WO2022070162A1 - Target alignment for vehicle sensor calibration - Google Patents
Target alignment for vehicle sensor calibration Download PDFInfo
- Publication number
- WO2022070162A1 WO2022070162A1 PCT/IB2021/059058 IB2021059058W WO2022070162A1 WO 2022070162 A1 WO2022070162 A1 WO 2022070162A1 IB 2021059058 W IB2021059058 W IB 2021059058W WO 2022070162 A1 WO2022070162 A1 WO 2022070162A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- target
- support stand
- stand
- actuator
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 42
- 230000000712 assembly Effects 0.000 claims description 33
- 238000000429 assembly Methods 0.000 claims description 33
- 230000008569 process Effects 0.000 description 6
- 230000001360 synchronised effect Effects 0.000 description 4
- 230000003044 adaptive effect Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 230000004297 night vision Effects 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004438 eyesight Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M17/00—Testing of vehicles
- G01M17/007—Wheeled or endless-tracked vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/26—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
- G01B11/275—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing wheel alignment
- G01B11/2755—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing wheel alignment using photoelectric detection means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
- G01S7/4004—Means for monitoring or calibrating of parts of a radar system
- G01S7/4026—Antenna boresight
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
- G01S7/4052—Means for monitoring or calibrating by simulation of echoes
- G01S7/4082—Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder
- G01S7/4086—Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder in a calibrating environment, e.g. anechoic chamber
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2210/00—Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
- G01B2210/10—Wheel alignment
- G01B2210/28—Beam projector and related sensors, camera, inclinometer or other active sensing or projecting device
- G01B2210/283—Beam projectors and related sensors
- G01B2210/286—Projecting a light pattern on the wheel or vehicle body
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/93—Sonar systems specially adapted for specific applications for anti-collision purposes
- G01S15/931—Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
- G01S17/931—Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9323—Alternative operation using light waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9324—Alternative operation using ultrasonic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9327—Sensor installation details
- G01S2013/93271—Sensor installation details in the front of the vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/497—Means for monitoring or calibrating
Definitions
- the present invention is directed to a vehicle alignment/calibration method and system, and in particular to a method and system for aligning a vehicle and sensors of a vehicle to one or more autonomously positioned alignment/calibration targets.
- a conventional ADAS system will utilize one or more sensors. While these sensors are aligned and/or calibrated by the manufacturer on the assembly line (or at another time or another facility), the sensors may need realignment or recalibration periodically, such as due to the effects of wear and tear, or misalignment due to driving conditions or through mishap, such as an accident.
- ADAS system may comprise one or more subsystems, e.g., adaptive cruise control (ACC), lane departure warning (LDW), parking assistance, and/or a rear-view camera, each of which may periodically require individual realignment or recalibration.
- ACC adaptive cruise control
- LWD lane departure warning
- parking assistance e.g., parking assistance
- rear-view camera e.g., rear-view camera
- the present invention provides a method and system for aligning and/or calibrating a vehicle equipped sensor by aligning the vehicle and thereby the vehicle equipped sensor with one or more calibration targets positioned by a target.
- a target adjustment stand positions the appropriate targets according to a known reference position.
- the vehicle is also positioned and centered on a vehicle support stand with respect to this known reference position.
- the vehicle sensor is calibrated, such as via an original equipment manufacturer (“OEM”) calibration process.
- OEM original equipment manufacturer
- a rear thrust angle for the vehicle may be determined, which may be used to adjust the position of the positioned targets.
- a system for aligning a target to an equipped vehicle for calibration of a sensor on the equipped vehicle includes a vehicle support stand upon which an equipped vehicle is stationarily disposed in an established known position for calibration of a sensor on the equipped vehicle, and a target adjustment stand including a base frame, a target mount moveably mounted on the base frame with the target mount configured to support a target.
- the target adjustment frame includes a plurality of actuators configured to selectively move the target mount relative to the base frame, wherein the base frame is longitudinally moveable along a track.
- the target adjustment stand is configured to position the target into a calibration position relative to the sensor on the equipped vehicle by longitudinal movement of the base frame relative to the vehicle support stand and by movement of the target mount based on the established known position of the equipped vehicle on the vehicle support stand whereby the sensor is able to be calibrated using the target.
- the track includes rails along which the base frame is moveable, either manually or automatically.
- the vehicle support stand comprises a plurality of locator arms that are extendable and retractable and configured to press against tire and wheel assemblies of the equipped vehicle to orient the equipped vehicle on the vehicle support stand.
- the locator arms may comprise sets of forward opposed arms and rearward opposed arms, where the forward opposed arms are configured to extend equally in opposite directions from each other and the rearward opposed arms are configured to extend equally in opposite directions from each other.
- the system may further include one or more distance sensors that are operable to determine the distance between the vehicle support stand and the target adjustment stand.
- the distance sensors may be used to determine the distance relative to a rotatable base member on the target adjustment stand for use in adjusting both the lateral distance between the vehicle and the target, as well as the rotational orientation of the target on the target adjustment stand.
- the vehicle support stand may utilize moveable forward and rearward tire supports upon which the opposed sets of tires of the equipped vehicle are disposed, such as forward and rearward rollers.
- the forward tire supports each comprise two sets of rollers that are angled together in a V-shaped configuration for locating the equipped vehicle.
- the vehicle support stand comprises a forward centering device disposed beneath the equipped vehicle when the equipped vehicle is on the vehicle support stand, with the forward centering device having a pair of locator arms configured to extend outwardly synchronously to engage an inner side of the forward tire and wheel assemblies of the equipped vehicle.
- the vehicle support stand may further include a rearward centering device disposed beneath the equipped vehicle when the equipped vehicle when on the vehicle support stand, with the rearward centering device having a pair of locator arms configured to extend outwardly synchronously to engage an inner side of the rearward tire and wheel assemblies of the equipped vehicle.
