WO2022070570A1 - Image-processing device, image-processing method, and image-processing program - Google Patents

Image-processing device, image-processing method, and image-processing program Download PDF

Info

Publication number
WO2022070570A1
WO2022070570A1 PCT/JP2021/027309 JP2021027309W WO2022070570A1 WO 2022070570 A1 WO2022070570 A1 WO 2022070570A1 JP 2021027309 W JP2021027309 W JP 2021027309W WO 2022070570 A1 WO2022070570 A1 WO 2022070570A1
Authority
WO
WIPO (PCT)
Prior art keywords
tomographic
region
image
image group
tomographic image
Prior art date
Application number
PCT/JP2021/027309
Other languages
French (fr)
Japanese (ja)
Inventor
崇文 小池
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022553494A priority Critical patent/JP7430814B2/en
Priority to EP21874874.7A priority patent/EP4223224A4/en
Publication of WO2022070570A1 publication Critical patent/WO2022070570A1/en
Priority to US18/183,858 priority patent/US20230215057A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/025Tomosynthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/502Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of breast, i.e. mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5217Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30068Mammography; Breast

Definitions

  • the present disclosure relates to an image processing device, an image processing method, and an image processing program.
  • mammography radiographic imaging device
  • a tomographic image in which a desired tomographic plane is emphasized by moving a radiation source and irradiating the breast with radiation from a plurality of radiation source positions to take an image and reconstructing a plurality of projected images acquired thereby.
  • Tomosynthesis imaging has been proposed to produce.
  • tomosynthesis imaging multiple source positions can be moved by moving the radiation source parallel to the radiation detector or in a circular or elliptical arc, depending on the characteristics of the imaging device and the required tomographic image.
  • Acquire multiple projection images by photographing the breast in.
  • a plurality of acquired projected images are reconstructed to generate a tomographic image by using a back projection method such as a simple back projection method or a filter back projection method, or a sequential reconstruction method.
  • tomographic images with different distances (positions in the height direction) from the detection surface of the radiation detector to the radiation source side acquired by tomosynthesis imaging can be combined with the addition method, averaging method, maximum value projection method, or minimum.
  • a technique for generating a pseudo two-dimensional image hereinafter referred to as "composite two-dimensional image" corresponding to a simple two-dimensional image by synthesizing by a value projection method or the like is known (Japanese Patent Laid-Open No. 2014-128716). See publication).
  • the mass lesion and the normal breast structure are detected from the tomographic image, the mass lesion is emphasized more than the normal breast structure and expressed on the synthetic two-dimensional image, and the normal breast structure is synthesized so as to represent the simple two-dimensional image 2.
  • a technique for expressing on a two-dimensional image is known (see Japanese Patent Publication No. 2020-512129).
  • the present disclosure has been made in view of the above circumstances, and provides an image processing device, an image processing method, and an image processing program capable of generating a synthetic two-dimensional image having a diagnostic ability equivalent to that of a tomographic image.
  • the purpose is.
  • the image processing apparatus of the present disclosure is an image processing apparatus including at least one processor, and the processor detects a mass candidate region from a plurality of tomographic images representing a plurality of tomographic planes of a subject, and each of the detected mass candidate regions. It is determined whether the image is a mass or a local mass of the mammary gland, and in the first region determined to be a mass, the first tomographic image group is selected from a plurality of tomographic images, and the local mammary gland is selected.
  • a second tomographic image group is selected from a plurality of tomographic images in the second region determined to be a mass of, and a third tomographic image other than the first region and the second region is selected from a plurality of tomographic images.
  • a third tomographic image group is selected, and a synthetic two-dimensional image is generated using the tomographic image group selected for each of the first region, the second region, and the third region.
  • the first tomographic image group may be a tomographic image group in which a tumor candidate region determined to be a tumor is detected among a plurality of tomographic images.
  • the second tomographic image group is a tomographic image group other than the tomographic image in which the mass candidate region determined to be a local mass of the mammary gland among a plurality of tomographic images is detected. It may be.
  • the second tomographic image group is a tomographic image in which a mass candidate region determined to be a local mass of the mammary gland among a plurality of tomographic images is detected, and the tomographic image thereof. It may be a tomographic image of a layer adjacent to.
  • the second tomographic image group is the same tomographic image group as the third tomographic image group, and the processor adjusts the density of the second region to a density close to that of the third region.
  • a controlled composite two-dimensional image may be generated.
  • the third tomographic image group has the average value of the pixel value of the attention pixel of all the plurality of tomographic images and the plurality of tomographic images and the pixel value of the attention pixel of all the plurality of tomographic images.
  • a tomographic image group in which the absolute value of the difference between the image and the above is equal to or higher than a preset threshold value a tomographic image group having a preset number of tomographic images in descending order of the dispersion value of the pixel value of the region of interest including the pixel of interest among a plurality of tomographic images. It may be a tomographic image group having pixels whose edges are detected by edge detection processing among a plurality of tomographic images.
  • the image processing apparatus of the present disclosure controls the processor to display the generated synthetic two-dimensional image, and determines whether the synthetic two-dimensional image is a mass or a local mass of the mammary gland on the synthetic two-dimensional image. Control to display the result may be performed.
  • the image processing method of the present disclosure detects a mass candidate region from a plurality of tomographic images representing a plurality of tomographic planes of a subject, and each of the detected mass candidate regions is a mass or a local mass of the mammary gland.
  • the first tomographic image group was selected from a plurality of tomographic images
  • the second region determined to be a local mass of the mammary gland a plurality of tomographic images were selected.
  • a second tomographic image group is selected from the tomographic images of the above
  • a third tomographic image group is selected from a plurality of tomographic images in a third region other than the first region and the second region, and the first region is selected.
  • the process of generating a composite two-dimensional image using the tomographic image group selected for each of the second region and the third region is executed by the processor included in the image processing apparatus.
  • the image processing program of the present disclosure detects a mass candidate region from a plurality of tomographic images representing a plurality of tomographic planes of a subject, and each of the detected mass candidate regions is a mass or a local mass of the mammary gland.
  • the first tomographic image group was selected from a plurality of tomographic images
  • the second region determined to be a local mass of the mammary gland a plurality of tomographic images were selected.
  • a second tomographic image group is selected from the tomographic images of the above
  • a third tomographic image group is selected from a plurality of tomographic images in a third region other than the first region and the second region, and the first region is selected. This is for causing a processor included in the image processing apparatus to perform a process of generating a composite two-dimensional image using a tomographic image group selected for each of the second region and the third region.
  • the radiographic imaging system 100 photographs breast M, which is a subject, from a plurality of radiation source positions in order to perform tomosynthesis imaging of the breast and generate a tomographic image, and a plurality of breasts M are photographed. It is for acquiring a radiographic image, that is, a plurality of projected images.
  • the radiographic imaging system 100 includes a mammography imaging apparatus 1, a console 2, an image storage system 3, and an image processing apparatus 4.
  • the mammography photographing apparatus 1 includes an arm portion 12 connected to a base (not shown) by a rotating shaft 11.
  • An imaging table 13 is attached to one end of the arm portion 12, and a radiation irradiation unit 14 is attached to the other end so as to face the photographing table 13.
  • the arm portion 12 is configured to be able to rotate only the end portion to which the radiation irradiation unit 14 is attached, whereby it is possible to fix the photographing table 13 and rotate only the radiation irradiation unit 14. It has become.
  • a radiation detector 15 such as a flat panel detector is provided inside the photographing table 13.
  • the radiation detector 15 has a radiation detection surface 15A.
  • a charge amplifier that converts the charge signal read from the radiation detector 15 into a voltage signal
  • a correlated double sampling circuit that samples the voltage signal output from the charge amplifier
  • an analog A circuit board or the like provided with an AD (Analog-to-Digital) conversion unit or the like that converts a voltage signal into a digital signal is also installed.
  • AD Analog-to-Digital
  • the radiation source 16 is housed inside the radiation irradiation unit 14.
  • the radiation source 16 emits X-rays as radiation, and the timing of irradiating radiation from the radiation source 16 and the radiation generation conditions in the radiation source 16, that is, the selection of the material of the target and the filter, the tube voltage, the irradiation time, and the like are determined. It is controlled by the console 2.
  • a compression plate 17 arranged above the imaging table 13 to press and press the breast M, a support portion 18 for supporting the compression plate 17, and a support portion 18 are shown in FIGS. 1 and 2.
  • a moving mechanism 19 for moving in the vertical direction is provided. The distance between the compression plate 17 and the imaging table 13, that is, the compression breast thickness is input to the console 2.
  • the console 2 displays the shooting order and various information acquired from an unillustrated RIS (Radiology Information System) or the like via a network such as a wireless communication LAN (Local Area Network), and instructions given directly by an engineer or the like. It has a function of controlling the mammography photographing apparatus 1 by using the device. Specifically, the console 2 acquires a plurality of projected images as described later by causing the mammography imaging device 1 to perform tomosynthesis imaging of the breast M, reconstructs the plurality of projected images, and performs a plurality of tomographic images. To generate.
  • the server computer is used as the console 2.
  • the image storage system 3 is a system that stores image data such as a radiographic image and a tomographic image taken by the mammography photographing apparatus 1.
  • the image storage system 3 extracts the image data in response to the request from the console 2, the image processing device 4, and the like from the stored image data, and transmits the image data to the requesting device.
  • Specific examples of the image storage system 3 include PACS (Picture Archiving and Communication Systems).
  • the image processing device 4 includes a CPU (Central Processing Unit) 20, a memory 21 as a temporary storage area, and a non-volatile storage unit 22. Further, the image processing device 4 includes a display 23 such as a liquid crystal display, an input device 24 such as a keyboard and a mouse, and a network I / F (InterFace) 25 connected to the network.
  • the CPU 20, the memory 21, the storage unit 22, the display 23, the input device 24, and the network I / F 25 are connected to the bus 27.
  • the storage unit 22 is realized by an HDD (Hard Disk Drive), an SSD (Solid State Drive), a flash memory, or the like.
  • the image processing program 30 is stored in the storage unit 22 as a storage medium.
  • the CPU 20 reads the image processing program 30 from the storage unit 22, expands it into the memory 21, and executes the expanded image processing program 30.
  • the image processing device 4 includes an acquisition unit 40, a detection unit 42, a determination unit 44, a selection unit 46, a composition unit 48, and a display control unit 50.
  • the CPU 20 executes the image processing program 30, it functions as an acquisition unit 40, a detection unit 42, a determination unit 44, a selection unit 46, a composition unit 48, and a display control unit 50.
  • the acquisition unit 40 acquires a plurality of tomographic images generated by the console 2 causing the mammography imaging apparatus 1 to perform tomosynthesis imaging.
  • the acquisition unit 40 acquires a plurality of tomographic images from the console 2 or the image storage system 3 via the network I / F25.
  • the radiation detector 15 detects the radiation transmitted through the breast M
  • the projected images G1, G2, ..., Gn are acquired corresponding to the source positions S1 to Sn.
  • the same dose of radiation is applied to the breast M.
  • the radiation source position Sc is the radiation source position where the optical axis X0 of the radiation emitted from the radiation source 16 is orthogonal to the detection surface 15A of the radiation detector 15.
  • the radiation source position Sc is referred to as a reference radiation source position Sc.
  • the console 2 transfers the generated tomographic image Dj to the image processing device 4 or transfers it to the image storage system 3.
  • the detection unit 42 detects a tumor candidate region from a plurality of tomographic images Dj acquired by the acquisition unit 40.
  • the case where the number of tomographic images Dj is 5 (that is, j 1 to 5) is illustrated.
  • the tomographic image D2 includes the tumor candidate region K21
  • the tomographic image D3 includes the tumor candidate regions K31 and K32
  • the tomographic image D4 includes the tumor candidate region K41.
  • the tomographic image D4 includes the mammary gland N41.
  • the tumor candidate region K21, the tumor candidate region K31, and the tumor candidate region K41 have substantially the same position of the center of gravity in each tomographic image Dj. Further, in the example of FIG. 7, the tumor candidate region K21, the tumor candidate region K31, and the tumor candidate region K41 are tumors, and the tumor candidate region K32 is a local mass of the mammary gland.
  • the detection unit 42 detects a mass candidate region from a plurality of tomographic images Dj using a known computer-aided diagnosis (CAD: Computer Aided Diagnosis) mass detection algorithm.
  • CAD Computer Aided Diagnosis
  • a probability indicating that a pixel in the tomographic image Dj is a mass candidate region is derived, and a pixel whose probability is equal to or higher than a predetermined threshold is used as a mass candidate region. Detected. Since it is difficult to distinguish between a mass and a local mass of the mammary gland with only one tomographic image Dj, the local mass of the mammary gland is also detected as a tumor candidate region.
  • the detection of the tumor candidate region is not limited to the one using CAD.
  • the tumor candidate region is detected from the tomographic image Dj by filtering processing by a filter for detecting the tumor candidate region, or by a detection model in which machine learning is performed by deep learning or the like to detect the tumor candidate region. May be good.
  • the determination unit 44 determines whether each of the tumor candidate regions detected by the detection unit 42 is a tumor or a local mammary gland mass. Since the mass is a three-dimensional structure in which the inside is filled with cancer cells, which is generated by the proliferation of cancer cells, the tomographic image Dj appears over a plurality of continuous tomographic images Dj. On the other hand, the local mammary gland mass has a structure in which thinly stretched mammary glands are overlapped, so that it looks like a mass on one tomographic image Dj, but it looks like a normal mammary gland on the tomographic image Dj of the adjacent layer. It is reflected in.
