WO2022068802A1 - 充电器、充电控制方法及装置 - Google Patents

充电器、充电控制方法及装置 Download PDF

Info

Publication number
WO2022068802A1
WO2022068802A1 PCT/CN2021/121256 CN2021121256W WO2022068802A1 WO 2022068802 A1 WO2022068802 A1 WO 2022068802A1 CN 2021121256 W CN2021121256 W CN 2021121256W WO 2022068802 A1 WO2022068802 A1 WO 2022068802A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
charging
charging interface
interface
pull
Prior art date
Application number
PCT/CN2021/121256
Other languages
English (en)
French (fr)
Inventor
郭朋飞
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022068802A1 publication Critical patent/WO2022068802A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a charger, a charging control method, and a device.
  • the current multi-port chargers generally have 1A1C (1 USB_A, 1 USB_C), 2A1C (2 USB_A, 1 USB_C), 1A2C (1 USB_A, 2 USB_C) and other types.
  • Existing multi-port chargers generally have at least one charging port that supports fast charging.
  • the inventor found that the power allocated by the charger to each charging port is fixed, and when charging using multiple charging ports , Some charging interfaces actually require less power than their assigned fixed power, while some charging interfaces, generally fast charging interfaces, actually require more power than their assigned fixed power, resulting in a multi-port charger power difference. It is not effectively utilized, and the effective utilization rate of the power of the multi-port charger is low.
  • the purpose of the embodiments of the present application is to provide a charger, a charging control method and a device, which can solve the problem of low effective power utilization of existing chargers.
  • an embodiment of the present application provides a charger, including: a power socket, a voltage converter, a first power converter, a second power converter, a first charging protocol chip, a second charging protocol chip, a first a charging interface and a second charging interface;
  • the voltage converter is respectively connected to the power socket, the first power converter and the second power converter, the voltage converter is used for converting alternating current into direct current, the first power converter and The second power converters are all used for DC power conversion;
  • the first charging protocol chip is respectively connected to the first power converter and the first charging interface
  • the second charging protocol chip is respectively connected to the second power converter and the second charging interface
  • the first charging protocol chip is connected in communication with the second charging protocol chip.
  • an embodiment of the present application provides a charging control method, which is applied to a charger, including:
  • first charging interface and the second charging interface are respectively connected to the first device and the second device and perform fast charging, acquiring the first pull-in power of the first device;
  • command information is sent to the second charging interface, where the command information is used to instruct to adjust the output power of the second charging interface to a target value.
  • an embodiment of the present application further provides a charging control device, including:
  • an acquisition module configured to acquire the first pull-in power of the first device when the first charging interface and the second charging interface are respectively connected to the first device and the second device and perform fast charging;
  • a sending module configured to send instruction information to the second charging interface when the first pull-in power meets a preset condition, where the instruction information is used to instruct the output power of the second charging interface to be adjusted to the target value.
  • an embodiment of the present application provides a charger, including: the charging control device according to the third aspect.
  • an embodiment of the present application provides a charger, including: a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being The processor implements the steps of the charging control method according to the second aspect when executed.
  • an embodiment of the present application further provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the charging according to the second aspect is implemented The steps of the control method.
  • an embodiment of the present application provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the second aspect The steps of the charging control method.
  • embodiments of the present application provide a computer program product, wherein the program product is stored in a non-volatile storage medium, and the program product is executed by at least one processor to implement the second aspect. The steps of the charging control method described above.
  • the voltage converter outputs a fixed voltage
  • the voltage converters are respectively connected in series with the first power converter and the second power converter, and the first power converter and the second power converter are composed of different
  • the charging protocol chip is controlled to realize the multi-port fast charging function; in addition, the direct communication connection between different charging protocol chips enables real-time mutual transmission of power information between the dual ports, thereby realizing the power between different output ports of the multi-port charger. Intelligent distribution, improve the effective utilization of multi-port charger power, and improve the user's fast charging experience.
  • FIG. 1 is a schematic diagram of a hardware circuit structure of an existing charger
  • FIG. 2 is a schematic structural diagram of a hardware circuit of a charger according to an embodiment of the application.
  • FIG. 3 is a schematic flowchart of a charging control method provided by an embodiment of the present application.
  • FIG. 4 is a preset communication sequence diagram of an embodiment of the application.
  • FIG. 5 is one of the communication scenarios in which the first protocol chip and the second protocol chip according to the embodiment of the present application realize single-wire communication by cascading input and output pins;
  • FIG. 6 is the second communication scenario in which the first protocol chip and the second protocol chip according to the embodiment of the present application realize single-line communication by cascading input and output pins;
  • Fig. 7 is the third communication scenario in which the first protocol chip and the second protocol chip of the embodiment of the application realize single-wire communication by cascading input and output pins;
  • FIG. 8 is the fourth communication scenario in which the first protocol chip and the second protocol chip according to the embodiment of the present application realize single-wire communication by cascading input and output pins;
  • FIG. 9 is a schematic structural diagram of a charging control device provided by an embodiment of the present invention.
  • the charger is a 1A1C multi-port charger, that is, a charger including a Type-A USB port (hereinafter referred to as A port) and a Type-C USB (hereinafter referred to as C port) port.
  • a port can only support 5V2A charging, or it can support both 5V2A charging and fast charging;
  • the C port supports fast charging.
  • a multi-port charger that supports fast charging with both ports usually two sets of circuits are stacked together, as shown in Figure 2.
  • the charger includes: a power socket (AC socket in the figure), two voltage converters (labeled 101 and 102 in the figure), two charging protocol chips (the protocol IC1 and the protocol IC2 in the figure), and two charging interfaces (in the figure).