- the system further includes a controller configured to selectively actuate the actuators of the target adjustment stand to position the target, where the actuators are operable to move the target mount longitudinally and laterally with respect to a longitudinal axis of the vehicle when positioned in front of the target adjustment stand, vertically, and rotationally about a vertical axis.
- the target adjustment frame includes a base member movably mounted to the base frame and a tower joined to the base member with the target mount supported by the tower, and with the actuators including a base member actuator to selectively move the base member horizontally relative to the base frame and a tower actuator to selectively rotate the tower relative to the base member, with the controller configured to actuate the actuators to position the target based on the orientation of the vehicle on the vehicle support stand.
- the base member is moveable longitudinally by the base member actuator relative to the longitudinal axis of the vehicle positioned in front of the target adjustment stand, and the tower is rotatable about a vertical axis by the tower actuator.
- the target adjustment frame includes a target mount rail disposed on the tower, with a first target mount actuator being operable to move the target mount laterally along the target mount rail and a second target mount actuator being operable to adjust the vertical orientation of the target mount.
- a method for aligning a target to an equipped vehicle for calibration of a sensor on the equipped vehicle includes maneuvering an equipped vehicle onto a vehicle support stand, where the equipped vehicle includes a sensor and is stationarily disposed on the vehicle support stand, and moving a target held by a target adjustment stand into a calibration position for calibration of the sensor based on an established known position of the equipped vehicle on the vehicle support stand.
- the target adjustment stand is moveable longitudinally along a track relative to the longitudinal axis of the equipped vehicle on the vehicle support stand, and the target adjustment stand includes a base frame, a target mount configured to support a target moveably mounted on the base frame, and with the target adjustment stand further including a multiple actuators configured to selectively move the target mount relative to the base frame.
- the method may further include calibrating the sensor of the equipped vehicle once the target has been positioned. In particular, the method may involve the use of any of the discussed vehicle support stand and/or target support stands discussed herein.
- systems and methods may further include the use of non-contact wheel alignment sensors configured to be disposed on opposite sides of the vehicle for use in determining the orientation of the vehicle on the vehicle support stand for positioning of the target.
- the present invention provides a system and method for quickly and accurately positioning a calibration target relative to a sensor of a vehicle and calibrating the sensor, such as in accordance with OEM specifications.
- the accurate positioning and calibration of the sensor thus aids in optimizing the performance of the sensor to in turn enable the sensor to perform its ADAS functions.
- FIG. 1 is a perspective view of a target alignment system for calibration of a sensor of a vehicle in accordance with the present invention
- FIG. 2 is a close-up perspective view of a portion of the system of FIG. 1 shown with a vehicle positioned on a vehicle centering system of the target alignment system;
- FIG. 3 is a top plan view of the vehicle centering system of the target alignment system of FIG. 1;
- FIG. 4 is a perspective view of the vehicle centering system of FIG. 3;
- FIG. 5 is a side perspective view of the forward wheel assembly supports of the vehicle centering system of FIG. 3 ;
- FIG. 6 is a bottom plan view of the forward wheel assembly supports of the vehicle centering system of FIG. 3 ;
- FIG. 7 is a bottom plan view of the rearward wheel assembly supports of the vehicle centering system of FIG. 3 ;
- FIG. 8 is a front perspective view of a target adjustment frame or stand of the system of
- FIG. 1 in accordance with aspects of the present invention and shown separate from the system of FIG. 1;
- FIG. 9 is a rear perspective view of the target adjustment stand of FIG. 6.
- FIGS. 10 and 11 are perspective views of the system of FIG. 1 with the target adjustment stand shown in a first position and a second position relative to a vehicle and with a calibration target mounted thereto;
- FIG. 1 illustrates an exemplary arrangement of a target alignment and ADAS sensor calibration system 20 for use in calibrating one or more sensors 32 of a vehicle 34 (FIG. 2) with a target or target panel 36 (FIG. 10) held by a moveable target adjustment stand or frame 38 positioned in front of the vehicle 34.
- the target 36 is positioned with respect to the vehicle 34 for calibrating/aligning one or more sensors 32 of the vehicle 34, where the target is adjustably moved via the target adjustment stand 38 into a known orientation or calibration position with respect to the vehicle 34, including with respect to sensor 32 of the vehicle.
- target adjustment stand 38 may move target 36 to align target 36 to one or more sensors 32 of vehicle 34.
- the sensors to be calibrated are part of one or more subsystems of an exemplary Advanced Driver Assistance System (ADAS) of the vehicle.
- ADAS Advanced Driver Assistance System
- Sensors 32 may thus be radar sensors for adaptive cruise control (“ACC”), imaging systems such as camera sensors for lane departure warning (“LDW”) and other ADAS camera sensors disposed about vehicle, as well as other sensors, such as LIDAR, ultrasonic, and infrared (“IR”) sensors of an ADAS system, including sensors mounted inside the vehicle, such as forward facing cameras, or exterior mounted sensors, with the targets 36 supported by target adjustment stand 38 constructed for calibration of such sensors, including grids, patterns, trihedrals, and the like.
- ACC adaptive cruise control
- imaging systems such as camera sensors for lane departure warning (“LDW”) and other ADAS camera sensors disposed about vehicle
- sensors such as LIDAR, ultrasonic, and infrared (“IR”) sensors of an ADAS system, including sensors mounted inside the vehicle, such as forward facing cameras, or exterior mounted sensors, with the targets 36 supported by target adjustment stand 38 constructed for calibration of such sensors, including grids, patterns, trihedrals, and the like.
- IR infrared
- system 20 includes a computer system or controller 40, a vehicle support stand 42 upon which vehicle 34 is held stationary whereby vehicle 34 is longitudinally oriented with target adjustment stand 38.
- target adjustment stand 38 includes a moveable base 46, where base 46 is configured to move longitudinally along a track 48 relative to vehicle 34, where in the illustrated embodiment the track is defined by rails 50a, 50b, whereby base 46 is moveable towards and away from vehicle 34 either manually or automatically, such as via one or more electric motors that may be provided control signals via controller 40 or controller 144 on target adjustment stand 38.