  • the determination unit 44 determines that the tumor candidate region which is reflected in a plurality of continuous tomographic images Dj and whose center of gravity is almost the same in each tomographic image Dj is a tumor. ..
  • the position where the positions of the centers of gravity are substantially the same here means that, for example, the distance between the positions of the centers of gravity of the tumors reflected in each of the plurality of tomographic images Dj is equal to or less than a predetermined threshold.
  • a predetermined threshold in this case, for example, a preset value can be applied as an upper limit value of the distance between the positions of the centers of gravity of the tumors reflected in a plurality of continuous tomographic images Dj.
  • the determination unit 44 determines that the tumor candidate region, which is not shown in the tomographic image Dj of the adjacent layer but is shown only in one tomographic image Dj, is a local mammary gland mass.
  • the determination unit 44 is shown in the tomographic images D2 to D4 in which the tumor candidate regions K21, K31, and K41 are continuous, and the positions of the centers of gravity in the respective tomographic images D2 to D4 are almost the same. Tumor candidate regions K21, K31, and K41 are determined to be tumors. Further, in the example of FIG. 7, the determination unit 44 does not show the tumor candidate region K32 in the tomographic image D3 at almost the same position as the tomographic images D2 and D4 in the layer adjacent to the tomographic image D3. Therefore, the tumor candidate region K32 is determined to be a local mammary gland mass.
  • the selection unit 46 selects a first tomographic image group from a plurality of tomographic images Dj in the first region determined to be a tumor by the determination unit 44. In this selection, the selection unit 46 selects the first tomographic image group according to the first selection rule.
  • the first selection rule according to the present embodiment is a rule to select a tomographic image group in which a tumor candidate region determined to be a tumor is detected by the determination unit 44 from a plurality of tomographic images Dj. In the example of FIG. 7, the selection unit 46 selects the tomographic images D2 to D4 in which the tumor candidate regions K21, K31, and K41 are detected as the first tomographic image group.
  • the selection unit 46 selects a second tomographic image group from a plurality of tomographic images Dj in the second region determined by the determination unit 44 to be a local mammary gland mass. In this selection, the selection unit 46 selects the second tomographic image group according to a second selection rule different from the first selection rule.
  • the second selection rule according to the present embodiment is a tomographic image group other than the tomographic image in which the tumor candidate region determined to be a local mammary gland mass by the determination unit 44 is detected among the plurality of tomographic images Dj. Is the rule to select.
  • the selection unit 46 selects tomographic images D1, D2, D4, and D5 other than the tomographic image D3 in which the tumor candidate region K32 is detected as the second tomographic image group.
  • the selection unit 46 selects a third tomographic image group from a plurality of tomographic images Dj in a third region other than the first region and the second region. In this selection, the selection unit 46 selects a third tomographic image group according to a third selection rule different from the first selection rule and the second selection rule.
  • the third selection rule according to the present embodiment is a rule that all the plurality of tomographic images Dj are selected. In the example of FIG. 7, the selection unit 46 selects tomographic images D1 to D5 as the third tomographic image group.
  • the synthesis unit 48 generates a composite two-dimensional image using the tomographic image group selected by the selection unit 46 for each of the first region, the second region, and the third region.
  • the synthetic two-dimensional image is a pseudo two-dimensional image corresponding to a simple two-dimensional image taken by irradiating the breast M with radiation from the reference radiation source position Sc.
  • the synthesis unit 48 has a state in which a plurality of tomographic images Dj are stacked, and is shown in the viewpoint direction from the reference source position Sc toward the radiation detector 15, that is, in FIG.
  • a composite two-dimensional image is generated by synthesizing the pixel values of the corresponding pixels in each tomographic image Dj along the optical axis X0.
  • a specific example of the generation process of the composite two-dimensional image will be described.
  • FIG. 9 shows an example of the composite two-dimensional image CG0.
  • tumor candidate regions K21, K31, and K41 determined to be tumors in the tomographic images D2 to D4 are synthesized.
  • the synthesis unit 48 uses the added average value of the pixel values as the pixel value of the composite two-dimensional image CG0 for the pixels at the corresponding pixel positions of the plurality of tumor candidate regions. Further, at the time of this synthesis, the synthesis unit 48 uses the pixel value of the pixel as the pixel value of the composite two-dimensional image CG0 for the pixel at the pixel position included in only one of the plurality of tumor candidate regions.
  • the largest region, the smallest region, or the average region of each region is set as the first region A1, and the first region of the selected tomographic image group is selected.
  • the added average value of the pixel values of each pixel in the region A1 may be used as the pixel value of the composite two-dimensional image CG0.
  • the second region A2 corresponds to the tumor candidate region K32 of the tomographic image D3 determined to be a local mammary gland mass in the tomographic images D1, D2, D4, and D5. Areas to be combined.
  • the composition unit 48 sets the added average value of the pixel values as the pixel value of the composite two-dimensional image CG0 for each pixel included in the second region A2 of each of the tomographic images D1, D2, D4, and D5. ..
  • the synthesis unit 48 sets the added average value of the pixel values as the pixel value of the composite two-dimensional image CG0 for each pixel included in the third region A3 of each of the tomographic images D1 to D5.
  • the display control unit 50 controls to display the composite two-dimensional image CG0 generated by the composite unit 48 on the display 23.
  • the operation of the image processing apparatus 4 according to the present embodiment will be described.
  • the CPU 20 executes the image processing program 30
  • the synthetic two-dimensional image generation process shown in FIG. 10 is executed.
  • the composite two-dimensional image generation process shown in FIG. 10 is executed, for example, when an instruction to start execution is input by the user via the input device 24.
  • step S10 of FIG. 10 the acquisition unit 40 acquires a plurality of tomographic images Dj generated by the console 2 causing the mammography imaging apparatus 1 to perform tomosynthesis imaging.
  • step S12 the detection unit 42 detects the tumor candidate region from the plurality of tomographic images Dj acquired in step S10.
  • step S14 the determination unit 44 determines whether each of the tumor candidate regions detected in step S12 is a tumor or a local mammary gland mass.
  • step S16 the selection unit 46 selects the first tomographic image group from the plurality of tomographic images Dj in the first region determined to be a tumor in step S14 according to the first selection rule. do. Further, as described above, the selection unit 46 has a plurality of tomographic images Dj to a second tomographic image in the second region determined to be a local mammary gland mass in step S14 according to the second selection rule. Select a group.
  • the selection unit 46 selects the third tomographic image group from the plurality of tomographic images Dj in the third region other than the first region and the second region according to the third selection rule. .. Then, as described above, the synthesis unit 48 generates a composite two-dimensional image CG0 for each of the first region, the second region, and the third region using the tomographic image group selected by the selection unit 46. do.
  • step S18 the display control unit 50 controls to display the composite two-dimensional image CG0 generated in step S16 on the display 23.
  • the composite two-dimensional image generation process is completed.
  • the second tomographic image group used for the generation of the second region A2 of the synthetic two-dimensional image CG0 is the local mammary gland among the plurality of tomographic images Dj. It is a tomographic image group (tomographic images D1, D2, D4, and D5) other than the tomographic image D3 in which the mass candidate region K32 determined to be a mass is detected. Therefore, the local mass of the mammary gland that looks like a mass in the simple 2D image is not represented by the synthetic 2D image CG0 shown in FIG. Therefore, in the synthetic two-dimensional image CG0 shown in FIG. 9, it is suppressed that the local mass of the mammary gland is erroneously recognized as a mass.
  • the present embodiment it is possible to generate a synthetic two-dimensional image having a diagnostic ability equivalent to that of a tomographic image.
  • a diagnostician such as a doctor need only interpret one composite two-dimensional image, so that the load of interpretation is reduced.
  • the capacity of the storage device can be saved.
  • a tomographic image group other than the tomographic image in which the mass candidate region determined to be a local mammary gland mass among the plurality of tomographic images Dj is detected is applied.
  • the case is not limited to this.
  • CG0 shown in FIG.
  • the tumor candidate region K32 of the tomographic image D3 determined to be a local mammary gland mass and the tomographic image.
  • the mammary gland N41 of the tomographic image D4 of the layer adjacent to D3 is synthesized. Therefore, in the synthetic two-dimensional image CG0 shown in FIG. 11, the tumor candidate region K32 and the mammary gland N41 are synthesized, so that the tumor candidate region K32 is clearly expressed as a local mass of the mammary gland. Therefore, even in the synthetic two-dimensional image CG0 shown in FIG. 11, it is suppressed that the local mass of the mammary gland is erroneously recognized as a tumor.
  • the same tomographic image group as the third tomographic image group may be applied.
  • the second selection rule and the third selection rule are the same rule.
  • the synthesis unit 48 generates a synthetic two-dimensional image CG0 in which the density of the second region A2 in the synthetic two-dimensional image CG0 is controlled to be close to the density of the third region A3.
  • the density of the pixels in the second region A2 is closer to the third region A3 than the first region A1, so that the pixels are clearly defined as the tumor region. Can be distinguished. Therefore, even in the synthetic two-dimensional image CG0 shown in FIG. 12, it is suppressed that the local mass of the mammary gland is erroneously recognized as a tumor.
  • the display control unit 50 may execute step S20 for displaying the determination result by the determination unit 44.
  • step S20 the display control unit 50 controls to display the determination result of whether the tumor is a mass or a local mammary gland mass by the determination unit 44 on the synthetic two-dimensional image CG0.
  • FIG. 14 shows an example of the display state of the determination result. As shown in FIG. 14, the display control unit 50 controls to display the character string representing the determination result by the determination unit 44 in the vicinity of the tumor candidate region to be determined. In the example of FIG.
  • the character string "mammary gland” is displayed at the lower part of the tumor candidate area determined to be a local mass of the mammary gland, and the “tumor” is displayed at the lower part of the tumor candidate area determined to be a mass. "Is displayed.
  • the display control unit 50 may control to display the determination result by the determination unit 44 by changing the color of the border of the tumor candidate region to be determined.
  • the border of the tumor candidate region determined to be a local mammary gland mass is displayed as a broken line
  • the border of the tumor candidate region determined to be a mass is displayed as a dotted chain line.
  • this means that the color of the border is different.
  • the display control unit 50 may control to display the mark indicating the determination result by the determination unit 44 in the vicinity of the tumor candidate region to be determined.
  • a circle mark is displayed at the bottom of the tumor candidate area determined to be a local mammary gland mass
  • a triangular mark is displayed at the bottom of the tumor candidate area determined to be a mass. ing.
  • the present invention is not limited to this.
  • a third tomographic image group an absolute value of the difference between the pixel value of the pixel of interest among the plurality of tomographic images Dj and the average value of the pixel values of all the pixels of interest of the plurality of tomographic images Dj is set in advance.
  • the above tomographic image group may be applied.
  • a predetermined number of tomographic image groups may be applied in descending order of the dispersion value of the pixel values in the region of interest including the pixel of interest among the plurality of tomographic images Dj.
  • a tomographic image group having pixels whose edges are detected by the edge detection process among a plurality of tomographic images Dj may be applied.
  • the present invention is not limited to this.
  • the pixel value of the pixel of the composite two-dimensional image CG0 the median value, the maximum value, or the minimum value of the pixel value of the corresponding pixel of the selected tomographic image group may be applied.
  • the hardware of the processing unit that executes various processes such as the acquisition unit 40, the detection unit 42, the determination unit 44, the selection unit 46, the synthesis unit 48, and the display control unit 50.
  • various processors shown below can be used.
  • the various processors include a CPU, which is a general-purpose processor that executes software (program) and functions as various processing units, and a circuit after manufacturing an FPGA (Field Programmable Gate Array) or the like.
  • Dedicated electricity which is a processor with a circuit configuration specially designed to execute specific processing such as programmable logic device (PLD), ASIC (Application Specific Integrated Circuit), which is a processor whose configuration can be changed. Circuits etc. are included.
  • One processing unit may be composed of one of these various processors, or a combination of two or more processors of the same type or different types (for example, a combination of a plurality of FPGAs or a combination of a CPU and an FPGA). It may be composed of a combination). Further, a plurality of processing units may be configured by one processor.
  • one processor is configured by a combination of one or more CPUs and software, as represented by a computer such as a client and a server.
  • the processor functions as a plurality of processing units.
  • SoC System on Chip
  • the various processing units are configured by using one or more of the above-mentioned various processors as a hardware-like structure.
  • an electric circuit in which circuit elements such as semiconductor elements are combined can be used.
  • the image processing program 30 is provided in a form recorded on a recording medium such as a CD-ROM (Compact Disc Read Only Memory), a DVD-ROM (Digital Versatile Disc Read Only Memory), and a USB (Universal Serial Bus) memory. May be good. Further, the image processing program 30 may be downloaded from an external device via a network.
  • a recording medium such as a CD-ROM (Compact Disc Read Only Memory), a DVD-ROM (Digital Versatile Disc Read Only Memory), and a USB (Universal Serial Bus) memory. May be good.
  • the image processing program 30 may be downloaded from an external device via a network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Public Health (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Human Computer Interaction (AREA)
  • Physiology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

This image-processing device determines whether there is a tumor or a localized mass of a mammary gland in respective tumor candidate regions detected from a plurality of tomographic images representing a plurality of cross-sectional planes of a subject, selects a first tomographic image group from the plurality of tomographic images in a first region that has been determined to include a tumor, selects a second tomographic image group from the plurality of tomographic images in a second region that has been determined to include a localized mass of the mammary gland, selects a third tomographic image group from the plurality of tomographic images in a third region other than the first and second regions, and produces a composite two-dimensional image using the tomographic image groups selected for the first, second, and third regions.

