WO2022070630A1 - 電力制御システムおよびプログラム - Google Patents

電力制御システムおよびプログラム Download PDF

Info

Publication number
WO2022070630A1
WO2022070630A1 PCT/JP2021/029819 JP2021029819W WO2022070630A1 WO 2022070630 A1 WO2022070630 A1 WO 2022070630A1 JP 2021029819 W JP2021029819 W JP 2021029819W WO 2022070630 A1 WO2022070630 A1 WO 2022070630A1
Authority
WO
WIPO (PCT)
Prior art keywords
power consumption
facility
equipment
limit value
unit
Prior art date
Application number
PCT/JP2021/029819
Other languages
English (en)
French (fr)
Inventor
善博 中川
秀治 古井
拓哉 中尾
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to US18/029,283 priority Critical patent/US20230361563A1/en
Priority to EP21874933.1A priority patent/EP4224670A4/en
Publication of WO2022070630A1 publication Critical patent/WO2022070630A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • G06Q30/0202Market predictions or forecasting for commercial activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • G06Q30/0206Price or cost determination based on market factors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/04Billing or invoicing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • H02J2310/60Limiting power consumption in the network or in one section of the network, e.g. load shedding or peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • This disclosure relates to power control systems and programs.
  • Patent Document 1 describes a plurality of grouped consumers including a power meter that measures the power consumption consumed by the load, and each of the consumers who receives the power consumption measured by the power meter from each of the consumers.
  • the group power consumption is output for each group using the power consumption of, and if the group power consumption of any group exceeds the group contract power preset for each group, the group power consumption of the power excess group is calculated.
  • a power control system including a control device for controlling the group contract power or less is described.
  • An object of the present disclosure is to acquire information related to power consumption from equipment when controlling power consumption by a plurality of facilities, and to accurately predict the power consumption of each equipment based on the acquired information. ..
  • the power control system of the present disclosure is a power control system that controls the total power consumption of a plurality of facilities so as to satisfy a predetermined power consumption condition, and acquires information on the power consumption by the equipment provided in the facility. Acquisition method and A plurality of the facilities based on the prediction means for predicting the power consumption of the facility provided with the equipment based on the information of the power consumption by the equipment and the power consumption of the facility predicted by the prediction means. It is a power control system including a control means for controlling the total power consumption of the above. In this way, when controlling the power consumption by a plurality of facilities, it is possible to acquire information related to the power consumption from the equipment and equipment and accurately predict the power consumption of each equipment and equipment based on the acquired information. ..
  • the prediction means predicts the power consumption of the facility based on the actual power consumption of the facility in the past specific period in addition to the power consumption of each of the equipment provided in the facility. Is also good. In this way, it is possible to accurately control the power consumption of a plurality of facilities based on the actual power consumption of each facility in the past specific period.
  • the predictive means predicts the total power consumption of the plurality of facilities based on the power consumption of the facility predicted by the prediction means
  • the control means predicts the total power consumption of the plurality of facilities based on the prediction result of the total power consumption. It is also possible to set a limit value of each power consumption of the facility and control each equipment of each facility so as not to exceed the set limit value. By doing so, it is possible to appropriately distribute the power consumption to each facility while controlling the total power consumption by the plurality of facilities belonging to the group so as not to exceed the contract power of the group.
  • the control means falls below the lower limit threshold value.
  • the addition of the facility may be controlled so that the predicted power consumption of the facility is equal to or higher than a predetermined lower limit value. In this way, it is possible to secure room for using electric power in a certain time period for a facility where the allocation is set to be small when the limit value is set by a specific method.
  • control means is provided in one or a plurality of the facilities when the total power consumption of the plurality of facilities predicted by the prediction means is less than a certain value with respect to a predetermined threshold value.
  • the equipment may be controlled so that the total power consumption of the plurality of facilities does not exceed the threshold value and the power consumption is higher than the value predicted by the prediction means.
  • the prediction means may predict the power consumption of the facility based on the power consumption of some of the equipment and devices provided in the facility and which have a correlation with the power consumption of the entire facility. .. In this way, it is possible to predict the power consumption of the facility based on the power consumption of the specific equipment and control the power consumption of each equipment installed in the facility.
  • the computer that controls the power control system that controls the total power consumption of a plurality of facilities so as to correspond to the predetermined power consumption is information on the power consumption by the equipment provided in the facility.
  • FIG. 6C is a diagram showing an example of predicted values for each time period in the prediction results.
  • FIG. 7 (A) is a figure which shows the forecast example for each consumer which constitutes a group
  • FIG. 7 (B) is a group.
  • FIG. 7C is a figure which shows the example of the prediction value for each time period in the prediction result of a group.
  • FIG. 8A is a figure which shows the forecast example of the average power consumption for each time period of a group
  • 8C which shows the result of allocating the limit value to each consumer, is a diagram showing an example of the limit value for each time period allocated to one customer in the group. It is a figure which shows the example of the correlation between the electric power of a facility, and the electric power of an air conditioner. It is a figure which shows another example of the correlation between the power consumption of a facility, and the power consumption of an air conditioner. In the example of the correlation shown in FIG. 10, it is a figure which shows the method of predicting the power consumption of a facility based on the power consumption of an air conditioner.
  • FIG. 1 is a diagram showing an overall configuration of a control system for equipment to which this embodiment is applied.
  • the control system of the present embodiment includes a control device 100, equipment 200 which is a controlled device, and a server 300.
  • the control device 100 and the equipment 200 are connected to each other via a network.
  • This network may be a LAN (Local Area Network) using a dedicated line, or may use a WAN (Wide Area Network), a VPN (Virtual Private Network) set on the Internet, or the like.
  • LAN Local Area Network
  • WAN Wide Area Network
  • VPN Virtual Private Network
  • Equipment 200 is equipment or equipment that operates using electric power.
  • the control device 100 controls the operation of one or a plurality of equipments 200.
  • FIG. 1 shows a configuration example in which the control device 100 controls a plurality of equipment 200.
  • the equipment 200 may be of any type as long as it is a facility or device that operates using electric power and whose operation is controlled by the control device 100.
  • the control system of the present embodiment is applied to the control of the air conditioning equipment may be described.
  • the equipment 200 is provided with a control means for controlling the own device according to an instruction from the control device 100.
  • the control device 100 generates an instruction for controlling the equipment 200 to be controlled (hereinafter referred to as “control instruction”), and transmits the generated control instruction to each equipment 200.
  • control instruction an instruction for controlling the equipment 200 to be controlled
  • Each equipment 200 acquires a control instruction from the control device 100, sets the own device according to the acquired control instruction by the control means of the own device, and controls the operation.
  • the server 300 provides the control device 100 with control information for controlling the equipment 200.
  • the server 300 is an example of a control information generation server.
  • the control device 100 and the server 300 are connected via a network.
  • a network In the configuration example shown in FIG. 1, one control device 100 connected to the server 300 is shown, but in reality, a plurality of control devices 100 are connected to the server 300. Then, one or a plurality of equipments and devices 200 are connected to each control device 100.
  • the Internet is used as the network connecting the control device 100 and the server 300. Further, LAN or WAN may be used.
  • Electricity charges are mainly composed of basic charges and electricity charges, and are specified monthly.
  • the basic charge is calculated based on the basic charge unit price and the contracted power.
  • the contracted power is the maximum value of the maximum demand power within one year from the current month.
  • the maximum demand power is the maximum value of the average power consumption for each monthly time period (demand time period: 30 minutes).
  • the average power consumption is the average value of the demand power (power consumption) in each period.
  • the electric energy charge is calculated based on the electric energy charge unit price and the monthly electric energy consumption.
  • the contract power is the maximum value of the maximum demand power within the past year. Therefore, if the maximum demand power of a month (in other words, the average power consumption of a certain period in that month) becomes the contract power, even if the maximum demand power lower than the contract power is maintained after that month, 1 A basic charge based on this contracted electricity will be levied over the year. In addition, when the average power consumption exceeds the value of the contracted power up to that time in a certain period and becomes the maximum demand power of the month including that time period, the average power consumption (maximum demand power) of this time period becomes the new contract power. , Used to calculate the basic charge after that.
  • the electric energy charge unit price may be set to fluctuate based on predetermined conditions.
  • the unit price of electric energy may be set to fluctuate according to the time zone of the day, whether it is a weekday or a holiday, the season, and the like.
  • electric power may be traded in the market, and a variable electric energy charge unit price may be set to reflect the transaction price of electric power in the market.
  • the control may be performed with the aim of reducing the electricity charge required for the operation of the equipment 200. In this case, it is required to control the equipment 200 so that the average power consumption does not exceed the current contract power. Further, when the unit price of electricity fluctuates, it is more efficient to reduce the amount of electricity used in the time zone where the unit price is high than in the time zone when the unit price is low, from the viewpoint of reducing the electricity charge. However, while the unit price of electricity charges affects only the electricity charges for each period, the contracted electricity affects the electricity charges for one year after the current month. Therefore, the control considering the average power consumption is prioritized over the control considering the fluctuation of the electric energy charge unit price.
  • Electricity charges are levied on power supply contractors.
  • a group composed of a plurality of consumers is assumed as a contractor of electric power supply. Therefore, the average power consumption is obtained as an integrated value of the average power consumption for each time period by each of the plurality of consumers constituting this group.
  • the basic charge is determined based on the maximum power demand for each group (the maximum value of the average power consumption for each time period in a month).
  • the maximum demand power of each group is usually smaller than the sum of the maximum demand power of each consumer constituting the group. This is because the time limit for the maximum demand power is generally different among the consumers who make up the group. Therefore, the basic charge set for the group is lower than the sum of the basic charges set based on the maximum demand power for each consumer constituting the group.
  • One or more control devices 100 are assigned to one group.
  • the one or more control devices 100 are set every predetermined unit time for the equipment 200 of each customer constituting the group according to the electricity charge (basic charge and electric energy charge) set in the group unit. Control is performed in consideration of the average power consumption and the unit price of electricity.
  • one control device 100 may be assigned to a plurality of groups. In this case, each equipment 200 of each consumer belonging to a plurality of groups is controlled by one control device 100.
  • the consumer has one or more equipment 200, and the control device 100 controls the equipment 200 of one or more consumers.
  • the place where one or more equipments 200 are installed is referred to as a facility.
  • one consumer does not always correspond to one control device 100, and one consumer does not always correspond to one facility.
  • a plurality of equipments and devices 200 possessed by one consumer may be controlled by a plurality of control devices 100, and equipments and devices 200 possessed by a plurality of consumers may be controlled by one control device 100.
  • a plurality of equipments and devices 200 owned by one consumer may be installed in a plurality of facilities, and equipments and devices 200 owned by a plurality of consumers may be installed in one facility.
  • control devices 100 control the equipment 200 installed in one facility
  • one control device 100 controls the equipment 200 installed in a plurality of facilities.
  • the equipment 200 of one consumer is installed in one facility and one control device 100 is assigned to one consumer. Therefore, one control device 100 corresponds to one facility, and the equipment 200 of each customer installed in each facility is provided for each facility and is controlled by the control device 100 corresponding to each customer. Is assumed.
  • multiple facilities may belong to one group, and one facility may correspond to multiple groups.
  • the equipment 200 of the consumers constituting one group is installed in a plurality of facilities, and in the latter case, the equipment of a plurality of consumers constituting each of the plurality of groups is installed. This is the case where 200 is installed in one facility.
  • the integrated value of the average power consumption in one or more facilities in which the equipment 200 of each consumer constituting one group is installed is referred to as the total power consumption of the facilities belonging to the group.
  • FIG. 2 is a diagram showing the configuration of the server 300.
  • the server 300 is realized as, for example, a server (so-called cloud server) built on a cloud environment of a network.
  • the server 300 includes a group management unit 310, a first prediction unit 320, a limit value setting unit 330, a control information generation unit 340, a second prediction unit 350, a performance information acquisition unit 360, and a limit value adjustment unit 370. And a transmission control unit 380.
  • the group management unit 310 manages the above-mentioned group of consumers. As mentioned above, this group is set as a unit of power contract. The group management unit 310 acquires and holds information on the contracted power of the group, the maximum demand power, and the average power consumption for each time period. In addition, the group management unit 310 manages information on the consumers who make up the group.
  • the consumer information includes information on the equipment 200 owned by the consumer, information on the control device 100 in which the equipment 200 of the consumer is managed, and information on the facility in which the equipment 200 of the consumer is installed. Etc. are included.
  • the group management unit 310 acquires and holds information on the contracted power, the maximum demand power, and the average power consumption for each time period of each consumer constituting the group.
  • Information on the average power consumption of each consumer is obtained, for example, from the control device 100 that controls the equipment 200 of each consumer. Then, the information on the average power consumption of the group is obtained from, for example, the control device 100 that controls the equipment 200 of the consumers constituting the group (hereinafter referred to as "equipment 200 of the group"). Specifically, for example, the average power consumption for each time period of each consumer constituting the group is integrated to obtain the average power consumption of the group.
  • the first prediction unit 320 predicts the average power consumption for each time period by the equipment 200 of each customer for each customer constituting the group.
  • the first prediction unit 320 is an example of a prediction means.
  • the prediction of the average power consumption for each time period by the first prediction unit 320 is performed, for example, based on the historical information regarding the past operation of the equipment 200 of each consumer constituting the group.
  • the history information regarding the operation includes various information related to the operation of the equipment 200, such as information on the operating environment of the equipment 200, in addition to the information on the operating state of the equipment 200.
  • Information on the operating state of the equipment 200 includes, for example, information such as an operating rate, continuous operating time, and the number of operating times.
  • the information on the operating environment includes, for example, weather conditions such as weather, temperature, and humidity, and information such as month, day, and time zone.
  • a reference time period for the specific time period is set based on historical information on operation, and the equipment 200 in this reference time period. It may be done based on the average power consumption of.
  • the reference time limit may be, for example, a past time limit which is a weather condition similar to the weather condition expected at the date and time when the specific time limit corresponds, or a corresponding time limit on the same day of the same month one year ago.
  • the average power consumption of the equipment 200 in the time before and after the reference time and the average power of the equipment 200 in the time period of several days up to the day including the reference time You may take into consideration the transition of power consumption.
  • the first prediction unit 320 predicts the average power consumption for each time period in the facility where each equipment device 200 is installed, based on the prediction result of the average power consumption for each time period by the equipment equipment 200.
  • the average power consumption of each facility is obtained by integrating the average power consumption of the installed equipment 200 for each time period for each facility. Then, by integrating the average power consumption of each facility, the total power consumption of the facility for each group can be obtained.
  • the average power consumption of the facility among the equipment 200 installed in the facility, some of the equipment 200 in which the correlation with the average power consumption of the facility is recognized with respect to the average power consumption for each time period.
  • the prediction may be made based on the average power consumption. For example, among the equipment 200 installed in the facility, the power used by the equipment 200 having a particularly large amount of power consumption is considered to have a strong correlation with the power used by the facility. Therefore, when predicting the average power consumption of a facility in a certain time period, the average power consumption in the corresponding time period of such a specific equipment 200 is predicted. Then, the power consumption of the facility in the corresponding time period may be calculated based on the correlation between the power consumption of the facility and the power consumption of the specific equipment 200.
  • the forecast of the average power consumption of the equipment 200 used for predicting the average power consumption of the facility may be performed, for example, based on the actual results of the average power consumption of the equipment 200 installed in the facility in the past specific period.
  • the actual average power consumption of the equipment 200 in the facility can be obtained from the history information regarding the operation of the equipment 200 for each facility.
  • the specific period may be any period as long as appropriate historical information can be obtained for predicting the average power consumption of the equipment, and may be, for example, the past one year or several years.
  • the limit value setting unit 330 sets a limit value for each customer constituting the group with respect to the average power consumption for each time period by the equipment 200 of each consumer based on the prediction result by the first prediction unit 320.
  • the limit value setting unit 330 is an example of setting means. If the average power consumption of a group exceeds the contracted power of the group, this average power consumption becomes a new contracted power and raises the basic charge of electricity charges. Therefore, it is required to set a target power based on the contract power for the group and control the average power consumption for each time period so as not to exceed the target power in the entire equipment 200 of the group. Then, the limit value for each time limit is set so that the integrated value of the limit value of each consumer is equal to or less than the threshold value based on the target power.