  • a power socket AC socket in the figure
  • two voltage converters labeled 101 and 102 in the figure
  • two charging protocol chips the protocol IC1 and the protocol IC2 in the figure
  • two charging interfaces in the figure.
  • Type-A USB interface and Type-C USB interface are used to convert alternating current to direct current; and both are connected to power sockets.
  • the Type-A USB interface includes a plurality of terminals or pins, specifically including: a plurality of first data transmission terminals for data transmission, and a voltage output terminal for charging.
  • the data transmission end of the Type-A USB interface includes the data pins D+ pin and D- pin in the Type-A USB interface.
  • the voltage output terminal of the Type-A USB interface is the voltage pin VBUS pin in the Type-A USB interface.
  • the data pins D+ pin and D- pin in the Type-A USB interface are respectively connected to the protocol IC1; the voltage pin VBUS pin in the Type-A USB interface is connected to the secondary side of the voltage converter 101 .
  • a first sampling output module is provided between the voltage output end of the Type-A USB interface and the voltage converter 101, and the first sampling output module is connected to the protocol IC1 for collecting the voltage and current.
  • the Type-C USB interface includes multiple terminals or pins, specifically including: multiple data transmission terminals for data transmission and voltage output terminals for charging.
  • the data terminal of the Type-C USB interface includes the data pins D+ pin, D- pin and CC pin in the Type-C USB interface.
  • the voltage output terminal of the Type-C USB interface is the voltage pin VBUS pin in the Type-C USB interface.
  • the data pins D+ pin, D- pin and CC pin in the Type-C USB interface are respectively connected to the protocol IC2; the voltage pin VBUS pin in the Type-C USB interface is connected to the secondary pin of the voltage converter 102 side.
  • a second sampling output module is provided between the voltage output end of the Type-C USB interface and the voltage converter 102, and the second sampling output module is connected to the protocol IC2 for collecting the voltage and current.
  • the charger includes: a power socket 1 , a voltage converter 2 , a first power converter 3 , a second power converter 4 , a first power A charging protocol chip 5 , a second charging protocol chip 6 , a first charging interface 7 and a second charging interface 8 .
  • the voltage converter 2 is respectively connected to the power socket 1, the first power converter 3 and the second power converter 4, the voltage converter 2 is used to convert alternating current into direct current, and the first power converter 3 and the second power converter 4 are all used for DC power conversion;
  • the first charging protocol chip 5 is respectively connected to the first power converter 3 and the first charging interface 7;
  • the second charging protocol chip 6 is respectively connected to the second power converter 4 and the second charging interface 8;
  • the first charging protocol chip 5 and the second charging protocol chip 6 are in communication connection.
  • the charger is a 1A1C multi-port charger, that is, a charger that includes a Type-A USB port (hereinafter referred to as A port) and a Type-C USB (hereinafter referred to as C port) port.
  • a port can only support 5V2A charging, or it can support both 5V2A charging and fast charging;
  • C port supports fast charging.
  • the first charging interface corresponds to the Type-A USB interface in this example
  • the second charging interface corresponds to the Type-C USB interface in this example.
  • the first power converter 3 is a step-down converter circuit (BUCK1 in the figure)
  • the second power converter 4 is a step-down converter circuit (BUCK2 in the figure).
  • the first charging interface 7 includes a plurality of terminals or pins, and specifically includes: a first voltage output terminal for charging, and a plurality of first data transmission terminals for data transmission.
  • the first data transmission end of the first charging interface 7 includes the data pins D+ pins and D- pins in the Type-A USB interface.
  • the first voltage output end of the first charging interface 7 is the voltage pin VBUS pin in the Type-A USB interface.
  • the first data transmission end of the first charging interface 7 is connected to the first charging protocol chip 5, that is, the data pins D+ and D- of the Type-A USB interface are respectively connected to the protocol IC1; the first charging interface The first voltage output end of 7 is connected to the first power converter 3, that is, the voltage pin VBUS pin in the Type-A USB interface is connected to the first power converter 3.
  • the charger in the embodiment of the present application may further include: a first sampling output module disposed between the first voltage output end of the first charging interface 7 and the first power converter 3 , the The first sampling output module is connected to the first charging protocol chip 5 , and the first sampling output module is used to collect the voltage and current of the first voltage output terminal; the first power converter 3 is connected to the first charging protocol chip 5 .
  • the second charging interface 8 includes a plurality of terminals or pins, and specifically includes: a second voltage output terminal for charging, and a plurality of second data transmission terminals for data transmission.
  • the second data terminal of the second charging interface 8 includes the data pins D+ pin, D- pin and CC pin in the Type-C USB interface.
  • the second voltage output end of the second charging interface 8 is the voltage pin VBUS pin in the Type-C USB interface.
  • the second data transmission end of the second charging interface 8 is connected to the second charging protocol chip 6, that is, the data pins D+, D-, CC1 and CC2 in the Type-C USB interface are respectively The connection protocol IC2; the second voltage output end of the second charging interface 8 is connected to the second power converter 4, that is, the voltage pin VBUS pin in the Type-C USB interface is connected to the second power converter 4.
  • the charger in the embodiment of the present application may further include: a second sampling output module disposed between the second voltage output end of the second charging interface 8 and the second power converter 4 , the The second sampling output module is connected to the second charging protocol chip 6 , and the second sampling output module is used to collect the voltage and current of the second voltage output terminal; the second power converter 4 is connected to the second charging protocol chip 6 .
  • the voltage converter 2 is an AC-DC converter, and the voltage converter 2 outputs a fixed voltage, such as a fixed output of 21V.
  • Two protocol ICs that is, the first charging protocol chip 5 and the second charging protocol chip 6 communicate through the direct connection of the general-purpose I/O port (General-Purpose Input/Output, GPIO).
