高圧段スクリュ回転機械に流用している。これによって、シール部を共通化することができ、個別にシール部を設計することを要しないので、共通化によりコストを低減できる。
According to this configuration, the seal part of the highest pressure stage screw rotary machine, which requires the highest sealing performance, is diverted to the next high pressure stage screw rotary machine, which requires the next highest pressure resistance. As a result, the seal portion can be standardized, and it is not necessary to individually design the seal portion, so that the cost can be reduced by standardization.
前記スクリュ回転機械はそれぞれ、前記一対の雄ロータスクリュおよび雌ロータスクリュを収容し、前記流体を圧縮または膨張させる圧縮室または膨張室を画定するケーシングを備え、
前記ケーシングは、前記最高圧段スクリュ回転機械および次高圧段スクリュ回転機械において共通していてもよい。 The screw rotating machine comprises a casing that accommodates the pair of male and female low screw and delimits a compression chamber or expansion chamber that compresses or expands the fluid, respectively.
The casing may be common to the maximum pressure stage screw rotary machine and the next high pressure stage screw rotary machine.
前記ケーシングは、前記最高圧段スクリュ回転機械および次高圧段スクリュ回転機械において共通していてもよい。 The screw rotating machine comprises a casing that accommodates the pair of male and female low screw and delimits a compression chamber or expansion chamber that compresses or expands the fluid, respectively.
The casing may be common to the maximum pressure stage screw rotary machine and the next high pressure stage screw rotary machine.
本構成によれば、最も高い耐圧性能が要求される最高圧段スクリュ回転機械のケーシングを、次に高い耐圧性能が要求される次高圧段スクリュ回転機械に流用している。これによって、ケーシングを共通化することができ、個別にケーシングを設計することを要しないので、共通化によりコストを低減できる。
According to this configuration, the casing of the highest pressure stage screw rotary machine, which requires the highest pressure resistance performance, is diverted to the next high pressure stage screw rotation machine, which requires the next highest pressure resistance performance. As a result, the casing can be standardized, and it is not necessary to design the casing individually, so that the cost can be reduced by standardizing.
前記最高圧段スクリュ回転機械および次高圧段スクリュ回転機械における前記ケーシングには、冷却ジャケットが形成されていなくてもよい。
A cooling jacket may not be formed on the casing of the maximum pressure stage screw rotary machine and the next high pressure stage screw rotary machine.
本構成によれば、多段式スクリュ回転機械を圧縮機として使用する場合、圧縮比は、差圧が第1所定圧以下となるように設定されているため、高くなりにくい。したがって、圧縮による温度上昇が小さいのでケーシングを冷却することを要しない。また、最高圧段スクリュ回転機械および次高圧段スクリュ回転機械は、高いケーシング内圧のためにケーシング材質に鋳鋼を採用する場合があるが、ジャケットを形成しないことによってケーシングの鋳造性を確保しやすい。
According to this configuration, when a multi-stage screw rotary machine is used as a compressor, the compression ratio is set so that the differential pressure is equal to or less than the first predetermined pressure, so that the compression ratio is unlikely to increase. Therefore, it is not necessary to cool the casing because the temperature rise due to compression is small. Further, in the maximum pressure stage screw rotary machine and the next high pressure stage screw rotary machine, cast steel may be adopted as the casing material due to the high internal pressure of the casing, but it is easy to secure the castability of the casing by not forming the jacket.
また、本発明の他の側面は、
複数の電動機と、
前記複数の電動機と機械的に接続され、多段に流体的に接続されて空気を圧縮する複数の圧縮機と、
前記複数の圧縮機と流体的に接続され、前記複数の圧縮機により圧縮された圧縮空気を貯蔵する蓄圧部と、
前記蓄圧部と流体的に接続され、前記蓄圧部から供給される前記圧縮空気によって駆動される複数の膨張機と、
前記複数の膨張機と機械的に接続された発電機と、を備え、
前記複数の圧縮機および前記複数の膨張機のうち少なくともいずれか一方はスクリュ回転機械を多段に備え、
それぞれのスクリュ回転機械は、転がり軸受で支持された一対の雄ロータスクリュおよび雌ロータスクリュを有しており、
それぞれのスクリュ回転機械における圧縮比または膨張比は、それぞれのスクリュ回転機械の吸気口と吐出口との間の差圧が第1所定圧以下になるように設定されており、
前記第1所定圧は、前記差圧に起因して前記雄ロータスクリュおよび前記雌ロータスクリュに生じるラジアル荷重およびスラスト荷重が前記転がり軸受における許容荷重を超えない圧力である、圧縮空気貯蔵発電装置を提供する。 In addition, other aspects of the present invention are
With multiple motors,
A plurality of compressors that are mechanically connected to the plurality of motors and are fluidly connected in multiple stages to compress air.
A pressure accumulator that is fluidly connected to the plurality of compressors and stores compressed air compressed by the plurality of compressors.
A plurality of expanders fluidly connected to the accumulator and driven by the compressed air supplied from the accumulator.
It comprises the plurality of expanders and a generator mechanically connected to the plurality of expanders.
At least one of the plurality of compressors and the plurality of expanders is provided with a screw rotating machine in multiple stages.
Each screw rotary machine has a pair of male low screw and female low screw supported by rolling bearings.
The compression ratio or expansion ratio of each screw rotary machine is set so that the differential pressure between the intake port and the discharge port of each screw rotary machine is equal to or less than the first predetermined pressure.
The first predetermined pressure is a pressure at which the radial load and the thrust load generated in the male low task cru and the female low task cru due to the differential pressure do not exceed the allowable load in the rolling bearing. offer.
複数の電動機と、
前記複数の電動機と機械的に接続され、多段に流体的に接続されて空気を圧縮する複数の圧縮機と、
前記複数の圧縮機と流体的に接続され、前記複数の圧縮機により圧縮された圧縮空気を貯蔵する蓄圧部と、
前記蓄圧部と流体的に接続され、前記蓄圧部から供給される前記圧縮空気によって駆動される複数の膨張機と、
前記複数の膨張機と機械的に接続された発電機と、を備え、
前記複数の圧縮機および前記複数の膨張機のうち少なくともいずれか一方はスクリュ回転機械を多段に備え、
それぞれのスクリュ回転機械は、転がり軸受で支持された一対の雄ロータスクリュおよび雌ロータスクリュを有しており、
それぞれのスクリュ回転機械における圧縮比または膨張比は、それぞれのスクリュ回転機械の吸気口と吐出口との間の差圧が第1所定圧以下になるように設定されており、
前記第1所定圧は、前記差圧に起因して前記雄ロータスクリュおよび前記雌ロータスクリュに生じるラジアル荷重およびスラスト荷重が前記転がり軸受における許容荷重を超えない圧力である、圧縮空気貯蔵発電装置を提供する。 In addition, other aspects of the present invention are
With multiple motors,
A plurality of compressors that are mechanically connected to the plurality of motors and are fluidly connected in multiple stages to compress air.
A pressure accumulator that is fluidly connected to the plurality of compressors and stores compressed air compressed by the plurality of compressors.
A plurality of expanders fluidly connected to the accumulator and driven by the compressed air supplied from the accumulator.
It comprises the plurality of expanders and a generator mechanically connected to the plurality of expanders.
At least one of the plurality of compressors and the plurality of expanders is provided with a screw rotating machine in multiple stages.
Each screw rotary machine has a pair of male low screw and female low screw supported by rolling bearings.
The compression ratio or expansion ratio of each screw rotary machine is set so that the differential pressure between the intake port and the discharge port of each screw rotary machine is equal to or less than the first predetermined pressure.
The first predetermined pressure is a pressure at which the radial load and the thrust load generated in the male low task cru and the female low task cru due to the differential pressure do not exceed the allowable load in the rolling bearing. offer.
本発明によれば、多段式スクリュ回転機械を有する圧縮空気貯蔵発電装置において、本発明の効果が好適に発揮される。
According to the present invention, the effect of the present invention is suitably exhibited in a compressed air storage power generation device having a multi-stage screw rotary machine.
本発明によれば、スクリュ回転機械を多段に備えた多段式スクリュ回転機械において、最高圧段のスクリュ回転機械に転がり軸受を採用しつつ耐久性を確保できる。
According to the present invention, in a multi-stage screw rotary machine equipped with a multi-stage screw rotary machine, durability can be ensured while adopting a rolling bearing for the screw rotary machine of the highest pressure stage.
(発明の背景)
近年、ドライ式のスクリュ回転機械を多段に備えた圧縮空気貯蔵発電装置において、最高吐出圧として4.5MPaG程度の吐出圧が実用化されている。この場合、各段の圧縮比は、概ね2以上3以下のうち、圧縮による吐出温度の上昇が過度にならない範囲でできるだけ高く設定されており、これにより段数の増大が抑制されている。その結果、上記最高吐出圧は4段圧縮によって実現されている。 (Background of invention)
In recent years, in a compressed air storage power generation device equipped with a dry screw rotary machine in multiple stages, a discharge pressure of about 4.5 MPaG has been put into practical use as a maximum discharge pressure. In this case, the compression ratio of each stage is set to be as high as possible within a range in which the discharge temperature does not rise excessively due to compression, out of approximately 2 or more and 3 or less, whereby the increase in the number of stages is suppressed. As a result, the maximum discharge pressure is realized by four-stage compression.