- the electric motor may be provided on the target adjustment stand 38, or may be located elsewhere such as, for example, adjacent rail 50b that includes a chain, cable or other drive mechanism for moving target adjustment stand 38 there along.
- the location of target adjustment stand 38 along the track 48 defined by rails 50a, 50b may alternatively or additionally be manually set, such as via a peg and hole system, such as with rail 50a and/or rail 50b including multiple holes within which a peg or lock mechanism 142 (FIG. 8) of target adjustment stand 38 may be inserted.
- the track 48 defined by rails 50a, 50b is configured to enable base 46 of target stand 38 to be moved from between approximately 1 meter to 20 meters from vehicle 34 when vehicle 34 is disposed on stand 42, but preferably is moveable between approximately 1 meter to approximately between 7 to 10 meters.
- the track48 is positioned in front of or forward of vehicle 34. Track 48 is centrally aligned in a known orientation or position with respect to support stand 42 whereby the longitudinal axis of vehicle 34 on support stand 42 is aligned with the longitudinal axis of track 48.
- Base 46 of target stand 38 may conventionally comprise one or more load cells configured to detect and/or measure impact force to determine whether or not the target stand 38 has come into contact with something while manipulating a target 36 or when moving along the track 48.
- the target stand 38 may be configured to stop motion should the target stand 38 come into contact with an object or person.
- Vehicle 34 may be maneuvered onto and off of support stand 42, including over track 48 when track 48 is recessed into a floor surface, such as by driving vehicle 34.
- vehicle 34 may be driven onto support stand 42 and, upon completion of calibration of a given sensor 32, vehicle 34 may be driven in the same direction off of support stand 42, with vehicle 34 being driven over track 48.
- vehicle 34 may be driven in an opposite direction off of support stand 42 upon calibration of sensor 32.
- vehicle may be driven forward onto support stand 42 and then driven in reverse off of support stand 42 upon calibration of sensor 32.
- a vehicle 34 may be maneuvered onto stand 42 in a reversed orientation, such as for calibration of a rearward facing sensor.
- target stand 38 includes a moveable target mount 44 for use in holding or retaining the required target 36, where multiple targets may be disposed in a holder (not shown) adjacent track 48.
- the holder may include different types of targets for different types of sensors, as well as for different types of vehicle makes and models, whereby upon selecting the desired target for a particular vehicle under test, target stand 38 will be used to position the target into the appropriate position for calibrating of the particular ADAS sensor that is to be calibrated.
- various targets may be held by target mount 44, including panels with grids, patterns, trihedrals, or other known targets for use in calibrating sensors.
- targets for vision cameras, night vision systems, laser scanner targets, ultrasonic sensors, and the like including for aligning or calibrating ACC (adaptive cruise control) sensors, LDW (lane departure warning) sensors, and night vision sensors of the vehicle.
- ACC adaptive cruise control
- LDW latitude and low-latency sensors
- night vision sensors of the vehicle e.g., ACC, LDW, and night vision sensors.
- ACC adaptive cruise control
- LDW latitude and night vision sensors
- a plurality of different target frames may be individually configured for different sensors, e.g., ACC, LDW, and night vision sensors.
- An exemplary pattern or grid is disclosed on target 36 in connection with FIGS. 10 and 11. It should be appreciated, however, that as discussed herein alternatively configured targets may be employed within the scope of the present invention, including alternative patterns, grids, and constructions of targets.
- target 36 may be an electronic digital display device configured to be able to display or show on a screen different patterns, grids or the like depending on vehicle make and model and sensor being calibrated, where controller 40 is operable to cause the correct target pattern to be displayed based on the vehicle 34 and sensor 32 being calibrated.
- vehicle support stand 42 includes a forward wheel support and centering assembly 56 and a rearward wheel support and centering assembly 58 upon which vehicle 34 is disposed for positioning or orienting vehicle 34.
- the front wheel assemblies 30 of vehicle 34 are located on forward wheel support and centering assembly 56 and the rear wheel assemblies 31 of vehicle 34 are located on rearward wheel support and centering assembly 58.
- assemblies 56, 58 enable lateral movement of vehicle 34 for purposes of positioning vehicle 34.
- forward wheel support and centering assembly 56 also provides longitudinal retention of vehicle 34. It should be appreciated that if desired a vehicle may be rearwardly oriented toward target positioning system 44, such as for calibration of one or more rearwardly oriented vehicle sensors, in which case the rear wheel assemblies 31 of vehicle 34 would be disposed on the forward wheel support assembly 56.
- forward wheel support and centering assembly 56 includes oppositely disposed tire supports 64a, 64b positioned on opposite sides of forward vehicle centering device 66, where tire supports 64a, 64b are configured to receive the tires of a pair of opposed tire and wheel assemblies of vehicle 34, such as the front wheel assemblies 30 as shown in FIG. 1.
- Tire supports 64a, 64b are substantially identical, but mirror versions of each other. As such, the discussion herein focuses on tire support 64a, but it should be appreciated that the discussion applies to tire support 64b.
- Tire support 64a includes two sets 68, 70 of rollers 72 with the rollers 72 arranged with their axes of rotation parallel with the longitudinal axis of the vehicle 34 when disposed on support stand 42. As such, a vehicle having a pair of front tires disposed on rollers 72 will be moveable laterally with respect to its longitudinal axis via the rollers 72. As best shown in FIGS. 4 and 5, the sets 68, 70 of rollers 72 are inwardly angled with respect to each other. That is, the adjacently located ends of rollers 72 of each set 68, 70 are disposed vertically lower than the outwardly located ends in a V-shaped configuration.
- the wheel assemblies 30 of vehicle 34 will be naturally oriented to rest in a fixed longitudinal position when located on tire supports 64a, 64b along the axes 74a, 74b defined by the adjacent mounting ends of rollers 72. It should be appreciated that the axes 74a, 74b are arranged so as to be aligned with each other and perpendicular to track 48 and the longitudinal axis of vehicle 34 when positioned on stand 42.