  • the first charging protocol The input and output pins of the chip 5 are cascaded with the input and output pins of the second charging protocol chip 6, thereby realizing real-time mutual transmission of power information between the dual ports, which is simple in implementation and rich in transmission content.
  • the charger according to the embodiment of the present application further includes: a first temperature sampling module and a second temperature sampling module, wherein the first temperature sampling module and the second temperature sampling module are The first charging protocol chip 5 is connected.
  • the voltage converter outputs a fixed voltage
  • the first power converter and the second power converter are respectively connected in series to the voltage converter
  • the first power converter and the second power converter are composed of different
  • the charging protocol chip is controlled by the charging protocol chip, so as to realize the multi-port fast charging function; in addition, the direct communication connection between different charging protocol chips, so as to realize the real-time mutual transmission of power information between the dual ports, and then realize the multi-port charger between different output ports.
  • Intelligent power distribution improves the effective utilization of multi-port charger power and improves the user's fast charging experience.
  • an embodiment of the present application further provides a charging control method.
  • the method is applied to a charger.
  • the charger may be the charger described in the above embodiment.
  • the method may specifically include:
  • Step 301 in the case that the first charging interface and the second charging interface are respectively connected to the first device and the second device and perform fast charging, obtain the first pull-in power of the first device;
  • the first charging protocol chip 5 and the second charging protocol chip 6 can realize communication connection, and the first charging protocol chip 5 is connected with the first charging interface 7, the second charging protocol chip 6 It is connected to the second charging interface 8 , so the second charging interface 8 can obtain the first pulling power of the first device connected to the first charging interface 7 .
  • the pull-up power can be understood as the power that the electronic device needs to output from the charger to itself when the electronic device is charged by the charger.
  • the first electronic device connected to the first charging interface is not a fast charging device, it is only necessary to pull a power of 5V2A, ie, 10W, from the charger from the first charging interface.
  • Step 302 in the case that the first pull-in power meets a preset condition, send instruction information to the second charging interface, where the instruction information is used to instruct to adjust the output power of the second charging interface to the target numerical value.
  • the maximum power allowed to output by the second charging interface is no longer a fixed power, but can be intelligently adjusted according to the pulling power of other charging interfaces.
  • the execution body of the method in the embodiment of the present application is the second charging protocol chip.
  • the first pull-in power of the first device is obtained;
  • the instruction information is sent to the second charging interface, and the instruction information is used to instruct the output power of the second charging interface to be adjusted to the target value.
  • the method step 101 in this embodiment of the present application may specifically include:
  • first command information is sent to the second charging interface, where the first command information is used to instruct to increase the 2.
  • the output power of the charging interface reaches the first target value
  • the first pull-in power continues to be lower than the first threshold within the preset time, indicating that the power of the first device has exceeded the preset threshold. There is no need for the charger to allocate too much power to itself. At this time, in order to improve the effective utilization rate of the charger power and to speed up the charging process of the second device, send an instruction to increase the output power of the second charging interface.
  • the first command information to the first target value.
  • the first target value is determined by the total power of the charger and the first pulling power, and may specifically be a difference between the total power of the charger and the first pulling power.
  • the device when the device is charging, the device will heat up. When the device temperature reaches the preset temperature, the pull-up power will be automatically reduced. After that, the temperature will return to normal by means of cooling, and the pull-up power will return to the original level. Or, when the device is making a phone call, if the pull-up power is too high, the call quality will be affected. Generally, the pull-up power will be reduced. After the call ends, the pull-up power will return to the original level.
  • the drop amount of the first pull-in power per unit time exceeds the second threshold, indicating that the temperature of the first device reaches the preset temperature, and the first pull-in power is automatically reduced; or, the first device is in a call state, and the first pull-in power
  • the second instruction information for instructing to increase the output power of the second charging interface to the second target value is sent.
  • the second target value is determined by the total power of the charger and the first pulling power, and may specifically be a difference between the total power of the charger and the first pulling power.
  • the first pull-in power is greater than the first output power, indicating that the current power of the first device is low. It can be understood that the first device needs to be allocated more power by the charger in the initial stage of charging. At this time, in order to speed up the first device During the charging process of the device, send third instruction information instructing to reduce the output power of the second charging interface to a third target value.
  • the third target value is determined by the total power of the charger and the first pulling power, and may specifically be the difference between the total power of the charger and the first pulling power.
  • the target value (here The target value generally refers to any one of the above-mentioned first target value, second target value and third target value), which may include:
  • the target value is B*A.
  • the basic step size A for power adjustment is a preset value.
  • the quotient of the intermediate power and the power adjustment basic step A is rounded down to obtain B, and B is greater than 1, indicating that the charger outputs power surplus through the first charging interface, that is, excluding the first load power , there is still a lot of surplus power that is not used.
  • the surplus power is allocated to the second charging interface side, which can improve the effective utilization rate of the power of the multi-port charger, and the second charging interface is connected to the second charging interface.
  • the charging time of the second device is greatly shortened, the fast charging effect is enhanced, and the user's fast charging experience is further improved.
  • the maximum output power allowed by the second charging interface maintains the original power, that is, for all The maximum output power allowed by the second charging interface is not processed.
  • the second charging interface is a master interface
  • the first charging interface is a slave interface
  • step 301 in this embodiment of the present application obtains the first pull power of the first device, which may include :
  • the second charging interface obtains the first load power of the first device every first time
  • the first charging protocol chip 5 connected to the first charging interface 7 and the second charging protocol chip 6 connected to the second charging interface 8 are connected in communication, specifically, the first input and output tubes of the first charging interface 7 and the second input and output pins of the second charging interface 8 are cascaded.
  • the first input and output pins and the second input and output pins are both GPIO ports.
  • the first input and output pins and the second input and output pins are GPIO ports.