Description

画像処理装置、画像処理方法、及び画像処理プログラムImage processing device, image processing method, and image processing program
 本開示は、画像処理装置、画像処理方法、及び画像処理プログラムに関する。 The present disclosure relates to an image processing device, an image processing method, and an image processing program.
 近年、乳がんの早期発見を促すため、乳房を撮影する放射線画像撮影装置(マンモグラフィと呼ばれる)を用いた画像診断が注目されている。また、マンモグラフィにおいて、放射線源を移動させて複数の線源位置から乳房に放射線を照射して撮影を行い、これにより取得した複数の投影画像を再構成して所望の断層面を強調した断層画像を生成するトモシンセシス撮影が提案されている。トモシンセシス撮影では、撮影装置の特性及び必要な断層画像に応じて、放射線源を放射線検出器と平行に移動させたり、円又は楕円の弧を描くように移動させたりして、複数の線源位置において乳房を撮影することにより複数の投影画像を取得する。そして、単純逆投影法若しくはフィルタ逆投影法等の逆投影法、又は逐次再構成法等を用いて、取得した複数の投影画像を再構成して断層画像を生成する。 In recent years, in order to promote early detection of breast cancer, diagnostic imaging using a radiographic imaging device (called mammography) that photographs the breast has attracted attention. Further, in mammography, a tomographic image in which a desired tomographic plane is emphasized by moving a radiation source and irradiating the breast with radiation from a plurality of radiation source positions to take an image and reconstructing a plurality of projected images acquired thereby. Tomosynthesis imaging has been proposed to produce. In tomosynthesis imaging, multiple source positions can be moved by moving the radiation source parallel to the radiation detector or in a circular or elliptical arc, depending on the characteristics of the imaging device and the required tomographic image. Acquire multiple projection images by photographing the breast in. Then, a plurality of acquired projected images are reconstructed to generate a tomographic image by using a back projection method such as a simple back projection method or a filter back projection method, or a sequential reconstruction method.
 このような断層画像を乳房における複数の断層面において生成することにより、乳房内において断層面が並ぶ深さ方向に重なり合った構造を分離することができる。このため、予め定められた方向から被写体に放射線を照射する、従来の単純撮影により取得される2次元画像(以下、「単純2次元画像」という)においては検出が困難であった病変等の異常部位を発見することが可能となる。 By generating such a tomographic image on a plurality of tomographic planes in the breast, it is possible to separate the overlapping structures in the breast in the depth direction in which the tomographic planes are lined up. For this reason, abnormalities such as lesions that were difficult to detect in a two-dimensional image (hereinafter referred to as "simple two-dimensional image") acquired by conventional simple imaging that irradiates the subject with radiation from a predetermined direction. It becomes possible to discover the site.
 また、トモシンセシス撮影により取得された、放射線検出器の検出面から放射線源側に向けた距離(高さ方向の位置)が異なる複数の断層画像を、加算法、平均法、最大値投影法又は最小値投影法等によって合成することにより、単純2次元画像に相当する擬似的な2次元画像(以下、「合成2次元画像」という)を生成する技術が知られている(特開2014-128716号公報参照)。 In addition, multiple tomographic images with different distances (positions in the height direction) from the detection surface of the radiation detector to the radiation source side acquired by tomosynthesis imaging can be combined with the addition method, averaging method, maximum value projection method, or minimum. A technique for generating a pseudo two-dimensional image (hereinafter referred to as "composite two-dimensional image") corresponding to a simple two-dimensional image by synthesizing by a value projection method or the like is known (Japanese Patent Laid-Open No. 2014-128716). See publication).
 また、断層画像から腫瘤病変と正常乳房構造とを検出し、腫瘤病変は正常乳房構造よりも強調して合成2次元画像上に表現し、正常乳房構造は単純2次元画像を表すように合成2次元画像上に表現する技術が知られている(特表2020-512129号公報参照)。 In addition, the mass lesion and the normal breast structure are detected from the tomographic image, the mass lesion is emphasized more than the normal breast structure and expressed on the synthetic two-dimensional image, and the normal breast structure is synthesized so as to represent the simple two-dimensional image 2. A technique for expressing on a two-dimensional image is known (see Japanese Patent Publication No. 2020-512129).
 しかしながら、特表2020-512129号公報に記載された手法により生成される従来の合成2次元画像では、例えば、単純2次元画像において腫瘤病変のように見える局所的な乳腺の塊は、依然として腫瘤病変のように見えてしまう。すなわち、従来の合成2次元画像では断層画像と同等の診断能が得られない場合があった。このため、医師等の診断者は、合成2次元画像だけではなく、多数の断層画像の読影も行うことになり、読影の負荷が大きくなってしまう。 However, in conventional synthetic two-dimensional images produced by the method described in JP-A-2020-512129, for example, a local mammary gland mass that looks like a mass lesion in a simple two-dimensional image is still a mass lesion. It looks like. That is, the conventional synthetic two-dimensional image may not have the same diagnostic ability as the tomographic image. For this reason, a diagnostician such as a doctor will interpret not only a synthetic two-dimensional image but also a large number of tomographic images, which increases the load of interpretation.
 本開示は、以上の事情を鑑みてなされたものであり、断層画像と同等の診断能を有する合成2次元画像を生成することができる画像処理装置、画像処理方法、及び画像処理プログラムを提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and provides an image processing device, an image processing method, and an image processing program capable of generating a synthetic two-dimensional image having a diagnostic ability equivalent to that of a tomographic image. The purpose is.
 本開示の画像処理装置は、少なくとも一つのプロセッサを備える画像処理装置であって、プロセッサは、被写体の複数の断層面を表す複数の断層画像から腫瘤候補領域を検出し、検出した腫瘤候補領域それぞれについて腫瘤であるか又は局所的な乳腺の塊であるかを判定し、腫瘤であると判定した第1の領域においては複数の断層画像から第1の断層画像群を選択し、局所的な乳腺の塊であると判定した第2の領域においては複数の断層画像から第2の断層画像群を選択し、第1の領域及び第2の領域以外の第3の領域においては複数の断層画像から第3の断層画像群を選択し、第1の領域、第2の領域、及び第3の領域それぞれについて選択した断層画像群を用いて合成2次元画像を生成する。 The image processing apparatus of the present disclosure is an image processing apparatus including at least one processor, and the processor detects a mass candidate region from a plurality of tomographic images representing a plurality of tomographic planes of a subject, and each of the detected mass candidate regions. It is determined whether the image is a mass or a local mass of the mammary gland, and in the first region determined to be a mass, the first tomographic image group is selected from a plurality of tomographic images, and the local mammary gland is selected. A second tomographic image group is selected from a plurality of tomographic images in the second region determined to be a mass of, and a third tomographic image other than the first region and the second region is selected from a plurality of tomographic images. A third tomographic image group is selected, and a synthetic two-dimensional image is generated using the tomographic image group selected for each of the first region, the second region, and the third region.
 なお、本開示の画像処理装置は、第1の断層画像群が、複数の断層画像のうち腫瘤であると判定された腫瘤候補領域が検出された断層画像群であってもよい。 In the image processing apparatus of the present disclosure, the first tomographic image group may be a tomographic image group in which a tumor candidate region determined to be a tumor is detected among a plurality of tomographic images.
 また、本開示の画像処理装置は、第2の断層画像群が、複数の断層画像のうち局所的な乳腺の塊であると判定された腫瘤候補領域が検出された断層画像以外の断層画像群であってもよい。 Further, in the image processing apparatus of the present disclosure, the second tomographic image group is a tomographic image group other than the tomographic image in which the mass candidate region determined to be a local mass of the mammary gland among a plurality of tomographic images is detected. It may be.
 また、本開示の画像処理装置は、第2の断層画像群が、複数の断層画像のうち局所的な乳腺の塊であると判定された腫瘤候補領域が検出された断層画像と、その断層画像に隣接する層の断層画像であってもよい。 Further, in the image processing apparatus of the present disclosure, the second tomographic image group is a tomographic image in which a mass candidate region determined to be a local mass of the mammary gland among a plurality of tomographic images is detected, and the tomographic image thereof. It may be a tomographic image of a layer adjacent to.
 また、本開示の画像処理装置は、第2の断層画像群が、第3の断層画像群と同じ断層画像群であり、プロセッサが、第2の領域の濃度を第3の領域に近い濃度に制御した合成2次元画像を生成してもよい。 Further, in the image processing apparatus of the present disclosure, the second tomographic image group is the same tomographic image group as the third tomographic image group, and the processor adjusts the density of the second region to a density close to that of the third region. A controlled composite two-dimensional image may be generated.
 また、本開示の画像処理装置は、第3の断層画像群が、複数の断層画像全て、複数の断層画像のうち注目画素の画素値と複数の断層画像全ての注目画素の画素値の平均値との差の絶対値が予め設定された閾値以上の断層画像群、複数の断層画像のうち注目画素を含む注目領域の画素値の分散値が大きい順に予め設定された枚数の断層画像群、又は複数の断層画像のうちエッジ検出処理によってエッジが検出された画素を有する断層画像群であってもよい。 Further, in the image processing apparatus of the present disclosure, the third tomographic image group has the average value of the pixel value of the attention pixel of all the plurality of tomographic images and the plurality of tomographic images and the pixel value of the attention pixel of all the plurality of tomographic images. A tomographic image group in which the absolute value of the difference between the image and the above is equal to or higher than a preset threshold value, a tomographic image group having a preset number of tomographic images in descending order of the dispersion value of the pixel value of the region of interest including the pixel of interest among a plurality of tomographic images. It may be a tomographic image group having pixels whose edges are detected by edge detection processing among a plurality of tomographic images.
 また、本開示の画像処理装置は、プロセッサが、生成した合成2次元画像を表示する制御を行い、かつ合成2次元画像上に、腫瘤であるか又は局所的な乳腺の塊であるかの判定結果を表示する制御を行ってもよい。 Further, the image processing apparatus of the present disclosure controls the processor to display the generated synthetic two-dimensional image, and determines whether the synthetic two-dimensional image is a mass or a local mass of the mammary gland on the synthetic two-dimensional image. Control to display the result may be performed.
 また、本開示の画像処理方法は、被写体の複数の断層面を表す複数の断層画像から腫瘤候補領域を検出し、検出した腫瘤候補領域それぞれについて腫瘤であるか又は局所的な乳腺の塊であるかを判定し、腫瘤であると判定した第1の領域においては複数の断層画像から第1の断層画像群を選択し、局所的な乳腺の塊であると判定した第2の領域においては複数の断層画像から第2の断層画像群を選択し、第1の領域及び第2の領域以外の第3の領域においては複数の断層画像から第3の断層画像群を選択し、第1の領域、第2の領域、及び第3の領域それぞれについて選択した断層画像群を用いて合成2次元画像を生成する処理を画像処理装置が備えるプロセッサが実行するものである。 Further, the image processing method of the present disclosure detects a mass candidate region from a plurality of tomographic images representing a plurality of tomographic planes of a subject, and each of the detected mass candidate regions is a mass or a local mass of the mammary gland. In the first region determined to be a mass, the first tomographic image group was selected from a plurality of tomographic images, and in the second region determined to be a local mass of the mammary gland, a plurality of tomographic images were selected. A second tomographic image group is selected from the tomographic images of the above, and a third tomographic image group is selected from a plurality of tomographic images in a third region other than the first region and the second region, and the first region is selected. , The process of generating a composite two-dimensional image using the tomographic image group selected for each of the second region and the third region is executed by the processor included in the image processing apparatus.
 また、本開示の画像処理プログラムは、被写体の複数の断層面を表す複数の断層画像から腫瘤候補領域を検出し、検出した腫瘤候補領域それぞれについて腫瘤であるか又は局所的な乳腺の塊であるかを判定し、腫瘤であると判定した第1の領域においては複数の断層画像から第1の断層画像群を選択し、局所的な乳腺の塊であると判定した第2の領域においては複数の断層画像から第2の断層画像群を選択し、第1の領域及び第2の領域以外の第3の領域においては複数の断層画像から第3の断層画像群を選択し、第1の領域、第2の領域、及び第3の領域それぞれについて選択した断層画像群を用いて合成2次元画像を生成する処理を画像処理装置が備えるプロセッサに実行させるためのものである。 Further, the image processing program of the present disclosure detects a mass candidate region from a plurality of tomographic images representing a plurality of tomographic planes of a subject, and each of the detected mass candidate regions is a mass or a local mass of the mammary gland. In the first region determined to be a mass, the first tomographic image group was selected from a plurality of tomographic images, and in the second region determined to be a local mass of the mammary gland, a plurality of tomographic images were selected. A second tomographic image group is selected from the tomographic images of the above, and a third tomographic image group is selected from a plurality of tomographic images in a third region other than the first region and the second region, and the first region is selected. This is for causing a processor included in the image processing apparatus to perform a process of generating a composite two-dimensional image using a tomographic image group selected for each of the second region and the third region.
 本開示によれば、断層画像と同等の診断能を有する合成2次元画像を生成することができる。 According to the present disclosure, it is possible to generate a synthetic two-dimensional image having a diagnostic ability equivalent to that of a tomographic image.
放射線画像撮影システムの概略構成図である。It is a schematic block diagram of a radiation imaging system. 放射線画像撮影装置を図1の矢印A方向に見た図である。It is a figure which looked at the radiation imaging apparatus in the direction of arrow A of FIG. 画像処理装置のハードウェア構成の一例を示すブロック図である。It is a block diagram which shows an example of the hardware composition of an image processing apparatus. 画像処理装置の機能的な構成の一例を示すブロック図である。It is a block diagram which shows an example of the functional structure of an image processing apparatus. 投影画像の取得処理を説明するための図である。It is a figure for demonstrating the acquisition process of a projection image. 断層画像の生成処理を説明するための図である。It is a figure for demonstrating the generation process of a tomographic image. 複数の断層画像の一例を示す図である。It is a figure which shows an example of a plurality of tomographic images. 合成2次元画像の生成処理を説明するための図である。It is a figure for demonstrating the generation process of a synthetic 2D image. 合成2次元画像の一例を示す図である。It is a figure which shows an example of a synthetic 2D image. 合成2次元画像生成処理の一例を示すフローチャートである。It is a flowchart which shows an example of the synthetic 2D image generation processing. 合成2次元画像の一例を示す図である。It is a figure which shows an example of a synthetic 2D image. 合成2次元画像の一例を示す図である。It is a figure which shows an example of a synthetic 2D image. 合成2次元画像生成処理の別の例を示すフローチャートである。It is a flowchart which shows another example of the synthetic 2D image generation processing. 判定結果の表示状態の一例を示す図である。It is a figure which shows an example of the display state of the determination result. 判定結果の表示状態の一例を示す図である。It is a figure which shows an example of the display state of the determination result. 判定結果の表示状態の一例を示す図である。It is a figure which shows an example of the display state of the determination result.