- Tire support 64a additionally includes ramps 76, 78 for supporting a vehicle tire as the vehicle 34 is driven onto and off of support stand 42.
- Vehicle 34 is centered or positioned on support stand 42 in part via vehicle centering device 66, which is operable to center or position the forward portion of vehicle 34.
- Vehicle centering device 66 includes a pair of opposed synchronized arms or bumpers 80a, 80b that are configured to extend outwardly from housing 82 to contact the inner sidewalls of the tires disposed on tire supports 64a, 64b.
- Arms 80a, 80b in particular are synchronized to move outwardly from housing 82 equally and simultaneously in opposed directions via a pair of actuators 84a, 84b (FIG. 6) that are linked together and operated by controller 40.
- actuators 84a, 84b FIG. 6
- arm 84a is affixed to or part of plate 86a and arm 84b is affixed to or part of plate 86b, with plates 86a, 86b being slidably mounted on rails or slides 88, 90.
- Extendable end 92a of actuator 84a is mounted to plate 86a whereby extension of end 92a causes arm 84a to extend outwardly.
- extendable end 92b of actuator 84b is mounted to plate 86b whereby extension of end 92b causes arm 84b to extend outwardly.
- the arms 80a, 80b are likewise retractable via retraction of ends 92a, 92b of actuators 84a, 84b.
- vehicle centering device 66 is operable to center the forward portion of vehicle 34 on vehicle support stand 42 by way of the rollers 72 allowing the vehicle to be laterally moved via equal and opposite extension of arms 80a, 80b whereby arms 80a, 80b contact and push against the inner sidewall of the tires.
- rearward wheel support and centering assembly 58 includes oppositely disposed tire supports 94a, 94b positioned on opposite sides of rearward vehicle centering device 96, where tire supports 94a, 94b are configured to receive the tires of a pair of opposed tire and wheel assemblies of vehicle 34, such as the rear wheel assemblies 31 as shown in FIG. 1.
- Tire supports 94a, 94b are substantially identical, but mirror versions of each other. As such, the discussion herein focuses on tire support 94a, but it should be appreciated that the discussion applies to tire support 94b.
- Tire support 94a includes six sets 98a-98f of rollers 100 in the illustrated embodiment, with the rollers 100 arranged with their axes of rotation parallel with the longitudinal axis of the vehicle 34 when disposed on support stand 42. As such, a vehicle having a pair of rear tires disposed on rollers 100 will be moveable laterally with respect to its longitudinal axis via the rollers 100. In contrast to forward wheel support and centering assembly 56, the rollers 100 of the rearward wheel support and centering assembly 58 all lie in the same plane.
- the multiple sets 98a-98f of rollers 100 enable vehicles with differing wheelbases to be used on support stand 42.
- the opposed rearward wheel assemblies of the vehicle can still be positioned on tire supports 94a, 94b even with differing wheelbase lengths of the vehicles.
- Ramps may also be provided at the entrance and exists to tire supports 94a, 94b to aid in the driving of vehicles thereon and off.
- Vehicle 34 is also centered or positioned on support stand 42 in part via rearward vehicle centering device 96, which operates in generally like manner to vehicle centering device 66 to center or position the rearward portion of vehicle 34.
- Rearward vehicle centering device 96 includes multiple pairs of opposed and synchronized locator arms or bumpers 102a, 102b, 104a, 104b and 106a, 106b that are configured to extend outwardly from housing 108 to contact the inner sidewalls of the tires disposed on tire supports 94a, 94b.
- each set of opposed arms of centering device 96 are synchronized to move outwardly from housing 108 equally and simultaneously in opposed directions via actuators 110, 112, 114, 116 (FIG.
- Arms 102a, 102b, 104a, 104b, 106a and 106b are slidably mounted for movement on rails or slides 118, 120, 122 and 124, whereby moveable ends 110a, 112a, 114a, 116a of actuators 110, 112, 114, 116 are able to extend and retract arms 102a, 102b, 104a, 104b, 106a and 106b relative to housing 108, including via the pulley linkages 126, 128.
- vehicle centering device 96 is operable to center the rearward portion of vehicle 34 on vehicle support stand 42 by way of the rollers 100 allowing the vehicle to be laterally moved via equal and opposite extension of arms 102a, 102b, 104a, 104b, 106a and 106b whereby the arms contact and push against the inner sidewall of the tires.
- vehicle support stand 42 is shown in the illustrated embodiment to position, center and/or orient the vehicle 34 by arms pushing against the inner sidewall of the tires, it should be readily appreciated that an alternatively constructed centering system could be constructed in which arms or bumpers press against the outer sidewall of the tires by pushing inwardly an equal and opposite amount from the outside of the vehicle, such as inwardly extending locator arms that extend to push against the outer sidewalls of the tires.
- tire supports 64a, 64b and 94a, 94b of system 20 are disclosed as utilizing rollers 72, 100 for lateral adjustment of vehicle 34 on support stand 42, it should be appreciated that alternative tire supports may be employed within the scope of the present invention.
- tire supports may be constructed as floating fixtures, such as conventional floating or float plates that is recessed into the vehicle support stand and is configured to freely float the vehicle wheel assembly on a plate in multiple degrees of freedom, including laterally with respect to the longitudinal axis of the vehicle.
- floating fixtures such as conventional floating or float plates that is recessed into the vehicle support stand and is configured to freely float the vehicle wheel assembly on a plate in multiple degrees of freedom, including laterally with respect to the longitudinal axis of the vehicle.
- a desired target 36 affixed to target mount 44 is manipulated by target adjustment stand 38 to position the target 36 for use in aligning or calibrating the one or more sensors 32 of the vehicle 34. That is, the target 36 is oriented with respect to the vehicle 36 such that the appropriate target is in position for performing a desired alignment or calibration of the sensor of that particular vehicle.