  • the target power is set to a value equal to or less than the contract power, for example, a value lower than the contract power by a certain value.
  • the threshold value is set to a value equal to or less than the target power, for example, a value lower than the target power by a certain value.
  • the limit value of each of the consumers constituting the group is set based on, for example, the prediction of the average power consumption for each consumer by the first prediction unit 320. From the prediction of the first prediction unit 320, the ratio of the average power consumption predicted by each consumer of the group is specified for each time period. Therefore, for example, when the integrated value of the limit value of each consumer is set to be equal to the threshold value based on the above target power, the average power consumption corresponding to this threshold value is predicted by the first prediction unit 320. Allocate the power so that it is the ratio of the average power consumption by the consumers, and use it as the limit value for each consumer. In other words, the limit value means the power consumption available to each consumer in that time period.
  • the limit value is set based on the actual value of the average power consumption for each time period in the past specific period of each customer, instead of the ratio of the average power consumption for each time period for each consumer. good.
  • the ratio of the actual value of the average power consumption of each consumer in the reference time period shown in the same explanation is specified with respect to the specific time period shown in the explanation of the prediction by the first prediction unit 320.
  • a limit value for each consumer in a specific time period may be set based on the ratio of the actual value.
  • the specific period may be set according to the amount of information obtained as the actual value of the reference time period, for example, set for the past one year or several years, or between a specific date and a specific date. You may.
  • the limit value may be set based on the maximum value of the average power consumption for each time period in a specific period of each consumer. For example, assuming that the specific period is the past one year, the maximum value of the average power consumption for each time period in the past one year can be obtained for each consumer. Then, the maximum value of each consumer may be compared, and the limit value of each consumer may be set at a ratio according to the ratio. In this case, unlike the case where the actual value of the reference time is used, the time when the average power consumption becomes the maximum value may be different for each consumer.
  • the limit value setting unit 330 is set as follows. May be set.
  • the limit value set for each consumer in a certain time period may be set to a higher value than the limit value of the immediately preceding time period or a lower value depending on the customer. Therefore, the total difference between the limit value of the immediately preceding time period and the limit value set for all consumers for which a limit value higher than the limit value of the immediately preceding time limit is set is lower than the limit value of the immediately preceding time limit. Compare the sum of the differences between the limit value of the immediately preceding time period and the set limit value for all consumers for which the limit value is set. Then, the limit value of each consumer is set so that the former does not become larger than the latter.
  • a lower limit value may be set as the limit value.
  • the lower limit is a value greater than 0.
  • a limit value corresponding to the lower limit value is set even when the average power consumption in a certain time period is predicted to be 0 for a certain consumer. This is because when the average power consumption is predicted to be 0 for a certain consumer and the limit value is set to 0, the limit value is immediately exceeded when the consumer uses the equipment 200 in that time limit. Therefore, this is to avoid such inconvenience.
  • the case where the average power consumption is predicted to be 0 may be, for example, the case where the average power consumption of the consumer in the reference time period used for the prediction by the first prediction unit 320 is 0.
  • the lower limit setting method may be appropriately determined according to the operation and specifications of the control system, the agreement between the group and individual consumers, and the like. For example, a fixed value may be set in advance, or a value that fluctuates based on a predicted value of the average power consumption for each time period in the entire group may be used. When a fixed value is set as the lower limit value, the same value may be set for each consumer, or a separate value may be set for each consumer according to appropriate conditions and demands of the consumer.
  • the predicted value of the average power consumption for each time period in the entire group is obtained by integrating the predicted value of the average power consumption for each time period in each consumer constituting the group by the first prediction unit 320.
  • the lower limit threshold value is set for the limit value, and when the limit value given to a certain consumer is lower than the lower limit value, the lower limit value is applied as the limit value. Is also good.
  • a value different from the lower limit value may be set. For example, if a value lower than the lower limit value is set as the lower limit threshold value, when the limit value assigned to a certain customer falls below the lower limit threshold value in a certain time period, the lower limit value larger than the lower limit threshold value is the demand in that time period. Set as a house limit.
  • a limit value is set for the average power consumption of each time period by the equipment 200 for each customer.
  • a configuration in which a limit value is set only for the average power consumption for a period satisfying a specific condition may be used. For example, by integrating the predicted values of the average power consumption of a certain time period in each consumer constituting the group by the first prediction unit 320, the predicted value of the average power consumption of the entire group in that time period can be obtained.
  • a limit value may be set only for the average power consumption in such a time period, provided that the predicted value of the average power consumption of this group exceeds the above threshold value.
  • the threshold is set based on the target power, and the target power is set based on the contract power. Therefore, when many of the consumers who make up a group do not use a large amount of power in a certain time period (for example, the time zone from midnight to dawn), the predicted value of the average power consumption of the group for that time period has a large threshold value. It is possible that it will fall below. In such a case, set the limit value of each consumer in the group to a value higher than the predicted value of the average power consumption of each consumer within the range where the integrated value of the limit value of each consumer does not exceed the threshold value. May be.
  • a limit value was set for the average power consumption of the equipment 200 for each time limit for each consumer constituting the group.
  • a limit value may be set for the average power consumption of the facility for each time period for each facility belonging to the group.
  • the limit value for each time limit is set so that the total power consumption by all the facilities belonging to the group is equal to or less than the threshold value based on the target power of the group described above.
  • the equipment 200 installed in each facility is controlled by the control device 100 associated with each facility so that the average power consumption of the equipment 200 for each time period does not exceed the limit value set for each facility. ..
  • a configuration may be configured in which the limit value is set only for the average power consumption in the time period satisfying a specific condition. For example, the predicted value of the total power consumption of the facility is obtained based on the predicted value of the average power consumption of the consumer by the first prediction unit 320, and the condition is that the predicted value of the total power consumption of this facility exceeds the above threshold value.
  • the limit value may be set only for the average power consumption of each facility in such a time limit.
  • a lower limit value may be set for this limit value for each facility.
  • the method of setting the lower limit value may be appropriately determined according to the operation and specifications of the control system, the operation of each facility, the agreement between the facilities, and the like. For example, a fixed value may be set in advance, or a value that fluctuates based on a predicted value of the total power consumption of the facility for each time period may be used.
  • a fixed value may be set in advance, or a value that fluctuates based on a predicted value of the total power consumption of the facility for each time period may be used.
  • the same value may be set for each facility, or the facility may be set according to appropriate conditions or a request of a customer who has equipment 200 installed in the facility or facility.
  • a separate value may be set for each.
  • the lower limit threshold value for the limit value, and when the limit value in a certain facility is below the lower limit threshold value, apply the lower limit value as the limit value. You may do so.
  • the lower limit threshold value a value different from the lower limit value (for example, a value lower than the lower limit value) may be set.
  • the limit value for each facility is set within the range where the total power consumption of the facilities belonging to the group does not exceed the threshold value. It may be set to a value higher than the predicted value of the average power consumption of the facility. When the total power consumption of the facility is far below the threshold value based on the target power, for example, a non-business day or a holiday period of the facility can be considered.
  • the control information generation unit 340 generates control information for controlling the equipment 200 of each consumer constituting the group.
  • the control information includes the equipment 200 in the control device 100 so that the average power consumption for each time period by the equipment 200 of the consumer does not exceed the time limit set by the limit value setting unit 330. Information to be controlled. Therefore, the control information includes information on the limit value for each consumer set by the limit value setting unit 330.
  • the control information generation unit 340 generates the control information of the corresponding time period before the time period in which the control by each control information is performed is started. Further, the control information generation unit 340 may generate control information in a plurality of time periods included in the unit period for each predetermined unit period. Specifically, for example, the control information for 48 time periods may be collectively generated by the previous day on a daily basis.
  • control information generation unit 340 controls the equipment 200 to control the adjustment result of the limit value when the limit value of each consumer set by the limit value setting unit 330 is adjusted by the limit value adjustment unit 370.
  • general control information when distinguishing between the above control information based on the limit value set by the limit value setting unit 330 and the control information based on the limit value adjusted by the limit value adjustment unit 370, the former is referred to as “general control information”.
  • the latter is called “individual control information”.
  • the adjustment of the limit value by the limit value adjustment unit 370 is performed within the time limit in which the control to reflect the adjustment of the limit value is performed. Therefore, unlike the general control information, the individual control information is generated within the time period after the time period in which the control by the individual control information is performed is started.
  • the second prediction unit 350 predicts the average power consumption of the equipment 200 in the current time within the currently ongoing time period (hereinafter referred to as “current time”) in which the control of the equipment 200 is being carried out. ..
  • the prediction of the average power consumption by the second prediction unit 350 is performed, for example, based on the information regarding the operating status of the equipment 200 of each consumer within the current time limit.
  • the information on the operating status includes, for example, information such as the transition of the power consumption of the equipment 200 from the start of the current time limit to the predicted time within the time limit, the amount of power used, the operating state, and the setting related to the operation. ..
  • the operation-related settings are specifically selected according to the type of equipment 200. For example, when the equipment 200 is an air conditioner, information such as a difference between the set temperature and the actual room temperature can be used.
  • the performance information acquisition unit 360 acquires performance information regarding the operating status of the equipment 200 of each customer constituting the group.
  • the acquired actual information is acquired in the already completed time period. Is also good.
  • the performance information may be acquired from the control device 100 that controls the equipment 200, or may be acquired from the equipment 200 itself.
  • the actual information of the current time period acquired by the actual information acquisition unit 360 is used for predicting the average power consumption of the equipment 200 by the second prediction unit 350.
  • the actual information regarding the operation status of the equipment 200 acquired by the actual information acquisition unit 360 may be retained as history information regarding the operation of the equipment 200. Then, the retained history information may be used for the prediction by the first prediction unit 320.
  • the performance information acquisition unit 360 functions as an example of the acquisition means.
  • the limit value adjustment unit 370 adjusts the limit value of each consumer constituting the group set by the limit value setting unit 330 based on a predetermined condition. As an example, the limit value adjustment unit 370 adjusts the limit value of each consumer based on the prediction by the second prediction unit 350. Further, as another example, the limit value adjusting unit 370 adjusts the limit value of each consumer based on the actual information regarding the operating status of the equipment 200 in the current time period acquired by the actual information acquisition unit 360. The adjustment of the limit value is adjusted so that the power consumption available to each consumer is interchanged among the consumers who make up the group. For example, the limit value is lowered for some of the consumers constituting the group, and the limit value is raised for other consumers by the amount corresponding to the decrease in the limit value of some consumers.
  • the transmission control unit 380 transmits the control information generated by the control information generation unit 340 to the control device 100 that controls the equipment 200 of the consumer corresponding to each control information.
  • the transmission control unit 380 transmits the general control information of the corresponding time period to the control device 100 before the time period in which the control by each control information is performed is started.
  • the transmission control unit 380 may transmit general control information for one period before the end of the period immediately before the period, or may transmit general control information for a plurality of consecutive periods to the plurality of periods. It may be sent before the start of the first time period.
  • the transmission control unit 380 may transmit general control information to the control device 100 every predetermined unit period before the unit period is started. Specifically, for example, on a daily basis, general control information for 48 time periods may be transmitted by the previous day.
  • the transmission control unit 380 determines the general control information to be reduced from the power consumption in the time period immediately before the time period to be transmitted. It may be possible to transmit before the general control information increased from the power consumption in the immediately preceding time period.
  • the transmission control unit 380 immediately transmits the individual control information to the control device 100 that controls the equipment 200 to be controlled by the generated individual control information.
  • the transmission control unit 380 transmits the individual control information to the control device 100, the individual control information for the equipment 200 whose limit value is lowered by the adjustment is obtained from the individual control information for the equipment 200 whose limit value is increased by the adjustment. May be sent first.
  • FIG. 3 is a diagram showing the configuration of the control device 100.
  • the control device 100 is realized as an information processing device connected to the server 300 and the equipment 200 via a network.
  • the control device 100 may be a device (for example, an edge server) provided in the vicinity of the equipment 200 to be controlled, or may be a server (cloud server) built on a cloud environment.
  • the control device 100 includes a control information acquisition unit 110, an operation information acquisition unit 120, a storage unit 130, a control instruction generation unit 140, a control instruction output unit 150, and an operation information output unit 160.
  • the control information acquisition unit 110 acquires the control information of the equipment 200 from the server 300.
  • the control information acquired by the control information acquisition unit 110 includes general control information acquired before the start of the time period and individual control information acquired during the progress of the time period as control information for a certain time period. be.
  • the general control information includes information on the average power consumption limit value set for each consumer.
  • the individual control information includes information on new limit values that adjust the limit values contained in the general control information for the ongoing time limit.
  • the operation information acquisition unit 120 acquires the operation information of the equipment 200 to be controlled by the control device 100.
  • the operation information acquired by the operation information acquisition unit 120 broadly includes various information regarding the operation of the equipment 200. For example, it includes information indicating an operating state such as an operating rate and continuous operating time of the equipment 200. In addition, it may include various information that is considered to affect the operation of the equipment 200, such as the operating time zone, the operation on weekdays and the operation on holidays. Further, the operation information acquisition unit 120 may acquire information on the environment in which the equipment 200 is installed, such as temperature and humidity. This information can be obtained by various existing methods depending on the type of information. For example, it can be obtained from the equipment 200 itself, or it can be obtained from various sensor devices and the like. Further, the date and time information can be obtained by, for example, a clock function or a calendar function provided in the control device 100.
  • the storage unit 130 stores various types of information acquired by the control information acquisition unit 110 and the operation information acquisition unit 120.
  • the control information acquired by the control information acquisition unit 110 is used to control the equipment 200.
  • the general control information of each time period is stored in the storage unit 130 before the time period in which the control by each general control information is performed is started.
  • the operation information of the equipment 200 acquired by the operation information acquisition unit 120 is sent to the server 300 at a predetermined timing, and is used for the prediction by the first prediction unit 320 and the second prediction unit 350 of the server 300.
  • this general control information is used as the control information acquisition unit before the unit period starts. It is acquired by 110 and stored in the storage unit 130.
  • the general control information for one period is stored in the storage unit 130 before the period in which the control by the general control information is performed is started.
  • the unit period is a period corresponding to a plurality of time periods
  • the general control information for the plurality of time periods is stored in the storage unit 130 before the first time period in which the control by the general control information is performed is started.
  • the general control information for 48 time periods of one day is stored in the storage unit 130 by the previous day.
  • the control instruction generation unit 140 generates a control instruction for controlling the equipment 200 based on the control information acquired by the control information acquisition unit 110.
  • the control instruction generation unit 140 issues a control instruction to operate the equipment 200 so that the average power consumption for each time period by the equipment 200 of each consumer does not exceed the limit value set for the customer for each time period. Generate.
  • the integrated value of the average power consumption of all the equipment 200 possessed by the one consumer does not exceed the corresponding time limit for each time period.
  • Control instructions are generated. In this case, there is no particular limitation on the method in which the consumer allocates electric power to his / her own plurality of equipment 200 in order not to exceed the limit value set for the consumer.