近年、ドライ式のスクリュ回転機械を多段に備えた圧縮空気貯蔵発電装置において、最高吐出圧として4.5MPaG程度の吐出圧が実用化されている。この場合、各段の圧縮比は、概ね2以上3以下のうち、圧縮による吐出温度の上昇が過度にならない範囲でできるだけ高く設定されており、これにより段数の増大が抑制されている。その結果、上記最高吐出圧は4段圧縮によって実現されている。 (Background of invention)
In recent years, in a compressed air storage power generation device equipped with a dry screw rotary machine in multiple stages, a discharge pressure of about 4.5 MPaG has been put into practical use as a maximum discharge pressure. In this case, the compression ratio of each stage is set to be as high as possible within a range in which the discharge temperature does not rise excessively due to compression, out of approximately 2 or more and 3 or less, whereby the increase in the number of stages is suppressed. As a result, the maximum discharge pressure is realized by four-stage compression.
圧縮比を、概ね2以上3以下のなかでできるだけ高く設定すると、高圧段ほど吸気圧が高くなるので、圧縮比が同程度であったとしも、スクリュ回転機械の吸気口と吐出口との間の差圧が増大してしまう。その結果、最高圧段のスクリュ回転機械では、差圧の増大に起因してロータに生じるラジアル荷重およびスラスト荷重が過大となるため、ロータは、転がり軸受に比べて耐荷重が大きい滑り軸受によって支持されている。
If the compression ratio is set as high as possible within 2 or more and 3 or less, the intake pressure becomes higher in the higher pressure stage, so even if the compression ratio is about the same, it is between the intake port and the discharge port of the screw rotary machine. The differential pressure of is increased. As a result, in a screw rotary machine with the highest pressure stage, the radial load and thrust load generated in the rotor due to the increase in differential pressure become excessive, so the rotor is supported by a slide bearing that has a larger load capacity than rolling bearings. Has been done.
多段式スクリュ回転機械における最高圧段のスクリュ回転機械において、ロータの支持を滑り軸受で構成すると以下のデメリットが存在する。
In the screw rotary machine with the highest pressure stage in the multi-stage screw rotary machine, if the rotor support is composed of slide bearings, the following disadvantages exist.
第1に、スクリュ回転機械をドライ式により構成する場合、雄ロータと雌ロータとが接触しないように隙間を確保する必要がある。また、雄ロータおよび雌ロータを滑り軸受により支持する場合、転がり軸受に比べて支持精度が劣るため、軸の振れ回りを考慮して、雄ロータと雌ロータとの間の隙間をより広く確保する必要がある。その結果、最高圧段に位置するスクリュ回転機械をドライ式で構成する場合、上記隙間の増大に起因して性能が低下しやすい。
First, when the screw rotary machine is configured by a dry type, it is necessary to secure a gap so that the male rotor and the female rotor do not come into contact with each other. In addition, when the male rotor and female rotor are supported by slide bearings, the support accuracy is inferior to that of rolling bearings. Therefore, in consideration of shaft runout, a wider gap between the male rotor and female rotor is secured. There is a need. As a result, when the screw rotary machine located at the maximum pressure stage is configured by a dry type, the performance tends to deteriorate due to the increase in the gap.
第2に、滑り軸受は、摺動部に油膜が形成されるように潤滑油を常時供給することを要するが、停止時に潤滑油の供給が停止すると油膜切れを生じやすい。油膜が切れた状態で運転が再開されると軸受が損傷しやすい。よって、滑り軸受は、起動停止が頻繁に生じる得る使用条件下において耐久性を確保しにくい。
Secondly, the sliding bearing needs to constantly supply the lubricating oil so that an oil film is formed on the sliding portion, but if the supply of the lubricating oil is stopped at the time of stopping, the oil film is likely to run out. If the operation is restarted with the oil film running out, the bearings are likely to be damaged. Therefore, it is difficult to ensure the durability of the slide bearing under the conditions of use where start and stop may occur frequently.
第3に、最高圧段に位置するスクリュ回転機械は、高い差圧に起因して滑り軸受を採用するため軸受部が専用設計となるため、高コストになってしまう。
Thirdly, the screw rotary machine located at the highest pressure stage adopts a slide bearing due to the high differential pressure, and the bearing part is specially designed, resulting in high cost.
したがって、滑り軸受を採用することによる上記デメリットを解消するため、最高圧段のスクリュ回転機械にも転がり軸受を採用したいという要望がある。
Therefore, in order to eliminate the above-mentioned disadvantages of using slide bearings, there is a demand to use rolling bearings for screw rotary machines with the highest pressure stage.
以下、添付図面を参照して本発明の一実施形態に係る圧縮空気貯蔵(CAES)発電装置を説明する。
Hereinafter, the compressed air storage (CAES) power generation device according to the embodiment of the present invention will be described with reference to the attached drawings.
図1に示すCAES発電装置1では、風力または太陽光等の再生可能エネルギ(図1において風力発電を例示)を利用した発電設備2にて発電された電力が圧縮空気の態様で蓄えられる。必要なときに、蓄えられた圧縮空気を用いて必要なときに発電し、発電した電力を工場などの需要家設備3に供給しまたは電力会社に売電する。
In the CAES power generation device 1 shown in FIG. 1, the power generated by the power generation facility 2 using renewable energy such as wind power or solar power (example of wind power generation in FIG. 1) is stored in the form of compressed air. When necessary, the stored compressed air is used to generate electricity when necessary, and the generated electric power is supplied to the consumer equipment 3 such as a factory or sold to an electric power company.
CAES発電装置1は、充電部4と、放電部5と、蓄圧タンク6とを備える。充電部4は、発電設備2にて発電された電力を用いて圧縮空気を生成する。蓄圧タンク6は、充電部4により生成された圧縮空気を貯蔵する。放電部5は、必要なときに圧縮空気を用いて発電する。
The CAES power generation device 1 includes a charging unit 4, a discharging unit 5, and a pressure accumulating tank 6. The charging unit 4 generates compressed air using the electric power generated by the power generation facility 2. The accumulator tank 6 stores the compressed air generated by the charging unit 4. The discharge unit 5 uses compressed air to generate electricity when necessary.
充電部4は、第1~第5圧縮機(スクリュ回転機械)11~15(区別なく記載する場合、圧縮機10と称する)と、第1~第4電動機21~24と、第1~第5熱交換器31~35とを有している。圧縮機10は、雄雌一対のロータスクリュを備えたスクリュ回転機械であり、ロータスクリュに各電動機21~24が機械的に接続されている。本実施形態では、第5圧縮機15が本発明の最高圧段スクリュ回転機械を構成しており、第4圧縮機14が本発明の次高圧段スクリュ回転機械を構成している。
The charging unit 4 includes first to fifth compressors (screw rotating machines) 11 to 15 (referred to as compressor 10 when described without distinction), first to fourth electric motors 21 to 24, and first to first. It has 5 heat exchangers 31 to 35. The compressor 10 is a screw rotating machine provided with a pair of male and female low-task crus, and the electric motors 21 to 24 are mechanically connected to the low-task crus. In the present embodiment, the fifth compressor 15 constitutes the highest pressure stage screw rotary machine of the present invention, and the fourth compressor 14 constitutes the next high pressure stage screw rotary machine of the present invention.
本実施形態では、第1~第5圧縮機11~15が5段に流体的に接続されている。詳細には、1段目の第1圧縮機11と、2段目の第2圧縮機12と、3段目の第3圧縮機13と、4段目の第4圧縮機14と、5段目の第5圧縮機15とが、この順に流体的に直列に接続されている。第1~第5圧縮機11~15は、吸気口11a~15aから空気を吸気し、内部で空気を圧縮し、吐出口11b~15bから圧縮空気を吐出する。
In the present embodiment, the first to fifth compressors 11 to 15 are fluidly connected to the five stages. Specifically, the first stage compressor 11, the second stage second compressor 12, the third stage third compressor 13, the fourth stage fourth compressor 14, and the fifth stage. The fifth compressor 15 of the eye is fluidly connected in series in this order. The first to fifth compressors 11 to 15 take in air from the intake ports 11a to 15a, compress the air inside, and discharge the compressed air from the discharge ports 11b to 15b.
第1圧縮機11の吸気口11aは、空気配管41を通じて外気に開放されている。第1圧縮機11の吐出口11bは、空気配管42を通じて第2圧縮機12の吸気口12aに流体的に接続されている。第2圧縮機12の吐出口12bは、空気配管43を通じて第3圧縮機13の吸気口13aに流体的に接続されている。第3圧縮機13の吐出口13bは、空気配管44を通じて第4圧縮機14の吸気口14aに流体的に接続されている。第4圧縮機14の吐出口14bは、空気配管45を通じて第5圧縮機15の吸気口15aに流体的に接続されている。第5圧縮機15の吐出口15bは、空気配管46を通じて蓄圧タンク6に流体的に接続されている。
The intake port 11a of the first compressor 11 is open to the outside air through the air pipe 41. The discharge port 11b of the first compressor 11 is fluidly connected to the intake port 12a of the second compressor 12 through an air pipe 42. The discharge port 12b of the second compressor 12 is fluidly connected to the intake port 13a of the third compressor 13 through the air pipe 43. The discharge port 13b of the third compressor 13 is fluidly connected to the intake port 14a of the fourth compressor 14 through the air pipe 44. The discharge port 14b of the fourth compressor 14 is fluidly connected to the intake port 15a of the fifth compressor 15 through the air pipe 45. The discharge port 15b of the fifth compressor 15 is fluidly connected to the accumulator tank 6 through an air pipe 46.
第1電動機21は、第1および第2圧縮機11,12に機械的に接続されており、発電設備2にて発電された電力を用いて第1および第2圧縮機11,12を回転駆動する。同様に、第2~第4電動機22~24はそれぞれ、第3~第5圧縮機13~15を回転駆動する。
The first electric motor 21 is mechanically connected to the first and second compressors 11 and 12, and the first and second compressors 11 and 12 are rotationally driven by using the electric power generated by the power generation facility 2. do. Similarly, the second to fourth electric motors 22 to 24 rotate and drive the third to fifth compressors 13 to 15, respectively.
