WO2022070513A1 - Traveling control system, steering device, and autonomous driving vehicle - Google Patents

Traveling control system, steering device, and autonomous driving vehicle Download PDF

Info

Publication number
WO2022070513A1
WO2022070513A1 PCT/JP2021/021532 JP2021021532W WO2022070513A1 WO 2022070513 A1 WO2022070513 A1 WO 2022070513A1 JP 2021021532 W JP2021021532 W JP 2021021532W WO 2022070513 A1 WO2022070513 A1 WO 2022070513A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide
vehicle
steering angle
virtual point
control system
Prior art date
Application number
PCT/JP2021/021532
Other languages
French (fr)
Japanese (ja)
Inventor
知也 藪崎
浩之 森田
真一 片山
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2022553458A priority Critical patent/JPWO2022070513A1/ja
Publication of WO2022070513A1 publication Critical patent/WO2022070513A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • B61B13/04Monorail systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions

Definitions

  • the present invention relates to a travel control system, a steering device, and an autonomous driving vehicle.
  • Patent Documents 1 to 4 disclose an autonomous driving vehicle that can travel along a traveling route.
  • magnetic marks are filled along a traveling path at regular intervals.
  • the vehicle can travel along the traveling route by detecting the magnetic marks in order with the magnetic sensor.
  • transponders instead of the magnetic mark, transponders that transmit position information are embedded in the traveling path at regular intervals.
  • the vehicle can travel autonomously by receiving the position information transmitted by the transponder by the information receiver.
  • the travel control system proposed in the present disclosure is a travel control system mounted on a vehicle traveling along a guide defined on a travel path, and outputs a signal according to the position of the guide.
  • a guide position that detects the position of the guide in the region based on the output of the first sensor when the one sensor and the region defined by the vehicle body along the left-right direction of the vehicle body pass through the guide when the vehicle is traveling.
  • Target steering angle for calculating the target steering angle of the vehicle based on the detection unit, the virtual point defined behind the region, and the position of the guide in the region detected by the guide position detection unit. It has a calculation unit. According to this system, the trajectory of the rear wheels can be optimized when the vehicle turns along the traveling path.
  • the target steering angle calculation unit passes the position of the guide in the region where the locus of the virtual point due to the travel of the vehicle passes through the region detected by the guide position detection unit. You may calculate the target steering angle so as to do so. According to this, it is possible to improve the followability of the vehicle to the traveling route.
  • the first sensor may be arranged in the area.
  • the first sensor may be a sensor that outputs a signal corresponding to the position of the guide in the first sensor when the first sensor passes through the guide while the vehicle is traveling. According to this, the position of the traveling path can be detected by using the first sensor.
  • the guide position detection unit detects the position of the guide detected at the first time point as the position of the first guide, and the target steering angle calculation unit is the first.
  • the target steering angle may be calculated based on the relative position between the position of the first guide and the virtual point at the second time point. According to this, the virtual point can be effectively followed by the guide.
  • the second time point is a time point when the vehicle has advanced a predetermined distance from the position at the first time point, and the second guide detected before the first guide. It may be the time when the virtual point P arrives at, or the time when a predetermined time has elapsed from the first time.
  • the target steering angle calculation unit is based on the distance from the region to the virtual point and the position of the guide in the region detected by the guide position detection unit.
  • the target steering angle may be calculated.
  • the travel control system of (1) may include a virtual point position changing unit that changes the position of the virtual point according to the driving situation of the vehicle. According to this, the behavior of the vehicle can be appropriately controlled according to the driving condition of the vehicle.
  • the virtual point position changing unit may change the position of the virtual point in the left-right direction of the vehicle body according to the driving situation of the vehicle. According to this, it is possible to appropriately control the behavior of the vehicle when the vehicle turns or turns left or right.
  • the virtual point position changing unit may change the position of the virtual point in the front-rear direction of the vehicle body according to the driving situation of the vehicle. According to this, it is possible to appropriately control the followability of the vehicle to the traveling route and the riding comfort of the vehicle according to the driving condition of the vehicle.
  • a value that specifies a target turning locus according to the position of the guide in the left-right direction of the vehicle body detected based on the output of the first sensor and the position of the virtual point. May be calculated and the target steering angle may be calculated based on the value corresponding to the target turning locus. According to this, the target steering angle can be calculated in consideration of the target turning locus of the vehicle.
  • the travel control system of (1) may further have a second sensor installed behind the region and outputting a signal according to the position of the guide. Further, the travel control system of (1) may correct the target steering angle based on the output of the second sensor. According to this, it is possible to more effectively improve the followability of the vehicle to the traveling route.
  • the steering device proposed in the present disclosure includes the traveling control system of (1), steering, and an actuator for rotating the steering. According to this steering device, when the vehicle turns along the traveling path, the trajectory of the rear wheels can be optimized.
  • the self-driving vehicle proposed in the present disclosure has the driving control system of (1). According to this, when the vehicle turns along the traveling path, the trajectory of the rear wheels can be optimized.
  • the virtual point is arranged between the tires of the left and right rear wheels in a plan view. According to this, when the vehicle turns along the traveling path, the trajectory of the rear wheels can be optimized.
  • the travel control system 1 described in the present disclosure is mounted on the autonomous driving vehicle 10 (see FIG. 1).
  • the traveling control system 1 is referred to as a control system 1
  • the autonomous driving vehicle 10 is referred to as a vehicle 10.
  • the vehicle 10 travels along a guide defined on the travel path.
  • the driving path is laid in a limited area where the running of general vehicles is restricted, such as an amusement park, a golf course, an event venue, and a sightseeing spot.
  • the travel path may be a public road in which the travel route of the vehicle 10 is set in advance.
  • the guide is installed in the traveling path in order to guide the traveling of the vehicle 10 along the traveling path. In the present embodiment, an example in which the guide is a guide line continuously embedded in the traveling path along the traveling path will be described.
  • FIG. 1 is a block diagram showing the hardware configuration of the vehicle 10.
  • the vehicle 10 has an ECU (Engine Control Unit) 11 and an MCU (Motor Control Unit) 12.
  • the ECU 11 has an arithmetic unit 11a and a storage device 11b.
  • the motor drive device 12 has an arithmetic unit 12a, a storage device 12b, and a drive circuit 12c.
  • the arithmetic units 11a and 12a may include, for example, a CPU (Central Processing Unit) and an FPGA (Field Programmable Gate Array).
  • the storage devices 11b and 12b may include, for example, a RAM (RandomAccessMemory) and a ROM (ReadOnlyMemory).
  • the drive circuit 12c receives electric power from a battery (not shown) and supplies electric power according to a command value input from the ECU 11 to a steering actuator described later, a vehicle drive motor 22 which is a drive source of the vehicle 10, and the like.
  • the ECU 11 may be composed of a plurality of devices connected to each other via a network mounted on the vehicle 10 (for example, CAN (Controller Area Network)).
  • each device constituting the ECU 11 may include at least one of an arithmetic unit and a storage device.
  • the vehicle 10 has a steering device 21, a vehicle drive motor 22, and a brake device 23.
  • the steering device 21 is a device for steering the front wheels 15, and includes, for example, a steering 17, a steering shaft connected to the steering 17, and an actuator (steering actuator) for rotating the steering 17 and the steering shaft 17a.
  • the steering device 21 also includes a tie rod that connects the steering shaft 17a and the front wheels 15.
  • the vehicle 10 has an angle sensor that detects the rotation angle (steering angle) of the steering shaft 17a.
  • the vehicle drive motor 22 is a device that rotates the drive wheels (one or both of the front wheels 15 and the rear wheels 16) and functions as a drive source.
  • the motor drive device 12 described above may include, as the drive circuit 12c, an inverter that generates an alternating current to be supplied to the vehicle drive motor 22.
  • the drive source of the vehicle 10 may be an engine. Further, the drive source may include both an engine and a vehicle drive motor.
  • a transmission or a speed reducer may be arranged on the power transmission path between the vehicle drive motor 22 and the drive wheels.
  • the brake device 23 is a device that applies a braking force to the wheels, and includes, for example, a foot pedal and a control valve that is connected to the foot pedal via hydraulic pressure.
  • the drive circuit 12c of the motor drive device 12 may supply electric power to the pump or solenoid that drives the control valve.
  • the vehicle 10 shown in FIG. 1 is a four-wheeled vehicle, but the vehicle 10 is not limited to this, and the vehicle 10 is a three-wheeled vehicle (a vehicle having one front wheel and two rear wheels, or two front wheels and one rear wheel. It may be a vehicle having a) or a two-wheeled vehicle.
  • the vehicle 10 may have five or more wheels such as a bus. Further, although it is possible for a plurality of users to get on the vehicle 10 in FIG. 1, the vehicle 10 may be for one person.
  • the vehicle 10 has a guide sensor 31 that detects the position of a guide on a traveling road, and an outside world sensor 32 that detects the position of a feature around the vehicle 10.
  • the guide line 7 (see FIG. 2) is used as a guide as described later.
  • the guide sensor 31 is a sensor that magnetically detects the position of the guide wire 7, and is composed of, for example, a plurality of coils arranged in the left-right direction of the vehicle body.
  • the guide sensor 31 may include an RFID reader for reading the data recorded on the RF tag installed on the track. Information about the track is recorded on the RF tag.
  • the RF tag indicates a stop position, a right turn point, or a left turn point.
  • the RF tag contains information that prompts the vehicle to accelerate / decelerate, stop, turn left / right, change course, etc., information that indicates that the vehicle is at a predetermined point (destination or intersection), and indicates that there is an obstacle in front of the RF tag. It contains information, information indicating that the road is closed, information indicating that the road is straight or curved, and information indicating that wild animals may pop out on the road.
  • the outside world sensor 32 is a sensor for detecting obstacles, buildings, road signs, and lanes around the vehicle 10, such as a camera and a sensor such as LiDAR (Light Detection and Ranging).
  • the vehicle 10 may have a plurality of types of sensors (for example, both a camera and LiDAR) as the outside world sensor 32.
  • FIG. 2 is a schematic diagram showing an outline of traveling control executed by the control system 1.
  • a guide line for example, an electric wire through which an alternating current is passed
  • the control system 1 executes the travel control of the vehicle 10 so that the vehicle 10 travels along the guide line 7.
  • the control system 1 tilts the front wheel 15 to the right so that the vehicle 10 turns to the right.
  • the control system 1 calculates the target steering angle ⁇ of the front wheels 15 by the method described in detail below, and executes steering control for tilting the front wheels 15 toward the target steering angle ⁇ .
  • a detection region A1 for detecting the position of the guide line 7 in the left-right direction of the vehicle body is defined along the left-right direction (vehicle width direction) of the vehicle body.
  • the length of the detection area A1 in the left-right direction may correspond to the entire width of the vehicle body.
  • the length of the detection region A1 in the left-right direction may be larger than 70% of the total width of the vehicle body.
  • the guide sensor 31 described above is installed in the detection area A1.
  • the detection region A1 is defined over the right side and the left side with the center in the left-right direction of the vehicle body interposed therebetween.
  • the detection region A1 may be provided, for example, in front of the center of the vehicle 10 in the front-rear direction.
  • a virtual point P is defined behind the detection area A1.
  • the virtual point P is defined as the center position in the left-right direction of the vehicle body.
  • the virtual point P may be defined behind the center of the vehicle 10 in the front-rear direction.
  • the virtual point P may be defined between the tires attached to the left and right rear wheels 16 in the plan view of the vehicle body. That is, the virtual point P may be defined behind the front end of the tire and in front of the rear end of the tire. In the example shown in FIG. 2, the virtual point P overlaps with the axle of the rear wheel 16.
  • the distance between the detection area A1 and the virtual point P is, for example, larger than 30% with respect to the wheelbase (distance between the front wheels and the rear wheels).
  • the distance between the detection area A1 and the virtual point P may be larger than, for example, 50%. Further, the distance between the detection area A1 and the virtual point P may be larger than 70% with respect to the wheelbase.
  • the virtual point P may be arranged behind the axle of the rear wheel 16 or may be arranged behind the vehicle 10.
  • the control system 1 detects the position Q1 of the guide line 7 in the detection area A1. Then, the control system 1 calculates the target steering angle ⁇ of the vehicle 10 based on the virtual point P defined behind the detection region A1 and the position Q1 of the detected guide line 7. The control system 1 calculates the target steering angle ⁇ so that the virtual point P faces the position Q1 of the guide line 7 detected in the detection area A1.
  • the detection of the position Q1 of the guide line 7 in the detection area A1 is performed by using the guide sensor 31.
  • the guide sensor 31 outputs a signal corresponding to the position Q1 of the guide.
  • the guide sensor 31 outputs a signal corresponding to the strength and position of the magnetic field formed by the current flowing through the guide wire 7.
  • the guide sensor 31 may be arranged in the detection area A1.
  • the detection area A1 becomes the detection area of the guide sensor 31, and when the guide sensor 31 arranged in the detection area A1 while the vehicle 10 is traveling passes through the guide (in the present embodiment, the guide line 7), the detection area A signal corresponding to the position of the guide wire 7 in A1 is output by the guide sensor 31.
  • FIG. 3 is a schematic diagram showing an outline of a method for calculating the target steering angle ⁇ .
  • the control system 1 calculates a value for specifying a target turning locus, which is a locus that the virtual point P should pass, based on the detected position Q1 of the guide line 7 and the position of the virtual point P, and uses this value as the value.
  • the target steering angle ⁇ is calculated based on this.
  • the control system 1 measures the deviation width D1 from the center position of the vehicle 10 in the left-right direction to the position Q1 of the guide line 7.
  • the target turning locus which is the locus that the virtual point P should pass by turning the vehicle 10.
  • a specified value is calculated, and the target steering angle ⁇ is calculated based on this value.
  • the "value that specifies the target turning locus” indicates the radius, diameter, curvature, and the like of the turning in the target turning locus.
  • the control system 1 calculates, for example, the target turning radius R, which is the turning radius in the target turning locus, and calculates the target steering angle ⁇ based on the target turning radius R.
  • FIG. 4 is a diagram showing an example of the relationship between the target turning radius R and the target steering angle ⁇ . As shown in FIG. 4, the target steering angle ⁇ decreases as the target turning radius R increases. The target steering angle ⁇ can be calculated by obtaining the target turning radius R.
  • the target steering angle ⁇ may be calculated by a predetermined formula with the target turning radius R as a variable, or data stored in advance in a storage device 11b or the like of the ECU 11 (for example, the target steering angle ⁇ and the target turning). It may be calculated based on (two-dimensional array data) in which the radius R is associated with one-to-one.
  • the target turning radius R becomes smaller as the deviation width D1 of the guide in the left-right direction of the vehicle body becomes larger, for example. Further, the target turning radius R increases as the distance L1 from the detection region A1 to the virtual point P in the front-rear direction of the vehicle 10 increases. Since the distance L1 from the detection area A1 to the virtual point P is known, the target turning radius R can be calculated by measuring the deviation width D1 of the guide in the left-right direction. The target steering angle ⁇ can be calculated based on this target turning radius R.
  • the target turning radius R may be calculated by a predetermined calculation formula having the deviation width D1 and the distance L1 as variables, or data stored in advance in the storage device 11b or the like of the ECU 11 (for example, the target turning radius R). , The deviation width D1 and the distance L1 are associated with each other on a one-to-one-to-one basis (three-dimensional array data).
  • the target turning radius R is calculated by the calculation formula, the deviation width D1 obtained from the output of the guide sensor 31 and the distance L1 corresponding to the position of the virtual point P are substituted into the variables of the calculation formula.
  • the target turning radius R may be obtained.
  • FIG. 5 is a functional block diagram showing an example of a functional configuration implemented in the control system 1 of the vehicle 10.
  • the control system 1 functionally includes a guide position detection unit 110, a target steering angle calculation unit 120, a steering actuator control unit 130, a motor control unit 140, and brake control. It has a unit 150 and an abnormality detecting unit 160.
  • These functions may be realized by the arithmetic unit 11a of the ECU 11 executing a program stored in the storage device 11b. Not limited to this, each function may be realized by executing a program by another arithmetic unit such as MCU 12.
  • the guide position detection unit 110 sets the position Q1 (see FIG. 2) of the guide line 7 in the detection area A1 to the guide sensor 31. Detect based on output.
  • the guide position detection unit 110 detects the position of the guide line 7 at regular time intervals.
  • the guide sensor 31 outputs a signal corresponding to the magnetic field formed by the current flowing through the guide wire 7 which is the guide. Since the position and strength of the magnetic field depend on the position of the guide wire 7, the guide position detection unit 110 determines the distance between the guide wire 7 and the guide sensor 31 in the detection region A1 based on the signal output by the guide sensor 31. Then, the position Q1 of the guide (guide line 7) in the detection area A1 is detected.
  • the guide position detection unit 110 is the position of the guide based on the electromotive force generated in each of the plurality of coils. Calculate Q1.
  • the target steering angle calculation unit 120 has a position of a virtual point P (see FIG. 2) defined behind the detection area A1 and a guide position Q1 in the detection area A1 detected by the guide position detection unit 110.
  • the target steering angle ⁇ of the vehicle 10 is calculated based on the above. More specifically, in the target steering angle calculation unit 120, the locus of the virtual point P (target turning locus) due to the traveling of the vehicle 10 passes through the guide position Q1 in the detection region A1 detected by the guide position detection unit 110.
  • the target steering angle ⁇ is calculated so as to be performed.
  • the target steering angle ⁇ corresponds to the target traveling locus according to the position of the guide Q in the left-right direction of the vehicle 10 and the position of the virtual point P detected based on the output of the guide sensor 31. ..
  • the passage of the target turning locus of the virtual point P through the position Q1 of the guide in the detection region A1 does not necessarily mean that the locus of the virtual point P overlaps the center of the guide line 7, and for example, in a plan view, The target turning locus of the virtual point P may overlap at any position on the upper surface of the guide line 7, or the locus of the virtual point P intersects at least a part of the linearly continuous guide line 7. There may be.
  • the target steering angle calculation unit 120 specifies a target turning locus according to the position Q1 of the guide in the left-right direction of the vehicle 10 in the detection area A1 detected based on the output of the guide sensor 31 and the position of the virtual point P.
  • the target steering angle ⁇ is calculated based on this value.
  • the target steering angle calculation unit 120 calculates, for example, the radius of the target turning radius (the above-mentioned target turning radius R, see FIG. 3) as a value for specifying the target turning locus, and the target steering is based on the target turning radius R. Calculate the angle ⁇ .
  • the target steering angle calculation unit 120 has, for example, a deviation width D1 from the center position of the vehicle 10 in the left-right direction to the position Q1 of the guide, and a distance L1 from the detection region A1 to the virtual point P in the front-rear direction of the vehicle 10. Based on the above, the target turning radius R is calculated. Then, the target steering angle ⁇ is calculated based on the target turning radius R calculated in this way.
  • the target steering angle calculation unit 120 calculates, for example, an angle corresponding to the target turning radius R as a target steering angle ⁇ by using the calculation formula and the two-dimensional array data described with reference to FIG.
  • the steering actuator control unit 130 controls the steering angle (direction of the front wheels 15) by rotating the steering shaft 17a via the actuator (steering actuator) of the steering device 21. Specifically, the steering actuator control unit 130 outputs a command value to the motor drive device 12. The motor drive device 12 supplies electric power according to the command value to the steering actuator to rotate the steering shaft 17a. Further, the steering actuator control unit 130 controls the actual steering angle by outputting to the motor drive device 12 an instruction value corresponding to the target steering angle ⁇ calculated by the target steering angle calculation unit 120.
  • the steering actuator control unit 130 controls the steering angle so that the actual steering angle approaches the target steering angle ⁇ . That is, the steering actuator control unit 130 controls the steering angle so that the virtual point P passes through the guide position Q1.
  • the steering actuator control unit 130 may change the speed of change of the steering angle according to the current vehicle speed.
  • the steering actuator control unit 130 may control the steering angle so that the steering angle changes gently when the vehicle speed is high, for example.
  • the steering actuator control unit 130 may execute feedback control that detects the current steering angle (rotation angle of the steering 17) and corrects the target steering angle ⁇ based on the steering angle. For example, the steering actuator control unit 130 detects the current steering angle based on the output from the angle sensor that detects the rotation angle of the steering shaft. Then, the steering actuator may be controlled based on the difference between the steering angle and the target steering angle ⁇ .
  • the motor control unit 140 controls the vehicle drive motor 22 so that the current vehicle speed approaches the set target vehicle speed.
  • the brake control unit 150 controls the brake device 23 so that the current vehicle speed approaches the set target vehicle speed.
  • the target vehicle speed may be set based on, for example, an RFID reader included in the guide sensor 31 reading information (ID information, etc.) from an RF tag on the road.
  • the motor control unit 140 and the brake control unit 150 execute control for driving the vehicle 10 or decelerating or stopping the traveling vehicle 10 based on the information read from the RF tag.
  • the setting of the target vehicle speed may be realized by executing the program stored in the storage device 11b by the arithmetic unit 11a of the ECU 11.
  • the ECU 11 (arithmetic unit 11a) has, for example, information read from an RF tag on a traveling path by an RFID reader, information obtained from an outside world sensor 32 (camera, etc.), and an operation state for the vehicle 10 (for example, an operation for an accelerator pedal).
  • the target vehicle speed may be reduced.
  • the motor control unit 140 and the brake control unit 150 execute control for suppressing the speed of the vehicle 10.
  • the abnormality detection unit 160 detects an abnormality that has occurred in the vehicle 10 based on the states of various mechanisms and devices mounted on the vehicle 10, the detection results of various sensors, and the like.
  • the abnormality detection unit 160 may detect, for example, a situation in which the guide (in the present embodiment, the guide wire 7) is not detected in the detection area A1 as an abnormality.
  • the target steering angle ⁇ calculated by the target steering angle calculation unit 120 exceeds the threshold value (the target turning radius R is less than the minimum turning radius defined for the vehicle 10), the abnormality detecting unit 160 is used. ), Or when the remaining amount of the battery that supplies electric power to the vehicle drive motor 22 is less than the threshold value, it may be determined as abnormal.
  • the abnormality detection unit 160 may detect a situation in which the next marker is not detected after the latest marker is detected and the vehicle travels a predetermined distance as an abnormality.
  • the motor control unit 140 and the brake control unit 150 execute control to stop the running of the vehicle 10. More specifically, when the target vehicle speed is set to zero, the motor control unit 140 stops driving the motor for driving the vehicle 10, and the brake control unit 150 stops the vehicle 10 as a brake device. The braking force of the vehicle 10 is applied to the 23.
  • FIG. 6 is a flow chart showing an example of the automatic traveling process executed by the control system 1.
  • FIG. 7 is a flow chart showing an example of steering angle control processing executed by the control system 1 (particularly, the target steering angle calculation unit 120 and the steering actuator control unit 130).
  • the control system 1 determines whether or not the guide (in the present embodiment, the guide line 7) is detected in the detection area A1 (step S101).
  • the determination in step S101 is performed based on the guide position Q1 detected by the guide position detection unit 110.
  • the control system 1 executes the steering angle control process shown in FIG. 7 (step S102).
  • the target steering angle calculation unit 120 measures the deviation width D1 in the left-right direction between the center position in the detection region A1 and the guide position Q1 (step S111). Then, the target steering angle calculation unit 120 calculates the target steering angle ⁇ based on the distance L1 in the front-rear direction of the vehicle 10 from the detection region A1 to the virtual point P and the deviation width D1 measured in step S111. Step S112). As described above, the target steering angle calculation unit 120 calculates, for example, a value (target turning radius R) that specifies the target turning locus according to the detected guide position Q1 and the position of the virtual point P. The target steering angle ⁇ is calculated based on this value.
  • a value target turning radius R
  • the steering actuator control unit 130 controls the steering angle so that the actual steering angle approaches the target steering angle ⁇ (step S113). As a result, the steering angle is controlled so that the locus of the virtual point P approaches the position Q1 of the guide.
  • step S103 when the abnormality detecting unit 160 detects an abnormality in the vehicle 10 (Yes in step S103), the motor control unit 140 and the brake control unit 150 execute control to stop the traveling of the vehicle 10 (step S104). ), End the automatic driving process.
  • step S103 for example, when the guide line 7 is not detected in step S101, when the guide line 7 is not detected and the vehicle travels a predetermined distance, or when the target steering angle ⁇ calculated in step S112 exceeds the threshold value. (When trying to make a sharp turn) may be determined as abnormal.
  • the control system 1 repeats the determination process of whether or not the induction wire 7 in step S101 is detected. In this way, the control system 1 sequentially executes the control of the steering angle according to the position Q1 of the guide and the virtual point P in the detection area A1 until the abnormality of the vehicle 10 is detected.
  • the control system 1 may read the information recorded on the RF tag embedded in the intersection or the like by the RFID reader of the guide sensor 31. Then, the motor control unit 140 and the brake control unit 150 may control the vehicle drive motor 22 and the brake device 23 according to the information recorded in the RF tag.
  • FIG. 8A and 8B are schematic views showing the posture of the vehicle 10 when the vehicle 10 travels along the guide (in this embodiment, the guide line 7).
  • FIG. 8A shows a case where the vehicle 10 has traveled by the conventional travel control
  • FIG. 8B shows a case where the vehicle 10 has traveled by the travel control by the control system 1.
  • FIG. 8A when the traveling control is performed so that the central position in the region of the guide sensor 31 arranged along the left-right direction passes through the guide line 7, due to the difference in the inner ring of the vehicle 10, The rear wheel 16 approaches an obstacle on the shoulder of the road. Therefore, the guide line 7 needs to be defined in the traveling path in consideration of such an inner ring difference.
  • a virtual point P is defined behind the detection area A1 which is the detection area of the guide sensor 31, and this virtual point P is the induction power 7. It is controlled to pass over. This makes it easy to secure a distance between the rear wheel 16 and an obstacle on the shoulder of the road. Further, by arranging the virtual point P between the left and right rear wheels 16, the locus of the rear wheels 16 can be made more appropriate.
  • the guide line 7 is embedded along the traveling path as a guide defined on the traveling path.
  • the guide is not limited to this, and may be a plurality of markers embedded in the traveling path to generate a magnetic field, an electromagnetic wave, or the like.
  • an example (second embodiment) of the embodiment when the marker is used as a guide will be described. Since the hardware configuration in this embodiment is the same as that in the first embodiment, the description thereof will be omitted.
  • FIG. 9 is a schematic diagram showing an outline of the traveling control executed in the present embodiment.
  • a plurality of markers 8 are arranged at intervals along the traveling path.
  • the marker 8 is, for example, a magnetic marker such as a magnet embedded in a traveling path. Not limited to this, the marker 8 may output an electromagnetic wave.
  • the detection region A1 along the left-right direction of the vehicle 10 is defined, and the guide sensor 31 is arranged inside the detection region A1.
  • the guide sensor 31 outputs a signal corresponding to the strength and position of the magnetic field formed by the marker 8 that has reached the detection region A1, that is, a signal corresponding to the position Q1 of the guide.
  • the control system 1 detects the position Q1 of the guide in the detection area A1 based on the signal output from the guide sensor 31. Then, the control system 1 controls the steering device 21 so that the virtual point P passes through the detected marker 8. That is, the control system 1 calculates the target steering angle ⁇ so that the virtual point P passes through the detected marker 8.
  • the position of the virtual point P may be changed according to the driving situation of the vehicle 10.
  • the driving state may be the driving state of the vehicle 10 itself (for example, the vehicle speed) or the environment in which the vehicle 10 is traveling (for example, the state of the traveling path).
  • the environment in which the vehicle 10 is traveling can be detected from the information obtained from the outside world sensor 32 and the information obtained from the RFID reader included in the guide sensor 31.
  • FIG. 10A to 10D are schematic views showing an outline of traveling control when the position of the virtual point P is changed in the left-right direction of the vehicle body.
  • the control system 1 shifts the position of the virtual point P to the position P2 away from the initial position P1 (to the left in FIG. 11A). change. By doing so, it is possible to turn the vehicle 10 to the right.
  • the vehicle turns to the right from the position of the vehicle 10 shown in FIG. 10A, and then, as shown in FIG. 10B, the position Q1 of the guide (marker 8) is detected at the left end portion of the detection area A1.
  • the control system 1 starts controlling the steering angle based on the position Q1 of the guide in the detection area A1 and the position of the virtual point P.
  • the vehicle 10 since the guide position Q1 is located to the left of the vehicle 10 with respect to the virtual point P, the vehicle 10 turns slightly to the left.
  • FIG. 10C as in FIG. 10B, the vehicle 10 turns slightly to the left, and in FIG. 10D, the steering angle of the vehicle 10 causes the vehicle 10 to go straight. By doing so, the vehicle 10 can travel on the traveling route while avoiding obstacles.
  • the position of the virtual point P may be changed according to various driving conditions of the vehicle 10, not limited to the appearance of the obstacle O.
  • the position of the virtual point P may be changed to a position to the right of the center position in the left-right direction when the vehicle 10 turns right, or the virtual point P may be changed to a position to the left of the center position when the vehicle 10 turns left.
  • You may. Whether the traveling route of the vehicle 10 will make a left turn or a right turn is determined by, for example, the information (ID information) of the RF tag arranged immediately before the point where the RFID reader included in the guide sensor 31 starts the left turn or the right turn. Etc.), and can be determined by analyzing the image acquired by the camera.
  • FIG. 10E is a schematic diagram showing an outline of a method of calculating the target steering angle ⁇ when the position of the virtual point P is changed in the left-right direction, and corresponds to FIG. 10A described above.
  • the control system 1 measures the deviation width D1 from the center position of the vehicle 10 to the guide position Q1 in the left-right direction. Then, the control system 1 virtualizes the deviation width D1, the change width ⁇ D from the position P1 of the virtual point P before the movement to the position P2 of the virtual point P after the movement, and the detection area A1 in the front-rear direction of the vehicle 10.
  • the target turning radius R which is the radius of the turning that the virtual point P should pass, is calculated, and the target steering angle ⁇ is calculated based on this value.
  • the target turning radius R may be calculated by a predetermined calculation formula having a deviation width D1, a change width ⁇ D, and a distance L1 as variables, or data stored in advance in a storage device 11b of the ECU 11 or the like ( For example, it may be calculated based on the target turning radius R, the sum of the deviation width D1 and the change width ⁇ D (D1 + ⁇ D), and the three-dimensional array data in which the distance L1 is associated with each other on a one-to-one-to-one basis.
  • the target turning radius R is calculated by the calculation formula, the deviation width D1 and the change width ⁇ D obtained from the output of the guide sensor 31 and the distance L1 according to the position of the virtual point P are substituted into the variables of the calculation formula. By doing so, the target turning radius R may be obtained.
  • the movement of the virtual point P is not limited to the left-right direction (vehicle width direction), but may be performed in the front-rear direction of the vehicle 10.
  • the position of the virtual point P may be changed in the front-rear direction of the vehicle 10 according to the vehicle speed. Specifically, when the vehicle speed is higher than the threshold value, the position of the virtual point P may be moved to the rear of the reference position (for example, the position between the left and right rear wheels 16). By doing so, the target steering angle ⁇ becomes small, and the ride quality can be improved.
  • FIG. 11A is a schematic diagram showing an outline of traveling control when the position of the virtual point P is changed in the front-rear direction of the vehicle 10.
  • the target turning radius R of the vehicle 10 becomes large, and the vehicle 10 turns gently in the left-right direction. Become. That is, the rolling of the vehicle 10 is suppressed, and the riding comfort is improved.