  • control instruction generation unit 140 may generate a control instruction in consideration of the operation information of the equipment 200 acquired by the operation information acquisition unit 120. Of the control information acquired by the control information acquisition unit 110, the control instruction generated by the control instruction generation unit 140 based on the general control information is held in the storage unit 130.
  • the control instruction output unit 150 has a time limit in which the control instruction generated by the control instruction generation unit 140 based on the general control information is controlled by the general control information among the control information acquired by the control information acquisition unit 110. Is read from the storage unit 130 and transmitted to the equipment 200 to be controlled. Further, the control instruction output unit 150 immediately sends the control instruction generated by the control instruction generation unit 140 based on the individual control information among the control information acquired by the control information acquisition unit 110 to the equipment device 200 to be controlled. Send.
  • the operation information output unit 160 reads the operation information of the equipment 200 acquired by the operation information acquisition unit 120 and held in the storage unit 130 from the storage unit 130 and transmits it to the server 300 according to a predetermined condition.
  • the operation information may be read and transmitted in response to a request from the server 300, or may be periodically performed at a fixed time of the day or the like.
  • FIG. 4 is a diagram showing a hardware configuration example of the control device 100 and the server 300.
  • the control device 100 and the server 300 are realized by, for example, a computer. Even when the control device 100 and the server 300 are realized as a server constructed in a cloud environment, they are configured as a virtual system using the system resources of a physical computer as shown in FIG. 4 on the network. To.
  • a computer that realizes the control device 100 includes a CPU (Central Processing Unit) 101 that is a calculation means, a RAM (RandomAccessMemory) 102, a ROM (ReadOnlyMemory) 103, and a storage device 104 that are storage means.
  • the RAM 102 is a main storage device (main memory), and is used as a working memory when the CPU 101 performs arithmetic processing. Data such as a program and a set value prepared in advance are stored in the ROM 103, and the CPU 101 can directly read the program and the data from the ROM 103 and execute the process.
  • the storage device 104 is a means for storing programs and data.
  • a program is stored in the storage device 104, and the CPU 101 reads the program stored in the storage device 104 into the main storage device and executes the program. Further, the storage device 104 stores and stores the result of processing by the CPU 101.
  • the storage device 104 for example, a magnetic disk device, an SSD (Solid State Drive), or the like is used.
  • control information acquisition unit 110 When the control device 100 is realized by the computer shown in FIG. 4, the control information acquisition unit 110, the operation information acquisition unit 120, the control instruction generation unit 140, the control instruction output unit 150, and the operation information output are described with reference to FIG.
  • Each function of the unit 160 is realized, for example, by the CPU 101 executing a program.
  • the storage unit 130 is realized by, for example, a RAM 102 or a storage device 104.
  • the server 300 is realized by the computer shown in FIG. 4, the group management unit 310, the first prediction unit 320, the limit value setting unit 330, the control information generation unit 340, and the second prediction unit described with reference to FIG. 2 are used.
  • Each function of the unit 350, the performance information acquisition unit 360, the limit value adjustment unit 370, and the transmission control unit 380 is realized, for example, by the CPU 101 executing a program.
  • the configuration example shown in FIG. 4 is only an example of the case where the control device 100 is realized by a computer.
  • FIG. 5 is a diagram showing the configuration of the equipment 200.
  • the equipment 200 includes a receiving unit 210, an operation control unit 220, and an output unit 230.
  • the equipment 200 has a mechanism or an apparatus that operates to realize the function of the equipment 200 according to the type of the equipment 200.
  • the equipment 200 is an air conditioner
  • the equipment 200 has an indoor unit, an outdoor unit, and the like.
  • the equipment 200 is a lighting equipment
  • the equipment 200 has a lighting equipment, a control switch, and the like. Since the types and modes of such a mechanism and the like vary depending on the type of equipment 200, they are not shown here.
  • the receiving unit 210 receives the control instruction output from the control device 100 via the network using a network interface (not shown).
  • the operation control unit 220 controls the operation of the mechanism or device provided in the equipment 200 based on the control instruction received by the reception unit 210. Specifically, for example, when the equipment 200 is an air-conditioning device, the receiving unit 210 receives information for specifying the set temperature as a control instruction, and the operation control unit 220 receives the indoor unit and the indoor unit so that the received set temperature is reached. Control the operation of the outdoor unit. Although an example of control related to temperature setting is given here, control by the operation control unit 220 is performed for various controls related to gas that can be controlled by the air conditioner (for example, control of humidity and gas components). Instructional controls may be applied. Further, in various equipment 200 other than the air conditioning equipment, the operation control unit 220 executes control according to the type of the equipment 200 according to the control instruction received from the control device 100.
  • the output unit 230 outputs information regarding the operating state of the equipment 200 to the control device 100 via the network using a network interface (not shown).
  • the receiving unit 210, the operation control unit 220, and the output unit 230 are realized by, for example, a computer.
  • the computer that realizes the motion control unit 220 may have the configuration described with reference to FIG.
  • the functions of the receiving unit 210, the operation control unit 220, and the output unit 230 are realized, for example, by the CPU 101 shown in FIG. 4 executing the program.
  • the functions of the receiving unit 210, the operation control unit 220, and the output unit 230 may be realized by dedicated hardware.
  • it is realized by an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), and other circuits.
  • the function realized by the CPU 101 executing the program (software) and the function realized by the dedicated hardware may be combined to form the receiving unit 210, the operation control unit 220, and the output unit 230.
  • a group composed of a plurality of consumers is targeted for a contract, and the contract power is set based on the average power consumption for each time period of each group.
  • the average power consumption for each time period in this group unit will be further described with reference to the drawings.
  • FIG. 6 is a diagram showing an example of forecasting the power consumption of one consumer.
  • FIG. 6A is a diagram showing an example of past actual power consumption
  • FIG. 6B is a diagram showing a prediction result of daily power consumption
  • FIG. 6C is a prediction value for each time period in the prediction result. It is a figure which shows the example of.
  • the horizontal axis is the time period (48 time period) for one day (24 hours)
  • the vertical axis is the average power consumption (kW) for each time period.
  • the graphs of FIGS. 6A and 6B and the table of FIG. 6C show the actual and predicted results of the average power consumption of the equipment 200 in each time period of the day.
  • FIGS. 6A to 6C show the actual results and forecast results of the entire equipment 200 owned by the consumer and the actual results and forecast of the air conditioner among the equipment 200 with respect to the equipment 200 of one consumer. The result is shown.
  • FIG. 6A shows the actual average power consumption for each time period for 3 days (3 days ago, 2 days ago, and 1 day ago) before the day when the power consumption is to be predicted.
  • the light-colored graph shows the actual results of the equipment 200 as a whole
  • the dark-colored graph shows the actual results of the air-conditioning equipment.
  • FIG. 6B shows an example of the prediction result of the average power consumption for each time period predicted in consideration of the actual results as shown in FIG. 6A.
  • the light-colored graph shows the prediction result of the entire equipment 200
  • the dark-colored graph shows the prediction result of the air-conditioning equipment.
  • 6C shows the average of the entire equipment 200 (in the figure, it is described as a “building” representing the facility where each equipment 200 is installed) in each time period (1st to 48th time periods) of the day.
  • the predicted value of the power consumption and the predicted value of the average power consumption of the air conditioner in the equipment 200 are shown in association with each other.
  • FIG. 7 is a diagram showing an integrated example of forecasting power consumption of a group composed of a plurality of consumers.
  • FIG. 7 (A) is a diagram showing an example of forecast for each consumer constituting the group
  • FIG. 7 (B) is a diagram showing the forecast result of the entire group
  • FIG. 7 (C) is a forecast for each time period in the forecast result of the group. It is a figure which shows the example of a value.
  • the horizontal axis is the time period (48 time period) for one day (24 hours)
  • the vertical axis is the average power consumption (kW) for each time period.
  • FIG. 7 (C) show the forecast results of the average power consumption of consumers and groups in each time period of the day.
  • the forecast result of the average power consumption of the entire equipment 200 of each consumer is referred to as the forecast result of the average power consumption of the consumer or the forecast result of the consumer.
  • FIG. 7 (A) shows the forecast result of the average power consumption for each time period for each of the consumers constituting the group.
  • FIG. 7A shows only the prediction results of three consumers (customers (1) to (3)) among the plurality of consumers constituting the group, and the others are omitted.
  • the light-colored graph shows the prediction result of the entire equipment 200
  • the dark-colored graph shows the prediction result of the air-conditioning equipment.
  • FIG. 7B shows the prediction result of the average power consumption for each time period in the entire group including the three consumers shown in FIG. 7A.
  • the graph classification (color coding) of each time period indicates that the predicted value of the average power consumption of each consumer constituting the group is integrated in each time period.
  • FIG. 7C shows an integrated value of the prediction result of the average power consumption of each consumer in each time period (1st time period to 48th time period) of the day.
  • the target power of this group (described as “target value” in the figure) is set to 1000 kW, and referring to FIGS. 7 (B) and 7 (C), the average of the entire group is from the 22nd period to the 31st period.
  • the predicted power consumption exceeds the target power. Therefore, at least in these time periods, a limit value is set for the power consumption of each consumer constituting the group so that the predicted value of the average power consumption of the entire group does not exceed the target power.
  • the limit value itself for each consumer may be set not only in the time period in which the predicted value of the entire group exceeds the target power, but also in other time periods in which the predicted value of the entire group does not exceed the target power.
  • FIG. 8 is a diagram showing an example of setting a limit value for each consumer constituting the group.
  • FIG. 8A is a diagram showing an example of forecasting average power consumption for each time period of the group
  • FIG. 8B is a diagram showing the distribution result of the limit value to each consumer constituting the group
  • FIG. 8C is a diagram.
  • It is a figure which shows the example of the limit value for each time period allocated to one consumer of a group.
  • the horizontal axis is the time period (48 time period) for one day (24 hours)
  • the vertical axis is the average power consumption (kW) for each time period.
  • FIG. 8A shows the forecast result of the average power consumption for each time period for each of the consumers constituting the group.
  • This graph is the same as the graph shown in FIG. 7 (B).
  • FIG. 8B shows an example of the distribution result of the limit value set for each consumer constituting the group when the average power consumption in each time period of the group is aligned with the target power. ..
  • the graph classification (color coding) of each time period represents the ratio of the limit value (power consumption available to that consumer) distributed to each consumer in each time period.
  • the ratio of the limit value allocated to each consumer in each time period is, in principle, the ratio of the predicted value of the average power consumption of each consumer in the prediction of the average power consumption of the group shown in FIG. 8 (A).
  • a lower limit value may be given as a limit value instead of the ratio of the predicted value of the average power consumption.
  • one of the consumers constituting the group (customer (1)) is allocated to each time period (1st to 48th time periods) of the day. Limits are shown.
  • Example of prediction of average power consumption of facilities based on average power consumption of equipment 200 An example of predicting the average power consumption of the facility based on the average power consumption of the equipment 200 installed in the facility will be described.
  • the average power consumption of the facility is predicted based on the average power consumption of some of the equipment 200 installed in the facility.
  • the power used by the facility is the sum of the power used by the equipment 200 installed in the facility. Therefore, the power consumption of some of the equipment 200 may be correlated with the power consumption of the facility.
  • the power used by the equipment 200 having a particularly large amount of power consumption is considered to have a strong correlation with the power used by the facility.
  • FIG. 9 is a diagram showing an example of the correlation between the power used by the facility and the power used by the air conditioner.
  • the power consumption of the facility in the figure, “building” is described as an example of the facility
  • FIG. 10 is a diagram showing another example of the correlation between the power used by the facility and the power used by the air conditioner.
  • the power used by the facility referred to as “building” as an example of the facility in the figure
  • the power used by the air conditioner is specified.
  • FIG. 11 is a diagram showing a method of predicting the power consumption of a facility based on the power consumption of the air conditioner in the example of the correlation shown in FIG.
  • the average power consumption of the air conditioner in a certain period is predicted. Based on this prediction result, the average power consumption of the facility in the corresponding time period is estimated by the above linear regression equation.
  • the present embodiment it is possible to predict the average power consumption for each facility based on the predicted value of the average power consumption of the equipment 200 installed in the facility and the past results for each time period. can. In addition, it is possible to predict the total power consumption of all the facilities belonging to the group based on the predicted value of the average power consumption of each facility and the past results for each time period. Then, the power consumption of the equipment 200 installed in each facility can be controlled so that the total power consumption does not exceed the threshold value based on the target power set for the group.
  • the limit value can be set before the start of the time limit in which the control based on the control information is performed, and the limit value can be adjusted after the start of the time limit, but before the start of the time limit. May not set a limit value, but may set a limit value according to the operating status of the equipment 200 within the time limit. Further, in the above embodiment, the limit value after the start of the time limit is adjusted in the server 300, but the limit value may be adjusted in the control device 100.
  • the air conditioner is used as the equipment 200 used for predicting the power consumption of the facility, but the equipment 200 used for the prediction has a strong correlation with the power consumption of the facility.
  • the device 200 may be used, and the device is not limited to the air conditioner.
  • a specific plurality of equipment 200 may be combined, and the power consumption of the facility may be predicted based on the power consumption of the plurality of equipment 200.
  • the power consumption of the facility may be predicted based on the power consumption of different equipment 200 according to the season, the time limit of the prediction target, and the like.
  • the correlation between the power used by the facility and the power used by the equipment 200 is not limited to the linear regression equation exemplified above, but is a correlation by a quadratic equation or a polynomial depending on the characteristics of the equipment 200 and the like. May be used. Other changes and configuration substitutions that do not deviate from the scope of the technical ideas of this disclosure are included in this disclosure.
  • the power control system of the present disclosure is a power control system that controls the total power consumption of a plurality of facilities so as to satisfy a predetermined power consumption condition, and acquires information on the power consumption by the equipment 200 provided in the facility.
  • the first prediction unit 320 may predict the power consumption of the facility based on the actual power consumption of the facility in the past specific period in addition to the power consumption of each of the equipment 200 provided in the facility. good. In this way, it is possible to accurately control the power consumption of a plurality of facilities based on the actual power consumption of each facility in the past specific period.
  • the first prediction unit 320 predicts the total power consumption of a plurality of facilities based on the power consumption of the facilities predicted by the first prediction unit 320, and the control information generation unit 340 predicts the total power consumption. Based on this, a limit value of the power consumption of each of the plurality of facilities may be set, and each equipment 200 of each facility may be controlled so as not to exceed the set limit value. In this way, it is possible to appropriately distribute the power consumption to each facility while controlling the total power consumption by the plurality of facilities belonging to the group so as not to exceed the contract power of the group.
  • control information generation unit 340 determines this lower limit threshold value when the prediction result of the power consumption of at least one facility among the power consumption of the facilities predicted by the first prediction unit 320 is lower than the predetermined lower limit threshold value. It may be possible to control the addition of the facility so that the power consumption of the facility predicted to be less than the predetermined lower limit value or more. In this way, it is possible to secure room for using electric power in a certain time period for a facility where the allocation is set to be small when the limit value is set by a specific method.
  • control information generation unit 340 is provided in one or a plurality of facilities when the total power consumption of the plurality of facilities predicted by the first prediction unit 320 is less than a certain value with respect to a predetermined threshold value.
  • the power consumption of the plurality of equipment 200 may be controlled to be higher than the value predicted by the first prediction unit 320 within the range where the total power consumption of the plurality of facilities does not exceed the threshold value. good. By doing so, even if the limit value of the power consumption is set for each facility, it is possible to use the power exceeding the prediction of the power consumption in the facility depending on the conditions.
  • the first prediction unit 320 predicts the power consumption of the facility based on the power consumption of some of the equipment 200 provided in the facility, which has a correlation with the power consumption of the entire facility. Is also good. By doing so, it is possible to predict the power consumption of the facility based on the power consumption of the specific equipment 200 and control the power consumption of each equipment 200 installed in the facility.
  • the program of the present disclosure is a facility equipped with a computer for controlling a power control system that controls the total power consumption of a plurality of facilities so as to correspond to a predetermined power consumption.
  • the performance information acquisition unit 360 that acquires the information of the power consumption by the equipment 200
  • the first prediction unit 320 that predicts the power consumption of the facility where the equipment equipment 200 is provided based on the information of the power consumption by the equipment equipment 200
  • the first It is a program that functions as a control information generation unit 340 that controls the total power consumption of a plurality of facilities based on the power consumption of the facility predicted by the prediction unit 320. According to the computer on which this program is installed, it is possible to accurately control the power consumption of a plurality of facilities based on the actual power consumption of each facility in the past specific period.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Development Economics (AREA)
  • Finance (AREA)
  • Accounting & Taxation (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Power Engineering (AREA)
  • Tourism & Hospitality (AREA)
  • Game Theory and Decision Science (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Public Health (AREA)
  • Data Mining & Analysis (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