第1~第5熱交換器31~35はそれぞれ、空気配管42~46に設けられており、上流側に位置する第1~第5圧縮機11~15から吐出される圧縮空気を冷却する。第1~第5熱交換器31~35はそれぞれ、圧縮されて昇温した圧縮空気を、例えば40°~45°まで低下させる。
The first to fifth heat exchangers 31 to 35 are provided in the air pipes 42 to 46, respectively, and cool the compressed air discharged from the first to fifth compressors 11 to 15 located on the upstream side. Each of the first to fifth heat exchangers 31 to 35 lowers the compressed and heated compressed air to, for example, 40 ° to 45 °.
第1圧縮機11は外気から空気を吸気して圧縮する。第2圧縮機12は、第1圧縮機11で圧縮された圧縮空気をさらに圧縮する。第3圧縮機13は、第2圧縮機12で圧縮された圧縮空気をさらに圧縮する。第4圧縮機14は、第3圧縮機13で圧縮された圧縮空気をさらに圧縮する。第5圧縮機15は、第4圧縮機14で圧縮された圧縮空気をさらに圧縮する。第5圧縮機15で圧縮された圧縮空気は、蓄圧タンク6に蓄えられる。
The first compressor 11 takes in air from the outside air and compresses it. The second compressor 12 further compresses the compressed air compressed by the first compressor 11. The third compressor 13 further compresses the compressed air compressed by the second compressor 12. The fourth compressor 14 further compresses the compressed air compressed by the third compressor 13. The fifth compressor 15 further compresses the compressed air compressed by the fourth compressor 14. The compressed air compressed by the fifth compressor 15 is stored in the accumulator tank 6.
したがって、充電部4において、第1~第5圧縮機11~15が多段に配置された、多段式圧縮機(多段式スクリュ回転機械)が構成されている。その結果、充電部4において、大気から吸気された空気は、第1圧縮機11から第5圧縮機15に向かって段階的に圧縮されて圧力が上昇する。圧縮空気の質量流量は、各段において変わらないものの、圧縮空気の体積流量は圧縮されるほど減少する。したがって、要求される空気流量に応じて第1~第5圧縮機11~15をそれぞれ複数台で構成する場合、台数を高圧段に向かって減少させてもよい。
Therefore, in the charging unit 4, a multi-stage compressor (multi-stage screw rotary machine) in which the first to fifth compressors 11 to 15 are arranged in multiple stages is configured. As a result, in the charging unit 4, the air taken in from the atmosphere is gradually compressed from the first compressor 11 toward the fifth compressor 15, and the pressure rises. The mass flow rate of compressed air does not change at each stage, but the volumetric flow rate of compressed air decreases as it is compressed. Therefore, when a plurality of first to fifth compressors 11 to 15 are configured according to the required air flow rate, the number may be reduced toward the high pressure stage.
放電部5は、第1~第5膨張機(スクリュ回転機械)51~55(区別なく記載する場合、単に膨張機50と称する)と、これらによってそれぞれ回転駆動させられる第1~第4発電機61~64とを有している。膨張機50は、雄雌一対のロータスクリュを備えたスクリュ回転機械であり、ロータスクリュに各発電機61~64が機械的に接続されている。本実施形態では、第1膨張機51が最高圧段スクリュ回転機械を構成し、第2膨張機52が次高圧段スクリュ回転機械を構成している。
The discharge unit 5 includes the first to fifth expanders (screw rotary machines) 51 to 55 (referred to simply as the expander 50 when described without distinction), and the first to fourth generators which are rotationally driven by these. It has 61 to 64. The expander 50 is a screw rotating machine provided with a pair of male and female low-task crus, and generators 61 to 64 are mechanically connected to the low-task crus. In the present embodiment, the first expander 51 constitutes the maximum pressure stage screw rotary machine, and the second expander 52 constitutes the next high pressure stage screw rotary machine.
本実施形態では、第1~第5膨張機51~55が5段に流体的に接続されている。詳細には、1段目の第1膨張機51と、2段目の第2膨張機52と、3段目の第3膨張機53と、4段目の第4膨張機54と、5段目の第5膨張機55とが、この順に流体的に直列に接続されている。第1~第5膨張機51~55は、給気口51a~55aから圧縮空気が給気され、内部で圧縮空気を膨張させ、排気口51b~55bから空気を排気する。
In this embodiment, the first to fifth expanders 51 to 55 are fluidly connected to the five stages. Specifically, the first inflator 51 in the first stage, the second inflator 52 in the second stage, the third inflator 53 in the third stage, the fourth inflator 54 in the fourth stage, and the fifth stage. The fifth expander 55 of the eye is fluidly connected in series in this order. In the first to fifth expanders 51 to 55, compressed air is supplied from the air supply ports 51a to 55a, the compressed air is expanded inside, and the air is exhausted from the exhaust ports 51b to 55b.
蓄圧タンク6は、空気配管71を通じて第1膨張機51の給気口51aに流体的に接続されている。第1膨張機51の排気口51bは、空気配管72を通じて第2膨張機52の吸気口52aに流体的に接続されている。第2膨張機52の排気口52bは、空気配管73を通じて第3膨張機53の給気口53aに流体的に接続されている。第3膨張機53の排気口53bは、空気配管74を通じて第4膨張機54の給気口54aに流体的に接続されている。第4膨張機54の排気口54bは、空気配管75を通じて第5膨張機55の給気口55aに流体的に接続されている。第5膨張機55の排気口55bは、空気配管76を通じて外気に開放されている。
The accumulator tank 6 is fluidly connected to the air supply port 51a of the first expander 51 through the air pipe 71. The exhaust port 51b of the first expander 51 is fluidly connected to the intake port 52a of the second expander 52 through an air pipe 72. The exhaust port 52b of the second expander 52 is fluidly connected to the air supply port 53a of the third expander 53 through the air pipe 73. The exhaust port 53b of the third expander 53 is fluidly connected to the air supply port 54a of the fourth expander 54 through the air pipe 74. The exhaust port 54b of the fourth expander 54 is fluidly connected to the air supply port 55a of the fifth expander 55 through the air pipe 75. The exhaust port 55b of the fifth expander 55 is open to the outside air through the air pipe 76.
第4発電機64は、第5膨張機55および第4膨張機54に機械的に接続されており、給気される圧縮空気を用いて第5膨張機55および第4膨張機54によって駆動されて発電する。同様に、第2および第3発電機62,63は、第2および第3膨張機52,53によって駆動されて発電する。第1発電機61は、第1膨張機51によって駆動されて発電する。
The fourth generator 64 is mechanically connected to the fifth expander 55 and the fourth expander 54, and is driven by the fifth expander 55 and the fourth expander 54 using the compressed air supplied. To generate electricity. Similarly, the second and third generators 62, 63 are driven by the second and third expanders 52, 53 to generate electricity. The first generator 61 is driven by the first expander 51 to generate electricity.
したがって、放電部5において、第1~第5膨張機51~55が多段に配置された、多段式膨張機(多段式スクリュ回転機械)が構成されている。その結果、放電部5において、蓄圧タンク6から給気される圧縮空気は、第1膨張機51から第5膨張機55に向かって段階的に膨張させられて圧力が低下する。圧縮空気の質量流量は、各段において変わらないものの、圧縮空気の体積流量は膨張するほど増大する。したがって、要求される空気流量に応じて第1~第5膨張機11~15を複数台で構成する場合、台数を低圧段に向かって増大させてもよい。
Therefore, in the discharge unit 5, a multi-stage expander (multi-stage screw rotary machine) in which the first to fifth expanders 51 to 55 are arranged in multiple stages is configured. As a result, in the discharge unit 5, the compressed air supplied from the accumulator tank 6 is gradually expanded from the first expander 51 toward the fifth expander 55, and the pressure drops. Although the mass flow rate of compressed air does not change in each stage, the volumetric flow rate of compressed air increases as it expands. Therefore, when a plurality of first to fifth expanders 11 to 15 are configured according to the required air flow rate, the number may be increased toward the low pressure stage.
図2は、第3圧縮機13の、一対のロータスクリュの軸心を通る、水平断面を示している。以下、図2を参照して、第3圧縮機13を例にとって、圧縮機10の概略構造を説明する。
FIG. 2 shows a horizontal cross section of the third compressor 13 passing through the axis of a pair of low task crus. Hereinafter, the schematic structure of the compressor 10 will be described with reference to FIG. 2 by taking the third compressor 13 as an example.
第3圧縮機13は、ロータケーシング81と、軸受ケーシング82とを有し、ロータケーシング81の円筒状の内周面81aによって画定される圧縮室83を有する。圧縮室83には、一対の雄ロータスクリュ84と雌ロータスクリュ85とが収容されている。一対の雄ロータスクリュ84および雌ロータスクリュ85が互いに噛合した状態で回転することによって、第3圧縮機13は、空気を吸気口13aから吸気し、圧縮室83において圧縮して、吐出口13bから吐出する。
The third compressor 13 has a rotor casing 81 and a bearing casing 82, and has a compression chamber 83 defined by a cylindrical inner peripheral surface 81a of the rotor casing 81. A pair of male low task cru 84 and female low task cru 85 are housed in the compression chamber 83. By rotating the pair of male low task cru 84 and female low task cru 85 in a state of being meshed with each other, the third compressor 13 takes in air from the intake port 13a, compresses it in the compression chamber 83, and causes it from the discharge port 13b. Discharge.