  • the position of the virtual point P may be moved to the front of the reference position. For example, when the road width of the traveling path is narrow, the position of the virtual point P may be moved ahead of the reference position. By doing so, the target turning radius R of the vehicle 10 becomes small, and the followability of the virtual point P to the change in the position of the guide in the left-right direction is improved. As a result, it is possible to effectively prevent the vehicle body from protruding from the narrow road width of the travel path.
  • FIG. 11B is a schematic diagram showing an outline of a method of calculating the target steering angle ⁇ when the position of the virtual point P is changed in the front-rear direction of the vehicle 10.
  • the control system 1 measures the deviation width D1 from the center position of the vehicle 10 to the guide position Q1 in the left-right direction. Then, the control system 1 has this deviation width D1, the distance L1 from the detection area A1 in the front-rear direction of the vehicle 10 to the virtual point P before the change, and the virtual point after the change from the position P1 of the virtual point P before the change.
  • the target turning radius R which is the radius of turning that the changed virtual point P should pass through, is calculated, and the target steering angle ⁇ is calculated based on this value.
  • the calculation of the target turning radius R in this case may be calculated by a predetermined calculation formula having the deviation width D1, the distance L1 and the change distance ⁇ L as variables, or may be stored in advance in the storage device 11b of the ECU 11. Calculated based on the data (for example, the target turning radius R, the deviation width D1, and the three-dimensional array data in which the sum (L1 + ⁇ L) of the distance L1 and the changed distance ⁇ L is associated with each other on a one-to-one-to-one basis). May be good.
  • the target turning radius R is calculated by the calculation formula, the target turning radius is substituted by substituting the deviation width D1 obtained from the output of the guide sensor 31, the distance L1 and the change distance ⁇ L into the variables of the calculation formula. R may be obtained.
  • FIG. 12 is a functional block diagram showing an example of a functional configuration implemented in the control system 1 of the present embodiment.
  • the guide position detection unit 110 is not the guide line 7, but the marker 8 and the guide sensor 31 in the detection region A1 based on the output of the signal emitted from the guide sensor 31 in response to the magnetic field of the marker 8. The distance is determined, and the position Q1 of the guide (marker 8) in the detection area A1 is detected. Further, in the present embodiment, as shown in FIG. 12, the virtual point position changing unit 210 is added as a function of the control system 1.
  • the virtual point position changing unit 210 may be realized by the arithmetic unit 11a of the ECU 11 executing a program stored in the storage device 11b, or by another arithmetic unit (MCU12 or the like) executing the program. It may be realized.
  • the virtual point position changing unit 210 changes the position of the virtual point P according to the driving situation of the vehicle 10. More specifically, as described with reference to FIGS. 10A to 10E, 11A, and 11B, the virtual point position changing unit 210 is used in the left-right direction of the vehicle body (vehicle) according to the driving condition of the vehicle 10. The position of the virtual point P is changed in the width direction) or the front-back direction. The "change" here may be performed by selecting a virtual point P according to the driving situation from a plurality of predetermined virtual point P candidates having different positions from each other, or the driving situation of the vehicle 10. The virtual point P may be moved in a direction (rightward, leftward, forwardward, or backwardward) and a distance according to the above. The virtual point position changing unit 210 may move the virtual point P to the outside of the vehicle 10 (to the right, to the left, or to the rear of the vehicle 10).
  • the virtual point position changing unit 210 may change the changing distance of the virtual point P based on the vehicle speed of the vehicle 10. For example, when the vehicle speed is relatively high, the change distance of the virtual point P may be reduced in the left-right direction. By doing so, if the virtual point P is largely moved in the left-right direction, the rolling motion also increases, so that the rolling motion of the vehicle body can be suppressed.
  • the target steering angle calculation unit 120 has the position of the virtual point P defined behind the detection area A1 and the marker 8 (marker 8 in the detection area A1 detected by the guide position detection unit 110).
  • the target steering angle ⁇ of the vehicle 10 is calculated based on the position Q1 of the guide). More specifically, in the target steering angle calculation unit 120, the locus of the virtual point P (target turning locus) due to the traveling of the vehicle 10 passes through the position Q1 of the marker 8 detected by the guide position detection unit 110. Calculate the target steering angle ⁇ .
  • the target steering angle calculation unit 120 first calculates a value (for example, a target turning radius R) that specifies a target turning locus according to the position Q1 of the guide and the position of the virtual point P, and the target steering is based on this value.
  • the angle ⁇ may be calculated.
  • the target steering angle calculation unit 120 uses the target steering angle ⁇ based on the position of the virtual point P changed by the virtual point position changing unit 210. Is calculated.
  • the target steering angle calculation unit 120 has, for example, a target turning radius based on the position of the virtual point P changed by the virtual point position changing unit 210 and the position Q1 of the marker 8 detected based on the output of the guide sensor 31. R is calculated, and the target steering angle ⁇ is calculated based on the calculated target turning radius R.
  • the steering actuator control unit 130 controls the steering angle so that the actual steering angle approaches the target steering angle ⁇ . That is, the steering actuator control unit 130 controls the steering angle so that the virtual point P passes the position Q1 of the guide (marker 8).
  • the virtual point P passes through the guide position Q1 is not necessarily limited to the locus of the virtual point P overlapping the center of the marker 8 in a plan view, and any of the above surfaces of the marker 8 is used. The locus of the virtual point P may overlap with the position.
  • the steering actuator control unit 130 may execute feedback control. For example, feedback control may be executed between the detection of the marker 8 (described as the marker 82) in which the detection area A1 is located and the detection of the next marker 8 (described as the marker 81). For example, the rotation angle (actual steering angle) of the steering shaft 17a is detected by the rotation angle sensor between the detection of the marker 82 having the detection area A1 and the detection of the next marker 81. The locus of the virtual point P is calculated from the actual steering angle and the current position of the virtual point P. Then, it is determined whether or not the locus passes through the marker 81.
  • feedback control may be executed between the detection of the marker 8 (described as the marker 82) in which the detection area A1 is located and the detection of the next marker 8 (described as the marker 81).
  • the rotation angle (actual steering angle) of the steering shaft 17a is detected by the rotation angle sensor between the detection of the marker 82 having the detection area A1 and the detection of the next marker 81.
  • the target steering angle may be corrected based on the difference between the calculated locus of the virtual point P and the marker 81.
  • the target steering angle ⁇ is corrected based on the difference (deviation width) between the locus of the virtual point P and the marker 81 (target steering).
  • the angle ⁇ may be increased by a correction amount corresponding to the deviation width), and the locus of the virtual point P may be brought closer to the marker 81.
  • steering The actuator control unit 130 may perform such feedback control at regular time intervals.
  • FIG. 13 is a flow chart showing an example of the automatic traveling process executed in the present embodiment.
  • FIG. 14A is a flow chart showing an example of the steering angle control process executed in the present embodiment.
  • FIG. 14B is a flow chart showing another example of the steering angle control process.
  • the control system 1 determines whether or not the position of the virtual point P needs to be changed based on the driving condition of the vehicle 10 (step S201).
  • the control system 1 detects, for example, that the external sensor 32 (for example, a camera) detects an obstacle, or that the traveling route is about to make a left turn or a right turn through the RFID reader included in the guide sensor 31. It is determined that the position of the virtual point P needs to be changed in the left-right direction (vehicle width direction) of the vehicle 10.
  • the control system 1 determines that the position of the virtual point P needs to be changed in the front-rear direction when the vehicle speed of the vehicle 10 or the road width of the traveling path changes.
  • the virtual point position changing unit 210 shifts the position of the virtual point P left and right according to the driving condition. The change is made in the direction or the front-back direction (step S202).
  • the guide position detection unit 110 determines whether or not the guide (marker 8 in the present embodiment) is detected in the detection area A1 (step S203). When it is determined that the guide is detected in the detection area A1 (Yes in step S203), the control system 1 executes the steering angle control process in FIG. 14 (step S204).
  • the target steering angle calculation unit 120 measures the deviation width D1 in the left-right direction between the center position in the detection region A1 and the guide position Q1 (step S211). Further, the target steering angle calculation unit 120 acquires a change width ⁇ D (see FIG. 10B) between the initial position P1 of the virtual point P and the position P2 changed in the left-right direction (step S212). If the virtual point P has not been changed in the left-right direction, the change width ⁇ D may be 0. Further, the target steering angle calculation unit 120 is from the initial position P1 of the virtual point P. The change distance ⁇ L (see FIG. 11B) to the changed position P3 in the front-rear direction is acquired (step S213).
  • the change distance ⁇ L may be 0.
  • the target steering angle calculation unit 120 is based on the deviation width D1, the change width ⁇ D, the distance L1 in the front-rear direction of the vehicle 10 from the detection area A1 to the virtual point P before the change, and the change distance ⁇ L. Calculate ⁇ (step S214). Then, the steering actuator control unit 130 controls the steering angle so that the actual steering angle approaches the target steering angle ⁇ (step S115).
  • step S205 when the abnormality detecting unit 160 detects an abnormality in the vehicle 10 (Yes in step S205), the motor control unit 140 and the brake control unit 150 execute control to stop the traveling of the vehicle 10 (step S206). ), End the automatic driving process.
  • step S203 for example, when the guide (marker 8 in the present embodiment) is not detected in step S201 and the vehicle travels a predetermined distance, it may be determined that an abnormality has been detected.
  • the change of the virtual point P is not limited to the example explained here.
  • the virtual point P may be changed only in the left-right direction or the front-back direction, and the virtual point P may be changed in both the left-right direction and the front-back direction. That is, the virtual point P may be changeable in an oblique direction from the initial position.
  • the control system 1 may read the information recorded on the RF tag embedded in the intersection or the like by the RFID reader of the guide sensor 31 while traveling. Then, the motor control unit 140 and the brake control unit 150 may control the vehicle drive motor 22 and the brake device 23 according to the information recorded in the RF tag.
  • the marker 8 is adopted instead of the guide line 7 as a guide for defining the traveling route. Even in such a case, the distance between the rear wheel 16 and the obstacle on the shoulder is secured by the virtual point P provided behind the detection area A1 passing through the marker 8 detected in the detection area A1. It will be easier to do. Further, by arranging the virtual point P between the left and right rear wheels 16, the locus of the rear wheels 16 can be made more appropriate.
  • the position of the virtual point P is changed in the left-right direction (vehicle width direction) or the front-rear direction of the vehicle body according to the driving condition of the vehicle 10.
  • the position of the virtual point P in the left-right direction it is possible to turn the vehicle 10 on the optimum trajectory when it is necessary to avoid obstacles or when it is necessary to turn left or right. can.
  • the position of the virtual point P in the front-rear direction of the vehicle 10 for example, steering suitable for the vehicle speed and steering suitable for the road width become possible.
  • the vehicle 10 may have a first guide sensor 31A and a second guide sensor 31B.
  • the first guide sensor 31A is the same as the guide sensor 31 described in the second embodiment.
  • the second guide sensor 31B is a sensor provided separately from the first guide sensor 31A, and is arranged behind the first guide sensor 31A in the vehicle 10. That is, the detection area A2 of the second guide sensor 31B is defined at a position behind the detection area A1 along the left-right direction of the vehicle 10.
  • the detection area A2 is defined over the right side and the left side with the center in the left-right direction of the vehicle body interposed therebetween.
  • the detection region A2 is located behind the center of the vehicle 10 in the front-rear direction.
  • the detection area A2 is arranged at the same position as the virtual point P in the front-rear direction.
  • the second guide sensor 31B when the detection area A2 passes through the marker 82 while the vehicle 10 is traveling, the second guide sensor 31B outputs a signal corresponding to the position Q2 of the marker 82.
  • the second guide sensor 31B is the same sensor as the first guide sensor 31A, and outputs a signal corresponding to the position of the magnetic field (position of the marker 8) emitted from the marker 8.
  • the second guide sensor 31B may have a plurality of coils arranged in the left-right direction.
  • the target steering angle calculation unit 120 corrects the target steering angle ⁇ of the vehicle 10 based on the position of the marker 8 detected in the detection area A2 and the position of the virtual point P.
  • the target steering angle calculation unit 120 measures, for example, the deviation width between the virtual point P in the left-right direction and the position of the mark 82 in the detection area A2, and determines the target steering angle ⁇ based on this deviation width. to correct.
  • Such correction may be performed when the detection area A1 of the first guide sensor 31A is located between two adjacent markers 8 (between markers 80 and 82 in FIG. 15).
  • the target steering angle ⁇ 1 is calculated based on the position of the marker 81 and the position of the virtual point P at that time, and the actual steering angle ⁇ 1 is calculated.
  • the steering device 21 is controlled so that the steering angle becomes the target steering angle ⁇ 1.
  • the target steering angle calculation unit 120 corrects the previously calculated target steering angle ⁇ 1 based on this deviation width.
  • the target steering angle calculation unit 120 corrects the target steering angle ⁇ 1 so that the virtual point P passes through the marker 81, for example. Unlike this, the target steering angle calculation unit 120 may increase or decrease the target steering angle ⁇ 1 by an angle according to the deviation width.
  • a calculation formula for performing such a calculation (a formula showing the relationship between the deviation width, the target steering angle ⁇ 1 and the corrected target steering angle) may be stored in the storage device 11b.
  • the position Q1 of the marker 8 (in other words, the deviation width D1) is detected when the position Q1 of the marker 8 (guide) in the detection area A1 is detected.
  • the target steering angle ⁇ is calculated based on (deviation width D1) and the distance L1 (FIGS. 10B and 11B) from the detection area A1 to the virtual point P, and control for bringing the steering angle closer to this target steering angle ⁇ is started. Rudder. Unlike this, the target steering angle ⁇ according to the relative position between the position at the time after the marker 8 and the virtual point P at the time after the time when the position Q1 of the marker 8 in the detection area A1 is detected.
  • the position of the marker 8 becomes the marker 8 closest to the virtual point when the marker 8 whose position is detected in the detection area A1 becomes the marker 8. It may be calculated based on the deviation width of the above and the distance between the marker 8 closest to the virtual point P and the virtual point P in the front-rear direction.
  • FIG. 16A and 16B are schematic views showing an outline of the traveling control executed in the present embodiment.
  • a plurality of markers 8 for example, magnetic markers
  • these positions are set as virtual points.
  • the traveling control of the vehicle 10 is performed so that P follows.
  • the first guide sensor 31A also outputs a signal according to the position of the guide in the detection area A1. Based on this signal, the control system 1 detects the position Q1 of the marker 8. In the example shown in FIG. 16A, the position Q1 of the marker 8 (referred to as the marker 81) that has reached the detection area A1 is detected. In an example of the control system, at the time when the position Q1 of the marker 81 is detected (the time shown in FIG. 16A; hereinafter referred to as the first time point), the position Q1 of the marker 81 and the virtual point P from the detection area A1.
  • the target steering angle ⁇ is calculated based on the distance L1 to, and the actual steering angle (direction of the front wheel 15) is controlled so that the virtual point P approaches the target steering angle ⁇ .
  • the marker 8 located between the marker 81 and the virtual point P at the first time point (for example, the marker 8 arranged immediately before the marker 81; hereinafter referred to as the marker 82). ) May not pass through the virtual point P.
  • the marker 82 near the virtual point P is located in front of the virtual point P, while the position Q1 of the marker 81 in front of the marker 82 is the position Q1 of the vehicle 10.
  • the target steering angle is calculated based on the distance L1 from the detection area A1 to the virtual point P and the position Q1 of the marker 81, and the steering angle is set to this target steering angle.
  • the virtual point P When moved toward, the virtual point P will pass on the right side of the marker 82.
  • the target steering angle ⁇ ( ⁇ 0, FIG. 16A) based on the position of the marker 8 (for example, the marker 82) detected before that time point.
  • the target steering angle ⁇ ( ⁇ 1) is calculated based on the relative position between the position Q1 of the marker 81 detected in the detection area A1 and the virtual point P.
  • the second time point is a time point when the virtual point P is closer to the marker 81 than the first time point.
  • An example of the second time point is a time point when the vehicle 10 has advanced by a predetermined distance from the position at the first time point.
  • Another example of the second time point is the time when the virtual point P arrives at the marker 82 immediately before the marker 81.
  • the second time point may be a time point when a predetermined time has elapsed from the first time point.
  • the predetermined time may be, for example, a fixed time or a time changed according to the vehicle speed.
  • the relative positions at the second time point shown in FIG. 16B are the position Q1 of the marker 81 detected in the detection area A1 (the deviation width D1 of the marker 81 detected at the first time point shown in FIG. 16A) and the virtual point P. It can be calculated based on the position and the direction and distance (in other words, the locus of the virtual point P) that the vehicle 10 has traveled from the first time point to the second time point. More specifically, the target steering angle ⁇ ( ⁇ 1) shown in FIG. 16B can be calculated based on, for example, the following four elements. (I) Position Q1 of the marker 81 detected at the first time point shown in FIG.
  • the distance L2 (L1- ⁇ L) between the virtual point P and the marker 81 in the front-rear direction of the vehicle body and the deviation width D2 (D1- ⁇ D) between the virtual point P and the marker 81 in the left-right direction of the vehicle body are set.
  • the target steering angle ⁇ ( ⁇ 1) can be calculated based on this.
  • the target steering angle ⁇ ( ⁇ 1) here can also be obtained by calculating the target turning radius R.
  • the target turning radius R may be calculated by, for example, a predetermined calculation formula having the deviation width D2 and the distance L2 as variables, or data stored in advance in the storage device 11b of the ECU 11 (for example, the target turning). It may be calculated based on the three-dimensional array data in which the radius R, the deviation width D2, and the distance L2 are associated with each other on a one-to-one-to-one basis.
  • the target steering angle ⁇ is not only the position of the virtual point P and the position Q1 of the marker 81 detected in the detection area A1 at the first time point shown in FIG. 16A, but also at the first time point. It may be calculated based on the position of the previously detected marker 8 (eg, marker 82: see FIG. 16A). For example, the position of the marker 82 detected in the detection area A1 is stored in the storage device 11b of the ECU 11, and based on this position, the position Q1 of the marker 81 detected thereafter, and the position of the virtual point P, the position is stored. The target steering angle ⁇ may be calculated.
  • the position of the marker 8 (marker 82 or the like) detected before the marker 81 is detected in the calculation of the target steering angle ⁇ . For example, when a predetermined time has not passed since the position of the marker 82 was detected, or when the virtual point P has not passed the marker 82 (the mileage of the vehicle 10 after the position of the marker 82 is detected is the threshold value). In the following cases), it can be determined that the position of the marker 82 may be used for calculating the target steering angle ⁇ . Also in this way, the target steering angle ⁇ can be calculated so that the virtual point P passes through both the marker 82 and the marker 81. The target steering angle ⁇ may change until the virtual point P reaches the marker 81.
  • FIG. 17 is a functional block diagram showing an example of a functional configuration implemented in the control system 1 of the present embodiment.
  • the guide position storage unit 310 is added as a function of the control system 1.
  • the guide position storage unit 310 may be realized by, for example, the storage device 11b of the ECU 11.
  • the guide position storage unit 310 stores the value of the marker 8 detected by the guide position detection unit 110 at the first time point according to the position Q1 of the marker 8.
  • the value corresponding to the position Q1 of the marker 8 is, for example, the deviation width D1 between the center position of the detection area A1 and the position Q1 of the guide.
  • the guide position storage unit 310 may store information (coordinate information or the like) indicating the guide position Q1 as a value corresponding to the guide position Q1.
  • the target steering angle calculation unit 120 acquires a value (for example, a deviation width D1) corresponding to the position Q1 of the marker 8 from those stored in the guide position storage unit 310 at the second time point after the first time point. Then, the target steering angle ⁇ is calculated based on the relative position between the position of the marker 8 detected at the first time point at the second time point and the virtual point P.
  • the second time point is a time point when the virtual point P is closer to the marker 81 than the first time point.
  • An example of the second time point is the time point when the marker closest to the virtual point P becomes the marker 81.
  • the second time point may be a time point when a predetermined time has elapsed from the first time point.
  • the predetermined time may be, for example, a fixed time or a time changed according to the vehicle speed.
  • the target steering angle calculation unit 120 calculates the target turning radius R based on, for example, the above-mentioned four elements (i) to (iv), and calculates the target steering angle ⁇ ( ⁇ 1) based on the target turning radius R. do. Then, at the second time point, the steering actuator control unit 130 starts controlling the steering device 21 so that the steering angle changes toward the target steering angle ⁇ .
  • FIG. 18 is a flow chart showing an example of the automatic traveling process executed in the present embodiment.
  • FIG. 19 is a flow chart showing an example of the steering angle control process executed in the present embodiment.
  • the control system 1 determines whether or not the position Q1 of the marker 8 is detected in the detection area A1 of the first guide sensor 31A (step S301).
  • the control system 1 sets the center position of the detection area A1 and the position of the guide in the left-right direction as a value indicating the position Q1 of the marker 8 in the detection area A1.
  • the deviation width D1 from Q1 is stored in the guide position storage unit 310 (step S302).
  • the time point at which the position Q1 of the marker 8 is detected in the detection area A1 is the above-mentioned first time point.
  • the control system 1 determines whether or not the timing for controlling the steering angle using the position of the marker 8 stored in the guide position storage unit 310 has arrived (step S303). That is, the control system 1 determines whether or not the second time point has arrived. In the control system 1, for example, when a predetermined time has elapsed from the first time point (Yes in step S301) when the marker 8 is detected by the first guide sensor 31A, or when the vehicle 10 has traveled a predetermined distance from the first time point. In this case, it is determined that the timing for controlling the steering angle (second time point) has arrived. The second time point may be the time point when the marker closest to the virtual point P becomes the marker 8 stored in the guide position storage unit 310. When it is determined that the timing for controlling the steering angle has arrived (Yes in step S303), the control system 1 executes the steering angle control process shown in FIG. 19 (step S304).
  • the control system 1 acquires the deviation width D1 from those stored in the guide position storage unit 310 in step S302 (step S311). Further, the control system 1 calculates the direction and distance (trajectory of the virtual point P) that the vehicle 10 has traveled from the first time point when the marker 8 is detected by the first guide sensor 31A to the present (step S312). In step S312, for example, the distance ⁇ D (FIG. 16B) in which the vehicle 10 has moved in the left-right direction and the distance ⁇ L (FIG. 16B) in which the vehicle 10 has moved in the front-rear direction are calculated.
  • the target steering angle calculation unit 120 is based on the deviation width D1, the distance L1 from the detection area A1 to the virtual point P, and the direction and distance (trajectory of the virtual point P) that the vehicle 10 measured in step S312 has traveled. ,
  • the target steering angle ⁇ is calculated (step S313).
  • the target steering angle calculation unit 120 is, for example, based on the value D2 obtained by subtracting the distance ⁇ D from the deviation width D1 and the value L2 obtained by subtracting the distance ⁇ L from the distance L1, that is, the second marker 8 detected at the first time point.
  • the target steering angle ⁇ is calculated based on the relative position between the position at the time point 2 and the virtual point P.
  • the steering actuator control unit 130 controls the steering angle so that the actual steering angle approaches the target steering angle ⁇ calculated in step S313 (step S314).
  • the steering angle (direction of the front wheel 15) becomes the target steering angle ⁇ based on the position Q1 of the marker 8. ) Can be started.
  • step S305 when an abnormality in the vehicle 10 is detected (Yes in step S305), the control for stopping the running of the vehicle 10 is executed (step S306), and the automatic running process is terminated.
  • step S305 for example, when the marker 8 travels a predetermined distance without being detected by the first guide sensor 31A, it may be determined that an abnormality has been detected.
  • the position of the marker 8 and the virtual point P are relative to each other at the second time point after the first time point when the first guide sensor 31A detects the guide (marker 8).
  • the target steering angle ⁇ based on the position is calculated.
  • the present invention is not limited to the embodiments described above, and various modifications may be made.
  • a sensor for detecting magnetism or electromagnetic waves is used as the guide sensor 31 (first guide sensor 31A, second guide sensor 31B) has been described, but the detection of the guide positions Q1 and Q2 is performed. This may be done by using various sensors.
  • the position Q1 of the marker 8 may be detected by reading the information (ID information, etc.) of the RF tag embedded in the traveling path as a guide with an RFID reader. That is, the RF tag may be used as the marker 8.
  • the RFID reader which is the guide sensor 31
  • the RFID reader may measure the signal strength of the RF tag.
  • the guide position detection unit 110 may determine the distance between the guide sensor 31 and the RF tag based on the signal strength of the RF tag measured by the RFID reader, and detect the position Q1 of the marker 8 in the detection area A1. ..
  • the guide sensor 31 may have a plurality of RFID readers arranged in the left-right direction in the detection area A1.
  • the guide position detection unit 110 may calculate the position Q1 of the marker 8 based on the signal strength of the RF tag detected by each of the plurality of RFID readers.
  • the target steering angle ⁇ is calculated based on the relative position between the RF tag embedded in the traveling path and the RFID reader mounted on the vehicle 10, and the target steering angle is calculated. It is possible to control the actual steering angle based on ⁇ and information such as turning left and right read from the RF tag.
  • the guide may be a plurality of points (waypoints, coordinates) indicating a traveling route defined in the three-dimensional map or the two-dimensional map recorded in the storage device 11b of the ECU 11.
  • the control system 1 acquires the current position of the vehicle 10 from the data acquired by the external sensor 31 (for example, LiDAR), and detects when the waypoint passes through the detection region A1 defined in the vehicle 10.
  • the passing position of the waypoint in the area A1 (distance from the center in the left-right direction of the vehicle body to the waypoint) is calculated, and the target steering is performed based on the passing position of the waypoint and the position of the virtual point P in the detection area A1.
  • the angle ⁇ may be calculated. That is, the target steering angle ⁇ may be calculated so that the virtual point P defined behind the detection area A1 passes through the waypoint.
  • the position of the virtual point P may be changed in the left-right direction of the vehicle body and / or in the front-rear direction of the vehicle body.
  • the second guide sensor 31B may be attached behind the guide sensor 31. Then, based on the position of the guide in the detection area A2 of the second guide sensor 31B, the position of the guide in the detection area A1 of the guide sensor 31 (first guide sensor 31A), and the position of the virtual point P, the vehicle 10 The steering angle may be controlled.
  • the position of the virtual point P does not necessarily have to be changed.
  • the target steering angle ⁇ is based on the position of the marker 8 (the deviation width D1 from the center position in the left-right direction of the vehicle body to the marker 8) and the distance L1 in the front-rear direction from the detection area A1 to the virtual point P. It is calculated (hereinafter referred to as the first calculation process).
  • the marker 81 is at a second time point (time point of FIG. 16B) after the first time point (time point of FIG. 16A) when the position Q1 of the marker 81 is detected in the detection area A1.
  • the target steering angle ⁇ is calculated based on the relative position between the position at the second time point and the virtual point P (second calculation process).
  • the travel control system 1 is mounted on the vehicle 10 traveling along the guide defined in the travel path.
  • the travel control system 1 detects when the guide sensor 31 that outputs a signal according to the position of the guide and the detection region A1 defined on the vehicle body along the left-right direction of the vehicle body passes through the guide while the vehicle 10 is traveling.
  • the guide position detection unit 110 that detects the position of the guide in the area A1 based on the output of the guide sensor 31, the virtual point P defined behind the detection area A1, and the detection detected by the guide position detection unit 110. It has a target steering angle calculation unit 120 that calculates a target steering angle ⁇ of the vehicle 10 based on the position of the guide in the region A1.
  • a guide wire 7 such as an electric wire
  • a marker 8 such as a magnetic marker or an RF tag
  • a magnetic sensor, an RF-ID reader, and LiDAR can be used as the guide sensor 31. According to this system, when the vehicle 10 turns along the traveling path, the locus of the rear wheels 16 can be optimized.
  • the target steering angle calculation unit 120 calculates the target steering angle ⁇ so that the locus of the virtual point P due to the traveling of the vehicle 10 passes through the guide position in the detection region A1 detected by the guide position detection unit 110. You may. According to this, it is possible to improve the followability of the vehicle 10 with respect to the traveling route.
  • the guide sensor 31 may be arranged in the detection area A1.
  • the guide sensor 31 may be a sensor that outputs a signal according to the position of the guide in the guide sensor 31 when the guide sensor 31 passes through the guide while the vehicle 10 is traveling. According to this, the position of the traveling path can be detected by using the guide sensor 31.
  • the guide position detection unit 110 detects the position of the marker 81 detected at the first time point as the position Q1 of the first guide, and the target steering angle calculation unit 120 is the second after the first time point.
  • the target steering angle ⁇ may be calculated based on the relative position between the position Q1 of the first guide and the virtual point P at the second time point. According to this, the virtual point P can be effectively followed by the guide.
  • the second time point is the time when the vehicle has advanced by a predetermined distance from the position at the first time point, the time when the virtual point P arrives at the marker 82 detected before the marker 81, or the first time point. It may be a time when a predetermined time has elapsed from.
  • the target steering angle calculation unit 120 determines the target steering angle ⁇ based on the distance L1 from the detection area A1 to the virtual point P and the guide position Q1 in the detection area A1 detected by the guide position detection unit 110. You may calculate.
  • the travel control system 1 may include a virtual point position changing unit 210 that changes the position of the virtual point P according to the driving situation of the vehicle 10. According to this, the behavior of the vehicle 10 can be appropriately controlled according to the driving condition of the vehicle 10.
  • the virtual point position changing unit 210 may change the position of the virtual point P in the left-right direction of the vehicle body according to the driving condition of the vehicle 10. According to this, it is possible to appropriately control the behavior of the vehicle when the vehicle 10 turns or turns left or right.
  • the virtual point position changing unit 210 may change the position of the virtual point P in the front-rear direction of the vehicle body according to the driving condition of the vehicle 10. According to this, it is possible to appropriately control the followability of the vehicle 10 to the traveling path and the riding comfort of the vehicle 10 according to the driving condition of the vehicle 10.
  • the target turning radius R that specifies the target turning radius ⁇ according to the position of the guide in the left-right direction of the vehicle body detected based on the output of the guide sensor 31 and the position of the virtual point P is calculated, and the target turning radius R is calculated.
  • the target steering angle ⁇ may be calculated based on the target turning radius R corresponding to the above. According to this, the target steering angle can be calculated in consideration of the target turning locus of the vehicle 10.
  • the travel control system 1 may further include a second guide sensor 31B, which is installed behind the detection area A1 and outputs a signal according to the position of the guide. Further, the travel control system 1 may correct the target steering angle ⁇ based on the output of the second guide sensor 31. According to this, the followability of the vehicle 10 to the traveling route can be improved more effectively.
  • the steering device 21 has a traveling control system 1, a steering 17, and an actuator for rotating the steering 17. According to the steering device 21, when the vehicle 10 turns along the traveling path, the locus of the rear wheels 16 can be optimized.
  • the vehicle 10 which is an autonomous driving vehicle has a travel control system 1. According to this, when the vehicle 10 turns along the traveling path, the trajectory of the rear wheel 16 can be optimized.
  • the virtual point P is arranged between the tires of the left and right rear wheels 16 in a plan view. According to this, when the vehicle 10 turns along the traveling path, the trajectory of the rear wheel 16 can be optimized.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