 以下、図面を参照して、本開示の技術を実施するための形態例を詳細に説明する。 Hereinafter, an example of a form for implementing the technique of the present disclosure will be described in detail with reference to the drawings.
 まず、図1及び図2を参照して、本実施形態に係る放射線画像撮影システム100の構成を説明する。図1及び図2に示すように、放射線画像撮影システム100は、乳房のトモシンセシス撮影を行って断層画像を生成するために、複数の線源位置から被写体である乳房Mを撮影して、複数の放射線画像、すなわち複数の投影画像を取得するためのものである。放射線画像撮影システム100は、マンモグラフィ撮影装置1、コンソール2、画像保存システム3、及び画像処理装置4を備える。 First, the configuration of the radiographic imaging system 100 according to the present embodiment will be described with reference to FIGS. 1 and 2. As shown in FIGS. 1 and 2, the radiographic imaging system 100 photographs breast M, which is a subject, from a plurality of radiation source positions in order to perform tomosynthesis imaging of the breast and generate a tomographic image, and a plurality of breasts M are photographed. It is for acquiring a radiographic image, that is, a plurality of projected images. The radiographic imaging system 100 includes a mammography imaging apparatus 1, a console 2, an image storage system 3, and an image processing apparatus 4.
 マンモグラフィ撮影装置1は、不図示の基台に対して回転軸11により連結されたアーム部12を備えている。アーム部12の一方の端部には撮影台13が、その他方の端部には撮影台13と対向するように放射線照射部14が取り付けられている。アーム部12は、放射線照射部14が取り付けられた端部のみを回転することが可能に構成されており、これにより、撮影台13を固定して放射線照射部14のみを回転することが可能となっている。 The mammography photographing apparatus 1 includes an arm portion 12 connected to a base (not shown) by a rotating shaft 11. An imaging table 13 is attached to one end of the arm portion 12, and a radiation irradiation unit 14 is attached to the other end so as to face the photographing table 13. The arm portion 12 is configured to be able to rotate only the end portion to which the radiation irradiation unit 14 is attached, whereby it is possible to fix the photographing table 13 and rotate only the radiation irradiation unit 14. It has become.
 撮影台13の内部には、フラットパネルディテクタ等の放射線検出器15が備えられている。放射線検出器15は放射線の検出面15Aを有する。また、撮影台13の内部には、放射線検出器15から読み出された電荷信号を電圧信号に変換するチャージアンプ、チャージアンプから出力された電圧信号をサンプリングする相関2重サンプリング回路、及びアナログの電圧信号をデジタル信号に変換するAD(Analog-to-Digital)変換部等が設けられた回路基板等も設置されている。 A radiation detector 15 such as a flat panel detector is provided inside the photographing table 13. The radiation detector 15 has a radiation detection surface 15A. Further, inside the photographing table 13, a charge amplifier that converts the charge signal read from the radiation detector 15 into a voltage signal, a correlated double sampling circuit that samples the voltage signal output from the charge amplifier, and an analog A circuit board or the like provided with an AD (Analog-to-Digital) conversion unit or the like that converts a voltage signal into a digital signal is also installed.
 放射線照射部14の内部には、放射線源16が収納されている。放射線源16は放射線としてX線を出射するものであり、放射線源16から放射線を照射するタイミング及び放射線源16における放射線発生条件、すなわちターゲット及びフィルタの材質の選択、管電圧並びに照射時間等は、コンソール2により制御される。 The radiation source 16 is housed inside the radiation irradiation unit 14. The radiation source 16 emits X-rays as radiation, and the timing of irradiating radiation from the radiation source 16 and the radiation generation conditions in the radiation source 16, that is, the selection of the material of the target and the filter, the tube voltage, the irradiation time, and the like are determined. It is controlled by the console 2.
 また、アーム部12には、撮影台13の上方に配置されて乳房Mを押さえつけて圧迫する圧迫板17と、圧迫板17を支持する支持部18と、支持部18を図1及び図2の上下方向に移動させる移動機構19とが設けられている。なお、圧迫板17と撮影台13との間隔、すなわち圧迫乳房厚はコンソール2に入力される。 Further, in the arm portion 12, a compression plate 17 arranged above the imaging table 13 to press and press the breast M, a support portion 18 for supporting the compression plate 17, and a support portion 18 are shown in FIGS. 1 and 2. A moving mechanism 19 for moving in the vertical direction is provided. The distance between the compression plate 17 and the imaging table 13, that is, the compression breast thickness is input to the console 2.
 コンソール2は、無線通信LAN(Local Area Network)等のネットワークを介して、不図示のRIS(Radiology Information System)等から取得した撮影オーダ及び各種情報と、技師等により直接行われた指示等とを用いて、マンモグラフィ撮影装置1の制御を行う機能を有している。具体的には、コンソール2は、マンモグラフィ撮影装置1に乳房Mのトモシンセシス撮影を行わせることにより、後述するように複数の投影画像を取得し、複数の投影画像を再構成して複数の断層画像を生成する。一例として、本実施形態では、サーバコンピュータをコンソール2として用いている。 The console 2 displays the shooting order and various information acquired from an unillustrated RIS (Radiology Information System) or the like via a network such as a wireless communication LAN (Local Area Network), and instructions given directly by an engineer or the like. It has a function of controlling the mammography photographing apparatus 1 by using the device. Specifically, the console 2 acquires a plurality of projected images as described later by causing the mammography imaging device 1 to perform tomosynthesis imaging of the breast M, reconstructs the plurality of projected images, and performs a plurality of tomographic images. To generate. As an example, in this embodiment, the server computer is used as the console 2.
 画像保存システム3は、マンモグラフィ撮影装置1により撮影された放射線画像及び断層画像等の画像データを保存するシステムである。画像保存システム3は、保存している画像データから、コンソール2及び画像処理装置4等からの要求に応じた画像データを取り出して、要求元の装置に送信する。画像保存システム3の具体例としては、PACS(Picture Archiving and Communication Systems)が挙げられる。 The image storage system 3 is a system that stores image data such as a radiographic image and a tomographic image taken by the mammography photographing apparatus 1. The image storage system 3 extracts the image data in response to the request from the console 2, the image processing device 4, and the like from the stored image data, and transmits the image data to the requesting device. Specific examples of the image storage system 3 include PACS (Picture Archiving and Communication Systems).
 次に、図3を参照して、本実施形態に係る画像処理装置4のハードウェア構成を説明する。図3に示すように、画像処理装置4は、CPU(Central Processing Unit)20、一時記憶領域としてのメモリ21、及び不揮発性の記憶部22を含む。また、画像処理装置4は、液晶ディスプレイ等のディスプレイ23、キーボードとマウス等の入力装置24、及びネットワークに接続されるネットワークI/F(InterFace)25を含む。CPU20、メモリ21、記憶部22、ディスプレイ23、入力装置24、及びネットワークI/F25は、バス27に接続される。 Next, the hardware configuration of the image processing device 4 according to the present embodiment will be described with reference to FIG. As shown in FIG. 3, the image processing device 4 includes a CPU (Central Processing Unit) 20, a memory 21 as a temporary storage area, and a non-volatile storage unit 22. Further, the image processing device 4 includes a display 23 such as a liquid crystal display, an input device 24 such as a keyboard and a mouse, and a network I / F (InterFace) 25 connected to the network. The CPU 20, the memory 21, the storage unit 22, the display 23, the input device 24, and the network I / F 25 are connected to the bus 27.
 記憶部22は、HDD(Hard Disk Drive)、SSD(Solid State Drive)、又はフラッシュメモリ等によって実現される。記憶媒体としての記憶部22には、画像処理プログラム30が記憶される。CPU20は、記憶部22から画像処理プログラム30を読み出してからメモリ21に展開し、展開した画像処理プログラム30を実行する。 The storage unit 22 is realized by an HDD (Hard Disk Drive), an SSD (Solid State Drive), a flash memory, or the like. The image processing program 30 is stored in the storage unit 22 as a storage medium. The CPU 20 reads the image processing program 30 from the storage unit 22, expands it into the memory 21, and executes the expanded image processing program 30.
 次に、図4を参照して、本実施形態に係る画像処理装置4の機能的な構成について説明する。図4に示すように、画像処理装置4は、取得部40、検出部42、判定部44、選択部46、合成部48、及び表示制御部50を含む。CPU20が画像処理プログラム30を実行することにより、取得部40、検出部42、判定部44、選択部46、合成部48、及び表示制御部50として機能する。 Next, with reference to FIG. 4, the functional configuration of the image processing apparatus 4 according to the present embodiment will be described. As shown in FIG. 4, the image processing device 4 includes an acquisition unit 40, a detection unit 42, a determination unit 44, a selection unit 46, a composition unit 48, and a display control unit 50. When the CPU 20 executes the image processing program 30, it functions as an acquisition unit 40, a detection unit 42, a determination unit 44, a selection unit 46, a composition unit 48, and a display control unit 50.
 取得部40は、コンソール2がマンモグラフィ撮影装置1にトモシンセシス撮影を行わせることにより生成された複数の断層画像を取得する。取得部40は、コンソール2又は画像保存システム3からネットワークI/F25を介して複数の断層画像を取得する。 The acquisition unit 40 acquires a plurality of tomographic images generated by the console 2 causing the mammography imaging apparatus 1 to perform tomosynthesis imaging. The acquisition unit 40 acquires a plurality of tomographic images from the console 2 or the image storage system 3 via the network I / F25.
 ここで、コンソール2におけるトモシンセシス撮影及び断層画像の生成処理について説明する。コンソール2は、断層画像を生成するためのトモシンセシス撮影を行うに際し、アーム部12を回転軸11の周りに回転させることにより放射線源16を移動させる。また、コンソール2は、放射線源16の移動による複数の線源位置において、トモシンセシス撮影用の予め定められた撮影条件により被写体である乳房Mに放射線を照射させる。また、コンソール2は、乳房Mを透過した放射線が放射線検出器15により検出されることによって得られた複数の線源位置における複数の投影画像Gi(i=1~n、nは線源位置の数であり、例えばn=15)を取得する。 Here, tomosynthesis imaging and tomographic image generation processing on the console 2 will be described. The console 2 moves the radiation source 16 by rotating the arm portion 12 around the rotation axis 11 when performing tomosynthesis imaging for generating a tomographic image. Further, the console 2 irradiates the breast M, which is a subject, with radiation under predetermined imaging conditions for tomosynthesis imaging at a plurality of radiation source positions due to the movement of the radiation source 16. Further, the console 2 has a plurality of projected images Gi (i = 1 to n, n at the radiation source positions) at the plurality of radiation source positions obtained by detecting the radiation transmitted through the breast M by the radiation detector 15. It is a number, for example, n = 15) is acquired.
 図5に示すように、放射線源16をSi(i=1~n)の各線源位置に移動し、各線源位置において放射線源16を駆動して乳房Mに放射線を照射する。乳房Mを透過した放射線を放射線検出器15が検出することにより、各線源位置S1~Snに対応して、投影画像G1、G2、・・・、Gnが取得される。なお、各線源位置S1~Snにおいては、同一の線量の放射線が乳房Mに照射される。 As shown in FIG. 5, the radiation source 16 is moved to each source position of Si (i = 1 to n), and the radiation source 16 is driven at each source position to irradiate the breast M with radiation. When the radiation detector 15 detects the radiation transmitted through the breast M, the projected images G1, G2, ..., Gn are acquired corresponding to the source positions S1 to Sn. At each source position S1 to Sn, the same dose of radiation is applied to the breast M.
 なお、図5において、線源位置Scは、放射線源16から出射された放射線の光軸X0が放射線検出器15の検出面15Aと直交する線源位置である。以下では、線源位置Scを基準線源位置Scと称する。 Note that, in FIG. 5, the radiation source position Sc is the radiation source position where the optical axis X0 of the radiation emitted from the radiation source 16 is orthogonal to the detection surface 15A of the radiation detector 15. Hereinafter, the radiation source position Sc is referred to as a reference radiation source position Sc.
 コンソール2は、複数の投影画像Giを再構成することにより、乳房Mの所望とする断層面を強調した複数の断層画像を生成する。具体的には、コンソール2は、単純逆投影法又はフィルタ逆投影法等の周知の逆投影法等を用いて複数の投影画像Giを再構成する。これにより、図6に示すように、コンソール2は、乳房Mの複数の断層面のそれぞれを表す複数の断層画像Dj(j=1~m)を生成する。この際、乳房Mを含む3次元空間における3次元の座標位置が設定され、設定された3次元の座標位置に対して、複数の投影画像Giの対応する画素の画素値が再構成されて、その座標位置の画素値が算出される。 The console 2 generates a plurality of tomographic images that emphasize the desired tomographic plane of the breast M by reconstructing the plurality of projected images Gi. Specifically, the console 2 reconstructs a plurality of projected images Gi by using a well-known back projection method such as a simple back projection method or a filter back projection method. As a result, as shown in FIG. 6, the console 2 generates a plurality of tomographic images Dj (j = 1 to m) representing each of the plurality of tomographic planes of the breast M. At this time, a three-dimensional coordinate position in the three-dimensional space including the breast M is set, and the pixel values of the corresponding pixels of the plurality of projected images Gi are reconstructed with respect to the set three-dimensional coordinate position. The pixel value at that coordinate position is calculated.
 コンソール2は、生成した断層画像Djを画像処理装置4に転送するか、又は画像保存システム3に転送する。 The console 2 transfers the generated tomographic image Dj to the image processing device 4 or transfers it to the image storage system 3.
 図7に示すように、検出部42は、取得部40により取得された複数の断層画像Djから腫瘤候補領域を検出する。図7では、説明を簡単にするために、断層画像Djの枚数が5枚(すなわち、j=1~5)の場合を例示している。また、図7の例では、断層画像D2に腫瘤候補領域K21が含まれ、断層画像D3に腫瘤候補領域K31、K32が含まれ、断層画像D4に腫瘤候補領域K41が含まれる。また、図7の例では、断層画像D4に乳腺N41が含まれる。また、腫瘤候補領域K21、腫瘤候補領域K31、及び腫瘤候補領域K41は、それぞれの断層画像Dj内における重心の位置がほぼ同じ位置であるものとする。また、図7の例では、腫瘤候補領域K21、腫瘤候補領域K31、及び腫瘤候補領域K41が腫瘤であり、腫瘤候補領域K32が局所的な乳腺の塊である。 As shown in FIG. 7, the detection unit 42 detects a tumor candidate region from a plurality of tomographic images Dj acquired by the acquisition unit 40. In FIG. 7, for the sake of simplicity, the case where the number of tomographic images Dj is 5 (that is, j = 1 to 5) is illustrated. Further, in the example of FIG. 7, the tomographic image D2 includes the tumor candidate region K21, the tomographic image D3 includes the tumor candidate regions K31 and K32, and the tomographic image D4 includes the tumor candidate region K41. Further, in the example of FIG. 7, the tomographic image D4 includes the mammary gland N41. Further, it is assumed that the tumor candidate region K21, the tumor candidate region K31, and the tumor candidate region K41 have substantially the same position of the center of gravity in each tomographic image Dj. Further, in the example of FIG. 7, the tumor candidate region K21, the tumor candidate region K31, and the tumor candidate region K41 are tumors, and the tumor candidate region K32 is a local mass of the mammary gland.
 検出部42は、公知のコンピュータ支援画像診断(CAD:Computer Aided Diagnosis)の腫瘤検出用のアルゴリズムを用いて、複数の断層画像Djから腫瘤候補領域を検出する。CADによる腫瘤検出用のアルゴリズムにおいては、断層画像Djにおける画素が腫瘤候補領域であることを表す確率(尤度)が導出され、その確率が予め定められた閾値以上となる画素が腫瘤候補領域として検出される。1枚の断層画像Djだけでは、腫瘤と局所的な乳腺の塊とは区別がつきにくいため、局所的な乳腺の塊も腫瘤候補領域として検出される。 The detection unit 42 detects a mass candidate region from a plurality of tomographic images Dj using a known computer-aided diagnosis (CAD: Computer Aided Diagnosis) mass detection algorithm. In the algorithm for detecting a mass by CAD, a probability (likelihood) indicating that a pixel in the tomographic image Dj is a mass candidate region is derived, and a pixel whose probability is equal to or higher than a predetermined threshold is used as a mass candidate region. Detected. Since it is difficult to distinguish between a mass and a local mass of the mammary gland with only one tomographic image Dj, the local mass of the mammary gland is also detected as a tumor candidate region.