図2において仮想線で示すように、吸気口13aは圧縮室83の左端部に対応して位置しており、吐出口13bは圧縮室83の右端部に対応して位置している。したがって、圧縮空気は、圧縮室83において吸気口13aから吐出口13bに向かうにつれて、圧縮されて圧力が次第に増大する。以下の説明では、ロータスクリュ84,85の軸方向において、吸気口13aから吐出口13bに向かう方向を高圧側と称し、吐出口13bから吸気口13aに向かう方向を低圧側と称する。
As shown by a virtual line in FIG. 2, the intake port 13a is located corresponding to the left end portion of the compression chamber 83, and the discharge port 13b is located corresponding to the right end portion of the compression chamber 83. Therefore, the compressed air is compressed in the compression chamber 83 toward the discharge port 13b from the intake port 13a, and the pressure gradually increases. In the following description, the direction from the intake port 13a to the discharge port 13b is referred to as a high pressure side, and the direction from the discharge port 13b to the intake port 13a is referred to as a low pressure side in the axial direction of the low task clew 84, 85.
図3は、図2のIII-III線に沿った断面図であり、一対の雄ロータスクリュ84および雌ロータスクリュ85の軸線に直交する断面を示す。図3において、ロータケーシング81は、内周面81aのみが示されている。本実施形態では、雄ロータスクリュ84は4枚歯形であり、雌ロータスクリュ85は6枚歯形である。本実施形態に係る圧縮機10は、圧縮室83内に潤滑油が供給されないドライ式とされている。このため、ロータケーシング81の内周面81a、雄ロータスクリュ84、および雌ロータスクリュ85それぞれの間に、所定の隙間Cが確保されており、相互の干渉が防止されている。
FIG. 3 is a cross-sectional view taken along the line III-III of FIG. 2, showing a cross section orthogonal to the axis of the pair of male low task cru 84 and female low task cru 85. In FIG. 3, only the inner peripheral surface 81a of the rotor casing 81 is shown. In this embodiment, the male low task cru 84 has a four-toothed shape and the female low-task cru 85 has a six-toothed shape. The compressor 10 according to the present embodiment is a dry type in which lubricating oil is not supplied into the compression chamber 83. Therefore, a predetermined gap C is secured between the inner peripheral surface 81a of the rotor casing 81, the male low task cru 84, and the female low task cru 85, respectively, to prevent mutual interference.
図2に示すように、ロータケーシング81の外周部には、冷却媒体(例えば水)が還流される冷却ジャケット81bが形成されている。冷却ジャケット81bによって、圧縮室83における圧縮空気の過度の温度上昇によるロータケーシング81の熱変形が防止されている。これによっても、ロータケーシング81の内周面81aと、ロータスクリュ84,85との干渉が抑制されている。
As shown in FIG. 2, a cooling jacket 81b through which a cooling medium (for example, water) is refluxed is formed on the outer peripheral portion of the rotor casing 81. The cooling jacket 81b prevents thermal deformation of the rotor casing 81 due to an excessive temperature rise of the compressed air in the compression chamber 83. This also suppresses the interference between the inner peripheral surface 81a of the rotor casing 81 and the low task crus 84 and 85.
雄ロータスクリュ84は、軸方向における高圧側の端部から高圧側に延びる高圧側雄ロータ軸86と、軸方向における低圧側の端部から低圧側に延びる低圧側雄ロータ軸87とを有している。高圧側雄ロータ軸86は、基端側に位置する第1ロータ軸86aと、先端側に位置しており第1ロータ軸86aより小径である第2ロータ軸86bとを有する。同様に、低圧側雄ロータ軸87は、基端側に位置する第1ロータ軸87aと、先端側に位置しており第1ロータ軸87aより小径である第2ロータ軸87bとを有している。
The male low-pressure clew 84 has a high-pressure side male rotor shaft 86 extending from the high-pressure side end in the axial direction to the high-pressure side, and a low-pressure side male rotor shaft 87 extending from the low-pressure side end in the axial direction to the low-pressure side. ing. The high-pressure side male rotor shaft 86 has a first rotor shaft 86a located on the proximal end side and a second rotor shaft 86b located on the distal end side and having a smaller diameter than the first rotor shaft 86a. Similarly, the low pressure side male rotor shaft 87 has a first rotor shaft 87a located on the proximal end side and a second rotor shaft 87b located on the distal end side and having a smaller diameter than the first rotor shaft 87a. There is.
第1ロータ軸86a,87aにはそれぞれ、基端側に位置するエアシール部92と、先端側に位置するオイルシール部93とが取り付けられている。エアシール部92は、圧縮室83を外部に対して密閉するものであり、圧縮室83の圧力に基づいて適宜選定される。オイルシール部93は、後述する軸受88,89に塗布または供給される潤滑油が圧縮室83側に漏出することを防止している。
An air seal portion 92 located on the proximal end side and an oil seal portion 93 located on the distal end side are attached to the first rotor shafts 86a and 87a, respectively. The air seal portion 92 seals the compression chamber 83 with respect to the outside, and is appropriately selected based on the pressure of the compression chamber 83. The oil seal portion 93 prevents the lubricating oil applied or supplied to the bearings 88 and 89, which will be described later, from leaking to the compression chamber 83 side.
第2ロータ軸86b,87bにはそれぞれ、軸受88,89が取り付けられている。雄ロータスクリュ84は、第2ロータ軸86bにおいて軸受88を介してロータケーシング81に対して軸支されており、第2ロータ軸87bにおいて軸受89を介して軸受ケーシング82に対して軸支されている。
Bearings 88 and 89 are attached to the second rotor shafts 86b and 87b, respectively. The male low task crown 84 is pivotally supported on the rotor casing 81 via the bearing 88 on the second rotor shaft 86b, and pivotally supported on the bearing casing 82 via the bearing 89 on the second rotor shaft 87b. There is.
軸受88,89はそれぞれ、第2ロータ軸86b,87bの基端側に位置しておりラジアル荷重を支持可能なラジアル軸受88a,89aと、先端側に位置しておりスラスト荷重を支持可能なスラスト軸受88b,89bとを含んでいる。ラジアル軸受88a,89aは、ころ軸受であり、スラスト軸受88b,89bは玉軸受である。したがって、軸受88,89は全て、転がり軸受によって構成されている。
The bearings 88 and 89 are located on the proximal end side of the second rotor shafts 86b and 87b and can support the radial load, respectively, and the radial bearings 88a and 89a are located on the distal end side and can support the thrust load. Includes bearings 88b, 89b. The radial bearings 88a and 89a are roller bearings, and the thrust bearings 88b and 89b are ball bearings. Therefore, the bearings 88 and 89 are all composed of rolling bearings.
雄ロータスクリュ84の高圧側の端部すなわち第2ロータ軸86bの端部には、ドリブンギヤ90が相対回転不能に取り付けられている。ドリブンギヤ90は、第2電動機22のドライブギヤ22a(図1参照)に噛合しており、第2電動機22による駆動力が伝達されて雄ロータスクリュ84を回転させる。雄ロータスクリュ84の低圧側の端部すなわち第2ロータ軸87bの先端部には、タイミングギヤ91aが相対回転不能に取り付けられている。
A driven gear 90 is attached to the end of the male low-pressure cru 84 on the high-pressure side, that is, the end of the second rotor shaft 86b so that it cannot rotate relative to each other. The driven gear 90 meshes with the drive gear 22a (see FIG. 1) of the second motor 22, and the driving force of the second motor 22 is transmitted to rotate the male low task clew 84. A timing gear 91a is attached to the low-pressure side end of the male low-speed clew 84, that is, the tip of the second rotor shaft 87b so as not to rotate relative to each other.
雌ロータスクリュ85も同様に構成されており、軸方向両端部からそれぞれ軸方向に延びる高圧側雌ロータ軸96と低圧側雌ロータ軸97とを有している。高圧側雌ロータ軸96および低圧側雌ロータ軸97はそれぞれ、基端側に位置する第1ロータ軸96a,97aと先端側に位置しており小径な第2ロータ軸96b,97bとを有している。第1ロータ軸96a,97aには、エアシール部92およびオイルシール部93が取り付けられている。雌ロータスクリュ85は、第2ロータ軸96b,97bにおいて、ラジアル軸受88a,89aおよびスラスト軸受88b,89bを介して、ロータケーシング81および軸受ケーシング82に対して軸支されている。
The female low task clue 85 is also configured in the same manner, and has a high-pressure side female rotor shaft 96 and a low-pressure side female rotor shaft 97 extending in the axial direction from both ends in the axial direction, respectively. The high-pressure side female rotor shaft 96 and the low-pressure side female rotor shaft 97 have first rotor shafts 96a and 97a located on the proximal end side and second rotor shafts 96b and 97b located on the distal end side and having a small diameter, respectively. ing. An air seal portion 92 and an oil seal portion 93 are attached to the first rotor shafts 96a and 97a. The female low-task clue 85 is pivotally supported on the rotor casing 81 and the bearing casing 82 in the second rotor shafts 96b and 97b via the radial bearings 88a and 89a and the thrust bearings 88b and 89b.
雌ロータスクリュ85の低圧側の端部すなわち第2ロータ軸97bの先端部には、タイミングギヤ91bが相対回転不能に取り付けられている。タイミングギヤ91bは、雄ロータスクリュ84に取り付けられたタイミングギヤ91aに噛合している。よって、雄ロータスクリュ84の回転に同期して、雌ロータスクリュ85が回転するようになっており、それぞれの歯部における干渉が防止されている。
A timing gear 91b is attached to the end of the female low-speed clue 85 on the low pressure side, that is, the tip of the second rotor shaft 97b so that it cannot rotate relative to each other. The timing gear 91b meshes with the timing gear 91a attached to the male low task clew 84. Therefore, the female low task cru 85 rotates in synchronization with the rotation of the male low task cru 84, and interference in each tooth portion is prevented.