Provided are a traveling control system, a steering device, and an autonomous driving vehicle capable of making a trajectory of a rear wheel proper when a vehicle turns along a travel path. This control system (1) includes: a first guide sensor (31) that outputs a signal corresponding to the location (Q1) of a guide; a guide location detection unit that, when a detection region (A1) defined in a vehicle body in a vehicle body left-right direction passes through the guide while a vehicle (10) is traveling, detects the location of the guide in the detection region (A1) on the basis of the output of the first sensor; and a target steering angle calculation unit that calculates a target steering angle of the vehicle on the basis of a virtual point defined behind the region and the location of the guide in the region detected by the guide location detection unit.

Description

走行制御システム、ステアリング装置、及び自動運転車両Driving control systems, steering devices, and self-driving vehicles
 本発明は走行制御システム、ステアリング装置、及び自動運転車両に関する。 The present invention relates to a travel control system, a steering device, and an autonomous driving vehicle.
 下記特許文献1乃至4では、走行経路に沿って走行可能な自動運転車両が開示されている。特許文献1、3及び4においては、磁気マークが一定間隔をあけて走行経路に沿って埋められている。車両は、磁気センサで磁気マークを順番に検出することで、走行経路に沿って走行することが可能となっている。特許文献2においては、磁気マークに代えて、位置情報を発信するトランスポンダが一定間隔で走行経路に埋められている。車両は、情報受信機によってトランスポンダが発信する位置情報を受信することで、自律走行することが可能となっている。 The following Patent Documents 1 to 4 disclose an autonomous driving vehicle that can travel along a traveling route. In Patent Documents 1, 3 and 4, magnetic marks are filled along a traveling path at regular intervals. The vehicle can travel along the traveling route by detecting the magnetic marks in order with the magnetic sensor. In Patent Document 2, instead of the magnetic mark, transponders that transmit position information are embedded in the traveling path at regular intervals. The vehicle can travel autonomously by receiving the position information transmitted by the transponder by the information receiver.
実公平04-045041号公報Jitsufuku 04-045041 Gazette 特許第5390360号Patent No. 5390360 特許第5423704号Patent No. 5423704 特開平06-012119号公報Japanese Unexamined Patent Publication No. 06-012119
 走行経路の途中にあるカーブに沿って自動運転車両が旋回する場合、車両が予め規定された走行経路の中心線に沿って走行したとしても、車両の内輪差に起因して後輪は前輪よりも内側の軌跡を通る。そのため、走行経路に磁気マーク等を設ける場合、その内輪差を加味する必要がある。内輪差は車両のホイールベースに依存するため、内輪差を加味して磁気マーク等を設置することは煩雑な作業を要する。このことは、サイズの異なる複数種類の自動運転車両が走行する走行経路を構築する場合に、大きな課題となりやすい。 When an autonomous vehicle turns along a curve in the middle of a travel route, the rear wheels are more than the front wheels due to the difference in the inner wheels of the vehicle, even if the vehicle travels along the center line of the predetermined travel route. Also goes through the inner trajectory. Therefore, when a magnetic mark or the like is provided on the traveling path, it is necessary to take the inner ring difference into consideration. Since the inner ring difference depends on the wheelbase of the vehicle, it requires complicated work to install a magnetic mark or the like in consideration of the inner ring difference. This tends to be a big problem when constructing a travel route on which a plurality of types of autonomous vehicles of different sizes travel.
 (1)本開示で提案する走行制御システムは、走行路に規定されているガイドに沿って走行する車両に搭載される走行制御システムであって、前記ガイドの位置に応じた信号を出力する第1センサと、車体左右方向に沿って車体に規定された領域が車両の走行時に前記ガイドを通過するときに、前記領域における前記ガイドの位置を前記第1センサの出力に基づいて検知するガイド位置検知部と、前記領域よりも後方に規定されている仮想点と、前記ガイド位置検知部によって検知された前記領域における前記ガイドの位置とに基づいて、車両の目標操舵角を算出する目標操舵角算出部とを有する。このシステムによれば、車両が走行経路に沿って旋回する際、後輪の軌跡を適切化できる。 (1) The travel control system proposed in the present disclosure is a travel control system mounted on a vehicle traveling along a guide defined on a travel path, and outputs a signal according to the position of the guide. A guide position that detects the position of the guide in the region based on the output of the first sensor when the one sensor and the region defined by the vehicle body along the left-right direction of the vehicle body pass through the guide when the vehicle is traveling. Target steering angle for calculating the target steering angle of the vehicle based on the detection unit, the virtual point defined behind the region, and the position of the guide in the region detected by the guide position detection unit. It has a calculation unit. According to this system, the trajectory of the rear wheels can be optimized when the vehicle turns along the traveling path.
 (2)(1)の走行制御システムにおいて、前記目標操舵角算出部は、前記車両の走行による前記仮想点の軌跡が、前記ガイド位置検知部によって検知された前記領域における前記ガイドの位置を通過するように前記目標操舵角を算出してもよい。これによれば、走行経路に対する車両の追従性を向上させることができる。 (2) In the travel control system of (1), the target steering angle calculation unit passes the position of the guide in the region where the locus of the virtual point due to the travel of the vehicle passes through the region detected by the guide position detection unit. You may calculate the target steering angle so as to do so. According to this, it is possible to improve the followability of the vehicle to the traveling route.
 (3)(1)の走行制御システムにおいて、前記第1センサは前記領域に配置されてよい。前記第1センサは、車両の走行時に前記第1センサが前記ガイドを通過するときに、前記第1センサにおける前記ガイドの位置に応じた信号を出力するセンサであってもよい。これによれば、第1センサを用いて走行経路の位置を検知することができる。 (3) In the travel control system of (1), the first sensor may be arranged in the area. The first sensor may be a sensor that outputs a signal corresponding to the position of the guide in the first sensor when the first sensor passes through the guide while the vehicle is traveling. According to this, the position of the traveling path can be detected by using the first sensor.
 (4)(1)の走行制御システムにおいて、前記ガイド位置検知部は、第1の時点で検知されたガイドの位置を第1ガイドの位置として検知し、前記目標操舵角算出部は、前記第1の時点よりも後の第2の時点において、前記第2の時点での第1ガイドの位置と仮想点との相対位置に基づいて前記目標操舵角を算出してよい。これによれば,仮想点をガイドに効果的に追従させることができる。 (4) In the travel control system of (1), the guide position detection unit detects the position of the guide detected at the first time point as the position of the first guide, and the target steering angle calculation unit is the first. At the second time point after the first time point, the target steering angle may be calculated based on the relative position between the position of the first guide and the virtual point at the second time point. According to this, the virtual point can be effectively followed by the guide.
 (5)(4)の走行制御システムにおいて、前記第2の時点は、前記第1の時点での位置から車両が所定距離だけ進んだ時点、前記第1ガイドより前に検知された第2ガイドに仮想点Pが到来した時点、又は前記第1の時点から所定時間が経過した時点であってよい。 (5) In the travel control system of (4), the second time point is a time point when the vehicle has advanced a predetermined distance from the position at the first time point, and the second guide detected before the first guide. It may be the time when the virtual point P arrives at, or the time when a predetermined time has elapsed from the first time.
 (6)(1)の走行制御システムにおいて、前記目標操舵角算出部は、前記領域から前記仮想点までの距離と、前記ガイド位置検知部によって検知された前記領域における前記ガイドの位置とに基づいて前記目標操舵角を算出してよい。 (6) In the travel control system of (1), the target steering angle calculation unit is based on the distance from the region to the virtual point and the position of the guide in the region detected by the guide position detection unit. The target steering angle may be calculated.
 (7)(1)の走行制御システムは、車両の運転状況に応じて前記仮想点の位置を変更する仮想点位置変更部を含んでもよい。これによれば、車両の運転状況に応じて車両の挙動を適切に制御することができる。 (7) The travel control system of (1) may include a virtual point position changing unit that changes the position of the virtual point according to the driving situation of the vehicle. According to this, the behavior of the vehicle can be appropriately controlled according to the driving condition of the vehicle.
 (8)(7)の走行制御システムにおいて、前記仮想点位置変更部は、車両の運転状況に応じて車体左右方向に前記仮想点の位置を変更してもよい。これによれば、車両が旋回や右左折する場合の車両の挙動を適切に制御することができる。 In the travel control system of (8) and (7), the virtual point position changing unit may change the position of the virtual point in the left-right direction of the vehicle body according to the driving situation of the vehicle. According to this, it is possible to appropriately control the behavior of the vehicle when the vehicle turns or turns left or right.
 (9)(7)の走行制御システムにおいて、前記仮想点位置変更部は、車両の運転状況に応じて車体前後方向に前記仮想点の位置を変更してもよい。これによれば、車両の運転状況に応じて、走行経路に対する車両の追従性と、車両の乗り心地とを適切に制御することができる。 In the travel control system of (9) and (7), the virtual point position changing unit may change the position of the virtual point in the front-rear direction of the vehicle body according to the driving situation of the vehicle. According to this, it is possible to appropriately control the followability of the vehicle to the traveling route and the riding comfort of the vehicle according to the driving condition of the vehicle.
 (10)(1)の走行制御システムにおいて、前記第1センサの出力に基づいて検知された車体左右方向における前記ガイドの位置と、前記仮想点の位置とに応じた目標旋回軌跡を特定する値を算出し、前記目標旋回軌跡に対応する値に基づいて前記目標操舵角を算出してもよい。これによれば、車両の目標旋回軌跡を考慮して目標操舵角を算出できる。 (10) In the travel control system of (1), a value that specifies a target turning locus according to the position of the guide in the left-right direction of the vehicle body detected based on the output of the first sensor and the position of the virtual point. May be calculated and the target steering angle may be calculated based on the value corresponding to the target turning locus. According to this, the target steering angle can be calculated in consideration of the target turning locus of the vehicle.
 (11)(1)の走行制御システムは、前記領域よりも後方に設置されている、前記ガイドの位置に応じた信号を出力する第2センサをさらに有してもよい。また、(1)の走行制御システムは、前記第2センサの出力に基づいて前記目標操舵角を補正してもよい。これによれば、走行経路に対する車両の追従性をより効果的に向上させることができる。 (11) The travel control system of (1) may further have a second sensor installed behind the region and outputting a signal according to the position of the guide. Further, the travel control system of (1) may correct the target steering angle based on the output of the second sensor. According to this, it is possible to more effectively improve the followability of the vehicle to the traveling route.
 (12)本開示で提案するステアリング装置は、(1)の走行制御システムと、ステアリングと、前記ステアリングを回転させるアクチュエータとを有している。このステアリング装置によれば、車両が走行経路に沿って旋回する際、後輪の軌跡を適切化できる。 (12) The steering device proposed in the present disclosure includes the traveling control system of (1), steering, and an actuator for rotating the steering. According to this steering device, when the vehicle turns along the traveling path, the trajectory of the rear wheels can be optimized.
 (13)本開示で提案する自動運転車両は、(1)の走行制御システムを有している。これによれば、車両が走行経路に沿って旋回する際、後輪の軌跡を適切化できる。 (13) The self-driving vehicle proposed in the present disclosure has the driving control system of (1). According to this, when the vehicle turns along the traveling path, the trajectory of the rear wheels can be optimized.
 (14)(13)の自動運転車両において、前記仮想点は平面視において左右の後輪のタイヤの間に配置される。これによれば、車両が走行経路に沿って旋回する際、後輪の軌跡を適切化できる。 In the self-driving vehicle of (14) and (13), the virtual point is arranged between the tires of the left and right rear wheels in a plan view. According to this, when the vehicle turns along the traveling path, the trajectory of the rear wheels can be optimized.
車両のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware composition of a vehicle. 走行制御の概要を示す模式図である。It is a schematic diagram which shows the outline of the traveling control. 目標操舵角算出方法の概要を示す模式図である。It is a schematic diagram which shows the outline of the target steering angle calculation method. 目標旋回半径と目標操舵角との関係を示す図である。It is a figure which shows the relationship between the target turning radius and the target steering angle. 走行制御システムの機能構成の一例を示す機能ブロック図である。It is a functional block diagram which shows an example of the functional structure of a travel control system. 自動走行処理の一例を示すフロー図である。It is a flow chart which shows an example of the automatic traveling process. 操舵角制御処理の一例を示すフロー図である。It is a flow chart which shows an example of a steering angle control process. ガイドに沿って車両が走行した場合の車両の姿勢を示す模式図である。It is a schematic diagram which shows the posture of the vehicle when the vehicle travels along the guide. ガイドに沿って車両が走行した場合の車両の姿勢を示す模式図である。It is a schematic diagram which shows the posture of the vehicle when the vehicle travels along the guide. 走行制御の概要を示す模式図である。It is a schematic diagram which shows the outline of the traveling control. 仮想点の位置を車体の左右方向において変更した場合の走行制御の概要を示す模式図である。It is a schematic diagram which shows the outline of the running control when the position of a virtual point is changed in the left-right direction of a vehicle body. 仮想点の位置を車体の左右方向において変更した場合の走行制御の概要を示す模式図である。It is a schematic diagram which shows the outline of the running control when the position of a virtual point is changed in the left-right direction of a vehicle body. 仮想点の位置を車体の左右方向において変更した場合の走行制御の概要を示す模式図である。It is a schematic diagram which shows the outline of the running control when the position of a virtual point is changed in the left-right direction of a vehicle body. 仮想点の位置を車体の左右方向において変更した場合の走行制御の概要を示す模式図である。It is a schematic diagram which shows the outline of the running control when the position of a virtual point is changed in the left-right direction of a vehicle body. 仮想点の位置を車体の左右方向において変更した場合の目標操舵角の算出方法の概要を示す模式図である。It is a schematic diagram which shows the outline of the calculation method of the target steering angle when the position of a virtual point is changed in the left-right direction of a vehicle body. 仮想点の位置を車両の前後方向に変更した場合の走行制御の概要を示す模式図である。It is a schematic diagram which shows the outline of the running control when the position of a virtual point is changed in the front-rear direction of a vehicle. 仮想点の位置を車両の前後方向に変更した場合の目標操舵角θの算出方法の概要を示す模式図である。It is a schematic diagram which shows the outline of the calculation method of the target steering angle θ when the position of a virtual point is changed in the front-rear direction of a vehicle. 走行制御システムの機能構成の一例を示す機能ブロック図である。It is a functional block diagram which shows an example of the functional structure of a travel control system. 自動走行処理の一例を示すフロー図である。It is a flow chart which shows an example of the automatic driving process. 操舵角制御処理の一例を示すフロー図である。It is a flow chart which shows an example of a steering angle control process. 第2ガイドセンサを有する車両において実行される目標操舵角の補正を説明するため図である。It is a figure for demonstrating the correction of the target steering angle performed in the vehicle which has the 2nd guide sensor. 走行制御の概要を示す模式図である。It is a schematic diagram which shows the outline of the traveling control. 走行制御の概要を示す模式図である。It is a schematic diagram which shows the outline of the traveling control. 走行制御システムの機能構成の一例を示す機能ブロック図である。It is a functional block diagram which shows an example of the functional structure of a travel control system. 自動走行処理の一例を示すフロー図である。It is a flow chart which shows an example of the automatic driving process. 操舵角制御処理の一例を示すフロー図である。It is a flow chart which shows an example of a steering angle control process.
[1.第1の実施形態]
 本開示で説明する走行制御システム1は、自動運転車両10(図1参照)に搭載される。以下では、走行制御システム1を制御システム1と称し、自動運転車両10を車両10と称する。最初に、本開示の実施形態の一例(第1の実施形態)について説明する。
[1. First Embodiment]
The travel control system 1 described in the present disclosure is mounted on the autonomous driving vehicle 10 (see FIG. 1). Hereinafter, the traveling control system 1 is referred to as a control system 1, and the autonomous driving vehicle 10 is referred to as a vehicle 10. First, an example of the embodiment of the present disclosure (first embodiment) will be described.
[1-1.自動運転車両の概要]
 車両10は、走行路に規定されているガイドに沿って走行する。走行路は、例えば、遊園地や、ゴルフ場、イベント会場、観光地などの一般車の走行が規制されている限定エリアに敷設される。これに限らず、走行路は車両10の走行経路が予め設定された公道であってもよい。ガイドは、走行経路に沿った車両10の走行をガイドするために、走行路内に設置される。本実施形態では、ガイドが走行経路に沿って走行路に連続的に埋設される誘導線である例について説明する。
[1-1. Overview of self-driving vehicles]
The vehicle 10 travels along a guide defined on the travel path. The driving path is laid in a limited area where the running of general vehicles is restricted, such as an amusement park, a golf course, an event venue, and a sightseeing spot. Not limited to this, the travel path may be a public road in which the travel route of the vehicle 10 is set in advance. The guide is installed in the traveling path in order to guide the traveling of the vehicle 10 along the traveling path. In the present embodiment, an example in which the guide is a guide line continuously embedded in the traveling path along the traveling path will be described.
 図1は車両10のハードウェア構成を示すブロック図である。図1に示すように、車両10は、ECU(Engine Control Unit)11とMCU(Motor Control Unit)12とを有している。ECU11は演算装置11aと記憶装置11bとを有している。モータ駆動装置12は演算装置12aと記憶装置12bと駆動回路12cとを有している。演算装置11a,12aは、例えば、CPU(Central Processing Unit)や、FPGA(Field Programmable Gate Array)を含んでよい。記憶装置11b,12bは、例えば、RAM(Random Access Memory)や、ROM(Read Only Memory)を含んでよい。駆動回路12cはバッテリ(不図示)から電力を受け、ECU11から入力される指令値に応じた電力を、後述するステアリングアクチュエータや、車両10の駆動源である車両駆動モータ22などに供給する。ECU11は、車両10に搭載されるネットワーク(例えば、CAN(Controller Area Network))を介して互いに接続される複数の装置によって構成されてもよい。この場合、ECU11を構成する各装置は、演算装置と記憶装置とのうちの少なくとも1つを含んでよい。 FIG. 1 is a block diagram showing the hardware configuration of the vehicle 10. As shown in FIG. 1, the vehicle 10 has an ECU (Engine Control Unit) 11 and an MCU (Motor Control Unit) 12. The ECU 11 has an arithmetic unit 11a and a storage device 11b. The motor drive device 12 has an arithmetic unit 12a, a storage device 12b, and a drive circuit 12c. The arithmetic units 11a and 12a may include, for example, a CPU (Central Processing Unit) and an FPGA (Field Programmable Gate Array). The storage devices 11b and 12b may include, for example, a RAM (RandomAccessMemory) and a ROM (ReadOnlyMemory). The drive circuit 12c receives electric power from a battery (not shown) and supplies electric power according to a command value input from the ECU 11 to a steering actuator described later, a vehicle drive motor 22 which is a drive source of the vehicle 10, and the like. The ECU 11 may be composed of a plurality of devices connected to each other via a network mounted on the vehicle 10 (for example, CAN (Controller Area Network)). In this case, each device constituting the ECU 11 may include at least one of an arithmetic unit and a storage device.
 また、図1で示すように、車両10は、ステアリング装置21と、車両駆動モータ22と、ブレーキ装置23とを有している。ステアリング装置21は、前輪15を操舵するための装置であり、例えば、ステアリング17と、ステアリング17に接続するステアリングシャフトと、ステアリング17及びステアリングシャフト17aを回転させるアクチュエータ(ステアリングアクチュエータ)とを含む。また、ステアリング装置21は、ステアリングシャフト17aと前輪15とを連結するタイロッドなども含む。さらに車両10は、ステアリングシャフト17aの回転角度(操舵角)を検知する角度センサを有している。 Further, as shown in FIG. 1, the vehicle 10 has a steering device 21, a vehicle drive motor 22, and a brake device 23. The steering device 21 is a device for steering the front wheels 15, and includes, for example, a steering 17, a steering shaft connected to the steering 17, and an actuator (steering actuator) for rotating the steering 17 and the steering shaft 17a. The steering device 21 also includes a tie rod that connects the steering shaft 17a and the front wheels 15. Further, the vehicle 10 has an angle sensor that detects the rotation angle (steering angle) of the steering shaft 17a.
 車両駆動モータ22は、駆動輪(前輪15と後輪16の一方又は双方)を回転させる装置であり、駆動源として機能する。上述したモータ駆動装置12は、駆動回路12cとして、車両駆動モータ22に供給する交流電流を生成するインバータを含んでよい。なお、車両10の駆動源は、エンジンであってもよい。また、駆動源はエンジンと車両駆動モータの双方を含んでもよい。車両駆動モータ22と駆動輪との間の動力伝達経路上には、変速機や減速機が配置されてよい。ブレーキ装置23は、車輪に対して制動力を付与する装置であり、例えば、フットペダルと、フットペダルに油圧を介して接続されるコントロールバルブとを含む。モータ駆動装置12の駆動回路12cは、コントロールバルブを駆動するポンプやソレノイドに電力を供給してもよい。 The vehicle drive motor 22 is a device that rotates the drive wheels (one or both of the front wheels 15 and the rear wheels 16) and functions as a drive source. The motor drive device 12 described above may include, as the drive circuit 12c, an inverter that generates an alternating current to be supplied to the vehicle drive motor 22. The drive source of the vehicle 10 may be an engine. Further, the drive source may include both an engine and a vehicle drive motor. A transmission or a speed reducer may be arranged on the power transmission path between the vehicle drive motor 22 and the drive wheels. The brake device 23 is a device that applies a braking force to the wheels, and includes, for example, a foot pedal and a control valve that is connected to the foot pedal via hydraulic pressure. The drive circuit 12c of the motor drive device 12 may supply electric power to the pump or solenoid that drives the control valve.
 なお、図1に示す車両10は4輪車であるが、これに限らず、車両10は3輪車(1つの前輪と2つの後輪を有する車両、又は、2つの前輪と1つの後輪を有する車両)であってもよいし、2輪車であってもよい。車両10は、バスなどの5以上の車輪を有するものであってもよい。また、図1では複数のユーザが車両10に乗車可能としているが、車両10は一人乗り用であってもよい。 The vehicle 10 shown in FIG. 1 is a four-wheeled vehicle, but the vehicle 10 is not limited to this, and the vehicle 10 is a three-wheeled vehicle (a vehicle having one front wheel and two rear wheels, or two front wheels and one rear wheel. It may be a vehicle having a) or a two-wheeled vehicle. The vehicle 10 may have five or more wheels such as a bus. Further, although it is possible for a plurality of users to get on the vehicle 10 in FIG. 1, the vehicle 10 may be for one person.
 また、図1で示すように、車両10は、走行路上のガイドの位置を検出するガイドセンサ31と、車両10の周囲にある地物の位置を検出する外界センサ32とを有している。第1の実施形態においては、後述するようにガイドとして誘導線7(図2参照)が利用されている。ガイドセンサ31は誘導線7の位置を磁気的に検知するセンサであり、例えば車体の左右方向で並んでいる複数のコイルによって構成される。ガイドセンサ31は、走行路に設置されたRFタグに記録されたデータを読み込むためのRFIDリーダを含んでもよい。RFタグには、走行路に関する情報が記録されている。例えば、RFタグは、停止位置を示したり、右折箇所を示したり、左折箇所を示したりする。例えば、RFタグには、車両の加減速、停止、右左折、進路変更などを促す情報や、所定の地点(目的地や交差点)であることを示す情報、前方に障害物があることを示す情報、通行止めであることを示す情報、走行路が直線又はカーブであることを示す情報、走行路上に野生動物が飛び出してくる可能性があることを示す情報が含まれている。 Further, as shown in FIG. 1, the vehicle 10 has a guide sensor 31 that detects the position of a guide on a traveling road, and an outside world sensor 32 that detects the position of a feature around the vehicle 10. In the first embodiment, the guide line 7 (see FIG. 2) is used as a guide as described later. The guide sensor 31 is a sensor that magnetically detects the position of the guide wire 7, and is composed of, for example, a plurality of coils arranged in the left-right direction of the vehicle body. The guide sensor 31 may include an RFID reader for reading the data recorded on the RF tag installed on the track. Information about the track is recorded on the RF tag. For example, the RF tag indicates a stop position, a right turn point, or a left turn point. For example, the RF tag contains information that prompts the vehicle to accelerate / decelerate, stop, turn left / right, change course, etc., information that indicates that the vehicle is at a predetermined point (destination or intersection), and indicates that there is an obstacle in front of the RF tag. It contains information, information indicating that the road is closed, information indicating that the road is straight or curved, and information indicating that wild animals may pop out on the road.
 外界センサ32は車両10の周囲にある障害物や、建築物、道路標識、車線を検知するためのセンサであり、例えばカメラや、LiDAR(Light Detection and Ranging)などのセンサである。車両10は、外界センサ32として、複数種類のセンサ(例えば、カメラとLiDARの双方)を有してもよい。 The outside world sensor 32 is a sensor for detecting obstacles, buildings, road signs, and lanes around the vehicle 10, such as a camera and a sensor such as LiDAR (Light Detection and Ranging). The vehicle 10 may have a plurality of types of sensors (for example, both a camera and LiDAR) as the outside world sensor 32.
[1-2.走行制御の概要]
 図2は、制御システム1が実行する走行制御の概要を示す模式図である。図2に示すように、走行路には、走行経路を案内するためのガイドとして、誘導線(例えば交流電流が流されている電線)7が埋設されている。この誘導線7に沿って車両10が走行するように、制御システム1は車両10の走行制御を実行する。例えば、図2に示すように、誘導線7が車両10の進行方向に対して右カーブを描く場合、制御システム1は、車両10が右方向に旋回するように、前輪15を右方向に傾ける操舵制御を実行する。制御システム1は、以下に詳述する方法で前輪15の目標操舵角θを算出し、それに向けて前輪15を傾ける操舵制御を実行する。
[1-2. Overview of driving control]
FIG. 2 is a schematic diagram showing an outline of traveling control executed by the control system 1. As shown in FIG. 2, a guide line (for example, an electric wire through which an alternating current is passed) 7 is embedded in the travel path as a guide for guiding the travel path. The control system 1 executes the travel control of the vehicle 10 so that the vehicle 10 travels along the guide line 7. For example, as shown in FIG. 2, when the guide line 7 draws a right curve with respect to the traveling direction of the vehicle 10, the control system 1 tilts the front wheel 15 to the right so that the vehicle 10 turns to the right. Perform steering control. The control system 1 calculates the target steering angle θ of the front wheels 15 by the method described in detail below, and executes steering control for tilting the front wheels 15 toward the target steering angle θ.
[1-3.目標操舵角の算出]
 図2に示すように、車両10には、車体の左右方向における誘導線7の位置を検知するための検知領域A1が、車体の左右方向(車幅方向)に沿って規定されている。検知領域A1の左右方向での長さは車体の全幅に対応していてよい。例えば、検知領域A1の左右方向での長さは車体の全幅の70%より大きくてもよい。車両10の例では、この検知領域A1に上述したガイドセンサ31が設置されている。検知領域A1は、車体左右方向の中心を挟んで右側と左側とに亘って規定されている。図2に示す平面視において、検知領域A1は、例えば、前後方向における車両10の中心よりも前方に設けられてよい。
[1-3. Calculation of target steering angle]