【課題】複数の施設による使用電力を制御する場合に、設備機器から使用電力に関わる情報を取得し、取得した情報に基づいて設備機器ごとの使用電力を精度よく予測する。 【解決手段】複数の施設の総使用電力が所定の使用電力条件を満たすように電力制御する電力制御システムであって、施設に設けられた設備機器による使用電力の情報を取得する実績情報取得部360と、設備機器による使用電力の情報に基づいてこの設備機器が設けられた施設の使用電力を予測する第1予測部320と、第1予測部320により予測された施設の使用電力に基づいて、複数の施設の総使用電力を制御する制御情報生成部340と、を備える。

Description

電力制御システムおよびプログラム
 本開示は、電力制御システムおよびプログラムに関する。
 特許文献1には、負荷で消費される消費電力を測定する電力計を含むグループ化された複数の需要家と、電力計で測定された消費電力を需要家の各々から受け付け、需要家の各々の消費電力を用いて、グループ消費電力をグループ毎に出力し、何れかのグループのグループ消費電力が、グループ毎に予め設定されたグループ契約電力を超えた場合、電力超過グループのグループ消費電力をグループ契約電力以下に制御する制御装置と、を含む電力制御システムが記載されている。
特開2019-30087号公報
 複数の施設に対して供給された電力を各施設に設けられた設備機器に対して適切に分配するには、設備機器ごとの使用電力の予測を精度よく行うことが好ましい。
 本開示は、複数の施設による使用電力を制御する場合に、設備機器から使用電力に関わる情報を取得し、取得した情報に基づいて設備機器ごとの使用電力を精度よく予測することを目的とする。
 本開示の電力制御システムは、複数の施設の総使用電力が所定の使用電力条件を満たすように電力制御する電力制御システムであって、前記施設に設けられた設備機器による使用電力の情報を取得する取得手段と、
 前記設備機器による使用電力の情報に基づいて当該設備機器が設けられた前記施設の使用電力を予測する予測手段と、前記予測手段により予測された前記施設の使用電力に基づいて、複数の前記施設の総使用電力を制御する制御手段と、を備える、電力制御システムである。
 このようにすれば、複数の施設による使用電力を制御する場合に、設備機器から使用電力に関わる情報を取得し、取得した情報に基づいて設備機器ごとの使用電力を精度よく予測することができる。
 ここで、前記予測手段は、前記施設に設けられた前記設備機器の各々による使用電力に加え、過去の特定期間における当該施設の使用電力の実績に基づいて当該施設の使用電力を予測することとしても良い。
 このようにすれば、過去の特定期間における施設単位の使用電力の実績に基づき、複数の施設の使用電力を精度よく制御することができる。
 また、前記予測手段は、前記予測手段により予測された前記施設の使用電力に基づいて複数の前記施設の総使用電力を予測し、前記制御手段は、前記総使用電力の予測結果に基づき複数の当該施設の各々の使用電力の制限値を設定し、設定した制限値を超えないように各施設の各設備機器を制御することとしても良い。
 このようにすれば、グループに属する複数の施設による総使用電力がグループの契約電力を超えないように制御しながら、各施設に対して使用電力の配分を適切に行うことができる。
 また、前記制御手段は、前記予測手段により予測された前記施設の使用電力のうち、少なくとも一の施設の使用電力の予測結果が予め定められた下限閾値を下回る場合に、当該下限閾値を下回ると予測された施設の使用電力が所定の下限値以上となるように当該施設の付加を制御することとしても良い。
 このようにすれば、ある時限に関して、特定の手法で制限値を設定した場合に配分が少なく設定される施設に対して、その時限において電力を使用する余地を確保することができる。
 また、前記制御手段は、前記予測手段により予測された複数の前記施設の総使用電力が予め定められた閾値に対して一定以上少ない場合に、一または複数の前記施設に設けられた一または複数の前記設備機器に対し、複数の当該施設の総使用電力が前記閾値を超えない範囲で、使用電力が予測手段により予測された値よりも高い値となるように制御することとしても良い。
 このようにすれば、施設ごとに使用電力の制限値が設定される場合であっても、条件に応じて、施設において使用電力の予測を超える電力を使用することができる。
 また、前記予測手段は、前記施設に設けられた前記設備機器のうち、施設全体の使用電力と相関のある一部の設備機器の使用電力に基づいて施設の使用電力を予測することとしても良い。
 このようにすれば、特定の設備機器の使用電力に基づいて施設の使用電力を予測し、施設に設置された各設備機器の使用電力を制御することができる。
 また、本開示のプログラムは、複数の施設の総使用電力が所定の使用電力に対応するように電力制御する電力制御システムを制御するコンピュータを、前記施設に設けられた設備機器による使用電力の情報を取得する取得手段と、
 前記設備機器による使用電力の情報に基づいて当該設備機器が設けられた前記施設の使用電力を予測する予測手段と、前記予測手段により予測された前記施設の使用電力に基づいて、複数の前記施設の総使用電力を制御する制御手段として、機能させるプログラムである。
 このプログラムをインストールしたコンピュータによれば、過去の特定期間における施設単位の使用電力の実績に基づき、複数の施設の使用電力を精度よく制御することができる。
本実施形態が適用される設備機器の制御システムの全体構成を示す図である。 サーバの構成を示す図である。 制御装置の構成を示す図である。 制御装置およびサーバのハードウェア構成例を示す図である。 設備機器の構成を示す図である。 一の需要家の使用電力の予測例を示す図であり、図6(A)は過去の使用電力の実績の例を示す図、図6(B)は一日の使用電力の予測結果を示す図、図6(C)は予測結果における時限ごとの予測値の例を示す図である。 複数の需要家により構成されるグループの使用電力の予測の積算例を示す図であり、図7(A)はグループを構成する需要家ごとの予測例を示す図、図7(B)はグループ全体の予測結果を示す図、図7(C)はグループの予測結果における時限ごとの予測値の例を示す図である。 グループを構成する各需要家に対する制限値の設定例を示す図であり、図8(A)はグループの時限ごとの平均使用電力の予想例を示す図、図8(B)はグループを構成する各需要家に対する制限値の配分結果を示す図、図8(C)は、グループの一の需要家に配分された時限ごとの制限値の例を示す図である。 施設の使用電力と空調機の使用電力との相関関係の例を示す図である。 施設の使用電力と空調機の使用電力との相関関係の他の例を示す図である。 図10に示す相関関係の例において、空調機の使用電力に基づき施設の使用電力を予測する方法を示す図である。
 以下、添付図面を参照して、実施の形態について詳細に説明する。
<システム構成>
 図1は、本実施形態が適用される設備機器の制御システムの全体構成を示す図である。本実施形態の制御システムは、制御装置100と、被制御装置である設備機器200と、サーバ300とを備える。制御装置100と設備機器200とは、ネットワークを介して接続されている。このネットワークは、専用回線によるLAN(Local Area Network)であっても良いし、WAN(Wide Area Network)やインターネット上に設定されたVPN(Virtual Private Network)等を用いても良い。
 設備機器200は、電力を使用して作動する設備や機器である。制御装置100は、一または複数の設備機器200の動作を制御する。図1には、制御装置100が複数の設備機器200を制御する構成例を示している。設備機器200は、電力を使用して動作し、制御装置100により動作を制御される設備や機器であれば、その種類を問わない。以下の説明では、設備機器200の具体例として空調機器の制御に本実施形態の制御システムを適用した例について説明する場合がある。
 また、設備機器200は、制御装置100からの指示にしたがって自装置を制御する制御手段を備えている。制御装置100は、制御対象である設備機器200を制御するための指示(以下、「制御指示」と呼ぶ)を生成し、生成した制御指示を各設備機器200に対して送信する。各設備機器200は、制御装置100から制御指示を取得し、自装置の制御手段により、取得した制御指示にしたがって自装置の設定を行い、動作を制御する。
 サーバ300は、制御装置100に対し、設備機器200を制御するための制御情報を提供する。サーバ300は、制御情報生成サーバの一例である。制御装置100とサーバ300とは、ネットワークを介して接続されている。図1に示す構成例では、サーバ300に接続された一つの制御装置100が示されているが、実際には、複数の制御装置100がサーバ300に接続される。そして、各制御装置100に、一または複数の設備機器200が接続される。制御装置100とサーバ300とを接続するネットワークには、例えば、インターネットが用いられる。また、LANやWANを用いても良い。
<電気料金と設備機器200の制御の関係>
 ここで、電気料金について説明する。電気料金は、主に基本料金と電力量料金とにより構成され、月ごとに特定される。基本料金は、基本料金単価と契約電力とに基づいて計算される。契約電力は、当月から遡って1年以内の最大需要電力の最大値とされる。最大需要電力とは、月間の時限(デマンド時限:30分)ごとの平均使用電力の最大値である。平均使用電力とは、各時限における需要電力(使用電力)の平均値である。また、電力量料金は、電力量料金単価と月ごとの使用電力量とに基づいて計算される。
 上述したように、契約電力は、過去1年以内の最大需要電力の最大値である。したがって、ある月の最大需要電力(言い換えれば、その月におけるある時限の平均使用電力)が契約電力となると、その月以後、その契約電力よりも低い最大需要電力を維持し続けたとしても、1年間にわたり、この契約電力に基づく基本料金が課されることとなる。また、ある時限において平均使用電力がそれまでの契約電力の値を上回り、その時限が含まれる月の最大需要電力となると、この時限の平均使用電力(最大需要電力)が、新たな契約電力として、それ以降の基本料金の計算に用いられる。
 また、電力量料金単価の設定には様々な態様があり、所定の条件に基づいて電力量料金単価が変動する設定が行われ得る。例えば、1日の中の時間帯、平日か休日かの別、季節などに応じて、電力量料金単価が変動する設定が行われる場合がある。また、電力が市場で取引されるようになり、市場における電力の取引価格を反映させて変動する電力量料金単価が設定される場合もある。
 設備機器200の制御において、設備機器200の運転に要する電気料金を削減することを指向して制御が行われる場合がある。この場合、平均使用電力が現在の契約電力を超えないように設備機器200を制御することが求められる。また、電力量料金単価が変動する場合、電気料金を低下させる観点では、単価の低い時間帯よりも単価の高い時間帯で使用する電力量を削減する方が、効率が良い。ただし、電力量料金単価が時限ごとの電力量料金に対してのみ影響するのに対し、契約電力は当月以後の1年間の電気料金に対して影響する。このため、電力量料金単価の変動を考慮した制御よりも、平均使用電力を考慮した制御の方が優先される。
 電気料金は、電力供給の契約者に対して課される。ここで、本実施形態では、電力供給の契約者として、複数の需要家により構成されるグループを想定する。したがって、平均使用電力は、このグループを構成する複数の需要家の各々による時限ごとの平均使用電力の積算値として得られる。また、基本料金は、このグループ単位の最大需要電力(月間の時限ごとの平均使用電力の最大値)に基づいて定まる。
 ここで、グループ単位の最大需要電力は、通常、グループを構成する各需要家の最大需要電力の総和よりも小さい。これは、グループを構成する各需要家の間で最大需要電力となる時限が、一般に異なるためである。したがって、グループに対して設定される基本料金は、グループを構成する需要家ごとに最大需要電力に基づいて設定された基本料金の総和よりも安くなる。
 一のグループには、一または複数の制御装置100が割り当てられる。この一または複数の制御装置100は、このグループ単位で設定された電気料金(基本料金および電力量料金)に応じて、グループを構成する各需要家の設備機器200に対し、所定の単位時間ごとの平均使用電力や電力量料金単価を考慮した制御を行う。また、一の制御装置100は、複数のグループに割り当てられても良い。この場合、複数のグループに属する各需要家の各設備機器200が、一の制御装置100で制御される。
 また、需要家は、一または複数の設備機器200を有し、制御装置100は、一または複数の需要家の設備機器200を制御する。ここでは、一または複数の設備機器200が設置される場所を施設と呼ぶ。しかしながら、一の需要家が一の制御装置100に対応するとは限らず、一の需要家が一の施設に対応するとは限らない。一の需要家が有する複数の設備機器200が、複数の制御装置100により制御されても良いし、複数の需要家が有する設備機器200が、一の制御装置100により制御されても良い。同様に、一の需要家が有する複数の設備機器200が、複数の施設に設置されていても良いし、複数の需要家が有する設備機器200が、一の施設に設置されていても良い。また、一の施設に設けられた設備機器200を複数の制御装置100が制御する構成や、複数の施設に設置された設備機器200を一の制御装置100が制御する構成もあり得る。ただし、以下の説明では、簡単のため、一の需要家の設備機器200が一の施設に設置され、一の需要家に対して一の制御装置100が割り当てられるものとする。したがって、一の施設には一の制御装置100が対応し、各施設に設置された各需要家の設備機器200を、施設ごとに設けられ、各需要家に対応する制御装置100が制御する構成を想定する。
 また、一のグループに複数の施設が属する場合があり、複数のグループに一の施設が対応する場合もある。前者の場合は、一のグループを構成する需要家の設備機器200が複数の施設に設置されている場合であり、後者の場合は、複数のグループの各々を構成する複数の需要家の設備機器200が一の施設に設置されている場合である。一のグループを構成する各需要家の設備機器200が設置された一または複数の施設における平均使用電力の積算値を、そのグループに属する施設の総使用電力と呼ぶことにする。
<サーバ300の構成>
 図2は、サーバ300の構成を示す図である。サーバ300は、例えば、ネットワークのクラウド環境上に構築されたサーバ(いわゆるクラウドサーバ)等として実現される。サーバ300は、グループ管理部310と、第1予測部320と、制限値設定部330と、制御情報生成部340と、第2予測部350と、実績情報取得部360と、制限値調整部370と、送信制御部380とを備える。