さらに、雄ロータスクリュ84の低圧側の端部には、バランスピストン98が取り付けられている。バランスピストン98は、空気圧入口99から不図示のコンプレッサから供給される圧縮空気を利用して、雄ロータスクリュ84に作用するスラスト力(押圧力)に抗する力を雄ロータスクリュ84に付与する。すなわち、バランスピストン98によって、スラスト軸受88b,89bに作用するスラスト力が低減される。
Furthermore, a balance piston 98 is attached to the end of the male low task cru 84 on the low pressure side. The balance piston 98 uses compressed air supplied from a compressor (not shown) from the pneumatic inlet 99 to apply a force against the thrust force (pushing pressure) acting on the male low task cru 84 to the male low task cru 84. That is, the balance piston 98 reduces the thrust force acting on the thrust bearings 88b and 89b.
ここで、雄ロータスクリュ84および雌ロータスクリュ85には、吸気口13aにおける吸い込み圧と吐出口13bにおける吐出圧との差に起因した、ラジアル方向およびスラスト方向における荷重が作用する。該差圧が大きいほど上記荷重は増大する。したがって、軸受88,89は、差圧に起因してロータスクリュ84,85に作用する荷重と、バランスピストン98による反力とを考慮して、ラジアル方向およびスラスト方向における荷重よりも、それぞれの軸受88,89の許容荷重が大きくなるように選定されている。
Here, a load in the radial direction and the thrust direction acts on the male low task cru 84 and the female low task cru 85 due to the difference between the suction pressure at the intake port 13a and the discharge pressure at the discharge port 13b. The larger the differential pressure, the larger the load. Therefore, the bearings 88 and 89 take into consideration the load acting on the low task crus 84 and 85 due to the differential pressure and the reaction force due to the balance piston 98, and the respective bearings are more than the loads in the radial direction and the thrust direction. It is selected so that the allowable load of 88 and 89 is large.
本実施形態では、上記差圧が第1所定圧を超えないように、第1~第5圧縮機11~15における圧縮比をそれぞれ設定することによって、ロータスクリュ84,85に作用する荷重が過度に高くなることが防止されている。具体的には、第1所定圧が、差圧に起因してロータスクリュ84,85に生じる荷重が転がり軸受における許容荷重を超えないよう、第1~第5圧縮機11~15における圧縮比をそれぞれ設定する。本実施形態では、雄ロータスクリュ84が4枚歯であり雌ロータスクリュ85が6枚歯であるので、実績値として差圧が1.3MPa以下であれば転がり軸受における許容荷重を超えないことが判っている。よって、第1所定圧は1.3MPaに設定されている。
In the present embodiment, the load acting on the low task crus 84 and 85 is excessive by setting the compression ratios of the first to fifth compressors 11 to 15 so that the differential pressure does not exceed the first predetermined pressure. It is prevented from becoming too high. Specifically, the compression ratios of the first to fifth compressors 11 to 15 are set so that the first predetermined pressure does not exceed the allowable load of the rolling bearing so that the load generated on the low task crus 84 and 85 due to the differential pressure does not exceed the allowable load. Set each. In the present embodiment, the male low task cru 84 has four teeth and the female low task cru 85 has six teeth. Therefore, if the differential pressure is 1.3 MPa or less as an actual value, the allowable load in the rolling bearing may not be exceeded. I know. Therefore, the first predetermined pressure is set to 1.3 MPa.
表1に、第1~第5圧縮機11~15の主要諸元を示している。表1を参照して、第1~第5圧縮機11~15の仕様を説明する。
Table 1 shows the main specifications of the 1st to 5th compressors 11 to 15. The specifications of the first to fifth compressors 11 to 15 will be described with reference to Table 1.
第1圧縮機11は、外部から吸気した空気を、大気圧から0.4MPaまで圧縮する。第2圧縮機12は、第1圧縮機11から吐出された圧縮空気を、1.0MPaまでさらに圧縮する。第3圧縮機13は、第2圧縮機12から吐出された圧縮空気を、2.1MPaまでさらに圧縮する。第4圧縮機14は、第3圧縮機13から吐出された圧縮空気を3.3MPaまでさらに圧縮する。第5圧縮機15は、第4圧縮機14から吐出された圧縮空気を4.5MPaまでさらに圧縮する。
The first compressor 11 compresses the air taken in from the outside from the atmospheric pressure to 0.4 MPa. The second compressor 12 further compresses the compressed air discharged from the first compressor 11 to 1.0 MPa. The third compressor 13 further compresses the compressed air discharged from the second compressor 12 to 2.1 MPa. The fourth compressor 14 further compresses the compressed air discharged from the third compressor 13 to 3.3 MPa. The fifth compressor 15 further compresses the compressed air discharged from the fourth compressor 14 to 4.5 MPa.
圧縮比に関して、第1圧縮機11が概ね3.5であり最も大きく、第2圧縮機12が概ね3.0であり次に大きく、第3~第5圧縮機13~15が最も小さい略2.0以下である。本実施形態では、第1圧縮機11に圧縮比が最も大きい仕様Aのロータセットを採用されており、第2圧縮機12に圧縮比が次に大きい仕様Bのロータセットを採用されており、第3~第5圧縮機13~15に圧縮比が最も小さい仕様Cのロータセットが共通して採用されている。したがって、圧縮比の異なる仕様A~Cの三種類のロータセットを採用している。なお、仕様Cにおいて同一のロータセットを採用するが、それぞれの吐出口の位置および大きさを適宜設定することによって、所望の圧縮比が実現されている。なお、第3~第5圧縮機13~15においては、圧縮比が概ね2以下に設定されている。
Regarding the compression ratio, the first compressor 11 is approximately 3.5, which is the largest, the second compressor 12 is approximately 3.0, which is the next largest, and the third to fifth compressors 13 to 15 are the smallest, approximately 2. It is less than or equal to 0.0. In the present embodiment, the rotor set of specification A having the largest compression ratio is adopted for the first compressor 11, and the rotor set of specification B having the next largest compression ratio is adopted for the second compressor 12. The rotor set of specification C having the smallest compression ratio is commonly used in the third to fifth compressors 13 to 15. Therefore, three types of rotor sets having different compression ratios, specifications A to C, are adopted. Although the same rotor set is adopted in the specification C, a desired compression ratio is realized by appropriately setting the position and size of each discharge port. In the third to fifth compressors 13 to 15, the compression ratio is set to approximately 2 or less.
差圧に関して、第1圧縮機11は最も小さく、第2圧縮機12が次いで小さく、第3~第5圧縮機13~15が最も大きい。本実施形態では、第1圧縮機11は、差圧が小さいため該差圧に起因するスラスト力も小さいので、第1圧縮機11にはバランスピストンが設けられていない。一方、差圧が0.7MPaである第2圧縮機には、仕様Iのバランスピストン98が設けられており、差圧が1MPaを超えて1.2MPa以下であり略同じ大きさである第3~第5圧縮機13~15には、仕様IIのバランスピストン98が共通して設けられている。
Regarding the differential pressure, the first compressor 11 is the smallest, the second compressor 12 is the second smallest, and the third to fifth compressors 13 to 15 are the largest. In the present embodiment, since the first compressor 11 has a small differential pressure, the thrust force due to the differential pressure is also small, so that the first compressor 11 is not provided with a balance piston. On the other hand, the second compressor having a differential pressure of 0.7 MPa is provided with a balance piston 98 of the specification I, and the differential pressure exceeds 1 MPa and is 1.2 MPa or less, which is substantially the same size. The fifth compressors 13 to 15 are provided with the balance piston 98 of the specification II in common.
吐出圧に関して、第1圧縮機11から第5圧縮機15に向かって、段階的に高くなっている。ロータケーシング81の材質に関して、吐出圧が概ね2MPa以下である第1~第3圧縮機11~13は該吐出圧に耐え得る材料として鋳鉄(例えばFC250)が採用されており、吐出圧が3.0MPaを超える第4および第5圧縮機14,15は鋳鋼(例えば13Cr系)が採用されている。上述したように、第1~第3圧縮機11~13は、ロータセットが異なっているので、ロータケーシング81もそれぞれ仕様a~cと異なっている。一方、第4および第5圧縮機14,15は、ロータセットが同一であるため、ロータケーシング81も共通の仕様dとなっている。
The discharge pressure is gradually increased from the first compressor 11 to the fifth compressor 15. Regarding the material of the rotor casing 81, cast iron (for example, FC250) is adopted as a material that can withstand the discharge pressure in the first to third compressors 11 to 13 having a discharge pressure of about 2 MPa or less, and the discharge pressure is 3. Cast steel (for example, 13Cr system) is used for the 4th and 5th compressors 14 and 15 exceeding 0 MPa. As described above, since the rotor sets of the first to third compressors 11 to 13 are different, the rotor casing 81 is also different from the specifications a to c, respectively. On the other hand, since the fourth and fifth compressors 14 and 15 have the same rotor set, the rotor casing 81 also has the same specification d.
また、吐出圧に関連して、エアシール部92もそれぞれ設定されている。上述したように、第1~第2圧縮機11,12は、ロータセットが異なっているので、エアシール部92もそれぞれ仕様1,2と異なっている。一方、第3~第5圧縮機13~15は、ロータセットが共通であるので、仕様3のエアシール部92が共通して設定されている。なお仕様3のエアシール部92は、最も吐出圧が高くシール条件が最も厳しい第5圧縮機15において耐え得るように選定されており、第5圧縮機15に比して吐出圧が低いためシール条件が緩い第3および第4圧縮機13,14において使用され得る。
Further, the air seal portion 92 is also set in relation to the discharge pressure. As described above, since the rotor sets of the first and second compressors 11 and 12 are different, the air seal portion 92 is also different from the specifications 1 and 2, respectively. On the other hand, since the third to fifth compressors 13 to 15 have a common rotor set, the air seal portion 92 of the specification 3 is commonly set. The air seal portion 92 of the specification 3 is selected so as to withstand the fifth compressor 15 having the highest discharge pressure and the strictest sealing condition, and the discharge pressure is lower than that of the fifth compressor 15, so that the sealing condition is satisfied. Can be used in loose third and fourth compressors 13, 14.