As shown in FIG. 2, in the vehicle 10, a detection region A1 for detecting the position of the guide line 7 in the left-right direction of the vehicle body is defined along the left-right direction (vehicle width direction) of the vehicle body. The length of the detection area A1 in the left-right direction may correspond to the entire width of the vehicle body. For example, the length of the detection region A1 in the left-right direction may be larger than 70% of the total width of the vehicle body. In the example of the vehicle 10, the guide sensor 31 described above is installed in the detection area A1. The detection region A1 is defined over the right side and the left side with the center in the left-right direction of the vehicle body interposed therebetween. In the plan view shown in FIG. 2, the detection region A1 may be provided, for example, in front of the center of the vehicle 10 in the front-rear direction.
 また、図2に示すように、検知領域A1の後方に、仮想点Pが規定されている。図2に示す平面視において、仮想点Pは、車体の左右方向における中央位置に規定される。また、仮想点Pは、前後方向における車両10の中心よりも後方に規定されてよい。より具体的には、仮想点Pは、車体の平面視において左右の後輪16に取り付けられるタイヤの間に規定されてよい。すなわち、仮想点Pはタイヤの前端よりも後方で且つタイヤの後端よりも前方に規定されてよい。図2に示す例では、仮想点Pは後輪16の車軸と重なっている。なお、検知領域A1と仮想点Pとの距離は、例えば、ホイールベース(前輪と後輪との距離)に対して30%より大きい。検知領域A1と仮想点Pとの距離は、例えば50%より大きくてもよい。また、検知領域A1と仮想点Pとの距離は、ホイールベースに対して70%より大きくてもよい。仮想点Pは、後輪16の車軸より後方に配置されてもよいし、車両10より後方に配置されてもよい。 Further, as shown in FIG. 2, a virtual point P is defined behind the detection area A1. In the plan view shown in FIG. 2, the virtual point P is defined as the center position in the left-right direction of the vehicle body. Further, the virtual point P may be defined behind the center of the vehicle 10 in the front-rear direction. More specifically, the virtual point P may be defined between the tires attached to the left and right rear wheels 16 in the plan view of the vehicle body. That is, the virtual point P may be defined behind the front end of the tire and in front of the rear end of the tire. In the example shown in FIG. 2, the virtual point P overlaps with the axle of the rear wheel 16. The distance between the detection area A1 and the virtual point P is, for example, larger than 30% with respect to the wheelbase (distance between the front wheels and the rear wheels). The distance between the detection area A1 and the virtual point P may be larger than, for example, 50%. Further, the distance between the detection area A1 and the virtual point P may be larger than 70% with respect to the wheelbase. The virtual point P may be arranged behind the axle of the rear wheel 16 or may be arranged behind the vehicle 10.
 車両10の走行時、検知領域A1がガイド(本実施形態では誘導線7)を通過するときに、制御システム1は、検知領域A1における誘導線7の位置Q1を検知する。そして、制御システム1は、検知領域A1の後方に規定された仮想点Pと、上記検知した誘導線7の位置Q1とに基づいて、車両10の目標操舵角θを算出する。制御システム1は、検知領域A1において検知された誘導線7の位置Q1に仮想点Pが向かうように、目標操舵角θを算出する。 When the detection area A1 passes through the guide (guide line 7 in this embodiment) while the vehicle 10 is traveling, the control system 1 detects the position Q1 of the guide line 7 in the detection area A1. Then, the control system 1 calculates the target steering angle θ of the vehicle 10 based on the virtual point P defined behind the detection region A1 and the position Q1 of the detected guide line 7. The control system 1 calculates the target steering angle θ so that the virtual point P faces the position Q1 of the guide line 7 detected in the detection area A1.
 検知領域A1における誘導線7の位置Q1の検知は、ガイドセンサ31を用いて行われる。ガイドセンサ31は、ガイドの位置Q1に応じた信号を出力する。本実施形態では、ガイドセンサ31は、誘導線7を流れる電流により形成される磁場の強度と位置とに応じた信号を出力する。 The detection of the position Q1 of the guide line 7 in the detection area A1 is performed by using the guide sensor 31. The guide sensor 31 outputs a signal corresponding to the position Q1 of the guide. In the present embodiment, the guide sensor 31 outputs a signal corresponding to the strength and position of the magnetic field formed by the current flowing through the guide wire 7.
 上述したように、ガイドセンサ31は検知領域A1内に配置されてよい。これにより、検知領域A1はガイドセンサ31の検出領域になり、車両10の走行時に検知領域A1に配置されたガイドセンサ31がガイド(本実施形態では、誘導線7)を通過するとき、検知領域A1における誘導線7の位置に応じた信号が、ガイドセンサ31によって出力される。 As described above, the guide sensor 31 may be arranged in the detection area A1. As a result, the detection area A1 becomes the detection area of the guide sensor 31, and when the guide sensor 31 arranged in the detection area A1 while the vehicle 10 is traveling passes through the guide (in the present embodiment, the guide line 7), the detection area A signal corresponding to the position of the guide wire 7 in A1 is output by the guide sensor 31.
 図3は、目標操舵角θの算出方法の概要を示す模式図である。例えば、制御システム1は、検知された誘導線7の位置Q1と仮想点Pの位置とに基づいて、仮想点Pが通るべき軌跡である目標旋回軌跡を特定する値を算出し、この値に基づいて目標操舵角θを算出する。例えば、図3に示すように、制御システム1は、左右方向における車両10の中央位置から誘導線7の位置Q1までのズレ幅D1を計測する。そして、このズレ幅D1と、車両10の前後方向における検知領域A1から仮想点Pまでの距離L1とに基づいて、車両10が旋回することで仮想点Pが通るべき軌跡である目標旋回軌跡を特定する値を算出し、この値に基づいて目標操舵角θを算出する。「目標旋回軌跡を特定する値」とは、目標旋回軌跡における旋回の半径や直径、曲率などを示す。制御システム1は、例えば、目標旋回軌跡における旋回の半径である目標旋回半径Rを算出し、この目標旋回半径Rに基づいて、目標操舵角θを算出する。 FIG. 3 is a schematic diagram showing an outline of a method for calculating the target steering angle θ. For example, the control system 1 calculates a value for specifying a target turning locus, which is a locus that the virtual point P should pass, based on the detected position Q1 of the guide line 7 and the position of the virtual point P, and uses this value as the value. The target steering angle θ is calculated based on this. For example, as shown in FIG. 3, the control system 1 measures the deviation width D1 from the center position of the vehicle 10 in the left-right direction to the position Q1 of the guide line 7. Then, based on this deviation width D1 and the distance L1 from the detection region A1 in the front-rear direction of the vehicle 10 to the virtual point P, the target turning locus, which is the locus that the virtual point P should pass by turning the vehicle 10, is obtained. A specified value is calculated, and the target steering angle θ is calculated based on this value. The "value that specifies the target turning locus" indicates the radius, diameter, curvature, and the like of the turning in the target turning locus. The control system 1 calculates, for example, the target turning radius R, which is the turning radius in the target turning locus, and calculates the target steering angle θ based on the target turning radius R.
 図4は、目標旋回半径Rと目標操舵角θとの関係の例を示す図である。図4に示すように、目標操舵角θは、目標旋回半径Rが大きくなるに従って小さくなる。目標旋回半径Rを求めることによって、目標操舵角θを算出できる。 FIG. 4 is a diagram showing an example of the relationship between the target turning radius R and the target steering angle θ. As shown in FIG. 4, the target steering angle θ decreases as the target turning radius R increases. The target steering angle θ can be calculated by obtaining the target turning radius R.
 目標操舵角θの算出は、目標旋回半径Rを変数とする所定の計算式によって算出されてもよいし、ECU11の記憶装置11bなどに予め記憶されたデータ(例えば、目標操舵角θと目標旋回半径Rとが1対1で関連付けられている2次元配列データ)に基づいて算出されてもよい。 The target steering angle θ may be calculated by a predetermined formula with the target turning radius R as a variable, or data stored in advance in a storage device 11b or the like of the ECU 11 (for example, the target steering angle θ and the target turning). It may be calculated based on (two-dimensional array data) in which the radius R is associated with one-to-one.
 目標旋回半径Rは、例えば、車体の左右方向におけるガイドのズレ幅D1が大きくなるに従って小さくなる。また、目標旋回半径Rは、車両10の前後方向における検知領域A1から仮想点Pまでの距離L1が大きくなるに従って大きくなる。検知領域A1から仮想点Pまでの距離L1は既知であるため、左右方向におけるガイドのズレ幅D1を計測することによって、目標旋回半径Rを算出できる。この目標旋回半径Rに基づいて、目標操舵角θを算出できる。 The target turning radius R becomes smaller as the deviation width D1 of the guide in the left-right direction of the vehicle body becomes larger, for example. Further, the target turning radius R increases as the distance L1 from the detection region A1 to the virtual point P in the front-rear direction of the vehicle 10 increases. Since the distance L1 from the detection area A1 to the virtual point P is known, the target turning radius R can be calculated by measuring the deviation width D1 of the guide in the left-right direction. The target steering angle θ can be calculated based on this target turning radius R.
 目標旋回半径Rの算出は、ズレ幅D1と距離L1とを変数とする所定の計算式によって算出されてもよいし、ECU11の記憶装置11bなどに予め記憶されたデータ(例えば、目標旋回半径R、ズレ幅D1、及び、距離L1が1対1対1で関連付けられている3次元配列データ)に基づいて算出されてもよい。なお、目標旋回半径Rを計算式によって算出する場合、計算式の変数に、ガイドセンサ31の出力から得られたズレ幅D1と、仮想点Pの位置に応じた距離L1を代入することによって、目標旋回半径Rを求めてもよい。 The target turning radius R may be calculated by a predetermined calculation formula having the deviation width D1 and the distance L1 as variables, or data stored in advance in the storage device 11b or the like of the ECU 11 (for example, the target turning radius R). , The deviation width D1 and the distance L1 are associated with each other on a one-to-one-to-one basis (three-dimensional array data). When the target turning radius R is calculated by the calculation formula, the deviation width D1 obtained from the output of the guide sensor 31 and the distance L1 corresponding to the position of the virtual point P are substituted into the variables of the calculation formula. The target turning radius R may be obtained.
[1-4.機能ブロック]
 図5は、車両10の制御システム1に実装される機能構成の一例を示す機能ブロック図である。以上説明した走行制御を実現するため、制御システム1は、機能的には、ガイド位置検知部110と、目標操舵角算出部120と、ステアリングアクチュエータ制御部130と、モータ制御部140と、ブレーキ制御部150と、異常検知部160とを有している。これらの機能は、ECU11の演算装置11aが記憶装置11bに記憶されているプログラムを実行することによって実現されてもよい。これに限らず、各機能は、MCU12などの他の演算装置がプログラムを実行することによって実現されてもよい。
[1-4. Function block]
FIG. 5 is a functional block diagram showing an example of a functional configuration implemented in the control system 1 of the vehicle 10. In order to realize the driving control described above, the control system 1 functionally includes a guide position detection unit 110, a target steering angle calculation unit 120, a steering actuator control unit 130, a motor control unit 140, and brake control. It has a unit 150 and an abnormality detecting unit 160. These functions may be realized by the arithmetic unit 11a of the ECU 11 executing a program stored in the storage device 11b. Not limited to this, each function may be realized by executing a program by another arithmetic unit such as MCU 12.
[1-4-1.ガイド位置検知部]
 ガイド位置検知部110は、車両10の走行時に検知領域A1がガイド(誘導線7)を通過するときに、検知領域A1における誘導線7の位置Q1(図2を参照)を、ガイドセンサ31の出力に基づいて検知する。ガイド位置検知部110は、一定時間間隔で誘導線7の位置を検知する。
[1-4-1. Guide position detector]
When the detection area A1 passes through the guide (guide line 7) while the vehicle 10 is traveling, the guide position detection unit 110 sets the position Q1 (see FIG. 2) of the guide line 7 in the detection area A1 to the guide sensor 31. Detect based on output. The guide position detection unit 110 detects the position of the guide line 7 at regular time intervals.
 本実施形態では、ガイドセンサ31がガイドである誘導線7を流れる電流によって形成される磁場に応じた信号を出力する。磁場の位置及び強さは誘導線7の位置に依存するため、ガイド位置検知部110は、ガイドセンサ31が出力した信号に基づいて検知領域A1における誘導線7とガイドセンサ31との距離を判定し、検知領域A1におけるガイド(誘導線7)の位置Q1を検知する。 In the present embodiment, the guide sensor 31 outputs a signal corresponding to the magnetic field formed by the current flowing through the guide wire 7 which is the guide. Since the position and strength of the magnetic field depend on the position of the guide wire 7, the guide position detection unit 110 determines the distance between the guide wire 7 and the guide sensor 31 in the detection region A1 based on the signal output by the guide sensor 31. Then, the position Q1 of the guide (guide line 7) in the detection area A1 is detected.
 例えば、ガイドセンサ31が左右方向で並ぶ複数のコイルを有し、これらが検知領域A1内に配置される場合、ガイド位置検知部110は、複数のコイルにそれぞれ生じる起電力に基づいてガイドの位置Q1を算出する。 For example, when the guide sensor 31 has a plurality of coils arranged in the left-right direction and these are arranged in the detection region A1, the guide position detection unit 110 is the position of the guide based on the electromotive force generated in each of the plurality of coils. Calculate Q1.
[1-4-2.目標操舵角算出部]
 目標操舵角算出部120は、検知領域A1よりも後方に規定されている仮想点P(図2を参照)の位置と、ガイド位置検知部110によって検知された検知領域A1におけるガイドの位置Q1とに基づいて、車両10の目標操舵角θを算出する。より具体的には、目標操舵角算出部120は、車両10の走行による仮想点Pの軌跡(目標旋回軌跡)が、ガイド位置検知部110によって検知された検知領域A1におけるガイドの位置Q1を通過するように目標操舵角θを算出する。換言すると、目標操舵角θは、ガイドセンサ31の出力に基づいて検知された、車両10の左右方向におけるガイドQの位置と、仮想点Pの位置とに応じた目標走行軌跡に対応している。なお、仮想点Pの目標旋回軌跡が検知領域A1におけるガイドの位置Q1を通過するとは、必ずしも誘導線7の中心に仮想点Pの軌跡が重なることには限定されず、例えば、平面視において、誘導線7の上面におけるいずれかの位置に仮想点Pの目標旋回軌跡が重なることであってよいし、直線状に連続する誘導線7の少なくとも一部分に、仮想点Pの軌跡が交差することであってもよい。
[1-4-2. Target steering angle calculation unit]
The target steering angle calculation unit 120 has a position of a virtual point P (see FIG. 2) defined behind the detection area A1 and a guide position Q1 in the detection area A1 detected by the guide position detection unit 110. The target steering angle θ of the vehicle 10 is calculated based on the above. More specifically, in the target steering angle calculation unit 120, the locus of the virtual point P (target turning locus) due to the traveling of the vehicle 10 passes through the guide position Q1 in the detection region A1 detected by the guide position detection unit 110. The target steering angle θ is calculated so as to be performed. In other words, the target steering angle θ corresponds to the target traveling locus according to the position of the guide Q in the left-right direction of the vehicle 10 and the position of the virtual point P detected based on the output of the guide sensor 31. .. Note that the passage of the target turning locus of the virtual point P through the position Q1 of the guide in the detection region A1 does not necessarily mean that the locus of the virtual point P overlaps the center of the guide line 7, and for example, in a plan view, The target turning locus of the virtual point P may overlap at any position on the upper surface of the guide line 7, or the locus of the virtual point P intersects at least a part of the linearly continuous guide line 7. There may be.
 目標操舵角算出部120は、ガイドセンサ31の出力に基づいて検知された、検知領域A1における車両10の左右方向におけるガイドの位置Q1と、仮想点Pの位置とに応じた目標旋回軌跡を特定する値を算出し、この値に基づいて目標操舵角θを算出する。目標操舵角算出部120は、目標旋回軌跡を特定する値として、例えば、目標旋回軌跡の半径(上述した目標旋回半径R、図3参照)を算出し、この目標旋回半径Rに基づいて目標操舵角θを算出する。この場合、目標操舵角算出部120は、例えば、左右方向における車両10の中央位置からガイドの位置Q1までのズレ幅D1と、車両10の前後方向における検知領域A1から仮想点Pまでの距離L1とに基づいて、目標旋回半径Rを算出する。そして、このように算出した目標旋回半径Rに基づいて、目標操舵角θを算出する。目標操舵角算出部120は、例えば、図4を参照しながら説明した計算式や二次元配列データを利用して、目標旋回半径Rに応じた角度を目標操舵角θとして算出する。 The target steering angle calculation unit 120 specifies a target turning locus according to the position Q1 of the guide in the left-right direction of the vehicle 10 in the detection area A1 detected based on the output of the guide sensor 31 and the position of the virtual point P. The target steering angle θ is calculated based on this value. The target steering angle calculation unit 120 calculates, for example, the radius of the target turning radius (the above-mentioned target turning radius R, see FIG. 3) as a value for specifying the target turning locus, and the target steering is based on the target turning radius R. Calculate the angle θ. In this case, the target steering angle calculation unit 120 has, for example, a deviation width D1 from the center position of the vehicle 10 in the left-right direction to the position Q1 of the guide, and a distance L1 from the detection region A1 to the virtual point P in the front-rear direction of the vehicle 10. Based on the above, the target turning radius R is calculated. Then, the target steering angle θ is calculated based on the target turning radius R calculated in this way. The target steering angle calculation unit 120 calculates, for example, an angle corresponding to the target turning radius R as a target steering angle θ by using the calculation formula and the two-dimensional array data described with reference to FIG.
[1-4-3.ステアリングアクチュエータ制御部]
 ステアリングアクチュエータ制御部130は、ステアリング装置21が有しているアクチュエータ(ステアリングアクチュエータ)を介してステアリングシャフト17aを回転させて、操舵角(前輪15の向き)を制御する。具体的には、ステアリングアクチュエータ制御部130は、モータ駆動装置12に向けて指令値を出力する。指令値に応じた電力をモータ駆動装置12がステアリングアクチュエータに供給し、ステアリングシャフト17aを回転させる。また、ステアリングアクチュエータ制御部130は、目標操舵角算出部120が算出した目標操舵角θに応じた指示値をモータ駆動装置12に出力することによって、実際の操舵角を制御する。
[1-4-3. Steering actuator control unit]
The steering actuator control unit 130 controls the steering angle (direction of the front wheels 15) by rotating the steering shaft 17a via the actuator (steering actuator) of the steering device 21. Specifically, the steering actuator control unit 130 outputs a command value to the motor drive device 12. The motor drive device 12 supplies electric power according to the command value to the steering actuator to rotate the steering shaft 17a. Further, the steering actuator control unit 130 controls the actual steering angle by outputting to the motor drive device 12 an instruction value corresponding to the target steering angle θ calculated by the target steering angle calculation unit 120.
 ステアリングアクチュエータ制御部130は、目標操舵角θに実際の操舵角が近づくように操舵角を制御する。すなわち、ステアリングアクチュエータ制御部130は、仮想点Pがガイドの位置Q1を通過するように操舵角を制御する。なお、ステアリングアクチュエータ制御部130は、操舵角の変化速度を、現在の車速に応じて変えてもよい。ステアリングアクチュエータ制御部130は、例えば、車速が大きい場合は操舵角が緩やかに変化するように、操舵角を制御してもよい。 The steering actuator control unit 130 controls the steering angle so that the actual steering angle approaches the target steering angle θ. That is, the steering actuator control unit 130 controls the steering angle so that the virtual point P passes through the guide position Q1. The steering actuator control unit 130 may change the speed of change of the steering angle according to the current vehicle speed. The steering actuator control unit 130 may control the steering angle so that the steering angle changes gently when the vehicle speed is high, for example.
 また、ステアリングアクチュエータ制御部130は、現在の操舵角(ステアリング17の回転角度)を検知し、その操舵角に基づいて目標操舵角θを修正するフィードバック制御を実行してもよい。例えば、ステアリングアクチュエータ制御部130は、ステアリングシャフトの回転角度を検出する角度センサからの出力に基づいて、現在の操舵角を検知する。そして、その操舵角と目標操舵角θとの差異に基づいてステアリングアクチュエータを制御してもよい。 Further, the steering actuator control unit 130 may execute feedback control that detects the current steering angle (rotation angle of the steering 17) and corrects the target steering angle θ based on the steering angle. For example, the steering actuator control unit 130 detects the current steering angle based on the output from the angle sensor that detects the rotation angle of the steering shaft. Then, the steering actuator may be controlled based on the difference between the steering angle and the target steering angle θ.
[1-4-4.モータ制御部、ブレーキ制御部]
 モータ制御部140は、現在の車速が設定された目標車速に近づくように、車両駆動モータ22を制御する。同様に、ブレーキ制御部150は、現在の車速が設定された目標車速に近づくように、ブレーキ装置23を制御する。
[1-4-4. Motor control unit, brake control unit]
The motor control unit 140 controls the vehicle drive motor 22 so that the current vehicle speed approaches the set target vehicle speed. Similarly, the brake control unit 150 controls the brake device 23 so that the current vehicle speed approaches the set target vehicle speed.
 目標車速は、例えば、ガイドセンサ31に含まれるRFIDリーダが走行路上のRFタグから情報(ID情報など)を読み取り、この読み取られた情報に基づいて設定されてよい。この場合、モータ制御部140及びブレーキ制御部150は、RFタグから読み取られた情報に基づいて車両10を走行させたり、走行中の車両10を減速させたり、停止させたりする制御を実行する。目標車速の設定は、ECU11の演算装置11aが記憶装置11bに記憶されているプログラムを実行することによって実現されてよい。ECU11(演算装置11a)は、例えば、RFIDリーダが走行路上のRFタグから読み取った情報や、外界センサ32(カメラなど)から得られた情報、車両10に対する操作の状態(例えば、アクセルペダルに対する操作の状況)に基づいて、目標車速を設定する。また、目標操舵角算出部120により算出された目標操舵角θが閾値を超える場合は、目標車速を低減してもよい。この場合、モータ制御部140及びブレーキ制御部150は、車両10の速度を抑える制御を実行する。 The target vehicle speed may be set based on, for example, an RFID reader included in the guide sensor 31 reading information (ID information, etc.) from an RF tag on the road. In this case, the motor control unit 140 and the brake control unit 150 execute control for driving the vehicle 10 or decelerating or stopping the traveling vehicle 10 based on the information read from the RF tag. The setting of the target vehicle speed may be realized by executing the program stored in the storage device 11b by the arithmetic unit 11a of the ECU 11. The ECU 11 (arithmetic unit 11a) has, for example, information read from an RF tag on a traveling path by an RFID reader, information obtained from an outside world sensor 32 (camera, etc.), and an operation state for the vehicle 10 (for example, an operation for an accelerator pedal). Set the target vehicle speed based on the situation). Further, when the target steering angle θ calculated by the target steering angle calculation unit 120 exceeds the threshold value, the target vehicle speed may be reduced. In this case, the motor control unit 140 and the brake control unit 150 execute control for suppressing the speed of the vehicle 10.
[1-4-5.異常検知部]
 異常検知部160は、車両10に搭載される各種の機構及び装置の状態や、各種センサの検知結果などに基づいて、車両10で生じた異常を検知する。異常検知部160は、例えば、検知領域A1でガイド(本実施形態では、誘導線7)が検知されない状況を、異常と検知してよい。この他にも、異常検知部160は、目標操舵角算出部120により算出された目標操舵角θが閾値を超えた場合(目標旋回半径Rが車両10に規定されている最小旋回半径を下回る場合)や、車両駆動モータ22に電力を供給するバッテリの残量が閾値よりも少ない場合に異常と判定してもよい。後述するように、ガイドとして、誘導線7に代えて、走行経路に沿って一定間隔をあけて配置されるマーカ(例えば、磁気マーカ)が利用されてもよい。この場合、異常検知部160は、直近のマーカの検知後、次のマーカが検出されない状態のまま所定距離を走行した状況を、異常として検知してもよい。
[1-4-5. Anomaly detection unit]
The abnormality detection unit 160 detects an abnormality that has occurred in the vehicle 10 based on the states of various mechanisms and devices mounted on the vehicle 10, the detection results of various sensors, and the like. The abnormality detection unit 160 may detect, for example, a situation in which the guide (in the present embodiment, the guide wire 7) is not detected in the detection area A1 as an abnormality. In addition to this, when the target steering angle θ calculated by the target steering angle calculation unit 120 exceeds the threshold value (the target turning radius R is less than the minimum turning radius defined for the vehicle 10), the abnormality detecting unit 160 is used. ), Or when the remaining amount of the battery that supplies electric power to the vehicle drive motor 22 is less than the threshold value, it may be determined as abnormal. As will be described later, as a guide, a marker (for example, a magnetic marker) arranged at regular intervals along the traveling path may be used instead of the guide wire 7. In this case, the abnormality detection unit 160 may detect a situation in which the next marker is not detected after the latest marker is detected and the vehicle travels a predetermined distance as an abnormality.
 異常検知部160が車両10の異常を検知した場合、モータ制御部140及びブレーキ制御部150は、車両10の走行を停止させる制御を実行する。より具体的には、目標車速がゼロに設定されることにより、モータ制御部140は車両10を走行させるためのモータの駆動を停止させ、ブレーキ制御部150は車両10が停止するようにブレーキ装置23に車両10の制動力を付与させる。 When the abnormality detection unit 160 detects an abnormality in the vehicle 10, the motor control unit 140 and the brake control unit 150 execute control to stop the running of the vehicle 10. More specifically, when the target vehicle speed is set to zero, the motor control unit 140 stops driving the motor for driving the vehicle 10, and the brake control unit 150 stops the vehicle 10 as a brake device. The braking force of the vehicle 10 is applied to the 23.
[1-5.フローチャート]
 図6は、制御システム1で実行される自動走行処理の一例を示すフロー図である。図7は、制御システム1(特に、目標操舵角算出部120及びステアリングアクチュエータ制御部130)で実行される操舵角制御処理の一例を示すフロー図である。
[1-5. flowchart]
FIG. 6 is a flow chart showing an example of the automatic traveling process executed by the control system 1. FIG. 7 is a flow chart showing an example of steering angle control processing executed by the control system 1 (particularly, the target steering angle calculation unit 120 and the steering actuator control unit 130).
 図6に示すように、制御システム1は、検知領域A1においてガイド(本実施形態では、誘導線7)を検知したか否かを判定する(ステップS101)。このステップS101の判定は、ガイド位置検知部110が検知したガイドの位置Q1に基づいて行われる。検知領域A1においてガイドを検知したと判定された場合(ステップS101のYes)、制御システム1は、図7に示した操舵角制御処理を実行する(ステップS102)。 As shown in FIG. 6, the control system 1 determines whether or not the guide (in the present embodiment, the guide line 7) is detected in the detection area A1 (step S101). The determination in step S101 is performed based on the guide position Q1 detected by the guide position detection unit 110. When it is determined that the guide is detected in the detection area A1 (Yes in step S101), the control system 1 executes the steering angle control process shown in FIG. 7 (step S102).
 図7に進み、目標操舵角算出部120は、検知領域A1における中央位置と、ガイドの位置Q1との左右方向におけるズレ幅D1を計測する(ステップS111)。そして、目標操舵角算出部120は、検知領域A1から仮想点Pまでの車両10の前後方向における距離L1と、ステップS111において計測したズレ幅D1とに基づいて、目標操舵角θを算出する(ステップS112)。上述したように、目標操舵角算出部120は、例えば、検知されたガイドの位置Q1と、仮想点Pの位置とに応じた目標旋回軌跡を特定する値(目標旋回半径R)を算出し、この値に基づいて目標操舵角θを算出する。 Proceeding to FIG. 7, the target steering angle calculation unit 120 measures the deviation width D1 in the left-right direction between the center position in the detection region A1 and the guide position Q1 (step S111). Then, the target steering angle calculation unit 120 calculates the target steering angle θ based on the distance L1 in the front-rear direction of the vehicle 10 from the detection region A1 to the virtual point P and the deviation width D1 measured in step S111. Step S112). As described above, the target steering angle calculation unit 120 calculates, for example, a value (target turning radius R) that specifies the target turning locus according to the detected guide position Q1 and the position of the virtual point P. The target steering angle θ is calculated based on this value.