 なお、腫瘤候補領域の検出はCADを用いるものに限定されない。腫瘤候補領域を検出するためのフィルタによるフィルタリング処理、又は腫瘤候補領域を検出するためにディープラーニング等により機械学習がなされた検出モデル等によって、断層画像Djから腫瘤候補領域を検出するものであってもよい。 The detection of the tumor candidate region is not limited to the one using CAD. The tumor candidate region is detected from the tomographic image Dj by filtering processing by a filter for detecting the tumor candidate region, or by a detection model in which machine learning is performed by deep learning or the like to detect the tumor candidate region. May be good.
 判定部44は、検出部42により検出された腫瘤候補領域それぞれについて腫瘤であるか又は局所的な乳腺の塊であるかを判定する。腫瘤は、癌細胞が増殖することで生じる、内部が癌細胞で充実した3次元構造であるため、断層画像Djでは連続する複数の断層画像Djにまたがって写る。一方、局所的な乳腺の塊は、薄く伸ばされた乳腺が重なった構造であるため、1枚の断層画像Djには腫瘤のように写るものの、隣接する層の断層画像Djでは正常乳腺のように写る。 The determination unit 44 determines whether each of the tumor candidate regions detected by the detection unit 42 is a tumor or a local mammary gland mass. Since the mass is a three-dimensional structure in which the inside is filled with cancer cells, which is generated by the proliferation of cancer cells, the tomographic image Dj appears over a plurality of continuous tomographic images Dj. On the other hand, the local mammary gland mass has a structure in which thinly stretched mammary glands are overlapped, so that it looks like a mass on one tomographic image Dj, but it looks like a normal mammary gland on the tomographic image Dj of the adjacent layer. It is reflected in.
 そこで、本実施形態に係る判定部44は、連続する複数の断層画像Djに写っており、かつそれぞれの断層画像Djにおける重心の位置がほぼ同じ位置である腫瘤候補領域を腫瘤であると判定する。ここでいう重心の位置がほぼ同じ位置とは、例えば、複数の断層画像Djのそれぞれに写る腫瘤の重心の位置間の距離が予め定められた閾値以下であることを意味する。この場合の閾値としては、例えば、連続する複数の断層画像Djに写る腫瘤の重心の位置間の距離の上限値として予め設定された値を適用することができる。また、判定部44は、隣接する層の断層画像Djには写っておらず、1枚の断層画像Djにのみ写っている腫瘤候補領域を局所的な乳腺の塊であると判定する。 Therefore, the determination unit 44 according to the present embodiment determines that the tumor candidate region which is reflected in a plurality of continuous tomographic images Dj and whose center of gravity is almost the same in each tomographic image Dj is a tumor. .. The position where the positions of the centers of gravity are substantially the same here means that, for example, the distance between the positions of the centers of gravity of the tumors reflected in each of the plurality of tomographic images Dj is equal to or less than a predetermined threshold. As the threshold value in this case, for example, a preset value can be applied as an upper limit value of the distance between the positions of the centers of gravity of the tumors reflected in a plurality of continuous tomographic images Dj. Further, the determination unit 44 determines that the tumor candidate region, which is not shown in the tomographic image Dj of the adjacent layer but is shown only in one tomographic image Dj, is a local mammary gland mass.
 図7の例では、判定部44は、腫瘤候補領域K21、K31、K41が連続する断層画像D2~D4に写っており、それぞれの断層画像D2~D4における重心の位置がほぼ同じであるため、腫瘤候補領域K21、K31、K41を腫瘤であると判定する。また、図7の例では、判定部44は、断層画像D3に写る腫瘤候補領域K32については、断層画像D3に隣接する層の断層画像D2、D4のほぼ同じ位置に腫瘤候補領域が写っていないため、腫瘤候補領域K32を局所的な乳腺の塊であると判定する。 In the example of FIG. 7, the determination unit 44 is shown in the tomographic images D2 to D4 in which the tumor candidate regions K21, K31, and K41 are continuous, and the positions of the centers of gravity in the respective tomographic images D2 to D4 are almost the same. Tumor candidate regions K21, K31, and K41 are determined to be tumors. Further, in the example of FIG. 7, the determination unit 44 does not show the tumor candidate region K32 in the tomographic image D3 at almost the same position as the tomographic images D2 and D4 in the layer adjacent to the tomographic image D3. Therefore, the tumor candidate region K32 is determined to be a local mammary gland mass.
 選択部46は、判定部44により腫瘤であると判定された第1の領域においては複数の断層画像Djから第1の断層画像群を選択する。この選択において、選択部46は、第1の選択ルールに従って第1の断層画像群を選択する。本実施形態に係る第1の選択ルールは、複数の断層画像Djのうち、判定部44により腫瘤であると判定された腫瘤候補領域が検出された断層画像群を選択する、というルールである。図7の例では、選択部46は、腫瘤候補領域K21、K31、K41が検出された断層画像D2~D4を第1の断層画像群として選択する。 The selection unit 46 selects a first tomographic image group from a plurality of tomographic images Dj in the first region determined to be a tumor by the determination unit 44. In this selection, the selection unit 46 selects the first tomographic image group according to the first selection rule. The first selection rule according to the present embodiment is a rule to select a tomographic image group in which a tumor candidate region determined to be a tumor is detected by the determination unit 44 from a plurality of tomographic images Dj. In the example of FIG. 7, the selection unit 46 selects the tomographic images D2 to D4 in which the tumor candidate regions K21, K31, and K41 are detected as the first tomographic image group.
 選択部46は、判定部44により局所的な乳腺の塊であると判定された第2の領域においては複数の断層画像Djから第2の断層画像群を選択する。この選択において、選択部46は、第1の選択ルールとは異なる第2の選択ルールに従って第2の断層画像群を選択する。本実施形態に係る第2の選択ルールは、複数の断層画像Djのうち、判定部44により局所的な乳腺の塊であると判定された腫瘤候補領域が検出された断層画像以外の断層画像群を選択する、というルールである。図7の例では、選択部46は、腫瘤候補領域K32が検出された断層画像D3以外の断層画像D1、D2、D4、D5を第2の断層画像群として選択する。 The selection unit 46 selects a second tomographic image group from a plurality of tomographic images Dj in the second region determined by the determination unit 44 to be a local mammary gland mass. In this selection, the selection unit 46 selects the second tomographic image group according to a second selection rule different from the first selection rule. The second selection rule according to the present embodiment is a tomographic image group other than the tomographic image in which the tumor candidate region determined to be a local mammary gland mass by the determination unit 44 is detected among the plurality of tomographic images Dj. Is the rule to select. In the example of FIG. 7, the selection unit 46 selects tomographic images D1, D2, D4, and D5 other than the tomographic image D3 in which the tumor candidate region K32 is detected as the second tomographic image group.
 選択部46は、第1の領域及び第2の領域以外の第3の領域においては複数の断層画像Djから第3の断層画像群を選択する。この選択において、選択部46は、第1の選択ルール及び第2の選択ルールとは異なる第3の選択ルールに従って第3の断層画像群を選択する。本実施形態に係る第3の選択ルールは、複数の断層画像Dj全てを選択する、というルールである。図7の例では、選択部46は、断層画像D1~D5を第3の断層画像群として選択する。 The selection unit 46 selects a third tomographic image group from a plurality of tomographic images Dj in a third region other than the first region and the second region. In this selection, the selection unit 46 selects a third tomographic image group according to a third selection rule different from the first selection rule and the second selection rule. The third selection rule according to the present embodiment is a rule that all the plurality of tomographic images Dj are selected. In the example of FIG. 7, the selection unit 46 selects tomographic images D1 to D5 as the third tomographic image group.
 合成部48は、第1の領域、第2の領域、及び第3の領域それぞれについて、選択部46により選択された断層画像群を用いて合成2次元画像を生成する。合成2次元画像は、基準線源位置Scから乳房Mに放射線を照射して撮影した単純2次元画像に相当する擬似的な2次元画像である。本実施形態においては、合成部48は、図8に示すように、複数の断層画像Djを積層した状態で、基準線源位置Scからの放射線検出器15へ向かう視点方向、すなわち図5に示す光軸X0に沿って、各断層画像Djにおいて対応する画素の画素値を合成して、合成2次元画像を生成する。以下、合成2次元画像の生成処理の具体的な一例について説明する。 The synthesis unit 48 generates a composite two-dimensional image using the tomographic image group selected by the selection unit 46 for each of the first region, the second region, and the third region. The synthetic two-dimensional image is a pseudo two-dimensional image corresponding to a simple two-dimensional image taken by irradiating the breast M with radiation from the reference radiation source position Sc. In the present embodiment, as shown in FIG. 8, the synthesis unit 48 has a state in which a plurality of tomographic images Dj are stacked, and is shown in the viewpoint direction from the reference source position Sc toward the radiation detector 15, that is, in FIG. A composite two-dimensional image is generated by synthesizing the pixel values of the corresponding pixels in each tomographic image Dj along the optical axis X0. Hereinafter, a specific example of the generation process of the composite two-dimensional image will be described.
 図9に、合成2次元画像CG0の一例を示す。図9に示すように、第1の領域A1については、断層画像D2~D4において腫瘤であると判定された腫瘤候補領域K21、K31、K41が合成される。この合成の際、合成部48は、複数の腫瘤候補領域の対応する画素位置の画素については画素値の加算平均値を合成2次元画像CG0の画素値とする。また、この合成の際、合成部48は、複数の腫瘤候補領域の何れか1つにのみ含まれる画素位置の画素については、その画素の画素値を合成2次元画像CG0の画素値とする。なお、例えば、合成部48は、複数の腫瘤候補領域のうち、最も大きい領域、最も小さい領域、又は各領域の平均の領域を第1の領域A1として、選択された断層画像群の第1の領域A1の各画素の画素値の加算平均値を合成2次元画像CG0の画素値としてもよい。 FIG. 9 shows an example of the composite two-dimensional image CG0. As shown in FIG. 9, for the first region A1, tumor candidate regions K21, K31, and K41 determined to be tumors in the tomographic images D2 to D4 are synthesized. At the time of this synthesis, the synthesis unit 48 uses the added average value of the pixel values as the pixel value of the composite two-dimensional image CG0 for the pixels at the corresponding pixel positions of the plurality of tumor candidate regions. Further, at the time of this synthesis, the synthesis unit 48 uses the pixel value of the pixel as the pixel value of the composite two-dimensional image CG0 for the pixel at the pixel position included in only one of the plurality of tumor candidate regions. In addition, for example, in the synthesis unit 48, among the plurality of mass candidate regions, the largest region, the smallest region, or the average region of each region is set as the first region A1, and the first region of the selected tomographic image group is selected. The added average value of the pixel values of each pixel in the region A1 may be used as the pixel value of the composite two-dimensional image CG0.
 また、図9に示すように、第2の領域A2については、断層画像D1、D2、D4、D5における、局所的な乳腺の塊であると判定された断層画像D3の腫瘤候補領域K32に対応する領域が合成される。この合成の際、合成部48は、断層画像D1、D2、D4、D5それぞれの第2の領域A2に含まれる各画素について、画素値の加算平均値を合成2次元画像CG0の画素値とする。 Further, as shown in FIG. 9, the second region A2 corresponds to the tumor candidate region K32 of the tomographic image D3 determined to be a local mammary gland mass in the tomographic images D1, D2, D4, and D5. Areas to be combined. At the time of this composition, the composition unit 48 sets the added average value of the pixel values as the pixel value of the composite two-dimensional image CG0 for each pixel included in the second region A2 of each of the tomographic images D1, D2, D4, and D5. ..
 また、図9に示すように、第3の領域A3については、断層画像D1~D5の対応する領域が合成される。この合成の際、合成部48は、断層画像D1~D5それぞれの第3の領域A3に含まれる各画素について、画素値の加算平均値を合成2次元画像CG0の画素値とする。 Further, as shown in FIG. 9, for the third region A3, the corresponding regions of the tomographic images D1 to D5 are synthesized. At the time of this synthesis, the synthesis unit 48 sets the added average value of the pixel values as the pixel value of the composite two-dimensional image CG0 for each pixel included in the third region A3 of each of the tomographic images D1 to D5.
 表示制御部50は、合成部48により生成された合成2次元画像CG0をディスプレイ23に表示する制御を行う。 The display control unit 50 controls to display the composite two-dimensional image CG0 generated by the composite unit 48 on the display 23.
 次に、図10を参照して、本実施形態に係る画像処理装置4の作用を説明する。CPU20が画像処理プログラム30を実行することによって、図10に示す合成2次元画像生成処理が実行される。図10に示す合成2次元画像生成処理は、例えば、ユーザにより入力装置24を介して実行開始の指示が入力された場合に実行される。 Next, with reference to FIG. 10, the operation of the image processing apparatus 4 according to the present embodiment will be described. When the CPU 20 executes the image processing program 30, the synthetic two-dimensional image generation process shown in FIG. 10 is executed. The composite two-dimensional image generation process shown in FIG. 10 is executed, for example, when an instruction to start execution is input by the user via the input device 24.
 図10のステップS10で、取得部40は、コンソール2がマンモグラフィ撮影装置1にトモシンセシス撮影を行わせることにより生成された複数の断層画像Djを取得する。ステップS12で、検出部42は、前述したように、ステップS10で取得された複数の断層画像Djから腫瘤候補領域を検出する。 In step S10 of FIG. 10, the acquisition unit 40 acquires a plurality of tomographic images Dj generated by the console 2 causing the mammography imaging apparatus 1 to perform tomosynthesis imaging. In step S12, as described above, the detection unit 42 detects the tumor candidate region from the plurality of tomographic images Dj acquired in step S10.
 ステップS14で、判定部44は、前述したように、ステップS12で検出された腫瘤候補領域それぞれについて腫瘤であるか又は局所的な乳腺の塊であるかを判定する。ステップS16で、選択部46は、前述したように、ステップS14で腫瘤であると判定された第1の領域においては第1の選択ルールに従って複数の断層画像Djから第1の断層画像群を選択する。また、選択部46は、前述したように、ステップS14で局所的な乳腺の塊であると判定された第2の領域においては第2の選択ルールに従って複数の断層画像Djから第2の断層画像群を選択する。また、選択部46は、前述したように、第1の領域及び第2の領域以外の第3の領域においては第3の選択ルールに従って複数の断層画像Djから第3の断層画像群を選択する。そして、合成部48は、前述したように、第1の領域、第2の領域、及び第3の領域それぞれについて、選択部46により選択された断層画像群を用いて合成2次元画像CG0を生成する。 In step S14, as described above, the determination unit 44 determines whether each of the tumor candidate regions detected in step S12 is a tumor or a local mammary gland mass. In step S16, as described above, the selection unit 46 selects the first tomographic image group from the plurality of tomographic images Dj in the first region determined to be a tumor in step S14 according to the first selection rule. do. Further, as described above, the selection unit 46 has a plurality of tomographic images Dj to a second tomographic image in the second region determined to be a local mammary gland mass in step S14 according to the second selection rule. Select a group. Further, as described above, the selection unit 46 selects the third tomographic image group from the plurality of tomographic images Dj in the third region other than the first region and the second region according to the third selection rule. .. Then, as described above, the synthesis unit 48 generates a composite two-dimensional image CG0 for each of the first region, the second region, and the third region using the tomographic image group selected by the selection unit 46. do.
 ステップS18で、表示制御部50は、ステップS16で生成された合成2次元画像CG0をディスプレイ23に表示する制御を行う。ステップS18の処理が終了すると、合成2次元画像生成処理が終了する。 In step S18, the display control unit 50 controls to display the composite two-dimensional image CG0 generated in step S16 on the display 23. When the process of step S18 is completed, the composite two-dimensional image generation process is completed.