  • the output pins are RT pins. Communication between different charging protocol chips is carried out through the cascade of GPIO ports, that is, single-wire communication is used to transmit real-time power.
  • the step of acquiring the first pull-in power of the first device may include:
  • the level state of the second input and output pin is the first target state
  • the level state of the second input/output pin includes two states of high level and low level. Here, it is high by default.
  • the first target state is a low level.
  • the first target state is triggered by the second charging protocol chip. Specifically, when the second charging protocol chip needs to transmit the power information of the second charging interface, it pulls its second input and output pins to the first target state, for example, from the default high level to the low level. Since the first I/O pin is cascaded with the second I/O pin, the level state of the first I/O pin becomes the first target state.
  • the preset communication sequence and transmission rules parse the first level information to obtain a first communication instruction and first communication data, where the first communication instruction is used to indicate that the first level information is in the first level information. , corresponding to the level state within the command transmission period;
  • the preset communication sequence is shown in Figure 4, where the communication sequence refers to the level changes that occur on the communication line in chronological order, and the significance of these changes to the communication is called the sequence.
  • communication information such as communication commands and communication data
  • communication information is transmitted through a low level.
  • the time sequence what information each low-level period is used to represent and the duration of each level period (that is, the time specification) have been preset.
  • the specific time specification is shown in Table 1 below:
  • the communication sequence in FIG. 4 is described in detail.
  • the low level lasts for 9ms, corresponding to the Start in the communication sequence, which is used for communication testing; after that, it becomes a high level for 3msT_cap ; Then, it becomes a low level and lasts for 6ms, corresponding to the ACK in the communication sequence, the ACK is feedback to the input and output pins of the second charging protocol chip, indicating that the first charging protocol chip and the second charging protocol chip It can communicate normally; then, it becomes a high level 9msT_wait; after that, it enters the formal information transmission.
  • the communication command is transmitted through the level state and the duration of the corresponding level state, and then becomes high level 9msT_wait, and then the level state and the duration of the corresponding level state are transmitted. Communication data corresponding to the communication command.
  • T_wait becomes high level for 9ms, it becomes low level for 3ms, high level for 3ms T_cap and low level for 3ms, indicating that the communication command is "00", indicating that port A (here Corresponding to the power transmission command of the Type-A USB interface in Figure 2, that is to say, the communication data transmitted later is the power of the A port sent by the A port.
  • the first communication command is a first sending command for obtaining power through the first charging interface
  • determine that the first communication data is data representing power
  • set the power value corresponding to the first communication data It is determined as the first pull-in power of the first device.
  • the communication information is represented by a first preset number of bits, and the value "0" or "1" of the bits is reflected by the low level and the duration of keeping the low level unchanged.
  • a 3ms low level is used to represent a "0”
  • a 6ms low level is used to represent a "1”.
  • the same is true for the communication data, which is represented by a second predetermined number of bits.
  • the value "0" or “1" of the bit is reflected by the low level and the duration of the constant low level.
  • communication is a process in which two communication parties interact with each other.
  • the above embodiment corresponds to the fact that the second charging interface obtains the real-time power of the first charging interface, and according to the obtained real-time power, the second charging protocol chip adjusts the output of the second charging interface side. power process.
  • the second charging interface can also send the real-time power of its own side to inform the first charging protocol chip.
  • the first charging protocol chip can also adjust the first charging according to the power on the second charging interface side. Output power on the interface side.
  • Step 301 in this embodiment of the present application obtains the first pull-in power of the first device, which may include:
  • Manner 2 In the case where the first pull-in power of the first charging device changes, the second charging interface receives the first pull-in power of the first device sent by the first charging interface.
  • the first charging protocol chip when the first pull-in power of the first charging device changes and does not reach the first duration, the first charging protocol chip will actively send information, that is, the first pull-in power, to the first charging device.
  • the second charging protocol chip is convenient for the second charging protocol chip to obtain the second pulling power of the first device in time.
  • the first charging interface actively sending the first pulling power of the first device to the second charging interface may include:
  • the second communication data representing the first pull-up power is represented by several bits.
  • the second target state is a low level state.
  • the level state of the first input and output pins is high.
  • the first input input output pin is triggered to be pulled to a low level by the second sending instruction.
  • the second level information carrying the second communication data and the second sending command is obtained, and output to the second input and output through the first input and output pins pin.
  • the second sending command is output to the first through the level state and the duration of the corresponding level state.
  • the two I/O pins then change to a high level for 9msT_wait, and then output the second communication data to the second I/O pins through a level state and a duration corresponding to the level state.
  • the method may further include:
  • the adjusted power is sent to the second device through the second charging interface.
  • the method of the embodiment of the present application may further include: acquiring temperature information of the charger.
  • a first temperature sampling module and a second temperature sampling module can be arranged on the charger to collect the temperature of the charger itself.
  • the first charging protocol chip is connected to the first charging interface, that is, to the A port; the second charging protocol chip is connected to the second charging interface, that is, to the C port.
  • Port A regularly sends its own power information to port C.
  • port A sends information 3 to port C, as shown in Figure 5.
  • the communication process is as follows:
  • Port A regularly obtains the power information of port C, and port A obtains information 3 of port C regularly, as shown in Figure 6, the communication process is as follows:
  • Port C changes.
  • Port C actively sends information to port A, and port C sends information 3 to port A.
  • the communication process is as follows:
  • Port A regularly sends temperature information to port C, and port A sends temperature information to port C, as shown in Figure 8, the communication process is:
  • port A and port C are based on port A as the master interface and port C as the slave interface.
  • the C port can also be used as the main interface and the A port as the slave interface, which is not specifically limited here.
  • the A port into the mobile phone first, and then insert the C port into the mobile phone (the total power of the charger is 60W, and both A and C ports support fast charging.