 ステアリングアクチュエータ制御部130は、実際の操舵角を目標操舵角θに近づけるように操舵角を制御する(ステップS113)。これにより、仮想点Pの軌跡がガイドの位置Q1に近づくように、操舵角の制御が実行される。 The steering actuator control unit 130 controls the steering angle so that the actual steering angle approaches the target steering angle θ (step S113). As a result, the steering angle is controlled so that the locus of the virtual point P approaches the position Q1 of the guide.
 図6に戻り、異常検知部160が車両10の異常を検知した場合(ステップS103のYes)、モータ制御部140及びブレーキ制御部150は、車両10の走行を停止させる制御を実行し(ステップS104)、自動走行処理を終了する。ステップS103では、例えば、ステップS101で誘導線7が検出されなかった場合や、誘導線7が検知されないまま所定距離を走行した場合、ステップS112において算出された目標操舵角θが閾値を超えた場合(急激な旋回を行おうとした場合)を異常と判定してよい。 Returning to FIG. 6, when the abnormality detecting unit 160 detects an abnormality in the vehicle 10 (Yes in step S103), the motor control unit 140 and the brake control unit 150 execute control to stop the traveling of the vehicle 10 (step S104). ), End the automatic driving process. In step S103, for example, when the guide line 7 is not detected in step S101, when the guide line 7 is not detected and the vehicle travels a predetermined distance, or when the target steering angle θ calculated in step S112 exceeds the threshold value. (When trying to make a sharp turn) may be determined as abnormal.
 異常検知部160による異常が検知されなかった場合(ステップS103のNo)、制御システム1は、ステップS101の誘導線7を検知したか否かの判定処理を繰り返す。このように、制御システム1は、車両10の異常を検知するまで、検知領域A1におけるガイドの位置Q1と仮想点Pとに応じた操舵角の制御を逐次実行する。 When the abnormality is not detected by the abnormality detecting unit 160 (No in step S103), the control system 1 repeats the determination process of whether or not the induction wire 7 in step S101 is detected. In this way, the control system 1 sequentially executes the control of the steering angle according to the position Q1 of the guide and the virtual point P in the detection area A1 until the abnormality of the vehicle 10 is detected.
 なお、制御システム1は、ガイドセンサ31のRFIDリーダによって、交差点等に埋設されたRFタグに記録された情報を読み取ってもよい。そして、モータ制御部140及びブレーキ制御部150は、RFタグに記録された情報に応じて、車両駆動モータ22とブレーキ装置23とを制御してもよい。 The control system 1 may read the information recorded on the RF tag embedded in the intersection or the like by the RFID reader of the guide sensor 31. Then, the motor control unit 140 and the brake control unit 150 may control the vehicle drive motor 22 and the brake device 23 according to the information recorded in the RF tag.
[1-6.効果]
 図8A及び図8Bは、ガイド(本実施形態では、誘導線7)に沿って車両10が走行した場合の車両10の姿勢を示す模式図である。図8Aは従来の走行制御により車両10が走行した場合を示し、図8Bは制御システム1での走行制御により車両10が走行した場合を示す。
[1-6. effect]
8A and 8B are schematic views showing the posture of the vehicle 10 when the vehicle 10 travels along the guide (in this embodiment, the guide line 7). FIG. 8A shows a case where the vehicle 10 has traveled by the conventional travel control, and FIG. 8B shows a case where the vehicle 10 has traveled by the travel control by the control system 1.
 図8Aに示すように、左右方向に沿って配置されたガイドセンサ31の領域における中央位置が、誘導線7を通過するように走行制御を行った場合、車両10の内輪差に起因して、後輪16が路肩の障害物に接近する。従って、誘導線7は、このような内輪差を考慮して、走行路に規定される必要がある。この点、図8Bに示すように、制御システム1での走行制御によれば、ガイドセンサ31の検出領域である検知領域A1の後方に仮想点Pが規定され、この仮想点Pが誘導電7上を通るように制御される。これにより、後輪16と路肩の障害物との距離を確保することが容易となる。また、仮想点Pを左右の後輪16の間に配置することにより、後輪16の軌跡をより適切にすることができる。 As shown in FIG. 8A, when the traveling control is performed so that the central position in the region of the guide sensor 31 arranged along the left-right direction passes through the guide line 7, due to the difference in the inner ring of the vehicle 10, The rear wheel 16 approaches an obstacle on the shoulder of the road. Therefore, the guide line 7 needs to be defined in the traveling path in consideration of such an inner ring difference. In this regard, as shown in FIG. 8B, according to the travel control in the control system 1, a virtual point P is defined behind the detection area A1 which is the detection area of the guide sensor 31, and this virtual point P is the induction power 7. It is controlled to pass over. This makes it easy to secure a distance between the rear wheel 16 and an obstacle on the shoulder of the road. Further, by arranging the virtual point P between the left and right rear wheels 16, the locus of the rear wheels 16 can be made more appropriate.
[2.第2の実施形態]
 第1の実施形態では、走行路に規定されているガイドとして、誘導線7が走行経路に沿って埋設されている例について説明した。ガイドはこれに限らず、走行路に埋設されている、磁場や電磁波などを発生させる複数のマーカであってもよい。以下では、ガイドとしてマーカを用いた場合の実施形態の一例(第2の実施形態)について説明する。なお、本実施形態でのハードウェア構成は、第1の実施形態と同様であるため説明を省略する。
[2. Second embodiment]
In the first embodiment, an example in which the guide line 7 is embedded along the traveling path as a guide defined on the traveling path has been described. The guide is not limited to this, and may be a plurality of markers embedded in the traveling path to generate a magnetic field, an electromagnetic wave, or the like. Hereinafter, an example (second embodiment) of the embodiment when the marker is used as a guide will be described. Since the hardware configuration in this embodiment is the same as that in the first embodiment, the description thereof will be omitted.
[2-1.マーカの検知]
 図9は、本実施形態で実行される走行制御の概要を示す模式図である。図9に示すように、本実施形態では、複数のマーカ8が走行経路に沿って間隔をあけて配置されている。なお、本実施形態では、マーカ8は、例えば、走行路に埋設される磁石などの磁気マーカである。これに限らず、マーカ8は、電磁波を出力するものであってもよい。
[2-1. Marker detection]
FIG. 9 is a schematic diagram showing an outline of the traveling control executed in the present embodiment. As shown in FIG. 9, in the present embodiment, a plurality of markers 8 are arranged at intervals along the traveling path. In the present embodiment, the marker 8 is, for example, a magnetic marker such as a magnet embedded in a traveling path. Not limited to this, the marker 8 may output an electromagnetic wave.
 また、図9に示すように、本実施形態では第1の実施形態と同様に、車両10の左右方向に沿った検知領域A1が規定され、検知領域A1の内側にガイドセンサ31が配置されている。ガイドセンサ31は、検知領域A1内に到達したマーカ8が形成する磁場の強さと位置に応じた信号、すなわちガイドの位置Q1に応じた信号を出力する。制御システム1は、ガイドセンサ31から出力された信号に基づいて、検知領域A1におけるガイドの位置Q1を検知する。そして、制御システム1は、仮想点Pが検知されたマーカ8を通過するようにステアリング装置21を制御する。すなわち、制御システム1は、仮想点Pが検知されたマーカ8を通過するように目標操舵角θを算出する。 Further, as shown in FIG. 9, in the present embodiment, as in the first embodiment, the detection region A1 along the left-right direction of the vehicle 10 is defined, and the guide sensor 31 is arranged inside the detection region A1. There is. The guide sensor 31 outputs a signal corresponding to the strength and position of the magnetic field formed by the marker 8 that has reached the detection region A1, that is, a signal corresponding to the position Q1 of the guide. The control system 1 detects the position Q1 of the guide in the detection area A1 based on the signal output from the guide sensor 31. Then, the control system 1 controls the steering device 21 so that the virtual point P passes through the detected marker 8. That is, the control system 1 calculates the target steering angle θ so that the virtual point P passes through the detected marker 8.
[2-2.仮想点位置の変更]
 仮想点Pの位置は、車両10の運転状況に応じて変更してもよい。ここで運転状況とは、車両10自体の運転状態(例えば、車速)であってもよいし、車両10が走行している環境(例えば、走行経路の状態)であってもよい。車両10が走行している環境は、外界センサ32から得られる情報や、ガイドセンサ31が含むRFIDリーダから得られる情報から検知され得る。
[2-2. Change virtual point position]
The position of the virtual point P may be changed according to the driving situation of the vehicle 10. Here, the driving state may be the driving state of the vehicle 10 itself (for example, the vehicle speed) or the environment in which the vehicle 10 is traveling (for example, the state of the traveling path). The environment in which the vehicle 10 is traveling can be detected from the information obtained from the outside world sensor 32 and the information obtained from the RFID reader included in the guide sensor 31.
 図10A~図10Dは、仮想点Pの位置を車体の左右方向において変更した場合の走行制御の概要を示す模式図である。図10Aに示すように、車両10の進行方向左側に障害物Oが存在する場合、車両10を右方向に旋回させる必要性が生じる。その障害物Oを、外界センサ32(例えば、カメラ)が検知した状況で、制御システム1は、仮想点Pの位置を、初期位置P1から(図11Aでは、左方向)に離れた位置P2に変更する。このようにすることで、車両10を右方向に旋回させることが可能である。 10A to 10D are schematic views showing an outline of traveling control when the position of the virtual point P is changed in the left-right direction of the vehicle body. As shown in FIG. 10A, when the obstacle O is present on the left side in the traveling direction of the vehicle 10, it becomes necessary to turn the vehicle 10 to the right. In a situation where the obstacle O is detected by the external sensor 32 (for example, a camera), the control system 1 shifts the position of the virtual point P to the position P2 away from the initial position P1 (to the left in FIG. 11A). change. By doing so, it is possible to turn the vehicle 10 to the right.
 図10Aに示した車両10の位置から車両が右方向に旋回することで、その後、図10Bに示すように、ガイド(マーカ8)の位置Q1は、検知領域A1の左端部において検知される。このとき、制御システム1は、検知領域A1におけるガイドの位置Q1と、仮想点Pの位置とに基づいて操舵角の制御を開始する。図10Bではガイドの位置Q1は仮想点Pよりも車両10の左寄りに位置するため、車両10は僅かに左方向に旋回する。図10Cにおいても図10Bと同様に車両10は僅かに左方向に旋回し、図10Dにおいて車両10の操舵角は車両10を直進させるものになる。このようにすることで、車両10は障害物を避けながら走行経路を進むことが可能である。 The vehicle turns to the right from the position of the vehicle 10 shown in FIG. 10A, and then, as shown in FIG. 10B, the position Q1 of the guide (marker 8) is detected at the left end portion of the detection area A1. At this time, the control system 1 starts controlling the steering angle based on the position Q1 of the guide in the detection area A1 and the position of the virtual point P. In FIG. 10B, since the guide position Q1 is located to the left of the vehicle 10 with respect to the virtual point P, the vehicle 10 turns slightly to the left. Also in FIG. 10C, as in FIG. 10B, the vehicle 10 turns slightly to the left, and in FIG. 10D, the steering angle of the vehicle 10 causes the vehicle 10 to go straight. By doing so, the vehicle 10 can travel on the traveling route while avoiding obstacles.
 なお、障害物Oの出現に限らず、車両10の様々な運転状況に応じて仮想点Pの位置を変更してよい。例えば、車両10の右折時に仮想点Pの位置を左右方向における中央位置よりも右寄りの位置に変更してもよいし、車両10の左折時に仮想点Pを中央位置よりも左寄りの位置に変更してもよい。なお、車両10の走行経路がこれから左折を迎えるか右折を迎えるかは、例えば、ガイドセンサ31に含まれるRFIDリーダで左折または右折を開始する地点の直前に配置されたRFタグの情報(ID情報など)を読み取ったり、カメラで取得した映像を解析したりすることで判定できる。 Note that the position of the virtual point P may be changed according to various driving conditions of the vehicle 10, not limited to the appearance of the obstacle O. For example, the position of the virtual point P may be changed to a position to the right of the center position in the left-right direction when the vehicle 10 turns right, or the virtual point P may be changed to a position to the left of the center position when the vehicle 10 turns left. You may. Whether the traveling route of the vehicle 10 will make a left turn or a right turn is determined by, for example, the information (ID information) of the RF tag arranged immediately before the point where the RFID reader included in the guide sensor 31 starts the left turn or the right turn. Etc.), and can be determined by analyzing the image acquired by the camera.
 図10Eは、仮想点Pの位置を左右方向において変更した場合の目標操舵角θの算出方法の概要を示す模式図であり、先述した図10Aと対応している。図10Eに示すように、制御システム1は、左右方向における車両10の中央位置からガイドの位置Q1までのズレ幅D1を計測する。そして、制御システム1は、このズレ幅D1と、移動前の仮想点Pの位置P1から移動後の仮想点Pの位置P2までの変更幅ΔDと、車両10の前後方向における検知領域A1から仮想点Pまでの距離L1とに基づいて、仮想点Pが通るべき旋回の半径である目標旋回半径Rを算出し、この値に基づいて目標操舵角θを算出する。 FIG. 10E is a schematic diagram showing an outline of a method of calculating the target steering angle θ when the position of the virtual point P is changed in the left-right direction, and corresponds to FIG. 10A described above. As shown in FIG. 10E, the control system 1 measures the deviation width D1 from the center position of the vehicle 10 to the guide position Q1 in the left-right direction. Then, the control system 1 virtualizes the deviation width D1, the change width ΔD from the position P1 of the virtual point P before the movement to the position P2 of the virtual point P after the movement, and the detection area A1 in the front-rear direction of the vehicle 10. Based on the distance L1 to the point P, the target turning radius R, which is the radius of the turning that the virtual point P should pass, is calculated, and the target steering angle θ is calculated based on this value.
 目標旋回半径Rの算出は、ズレ幅D1と、変更幅ΔDと、距離L1とを変数とする所定の計算式によって算出されてもよいし、ECU11の記憶装置11bなどに予め記憶されたデータ(例えば、目標旋回半径R、ズレ幅D1と変更幅ΔDとの和(D1+ΔD)、及び、距離L1が1対1対1で関連付けられている3次元配列データ)に基づいて算出されてもよい。なお、目標旋回半径Rを計算式によって算出する場合、計算式の変数に、ガイドセンサ31の出力から得られたズレ幅D1、変更幅ΔDと、仮想点Pの位置に応じた距離L1を代入することによって、目標旋回半径Rを求めてもよい。 The target turning radius R may be calculated by a predetermined calculation formula having a deviation width D1, a change width ΔD, and a distance L1 as variables, or data stored in advance in a storage device 11b of the ECU 11 or the like ( For example, it may be calculated based on the target turning radius R, the sum of the deviation width D1 and the change width ΔD (D1 + ΔD), and the three-dimensional array data in which the distance L1 is associated with each other on a one-to-one-to-one basis. When the target turning radius R is calculated by the calculation formula, the deviation width D1 and the change width ΔD obtained from the output of the guide sensor 31 and the distance L1 according to the position of the virtual point P are substituted into the variables of the calculation formula. By doing so, the target turning radius R may be obtained.
 仮想点Pの移動は、左右方向(車幅方向)に限らず、車両10の前後方向において行われてもよい。例えば、仮想点Pの位置を車速に応じて車両10の前後方向において変更してもよい。具体的には、車速が閾値より高い場合は、仮想点Pの位置を基準位置(例えば、左右の後輪16の間に位置)よりも後方に移動させてもよい。こうすることで、目標操舵角θが小さくなり、乗り心地を向上できる。 The movement of the virtual point P is not limited to the left-right direction (vehicle width direction), but may be performed in the front-rear direction of the vehicle 10. For example, the position of the virtual point P may be changed in the front-rear direction of the vehicle 10 according to the vehicle speed. Specifically, when the vehicle speed is higher than the threshold value, the position of the virtual point P may be moved to the rear of the reference position (for example, the position between the left and right rear wheels 16). By doing so, the target steering angle θ becomes small, and the ride quality can be improved.
 図11Aは、仮想点Pの位置を車両10の前後方向に変更した場合の走行制御の概要を示す模式図である。図11Aに示すように、仮想点Pの位置を初期位置P1よりも後方の位置P3に変更することで、車両10の目標旋回半径Rが大きくなり、左右方向への車両10の旋回が緩やかになる。すなわち、車両10の横揺れが抑制され、乗り心地が良くなる。 FIG. 11A is a schematic diagram showing an outline of traveling control when the position of the virtual point P is changed in the front-rear direction of the vehicle 10. As shown in FIG. 11A, by changing the position of the virtual point P to the position P3 behind the initial position P1, the target turning radius R of the vehicle 10 becomes large, and the vehicle 10 turns gently in the left-right direction. Become. That is, the rolling of the vehicle 10 is suppressed, and the riding comfort is improved.
 また、仮想点Pの位置を基準位置よりも前方に移動させてもよい。例えば走行路の道幅が狭い場合、仮想点Pの位置を基準位置よりも前方に移動させてもよい。このようにすることで、車両10の目標旋回半径Rが小さくなり、左右方向におけるガイドの位置変化に対する仮想点Pの追従性が向上する。これにより、走行路の狭い道幅から車体がはみ出ることを効果的に抑制できる。 Further, the position of the virtual point P may be moved to the front of the reference position. For example, when the road width of the traveling path is narrow, the position of the virtual point P may be moved ahead of the reference position. By doing so, the target turning radius R of the vehicle 10 becomes small, and the followability of the virtual point P to the change in the position of the guide in the left-right direction is improved. As a result, it is possible to effectively prevent the vehicle body from protruding from the narrow road width of the travel path.
 図11Bは、仮想点Pの位置を車両10の前後方向に変更した場合の目標操舵角θの算出方法の概要を示す模式図である。図11Bに示すように、制御システム1は、左右方向における車両10の中央位置からガイドの位置Q1までのズレ幅D1を計測する。そして、制御システム1は、このズレ幅D1と、車両10の前後方向における検知領域A1から変更前の仮想点Pまでの距離L1と、変更前の仮想点Pの位置P1から変更後の仮想点Pの位置P3までの距離ΔLとに基づいて、変更後の仮想点Pが通るべき旋回の半径である目標旋回半径Rを算出し、この値に基づいて、目標操舵角θを算出する。 FIG. 11B is a schematic diagram showing an outline of a method of calculating the target steering angle θ when the position of the virtual point P is changed in the front-rear direction of the vehicle 10. As shown in FIG. 11B, the control system 1 measures the deviation width D1 from the center position of the vehicle 10 to the guide position Q1 in the left-right direction. Then, the control system 1 has this deviation width D1, the distance L1 from the detection area A1 in the front-rear direction of the vehicle 10 to the virtual point P before the change, and the virtual point after the change from the position P1 of the virtual point P before the change. Based on the distance ΔL to the position P3 of P, the target turning radius R, which is the radius of turning that the changed virtual point P should pass through, is calculated, and the target steering angle θ is calculated based on this value.
 この場合の目標旋回半径Rの算出は、ズレ幅D1と、距離L1と、変更距離ΔLとを変数とする所定の計算式によって算出されてもよいし、ECU11の記憶装置11bなどに予め記憶されたデータ(例えば、目標旋回半径R、ズレ幅D1、及び、距離L1と変更距離ΔLとの和(L1+ΔL)が1対1対1で関連付けられている3次元配列データ)に基づいて算出されてもよい。なお、目標旋回半径Rを計算式によって算出する場合、計算式の変数に、ガイドセンサ31の出力から得られたズレ幅D1と、距離L1、及び変更距離ΔLを代入することによって、目標旋回半径Rを求めてもよい。 The calculation of the target turning radius R in this case may be calculated by a predetermined calculation formula having the deviation width D1, the distance L1 and the change distance ΔL as variables, or may be stored in advance in the storage device 11b of the ECU 11. Calculated based on the data (for example, the target turning radius R, the deviation width D1, and the three-dimensional array data in which the sum (L1 + ΔL) of the distance L1 and the changed distance ΔL is associated with each other on a one-to-one-to-one basis). May be good. When the target turning radius R is calculated by the calculation formula, the target turning radius is substituted by substituting the deviation width D1 obtained from the output of the guide sensor 31, the distance L1 and the change distance ΔL into the variables of the calculation formula. R may be obtained.
 なお、図10A~図11Bを参照しながら説明した仮想点Pの位置の変更は、ガイドとして誘導線7が利用されている第1の実施形態の制御システム1においても実行されてよい。 Note that the change in the position of the virtual point P described with reference to FIGS. 10A to 11B may also be executed in the control system 1 of the first embodiment in which the guide line 7 is used as a guide.
[2-3.機能ブロック]
 図12は、本実施形態の制御システム1に実装される機能構成の一例を示す機能ブロック図である。本実施形態では、ガイド位置検知部110は、誘導線7ではなく、マーカ8の磁場に応じてガイドセンサ31から発せられた信号の出力に基づいて検知領域A1におけるマーカ8とガイドセンサ31との距離を判定し、検知領域A1におけるガイド(マーカ8)の位置Q1を検知する。また、本実施形態では、図12に示すように、仮想点位置変更部210が、制御システム1の機能として追加されている。仮想点位置変更部210は、ECU11の演算装置11aが記憶装置11bに記憶されているプログラムを実行することによって実現されてもよいし、他の演算装置(MCU12など)がプログラムを実行することによって実現されてもよい。
[2-3. Function block]
FIG. 12 is a functional block diagram showing an example of a functional configuration implemented in the control system 1 of the present embodiment. In the present embodiment, the guide position detection unit 110 is not the guide line 7, but the marker 8 and the guide sensor 31 in the detection region A1 based on the output of the signal emitted from the guide sensor 31 in response to the magnetic field of the marker 8. The distance is determined, and the position Q1 of the guide (marker 8) in the detection area A1 is detected. Further, in the present embodiment, as shown in FIG. 12, the virtual point position changing unit 210 is added as a function of the control system 1. The virtual point position changing unit 210 may be realized by the arithmetic unit 11a of the ECU 11 executing a program stored in the storage device 11b, or by another arithmetic unit (MCU12 or the like) executing the program. It may be realized.
 仮想点位置変更部210は、車両10の運転状況に応じて仮想点Pの位置を変更する。より具体的には、図10A~図10E、図11A、及び図11Bを参照しながら説明したように、仮想点位置変更部210は、車両10の運転状況に応じて、車体の左右方向(車幅方向)又は前後方向に、仮想点Pの位置を変更する。ここでの「変更」は、互いに位置の異なる予め規定された複数の仮想点Pの候補から、運転状況に応じた仮想点Pを選択することによって行われてもよいし、車両10の運転状況に応じた方向(右方向、左方向、前方向、又は後方向)及び距離に、仮想点Pを動かすことであってもよい。仮想点位置変更部210は、車両10の外(車両10の右方向、左方向、又は後方向)に仮想点Pを動かしてもよい。 The virtual point position changing unit 210 changes the position of the virtual point P according to the driving situation of the vehicle 10. More specifically, as described with reference to FIGS. 10A to 10E, 11A, and 11B, the virtual point position changing unit 210 is used in the left-right direction of the vehicle body (vehicle) according to the driving condition of the vehicle 10. The position of the virtual point P is changed in the width direction) or the front-back direction. The "change" here may be performed by selecting a virtual point P according to the driving situation from a plurality of predetermined virtual point P candidates having different positions from each other, or the driving situation of the vehicle 10. The virtual point P may be moved in a direction (rightward, leftward, forwardward, or backwardward) and a distance according to the above. The virtual point position changing unit 210 may move the virtual point P to the outside of the vehicle 10 (to the right, to the left, or to the rear of the vehicle 10).
 仮想点位置変更部210は、車両10の車速に基づいて、仮想点Pの変更距離を変更してもよい。例えば、相対的に車速が大きい場合、左右方向において仮想点Pの変更距離を小さくしてもよい。こうすることで、仮想点Pを左右方向に大きく動かすと横揺れも大きくなるため、車体の横揺れを抑えることができる。 The virtual point position changing unit 210 may change the changing distance of the virtual point P based on the vehicle speed of the vehicle 10. For example, when the vehicle speed is relatively high, the change distance of the virtual point P may be reduced in the left-right direction. By doing so, if the virtual point P is largely moved in the left-right direction, the rolling motion also increases, so that the rolling motion of the vehicle body can be suppressed.
 目標操舵角算出部120は、第1の実施形態と同様、検知領域A1よりも後方に規定されている仮想点Pの位置と、ガイド位置検知部110によって検知された検知領域A1におけるマーカ8(ガイド)の位置Q1とに基づいて、車両10の目標操舵角θを算出する。より具体的には、目標操舵角算出部120は、車両10の走行による仮想点Pの軌跡(目標旋回軌跡)が、ガイド位置検知部110によって検知されたマーカ8の位置Q1を通過するように目標操舵角θを算出する。目標操舵角算出部120は、まず、ガイドの位置Q1と仮想点Pの位置とに応じた目標旋回軌跡を特定する値(例えば、目標旋回半径R)を算出し、この値に基づいて目標操舵角θを算出してよい。 Similar to the first embodiment, the target steering angle calculation unit 120 has the position of the virtual point P defined behind the detection area A1 and the marker 8 (marker 8 in the detection area A1 detected by the guide position detection unit 110). The target steering angle θ of the vehicle 10 is calculated based on the position Q1 of the guide). More specifically, in the target steering angle calculation unit 120, the locus of the virtual point P (target turning locus) due to the traveling of the vehicle 10 passes through the position Q1 of the marker 8 detected by the guide position detection unit 110. Calculate the target steering angle θ. The target steering angle calculation unit 120 first calculates a value (for example, a target turning radius R) that specifies a target turning locus according to the position Q1 of the guide and the position of the virtual point P, and the target steering is based on this value. The angle θ may be calculated.
 仮想点位置変更部210によって仮想点Pの位置が変更されている場合、目標操舵角算出部120は、仮想点位置変更部210によって変更された仮想点Pの位置に基づいて、目標操舵角θを算出する。目標操舵角算出部120は、例えば、仮想点位置変更部210によって変更された仮想点Pの位置と、ガイドセンサ31の出力に基づいて検知されたマーカ8の位置Q1とに基づいて目標旋回半径Rを算出し、この算出した目標旋回半径Rに基づいて、目標操舵角θを算出する。 When the position of the virtual point P is changed by the virtual point position changing unit 210, the target steering angle calculation unit 120 uses the target steering angle θ based on the position of the virtual point P changed by the virtual point position changing unit 210. Is calculated. The target steering angle calculation unit 120 has, for example, a target turning radius based on the position of the virtual point P changed by the virtual point position changing unit 210 and the position Q1 of the marker 8 detected based on the output of the guide sensor 31. R is calculated, and the target steering angle θ is calculated based on the calculated target turning radius R.
 ステアリングアクチュエータ制御部130は、目標操舵角θに実際の操舵角が近づくように操舵角を制御する。すなわち、ステアリングアクチュエータ制御部130は、仮想点Pがガイド(マーカ8)の位置Q1を通過するように操舵角を制御する。本実施形態において「仮想点Pがガイドの位置Q1を通過する」とは、平面視において、必ずしもマーカ8の中心に仮想点Pの軌跡が重なることには限定されず、マーカ8の上面におけるいずれかの位置に仮想点Pの軌跡が重なることであってよい。 The steering actuator control unit 130 controls the steering angle so that the actual steering angle approaches the target steering angle θ. That is, the steering actuator control unit 130 controls the steering angle so that the virtual point P passes the position Q1 of the guide (marker 8). In the present embodiment, "the virtual point P passes through the guide position Q1" is not necessarily limited to the locus of the virtual point P overlapping the center of the marker 8 in a plan view, and any of the above surfaces of the marker 8 is used. The locus of the virtual point P may overlap with the position.