 グループ管理部310は、上記の需要家のグループを管理する。上記のように、このグループは、電力契約の単位として設定される。グループ管理部310は、グループの契約電力、最大需要電力および時限ごとの平均使用電力の情報を取得し、保持する。また、グループ管理部310は、グループを構成する需要家の情報を管理する。需要家の情報には、需要家が有する設備機器200の情報の他、需要家の設備機器200が管理されている制御装置100の情報、需要家の設備機器200が設置されている施設の情報等が含まれる。グループ管理部310は、グループを構成する各需要家の契約電力、最大需要電力および時限ごとの平均使用電力の情報を取得し、保持する。各需要家の平均使用電力の情報は、例えば、各需要家の設備機器200を制御する制御装置100から得られる。そして、グループの平均使用電力の情報は、例えば、グループを構成する需要家の設備機器200(以下、「グループの設備機器200」と記す)を制御する制御装置100から得られる。具体的には、例えば、グループを構成する各需要家の時限ごとの平均使用電力を積算して、グループの平均使用電力とする。
 第1予測部320は、グループを構成する需要家ごとに、各需要家の設備機器200による時限ごとの平均使用電力を予測する。第1予測部320は、予測手段の一例である。第1予測部320による時限ごとの平均使用電力の予測は、例えば、グループを構成する各需要家の設備機器200における過去の稼働に関する履歴情報に基づいて行われる。ここで、稼働に関する履歴情報には、設備機器200の稼働状態の情報の他、設備機器200の稼働環境の情報等、広く、設備機器200の稼働に関連する種々の情報を含む。設備機器200の稼働状態の情報としては、例えば、稼働率、連続稼働時間、稼働回数等の情報が含まれる。稼働環境の情報としては、例えば、天気、気温、湿度等の気象条件、月日および時間帯等の情報が含まれる。
 特定の日時の特定の時限(以下、「特定時限」と呼ぶ)における平均使用電力の予測は、例えば、稼働に関する履歴情報に基づいて特定時限に対する参考時限を設定し、この参考時限における設備機器200の平均使用電力に基づいて行っても良い。参考時限は、例えば、特定時限が該当する日時に予想される気象条件と類似する気象条件である過去の時限や、1年前の同月同日の対応する時限等としても良い。また、特定時限における設備機器200の平均使用電力の予測において、参考時限の前後の時限における設備機器200の平均使用電力や、参考時限が含まれる日に至る数日間の時限における設備機器200の平均使用電力の推移等を参酌しても良い。
 また、第1予測部320は、設備機器200による時限ごとの平均使用電力の予測結果に基づいて、各設備機器200が設置される施設における時限ごとの平均使用電力を予測する。各施設の平均使用電力は、施設ごとに、設置されている設備機器200の時限ごとの平均使用電力を積算することで得られる。そして、各施設の平均使用電力を積算することにより、グループごとの施設の総使用電力が得られる。
 また、施設の平均使用電力の予測方法として、施設に設置されている設備機器200のうち、時限ごとの平均使用電力に関して、施設の平均使用電力との相関が認められる一部の設備機器200の平均使用電力に基づいて予測を行っても良い。例えば、施設に設置されている設備機器200のうちで特に電力使用量の大きい設備機器200の使用電力は、施設の使用電力と強い相関があると考えられる。そこで、ある時限における施設の平均使用電力を予測する場合、そのような特定の設備機器200の該当する時限における平均使用電力を予測する。そして、施設の使用電力と特定の設備機器200の使用電力との相関関係に基づき、該当する時限の施設の使用電力を算出しても良い。
 施設の平均使用電力の予測に用いる設備機器200の平均使用電力の予測は、例えば、施設に設置されている設備機器200における過去の特定期間の平均使用電力の実績に基づいて行っても良い。施設における設備機器200の平均使用電力の実績は、施設ごとの設備機器200の稼働に関する履歴情報から得られる。特定期間は、設備機器の平均使用電力を予測するのに適当な履歴情報を得られる期間であれば良く、例えば、過去1年間または数年間等としても良い。
 制限値設定部330は、第1予測部320による予測結果に基づき、グループを構成する需要家ごとに、各需要家の設備機器200による時限ごとの平均使用電力に対して制限値を設定する。制限値設定部330は、設定手段の一例である。グループの平均使用電力がそのグループの契約電力を超えると、この平均使用電力が新たな契約電力となって、電気料金における基本料金を引き上げてしまう。そこで、グループに対し、契約電力に基づく目標電力を設定し、グループの設備機器200の全体で、時限ごとの平均使用電力が目標電力を超えないように制御することが求められる。そして、各需要家の制限値の積算値が目標電力に基づく閾値以下となるように、各需要家の時限ごとの制限値が設定される。なお、目標電力は、契約電力以下の値、例えば、契約電力よりも一定値だけ低い値に設定される。また、閾値は、目標電力以下の値、例えば、目標電力よりも一定値だけ低い値に設定される。
 ここで、グループを構成する需要家の各々の制限値は、例えば、第1予測部320による各需要家に対する平均使用電力の予測に基づいて設定される。第1予測部320の予測から、時限ごとに、グループの各需要家による予測される平均使用電力の割合が特定される。そこで、例えば各需要家の制限値の積算値が上記の目標電力に基づく閾値と等しくなるように設定される場合、この閾値に相当する平均使用電力を、第1予測部320により予測された各需要家による平均使用電力の割合となるように振り分けて、各需要家の制限値とする。言い換えれば、制限値は、その時限において各需要家が利用可能な使用電力を意味する。
 また、制限値の設定を、各需要家に関して時限ごとに予測される平均使用電力の割合ではなく、各需要家の過去の特定期間における時限ごとの平均使用電力の実績値に基づいて行っても良い。例えば、第1予測部320による予測の説明で示した特定時限に対して、同説明で示した参考時限における各需要家の平均使用電力の実績値の割合を特定する。そして、この実績値の割合に基づいて、特定時限における各需要家の制限値を設定しても良い。特定期間は、参考時限の実績値として得られる情報の量に応じて定めれば良く、例えば、過去1年間または数年間や、特定の月日から特定の月日までの間等のように設定しても良い。
 また、制限値の設定を、各需要家の特定期間における時限ごとの平均使用電力の最大値に基づいて行っても良い。例えば、特定期間を過去1年間とすると、需要家ごとに、過去1年間における時限ごとの平均使用電力の最大値を得ることができる。そして、各需要家の最大値を比較し、その比に応じた割合で、各需要家の制限値を設定しても良い。この場合、参考時限の実績値を用いる場合と異なり、平均使用電力が最大値となる時限は、需要家ごとに異なる時限となり得る。
 また、制限値設定部330は、例えば各需要家の制限値の積算値が各時限において上記の目標電力に基づく閾値と等しくなるように設定される場合、次のように各需要家の制限値を設定しても良い。ある時限において各需要家に設定される制限値は、需要家に応じて、その直前の時限の制限値よりも高い値に設定される場合と、低い値に設定される場合とがある。そこで、直前の時限の制限値よりも高い制限値が設定される全ての需要家における直前の時限の制限値と設定される制限値との差分の合計と、直前の時限の制限値よりも低い制限値が設定される全ての需要家における直前の時限の制限値と設定される制限値との差分の合計とを対比する。そして、前者が後者よりも大きくならないように各需要家の制限値を設定する。
 また、制限値には、下限値を設けても良い。下限値は、0よりも大きい値である。これにより、第1予測部320による予測において、ある需要家に関して、ある時限での平均使用電力が0と予測された場合であっても、下限値に相当する制限値が設定される。これは、ある需要家に関して平均使用電力が0と予測された時限において、制限値を0と設定した場合に、その需要家がその時限で設備機器200を使用すると直ちに制限値を超えてしまうこととなるため、かかる不都合を回避するためである。平均使用電力が0と予測される場合とは、例えば、第1予測部320による予測に用いられる参考時限での需要家の平均使用電力が0であった場合等が考えられる。
 下限値の設定方法は、制御システムの運用や仕様、グループや個々の需要家等の間の取り決め等に応じて適宜定めて良い。例えば、予め固定値を定めておいても良いし、グループ全体における時限ごとの平均使用電力の予測値等に基づいて変動する値としても良い。下限値として固定値を設定する場合、各需要家に対して同じ値としても良いし、適当な条件や需要家の要請に応じて需要家ごとに別個の値を設定しても良い。グループ全体における時限ごとの平均使用電力の予測値は、第1予測部320によるグループを構成する各需要家における時限ごとの平均使用電力の予測値を積算することにより得られる。
 制限値に下限値を設定する場合、制限値に対して下限閾値を設定しておき、ある需要家に与えられる制限値が下限閾値を下回る場合に、制限値として下限値を適用するようにしても良い。下限閾値としては、下限値とは異なる値を設定しても良い。例えば、下限閾値として下限値を下回る値を設定すると、ある時限において、ある需要家に割り当てられた制限値が下限閾値を下回った場合に、下限閾値よりも大きい下限値が、その時限におけるその需要家の制限値として設定される。
 制限値に上記のような下限値を設定した場合、グループを構成する需要家のうち、一部の需要家に対しては、上述した制限値の設定方法により特定される割合に基づく値とは異なる(より大きい)制限値が与えられる。このため、上記の設定方法による割合で算出された値に、単純に下限値で付与される値を加算して各需要家の制限値を設定すると、各需要家の制限値の積算値が上記の目標電力に基づく閾値を超えてしまう可能性がある。したがって、制限値として下限値が適用される需要家がある場合、下限値を考慮した各需要家の制限値の積算値が上記の閾値を超えないように補正する必要がある。例えば、上記の設定方法による割合で算出された値と適用される下限値とを加算した値が上記の閾値以下となるように、各需要家の制限値を設定することが考えられる。また、適用される下限値の合計値分を、下限値が適用されない需要家の制限値から差し引くことが考えられる。
 なお、ここでは、需要家ごとの設備機器200による各時限の平均使用電力に対して制限値を設定することとして説明した。これに対し、特定の条件を満たす時限の平均使用電力に対してのみ制限値を設定する構成としても良い。例えば、第1予測部320によるグループを構成する各需要家におけるある時限の平均使用電力の予測値を積算することで、その時限におけるグループ全体の平均使用電力の予測値が得られる。このグループの平均使用電力の予測値が上記の閾値を超えることを条件として、そのような時限の平均使用電力に対してのみ制限値を設定するようにしても良い。
 一方、グループの平均使用電力の予測値が上記の閾値を下回る場合について考える。閾値は目標電力に基づいて設定され、目標電力は契約電力に基づいて設定される。このため、ある時限においてグループを構成する需要家の多くが大きな電力を使用しない場合(例えば、深夜から明け方にかけての時間帯等)、その時限に対するグループの平均使用電力の予測値は、閾値を大きく下回ることが考えられる。このような場合は、グループの各需要家の制限値を、各需要家の制限値の積算値が閾値を超えない範囲で、各需要家の平均使用電力の予測値よりも高い値に設定しても良い。
 上記の例では、グループを構成する需要家ごとに、時限ごとの設備機器200の平均使用電力に対して制限値を設定した。ここで、グループに属する施設ごとに、時限ごとの施設の平均使用電力に対して制限値を設定しても良い。この場合、グループに属する全ての施設による総使用電力が、上述したグループの目標電力に基づく閾値以下となるように、各施設の時限ごとの制限値が設定される。各施設に設置された設備機器200は、各施設に対応付けられた制御装置100により、時限ごとの設備機器200の平均使用電力が施設ごとに設定された制限値を超えないように制御される。
 なお、全ての時限における施設の平均使用電力に対して制限値を設定するのではなく、特定の条件を満たす時限における平均使用電力に対してのみ制限値を設定する構成としても良い。例えば、第1予測部320による需要家の平均使用電力の予測値に基づいて施設の総使用電力の予測値を得、この施設の総使用電力の予測値が上記の閾値を超えることを条件として、そのような時限における各施設の平均使用電力に対してのみ制限値を設定するようにしても良い。
 施設単位の平均使用電力に対して施設ごとの制限値を設定した場合、この施設ごとの制限値に対して下限値を設定しても良い。下限値の設定方法は、制御システムの運用や仕様、各施設の運用や施設間の取り決め等に応じて適宜定めて良い。例えば、予め固定値を定めておいても良いし、時限ごとの施設の総使用電力の予測値等に基づいて変動する値としても良い。下限値として固定値を設定する場合、各施設に対して同じ値を設定しても良いし、適当な条件や施設または施設に設置される設備機器200を有する需要家の要請等に応じて施設ごとに別個の値を設定しても良い。
 施設による平均使用電力の制限値に下限値を設定する場合、制限値に対して下限閾値を設定しておき、ある施設における制限値が下限閾値を下回る場合に、制限値として下限値を適用するようにしても良い。下限閾値としては、下限値とは異なる値(例えば、下限値を下回る値)を設定しても良い。
 また、ある時限においてグループに属する施設の総使用電力が上記の目標電力に基づく閾値を大きく下回る場合、施設ごとの制限値を、グループに属する施設の総使用電力が閾値を超えない範囲で、各施設の平均使用電力の予測値よりも高い値に設定しても良い。施設の総使用電力が目標電力に基づく閾値を大きく下回る場合としては、例えば、施設の非営業日や休業期間等が考えられる。
 制御情報生成部340は、グループを構成する各需要家の設備機器200を制御するための制御情報を生成する。制御情報は、需要家の設備機器200による時限ごとの平均使用電力が制限値設定部330により設定されたその需要家におけるその時限の制限値を超えないように、制御装置100に設備機器200を制御させる情報である。したがって、制御情報には、制限値設定部330により設定された需要家ごとの制限値の情報が含まれる。制御情報生成部340は、各制御情報による制御が行われる時限が開始される前に、該当する時限の制御情報を生成する。また、制御情報生成部340は、所定の単位期間ごとに、その単位期間に含まれる複数の時限における制御情報を生成しても良い。具体的には、例えば日単位で、48時限分の制御情報を前日までにまとめて生成する構成としても良い。