- target adjustment stand 38 may be programmed into controller 40, such as based on the vehicle make and model and particular sensor that is to be aligned/calibrated. For example, with vehicle 34 centered on stand 42, target adjustment stand 38 may be used to locate target 36 to a particular position based on a reference point corresponding to the required location for the target 36 based on the position of the vehicle 34.
- the reference point may thus be defined as a relationship between the target 36 and the centering system 66, 96 of the stand 42. Such a reference point or spatial relationship allows for the accurate placement of the calibration/alignment targets positioned by the target adjustment stand 38.
- a master positioned on stand 42 may be used in determining reference points for a vehicle, such as for particular sensors of a given make and model of vehicle.
- vehicle support stand 42 and target adjustment stand 38 are disposed at the same vertical height whereby a vehicle may be driven onto and off of system 20.
- stand 42 and track 48 may be arranged within a pit or with entry and exit ramps 43, whereby a vehicle 34 may be driven onto stand 42 for the performance of an alignment and calibration routine, with the vehicle 34 then driven in the same direction to exit from system 20.
- Target adjustment stand 38 may be moved longitudinally rearwardly, with vehicle 34 then driven off to the left or right.
- the support stand 42 and target positioning system thus define or include a stationary support surface 129 upon and over which vehicle 34 is able to be moved or driven, with the wheel assembly supports 56, 58 and track 48 being disposed in or at support surface 129.
- Calibration of sensors 32 on vehicle 34 requires positioning of targets 36 relative to sensors 32 in order to perform a calibration operation, such as in accordance with OEM specifications. Accordingly, upon vehicle 34 being centered or oriented on stand 42 via the vehicle centering devices 66, 96, the position of target adjustment frame 38 may be adjusted, as discussed below.
- target adjustment stand 38 is positioned on rails 50a, 50b for longitudinal movement relative to vehicle stand 42 and vehicle 34, where target adjustment stand 38 is in a known orientation relative to vehicle stand 42 whereby targets 36 may be positioned relative to vehicle 34, and thereby sensors 34, with vehicle 34 in a known, established position on support stand 42.
- base frame 46 of target stand 38 is in a known orientation relative to support stand 42, whereby based on establishing the orientation or position of vehicle 34 on support stand 42, the orientation of vehicle 34 to target stand 38 is thus determined or established.
- vehicle target stand 38 is adjustable longitudinally along rails 50a, 50b to position target stand 38, and hence a target 36 mounted thereto, relative to vehicle 34 on support stand 42.
- the base or base frame 46 of target stand 38 is mounted for movement along rails 50a, 50b.
- Target stand 38 may be manually moveable along rails 50a, 50b via an operator pushing on handle 140, and/or automatically adjustable along rails 50a, 50b, such as via powered wheels driven by motor 52 or by one or more rail actuators, chain drives, pulley systems or the like.
- Target stand 38 may additionally be securable to rails 50a, 50b, such as by a manual lock 142, so as to retain base frame 46 in a rough initial position, such as upon manual movement by an operator based on directions provided via controller 40 and/or 144.
- the positioning of target stand 38 along rails 50a, 50b may either be an accurate or sufficiently accurate longitudinal positioning of target 36 relative to the vehicle 34 for purposes of calibrating sensor 32, or the positioning of target stand 38 along rails 50a, 50b may be a first, initial or gross orientation of target stand 38, and in particular base frame 46, relative to vehicle 34 and sensor 32, with target adjustment stand 38 configured to provide still further positioning adjustment of target 36, as discussed below.
- target adjustment stand 38 is additionally moveable longitudinally in a more precise or fine orientation, as well as laterally with respect to the vehicle 34, and vertically, as well as rotationally about the vertical axis.
- target adjustment stand 38 is substantially similar to the target frame disclosed in co-pending U.S. patent application sr. no. 16/398,404, U.S. Pub. No. 2019/0331482A1, which is incorporated herein by reference in its entirety, including with respect to the construction, operation and use of the target frame, but with a difference being the omission of imager housings disclosed in U.S. patent application sr. no. 16/398,404.
- target adjustment stand or frame 38 movably supports target 36 and includes controller 144.
- base frame 46 of target adjustment stand 38 is generally rectangular with various frame members and includes wheels 146 for riding on rail 50a and includes a linear slide 148 for riding on rail 50b, with wheels 146 and slide 148 mounted to base frame 46.
- base frame 46 need not include wheels 146 and/or slide 148 such as, for example, in embodiments in which base frame 46 is movable along rails 50a, 50b by a rail actuator.
- Rails 50a, 50b may be set during installation or adjustable to be level, and/or the sliding connection of base frame 46 with rails 50a, 50b may be adjustable for controlling of level movement, with rails 50a, 50b being in a fixed arrangement relative to vehicle support stand 42 such that the orientation or position of base frame 46 relative to vehicle support stand 42 is known.
- Target adjustment stand 38 further includes a base member 150 that is moveable forwards and backwards via an actuator 152 along an X-axis, where base member 150 is mounted for sliding movement in rails 154 of base frame 46 and the X-axis is thus parallel to rails 154 for movement longitudinally relative to vehicle 34 when in the orientation of FIG. 2.
- a tower assembly 156 is rotatably mounted to base member 150 via a bearing (not shown). The pivoting or rotatable mounting on base member 150 enables tower assembly 156 to be rotated about the vertical or Z-axis by way of actuator 158, as well as translated or moved longitudinally by actuator 152 via movement of base member 150.
- Tower assembly 156 in turn includes an upright frame member configured as a vertically oriented tower 160 with vertically oriented rails 162, with a target support assembly 164 being mounted to rails 162 whereby the assembly 164 is moveable up and down in the vertical or Z-axis, where assembly 164 is moveable by way of actuator 166.
- Target support assembly 164 is mounted to rails 162 for vertical movement, with the target mount 44 in turn being mounted to horizontal rail 168.
- Target mount 44 is configured to hold target 36 and is horizontally moveable along rail 168 by way of actuator 170, with target mount 44 including various pegs and/or cutouts for supporting targets 36 when targets are selectively removabley hung on or attached to mount 44.