 ステアリングアクチュエータ制御部130はフィードバック制御を実行してもよい。例えば、検知領域A1があるマーカ8(マーカ82と記載する)を検知してから次のマーカ8(マーカ81と記載する)を検知するまでの間にフィードバック制御を実行してもよい。例えば、検知領域A1があるマーカ82を検知してから次のマーカ81を検知するまでの間に回転角度センサによってステアリングシャフト17aの回転角度(実際の操舵角)を検知する。実際の操舵角と仮想点Pの現在位置とから仮想点Pの軌跡を算出する。そして、その軌跡がマーカ81を通過するか否かを判定する。そして、算出された仮想点Pの軌跡がマーカ81を通過しない場合、算出された仮想点Pの軌跡とマーカ81との差に基づいて目標操舵角を修正してもよい。例えば、算出された仮想点Pの軌跡がマーカ8の外側を通過する場合には、仮想点Pの軌跡とマーカ81との差(ズレ幅)に基づいて目標操舵角θを補正し(目標操舵角θをズレ幅に応じた補正量だけ大きくし)、仮想点Pの軌跡をマーカ81に近づけてよい。検知領域A1が隣り合う2つのマーカ8の間に位置しているとき(換言すると、目標操舵角算出部120が新たな目標操舵角θをマーカ8の位置に基づいて算出しない区間において)、ステアリングアクチュエータ制御部130は、このようなフィードバック制御を一定時間間隔で行ってもよい。 The steering actuator control unit 130 may execute feedback control. For example, feedback control may be executed between the detection of the marker 8 (described as the marker 82) in which the detection area A1 is located and the detection of the next marker 8 (described as the marker 81). For example, the rotation angle (actual steering angle) of the steering shaft 17a is detected by the rotation angle sensor between the detection of the marker 82 having the detection area A1 and the detection of the next marker 81. The locus of the virtual point P is calculated from the actual steering angle and the current position of the virtual point P. Then, it is determined whether or not the locus passes through the marker 81. Then, when the calculated locus of the virtual point P does not pass through the marker 81, the target steering angle may be corrected based on the difference between the calculated locus of the virtual point P and the marker 81. For example, when the calculated locus of the virtual point P passes outside the marker 8, the target steering angle θ is corrected based on the difference (deviation width) between the locus of the virtual point P and the marker 81 (target steering). The angle θ may be increased by a correction amount corresponding to the deviation width), and the locus of the virtual point P may be brought closer to the marker 81. When the detection area A1 is located between two adjacent markers 8 (in other words, in a section where the target steering angle calculation unit 120 does not calculate a new target steering angle θ based on the position of the marker 8), steering The actuator control unit 130 may perform such feedback control at regular time intervals.
[2-4.フローチャート]
 図13は、本実施形態で実行される自動走行処理の一例を示すフロー図である。図14Aは、本実施形態で実行される操舵角制御処理の一例を示すフロー図である。図14Bは、操舵角制御処理の他の一例を示すフロー図である。
[2-4. flowchart]
FIG. 13 is a flow chart showing an example of the automatic traveling process executed in the present embodiment. FIG. 14A is a flow chart showing an example of the steering angle control process executed in the present embodiment. FIG. 14B is a flow chart showing another example of the steering angle control process.
 図13に示すように、制御システム1は、車両10の運転状況に基づいて、仮想点Pの位置の変更を要するか否かを判定する(ステップS201)。制御システム1は、例えば、外界センサ32(例えば、カメラ)が障害物を検知した場合、或いは、ガイドセンサ31に含まれるRFIDリーダを通して走行経路がこれから左折や右折を迎えることを検知した場合に、車両10の左右方向(車幅方向)において仮想点Pの位置の変更を要すると判定する。他にも例えば、制御システム1は、車両10の車速や走行路の道幅が変化した場合に、前後方向において仮想点Pの位置の変更を要すると判定する。車両10の運転状況に基づいて仮想点Pの位置の変更を要すると判定された場合(ステップS201のYes)、仮想点位置変更部210は、その運転状況に応じて仮想点Pの位置を左右方向、又は前後方向において変更する(ステップS202)。 As shown in FIG. 13, the control system 1 determines whether or not the position of the virtual point P needs to be changed based on the driving condition of the vehicle 10 (step S201). The control system 1 detects, for example, that the external sensor 32 (for example, a camera) detects an obstacle, or that the traveling route is about to make a left turn or a right turn through the RFID reader included in the guide sensor 31. It is determined that the position of the virtual point P needs to be changed in the left-right direction (vehicle width direction) of the vehicle 10. In addition, for example, the control system 1 determines that the position of the virtual point P needs to be changed in the front-rear direction when the vehicle speed of the vehicle 10 or the road width of the traveling path changes. When it is determined that the position of the virtual point P needs to be changed based on the driving condition of the vehicle 10 (Yes in step S201), the virtual point position changing unit 210 shifts the position of the virtual point P left and right according to the driving condition. The change is made in the direction or the front-back direction (step S202).
 ガイド位置検知部110は、検知領域A1においてガイド(本実施形態では、マーカ8)を検知したか否かを判定する(ステップS203)。検知領域A1においてガイドを検知したと判定された場合(ステップS203のYes)、制御システム1は、図14に操舵角制御処理を実行する(ステップS204)。 The guide position detection unit 110 determines whether or not the guide (marker 8 in the present embodiment) is detected in the detection area A1 (step S203). When it is determined that the guide is detected in the detection area A1 (Yes in step S203), the control system 1 executes the steering angle control process in FIG. 14 (step S204).
 図14で示すように、目標操舵角算出部120は、検知領域A1における中央位置と、ガイドの位置Q1との左右方向におけるズレ幅D1を計測する(ステップS211)。また、目標操舵角算出部120は、仮想点Pの初期位置P1と、左右方向において変更された位置P2との変更幅ΔD(図10B参照)を取得する(ステップS212)。仮想点Pが左右方向において変更されていない場合、変更幅ΔDは0であってよい。また、目標操舵角算出部120は、仮想点Pの初期位置P1から。前後方向において変更された位置P3までの変更距離ΔL(図11B参照)を取得する(ステップS213)。仮想点Pが前後方向において変更されていない場合、変更距離ΔLは0であってよい。目標操舵角算出部120は、このズレ幅D1、変更幅ΔD、検知領域A1から変更前の仮想点Pまでの車両10の前後方向における距離L1と、変更距離ΔLとに基づいて、目標操舵角θを算出する(ステップS214)。そして、ステアリングアクチュエータ制御部130は、実際の操舵角を目標操舵角θに近づけるように、操舵角を制御する(ステップS115)。 As shown in FIG. 14, the target steering angle calculation unit 120 measures the deviation width D1 in the left-right direction between the center position in the detection region A1 and the guide position Q1 (step S211). Further, the target steering angle calculation unit 120 acquires a change width ΔD (see FIG. 10B) between the initial position P1 of the virtual point P and the position P2 changed in the left-right direction (step S212). If the virtual point P has not been changed in the left-right direction, the change width ΔD may be 0. Further, the target steering angle calculation unit 120 is from the initial position P1 of the virtual point P. The change distance ΔL (see FIG. 11B) to the changed position P3 in the front-rear direction is acquired (step S213). If the virtual point P has not been changed in the front-back direction, the change distance ΔL may be 0. The target steering angle calculation unit 120 is based on the deviation width D1, the change width ΔD, the distance L1 in the front-rear direction of the vehicle 10 from the detection area A1 to the virtual point P before the change, and the change distance ΔL. Calculate θ (step S214). Then, the steering actuator control unit 130 controls the steering angle so that the actual steering angle approaches the target steering angle θ (step S115).
 図13に戻り、異常検知部160が車両10の異常を検知した場合(ステップS205のYes)、モータ制御部140及びブレーキ制御部150は、車両10の走行を停止させる制御を実行し(ステップS206)、自動走行処理を終了する。ステップS203では、例えば、ステップS201においてガイド(本実施形態では、マーカ8)が検出されないまま所定距離を走行した場合に、異常を検知したと判定してよい。 Returning to FIG. 13, when the abnormality detecting unit 160 detects an abnormality in the vehicle 10 (Yes in step S205), the motor control unit 140 and the brake control unit 150 execute control to stop the traveling of the vehicle 10 (step S206). ), End the automatic driving process. In step S203, for example, when the guide (marker 8 in the present embodiment) is not detected in step S201 and the vehicle travels a predetermined distance, it may be determined that an abnormality has been detected.
 なお、仮想点Pの変更は、ここで説明した例に限られない。例えば、仮想点Pは左右方向又は前後方向のいずれか一方にだけ変更可能であってもよいし、仮想点Pは左右方向と前後方向の双方に変更可能であってもよい。すなわち、仮想点Pは初期位置から斜めの方向に変更可能であってもよい。 Note that the change of the virtual point P is not limited to the example explained here. For example, the virtual point P may be changed only in the left-right direction or the front-back direction, and the virtual point P may be changed in both the left-right direction and the front-back direction. That is, the virtual point P may be changeable in an oblique direction from the initial position.
 制御システム1は、走行中、ガイドセンサ31のRFIDリーダによって、交差点等に埋設されたRFタグに記録された情報を読み取ってもよい。そして、モータ制御部140及びブレーキ制御部150は、RFタグに記録された情報に応じて、車両駆動モータ22とブレーキ装置23とを制御してもよい。 The control system 1 may read the information recorded on the RF tag embedded in the intersection or the like by the RFID reader of the guide sensor 31 while traveling. Then, the motor control unit 140 and the brake control unit 150 may control the vehicle drive motor 22 and the brake device 23 according to the information recorded in the RF tag.
[2-5.効果]
 以上のように、本実施形態では、走行経路を規定するガイドとして、誘導線7の代わりにマーカ8を採用している。そのような場合であっても、検知領域A1よりも後方に設けた仮想点Pが検知領域A1で検知されたマーカ8を通過することによって、後輪16と路肩の障害物との距離が確保し易くなる。また、仮想点Pを左右の後輪16の間に配置することにより、後輪16の軌跡をより適切にすることができる。
[2-5. effect]
As described above, in the present embodiment, the marker 8 is adopted instead of the guide line 7 as a guide for defining the traveling route. Even in such a case, the distance between the rear wheel 16 and the obstacle on the shoulder is secured by the virtual point P provided behind the detection area A1 passing through the marker 8 detected in the detection area A1. It will be easier to do. Further, by arranging the virtual point P between the left and right rear wheels 16, the locus of the rear wheels 16 can be made more appropriate.
 また、本実施形態では、車両10の運転状況に応じて、車体の左右方向(車幅方向)又は前後方向に、仮想点Pの位置を変更する。例えば、左右方向において仮想点Pの位置を変更することにより、障害物の回避が必要になった場合や、左折、右折の必要が生じた場合に、最適な軌跡で車両10を旋回させることができる。また、車両10の前後方向において仮想点Pの位置を変更することにより、例えば、車速に適した操舵や、道幅に適した操舵が可能となる。 Further, in the present embodiment, the position of the virtual point P is changed in the left-right direction (vehicle width direction) or the front-rear direction of the vehicle body according to the driving condition of the vehicle 10. For example, by changing the position of the virtual point P in the left-right direction, it is possible to turn the vehicle 10 on the optimum trajectory when it is necessary to avoid obstacles or when it is necessary to turn left or right. can. Further, by changing the position of the virtual point P in the front-rear direction of the vehicle 10, for example, steering suitable for the vehicle speed and steering suitable for the road width become possible.
[3.第3実施形態]
 図15に示すように、車両10は、第1ガイドセンサ31Aと第2ガイドセンサ31Bとを有してよい。第1ガイドセンサ31Aは、第2の実施形態で説明したガイドセンサ31と同様である。第2ガイドセンサ31Bは、第1ガイドセンサ31Aとは別に設けられるセンサであり、車両10において第1ガイドセンサ31Aよりも後方に配置される。すなわち、第2ガイドセンサ31Bの検知領域A2は、検知領域A1よりも後方の位置で、車両10の左右方向に沿って規定される。検知領域A2は、車体左右方向の中心を挟んで右側と左側とに亘って規定されている。平面視において、検知領域A2は、前後方向における車両10の中心よりも後方に位置している。検知領域A2は、前後方向において仮想点Pと同じ位置に配置されている。
[3. Third Embodiment]
As shown in FIG. 15, the vehicle 10 may have a first guide sensor 31A and a second guide sensor 31B. The first guide sensor 31A is the same as the guide sensor 31 described in the second embodiment. The second guide sensor 31B is a sensor provided separately from the first guide sensor 31A, and is arranged behind the first guide sensor 31A in the vehicle 10. That is, the detection area A2 of the second guide sensor 31B is defined at a position behind the detection area A1 along the left-right direction of the vehicle 10. The detection area A2 is defined over the right side and the left side with the center in the left-right direction of the vehicle body interposed therebetween. In a plan view, the detection region A2 is located behind the center of the vehicle 10 in the front-rear direction. The detection area A2 is arranged at the same position as the virtual point P in the front-rear direction.
 図15に示すように、車両10の走行時、検知領域A2がマーカ82を通過するときに、第2ガイドセンサ31Bは、マーカ82の位置Q2に応じた信号を出力する。本実施形態では、第2ガイドセンサ31Bは、第1ガイドセンサ31Aと同様のセンサであり、マーカ8から発せられる磁場の位置(マーカ8の位置)に応じた信号を出力する。第2ガイドセンサ31Bは左右方向で並んでいる複数のコイルを有してよい。 As shown in FIG. 15, when the detection area A2 passes through the marker 82 while the vehicle 10 is traveling, the second guide sensor 31B outputs a signal corresponding to the position Q2 of the marker 82. In the present embodiment, the second guide sensor 31B is the same sensor as the first guide sensor 31A, and outputs a signal corresponding to the position of the magnetic field (position of the marker 8) emitted from the marker 8. The second guide sensor 31B may have a plurality of coils arranged in the left-right direction.
 第3実施形態において、目標操舵角算出部120は、検知領域A2において検知したマーカ8の位置と、仮想点Pの位置とに基づいて、車両10の目標操舵角θを補正する。図15を参照すると、目標操舵角算出部120は、例えば、左右方向における仮想点Pと検知領域A2におけるマーク82の位置とのズレ幅を計測し、このズレ幅に基づいて目標操舵角θを補正する。このような補正は、第1ガイドセンサ31Aの検知領域A1が隣り合う2つのマーカ8との間(図15においてマーカ80,82の間)に位置するときに実行されてよい。具体的には、第1ガイドセンサ31Aの検知領域A1がマーカ81を通過するとき、マーカ81の位置とその時点での仮想点Pの位置とに基づいて目標操舵角θ1が算出され、実際の操舵角が目標操舵角θ1になるようにステアリング装置21が制御される。その後、第2ガイドセンサ31Bの検知領域A2がマーカ82を通過し、仮想点Pがマーカ82を通過せず、それらの間にズレ幅が生じていることが第2ガイドセンサ31Bによって検知されると、目標操舵角算出部120は、このズレ幅に基づいて先に算出した目標操舵角θ1を補正する。目標操舵角算出部120は、例えば、仮想点Pがマーカ81を通過するように目標操舵角θ1を補正する。これとは異なり、目標操舵角算出部120は、ズレ幅に応じた角度だけ目標操舵角θ1を増減してもよい。このような演算を行うための計算式(ズレ幅と目標操舵角θ1と補正後の目標操舵角との関係を示す式)が記憶装置11bに格納されていてもよい。 In the third embodiment, the target steering angle calculation unit 120 corrects the target steering angle θ of the vehicle 10 based on the position of the marker 8 detected in the detection area A2 and the position of the virtual point P. Referring to FIG. 15, the target steering angle calculation unit 120 measures, for example, the deviation width between the virtual point P in the left-right direction and the position of the mark 82 in the detection area A2, and determines the target steering angle θ based on this deviation width. to correct. Such correction may be performed when the detection area A1 of the first guide sensor 31A is located between two adjacent markers 8 (between markers 80 and 82 in FIG. 15). Specifically, when the detection region A1 of the first guide sensor 31A passes through the marker 81, the target steering angle θ1 is calculated based on the position of the marker 81 and the position of the virtual point P at that time, and the actual steering angle θ1 is calculated. The steering device 21 is controlled so that the steering angle becomes the target steering angle θ1. After that, it is detected by the second guide sensor 31B that the detection area A2 of the second guide sensor 31B passes through the marker 82, the virtual point P does not pass through the marker 82, and a deviation width is generated between them. The target steering angle calculation unit 120 corrects the previously calculated target steering angle θ1 based on this deviation width. The target steering angle calculation unit 120 corrects the target steering angle θ1 so that the virtual point P passes through the marker 81, for example. Unlike this, the target steering angle calculation unit 120 may increase or decrease the target steering angle θ1 by an angle according to the deviation width. A calculation formula for performing such a calculation (a formula showing the relationship between the deviation width, the target steering angle θ1 and the corrected target steering angle) may be stored in the storage device 11b.
[4.第4の実施形態]
 制御システムの一例(例えば、上述した第2の実施形態)では、検知領域A1におけるマーカ8(ガイド)の位置Q1の位置(言い換えれば、ズレ幅D1)を検知した時点で、マーカ8の位置Q1(ズレ幅D1)と検知領域A1から仮想点Pまでの距離L1(図10B、図11B)とに基づいて目標操舵角θを算出し、この目標操舵角θに操舵角を近づける制御が開始される。これとは異なり、検知領域A1におけるマーカ8の位置Q1を検知した時点よりも後の時点で、このマーカ8の後の時点での位置と仮想点Pとの相対位置に応じた目標操舵角θを算出して、目標操舵角θに向けた操舵角の制御を開始してもよい。例えば、検出領域A1から仮想点Pまでの間に複数のマーカ8が存在する場合、検出領域A1で位置を検知したマーカ8が仮想点に最も近いマーカ8となった時点で、マーカ8の位置のズレ幅と、仮想点Pに最も近いマーカ8と仮想点Pまでの前後方向における距離とに基づいて算出されてよい。
[4. Fourth Embodiment]
In an example of the control system (for example, the second embodiment described above), the position Q1 of the marker 8 (in other words, the deviation width D1) is detected when the position Q1 of the marker 8 (guide) in the detection area A1 is detected. The target steering angle θ is calculated based on (deviation width D1) and the distance L1 (FIGS. 10B and 11B) from the detection area A1 to the virtual point P, and control for bringing the steering angle closer to this target steering angle θ is started. Rudder. Unlike this, the target steering angle θ according to the relative position between the position at the time after the marker 8 and the virtual point P at the time after the time when the position Q1 of the marker 8 in the detection area A1 is detected. May be calculated to start control of the steering angle toward the target steering angle θ. For example, when a plurality of markers 8 exist between the detection area A1 and the virtual point P, the position of the marker 8 becomes the marker 8 closest to the virtual point when the marker 8 whose position is detected in the detection area A1 becomes the marker 8. It may be calculated based on the deviation width of the above and the distance between the marker 8 closest to the virtual point P and the virtual point P in the front-rear direction.
[4-1.操舵角制御のタイミング]
 図16A及び16Bは、本実施形態で実行される走行制御の概要を示す模式図である。図16Aに示すように、本実施形態では、第2の実施形態と同様に、走行経路を規定するガイドとして複数のマーカ8(例えば、磁気マーカ)が配置されており、これらの位置を仮想点Pが追従するように、車両10の走行制御が行われる。
[4-1. Steering angle control timing]
16A and 16B are schematic views showing an outline of the traveling control executed in the present embodiment. As shown in FIG. 16A, in the present embodiment, as in the second embodiment, a plurality of markers 8 (for example, magnetic markers) are arranged as guides defining the traveling route, and these positions are set as virtual points. The traveling control of the vehicle 10 is performed so that P follows.
 第2の実施形態で説明したガイドセンサ31と同様に、第1ガイドセンサ31Aも検知領域A1におけるガイドの位置に応じた信号を出力する。この信号に基づいて、制御システム1はマーカ8の位置Q1を検知する。図16Aに示す例では、検知領域A1内に到達したマーカ8(マーカ81と称する)の位置Q1を検知している。制御システムの一例においては、このマーカ81の位置Q1を検知した時点(図16Aで示した時点。以下では第1の時点と称する)で、このマーカ81の位置Q1と検知領域A1から仮想点Pまでの距離L1とに基づく目標操舵角θを算出し、これに仮想点Pが近づくように実際の操舵角(前輪15の向き)を制御される。この場合、図16Aに示すように、第1の時点においてマーカ81と仮想点Pとの間に位置するマーカ8(例えば、マーカ81のひとつ前に配置されるマーカ8。以下ではマーカ82と称する)を仮想点Pが通過しない可能性がある。例えば、図16Aで示す第1の時点においては、仮想点Pに近いマーカ82は仮想点Pの前方に位置している一方で、マーカ82よりも前方にあるマーカ81の位置Q1は車両10の中央位置に対して右方に大きくずれている。マーカ81の位置Q1を検知した第1の時点で、検知領域A1から仮想点Pまでの距離L1とマーカ81の位置Q1とに基づいて目標操舵角が算出され、操舵角がこの目標操舵角に向けて動かされると、仮想点Pはマーカ82の右側を通過することとなる。 Similar to the guide sensor 31 described in the second embodiment, the first guide sensor 31A also outputs a signal according to the position of the guide in the detection area A1. Based on this signal, the control system 1 detects the position Q1 of the marker 8. In the example shown in FIG. 16A, the position Q1 of the marker 8 (referred to as the marker 81) that has reached the detection area A1 is detected. In an example of the control system, at the time when the position Q1 of the marker 81 is detected (the time shown in FIG. 16A; hereinafter referred to as the first time point), the position Q1 of the marker 81 and the virtual point P from the detection area A1. The target steering angle θ is calculated based on the distance L1 to, and the actual steering angle (direction of the front wheel 15) is controlled so that the virtual point P approaches the target steering angle θ. In this case, as shown in FIG. 16A, the marker 8 located between the marker 81 and the virtual point P at the first time point (for example, the marker 8 arranged immediately before the marker 81; hereinafter referred to as the marker 82). ) May not pass through the virtual point P. For example, at the first time point shown in FIG. 16A, the marker 82 near the virtual point P is located in front of the virtual point P, while the position Q1 of the marker 81 in front of the marker 82 is the position Q1 of the vehicle 10. There is a large shift to the right with respect to the center position. At the first time point when the position Q1 of the marker 81 is detected, the target steering angle is calculated based on the distance L1 from the detection area A1 to the virtual point P and the position Q1 of the marker 81, and the steering angle is set to this target steering angle. When moved toward, the virtual point P will pass on the right side of the marker 82.
[4-2.目標操舵角の算出]
 第4実施形態では、このような仮想点Pの軌跡のずれを防止するため、以下のような処理を行う。検知領域A1でマーカ81の位置Q1を検知した第1の時点(図16Aの時点)では、その以前に検知したマーカ8(例えば、マーカ82)の位置に基づく目標操舵角θ(θ0、図16A参照)での操舵制御を続ける。第1の時点よりも後の第2の時点(図16Bの時点)において、検知領域A1において検知したマーカ81の位置Q1と仮想点Pとの相対位置に基づく目標操舵角θ(θ1)を算出し、目標操舵角θ(θ1)に応じた操舵角の制御を開始する。第2の時点は、第1の時点よりも仮想点Pがマーカ81に近づいた時点である。第2の時点の一例は、第1の時点での位置から車両10が所定距離だけ進んだ時点である。第2の時点の他の例は、マーカ81の1つ手前のマーカ82に仮想点Pが到来した時点である。第2の時点は、第1の時点から所定時間が経過した時点であってもよい。ここで所定時間は、例えば一定時間であってもよいし、車速に応じて変更される時間であってもよい。
[4-2. Calculation of target steering angle]
In the fourth embodiment, in order to prevent such a deviation of the locus of the virtual point P, the following processing is performed. At the first time point (time point in FIG. 16A) when the position Q1 of the marker 81 is detected in the detection area A1, the target steering angle θ (θ0, FIG. 16A) based on the position of the marker 8 (for example, the marker 82) detected before that time point. Continue steering control at (see). At the second time point (time point in FIG. 16B) after the first time point, the target steering angle θ (θ1) is calculated based on the relative position between the position Q1 of the marker 81 detected in the detection area A1 and the virtual point P. Then, the control of the steering angle according to the target steering angle θ (θ1) is started. The second time point is a time point when the virtual point P is closer to the marker 81 than the first time point. An example of the second time point is a time point when the vehicle 10 has advanced by a predetermined distance from the position at the first time point. Another example of the second time point is the time when the virtual point P arrives at the marker 82 immediately before the marker 81. The second time point may be a time point when a predetermined time has elapsed from the first time point. Here, the predetermined time may be, for example, a fixed time or a time changed according to the vehicle speed.
 図16Bに示す第2の時点での相対位置は、検知領域A1において検知したマーカ81の位置Q1(図16Aで示す第1の時点で検知したマーカ81のズレ幅D1)と、仮想点Pの位置と、第1の時点から第2の時点までの車両10が進んだ方向及び距離(換言すると、仮想点Pの軌跡)とに基づいて算出できる。より具体的には、図16Bに示す目標操舵角θ(θ1)は、例えば、以下の4つの要素に基づいて算出できる。(i)図16Aで示す第1の時点で検知したマーカ81の位置Q1(車両10の左右方向(車幅方向)における検知領域A1の中央位置からマーカ81のズレ幅D1)(ii)第1の時点から第2の時点までの間に、左右方向において車両10が移動した距離ΔD(図16B参照)(iii)車両10の前後方向における検知領域A1から仮想点Pまでの距離L1(iv)第1の時点から第2の時点までの間に、車両10が前後方向に進んだ距離ΔLこれら4つの要素に基づいて、第2の時点での仮想点Pとマーカ81との相対位置が得られ、この相対位置に基づいて目標操舵角θ(θ1)を算出できる。具体的には、車体の前後方向における仮想点Pとマーカ81との距離L2(L1-ΔL)と、車体の左右方向における仮想点Pとマーカ81とのズレ幅D2(D1-ΔD)とに基づいて目標操舵角θ(θ1)を算出できる。 The relative positions at the second time point shown in FIG. 16B are the position Q1 of the marker 81 detected in the detection area A1 (the deviation width D1 of the marker 81 detected at the first time point shown in FIG. 16A) and the virtual point P. It can be calculated based on the position and the direction and distance (in other words, the locus of the virtual point P) that the vehicle 10 has traveled from the first time point to the second time point. More specifically, the target steering angle θ (θ1) shown in FIG. 16B can be calculated based on, for example, the following four elements. (I) Position Q1 of the marker 81 detected at the first time point shown in FIG. 16A (shift width D1 of the marker 81 from the center position of the detection region A1 in the left-right direction (vehicle width direction) of the vehicle 10) (ii) first. Distance ΔD (see FIG. 16B) in which the vehicle 10 has moved in the left-right direction between the time point of Distance ΔL that the vehicle 10 traveled in the front-rear direction between the first time point and the second time point The relative position between the virtual point P and the marker 81 at the second time point is obtained based on these four elements. The target steering angle θ (θ1) can be calculated based on this relative position. Specifically, the distance L2 (L1-ΔL) between the virtual point P and the marker 81 in the front-rear direction of the vehicle body and the deviation width D2 (D1-ΔD) between the virtual point P and the marker 81 in the left-right direction of the vehicle body are set. The target steering angle θ (θ1) can be calculated based on this.
 ここでの目標操舵角θ(θ1)も、目標旋回半径Rを算出することにより求めることができる。目標旋回半径Rの算出は、例えば、ズレ幅D2と距離L2とを変数とする所定の計算式によって算出されてもよいし、ECU11の記憶装置11bなどに予め記憶されたデータ(例えば、目標旋回半径R、ズレ幅D2、及び、距離L2とが1対1対1で関連付けられている3次元配列データ)に基づいて算出されてもよい。 The target steering angle θ (θ1) here can also be obtained by calculating the target turning radius R. The target turning radius R may be calculated by, for example, a predetermined calculation formula having the deviation width D2 and the distance L2 as variables, or data stored in advance in the storage device 11b of the ECU 11 (for example, the target turning). It may be calculated based on the three-dimensional array data in which the radius R, the deviation width D2, and the distance L2 are associated with each other on a one-to-one-to-one basis.