  • the default power provided by the A port is 30W
  • the power provided by the C port is 30W
  • the A port establishes fast charging communication with the A port mobile phone, and the A port provides 60W charging power to the A port mobile phone;
  • the charger detects that a mobile phone is inserted into the C port, and the C port communicates with the C port mobile phone for fast charging, and recognizes that the C port is a fast charging mobile phone.
  • the charging process of the charger resets the A port to make the A port return to the initial state;
  • the maximum power provided by the charger for port A and port C is 30W.
  • the first charging protocol chip of the charger controls the BUCK1 circuit not to output voltage to the Vbus pin of port A, that is, the charging process of port A is reset to return port A to the initial state.
  • the mobile phone at port A and port C are respectively 30W fast charging; at this time, port A continuously sends information to port C to inform itself of its power or continuously obtains the real-time power of port C;
  • a and C ports adjust their own maximum output power in real time according to the load situation of the other party.
  • the default multi-port charging port A and C provide a maximum external power of 30W.
  • a and C continuously detect the pulling load of the port. For example, for more than 10 minutes, the A port detects that the pulling load of the electronic equipment is within 50% of the maximum power. At this time, the A port informs the charging IC on the C port side, and the A port The output power is surplus. After the charging IC on the C port side obtains the power information of the A port, it adjusts the maximum external power provided by the C port, and informs the electronic device on the C port side to charge the electronic device with higher power.
  • the A port detects that the electronic device at the A port has exited the fast charge.
  • the A port informs the C port that the output power of the A port is surplus at this time.
  • the charging IC on the C port side obtains the power information of the A port, adjust The C port provides maximum power to the outside world, and informs the electronic devices at the C port to charge more power.
  • the charger provides a full power of 60W to another charging port.
  • port A when ports A and C perform fast charging at the same time, as shown in Figure 2, port A has the remaining CC1 and CC2 ports for temperature detection, and port C is blocked because CC1 and CC2 need to communicate with the fast charging protocol. Occupied, there is no extra port for temperature detection, port A continuously transmits its own temperature information to port C, and port C does temperature protection according to the temperature information.
  • the first pull-in power of the first device is obtained;
  • the instruction information is sent to the second charging interface, and the instruction information is used to instruct the output power of the second charging interface to be adjusted to the target value.
  • the execution body may be a charging control device, or a control module in the charging control device for executing the loading charging control method.
  • the charging control method provided by the embodiment of the present application is described by taking the charging control device executing the charging charging control method as an example.
  • an embodiment of the present application further provides a charging control device 900, which is applied to a charger.
  • the charger includes at least two charging interfaces and at least two charging protocol chips, each charging interface is respectively associated with a corresponding The charging protocol chip is connected, and the at least two charging protocol chips are connected to each other in communication; the device includes:
  • an obtaining module 901 configured to obtain the first pull-in power of the first device when the first charging interface and the second charging interface are respectively connected to the first device and the second device and perform fast charging;
  • a sending module 902 configured to send instruction information to the second charging interface when the first pulling power meets a preset condition, where the instruction information is used to instruct the output power of the second charging interface Adjust to target value.
  • the sending module 902 includes:
  • a first sending unit configured to send first command information to the second charging interface when the first pull-in power continues to be lower than a first threshold within a preset time, and the first command information is used for Instruct to increase the output power of the second charging interface to the first target value;
  • a second sending unit configured to send second command information to the second charging interface when the drop of the first pull-up power per unit time exceeds a second threshold, where the second command information is used for Instruct to increase the output power of the second charging interface to the second target value;
  • a third sending unit configured to send third instruction information to the second charging interface when the first pull-in power is greater than the first output power, where the third instruction information is used to instruct to reduce the The output power of the two charging ports reaches the third target value.
  • the second charging interface is a master interface
  • the first charging interface is a slave interface
  • the acquiring module 901 is specifically used for:
  • the second charging interface obtains the first pulling power of the first device every first time period; or,
  • the second charging interface receives the first pull-in power of the first device sent by the first charging interface.
  • the charging control device in the embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the apparatus may be a mobile electronic device or a non-mobile electronic device.
  • the mobile electronic device may be a cell phone, tablet computer, notebook computer, palmtop computer, in-vehicle electronic device, wearable device, ultra-mobile personal computer (UMPC), netbook or personal digital Assistant (personal digital assistant, PDA), etc.
  • non-mobile electronic devices can be network attached storage (Network Attached Storage, NAS), personal computer (personal computer, PC), television (television, TV), teller machine or self-service machine, etc.
  • NAS Network Attached Storage
  • personal computer personal computer, PC
  • television television
  • the embodiments of the present application are not specifically limited.
  • the charging control device in the embodiment of the present application may be a device with an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the charging control device provided in the embodiment of the present application can implement each process implemented by the method embodiments in FIG. 1 to FIG. 8 , and in order to avoid repetition, details are not repeated here.
  • the acquisition module acquires the first pull-up load of the first device when the first charging interface and the second charging interface are respectively connected to the first device and the second device and perform fast charging. power; the sending module sends command information to the second charging interface when the first pull-in power meets the preset condition, where the command information is used to instruct the output power of the second charging interface to be adjusted to the target value, In this way, the intelligent distribution of the power of the multi-port charger can be realized, the effective utilization rate of the power of the multi-port charger can be improved, and the user's fast charging experience can be improved.
  • an embodiment of the present application further provides a charger, including the charging control device described in the foregoing embodiments.
  • an embodiment of the present application also provides a charger, including a processor, a memory, a program or an instruction stored in the memory and executable on the processor, and the program or instruction is executed by the processor to realize the above.