 上述のとおり、本例の合成2次元画像生成処理において、合成2次元画像CG0の第2の領域A2の生成に用いる第2の断層画像群は、複数の断層画像Djのうち局所的な乳腺の塊であると判定された腫瘤候補領域K32が検出された断層画像D3以外の断層画像群(断層画像D1、D2、D4、及びD5)である。このため、単純2次元画像において腫瘤のように見えてしまう局所的な乳腺の塊は、図9に示す合成2次元画像CG0では表現されない。そのため、図9に示す合成2次元画像CG0において、局所的な乳腺の塊が腫瘤と誤認識されることが抑制される。 As described above, in the synthetic two-dimensional image generation processing of this example, the second tomographic image group used for the generation of the second region A2 of the synthetic two-dimensional image CG0 is the local mammary gland among the plurality of tomographic images Dj. It is a tomographic image group (tomographic images D1, D2, D4, and D5) other than the tomographic image D3 in which the mass candidate region K32 determined to be a mass is detected. Therefore, the local mass of the mammary gland that looks like a mass in the simple 2D image is not represented by the synthetic 2D image CG0 shown in FIG. Therefore, in the synthetic two-dimensional image CG0 shown in FIG. 9, it is suppressed that the local mass of the mammary gland is erroneously recognized as a mass.
 以上説明したように、本実施形態によれば、断層画像と同等の診断能を有する合成2次元画像を生成することができる。これにより、医師等の診断者は、1枚の合成2次元画像を読影すればよいため、読影の負荷が軽減する。また、読影に不要になった断層画像を記憶装置上から削除することによって、記憶装置の容量節約にもつながる。 As described above, according to the present embodiment, it is possible to generate a synthetic two-dimensional image having a diagnostic ability equivalent to that of a tomographic image. As a result, a diagnostician such as a doctor need only interpret one composite two-dimensional image, so that the load of interpretation is reduced. In addition, by deleting the tomographic image that is no longer needed for image interpretation from the storage device, the capacity of the storage device can be saved.
 なお、上記実施形態では、第2の断層画像群として、複数の断層画像Djのうち局所的な乳腺の塊であると判定された腫瘤候補領域が検出された断層画像以外の断層画像群を適用した場合について説明したが、これに限定されない。例えば、第2の断層画像群として、複数の断層画像Djのうち局所的な乳腺の塊であると判定された腫瘤候補領域が検出された断層画像と、その断層画像に隣接する層の断層画像とを適用する形態としてもよい。この場合、一例として図11に示す合成2次元画像CG0のように、第2の領域A2においては、局所的な乳腺の塊であると判定された断層画像D3の腫瘤候補領域K32と、断層画像D3に隣接する層の断層画像D4の乳腺N41とが合成される。このため、図11に示す合成2次元画像CG0では、腫瘤候補領域K32と乳腺N41とが合成されることにより、腫瘤候補領域K32が局所的な乳腺の塊と明確に表現される。このため、図11に示す合成2次元画像CG0でも、局所的な乳腺の塊が腫瘤と誤認識されることが抑制される。 In the above embodiment, as the second tomographic image group, a tomographic image group other than the tomographic image in which the mass candidate region determined to be a local mammary gland mass among the plurality of tomographic images Dj is detected is applied. However, the case is not limited to this. For example, as a second tomographic image group, a tomographic image in which a mass candidate region determined to be a local mass of the mammary gland among a plurality of tomographic images Dj is detected, and a tomographic image of a layer adjacent to the tomographic image. And may be applied as a form. In this case, as an example, as in the synthetic two-dimensional image CG0 shown in FIG. 11, in the second region A2, the tumor candidate region K32 of the tomographic image D3 determined to be a local mammary gland mass and the tomographic image. The mammary gland N41 of the tomographic image D4 of the layer adjacent to D3 is synthesized. Therefore, in the synthetic two-dimensional image CG0 shown in FIG. 11, the tumor candidate region K32 and the mammary gland N41 are synthesized, so that the tumor candidate region K32 is clearly expressed as a local mass of the mammary gland. Therefore, even in the synthetic two-dimensional image CG0 shown in FIG. 11, it is suppressed that the local mass of the mammary gland is erroneously recognized as a tumor.
 また、例えば、第2の断層画像群として、第3の断層画像群と同じ断層画像群を適用する形態としてもよい。この場合、第2の選択ルールと第3の選択ルールとが同じルールとなる。また、この場合、合成部48は、合成2次元画像CG0における第2の領域A2の濃度を第3の領域A3に近い濃度に制御した合成2次元画像CG0を生成する。この場合、一例として図12に示すように、第2の領域A2内の画素については、濃度が第1の領域A1よりも第3の領域A3に近い濃度になるため、腫瘤の領域と明確に区別することができる。このため、図12に示す合成2次元画像CG0でも、局所的な乳腺の塊が腫瘤と誤認識されることが抑制される。 Further, for example, as the second tomographic image group, the same tomographic image group as the third tomographic image group may be applied. In this case, the second selection rule and the third selection rule are the same rule. Further, in this case, the synthesis unit 48 generates a synthetic two-dimensional image CG0 in which the density of the second region A2 in the synthetic two-dimensional image CG0 is controlled to be close to the density of the third region A3. In this case, as shown in FIG. 12, as an example, the density of the pixels in the second region A2 is closer to the third region A3 than the first region A1, so that the pixels are clearly defined as the tumor region. Can be distinguished. Therefore, even in the synthetic two-dimensional image CG0 shown in FIG. 12, it is suppressed that the local mass of the mammary gland is erroneously recognized as a tumor.
 更に、図10に示すフローチャートに示すように、合成2次元画像CG0を表示するだけでなく、図13に示すフローチャートに示すように、合成2次元画像CG0を表示するステップS18に加えて、表示制御部50は、判定部44による判定結果を表示するステップS20を実行してもよい。ステップS20において、表示制御部50は、合成2次元画像CG0上に、判定部44による腫瘤であるか又は局所的な乳腺の塊であるかの判定結果を表示する制御を行う。図14に、この判定結果の表示状態の一例を示す。図14に示すように、表示制御部50は、判定部44による判定結果を表す文字列を、判定対象の腫瘤候補領域の近傍に表示する制御を行う。図14の例では、局所的な乳腺の塊であると判定された腫瘤候補領域の下部に「乳腺」との文字列が表示され、腫瘤であると判定された腫瘤候補領域の下部に「腫瘤」との文字列が表示されている。 Further, as shown in the flowchart shown in FIG. 10, not only the composite two-dimensional image CG0 is displayed, but also the display control is added to the step S18 for displaying the composite two-dimensional image CG0 as shown in the flowchart shown in FIG. The unit 50 may execute step S20 for displaying the determination result by the determination unit 44. In step S20, the display control unit 50 controls to display the determination result of whether the tumor is a mass or a local mammary gland mass by the determination unit 44 on the synthetic two-dimensional image CG0. FIG. 14 shows an example of the display state of the determination result. As shown in FIG. 14, the display control unit 50 controls to display the character string representing the determination result by the determination unit 44 in the vicinity of the tumor candidate region to be determined. In the example of FIG. 14, the character string "mammary gland" is displayed at the lower part of the tumor candidate area determined to be a local mass of the mammary gland, and the "tumor" is displayed at the lower part of the tumor candidate area determined to be a mass. "Is displayed.
 また、図15に示すように、表示制御部50は、判定部44による判定結果を、判定対象の腫瘤候補領域の枠線の色を異ならせることによって表示する制御を行ってもよい。図15の例では、局所的な乳腺の塊であると判定された腫瘤候補領域の枠線が破線で表示され、腫瘤であると判定された腫瘤候補領域の枠線が一点鎖線で表示されているが、これは枠線の色が異なることを表している。 Further, as shown in FIG. 15, the display control unit 50 may control to display the determination result by the determination unit 44 by changing the color of the border of the tumor candidate region to be determined. In the example of FIG. 15, the border of the tumor candidate region determined to be a local mammary gland mass is displayed as a broken line, and the border of the tumor candidate region determined to be a mass is displayed as a dotted chain line. However, this means that the color of the border is different.
 また、図16に示すように、表示制御部50は、判定部44による判定結果を表すマークを、判定対象の腫瘤候補領域の近傍に表示する制御を行ってもよい。図16の例では、局所的な乳腺の塊であると判定された腫瘤候補領域の下部に丸のマークが表示され、腫瘤であると判定された腫瘤候補領域の下部に三角形のマークが表示されている。 Further, as shown in FIG. 16, the display control unit 50 may control to display the mark indicating the determination result by the determination unit 44 in the vicinity of the tumor candidate region to be determined. In the example of FIG. 16, a circle mark is displayed at the bottom of the tumor candidate area determined to be a local mammary gland mass, and a triangular mark is displayed at the bottom of the tumor candidate area determined to be a mass. ing.
 また、上記実施形態では、第3の断層画像群として、複数の断層画像Dj全てを適用した場合について説明したが、これに限定されない。例えば、第3の断層画像群として、複数の断層画像Djのうち注目画素の画素値と複数の断層画像Dj全ての注目画素の画素値の平均値との差の絶対値が予め設定された閾値以上の断層画像群を適用する形態としてもよい。また、例えば、複数の断層画像Djのうち注目画素を含む注目領域の画素値の分散値が大きい順に予め設定された枚数の断層画像群を適用する形態としてもよい。また、例えば、第3の断層画像群として、複数の断層画像Djのうちエッジ検出処理によってエッジが検出された画素を有する断層画像群を適用する形態としてもよい。 Further, in the above embodiment, the case where all of the plurality of tomographic images Dj are applied as the third tomographic image group has been described, but the present invention is not limited to this. For example, as a third tomographic image group, an absolute value of the difference between the pixel value of the pixel of interest among the plurality of tomographic images Dj and the average value of the pixel values of all the pixels of interest of the plurality of tomographic images Dj is set in advance. The above tomographic image group may be applied. Further, for example, a predetermined number of tomographic image groups may be applied in descending order of the dispersion value of the pixel values in the region of interest including the pixel of interest among the plurality of tomographic images Dj. Further, for example, as the third tomographic image group, a tomographic image group having pixels whose edges are detected by the edge detection process among a plurality of tomographic images Dj may be applied.
 また、上記実施形態では、合成2次元画像CG0の画素の画素値として、選択された断層画像群の対応する画素の画素値の加算平均値を適用する場合について説明したが、これに限定されない。合成2次元画像CG0の画素の画素値として、選択された断層画像群の対応する画素の画素値の中央値、最大値、又は最小値を適用する形態としてもよい。 Further, in the above embodiment, the case where the added average value of the pixel values of the corresponding pixels of the selected tomographic image group is applied as the pixel value of the pixel of the composite two-dimensional image CG0 has been described, but the present invention is not limited to this. As the pixel value of the pixel of the composite two-dimensional image CG0, the median value, the maximum value, or the minimum value of the pixel value of the corresponding pixel of the selected tomographic image group may be applied.
 また、上記実施形態において、例えば、取得部40、検出部42、判定部44、選択部46、合成部48、及び表示制御部50といった各種の処理を実行する処理部(processing unit)のハードウェア的な構造としては、次に示す各種のプロセッサ(processor)を用いることができる。上記各種のプロセッサには、前述したように、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPUに加えて、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、ASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。 Further, in the above embodiment, for example, the hardware of the processing unit (processing unit) that executes various processes such as the acquisition unit 40, the detection unit 42, the determination unit 44, the selection unit 46, the synthesis unit 48, and the display control unit 50. As the structure, various processors shown below can be used. As described above, the various processors include a CPU, which is a general-purpose processor that executes software (program) and functions as various processing units, and a circuit after manufacturing an FPGA (Field Programmable Gate Array) or the like. Dedicated electricity, which is a processor with a circuit configuration specially designed to execute specific processing such as programmable logic device (PLD), ASIC (Application Specific Integrated Circuit), which is a processor whose configuration can be changed. Circuits etc. are included.
 1つの処理部は、これらの各種のプロセッサのうちの1つで構成されてもよいし、同種又は異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせや、CPUとFPGAとの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。 One processing unit may be composed of one of these various processors, or a combination of two or more processors of the same type or different types (for example, a combination of a plurality of FPGAs or a combination of a CPU and an FPGA). It may be composed of a combination). Further, a plurality of processing units may be configured by one processor.
 複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアント及びサーバ等のコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System on Chip:SoC)等に代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサの1つ以上を用いて構成される。 As an example of configuring a plurality of processing units with one processor, first, one processor is configured by a combination of one or more CPUs and software, as represented by a computer such as a client and a server. There is a form in which the processor functions as a plurality of processing units. Second, as typified by System on Chip (SoC), there is a form that uses a processor that realizes the functions of the entire system including multiple processing units with one IC (Integrated Circuit) chip. be. As described above, the various processing units are configured by using one or more of the above-mentioned various processors as a hardware-like structure.
 更に、これらの各種のプロセッサのハードウェア的な構造としては、より具体的には、半導体素子などの回路素子を組み合わせた電気回路(circuitry)を用いることができる。 Further, as the hardware structure of these various processors, more specifically, an electric circuit (circuitry) in which circuit elements such as semiconductor elements are combined can be used.
 また、上記実施形態では、画像処理プログラム30が記憶部22に予め記憶(インストール)されている態様を説明したが、これに限定されない。画像処理プログラム30は、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、及びUSB(Universal Serial Bus)メモリ等の記録媒体に記録された形態で提供されてもよい。また、画像処理プログラム30は、ネットワークを介して外部装置からダウンロードされる形態としてもよい。 Further, in the above embodiment, the embodiment in which the image processing program 30 is stored (installed) in the storage unit 22 in advance has been described, but the present invention is not limited to this. The image processing program 30 is provided in a form recorded on a recording medium such as a CD-ROM (Compact Disc Read Only Memory), a DVD-ROM (Digital Versatile Disc Read Only Memory), and a USB (Universal Serial Bus) memory. May be good. Further, the image processing program 30 may be downloaded from an external device via a network.
 2020年9月30日に出願された日本国特許出願2020-166473号の開示は、その全体が参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2020-166473 filed on September 30, 2020 is incorporated herein by reference in its entirety. In addition, all documents, patent applications, and technical standards described herein are to the same extent as if it were specifically and individually stated that the individual documents, patent applications, and technical standards were incorporated by reference. Is incorporated herein by reference.