 なお、目標操舵角θは、仮想点Pの位置と、図16Aに示した第1の時点で検知領域A1において検知したマーカ81の位置Q1のみならず、これらに加えて、第1の時点の以前に検知したマーカ8(例えば、マーカ82:図16Aを参照)の位置に基づいて算出されてもよい。例えば、検知領域A1において検知したマーカ82の位置をECU11の記憶装置11bなどに記憶させておき、この位置と、その後に検出したマーカ81の位置Q1と、仮想点Pの位置とに基づいて、目標操舵角θの算出を行ってもよい。この場合、目標操舵角θの算出に、マーカ81を検知する以前に検知したマーカ8(マーカ82など)の位置を用いるか否かを判定してもよい。例えば、マーカ82の位置を検知してから所定時間を経過していない場合や、仮想点Pがマーカ82を通り過ぎてない場合(マーカ82の位置を検知してからの車両10の走行距離が閾値以下である場合)に、マーカ82の位置を目標操舵角θの算出に用いてよいと判定できる。このようにすることでも、仮想点Pがマーカ82とマーカ81との双方を通過するように目標操舵角θを算出できる。仮想点Pがマーカ81に到達するまでの間に、目標操舵角θが変化してもよい。 The target steering angle θ is not only the position of the virtual point P and the position Q1 of the marker 81 detected in the detection area A1 at the first time point shown in FIG. 16A, but also at the first time point. It may be calculated based on the position of the previously detected marker 8 (eg, marker 82: see FIG. 16A). For example, the position of the marker 82 detected in the detection area A1 is stored in the storage device 11b of the ECU 11, and based on this position, the position Q1 of the marker 81 detected thereafter, and the position of the virtual point P, the position is stored. The target steering angle θ may be calculated. In this case, it may be determined whether or not to use the position of the marker 8 (marker 82 or the like) detected before the marker 81 is detected in the calculation of the target steering angle θ. For example, when a predetermined time has not passed since the position of the marker 82 was detected, or when the virtual point P has not passed the marker 82 (the mileage of the vehicle 10 after the position of the marker 82 is detected is the threshold value). In the following cases), it can be determined that the position of the marker 82 may be used for calculating the target steering angle θ. Also in this way, the target steering angle θ can be calculated so that the virtual point P passes through both the marker 82 and the marker 81. The target steering angle θ may change until the virtual point P reaches the marker 81.
[4-3.機能ブロック]
 図17は、本実施形態の制御システム1に実装される機能構成の一例を示す機能ブロック図である。本実施形態では、図17に示すように、本実施形態では、ガイド位置記憶部310が、制御システム1の機能として追加されている。ガイド位置記憶部310は、例えば、ECU11の記憶装置11bによって実現されてよい。
[4-3. Function block]
FIG. 17 is a functional block diagram showing an example of a functional configuration implemented in the control system 1 of the present embodiment. In the present embodiment, as shown in FIG. 17, in the present embodiment, the guide position storage unit 310 is added as a function of the control system 1. The guide position storage unit 310 may be realized by, for example, the storage device 11b of the ECU 11.
 ガイド位置記憶部310は、第1の時点でガイド位置検出部110によって検知されたマーカ8について、そのマーカ8の位置Q1に応じた値を記憶する。マーカ8の位置Q1に応じた値は、例えば、検知領域A1の中央位置とガイドの位置Q1とのズレ幅D1である。これに限らず、ガイド位置記憶部310は、ガイドの位置Q1に応じた値として、ガイドの位置Q1を示す情報(座標情報など)を記憶してもよい。 The guide position storage unit 310 stores the value of the marker 8 detected by the guide position detection unit 110 at the first time point according to the position Q1 of the marker 8. The value corresponding to the position Q1 of the marker 8 is, for example, the deviation width D1 between the center position of the detection area A1 and the position Q1 of the guide. Not limited to this, the guide position storage unit 310 may store information (coordinate information or the like) indicating the guide position Q1 as a value corresponding to the guide position Q1.
 目標操舵角算出部120は、第1の時点より後の第2の時点において、マーカ8の位置Q1に応じた値(例えば、ズレ幅D1)をガイド位置記憶部310に記憶された中から取得し、第1の時点で検知されたマーカ8の第2の時点での位置と仮想点Pとの相対位置に基づいて、目標操舵角θを算出する。第2の時点は、第1の時点よりも仮想点Pがマーカ81に近づいた時点である。第2の時点の一例は、仮想点Pに最も近いマーカがマーカ81となった時点である。第2の時点は、第1の時点から所定時間が経過した時点であってもよい。ここで所定時間は、例えば一定時間であってもよいし、車速に応じて変更される時間であってもよい。目標操舵角算出部120は、例えば、上述した4つの要素(i)~(iv)に基づいて目標旋回半径Rを算出し、この目標旋回半径Rに基づいて目標操舵角θ(θ1)を算出する。そして、ステアリングアクチュエータ制御部130は、第2の時点で、目標操舵角θに向けて操舵角が変化するようにステアリング装置21の制御を開始する。 The target steering angle calculation unit 120 acquires a value (for example, a deviation width D1) corresponding to the position Q1 of the marker 8 from those stored in the guide position storage unit 310 at the second time point after the first time point. Then, the target steering angle θ is calculated based on the relative position between the position of the marker 8 detected at the first time point at the second time point and the virtual point P. The second time point is a time point when the virtual point P is closer to the marker 81 than the first time point. An example of the second time point is the time point when the marker closest to the virtual point P becomes the marker 81. The second time point may be a time point when a predetermined time has elapsed from the first time point. Here, the predetermined time may be, for example, a fixed time or a time changed according to the vehicle speed. The target steering angle calculation unit 120 calculates the target turning radius R based on, for example, the above-mentioned four elements (i) to (iv), and calculates the target steering angle θ (θ1) based on the target turning radius R. do. Then, at the second time point, the steering actuator control unit 130 starts controlling the steering device 21 so that the steering angle changes toward the target steering angle θ.
[4-4.フローチャート]
 図18は、本実施形態で実行される自動走行処理の一例を示すフロー図である。図19は、本実施形態で実行される操舵角制御処理の一例を示すフロー図である。
[4-4. flowchart]
FIG. 18 is a flow chart showing an example of the automatic traveling process executed in the present embodiment. FIG. 19 is a flow chart showing an example of the steering angle control process executed in the present embodiment.
 図18に示すように、制御システム1は、第1ガイドセンサ31Aの検知領域A1においてマーカ8の位置Q1が検知されたか否かを判定する(ステップS301)。検知領域A1でマーカ8が検知された場合(ステップS301のYes)、制御システム1は、検知領域A1におけるマーカ8の位置Q1を示す値として、左右方向における検知領域A1の中央位置とガイドの位置Q1とのズレ幅D1を、ガイド位置記憶部310に記憶させる(ステップS302)。検知領域A1においてマーカ8の位置Q1が検知された時点は上述した第1の時点である。 As shown in FIG. 18, the control system 1 determines whether or not the position Q1 of the marker 8 is detected in the detection area A1 of the first guide sensor 31A (step S301). When the marker 8 is detected in the detection area A1 (Yes in step S301), the control system 1 sets the center position of the detection area A1 and the position of the guide in the left-right direction as a value indicating the position Q1 of the marker 8 in the detection area A1. The deviation width D1 from Q1 is stored in the guide position storage unit 310 (step S302). The time point at which the position Q1 of the marker 8 is detected in the detection area A1 is the above-mentioned first time point.
 制御システム1は、ガイド位置記憶部310に記憶させたマーカ8の位置を利用した操舵角の制御を行うタイミングが到来したか否かを判定する(ステップS303)。すなわち、制御システム1は、第2の時点が到来したか否かを判定する。制御システム1は、例えば、第1ガイドセンサ31Aでマーカ8を検知した第1の時点(ステップS301のYes)から所定時間経過した場合や、当該第1の時点から車両10が所定距離を走行した場合に、操舵角の制御を行うタイミング(第2の時点)が到来したと判定する。第2の時点は、仮想点Pに最も近いマーカが、ガイド位置記憶部310に記憶させたマーカ8となった時点であってもよい。操舵角の制御を行うタイミングが到来したと判定した場合(ステップS303のYes)、制御システム1は、図19に示した操舵角制御処理を実行する(ステップS304)。 The control system 1 determines whether or not the timing for controlling the steering angle using the position of the marker 8 stored in the guide position storage unit 310 has arrived (step S303). That is, the control system 1 determines whether or not the second time point has arrived. In the control system 1, for example, when a predetermined time has elapsed from the first time point (Yes in step S301) when the marker 8 is detected by the first guide sensor 31A, or when the vehicle 10 has traveled a predetermined distance from the first time point. In this case, it is determined that the timing for controlling the steering angle (second time point) has arrived. The second time point may be the time point when the marker closest to the virtual point P becomes the marker 8 stored in the guide position storage unit 310. When it is determined that the timing for controlling the steering angle has arrived (Yes in step S303), the control system 1 executes the steering angle control process shown in FIG. 19 (step S304).
 図19に進み、制御システム1は、ステップS302においてガイド位置記憶部310に記憶された中からズレ幅D1を取得する(ステップS311)。また、制御システム1は、第1ガイドセンサ31Aでマーカ8を検知した第1の時点から現在までに車両10が進んだ方向及び距離(仮想点Pの軌跡)を算出する(ステップS312)。ステップS312では、例えば、左右方向において車両10が移動した距離ΔD(図16B)と、前後方向において車両10が移動した距離ΔL(図16B)とを算出する。 Proceeding to FIG. 19, the control system 1 acquires the deviation width D1 from those stored in the guide position storage unit 310 in step S302 (step S311). Further, the control system 1 calculates the direction and distance (trajectory of the virtual point P) that the vehicle 10 has traveled from the first time point when the marker 8 is detected by the first guide sensor 31A to the present (step S312). In step S312, for example, the distance ΔD (FIG. 16B) in which the vehicle 10 has moved in the left-right direction and the distance ΔL (FIG. 16B) in which the vehicle 10 has moved in the front-rear direction are calculated.
 目標舵角算出部120は、ズレ幅D1と、検知領域A1から仮想点Pまでの距離L1と、ステップS312において計測した車両10が進んだ方向及び距離(仮想点Pの軌跡)とに基づいて、目標操舵角θを算出する(ステップS313)。目標操舵角算出部120は、例えば、ズレ幅D1から距離ΔDを引いた値D2と、距離L1から距離ΔLを引いた値L2とに基づいて、つまり第1の時点で検知したマーカ8の第2の時点での位置と仮想点Pとの相対位置に基づいて、目標操舵角θを算出する。ステアリングアクチュエータ制御部130は、ステップS313において算出した目標操舵角θに実際の操舵角を近づけるように、操舵角を制御する(ステップS314)。これにより、第1ガイドセンサ31Aでガイドを検知した時点(第1の時点)よりも後の第2の時点で、そのマーカ8の位置Q1に基づく目標操舵角θに操舵角(前輪15の方向)を近づける制御を開始することができる。 The target steering angle calculation unit 120 is based on the deviation width D1, the distance L1 from the detection area A1 to the virtual point P, and the direction and distance (trajectory of the virtual point P) that the vehicle 10 measured in step S312 has traveled. , The target steering angle θ is calculated (step S313). The target steering angle calculation unit 120 is, for example, based on the value D2 obtained by subtracting the distance ΔD from the deviation width D1 and the value L2 obtained by subtracting the distance ΔL from the distance L1, that is, the second marker 8 detected at the first time point. The target steering angle θ is calculated based on the relative position between the position at the time point 2 and the virtual point P. The steering actuator control unit 130 controls the steering angle so that the actual steering angle approaches the target steering angle θ calculated in step S313 (step S314). As a result, at the second time point after the time point when the guide is detected by the first guide sensor 31A (first time point), the steering angle (direction of the front wheel 15) becomes the target steering angle θ based on the position Q1 of the marker 8. ) Can be started.
 図18に戻り、車両10の異常を検知した場合(ステップS305のYes)、車両10の走行を停止させる制御を実行し(ステップS306)、自動走行処理を終了する。ステップS305では、例えば、第1ガイドセンサ31Aでマーカ8が検出されないまま所定距離を走行した場合に、異常を検知したと判定してよい。 Returning to FIG. 18, when an abnormality in the vehicle 10 is detected (Yes in step S305), the control for stopping the running of the vehicle 10 is executed (step S306), and the automatic running process is terminated. In step S305, for example, when the marker 8 travels a predetermined distance without being detected by the first guide sensor 31A, it may be determined that an abnormality has been detected.
[4-5.効果]
 以上のように、第4の実施形態では、第1ガイドセンサ31Aがガイド(マーカ8)を検知した第1時点よりも後の第2時点で、このマーカ8の位置と仮想点Pとの相対位置に基づく目標操舵角θを算出する。このようにすることで、図16A及び図16Bを参照しながら説明したように、仮想点Pが複数のマーカ8の位置により効果的に追従できる。
[4-5. effect]
As described above, in the fourth embodiment, the position of the marker 8 and the virtual point P are relative to each other at the second time point after the first time point when the first guide sensor 31A detects the guide (marker 8). The target steering angle θ based on the position is calculated. By doing so, as described with reference to FIGS. 16A and 16B, the virtual point P can effectively follow the positions of the plurality of markers 8.
[5.変形例]
 本発明は以上説明した実施形態に限られず、種々の変更がなされてよい。例えば、実施形態では、ガイドセンサ31(第1ガイドセンサ31A、第2ガイドセンサ31B)として、磁気や電磁波などを検知するセンサを用いる場合について説明したが、ガイドの位置Q1,Q2の検知は、種々のセンサを用いることで行われてもよい。
[5. Modification example]
The present invention is not limited to the embodiments described above, and various modifications may be made. For example, in the embodiment, a case where a sensor for detecting magnetism or electromagnetic waves is used as the guide sensor 31 (first guide sensor 31A, second guide sensor 31B) has been described, but the detection of the guide positions Q1 and Q2 is performed. This may be done by using various sensors.
 例えば、ガイドとして走行路に埋設されたRFタグの情報(ID情報など)をRFIDリーダで読み取ることによってマーカ8(ガイド)の位置Q1を検知してもよい。つまり、RFタグをマーカ8として用いてもよい。この場合、ガイドセンサ31(第1ガイドセンサ31A、第2ガイドセンサ31B)として、RFIDリーダを用いることが可能である。例えば、ガイドセンサ31であるRFIDリーダがRFタグの信号強度を計測してよい。そして、ガイド位置検知部110は、RFIDリーダで計測されたRFタグの信号強度に基づいてガイドセンサ31とRFタグとの距離を判定し、検知領域A1におけるマーカ8の位置Q1を検知してよい。また、例えば、ガイドセンサ31は、検知領域A1内で左右方向に並ぶ複数のRFIDリーダを有してもよい。この場合、ガイド位置検知部110は、マーカ8の位置Q1を、複数のRFIDリーダでそれぞれ検出したRFタグの信号強度に基づいて算出してもよい。RFタグをマーカ8として用いることにより、走行路に埋設されたRFタグと、車両10に搭載されたRFIDリーダとの相対的な位置に基づいて目標操舵角θを算出するとともに、この目標操舵角θと、RFタグから読み取った右左折などの情報とに基づいて、実際の操舵角を制御することが可能になる。 For example, the position Q1 of the marker 8 (guide) may be detected by reading the information (ID information, etc.) of the RF tag embedded in the traveling path as a guide with an RFID reader. That is, the RF tag may be used as the marker 8. In this case, it is possible to use an RFID reader as the guide sensor 31 (first guide sensor 31A, second guide sensor 31B). For example, the RFID reader, which is the guide sensor 31, may measure the signal strength of the RF tag. Then, the guide position detection unit 110 may determine the distance between the guide sensor 31 and the RF tag based on the signal strength of the RF tag measured by the RFID reader, and detect the position Q1 of the marker 8 in the detection area A1. .. Further, for example, the guide sensor 31 may have a plurality of RFID readers arranged in the left-right direction in the detection area A1. In this case, the guide position detection unit 110 may calculate the position Q1 of the marker 8 based on the signal strength of the RF tag detected by each of the plurality of RFID readers. By using the RF tag as the marker 8, the target steering angle θ is calculated based on the relative position between the RF tag embedded in the traveling path and the RFID reader mounted on the vehicle 10, and the target steering angle is calculated. It is possible to control the actual steering angle based on θ and information such as turning left and right read from the RF tag.
 さらに他の例では、ガイドは、ECU11の記憶装置11bに記録されている3次元マップ又は2次元マップにおいて規定されている走行経路を示す複数のポイント(ウェイポイント、座標)であってもよい。この場合、制御システム1は、外界センサ31(例えば、LiDAR)で取得したデータから現在の車両10の位置を取得し、ウェイポイントが車両10に規定されている検知領域A1を通過するときに検知領域A1におけるウェイポイントの通過位置(車体の左右方向での中心からウェイポイントまでの距離)を算出し、この検知領域A1におけるウェイポイントの通過位置と仮想点Pの位置とに基づいて、目標操舵角θが算出されてよい。つまり、検知領域A1よりも後方に規定された仮想点Pがウェイポイントを通過するように目標操舵角θが算出されてよい。 In yet another example, the guide may be a plurality of points (waypoints, coordinates) indicating a traveling route defined in the three-dimensional map or the two-dimensional map recorded in the storage device 11b of the ECU 11. In this case, the control system 1 acquires the current position of the vehicle 10 from the data acquired by the external sensor 31 (for example, LiDAR), and detects when the waypoint passes through the detection region A1 defined in the vehicle 10. The passing position of the waypoint in the area A1 (distance from the center in the left-right direction of the vehicle body to the waypoint) is calculated, and the target steering is performed based on the passing position of the waypoint and the position of the virtual point P in the detection area A1. The angle θ may be calculated. That is, the target steering angle θ may be calculated so that the virtual point P defined behind the detection area A1 passes through the waypoint.
 また、第1及び第4の実施形態においても、第2の実施形態として説明したように、仮想点Pの位置は車体の左右方向及び/又は車体の前後方向において変更されてもよい。 Further, also in the first and fourth embodiments, as described as the second embodiment, the position of the virtual point P may be changed in the left-right direction of the vehicle body and / or in the front-rear direction of the vehicle body.
 また、第1、第2、及び第4の実施形態においても、第3の実施形態として説明したように、ガイドセンサ31よりも後方に、第2ガイドセンサ31Bが取り付けられてもよい。そして、この第2ガイドセンサ31Bの検知領域A2におけるガイドの位置と、ガイドセンサ31(第1ガイドセンサ31A)の検知領域A1におけるガイドの位置と、仮想点Pの位置とに基づいて、車両10の操舵角の制御が行われてもよい。 Further, also in the first, second, and fourth embodiments, as described as the third embodiment, the second guide sensor 31B may be attached behind the guide sensor 31. Then, based on the position of the guide in the detection area A2 of the second guide sensor 31B, the position of the guide in the detection area A1 of the guide sensor 31 (first guide sensor 31A), and the position of the virtual point P, the vehicle 10 The steering angle may be controlled.
 上述したように、第2の実施形態において、仮想点Pの位置は必ずしも変更されなくてもよい。この場合、マーカ8の位置(車体の左右方向での中央位置からマーカ8までのズレ幅D1)と、検知領域A1から仮想点Pまでの前後方向における距離L1とに基づいて目標操舵角θが算出される(以下において第1の算出処理と称する)。一方、第4の実施形態においては、検知領域A1でマーカ81の位置Q1を検知した第1の時点(図16Aの時点)よりも後の第2の時点(図16Bの時点)において、マーカ81の第2の時点での位置と仮想点Pとの相対位置に基づく目標操舵角θを算出している(第2の算出処理)。この2つの算出処理が選択的に実行されてよい。 As described above, in the second embodiment, the position of the virtual point P does not necessarily have to be changed. In this case, the target steering angle θ is based on the position of the marker 8 (the deviation width D1 from the center position in the left-right direction of the vehicle body to the marker 8) and the distance L1 in the front-rear direction from the detection area A1 to the virtual point P. It is calculated (hereinafter referred to as the first calculation process). On the other hand, in the fourth embodiment, the marker 81 is at a second time point (time point of FIG. 16B) after the first time point (time point of FIG. 16A) when the position Q1 of the marker 81 is detected in the detection area A1. The target steering angle θ is calculated based on the relative position between the position at the second time point and the virtual point P (second calculation process). These two calculation processes may be selectively executed.
[6.むすび]
 (1)以上説明したように、走行制御システム1は、走行路に規定されているガイドに沿って走行する車両10に搭載される。走行制御システム1は、ガイドの位置に応じた信号を出力するガイドセンサ31と、車体の左右方向に沿って車体に規定された検出領域A1が車両10の走行時にガイドを通過するときに、検出領域A1におけるガイドの位置をガイドセンサ31の出力に基づいて検知するガイド位置検知部110と、検出領域A1よりも後方に規定されている仮想点Pと、ガイド位置検知部110によって検知された検知領域A1におけるガイドの位置とに基づいて、車両10の目標操舵角θを算出する目標操舵角算出部120とを有する。ここで、例えば、電線などである誘導線7や、磁気マーカやRFタグなどであるマーカ8、ECU11の記憶装置11bに記録されている3次元マップ又は2次元マップ上のウェイポイントをガイドとして用いることができ、磁気センサやRF-IDリーダ、LiDARをガイドセンサ31として用いることができる。このシステムによれば、車両10が走行経路に沿って旋回する際、後輪16の軌跡を適切化することができる。
[6. Conclusion]
(1) As described above, the travel control system 1 is mounted on the vehicle 10 traveling along the guide defined in the travel path. The travel control system 1 detects when the guide sensor 31 that outputs a signal according to the position of the guide and the detection region A1 defined on the vehicle body along the left-right direction of the vehicle body passes through the guide while the vehicle 10 is traveling. The guide position detection unit 110 that detects the position of the guide in the area A1 based on the output of the guide sensor 31, the virtual point P defined behind the detection area A1, and the detection detected by the guide position detection unit 110. It has a target steering angle calculation unit 120 that calculates a target steering angle θ of the vehicle 10 based on the position of the guide in the region A1. Here, for example, a guide wire 7 such as an electric wire, a marker 8 such as a magnetic marker or an RF tag, and a waypoint on a three-dimensional map or a two-dimensional map recorded in the storage device 11b of the ECU 11 are used as guides. Therefore, a magnetic sensor, an RF-ID reader, and LiDAR can be used as the guide sensor 31. According to this system, when the vehicle 10 turns along the traveling path, the locus of the rear wheels 16 can be optimized.
 (2)目標操舵角算出部120は、車両10の走行による仮想点Pの軌跡が、ガイド位置検知部110によって検知された検出領域A1におけるガイドの位置を通過するように目標操舵角θを算出してもよい。これによれば、走行経路に対する車両10の追従性を向上させることができる。 (2) The target steering angle calculation unit 120 calculates the target steering angle θ so that the locus of the virtual point P due to the traveling of the vehicle 10 passes through the guide position in the detection region A1 detected by the guide position detection unit 110. You may. According to this, it is possible to improve the followability of the vehicle 10 with respect to the traveling route.
 (3)ガイドセンサ31は、検知領域A1に配置されてよい。ガイドセンサ31は、車両10の走行時にガイドセンサ31がガイドを通過するときに、ガイドセンサ31におけるガイドの位置に応じた信号を出力するセンサであってもよい。これによれば、ガイドセンサ31を用いて走行経路の位置を検知することができる。 (3) The guide sensor 31 may be arranged in the detection area A1. The guide sensor 31 may be a sensor that outputs a signal according to the position of the guide in the guide sensor 31 when the guide sensor 31 passes through the guide while the vehicle 10 is traveling. According to this, the position of the traveling path can be detected by using the guide sensor 31.
 (4)ガイド位置検知部110は、第1の時点で検知されたマーカ81の位置を第1ガイドの位置Q1として検知し、目標操舵角算出部120は、第1の時点よりも後の第2の時点において、第2の時点での第1ガイドの位置Q1と仮想点Pとの相対位置に基づいて目標操舵角θを算出してよい。これによれば,仮想点Pをガイドに効果的に追従させることができる。 (4) The guide position detection unit 110 detects the position of the marker 81 detected at the first time point as the position Q1 of the first guide, and the target steering angle calculation unit 120 is the second after the first time point. At the second time point, the target steering angle θ may be calculated based on the relative position between the position Q1 of the first guide and the virtual point P at the second time point. According to this, the virtual point P can be effectively followed by the guide.
 (5)第2の時点は、第1の時点での位置から車両が所定距離だけ進んだ時点、マーカ81より前に検知されたマーカ82に仮想点Pが到来した時点、又は第1の時点から所定時間が経過した時点であってよい。 (5) The second time point is the time when the vehicle has advanced by a predetermined distance from the position at the first time point, the time when the virtual point P arrives at the marker 82 detected before the marker 81, or the first time point. It may be a time when a predetermined time has elapsed from.
 (6)目標操舵角算出部120は、検知領域A1から仮想点Pまでの距離L1と、ガイド位置検知部110によって検知された検知領域A1におけるガイドの位置Q1とに基づいて目標操舵角θを算出してよい。 (6) The target steering angle calculation unit 120 determines the target steering angle θ based on the distance L1 from the detection area A1 to the virtual point P and the guide position Q1 in the detection area A1 detected by the guide position detection unit 110. You may calculate.
 (7)走行制御システム1は、車両10の運転状況に応じて仮想点Pの位置を変更する仮想点位置変更部210を含んでもよい。これによれば、車両10の運転状況に応じて車両10の挙動を適切に制御することができる。 (7) The travel control system 1 may include a virtual point position changing unit 210 that changes the position of the virtual point P according to the driving situation of the vehicle 10. According to this, the behavior of the vehicle 10 can be appropriately controlled according to the driving condition of the vehicle 10.
 (8)仮想点位置変更部210は、車両10の運転状況に応じて車体左右方向に仮想点Pの位置を変更してもよい。これによれば、車両10が旋回や右左折する場合の車両の挙動を適切に制御することができる。 (8) The virtual point position changing unit 210 may change the position of the virtual point P in the left-right direction of the vehicle body according to the driving condition of the vehicle 10. According to this, it is possible to appropriately control the behavior of the vehicle when the vehicle 10 turns or turns left or right.
 (9)仮想点位置変更部210は、車両10の運転状況に応じて車体前後方向に仮想点Pの位置を変更してもよい。これによれば、車両10の運転状況に応じて、走行経路に対する車両10の追従性と、車両10の乗り心地とを適切に制御することができる。 (9) The virtual point position changing unit 210 may change the position of the virtual point P in the front-rear direction of the vehicle body according to the driving condition of the vehicle 10. According to this, it is possible to appropriately control the followability of the vehicle 10 to the traveling path and the riding comfort of the vehicle 10 according to the driving condition of the vehicle 10.
 (10)ガイドセンサ31の出力に基づいて検知された車体左右方向におけるガイドの位置と、仮想点Pの位置とに応じた目標旋回軌跡θを特定する目標旋回半径Rを算出し、目標旋回軌跡に対応する目標旋回半径Rに基づいて目標操舵角θを算出してもよい。これによれば、車両10の目標旋回軌跡を考慮して目標操舵角を算出できる。 (10) The target turning radius R that specifies the target turning radius θ according to the position of the guide in the left-right direction of the vehicle body detected based on the output of the guide sensor 31 and the position of the virtual point P is calculated, and the target turning radius R is calculated. The target steering angle θ may be calculated based on the target turning radius R corresponding to the above. According to this, the target steering angle can be calculated in consideration of the target turning locus of the vehicle 10.
 (11)走行制御システム1は、検出領域A1よりも後方に設置されている、ガイドの位置に応じた信号を出力する第2ガイドセンサ31Bをさらに有してもよい。また、走行制御システム1は、第2ガイドセンサ31の出力に基づいて目標操舵角θを補正してもよい。これによれば、走行経路に対する車両10の追従性をより効果的に向上させることができる。 (11) The travel control system 1 may further include a second guide sensor 31B, which is installed behind the detection area A1 and outputs a signal according to the position of the guide. Further, the travel control system 1 may correct the target steering angle θ based on the output of the second guide sensor 31. According to this, the followability of the vehicle 10 to the traveling route can be improved more effectively.
 (12)ステアリング装置21は、走行制御システム1と、ステアリング17と、ステアリング17を回転させるアクチュエータとを有している。このステアリング装置21によれば、車両10が走行経路に沿って旋回する際、後輪16の軌跡を適切化できる。 (12) The steering device 21 has a traveling control system 1, a steering 17, and an actuator for rotating the steering 17. According to the steering device 21, when the vehicle 10 turns along the traveling path, the locus of the rear wheels 16 can be optimized.
 (13)自動運転車両である車両10は、走行制御システム1を有している。これによれば、車両10が走行経路に沿って旋回する際、後輪16の軌跡を適切化できる。 (13) The vehicle 10 which is an autonomous driving vehicle has a travel control system 1. According to this, when the vehicle 10 turns along the traveling path, the trajectory of the rear wheel 16 can be optimized.
 (14)車両10において、仮想点Pは平面視において左右の後輪16のタイヤの間に配置される。これによれば、車両10が走行経路に沿って旋回する際、後輪16の軌跡を適切化できる。