  • a charger including a processor, a memory, a program or an instruction stored in the memory and executable on the processor, and the program or instruction is executed by the processor to realize the above.
  • the chargers in the embodiments of the present application include the aforementioned mobile electronic devices and non-mobile electronic devices.
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the foregoing charging control method embodiment can be achieved, and can achieve the same In order to avoid repetition, the technical effect will not be repeated here.
  • the processor is the processor in the charger described in the above embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the charging control method embodiment described above.
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is configured to run a program or an instruction to implement the charging control method embodiment described above.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请公开了一种充电器、充电控制方法及装置,属于通信技术领域。该充电器包括电源插座、电压转换器、第一功率转换器、第二功率转换器、第一充电协议芯片、第二充电协议芯片、第一充电接口和第二充电接口;电压转换器分别连接电源插座、第一功率转换器和第二功率转换器,电压转换器用于将交流电转换为直流电,第一功率转换器和第二功率转换器均用于变换直流功率变换;第一充电协议芯片分别连接第一功率转换器和第一充电接口;第二充电协议芯片分别连接第二功率转换器和第二充电接口;第一充电协议芯片与第二充电协议芯片通信连接。

Description

充电器、充电控制方法及装置
相关申请的交叉引用
本申请主张在2020年9月29日在中国提交的中国专利申请No.202011049947.3的优先权,其全部内容通过引用包含于此。
技术领域
本申请涉及通信技术领域,具体涉及一种充电器、充电控制方法及装置。
背景技术
随着技术的不断发展,智能电子设备的功能越来越强大,智能电子设备的待机时长越来越被用户看重,但由于电池容量受限于电池技术,因此,快速充电方案便应运而生。
为了方便用户对不同电子设备充电,用户常常使用多口充电器。目前的多口充电器,一般有1A1C(1个USB_A、1个USB_C),2A1C(2个USB_A、1个USB_C),1A2C(1个USB_A、2个USB_C)等多种类型。
现有的多口充电器中一般至少有一个充电接口支持快速充电,在实现本申请过程中,发明人发现充电器分配到每个充电接口的功率是固定的,在使用多个充电接口充电时,有的充电接口实际需要的功率小于其被分配的固定功率,而有的充电接口,一般是快充充电接口,实际需要的功率大于其被分配的固定功率,从而造成多口充电器功率的没有得到有效利用,多口充电器功率的有效利用率低。
发明内容
本申请实施例的目的是提供一种充电器、充电控制方法及装置,能够解决现有充电器功率有效利用率低的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例提供了一种充电器,包括:电源插座、电压转 换器、第一功率转换器、第二功率转换器、第一充电协议芯片、第二充电协议芯片、第一充电接口和第二充电接口;
其中,所述电压转换器分别连接所述电源插座、所述第一功率转换器和所述第二功率转换器,所述电压转换器用于将交流电转换为直流电,所述第一功率转换器和所述第二功率转换器均用于直流功率变换;
所述第一充电协议芯片分别连接所述第一功率转换器和所述第一充电接口;
所述第二充电协议芯片分别连接所述第二功率转换器和所述第二充电接口;
所述第一充电协议芯片与所述第二充电协议芯片通信连接。
第二方面,本申请实施例提供了一种充电控制方法,应用于充电器,包括:
在第一充电接口和第二充电接口分别与第一设备和第二设备连接,并进行快速充电的情况下,获取所述第一设备的第一拉载功率;
在所述第一拉载功率满足预设条件的情况下,发送指令信息至所述第二充电接口,所述指令信息用于指示将所述第二充电接口的输出功率调整至目标数值。
第三方面,本申请实施例还提供了一种充电控制装置,包括:
获取模块,用于在第一充电接口和第二充电接口分别与第一设备和第二设备连接,并进行快速充电的情况下,获取所述第一设备的第一拉载功率;
发送模块,用于在所述第一拉载功率满足预设条件的情况下,发送指令信息至所述第二充电接口,所述指令信息用于指示将所述第二充电接口的输出功率调整至目标数值。
第四方面,本申请实施例提供了一种充电器,包括:如第三方面所述的充电控制装置。
第五方面,本申请实施例提供了一种充电器,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指 令被所述处理器执行时实现如第二方面所述的充电控制方法的步骤。
第六方面,本申请实施例还提供了一种可读存储介质,所述可读存储介质上存储有程序或指令,所述程序或指令被处理器执行时实现如第二方面所述的充电控制方法的步骤。