 また、制御情報生成部340は、制限値設定部330により設定された各需要家の制限値が、制限値調整部370により調整された場合に、この制限値の調整結果を設備機器200の制御に反映させるための制御情報を生成する。以下、制限値設定部330により設定された制限値に基づく上記の制御情報と、制限値調整部370により調整された制限値に基づく制御情報とを区別する場合、前者を「一般制御情報」と呼び、後者を「個別制御情報」と呼ぶ。詳しくは後述するが、制限値調整部370による制限値の調整は、制限値の調整を反映させようとする制御が行われている時限内において行われる。したがって、個別制御情報は、一般制御情報と異なり、個別制御情報による制御が行われている時限が開始された後に、その時限内において生成される。
 第2予測部350は、設備機器200の制御が実施されている現在進行中の時限(以下、「現在の時限」と呼ぶ)内において、現在の時限における設備機器200の平均使用電力を予測する。第2予測部350による平均使用電力の予測は、例えば、現在の時限内における各需要家の設備機器200の稼働状況に関する情報に基づいて行われる。稼働状況に関する情報には、例えば、現在の時限が開始されてからその時限内の予測時点までの設備機器200の使用電力の推移や使用電力量、運転状態、運転に関する設定等の情報が含まれる。運転に関する設定は、設備機器200の種類に応じて具体的に選択される。例えば、設備機器200が空調機器である場合、設定温度と実際の室温との差分等の情報を用い得る。
 実績情報取得部360は、グループを構成する各需要家の設備機器200の稼働状況に関する実績情報を取得する。取得される実績情報には、上記の現在の時限における実績情報(現在の時限が開始されてから実績情報を取得する時点までの実績情報)の他、既に終了した時限における実績情報を取得しても良い。実績情報は、設備機器200を制御する制御装置100から取得しても良いし、設備機器200自体から取得しても良い。実績情報取得部360により取得された現在の時限の実績情報は、第2予測部350による設備機器200の平均使用電力の予測に用いられる。また、実績情報取得部360により取得された設備機器200の稼働状況に関する実績情報は、設備機器200の稼働に関する履歴情報として保持しても良い。そして、保持された履歴情報を、第1予測部320による予測に用いても良い。この場合、実績情報取得部360は、取得手段の一例として機能する。
 制限値調整部370は、所定の条件に基づいて、制限値設定部330により設定されたグループを構成する各需要家の制限値を調整する。一例として、制限値調整部370は、第2予測部350による予測に基づき、各需要家の制限値を調整する。また、他の例として、制限値調整部370は、実績情報取得部360により取得された現在の時限における設備機器200の稼働状況に関する実績情報に基づき、各需要家の制限値を調整する。制限値の調整は、グループを構成する需要家どうしの間で、各需要家が利用可能な使用電力を融通し合うように調整される。例えば、グループを構成する需要家のうちの一部の需要家に関して制限値を低下させ、他の需要家に関して、一部の需要家の制限値の低下分に相当するだけ制限値を上昇させる。
 送信制御部380は、制御情報生成部340により生成された制御情報を、各制御情報に対応する需要家の設備機器200を制御する制御装置100へ送信する。送信制御部380は、各制御情報による制御が行われる時限が開始される前に、該当する時限の一般制御情報を制御装置100へ送信する。例えば、送信制御部380は、1時限分の一般制御情報を、その時限の直前の時限が終了するまでに送信しても良いし、連続する複数時限分の一般制御情報を、その複数時限の最初の時限が開始されるまでに送信しても良い。また、送信制御部380は、所定の単位期間ごとに、その単位期間が開始される前に、一般制御情報を制御装置100へ送信するようにしても良い。具体的には、例えば日単位で、48時限分の一般制御情報を、前日までに送信しても良い。
 また、送信制御部380は、各時限の一般制御情報を制御装置100へ送信する場合に、送信しようとする時限の直前の時限における使用電力から低下させる一般制御情報を、送信しようとする時限の直前の時限における使用電力から上昇させる一般制御情報よりも先に送信するようにしても良い。
 また、送信制御部380は、個別制御情報が生成されると、直ちに、生成された個別制御情報による制御の対象である設備機器200を制御する制御装置100へ送信する。送信制御部380は、個別制御情報を制御装置100へ送信する場合に、調整により制限値が低下する設備機器200に対する個別制御情報を、調整により制限値が上昇する設備機器200に対する個別制御情報よりも先に送信するようにしても良い。
<制御装置100の構成>
 図3は、制御装置100の構成を示す図である。制御装置100は、ネットワークを介してサーバ300および設備機器200と接続された情報処理装置として実現される。制御装置100は、制御対象の設備機器200の近隣に設けられた装置(例えば、エッジサーバ)であっても良いし、クラウド環境上に構築されたサーバ(クラウドサーバ)であっても良い。制御装置100は、制御情報取得部110と、稼働情報取得部120と、記憶部130と、制御指示生成部140と、制御指示出力部150と、稼働情報出力部160とを備える。
 制御情報取得部110は、サーバ300から設備機器200の制御情報を取得する。制御情報取得部110が取得する制御情報には、ある時限に対する制御情報として、その時限が開始される前に取得される一般制御情報と、その時限の進行中に取得される個別制御情報とがある。一般制御情報には、需要家ごとに設定された平均使用電力の制限値の情報が含まれる。個別制御情報には、進行中の時限に対する一般制御情報に含まれる制限値を調整する新たな制限値の情報が含まれる。
 稼働情報取得部120は、制御装置100の制御対象である設備機器200の稼働情報を取得する。ここで、稼働情報取得部120が取得する稼働情報には、広く、設備機器200の稼働に関する種々の情報が含まれる。例えば、設備機器200の稼働率や継続稼働時間等の動作状態を表す情報が含まれる。また、稼働された時間帯、平日の稼働と休日の稼働の別等、設備機器200の稼働に影響を及ぼすと考えられる種々の情報を含んでも良い。さらに、稼働情報取得部120は、気温や湿度等の設備機器200が設置された環境の情報を取得しても良い。これらの情報は、情報の種類に応じて、既存の種々の方法で取得し得る。例えば、設備機器200自体から取得し得る他、各種のセンサ装置等から取得し得る。また、日時の情報は、例えば、制御装置100に設けられた時計機能やカレンダー機能により得られる。
 記憶部130は、制御情報取得部110および稼働情報取得部120により取得された各種の情報を記憶する。制御情報取得部110により取得された制御情報は、設備機器200を制御するために用いられる。制御情報のうち、各時限の一般制御情報は、各々の一般制御情報による制御が行われる時限が開始される前に、記憶部130に記憶される。稼働情報取得部120により取得された設備機器200の稼働情報は、所定のタイミングでサーバ300へ送られ、サーバ300の第1予測部320および第2予測部350による予測に用いられる。
 所定の単位期間ごとの時限の一般制御情報が、その単位期間が開始される前に、サーバ300から送信される場合、この単位期間が開始される前に、この一般制御情報が制御情報取得部110により取得され、記憶部130に記憶される。例えば、単位期間が1時限に相当する期間である場合、1時限分の一般制御情報が、その一般制御情報による制御が行われる時限が開始される前に記憶部130に記憶される。また、単位期間が複数時限分に相当する期間である場合、その複数時限分の一般制御情報が、その一般制御情報による制御が行われる最初の時限が開始される前に記憶部130に記憶される。具体的には、例えば単位期間が1日である場合、1日の48時限分の一般制御情報が、前日までに記憶部130に記憶される。
 制御指示生成部140は、制御情報取得部110により取得された制御情報に基づいて、設備機器200を制御するための制御指示を生成する。制御指示生成部140は、各需要家の設備機器200による時限ごとの平均使用電力が、時限ごとに需要家に対して設定された制限値を超えないように設備機器200を動作させる制御指示を生成する。一の需要家が複数の設備機器200を有する場合は、時限ごとに、その一の需要家が有する全ての設備機器200の平均使用電力の積算値が対応する時限の制限値を超えないように、制御指示が生成される。この場合、需要家に対して設定された制限値を超えないようにするために、需要家が自身の複数の設備機器200に対して電力を割り振る方法については、特に限定しない。例えば、設備機器200の種類や装置規模等に応じて均等に割り振っても良い。また、特定の設備機器200に対して十分に電力を割り当て、残りの電力を他の設備機器200に割り振っても良い。また、ある時限では、一部の設備機器200を動作させず、一部の設備機器200のみで電力を使用するようにしても良い。また、制御指示生成部140は、稼働情報取得部120により取得した設備機器200の稼働情報を参酌して制御指示を生成しても良い。制御情報取得部110により取得された制御情報のうち、一般制御情報に基づいて制御指示生成部140により生成された制御指示は、記憶部130に保持される。
 制御指示出力部150は、制御情報取得部110により取得された制御情報のうち、一般制御情報に基づいて制御指示生成部140により生成された制御指示を、その一般制御情報による制御が行われる時限において記憶部130から読み出し、制御対象の設備機器200へ送信する。また、制御指示出力部150は、制御情報取得部110により取得された制御情報のうち、個別制御情報に基づいて制御指示生成部140により生成された制御指示を、直ちに制御対象の設備機器200へ送信する。
 稼働情報出力部160は、稼働情報取得部120により取得され、記憶部130に保持された設備機器200の稼働情報を、所定の条件に応じて、記憶部130から読み出してサーバ300へ送信する。稼働情報の読み出しおよび送信は、サーバ300からの要求に応じて行っても良いし、1日の決まった時間等に定期的に行っても良い。
<制御装置100およびサーバ300のハードウェア構成>
 図4は、制御装置100およびサーバ300のハードウェア構成例を示す図である。制御装置100およびサーバ300は、例えば、コンピュータにより実現される。制御装置100およびサーバ300がクラウド環境に構築されたサーバとして実現される場合であっても、ネットワーク上の図4に示すような物理的なコンピュータのシステムリソースを用いた仮想的なシステムとして構成される。
 制御装置100を実現するコンピュータは、演算手段であるCPU(Central Processing Unit)101と、記憶手段であるRAM(Random Access Memory)102、ROM(Read Only Memory)103、記憶装置104とを備える。RAM102は、主記憶装置(メイン・メモリ)であり、CPU101が演算処理を行う際の作業用メモリとして用いられる。ROM103にはプログラムや予め用意された設定値等のデータが保持されており、CPU101はROM103から直接プログラムやデータを読み込んで処理を実行することができる。記憶装置104は、プログラムやデータの保存手段である。記憶装置104にはプログラムが記憶されており、CPU101は記憶装置104に格納されたプログラムを主記憶装置に読み込んで実行する。また、記憶装置104には、CPU101による処理の結果が格納され、保存される。記憶装置104としては、例えば磁気ディスク装置やSSD(Solid State Drive)等が用いられる。
 制御装置100が図4に示すコンピュータにより実現される場合、図3を参照して説明した制御情報取得部110、稼働情報取得部120、制御指示生成部140、制御指示出力部150および稼働情報出力部160の各機能は、例えば、CPU101がプログラムを実行することにより実現される。記憶部130は、例えば、RAM102や記憶装置104により実現される。また、サーバ300が図4に示すコンピュータにより実現される場合、図2を参照して説明したグループ管理部310、第1予測部320、制限値設定部330、制御情報生成部340、第2予測部350、実績情報取得部360、制限値調整部370および送信制御部380の各機能は、例えば、CPU101がプログラムを実行することにより実現される。なお、図4に示した構成例は、制御装置100をコンピュータにより実現する場合の一例に過ぎない。
<設備機器200の構成>
 図5は、設備機器200の構成を示す図である。設備機器200は、受け付け部210と、動作制御部220と、出力部230とを備える。なお、設備機器200は、その種類に応じて、設備機器200の機能を実現するために動作する機構や装置を有している。例えば、設備機器200が空調機器である場合、設備機器200は、室内機および室外機等を有する。また、設備機器200が照明設備である場合、設備機器200は、照明器具や制御スイッチ等を有する。このような機構等の種類や態様は、設備機器200の種類に応じて様々であるため、ここでは図示しない。
 受け付け部210は、制御装置100から出力された制御指示を、図示しないネットワークインターフェイスを用い、ネットワークを介して受け付ける。
 動作制御部220は、受け付け部210により受け付けた制御指示に基づいて、設備機器200に設けられた機構や装置の動作を制御する。具体的には、例えば、設備機器200が空調機器である場合、受け付け部210により制御指示として設定温度を特定する情報を受け付け、動作制御部220は、受け付けた設定温度になるように室内機および室外機の動作を制御する。なお、ここでは温度設定に係る制御の例を挙げたが、その他、空調機器により制御可能な気体に関する種々の制御(例えば、湿度や気体成分の制御等)に対して、動作制御部220による制御指示に基づく制御を適用し得る。また、空調機器以外の種々の設備機器200においても、動作制御部220は、制御装置100から受け付ける制御指示にしたがって、設備機器200の種類に応じた制御を実行する。
 出力部230は、設備機器200の動作状態に関する情報を、図示しないネットワークインターフェイスを用い、ネットワークを介して制御装置100へ出力する。
 受け付け部210、動作制御部220および出力部230は、例えば、コンピュータにより実現される。動作制御部220を実現するコンピュータは、図4を参照して説明した構成としても良い。この場合、受け付け部210、動作制御部220および出力部230の各機能は、例えば、図4に示したCPU101がプログラムを実行することにより実現される。また、受け付け部210、動作制御部220および出力部230の各機能を、専用のハードウェアにより実現しても良い。例えば、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、その他の回路により実現される。さらに、CPU101がプログラム(ソフトウェア)を実行して実現される機能と、専用のハードウェアにより実現される機能とを組み合わせて、受け付け部210、動作制御部220および出力部230としても良い。