 
(14) In the vehicle 10, the virtual point P is arranged between the tires of the left and right rear wheels 16 in a plan view. According to this, when the vehicle 10 turns along the traveling path, the trajectory of the rear wheel 16 can be optimized.

Claims (14)

  1.  走行路に規定されているガイドに沿って走行する車両に搭載される走行制御システムであって、
     前記ガイドの位置に応じた信号を出力する第1センサと、
     車体左右方向に沿って車体に規定された領域が車両の走行時に前記ガイドを通過するときに、前記領域における前記ガイドの位置を前記第1センサの出力に基づいて検知するガイド位置検知部と、
     前記領域よりも後方に規定されている仮想点と、前記ガイド位置検知部によって検知された前記領域における前記ガイドの位置とに基づいて、前記車両の目標操舵角を算出する目標操舵角算出部とを有する
     走行制御システム。
    It is a travel control system installed in a vehicle that travels along a guide specified on the travel path.
    The first sensor that outputs a signal according to the position of the guide and
    A guide position detecting unit that detects the position of the guide in the area based on the output of the first sensor when the area defined by the vehicle body passes through the guide while the vehicle is traveling along the left-right direction of the vehicle body.
    A target steering angle calculation unit that calculates a target steering angle of the vehicle based on a virtual point defined behind the region and the position of the guide in the region detected by the guide position detection unit. Driving control system.
  2.  前記目標操舵角算出部は、前記車両の走行による前記仮想点の軌跡が、前記ガイド位置検知部によって検知された前記領域における前記ガイドの位置を通過するように前記目標操舵角を算出する
     請求項1に記載される走行制御システム。
    The target steering angle calculation unit calculates the target steering angle so that the locus of the virtual point due to the traveling of the vehicle passes the position of the guide in the region detected by the guide position detection unit. The traveling control system according to 1.
  3.  前記第1センサは前記領域に配置され、車両の走行時に前記第1センサが前記ガイドを通過するときに、前記第1センサにおける前記ガイドの位置に応じた信号を出力するセンサである
     請求項1に記載される走行制御システム。
    The first sensor is arranged in the region, and is a sensor that outputs a signal according to the position of the guide in the first sensor when the first sensor passes through the guide while the vehicle is traveling. The driving control system described in.
  4.  前記ガイド位置検知部は、第1の時点で検知されたガイドの位置を第1ガイドの位置として検知し、
     前記目標操舵角算出部は、前記第1の時点よりも後の第2の時点において、前記第2の時点での第1ガイドの位置と仮想点との相対位置に基づいて前記目標操舵角を算出する
     請求項1に記載される走行制御システム。
    The guide position detecting unit detects the position of the guide detected at the first time point as the position of the first guide, and determines the position of the guide.
    The target steering angle calculation unit determines the target steering angle at a second time point after the first time point based on the relative position between the position of the first guide and the virtual point at the second time point. The traveling control system according to claim 1 to be calculated.
  5.  前記第2の時点は、前記第1の時点での位置から車両が所定距離だけ進んだ時点、前記第1ガイドより前に検知された第2ガイドに仮想点Pが到来した時点、又は前記第1の時点から所定時間が経過した時点である
     請求項4に記載される走行制御システム。
    The second time point is a time when the vehicle has advanced by a predetermined distance from the position at the first time point, a time point when the virtual point P arrives at the second guide detected before the first guide, or the second time point. The traveling control system according to claim 4, wherein a predetermined time has elapsed from the time point 1.
  6.  前記目標操舵角算出部は、前記領域から前記仮想点までの距離と、前記ガイド位置検知部によって検知された前記領域における前記ガイドの位置とに基づいて前記目標操舵角を算出する
     請求項1に記載される走行制御システム。
    The target steering angle calculation unit calculates the target steering angle based on the distance from the region to the virtual point and the position of the guide in the region detected by the guide position detection unit according to claim 1. The driving control system described.
  7.  車両の運転状況に応じて前記仮想点の位置を変更する仮想点位置変更部を含む
     請求項1に記載される走行制御システム。
    The travel control system according to claim 1, further comprising a virtual point position changing unit that changes the position of the virtual point according to the driving situation of the vehicle.
  8.  前記仮想点位置変更部は、車両の運転状況に応じて車体左右方向に前記仮想点の位置を変更する
     請求項7に記載される走行制御システム。
    The traveling control system according to claim 7, wherein the virtual point position changing unit changes the position of the virtual point in the left-right direction of the vehicle body according to the driving condition of the vehicle.
  9.  前記仮想点位置変更部は、車両の運転状況に応じて車体前後方向に前記仮想点の位置を変更する
     請求項7に記載される走行制御システム。
    The traveling control system according to claim 7, wherein the virtual point position changing unit changes the position of the virtual point in the front-rear direction of the vehicle body according to the driving condition of the vehicle.
  10.  前記目標操舵角算出部は、
     前記第1センサの出力に基づいて検知された車体左右方向における前記ガイドの位置と、前記仮想点の位置とに応じた目標旋回軌跡を特定する値を算出し、
     前記目標旋回軌跡に対応する値に基づいて前記目標操舵角を算出する
     請求項1に記載される走行制御システム。
    The target steering angle calculation unit is
    A value for specifying the target turning locus according to the position of the guide in the left-right direction of the vehicle body detected based on the output of the first sensor and the position of the virtual point is calculated.
    The traveling control system according to claim 1, wherein the target steering angle is calculated based on a value corresponding to the target turning locus.
  11.  前記領域よりも後方に設置されている、前記ガイドの位置に応じた信号を出力する第2センサをさらに有し、
     前記第2センサの出力に基づいて前記目標操舵角を補正する
     請求項1に記載される走行制御システム。
    It further has a second sensor, which is installed behind the area and outputs a signal according to the position of the guide.
    The travel control system according to claim 1, wherein the target steering angle is corrected based on the output of the second sensor.
  12.  請求項1に記載される走行制御システムと、
     ステアリングと、
     前記ステアリングを回転させるアクチュエータとを有している
     ステアリング装置。
    The driving control system according to claim 1 and
    Steering and
    A steering device having an actuator for rotating the steering.
  13.  請求項1に記載される走行制御システム
     を有している自動運転車両。
    An autonomous driving vehicle having the travel control system according to claim 1.
  14.  前記仮想点は平面視において左右の後輪のタイヤの間に配置される
     請求項13に記載される自動運転車両。

     
    The self-driving vehicle according to claim 13, wherein the virtual point is arranged between the tires of the left and right rear wheels in a plan view.

PCT/JP2021/021532 2020-09-30 2021-06-07 Traveling control system, steering device, and autonomous driving vehicle WO2022070513A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022553458A JPWO2022070513A1 (en) 2020-09-30 2021-06-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020166083 2020-09-30
JP2020-166083 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022070513A1 true WO2022070513A1 (en) 2022-04-07

Family

ID=80949804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021532 WO2022070513A1 (en) 2020-09-30 2021-06-07 Traveling control system, steering device, and autonomous driving vehicle

Country Status (2)

Country Link
JP (1) JPWO2022070513A1 (en)
WO (1) WO2022070513A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50114826U (en) * 1974-03-01 1975-09-19
JPH06202733A (en) * 1992-08-27 1994-07-22 Samsung Electron Co Ltd Automatic traveling control method of unmanned carrier
JPH0713627A (en) * 1993-06-25 1995-01-17 Meidensha Corp Steering control method for unmanned carrier
JP2005202478A (en) * 2004-01-13 2005-07-28 Denso Corp Automatic traveling system for vehicle
JP2020140424A (en) * 2019-02-28 2020-09-03 日本車輌製造株式会社 Transport vehicle and steering control program for transport vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50114826U (en) * 1974-03-01 1975-09-19
JPH06202733A (en) * 1992-08-27 1994-07-22 Samsung Electron Co Ltd Automatic traveling control method of unmanned carrier
JPH0713627A (en) * 1993-06-25 1995-01-17 Meidensha Corp Steering control method for unmanned carrier
JP2005202478A (en) * 2004-01-13 2005-07-28 Denso Corp Automatic traveling system for vehicle
JP2020140424A (en) * 2019-02-28 2020-09-03 日本車輌製造株式会社 Transport vehicle and steering control program for transport vehicle

Also Published As

Publication number Publication date
JPWO2022070513A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
JP6361567B2 (en) Automated driving vehicle system
KR101846072B1 (en) Automatic driving vehicle system
CN106575477B (en) Drive assistance device and driving assistance method
JP6365390B2 (en) Lane change support device
JP6193898B2 (en) Control device for autonomous vehicle
US20220083064A1 (en) Unobtrusive driving assistance method and system for a vehicle to avoid hazards
CN103889825B (en) Method and device for assisting a driver of a motor vehicle
JP5195079B2 (en) Driving assistance device
JP5139939B2 (en) Vehicle deceleration support device
CN106394554A (en) Driving support device
US20190079537A1 (en) Automatic guided vehicle
CN205880660U (en) Adopt in -wheel motor driving's AGV dolly
JP2015148533A (en) Vehicle route selection apparatus and vehicle route selection method
JP6972793B2 (en) Driving control method and driving control device for driving support vehicles
CN109844843A (en) Method for checking possible condition of overtaking other vehicles
CN108712982A (en) A kind of method for being outputed motor vehicles from parking space by least semiautomatic control, driver assistance system and motor vehicles
CN114954632B (en) Vehicle control method, vehicle control system and vehicle
JP7047659B2 (en) Control device and control method for automatic guided vehicle
WO2023278152A1 (en) Estimating angle of a vehicle wheel based on non-steering variables
WO2022070513A1 (en) Traveling control system, steering device, and autonomous driving vehicle
JPH06189610A (en) Automotive vehicle equipped with obstacle sensor
JP6972792B2 (en) Driving control method and driving control device for driving support vehicles
CN112666950B (en) Unmanned automobile obstacle avoidance method based on ultrasonic distance detection
CN112622898A (en) Vehicle control method and device based on lane center and vehicle
JP5996391B2 (en) Turning support device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874819

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553458

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874819

Country of ref document: EP

Kind code of ref document: A1