Claims (9)

  1.  少なくとも一つのプロセッサを備える画像処理装置であって、
     前記プロセッサは、
     被写体の複数の断層面を表す複数の断層画像から腫瘤候補領域を検出し、
     検出した腫瘤候補領域それぞれについて腫瘤であるか又は局所的な乳腺の塊であるかを判定し、
     腫瘤であると判定した第1の領域においては前記複数の断層画像から第1の断層画像群を選択し、
     局所的な乳腺の塊であると判定した第2の領域においては前記複数の断層画像から第2の断層画像群を選択し、
     前記第1の領域及び前記第2の領域以外の第3の領域においては前記複数の断層画像から第3の断層画像群を選択し、
     前記第1の領域、前記第2の領域、及び前記第3の領域それぞれについて選択した断層画像群を用いて合成2次元画像を生成する
     画像処理装置。
    An image processing device equipped with at least one processor,
    The processor
    Tumor candidate areas are detected from multiple tomographic images representing multiple tomographic planes of the subject.
    For each of the detected tumor candidate areas, it is determined whether it is a tumor or a local mass of the mammary gland.
    In the first region determined to be a tumor, the first tomographic image group is selected from the plurality of tomographic images.
    In the second region determined to be a local mammary gland mass, a second tomographic image group is selected from the plurality of tomographic images.
    In the third region other than the first region and the second region, a third tomographic image group is selected from the plurality of tomographic images.
    An image processing device that generates a synthetic two-dimensional image using a tomographic image group selected for each of the first region, the second region, and the third region.
  2.  前記第1の断層画像群は、前記複数の断層画像のうち腫瘤であると判定された前記腫瘤候補領域が検出された断層画像群である
     請求項1に記載の画像処理装置。
    The image processing apparatus according to claim 1, wherein the first tomographic image group is a tomographic image group in which the tumor candidate region determined to be a tumor is detected among the plurality of tomographic images.
  3.  前記第2の断層画像群は、前記複数の断層画像のうち局所的な乳腺の塊であると判定された前記腫瘤候補領域が検出された断層画像以外の断層画像群である
     請求項1又は請求項2に記載の画像処理装置。
    The second tomographic image group is a tomographic image group other than the tomographic image in which the mass candidate region determined to be a local mass of the mammary gland among the plurality of tomographic images is detected. Item 2. The image processing apparatus according to Item 2.
  4.  前記第2の断層画像群は、前記複数の断層画像のうち局所的な乳腺の塊であると判定された前記腫瘤候補領域が検出された断層画像と、その断層画像に隣接する層の断層画像である
     請求項1又は請求項2に記載の画像処理装置。
    The second tomographic image group includes a tomographic image in which the mass candidate region determined to be a local mass of the mammary gland among the plurality of tomographic images is detected, and a tomographic image of a layer adjacent to the tomographic image. The image processing apparatus according to claim 1 or claim 2.
  5.  前記第2の断層画像群は、前記第3の断層画像群と同じ断層画像群であり、
     前記プロセッサは、
     前記第2の領域の濃度を前記第3の領域に近い濃度に制御した前記合成2次元画像を生成する
     請求項1又は請求項2に記載の画像処理装置。
    The second tomographic image group is the same tomographic image group as the third tomographic image group.
    The processor
    The image processing apparatus according to claim 1 or 2, wherein the composite two-dimensional image in which the density of the second region is controlled to a density close to that of the third region is generated.
  6.  前記第3の断層画像群は、前記複数の断層画像全て、前記複数の断層画像のうち注目画素の画素値と前記複数の断層画像全ての前記注目画素の画素値の平均値との差の絶対値が予め設定された閾値以上の断層画像群、前記複数の断層画像のうち注目画素を含む注目領域の画素値の分散値が大きい順に予め設定された枚数の断層画像群、又は前記複数の断層画像のうちエッジ検出処理によってエッジが検出された画素を有する断層画像群である
     請求項1から請求項5の何れか1項に記載の画像処理装置。
    In the third tomographic image group, the absolute difference between the pixel value of the attention pixel among the plurality of tomographic images and the average value of the pixel values of the attention pixels of all the plurality of tomographic images is absolute. A tomographic image group whose value is equal to or higher than a preset threshold, a tomographic image group having a preset number of tomographic images in descending order of the dispersion value of the pixel value of the region of interest including the pixel of interest among the plurality of tomographic images, or the plurality of faults. The image processing apparatus according to any one of claims 1 to 5, which is a tomographic image group having pixels whose edges are detected by edge detection processing in an image.
  7.  前記プロセッサは、
     生成した合成2次元画像を表示する制御を行い、かつ
     前記合成2次元画像上に、腫瘤であるか又は局所的な乳腺の塊であるかの判定結果を表示する制御を行う
     請求項1から請求項6の何れか1項に記載の画像処理装置。
    The processor
    Claimed from claim 1 which controls to display the generated synthetic two-dimensional image and controls to display the determination result of whether it is a mass or a local mammary gland mass on the synthetic two-dimensional image. Item 6. The image processing apparatus according to any one of Items 6.
  8.  被写体の複数の断層面を表す複数の断層画像から腫瘤候補領域を検出し、
     検出した腫瘤候補領域それぞれについて腫瘤であるか又は局所的な乳腺の塊であるかを判定し、
     腫瘤であると判定した第1の領域においては前記複数の断層画像から第1の断層画像群を選択し、
     局所的な乳腺の塊であると判定した第2の領域においては前記複数の断層画像から第2の断層画像群を選択し、
     前記第1の領域及び前記第2の領域以外の第3の領域においては前記複数の断層画像から第3の断層画像群を選択し、
     前記第1の領域、前記第2の領域、及び前記第3の領域それぞれについて選択した断層画像群を用いて合成2次元画像を生成する
     処理を画像処理装置が備えるプロセッサが実行する画像処理方法。
    Tumor candidate areas are detected from multiple tomographic images representing multiple tomographic planes of the subject.
    For each of the detected tumor candidate areas, it is determined whether it is a tumor or a local mass of the mammary gland.
    In the first region determined to be a tumor, the first tomographic image group is selected from the plurality of tomographic images.
    In the second region determined to be a local mammary gland mass, a second tomographic image group is selected from the plurality of tomographic images.
    In the third region other than the first region and the second region, a third tomographic image group is selected from the plurality of tomographic images.
    An image processing method in which a processor included in an image processing apparatus executes a process of generating a composite two-dimensional image using a tomographic image group selected for each of the first region, the second region, and the third region.
  9.  被写体の複数の断層面を表す複数の断層画像から腫瘤候補領域を検出し、
     検出した腫瘤候補領域それぞれについて腫瘤であるか又は局所的な乳腺の塊であるかを判定し、
     腫瘤であると判定した第1の領域においては前記複数の断層画像から第1の断層画像群を選択し、
     局所的な乳腺の塊であると判定した第2の領域においては前記複数の断層画像から第2の断層画像群を選択し、
     前記第1の領域及び前記第2の領域以外の第3の領域においては前記複数の断層画像から第3の断層画像群を選択し、
     前記第1の領域、前記第2の領域、及び前記第3の領域それぞれについて選択した断層画像群を用いて合成2次元画像を生成する
     処理を画像処理装置が備えるプロセッサに実行させるための画像処理プログラム。
    Tumor candidate areas are detected from multiple tomographic images representing multiple tomographic planes of the subject.
    For each of the detected tumor candidate areas, it is determined whether it is a tumor or a local mass of the mammary gland.
    In the first region determined to be a tumor, the first tomographic image group is selected from the plurality of tomographic images.
    In the second region determined to be a local mammary gland mass, a second tomographic image group is selected from the plurality of tomographic images.
    In the third region other than the first region and the second region, a third tomographic image group is selected from the plurality of tomographic images.
    Image processing for causing a processor included in the image processing apparatus to perform processing for generating a composite two-dimensional image using a tomographic image group selected for each of the first region, the second region, and the third region. program.
PCT/JP2021/027309 2020-09-30 2021-07-21 Image-processing device, image-processing method, and image-processing program WO2022070570A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022553494A JP7430814B2 (en) 2020-09-30 2021-07-21 Image processing device, image processing method, and image processing program
EP21874874.7A EP4223224A4 (en) 2020-09-30 2021-07-21 Image-processing device, image-processing method, and image-processing program
US18/183,858 US20230215057A1 (en) 2020-09-30 2023-03-14 Image processing device, image processing method, and image processing program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-166473 2020-09-30
JP2020166473 2020-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/183,858 Continuation US20230215057A1 (en) 2020-09-30 2023-03-14 Image processing device, image processing method, and image processing program