ここで、差圧を第1所定圧以下に制限したことによって、吸気口における圧力が高くなる高圧段に位置する圧縮機10ほど、圧縮比が小さくなる。具体的には、最高圧段に位置する第5圧縮機15(最高圧段スクリュ回転機械)の圧縮比は1.4となり、また、次いで高圧段に位置する第4圧縮機14(次高圧段スクリュ回転機械)の圧縮比は1.6と低く設定されている。
Here, by limiting the differential pressure to the first predetermined pressure or less, the compression ratio becomes smaller as the compressor 10 is located in the high pressure stage where the pressure at the intake port becomes higher. Specifically, the compression ratio of the fifth compressor 15 (highest pressure stage screw rotary machine) located in the highest pressure stage is 1.4, and then the fourth compressor 14 (second high pressure stage) located in the high pressure stage. The compression ratio of the screw rotary machine) is set as low as 1.6.
また、差圧は、本実施形態では、高圧段側における差圧は第2所定圧以上に設定されている。本実施形態では、第2所定圧は、0.9MPaである。
Further, in the present embodiment, the differential pressure on the high pressure stage side is set to be equal to or higher than the second predetermined pressure. In the present embodiment, the second predetermined pressure is 0.9 MPa.
図4は、第4圧縮機14の図2と同様の断面図を示している。第3圧縮機13と同じ構成要素には同じ参照符号を付し、説明を省略している。図4に示されるように、第4圧縮機14は、低い圧縮比の結果として、圧縮室83における圧縮による温度上昇が小さくなるのでロータケーシング81を冷却する必要がない。このため、第3圧縮機13とは異なり、第4圧縮機14のロータケーシング81には冷却ジャケットが形成されていない(上記表1の仕様d)。
FIG. 4 shows a cross-sectional view similar to that of FIG. 2 of the fourth compressor 14. The same components as those of the third compressor 13 are designated by the same reference numerals, and the description thereof is omitted. As shown in FIG. 4, the fourth compressor 14 does not need to cool the rotor casing 81 because the temperature rise due to compression in the compression chamber 83 is small as a result of the low compression ratio. Therefore, unlike the third compressor 13, a cooling jacket is not formed on the rotor casing 81 of the fourth compressor 14 (specification d in Table 1 above).
第5圧縮機15は、第4圧縮機14に対して、吐出口15bの位置および/または大きさが異なる点以外は、同一である。したがって、第4および第5圧縮機14,15は、ロータケーシング81の鋳造による素材を共通として、吐出口14b,15bのみ機械加工の違いにより形成されている。
The fifth compressor 15 is the same as the fourth compressor 14 except that the position and / or size of the discharge port 15b is different. Therefore, the 4th and 5th compressors 14 and 15 have the same material as the cast rotor casing 81, and only the discharge ports 14b and 15b are formed due to the difference in machining.
第1~第5膨張機51~55については、第1~第5圧縮機11~15に対して、回転方向が逆である点で異なっており、その他は同様に構成されている。よって、第1~第5膨張機51~55についての説明を省略する。なお、膨張機50においては、第1~第5圧縮機11~15の圧縮比をそれぞれ、第5~第1膨張機55~51の膨張比にそれぞれ読み替えて適用できる。また、圧縮機10における圧縮室83を、膨張機50における膨張室に読み替える。
The first to fifth expanders 51 to 55 differ from the first to fifth compressors 11 to 15 in that the rotation direction is opposite, and the others are configured in the same manner. Therefore, the description of the first to fifth expanders 51 to 55 will be omitted. In the expander 50, the compression ratios of the first to fifth compressors 11 to 15 can be read and applied to the expansion ratios of the fifth to first expanders 55 to 51, respectively. Further, the compression chamber 83 in the compressor 10 is read as the expansion chamber in the expander 50.
本実施形態に係るCAES発電装置1によれば、次の効果を奏する。なお、以下の効果は、圧縮機10に関して記載されているが、膨張機50においても同様に生じる。
According to the CAES power generation device 1 according to the present embodiment, the following effects are obtained. Although the following effects have been described for the compressor 10, they also occur in the expander 50.
(1)圧縮機10の圧縮比を適切に設定することにより、圧縮機10の吸気口10aおよび吐出口10b間の差圧が、該差圧に起因してロータスクリュ84,85に生じる荷重が転がり軸受である軸受88,89の許容荷重を超えない第1所定圧以下になる。よって、転がり軸受である軸受88,89を採用しつつ、軸受88,89の耐久性を確保できる。ロータスクリュ84,85を転がり軸受88,89で支持することによって、滑り軸受で支持する場合に比べて、ロータスクリュ84,85の支持精度が向上して振れ回りが低減する。この結果、一対のロータスクリュ84,85間の隙間C(図3参照)を、干渉を抑制しつつ低減できるので、圧縮時にはエネルギ量の増大を図ることができる。
(1) By appropriately setting the compression ratio of the compressor 10, the differential pressure between the intake port 10a and the discharge port 10b of the compressor 10 causes the load generated on the low task crus 84 and 85 due to the differential pressure. The allowable load of the rolling bearings 88 and 89 is not exceeded and the pressure is equal to or less than the first predetermined pressure. Therefore, the durability of the bearings 88 and 89 can be ensured while adopting the bearings 88 and 89 which are rolling bearings. By supporting the low task crus 84 and 85 with rolling bearings 88 and 89, the support accuracy of the low task crus 84 and 85 is improved and the runout is reduced as compared with the case where the low task crus 84 and 85 are supported by the slide bearings. As a result, the gap C (see FIG. 3) between the pair of low task crus 84 and 85 can be reduced while suppressing interference, so that the amount of energy can be increased during compression.
本実施形態では、圧縮機10は、雄ロータが4枚歯であり雌ロータが6枚歯であるので、当該使用の圧縮機において、差圧が、転がり軸受として市場において実績がある1.3MPa以下に設定されている。よって、上記発明の効果が好適に発揮される。
In the present embodiment, the compressor 10 has four teeth for the male rotor and six teeth for the female rotor. Therefore, in the compressor used, the differential pressure is 1.3 MPa, which has a proven record in the market as a rolling bearing. It is set to the following. Therefore, the effect of the above invention is preferably exhibited.
(2)転がり軸受である軸受88,89は、摺動部に潤滑油又はグリス等の潤滑材が介在していればよく、滑り軸受のように潤滑油による油膜形成を要しない。このため、転がり軸受88,89は、ロータスクリュ84,85が起動(回転)と停止とを頻繁に繰り返すような使用条件下においても、摺動部の潤滑状態を適切に維持しやすく、耐久性を確保しやすい。特に、太陽光発電また風力発電等による再生可能エネルギを利用してCAES発電装置1で圧縮空気に変換して貯蔵する場合のように起動停止が頻繁に生じ得る場合において、上記効果が好適に発揮される。
(2) The bearings 88 and 89, which are rolling bearings, need only have a lubricating oil or a lubricating material such as grease interposed in the sliding portion, and do not require the formation of an oil film by the lubricating oil unlike the sliding bearing. For this reason, the rolling bearings 88 and 89 are durable because it is easy to maintain an appropriate lubrication state of the sliding portion even under usage conditions in which the low task crus 84 and 85 frequently repeat start (rotation) and stop. Easy to secure. In particular, the above effect is preferably exhibited when start-up and stoppage can occur frequently, such as when the CAES power generation device 1 converts renewable energy from solar power generation or wind power generation into compressed air and stores it. Will be done.
(3)圧縮機10の差圧を制限することで、それぞれの圧縮機10の、ロータスクリュ84,85、軸受88,89等の内蔵物が特殊仕様になりにくく、既存の標準品を採用しやすい。一方で、ロータケーシング81を吐出圧に応じて所望の耐圧強度を満たすように専用品を構成すればよい。よって、圧縮機10の主要部分を標準品で構成することができるのでコストを低減しやすい。
(3) By limiting the differential pressure of the compressor 10, the built-in components such as the low task cru 84, 85, bearings 88, 89, etc. of each compressor 10 are less likely to have special specifications, and the existing standard products are adopted. Cheap. On the other hand, the rotor casing 81 may be configured as a dedicated product so as to satisfy a desired withstand voltage according to the discharge pressure. Therefore, since the main part of the compressor 10 can be configured with a standard product, it is easy to reduce the cost.
(4)高圧段側に位置する第3~第5圧縮機13~15の差圧が適度に設定されている。具体的には、高圧段側に位置する第3~第5圧縮機13~15における差圧が0.9MPa以上となるように、それぞれの圧縮比が設定されている。これによって、圧縮機10の段数が、所望の圧力の圧縮空気を実現するために過度に増大することが抑制される。
(4) The differential pressure of the third to fifth compressors 13 to 15 located on the high pressure stage side is appropriately set. Specifically, the respective compression ratios are set so that the differential pressure in the third to fifth compressors 13 to 15 located on the high pressure stage side is 0.9 MPa or more. This prevents the number of stages of the compressor 10 from being excessively increased in order to realize compressed air at a desired pressure.