- Actuators 152, 158, 166 and 170 are operably connected, such as by control wires, with controller 144 whereby controller 144 is able to selectively activate the actuators to move their associated components of target adjustment stand 38.
- one or more rail actuators may be employed to move the entirety of target adjustment stand 38 along rails 50a, 50b by translating movement of base frame 46 on rails 50a, 50b. It should be appreciated that various constructions or types of actuators may be used, including for actuators 152, 158, 166 and 170 for movement of the various components of target adjustment stand 38, as well as for rail actuators used to translate base frame 46 on rails 50a, 50b.
- actuators 152, 158, 166 and 170 are constructed as electrical linear actuators.
- the actuators may be constructed as geared tracks, adjustment screws, hydraulic or pneumatic piston actuators, or the like.
- alternative arrangements of target adjustment frame and actuators may be employed for positioning of a target within the scope of the present invention.
- base member 150 may be configured for lateral movement relative to base frame 46 and/or tower 156 may be configured for lateral movement relative to base member 150.
- system 20 may need not include actuator 152 for providing fine adjustment of the lateral position of base member 150 along rails 154.
- System 20 may additionally include distance sensors, such as time-of-flight sensors, for monitoring and/or controlling the distance of target stand 38 to vehicle 34 or vehicle support stand 42.
- distance sensors such as time-of-flight sensors
- laterally separated plates 172 may be provided on base frame 46 for use with distance sensors 174 (FIG. 2) configured as time-of- flight (“ToF”) sensors on vehicle support stand 42, where in particular plates 172 are mounted to panels that rotate about the vertical axis with tower 160.
- ToF time-of- flight
- the distance between vehicle support stand 42 and target support stand 38 may be determined by an encoder, such as based on an electric drive system as discussed above for movement of target adjustment stand 38 relative to vehicle support stand 42.
- the distance of target adjustment stand 38 relative to vehicle support stand 42 may be manually set by an operator with, for example, target adjustment stand 38 then being fixed in position, such as by lock 142.
- the operator may use the hand held tablet, controller, or a handheld scanner or the like that is interfaced with controller 40 and/or interfaced with the handheld tablet or controller, to scan the target 36 to confirm selection of the correct target 36 for calibration of a particular sensor 32 of vehicle 34. As understood from FIG. 10, the operator then hangs target 36 on target mount 44 with target support stand 38 in an initial position.
- System 20 may then provide instructions to the operator to position the target support stand 38 into a rough orientation relative to vehicle support stand 42, such as shown in FIG. 11.
- controller 40 an/or a handheld computing device may provide instructions to the operator to manually move the target support stand 38 along rails 50a, 50b via handle 140 and to then fix the target support stand 38 into position via lock 142. This positioning may be confirmed via distance sensors 174.
- Either controller 40 and/or the handheld computer device may then provide signals to controller 144 for precisely adjusting the target 36 via actuators 152, 158, 166 and 170 so as to orient the target 36 relative to the sensor 32 based on the established orientation or position of vehicle 34 on vehicle support stand 42, including based on the known and defined orientation of the vehicle support stand 42 to target adjustment stand 38, and the defined position of target 36 for the position of the ADAS sensor 32 on vehicle 34, such as based on OEM calibration procedures.
- vehicle 34 being positioned and centered into a known orientation by way of the forward wheel support and centering assembly 56 and rearward wheel support and centering assembly 58.
- controller 40 may transmit vehicle information regarding the vehicle under test to a remote computer, such as to a remote server via an Internet connection, with the remote computer in turn transmitting position information instructions to controller 144 to position target 36 via actuators 152, 158, 166 and 170, and including actuators for automatically moving target frame 36 along rails 50a, 50b.
- a calibration procedure or program may be initiated and run. For example, via the connection with the diagnostic port of vehicle 34, one or more vehicle computers may be initiated to perform a calibration routine that is set and supplied by the OEM whereby the sensor becomes calibrated for use with the vehicle 34.
- target adjustment stand 38 may be configured for only lateral movement of target mount 44 along rails 168 via actuator 170, and for vertical movement of target support assembly 164 along rails 162 of tower 160 via actuator 166, without the need for rotation of tower 160 about its vertical axis.
- the orientation of track 48, and thus rails 50a, 50b, relative to vehicle support stand 42 are sufficiently centered, with base frame 46 being thus sufficiently perpendicular to vehicle support stand 42, and in particular to a vehicle 34 centered thereon, whereby no vertical rotational movement is required.
- the longitudinal positioning of base frame 46 along track 48 relative to vehicle support stand 42, and thus vehicle 34 and sensor 32 thereon, may be sufficiently accurate for purposes of calibration whereby target adjustment stand 38 need not require or include the lateral fine positioning of tower 160 provided by movement of base member 150 along rails 154 via actuator 152. Accordingly, in such a configuration tower 160 may be fixedly secured to base frame 46 with horizontal rail 168 being perpendicularly arranged to track 48. In such an embodiment target adjustment stand 38 thus controls the vertical and lateral positioning of target 36.
- FIGS. 10 and 11 further illustrate that optionally system 20 may additionally utilize non-contact wheel alignment sensors on vehicle support stand 42 for determining specific information regarding the orientation of the vehicle, where in the illustrated embodiment pairs of non-contact wheel alignment sensors 28 are disposed about the opposed front wheel assemblies 30 and the opposed rear wheel assemblies 31 , respectively.
- the non-contact wheel alignment sensors 28 are utilized to obtain position information of vehicle 34 on stand 42, which is provided to controller 144 and/or controller 40, with controller 144 in turn operating target adjustment stand 38 to position a target 36 relative to a sensor 32 of vehicle 34.
- the wheel alignment sensors 28 may be used for determining the vertical center plane of the vehicle 34, as well as or part of the determination of wheel alignment characteristics such as toe, camber, caster, steering axis inclination (SAI), as well as the wheel center, axis of symmetry, and rear thrust angle.