Publications (1)

Publication Number Publication Date
WO2022070570A1 true WO2022070570A1 (en) 2022-04-07

Family

ID=80949860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027309 WO2022070570A1 (en) 2020-09-30 2021-07-21 Image-processing device, image-processing method, and image-processing program

Country Status (4)

Country Link
US (1) US20230215057A1 (en)
EP (1) EP4223224A4 (en)
JP (1) JP7430814B2 (en)
WO (1) WO2022070570A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140033126A1 (en) * 2008-12-08 2014-01-30 Hologic, Inc. Displaying Computer-Aided Detection Information With Associated Breast Tomosynthesis Image Information
JP2014128716A (en) 2008-11-21 2014-07-10 Hologic Inc System and method for generating 2d image from tomosynthesis dataset
JP2020512129A (en) 2017-03-30 2020-04-23 ホロジック, インコーポレイテッドHologic, Inc. System and method for synthesizing low-dimensional image data from high-dimensional image data using object grid augmentation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2535829A3 (en) * 2009-10-07 2013-07-10 Hologic, Inc. Processing and displaying computer-aided detection information associated with breast x-ray images
JP6012577B2 (en) * 2013-09-30 2016-10-25 富士フイルム株式会社 Image processing apparatus, radiographic imaging system, image processing program, and image processing method
US9792703B2 (en) * 2015-07-06 2017-10-17 Siemens Healthcare Gmbh Generating a synthetic two-dimensional mammogram
JP7242284B2 (en) * 2018-12-19 2023-03-20 キヤノンメディカルシステムズ株式会社 Medical image processing device, X-ray diagnostic device and medical image processing program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014128716A (en) 2008-11-21 2014-07-10 Hologic Inc System and method for generating 2d image from tomosynthesis dataset
US20140033126A1 (en) * 2008-12-08 2014-01-30 Hologic, Inc. Displaying Computer-Aided Detection Information With Associated Breast Tomosynthesis Image Information
JP2020512129A (en) 2017-03-30 2020-04-23 ホロジック, インコーポレイテッドHologic, Inc. System and method for synthesizing low-dimensional image data from high-dimensional image data using object grid augmentation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4223224A4

Also Published As

Publication number Publication date
EP4223224A4 (en) 2024-03-27
EP4223224A1 (en) 2023-08-09
US20230215057A1 (en) 2023-07-06
JPWO2022070570A1 (en) 2022-04-07
JP7430814B2 (en) 2024-02-13

Similar Documents

Publication Publication Date Title
JP2020048991A (en) Tomographic image generating device, method, and program
JP2021029698A (en) Image display device, method, and program, and image management device, method, and program
WO2020202612A1 (en) Image processing device, method, and program
WO2022070570A1 (en) Image-processing device, image-processing method, and image-processing program
WO2021182229A1 (en) Image generation device and program, learning device and program, and image processing device and program
JP7203705B2 (en) Image processing device, method and program, and image display device, method and program
JP7113790B2 (en) Image processing device, method and program
WO2022018943A1 (en) Image processing device, method, and program
US20220309671A1 (en) Image processing device, image processing method, and image processing program
JP7209599B2 (en) Image processing device, method and program
EP4066744A1 (en) Image processing device, image processing method, and image processing program
WO2022070532A1 (en) Image processing device, method for operating image processing device, and program for operating image processing device
JP7446410B2 (en) Image processing device, method and program
JP7384990B2 (en) Image management device, method and program
JP7451748B2 (en) Image processing device, image processing device operating method, image processing device operating program
US20220392064A1 (en) Image processing device, image processing method, and image processing program
WO2023139970A1 (en) Image processing device, image processing method, and program
JP7208874B2 (en) Imaging control device, method and program
WO2022097524A1 (en) Image processing device, method and program, and image display device, method and program
US20220358649A1 (en) Image setting device, image setting method, and image setting program
US20220343501A1 (en) Image setting device, image setting method, and image setting program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553494

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021874874

Country of ref document: EP

Effective date: 20230502