(5)高圧段側に位置する第3~第5圧縮機13~15は、圧縮比が概ね2.0以下に設定されているので、それぞれの差圧が、過度に増大することが抑制されて、第1設定圧以下に制限されやすい。
(5) Since the compression ratios of the third to fifth compressors 13 to 15 located on the high pressure stage side are set to approximately 2.0 or less, it is suppressed that the differential pressures of each are excessively increased. Therefore, it is easy to be limited to the first set pressure or less.
(6)差圧が概ね等しく設定されている第3~第5圧縮機13~15それぞれにおいて、差圧に起因してロータスクリュ84,85に生じるスラスト荷重も概ね等しくなる。よって、第3~第5圧縮機13~15において、スラスト荷重に抗するバランスピストン98を共通化できるので、個別にバランスピストン98を設計することを要せず、共通化によりコストを低減できる。
(6) In each of the third to fifth compressors 13 to 15 in which the differential pressure is set to be substantially equal, the thrust load generated in the low task crus 84 and 85 due to the differential pressure is also substantially equal. Therefore, in the third to fifth compressors 13 to 15, the balance piston 98 that resists the thrust load can be standardized, so that it is not necessary to individually design the balance piston 98, and the cost can be reduced by standardization.
(7)最も高いシール性能が要求される最高圧段に位置する第5圧縮機15のエアシール部92を、次に高い耐圧性能が要求される第4圧縮機14およびさらに次に高い耐圧性能が要求される第3圧縮機13にも流用している。これによって、エアシール部92を共通化することができ、個別にエアシール部92を設計することを要しないので、共通化によりコストを低減できる。
(7) The air seal portion 92 of the fifth compressor 15 located at the highest pressure stage where the highest sealing performance is required, the fourth compressor 14 which requires the next highest pressure resistance performance, and the next highest pressure resistance performance. It is also diverted to the required third compressor 13. As a result, the air seal portion 92 can be standardized, and it is not necessary to individually design the air seal portion 92, so that the cost can be reduced by standardization.
(8)最も高い耐圧性能が要求される最高圧段に位置する第5圧縮機15のロータケーシング81を、次に高い耐圧性能が要求される第4圧縮機14にも流用している。これによって、ロータケーシング81を共通化することができ、個別にロータケーシング81を設計することを要しないので、共通化によりコストを低減できる。
(8) The rotor casing 81 of the fifth compressor 15 located at the highest compression stage where the highest withstand voltage performance is required is also diverted to the fourth compressor 14 which requires the next highest withstand voltage performance. As a result, the rotor casing 81 can be standardized, and it is not necessary to individually design the rotor casing 81, so that the cost can be reduced by standardization.
(9)耐圧性が要求されるため、第4および第5圧縮機14,15は、ロータケーシング81が鋳鋼により形成されているが、鋳鉄に比して鋳造における湯流れが劣る。このため、複雑な形状を形成しにくいという欠点がある。しかしながら、本実施形態では、第4および第5圧縮機14,15のロータケーシング81には、鋳造による形成が容易ではない冷却ジャケットが形成されていない。したがって、第4および第5圧縮機14,15は、ロータケーシング81を鋳鋼で形成しながらも製造性の悪化が抑制されている。
(9) Since the fourth and fifth compressors 14 and 15 are required to have pressure resistance, the rotor casing 81 is made of cast steel, but the flow of hot water in casting is inferior to that of cast iron. Therefore, there is a drawback that it is difficult to form a complicated shape. However, in the present embodiment, the rotor casings 81 of the 4th and 5th compressors 14 and 15 are not formed with a cooling jacket that is not easy to form by casting. Therefore, in the 4th and 5th compressors 14 and 15, deterioration of manufacturability is suppressed while the rotor casing 81 is formed of cast steel.
上記実施形態では充電部4を第1~第5圧縮機11~15からなる5段圧縮により構成したが、これに限らない。4段圧縮としてもよいし、6段以上で圧縮を構成してもよい。
In the above embodiment, the charging unit 4 is configured by five-stage compression including the first to fifth compressors 11 to 15, but the present invention is not limited to this. It may be a 4-stage compression, or a compression may be configured with 6 or more stages.
上記実施形態ではロータスクリュの組み合わせを雄4枚歯形、雌6枚歯形の組み合わせにより構成したが、これに限らない。
In the above embodiment, the combination of low task clue is composed of a combination of 4 male teeth and 6 female teeth, but the present invention is not limited to this.
圧縮機および膨張機は、圧縮膨張兼用機として一体に構成されており、電動機および発電機は、電動発電兼用機として一体に構成されていてもよい。この構成によれば、圧縮機および膨張機を別個に設ける場合と比べて、設置スペースを縮小できるとともに低コスト化を図ることができる。同様に、電動機および発電機を別個に設ける場合と比べて、設置スペースを縮小できるとともに低コスト化を図ることができる。
The compressor and the expander may be integrally configured as a compression / expansion combined machine, and the motor and the generator may be integrally configured as an electric power generation combined machine. According to this configuration, the installation space can be reduced and the cost can be reduced as compared with the case where the compressor and the expander are separately provided. Similarly, as compared with the case where the motor and the generator are separately provided, the installation space can be reduced and the cost can be reduced.
以上より、本発明の具体的な実施形態について説明したが、本発明は上記形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。
Although the specific embodiment of the present invention has been described above, the present invention is not limited to the above-mentioned embodiment, and various modifications can be made within the scope of the present invention.
1 CAES発電装置
6 蓄圧タンク
10 圧縮機
11~15 第1~第5圧縮機
21~24 第1~第4電動機
31~35 第1~第5熱交換器
50 膨張機
51~55 第1~第5膨張機
61~64 第1~第4発電機
81 ロータケーシング
82 軸受ケーシング
83 圧縮室
84 雄ロータスクリュ
85 雌ロータスクリュ
88,89 軸受
92 エアシール部
98 バランスピストン 1CAES power generator 6 Accumulation tank 10 Compressor 11-15 1st-5th compressor 21-24 1st-4th motor 31-35 1st-5th heat exchanger 50 Expander 51-55 1st-5th 5 Expanders 61-64 1st to 4th generators 81 Rotor casing 82 Bearing casing 83 Compressor chamber 84 Male low task cru 85 Female low task cru 88,89 Bearing 92 Air seal part 98 Balance piston
6 蓄圧タンク
10 圧縮機
11~15 第1~第5圧縮機
21~24 第1~第4電動機
31~35 第1~第5熱交換器
50 膨張機
51~55 第1~第5膨張機
61~64 第1~第4発電機
81 ロータケーシング
82 軸受ケーシング
83 圧縮室
84 雄ロータスクリュ
85 雌ロータスクリュ
88,89 軸受
92 エアシール部
98 バランスピストン 1
Claims (8)
- 回転する一対の雄ロータスクリュおよび雌ロータスクリュによって流体を圧縮または膨張させるスクリュ回転機械を多段に備え、
それぞれのスクリュ回転機械は、前記一対の雄ロータスクリュおよび雌ロータスクリュが転がり軸受で支持されており、
それぞれのスクリュ回転機械における圧縮比または膨張比は、それぞれのスクリュ回転機械の吸気口と吐出口との間の差圧が第1所定圧以下になるように設定されており、
前記第1所定圧は、前記差圧に起因して前記雄ロータスクリュおよび前記雌ロータスクリュに生じるラジアル荷重およびスラスト荷重が前記転がり軸受における許容荷重を超えない圧力である、多段式スクリュ回転機械。 It is equipped with a multi-stage screw rotation machine that compresses or expands the fluid with a pair of rotating male and female low-task crus.
In each screw rotary machine, the pair of male low screw and female low screw are supported by rolling bearings.
The compression ratio or expansion ratio of each screw rotary machine is set so that the differential pressure between the intake port and the discharge port of each screw rotary machine is equal to or less than the first predetermined pressure.
The first predetermined pressure is a multi-stage screw rotary machine in which the radial load and thrust load generated in the male low task cru and the female low task cru due to the differential pressure do not exceed the allowable load in the rolling bearing. - 少なくとも4段以上の複数の前記スクリュ回転機械を備え、
前記複数のスクリュ回転機械は、最高圧段に位置する最高圧段スクリュ回転機械と、この1つ低圧段側に位置する次高圧段スクリュ回転機械とを含み、
前記最高圧段スクリュ回転機械および次高圧段スクリュ回転機械における圧縮比または膨張比はそれぞれ、前記差圧が第2所定圧以上になるように設定されている、
請求項1に記載の多段式スクリュ回転機械。 A plurality of the screw rotation machines having at least four stages or more are provided.
The plurality of screw rotary machines include a maximum pressure stage screw rotation machine located at the highest pressure stage and a next high pressure stage screw rotation machine located on the low pressure stage side.
The compression ratio or expansion ratio in the maximum pressure stage screw rotary machine and the next high pressure stage screw rotary machine are set so that the differential pressure is equal to or higher than the second predetermined pressure, respectively.
The multi-stage screw rotary machine according to claim 1. - 前記最高圧段スクリュ回転機械および次高圧段スクリュ回転機械はそれぞれ、
前記雄ロータスクリュは4枚歯であり、
前記雌ロータスクリュは6枚歯である、
請求項2に記載の多段式スクリュ回転機械。 The maximum pressure stage screw rotary machine and the next high pressure stage screw rotary machine are respectively.
The male low task cru has four teeth and has four teeth.
The female low task cru has 6 teeth.
The multi-stage screw rotary machine according to claim 2. - 前記スクリュ回転機械はそれぞれ、前記スラスト荷重に抗するバランスピストンを備え、
前記バランスピストンは、前記最高圧段スクリュ回転機械および次高圧段スクリュ回転機械において共通している、
請求項2又は3に記載の多段式スクリュ回転機械。 Each of the screw rotary machines is equipped with a balance piston that resists the thrust load.