第七方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第二方面所述的充电控制方法的步骤。
第八方面,本申请实施例提供了一种计算机程序产品,其中,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如第二方面所述的充电控制方法的步骤。
在本申请实施例中,通过电压转换器输出固定电压,通过在电压转换器分别串接第一功率转换器和第二功率转换器,第一功率转换器和第二功率转换器分别由不同的充电协议芯片控制,从而实现多口快充功能;并且,不同充电协议芯片之间直接通信连接,进而实现双口之间功率信息的实时互传,进而实现多口充电器不同输出口之间功率智能分配,提高多口充电器功率的有效利用率,提升用户的快充体验。
附图说明
图1为现有充电器的硬件电路结构示意图;
图2为本申请实施例的充电器的硬件电路结构示意图;
图3为本申请实施例提供的充电控制方法的流程示意图;
图4为本申请实施例的预先设定的通信时序图;
图5为本申请实施例的第一协议芯片和第二协议芯片通过输入输出管脚级联实现单线通信的通信场景之一;
图6为本申请实施例的第一协议芯片和第二协议芯片通过输入输出管脚级联实现单线通信的通信场景之二;
图7为本申请实施例的第一协议芯片和第二协议芯片通过输入输出管脚 级联实现单线通信的通信场景之三;
图8为本申请实施例的第一协议芯片和第二协议芯片通过输入输出管脚级联实现单线通信的通信场景之四;
图9为本发明实施例提供的充电控制装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的充电器进行详细地说明。
为了便于本领域技术人员的理解,先对现有技术中的充电器的电路结构进行简单说明。
参见图1,在一示例中,充电器为1A1C的多口充电器,即包括一个Type-A USB口(下面简称A口)和一个Type-C USB(下面简称C口)口的充电器。其中,A口可以仅支持5V2A充电,也可以是既支持5V2A充电,又支持快充;C口支持快充。双口均支持快充的多口充电器,通常是将两套电路堆叠在一起,如图2所示。该充电器包括:电源插座(图中AC插座)、两个电压转换器(图中标号101和102)、两个充电协议芯片(图中协议IC1和协议IC2)、两个充电接口(图中Type-A USB接口和Type-C USB接口)。其中,两个电压转换器均用于将交流电转换为直流电;且均连接电源插座。
其中,Type-A USB接口包括多个端子或引脚,具体包括:多个用于数据传输的第一数据传输端,以及用于充电的电压输出端。具体的,Type-A USB接口的数据传输端包括Type-A USB接口中的数据引脚D+引脚和D-引脚。Type-A USB接口的电压输出端为Type-A USB接口中的电压引脚VBUS引脚。
具体的,Type-A USB接口中的数据引脚D+引脚和D-引脚分别连接协议IC1;Type-A USB接口中的电压引脚VBUS引脚连接电压转换器101的副边。需要说明的是,Type-A USB接口的电压输出端与电压转换器101之间设有第一采样输出模组,该第一采样输出模组与协议IC1连接,用于采集电压输出端的电压和电流。
Type-C USB接口包括多个端子或引脚,具体包括:多个用于数据传输的数据传输端,以及用于充电的电压输出端。具体的,Type-C USB接口的数据端包括Type-C USB接口中的数据引脚D+引脚、D-引脚和CC引脚。Type-C USB接口的电压输出端为Type-C USB接口中的电压引脚VBUS引脚。
具体的,Type-C USB接口中的数据引脚D+引脚、D-引脚以及CC引脚分别连接协议IC2;Type-C USB接口中的电压引脚VBUS引脚连接电压转换器102的副边。需要说明的是,Type-C USB接口的电压输出端与电压转换器102之间设有第二采样输出模组,该第二采样输出模组与协议IC2连接,用于采集电压输出端的电压和电流。
上述充电器的不足之处在于,一者,充电器上的器件过多,体积大,成本高;二者,两个端口不能动态功率分配,从而不能有效利用充电器的最大功率。
基于此,本申请实施例提供了一种充电器,如图2所示,该充电器包括:电源插座1、电压转换器2、第一功率转换器3、第二功率转换器4、第一充电协议芯片5、第二充电协议芯片6、第一充电接口7和第二充电接口8。
其中,电压转换器2分别连接电源插座1、第一功率转换器3和第二功率转换器4,电压转换器2用于将交流电转换为直流电,第一功率转换器3和第二功率转换器4均用于直流功率变换;第一充电协议芯片5分别连接第 一功率转换器3和第一充电接口7;第二充电协议芯片6分别连接第二功率转换器4和第二充电接口8;第一充电协议芯片5与第二充电协议芯片6之间通信连接。
在图2所示的示例中,充电器为1A1C的多口充电器,即包括一个Type-A USB口(下面简称A口)和一个Type-C USB(下面简称C口)口的充电器。其中,A口可以仅支持5V2A充电,也可以是既支持5V2A充电,又支持快充;C口支持快充。
具体的,第一充电接口对应于本示例图中的Type-A USB接口;第二充电接口对应于本示例图中的Type-C USB接口。
这里,第一功率转换器3为降压式变换电路(图中的BUCK1),第二功率转换器4为降压式变换电路(图中的BUCK2)。
需要说明的是,第一充电接口7包括多个端子或引脚,具体包括:用于充电的第一电压输出端,以及多个用于数据传输的第一数据传输端。具体的,第一充电接口7的第一数据传输端包括Type-A USB接口中的数据引脚D+引脚和D-引脚。第一充电接口7的第一电压输出端为Type-A USB接口中的电压引脚VBUS引脚。
具体的,第一充电接口7的第一数据传输端连接第一充电协议芯片5,即Type-A USB接口中的数据引脚D+引脚和D-引脚分别连接协议IC1;第一充电接口7的第一电压输出端连接第一功率转换器3,即Type-A USB接口中的电压引脚VBUS引脚连接第一功率转换器3。
作为一可选地实现方式,本申请实施例的充电器还可包括:设于第一充电接口7的第一电压输出端与第一功率转换器3之间的第一采样输出模组,该第一采样输出模组与第一充电协议芯片5连接,第一采样输出模组用于采集第一电压输出端的电压和电流;第一功率转换器3与第一充电协议芯片5连接。