- SAI steering axis inclination
- eight non-contact wheel alignment sensors 28 are shown disposed about vehicle 34, it should be appreciated that alternative arrangements may be employed.
- an alternative arrangement may employ non-contact wheel alignment sensors at just two wheel assemblies of vehicle 34, such as opposed wheel assemblies.
- the rear thrust angle may be determined using sensors 28 by, for example, rotating the rear tire and wheel assemblies 31 into two or more positions, such as by rotating the assemblies 31 on rear wheel support and centering assembly 58.
- each wheel assembly 30, 31 includes a pair of cooperatively operating individual non-contact wheel alignment sensors 28 arranged to be disposed on the left and right sides of a given wheel assembly 30, 31 of vehicle 34.
- non-contact wheel alignment sensors 28 are constructed in accordance with U.S. Pat. Nos. 7,864,309, 8,107,062 and 8,400,624, which are incorporated herein by reference.
- NCA sensors 28 project illumination lines onto either side of the tire and receive reflections of the illumination lines, by which the non-contact wheel alignment system is able to determine the orientation of the tire and wheel assembly 30, 31.
- the multiple illumination lines projected onto the tire and wheel assembly 30, 31 and the position of those lines in the acquired image enable the three dimensional spatial orientation or geometry of the tire and wheel assembly 30, 31 to be calculated throughout the working area of the sensors 28 based on the field and depth of view of the sensors.
- the use of corresponding NCA sensors 28 positioned about all four tire and wheel assemblies 30, 31 of vehicle 34 enable vehicle position information to be determined by the non-contact wheel alignment system, which may be based on a known orientation of the NCA sensors 28 disposed about vehicle 34 on stand 42.
- Rearward non-contact wheel alignment sensors 28 may be longitudinally adjustable, such as along tracks 200, to accommodate vehicles of differing wheelbase length.
- the wheel alignment and vehicle position information is provided to a controller, such as controller 40, or to a remote computing device, such as via the Internet.
- the controller 40 or a remote computing device may then operatively send signals for operating the target adjustment stand 38 to position a target 36 relative to a sensor 32 of vehicle 34.
- the determination of reference points for locating of targets 36 relative to a vehicle 34 on support stand 42 may be done via a calibration process.
- a calibration master may be positioned on the support stand 42, where the master 34a may be a specifically configured object having known dimensions or a vehicle that is accurately measured and is disposed in a known position on stand 42 via use of the forward and rearward wheel support and centering assemblies 56, 58.
- the master may also be equipped with a light projector that is accurately oriented to the centerline of the calibration master, with the calibration master configured such that the light projector directs a light to align the centerline of the master with a target 36 held by the target support stand 38.
- a target 36 held by the target support stand 38 may be oriented into position by moving the stand 38 until the light projected from the master impinges upon a desired location of the target 36, whereby the controller 40 is “taught” the particular location and is operable to position targets accordingly.
- the target support stand 38 may optionally be moved between two distances referenced as “Position 1” and “Position 2” for aligning the target 36 with the calibration master.
- the target support stand 38 may be adjusted to align the target 36 into a desired orientation relative to the light projector, such as by jogging the position of the stand 38 to position the target 36 whereby the projected light impinges at a desired location.
- the target adjustment stand 38 is then moved to Position 2 and the stand 38 is again adjusted to align the target 36 into the desired orientation relative to the light projector by jogging the position of the stand 38 to position the target 36 whereby the projected light again impinges at the desired location.
- the axis of the calibration master to the target 36 is established and known.
- there may be a calibration master for each type of vehicle e.g., automobile, pickup truck, van
- the above discussed alignment and calibration system 20 may be configured to operate independently of external data, information or signals, in which case the computer system of the embodiment that comprises the noted controller 40 may be programmed for operation with various makes, models and equipped sensors, as well as may include use of an operator computer device.
- an operator computer device may interface with vehicle 34, such as via one or more ECUs of vehicle 34 that may be interfaced via an on-board diagnostic (OBD) port of vehicle 34, as well as with controller 40 to provide instructions to an operator and run system for alignment/calibration of sensor 32.
- OBD on-board diagnostic
- an operator computer device may receive information input by an operator regarding vehicle 34, such as make, model, vehicle identification number (VIN) and/or information regarding the equipped sensors, such as by manual entry or scanning, with the operator computer device communicating such information to controller 40.
- VIN vehicle identification number
- a remote interface configuration for system 20 may be employed, where system 20 is configured to interface with a remote computing device or system, such as a server, and one or more remote databases, such as may be accessed via an Internet connection, whereby the computer system thus further comprise the remote computing device.
- a remote computing device incorporating a database accessed via the Internet may be used to run a calibration sequence through one or more engine control units (“ECUs”) of the vehicle 34 to calibrate one or more ADAS sensors pursuant to pre-established programs and methodologies, such as based on original factory- employed calibration sequences or based on alternative calibration sequences.
- ECUs engine control units
- controller 40 need not contain programs related to target positioning parameters for particular makes, models and equipped sensors.
- an operator may connect an operator computer device to an ECU of vehicle 34, such as via an OBD port, with the operator computer device then transmitting acquired vehicle specific information to the remote computing system, or alternatively an operator may enter information directly into an operator computer device without connecting to vehicle 34 for transmitting to the remote computing system.
- information may be, for example, make, model, vehicle identification number (VIN) and/or information regarding the equipped sensors.
- the remote computing system may then provide the necessary instructions to the operator based on specific procedures required to calibrate sensors as set forth in databases associated with the remote computing system and specific processing performed by the remote computing system, with control signals then transmitted to controller 40.
- the remote computing system may provide instructions to controller 40 for positioning of target 36 via target adjustment stand 38, as well as to run an OEM calibration sequence of sensor 32, such as via a vehicle ECU.
- the remote databases may thus contain information for performing calibration processes, including, for example, information regarding the specific target to be used for a given vehicle and sensor, the location at which the target is to be positioned by target adjustment stand 38 relative to such a sensor and vehicle, and for performing or activating the sensor calibration routine.