<制限値の設定例>
 本実施形態では、複数の需要家により構成されるグループを契約対象とし、グループ単位の時限ごとの平均使用電力に基づいて契約電力を設定する。このグループ単位の時限ごとの平均使用電力について、図面を参照してさらに説明する。
 図6は、一の需要家の使用電力の予測例を示す図である。図6(A)は過去の使用電力の実績の例を示す図、図6(B)は一日の使用電力の予測結果を示す図、図6(C)は予測結果における時限ごとの予測値の例を示す図である。図6(A)、(B)のグラフにおいて、横軸は1日(24時間)の時限(48時限)であり、縦軸は時限ごとの平均使用電力(kW)である。図6(A)、(B)のグラフおよび図6(C)の表は、1日の各時限における設備機器200の平均使用電力の実績および予測結果を示す。また、図6(A)~(C)は、一の需要家の設備機器200に関して、需要家が有する設備機器200全体の実績および予測結果と、設備機器200のうちの空調機の実績および予測結果とを示す。
 図6(A)には、使用電力を予測しようとする日の前3日間(3日前、2日前および1日前)について時限ごとの平均使用電力の実績が示されている。各図において、薄い色のグラフが設備機器200全体の実績を示し、濃い色のグラフが空調機器の実績を示す。図6(B)には、図6(A)に示すような実績を参酌して予測された時限ごとの平均使用電力の予測結果の例が示されている。図6(B)のグラフにおいても、図6(A)の各図と同様に、薄い色のグラフが設備機器200全体の予測結果を示し、濃い色のグラフが空調機器の予測結果を示す。図6(C)には、1日の各時限(第1時限~第48時限)における設備機器200全体(図では、各設備機器200が設置された施設を表す「建物」と記載)の平均使用電力の予測値と、設備機器200のうちの空調機の平均使用電力の予測値とが対応付けて示されている。
 図7は、複数の需要家により構成されるグループの使用電力の予測の積算例を示す図である。図7(A)はグループを構成する需要家ごとの予測例を示す図、図7(B)はグループ全体の予測結果を示す図、図7(C)はグループの予測結果における時限ごとの予測値の例を示す図である。図7(A)、(B)のグラフにおいて、横軸は1日(24時間)の時限(48時限)であり、縦軸は時限ごとの平均使用電力(kW)である。図7(A)、(B)のグラフおよび図7(C)の表は、1日の各時限における需要家およびグループの平均使用電力の予測結果を示す。ここでは、各需要家の設備機器200全体の平均使用電力の予測結果を、需要家の平均使用電力の予測結果または需要家の予測結果と記す。
 図7(A)には、グループを構成する需要家の各々における時限ごとの平均使用電力の予測結果が示されている。なお、図7(A)には、グループを構成する複数の需要家のうち、3需要家(需要家(1)~(3))の予測結果のみが示され、他は省略されている。図7(A)の各図において、薄い色のグラフが設備機器200全体の予測結果を示し、濃い色のグラフが空調機器の予測結果を示す。図7(B)には、図7(A)に示す3需要家を含むグループ全体における時限ごとの平均使用電力の予測結果が示されている。図7(B)において、各時限のグラフの区分(色分け)は、個々の時限において、グループを構成する各需要家の平均使用電力の予測値が積算されていることを表している。図7(C)には、1日の各時限(第1時限~第48時限)における各需要家の平均使用電力の予測結果の積算値が示されている。
 ここで、このグループの目標電力(図では「目標値」と記載)を1000kWとし、図7(B)および図7(C)を参照すると、第22時限~第31時限で、グループ全体の平均使用電力の予測値が目標電力を超えている。したがって、少なくともこれらの時限においては、グループ全体の平均使用電力の予測値が目標電力を超えないように、グループを構成する各需要家の使用電力に対する制限値が設定される。なお、各需要家の制限値自体は、グループ全体の予測値が目標電力を超えている時限だけでなく、グループ全体の予測値が目標電力を超えていない他の時限においても設定して良い。
 図8は、グループを構成する各需要家に対する制限値の設定例を示す図である。図8(A)はグループの時限ごとの平均使用電力の予想例を示す図、図8(B)はグループを構成する各需要家に対する制限値の配分結果を示す図、図8(C)は、グループの一の需要家に配分された時限ごとの制限値の例を示す図である。図8(A)、(B)のグラフにおいて、横軸は1日(24時間)の時限(48時限)であり、縦軸は時限ごとの平均使用電力(kW)である。
 図8(A)には、グループを構成する需要家の各々における時限ごとの平均使用電力の予測結果が示されている。このグラフは、図7(B)に示したグラフと同一である。図8(B)には、グループの各時限における平均使用電力を目標電力に揃えた場合に、グループを構成する各需要家に対して設定される制限値の配分結果の例が示されている。図8(B)において、各時限のグラフの区分(色分け)は、個々の時限において、各需要家に配分される制限値(その需要家が利用可能な使用電力)の割合を表している。各時限において各需要家に配分される制限値の割合は、原則として、図8(A)に示したグループの平均使用電力の予測における各需要家の平均使用電力の予測値の割合である。なお、個々の需要家の予測値によっては、制限値として、平均使用電力の予測値の割合ではなく下限値が与えられる場合がある。図8(C)には、グループを構成する需要家のうちの一の需要家(需要家(1))に対して配分された、1日の各時限(第1時限~第48時限)における制限値が示されている。
<設備機器200の平均使用電力に基づく施設の平均使用電力の予測例>
 施設に設置されている設備機器200の平均使用電力に基づく施設の平均使用電力の予測の例について説明する。ここでは、施設に設置されている設備機器200のうち、一部の設備機器200の平均使用電力に基づいて、施設の平均使用電力を予測する。施設の使用電力は、施設に設置された設備機器200の使用電力の総和である。そのため、一部の設備機器200の使用電力は、施設の使用電力に対する相関が認められる場合がある。例えば、施設に設置されている設備機器200のうちで特に電力使用量の大きい設備機器200の使用電力は、施設の使用電力と強い相関があると考えられる。電力使用量の大きい設備機器200としては、例えば空調機がある。
 図9は、施設の使用電力と空調機の使用電力との相関関係の例を示す図である。図9に示す例では、施設(図では、施設の例として「建物」と記載)の使用電力と空調機の使用電力とが、図示の相関関係を有している。この相関関係は、下記の一次回帰式により表される。
   y=2.1153x+9.2001
決定係数R2は、
   R2=0.9337
である。
 図10は、施設の使用電力と空調機の使用電力との相関関係の他の例を示す図である。図10に示す例では、施設(図では、施設の例として「建物」と記載)の使用電力と空調機の使用電力とが、図示の相関関係を有している。この相関関係は、下記の一次回帰式により表される。
   y=1.2972x+16.968
決定係数R2は、
   R2=0.9704
である。
 図9および図10に示すように、施設の使用電力と施設に配置された設備機器200である空調機の使用電力との間に相関関係がある場合、空調機の使用電力を特定することにより、施設の使用電力を推定することができる。例えば、図10の相関関係がある場合、ある時限における空調機の平均使用電力が107kWと予測された場合を考える。すると、上記の一次回帰式で、x=107なので、
   y=1.2972×107+16.968=155.7684≒156
となり、この時限における施設の平均使用電力の予測値は、156kWと予測される。
 図11は、図10に示す相関関係の例において、空調機の使用電力に基づき施設の使用電力を予測する方法を示す図である。図11に示すように、施設の使用電力と施設に配置された空調機の使用電力との間に図10に示す相関関係がある場合、ある時限における空調機の平均使用電力が予測されると、この予測結果に基づき、上記の一次回帰式により、該当する時限における施設の平均使用電力が推定される。
 以上のように、本実施形態によれば、時限ごとに、施設に設置されている設備機器200の平均使用電力の予測値や過去の実績に基づき、施設ごとの平均使用電力を予測することができる。また、時限ごとに、各施設の平均使用電力の予測値や過去の実績に基づき、グループに属する施設全体の総使用電力を予測することができる。そして、この総使用電力がグループに対して設定された目標電力に基づく閾値を超えることがないように、各施設に設置されている設備機器200の使用電力を制御することができる。
 以上、実施形態について説明したが、本開示の技術的範囲は上記実施形態には限定されない。例えば、上記の実施形態では、制御情報に基づく制御が行われる時限の開始前に制限値を設定し、当該の時限が開始された後に制限値を調整し得るとしたが、時限の開始前には制限値を設定せず、当該の時限内において設備機器200の稼働状況に応じて制限値を設定するようにしても良い。また、上記の実施形態では、サーバ300において時限開始後の制限値の調整を行ったが、制御装置100において制限値の調整を行っても良い。この場合、グループを構成する全ての需要家の設備機器200を制御する制御装置100が複数である場合、制御装置100どうしの間で設備機器200の稼働状況の情報をやり取りし、得られた情報に基づいて制限値を調整することが考えられる。
 また、上記の実施形態では、施設の使用電力の予測に用いられる設備機器200として空調機を用いたが、予測に用いる設備機器200は、施設の使用電力に対して強い相関関係が認められる設備機器200であれば良く、空調機に限定されない。また、施設に設置された設備機器200のうち、特定の複数の設備機器200を組み合わせ、かかる複数の設備機器200の使用電力に基づいて施設の使用電力を予測しても良い。また、季節や予測対象の時限等に応じて、異なる設備機器200の使用電力に基づいて施設の使用電力を予測するようにしても良い。また、施設の使用電力と設備機器200の使用電力との相関関係は、上記に例示した一次回帰式には限定されず、設備機器200の特性等に応じて、二次式や多項式による相関関係を用いても良い。その他、本開示の技術思想の範囲から逸脱しない様々な変更や構成の代替は、本開示に含まれる。
 ここで、上記にて説明した実施形態は、以下のように捉えることができる。本開示の電力制御システムは、複数の施設の総使用電力が所定の使用電力条件を満たすように電力制御する電力制御システムであって、施設に設けられた設備機器200による使用電力の情報を取得する実績情報取得部360と、設備機器200による使用電力の情報に基づいてこの設備機器200が設けられた施設の使用電力を予測する第1予測部320と、第1予測部320により予測された施設の使用電力に基づいて、複数の施設の総使用電力を制御する制御情報生成部340と、を備える、電力制御システムである。
 このようにすれば、複数の施設による使用電力を制御する場合に、設備機器200から使用電力に関わる情報を取得し、取得した情報に基づいて設備機器200ごとの使用電力を精度よく予測することができる。
 ここで、第1予測部320は、施設に設けられた設備機器200の各々による使用電力に加え、過去の特定期間における施設の使用電力の実績に基づいて施設の使用電力を予測することとしても良い。
 このようにすれば、過去の特定期間における施設単位の使用電力の実績に基づき、複数の施設の使用電力を精度よく制御することができる。
 また、第1予測部320は、第1予測部320により予測された施設の使用電力に基づいて複数の施設の総使用電力を予測し、制御情報生成部340は、総使用電力の予測結果に基づき複数の施設の各々の使用電力の制限値を設定し、設定した制限値を超えないように各施設の各設備機器200を制御することとしても良い。
 このようにすれば、グループに属する複数の施設による総使用電力がグループの契約電力を超えないように制御しながら、各施設に対して使用電力の配分を適切に行うことができる。
 また、制御情報生成部340は、第1予測部320により予測された施設の使用電力のうち、少なくとも一の施設の使用電力の予測結果が予め定められた下限閾値を下回る場合に、この下限閾値を下回ると予測された施設の使用電力が所定の下限値以上となるように施設の付加を制御することとしても良い。
 このようにすれば、ある時限に関して、特定の手法で制限値を設定した場合に配分が少なく設定される施設に対して、その時限において電力を使用する余地を確保することができる。
 また、制御情報生成部340は、第1予測部320により予測された複数の施設の総使用電力が予め定められた閾値に対して一定以上少ない場合に、一または複数の施設に設けられた一または複数の設備機器200に対し、複数の施設の総使用電力が閾値を超えない範囲で、使用電力が第1予測部320により予測された値よりも高い値となるように制御することとしても良い。
 このようにすれば、施設ごとに使用電力の制限値が設定される場合であっても、条件に応じて、施設において使用電力の予測を超える電力を使用することができる。
 また、第1予測部320は、施設に設けられた設備機器200のうち、施設全体の使用電力と相関のある一部の設備機器200の使用電力に基づいて施設の使用電力を予測することとしても良い。
 このようにすれば、特定の設備機器200の使用電力に基づいて施設の使用電力を予測し、施設に設置された各設備機器200の使用電力を制御することができる。
 また、本開示のプログラムは、本開示のプログラムは、複数の施設の総使用電力が所定の使用電力に対応するように電力制御する電力制御システムを制御するコンピュータを、施設に設けられた設備機器200による使用電力の情報を取得する実績情報取得部360と、設備機器200による使用電力の情報に基づいて設備機器200が設けられた施設の使用電力を予測する第1予測部320と、第1予測部320により予測された施設の使用電力に基づいて、複数の施設の総使用電力を制御する制御情報生成部340として、機能させるプログラムである。
 このプログラムをインストールしたコンピュータによれば、過去の特定期間における施設単位の使用電力の実績に基づき、複数の施設の使用電力を精度よく制御することができる。
100…制御装置、110…制御情報取得部、120…稼働情報取得部、130…記憶部、140…制御指示生成部、150…制御指示出力部、160…稼働情報出力部、200…設備機器、210…受け付け部、220…動作制御部、230…出力部、300…サーバ、310…グループ管理部、320…第1予測部、330…制限値設定部、340…制御情報生成部、350…第2予測部、360…実績情報取得部、370…制限値調整部、380…送信制御部