The balance piston is common to the maximum pressure stage screw rotary machine and the next high pressure stage screw rotary machine.
The multi-stage screw rotary machine according to claim 2 or 3. - 前記スクリュ回転機械はそれぞれ、ケーシング内圧を外部からシールするシール部を備え、
前記シール部は、前記最高圧段スクリュ回転機械および次高圧段スクリュ回転機械において共通している、
請求項2又は3に記載の多段式スクリュ回転機械。 Each of the screw rotating machines is provided with a sealing portion that seals the internal pressure of the casing from the outside.
The seal portion is common to the maximum pressure stage screw rotary machine and the next high pressure stage screw rotary machine.
The multi-stage screw rotary machine according to claim 2 or 3. - 前記スクリュ回転機械はそれぞれ、前記一対の雄ロータスクリュおよび雌ロータスクリュを収容し、前記流体を圧縮または膨張させる圧縮室または膨張室を画定するケーシングを備え、
前記ケーシングは、前記最高圧段スクリュ回転機械および次高圧段スクリュ回転機械において共通している、
請求項2又は3に記載の多段式スクリュ回転機械。 The screw rotating machine comprises a casing that accommodates the pair of male and female low screw and delimits a compression chamber or expansion chamber that compresses or expands the fluid, respectively.
The casing is common to the maximum pressure stage screw rotary machine and the next high pressure stage screw rotary machine.
The multi-stage screw rotary machine according to claim 2 or 3. - 前記最高圧段スクリュ回転機械および次高圧段スクリュ回転機械における前記ケーシングには、冷却ジャケットが形成されていない、
請求項6に記載の多段式スクリュ回転機械。 A cooling jacket is not formed on the casing in the maximum pressure stage screw rotary machine and the next high pressure stage screw rotary machine.
The multi-stage screw rotary machine according to claim 6. - 複数の電動機と、
前記複数の電動機と機械的に接続され、多段に流体的に接続されて空気を圧縮する複数の圧縮機と、
前記複数の圧縮機と流体的に接続され、前記複数の圧縮機により圧縮された圧縮空気を貯蔵する蓄圧部と、
前記蓄圧部と流体的に接続され、前記蓄圧部から供給される前記圧縮空気によって駆動される複数の膨張機と、
前記複数の膨張機と機械的に接続された発電機と、を備え、
前記複数の圧縮機および前記複数の膨張機のうち少なくともいずれか一方はスクリュ回転機械を多段に備え、
それぞれのスクリュ回転機械は、転がり軸受で支持された一対の雄ロータスクリュおよび雌ロータスクリュを有しており、
それぞれのスクリュ回転機械における圧縮比または膨張比は、それぞれのスクリュ回転機械の吸気口と吐出口との間の差圧が第1所定圧以下になるように設定されており、
前記第1所定圧は、前記差圧に起因して前記雄ロータスクリュおよび前記雌ロータスクリュに生じるラジアル荷重およびスラスト荷重が前記転がり軸受における許容荷重を超えない圧力である、圧縮空気貯蔵発電装置。 With multiple motors,
A plurality of compressors that are mechanically connected to the plurality of motors and are fluidly connected in multiple stages to compress air.
A pressure accumulator that is fluidly connected to the plurality of compressors and stores compressed air compressed by the plurality of compressors.
A plurality of expanders fluidly connected to the accumulator and driven by the compressed air supplied from the accumulator.
It comprises the plurality of expanders and a generator mechanically connected to the plurality of expanders.
At least one of the plurality of compressors and the plurality of expanders is provided with a screw rotating machine in multiple stages.
Each screw rotary machine has a pair of male low screw and female low screw supported by rolling bearings.
The compression ratio or expansion ratio of each screw rotary machine is set so that the differential pressure between the intake port and the discharge port of each screw rotary machine is equal to or less than the first predetermined pressure.
The first predetermined pressure is a compressed air storage power generation device in which the radial load and thrust load generated in the male low task cru and the female low task cru due to the differential pressure do not exceed the allowable load in the rolling bearing.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-165286 | 2020-09-30 | ||
JP2020165286A JP2022057174A (en) | 2020-09-30 | 2020-09-30 | Multistage screw rotary machine and compressed air storage power generation device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022070653A1 true WO2022070653A1 (en) | 2022-04-07 |
Family
ID=80949894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/030210 WO2022070653A1 (en) | 2020-09-30 | 2021-08-18 | Multi-stage screw rotating machine and compressed air storage power generation device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022057174A (en) |
WO (1) | WO2022070653A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116379002A (en) * | 2023-06-05 | 2023-07-04 | 中国空气动力研究与发展中心空天技术研究所 | Design method of equal-rotation-speed reversing diffuser structure and diffuser structure |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04228892A (en) * | 1990-06-30 | 1992-08-18 | Kobe Steel Ltd | Oil injection type screw compressor |
JPH08512379A (en) * | 1993-07-13 | 1996-12-24 | トーマッセン インターナショナル ベー.フェー. | Rotary screw compressor |
JP2005325731A (en) * | 2004-05-13 | 2005-11-24 | Ebara Corp | High pressure screw compressor, and gas supply facility using the same |
JP2013241915A (en) * | 2012-05-22 | 2013-12-05 | Kobe Steel Ltd | Screw compressor unit |
JP2017008726A (en) * | 2015-06-16 | 2017-01-12 | 株式会社神戸製鋼所 | Compressed air energy storage power generation device |
JP2019039387A (en) * | 2017-08-25 | 2019-03-14 | 株式会社神戸製鋼所 | Oil-cooled two-stage screw compressor |
JP2019044737A (en) * | 2017-09-06 | 2019-03-22 | 株式会社神戸製鋼所 | Compression equipment |
JP2019190350A (en) * | 2018-04-24 | 2019-10-31 | 北越工業株式会社 | Operation control method for oil-cooled type screw compressor and oil-cooled type screw compressor |
-
2020
- 2020-09-30 JP JP2020165286A patent/JP2022057174A/en active Pending
-
2021
- 2021-08-18 WO PCT/JP2021/030210 patent/WO2022070653A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04228892A (en) * | 1990-06-30 | 1992-08-18 | Kobe Steel Ltd | Oil injection type screw compressor |
JPH08512379A (en) * | 1993-07-13 | 1996-12-24 | トーマッセン インターナショナル ベー.フェー. | Rotary screw compressor |
JP2005325731A (en) * | 2004-05-13 | 2005-11-24 | Ebara Corp | High pressure screw compressor, and gas supply facility using the same |
JP2013241915A (en) * | 2012-05-22 | 2013-12-05 | Kobe Steel Ltd | Screw compressor unit |
JP2017008726A (en) * | 2015-06-16 | 2017-01-12 | 株式会社神戸製鋼所 | Compressed air energy storage power generation device |
JP2019039387A (en) * | 2017-08-25 | 2019-03-14 | 株式会社神戸製鋼所 | Oil-cooled two-stage screw compressor |
JP2019044737A (en) * | 2017-09-06 | 2019-03-22 | 株式会社神戸製鋼所 | Compression equipment |
JP2019190350A (en) * | 2018-04-24 | 2019-10-31 | 北越工業株式会社 | Operation control method for oil-cooled type screw compressor and oil-cooled type screw compressor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116379002A (en) * | 2023-06-05 | 2023-07-04 | 中国空气动力研究与发展中心空天技术研究所 | Design method of equal-rotation-speed reversing diffuser structure and diffuser structure |
CN116379002B (en) * | 2023-06-05 | 2023-08-11 | 中国空气动力研究与发展中心空天技术研究所 | Design method of equal-rotation-speed reversing diffuser structure and diffuser structure |
Also Published As
Publication number | Publication date |
---|---|
JP2022057174A (en) | 2022-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI479078B (en) | Multistage dry pump | |
AU2007222034B2 (en) | Dual end gear fluid drive starter | |
EP2524144B1 (en) | Integral compressor-expander | |
US7168235B2 (en) | Highly supercharged regenerative gas turbine | |
CN101418796B (en) | Screw fluid machine | |
CN103036361B (en) | Blast Furnace Top Gas Recovery Turbine Unit (TRT) | |
JP4081274B2 (en) | Screw compressor into which water is injected | |
GB2520140A (en) | Multi-stage Pump Having Reverse Bypass Circuit | |
WO2022070653A1 (en) | Multi-stage screw rotating machine and compressed air storage power generation device | |
Okur et al. | Experimental investigation of hinged and spring loaded rolling piston compressors pertaining to a turbo rotary engine | |
WO2012174651A1 (en) | Gerotor mechanism with a synchronization gerotor set | |
JP4664975B2 (en) | Heat engine | |
US9039349B2 (en) | Turbocompressor and system for a supercritical-fluid cycle | |
US11111788B2 (en) | Positive displacement rotary devices | |
US6571561B1 (en) | Power generation system | |
US8876506B2 (en) | Displacement pump with internal compression | |
JP2023520868A (en) | Integral hermetically sealed turboexpander generator with cantilevered turbomachinery | |
JP2004044606A (en) | Oil-free screw compressor | |
JP2009299653A (en) | Scroll expander | |
CN111946611B (en) | Baffle type slide machine | |
JP2021525328A (en) | Axial load management system | |
McCreath et al. | The design of efficient screw compressors for delivery of dry air | |
JP7451739B2 (en) | Liquid feed type gas compressor | |
CN214837113U (en) | High-efficient screw compressor who makes an uproar that falls | |
WO2024157931A1 (en) | Turbomachine, multistage rotor, and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21874956 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21874956 Country of ref document: EP Kind code of ref document: A1 |