- Such information may be in accordance with OEM processes and procedures or alternative processes and procedures. In either embodiment various levels of autonomous operation by system 20 may be utilized.
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Acoustics & Sound (AREA)
- Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)
- Body Structure For Vehicles (AREA)
- Radar Systems Or Details Thereof (AREA)
- Geophysics And Detection Of Objects (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023519796A JP2023543487A (en) | 2020-10-01 | 2021-10-01 | Target alignment for vehicle sensor calibration |
CA3194238A CA3194238A1 (en) | 2020-10-01 | 2021-10-01 | Target alignment for vehicle sensor calibration |
AU2021354134A AU2021354134A1 (en) | 2020-10-01 | 2021-10-01 | Target alignment for vehicle sensor calibration |
KR1020237014837A KR20230078788A (en) | 2020-10-01 | 2021-10-01 | Target Alignment for Vehicle Sensor Calibration |
CN202180078811.1A CN116472445A (en) | 2020-10-01 | 2021-10-01 | Target alignment for vehicle sensor calibration |
EP21874717.8A EP4222471A1 (en) | 2020-10-01 | 2021-10-01 | Target alignment for vehicle sensor calibration |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063086116P | 2020-10-01 | 2020-10-01 | |
US63/086,116 | 2020-10-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022070162A1 true WO2022070162A1 (en) | 2022-04-07 |
Family
ID=80949818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2021/059058 WO2022070162A1 (en) | 2020-10-01 | 2021-10-01 | Target alignment for vehicle sensor calibration |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP4222471A1 (en) |
JP (1) | JP2023543487A (en) |
KR (1) | KR20230078788A (en) |
CN (1) | CN116472445A (en) |
AU (1) | AU2021354134A1 (en) |
CA (1) | CA3194238A1 (en) |
WO (1) | WO2022070162A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040049930A1 (en) * | 2002-09-17 | 2004-03-18 | Snap-On Technologies, Inc. | Apparatus for use with a 3D image wheel aligner for facilitating adjustment of an adaptive cruise control sensor on a motor vehicle |
WO2008130385A1 (en) * | 2007-04-18 | 2008-10-30 | Snap-On Incorporated | Method for use with an optical aligner system for positioning a fixture relative to a vehicle |
US20190331482A1 (en) * | 2018-04-30 | 2019-10-31 | BPG Sales and Technology Investments, LLC | Vehicular alignment for sensor calibration |
US20200130188A1 (en) * | 2018-04-30 | 2020-04-30 | BPG Sales and Technology Investments, LLC | Robotic target alignment for vehicle sensor calibration |
US20200273206A1 (en) * | 2019-02-25 | 2020-08-27 | Nexion S.P.A. | Apparatus for calibrating an adas sensor of an advanced driver assistance system of a vehicle |
-
2021
- 2021-10-01 KR KR1020237014837A patent/KR20230078788A/en not_active Application Discontinuation
- 2021-10-01 WO PCT/IB2021/059058 patent/WO2022070162A1/en active Application Filing
- 2021-10-01 CA CA3194238A patent/CA3194238A1/en active Pending
- 2021-10-01 AU AU2021354134A patent/AU2021354134A1/en active Pending
- 2021-10-01 JP JP2023519796A patent/JP2023543487A/en active Pending
- 2021-10-01 CN CN202180078811.1A patent/CN116472445A/en active Pending
- 2021-10-01 EP EP21874717.8A patent/EP4222471A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040049930A1 (en) * | 2002-09-17 | 2004-03-18 | Snap-On Technologies, Inc. | Apparatus for use with a 3D image wheel aligner for facilitating adjustment of an adaptive cruise control sensor on a motor vehicle |
WO2008130385A1 (en) * | 2007-04-18 | 2008-10-30 | Snap-On Incorporated | Method for use with an optical aligner system for positioning a fixture relative to a vehicle |
US20190331482A1 (en) * | 2018-04-30 | 2019-10-31 | BPG Sales and Technology Investments, LLC | Vehicular alignment for sensor calibration |
US20200130188A1 (en) * | 2018-04-30 | 2020-04-30 | BPG Sales and Technology Investments, LLC | Robotic target alignment for vehicle sensor calibration |
US20200273206A1 (en) * | 2019-02-25 | 2020-08-27 | Nexion S.P.A. | Apparatus for calibrating an adas sensor of an advanced driver assistance system of a vehicle |
Also Published As
Publication number | Publication date |
---|---|
AU2021354134A1 (en) | 2023-05-11 |
JP2023543487A (en) | 2023-10-16 |
AU2021354134A9 (en) | 2024-10-31 |
EP4222471A1 (en) | 2023-08-09 |
CA3194238A1 (en) | 2022-04-07 |
KR20230078788A (en) | 2023-06-02 |
CN116472445A (en) | 2023-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11597091B2 (en) | Robotic target alignment for vehicle sensor calibration | |
US11835646B2 (en) | Target alignment for vehicle sensor calibration | |
AU2019263751B2 (en) | Vehicular alignment for sensor calibration | |
US11781860B2 (en) | Mobile vehicular alignment for sensor calibration | |
US11243074B2 (en) | Vehicle alignment and sensor calibration system | |
JP7566752B2 (en) | Robotic Target Alignment for Vehicle Sensor Calibration | |
US20230243676A1 (en) | Vehicular alignment for sensor calibration | |
CA3146507A1 (en) | Vehicle alignment and sensor calibration system | |
KR20230051576A (en) | Vehicle Floor Target Alignment for Sensor Calibration | |
EP3903063B1 (en) | Mobile vehicular alignment for sensor calibration | |
WO2022070162A1 (en) | Target alignment for vehicle sensor calibration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21874717 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3194238 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2023519796 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20237014837 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021874717 Country of ref document: EP Effective date: 20230502 |
|
ENP | Entry into the national phase |
Ref document number: 2021354134 Country of ref document: AU Date of ref document: 20211001 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180078811.1 Country of ref document: CN |