Claims (7)

  1.  複数の施設の総使用電力が所定の使用電力条件を満たすように電力制御する電力制御システムであって、
     前記施設に設けられた設備機器による使用電力の情報を取得する取得手段と、
     前記設備機器による使用電力の情報に基づいて当該設備機器が設けられた前記施設の使用電力を予測する予測手段と、
     前記予測手段により予測された前記施設の使用電力に基づいて、複数の前記施設の総使用電力を制御する制御手段と、
     を備える、電力制御システム。
  2.  前記予測手段は、前記施設に設けられた前記設備機器の各々による使用電力に加え、過去の特定期間における当該施設の使用電力の実績に基づいて当該施設の使用電力を予測する、請求項1に記載の電力制御システム。
  3.  前記予測手段は、前記予測手段により予測された前記施設の使用電力に基づいて複数の前記施設の総使用電力を予測し、
     前記制御手段は、前記総使用電力の予測結果に基づき複数の当該施設の各々の使用電力の制限値を設定し、設定した制限値を超えないように各施設の各設備機器を制御する、請求項1または請求項2に記載の電力制御システム。
  4.  前記制御手段は、前記予測手段により予測された前記施設の使用電力のうち、少なくとも一の施設の使用電力の予測結果が予め定められた下限閾値を下回る場合に、当該下限閾値を下回ると予測された施設の使用電力が所定の下限値以上となるように当該施設の付加を制御する、請求項1乃至請求項3の何れかに記載の電力制御システム。
  5.  前記制御手段は、前記予測手段により予測された複数の前記施設の総使用電力が予め定められた閾値に対して一定以上少ない場合に、一または複数の前記施設に設けられた一または複数の前記設備機器に対し、複数の当該施設の総使用電力が前記閾値を超えない範囲で、使用電力が予測手段により予測された値よりも高い値となるように制御する、請求項3に記載の電力制御システム。
  6.  前記予測手段は、前記施設に設けられた前記設備機器のうち、施設全体の使用電力と相関のある一部の設備機器の使用電力に基づいて施設の使用電力を予測する、請求項1乃至請求項5の何れかに記載の電力制御システム。
  7.  複数の施設の総使用電力が所定の使用電力に対応するように電力制御する電力制御システムを制御するコンピュータを、
     前記施設に設けられた設備機器による使用電力の情報を取得する取得手段と、
     前記設備機器による使用電力の情報に基づいて当該設備機器が設けられた前記施設の使用電力を予測する予測手段と、
     前記予測手段により予測された前記施設の使用電力に基づいて、複数の前記施設の総使用電力を制御する制御手段として、
     機能させる、プログラム。
PCT/JP2021/029819 2020-09-30 2021-08-13 電力制御システムおよびプログラム WO2022070630A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/029,283 US20230361563A1 (en) 2020-09-30 2021-08-13 Power control system and program
EP21874933.1A EP4224670A4 (en) 2020-09-30 2021-08-13 PERFORMANCE CONTROL SYSTEM AND PROGRAM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020165449A JP7104345B2 (ja) 2020-09-30 2020-09-30 電力制御システムおよびプログラム
JP2020-165449 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022070630A1 true WO2022070630A1 (ja) 2022-04-07

Family

ID=80949937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029819 WO2022070630A1 (ja) 2020-09-30 2021-08-13 電力制御システムおよびプログラム

Country Status (4)

Country Link
US (1) US20230361563A1 (ja)
EP (1) EP4224670A4 (ja)
JP (2) JP7104345B2 (ja)
WO (1) WO2022070630A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003023729A (ja) * 2001-05-02 2003-01-24 Kazuo Miwa 節電制御装置及び省エネルギーシステム
JP2013046451A (ja) * 2011-08-23 2013-03-04 Hitachi Ltd 電力系統の負荷平準化システム
JP2015204698A (ja) * 2014-04-14 2015-11-16 京セラ株式会社 エネルギー管理装置、エネルギー管理方法及びエネルギー管理システム
JP2019030087A (ja) 2017-07-27 2019-02-21 東京瓦斯株式会社 電力制御システム
JP2019110742A (ja) * 2017-11-20 2019-07-04 コリア インスティチュート オブ エナジー リサーチ 自律型コミュニティエネルギー管理システム及び方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136920A1 (ja) * 2014-03-12 2015-09-17 日本電気株式会社 蓄電池共有システム、情報処理装置、蓄電池共有方法、及び、蓄電池共有プログラムを記録した記録媒体
JP2016019392A (ja) 2014-07-09 2016-02-01 富士ゼロックス株式会社 電力管理システム及びプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003023729A (ja) * 2001-05-02 2003-01-24 Kazuo Miwa 節電制御装置及び省エネルギーシステム
JP2013046451A (ja) * 2011-08-23 2013-03-04 Hitachi Ltd 電力系統の負荷平準化システム
JP2015204698A (ja) * 2014-04-14 2015-11-16 京セラ株式会社 エネルギー管理装置、エネルギー管理方法及びエネルギー管理システム
JP2019030087A (ja) 2017-07-27 2019-02-21 東京瓦斯株式会社 電力制御システム
JP2019110742A (ja) * 2017-11-20 2019-07-04 コリア インスティチュート オブ エナジー リサーチ 自律型コミュニティエネルギー管理システム及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4224670A4

Also Published As

Publication number Publication date
JP7104345B2 (ja) 2022-07-21
US20230361563A1 (en) 2023-11-09
JP2022057280A (ja) 2022-04-11
EP4224670A1 (en) 2023-08-09
JP2022125292A (ja) 2022-08-26
EP4224670A4 (en) 2024-04-17

Similar Documents

Publication Publication Date Title
CN104025411A (zh) 基于分布的负荷控制提供适配性的需求响应
WO2022070633A1 (ja) 電力制御システムおよびプログラム
KR101652272B1 (ko) 건물 및 빌딩의 멀티 오브젝티브 운영기술을 적용한 하이브리드 에너지 관리 시스템
WO2022070630A1 (ja) 電力制御システムおよびプログラム
KR101744576B1 (ko) 중소형 분산 에너지 저장장치를 활용한 소비 전력 운영 시스템
WO2022070632A1 (ja) 電力制御システムおよびプログラム
JP7093033B2 (ja) 電力制御システム
WO2022071259A1 (ja) 電力制御システムおよびプログラム
JP2023004714A (ja) 制御装置およびプログラム
WO2019159904A1 (ja) 電力制御装置、電力制御システム及び電力制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021874933

Country of ref document: EP

Effective date: 20230502