第二充电接口8包括多个端子或引脚,具体包括:用于充电的第二电压输出端,以及多个用于数据传输的第二数据传输端。具体的,第二充电接口 8的第二数据端包括Type-C USB接口中的数据引脚D+引脚、D-引脚和CC引脚。第二充电接口8的第二电压输出端为Type-C USB接口中的电压引脚VBUS引脚。
具体的,第二充电接口8的第二数据传输端连接第二充电协议芯片6,即Type-C USB接口中的数据引脚D+引脚、D-引脚、CC1引脚以及CC2引脚分别连接协议IC2;第二充电接口8的第二电压输出端连接第二功率转换器4,即Type-C USB接口中的电压引脚VBUS引脚连接第二功率转换器4。
作为一可选地实现方式,本申请实施例的充电器还可包括:设于第二充电接口8的第二电压输出端与第二功率转换器4之间的第二采样输出模组,该第二采样输出模组与第二充电协议芯片6连接,第二采样输出模组用于采集第二电压输出端的电压和电流;第二功率转换器4与第二充电协议芯片6连接。
需要说明的是,本申请实施例中,电压转换器2为AC-DC变换器,通过该电压转换器2输出固定电压,如固定输出21V。两个协议IC,即第一充电协议芯片5和第二充电协议芯片6之间通过通用I/O端口(General-Purpose Input/Output,GPIO)的直接连接进行通信,具体的,第一充电协议芯片5的输入输出管脚与第二充电协议芯片6的输入输出管脚级联,进而实现双口之间功率信息的实时互传,其实现方式简单,传输内容丰富。
可选地,本申请实施例的充电器,还包括:第一温度采样模组和第二温度采样模组,其中,所述第一温度采样模组和所述第二温度采样模组均与第一充电协议芯片5连接。
本申请实施例的充电器,通过电压转换器输出固定电压,通过在电压转换器分别串接第一功率转换器和第二功率转换器,第一功率转换器和第二功率转换器分别由不同的充电协议芯片控制,从而实现多口快充功能;并且,不同充电协议芯片之间直接通信连接,进而实现双口之间功率信息的实时互传,进而实现多口充电器不同输出口之间功率智能分配,提高多口充电器功率的有效利用率,提升用户的快充体验。
如图3所示,本申请实施例还提供一种充电控制方法,该方法应用于充电器,具体的可以为上述实施例所述的充电器,该方法可具体包括:
步骤301,在第一充电接口和第二充电接口分别与第一设备和第二设备连接,并进行快速充电的情况下,获取所述第一设备的第一拉载功率;
需要说明的是,由于第一充电协议芯片5与第二充电协议芯片6之间能够是实现通信连接,而第一充电协议芯片5是与第一充电接口7连接的,第二充电协议芯片6是与第二充电接口8连接的,所以第二充电接口8能够获取与第一充电接口7连接的第一设备的第一拉载功率。
这里,拉载功率可以理解为电子设备使用充电器充电时,电子设备所需要充电器输出给自己的功率。
比如,若与第一充电接口连接的第一电子设备不为快充设备,仅需要从第一充电接口拉载充电器5V2A即10W的功率。
步骤302,在所述第一拉载功率满足预设条件的情况下,发送指令信息至所述第二充电接口,所述指令信息用于指示将所述第二充电接口的输出功率调整至目标数值。
可以理解的,通过本步骤的执行,第二充电接口允许输出的最大功率不再是固定功率,而是可以根据其他充电接口的拉载功率,进行智能调整。
需要说明的是,本申请实施例的方法执行主体为第二充电协议芯片。
本申请实施例的充电控制方法,在第一充电接口和第二充电接口分别与第一设备和第二设备连接,并进行快速充电的情况下,获取第一设备的第一拉载功率;在第一拉载功率满足预设条件的情况下,发送指令信息至所述第二充电接口,该指令信息用于指示将所述第二充电接口的输出功率调整至目标数值,如此,能够实现多口充电器功率的智能分配,提高多口充电器功率的有效利用率,提升用户的快充体验。
作为一可选的实现方式,本申请实施例的方法步骤101,可具体包括:
在所述第一拉载功率在预设时间内持续低于第一阈值的情况下,发送第一指令信息至所述第二充电接口,所述第一指令信息用于指示调高所述第二 充电接口的输出功率至第一目标值;
这里,第一拉载功率在预设时间内持续低于第一阈值,说明第一设备的电量已超过预设阈值,可以理解为第一设备充电到达充电末期,第一设备充电快要完成,已经不需要充电器分配给自己太多的功率,此时,为了提高充电器功率的有效利用率,也为了加快第二设备的充电进程,发送用于指示调高所述第二充电接口的输出功率至第一目标值的第一指令信息。
可选地,第一目标值由充电器的总功率以及第一拉载功率确定,具体可以为充电器的总功率与第一拉载功率之间的差值。
或者,在所述第一拉载功率在单位时间内的下降量超过第二阈值情况下,发送第二指令信息至所述第二充电接口,所述第二指令信息用于指示调高所述第二充电接口的输出功率至第二目标值;
需要说明的是,设备在充电时,设备会发热,当设备温度达到预设温度时,会自动将拉载功率降低,之后,通过降温手段温度恢复正常,拉载功率又会回到原来水平。或者,设备在打电话等场景,拉载功率过高会对通话质量产生影响,一般会将拉载功率降低,待通话结束后,拉载功率又回到原来水平。
这里,第一拉载功率在单位时间内的下降量超过第二阈值,说明第一设备温度达到预设温度,第一拉载功率自动降低;或者,第一设备处于通话状态,第一拉载功率降低,为了提高充电器功率的有效利用率,也为了使加快第二设备的充电进程,发送用于指示调高所述第二充电接口的输出功率至第二目标值的第二指令信息。
可选地,第二目标值由充电器的总功率以及第一拉载功率确定,具体可以为充电器的总功率与第一拉载功率之间的差值。
或者,在所述第一拉载功率大于第一输出功率的情况下,发送第三指令信息至所述第二充电接口,所述第三指令信息用于指示降低所述第二充电接口的输出功率至第三目标值。
这里,第一拉载功率大于第一输出功率,说明第一设备当前电量较低, 可以理解为第一设备充电到充电初期,需要充电器分配给自己多的功率,此时,为了加快第一设备的充电进程,发送指示降低所述第二充电接口的输出功率至第三目标值的第三指令信息。
可选地,第三目标值由充电器的总功率以及第一拉载功率确定,具体可以为充电器的总功率与第一拉载功率之间的差值。
这里,为了增强快充效果,进一步提升用户的快充体验,作为一可选地实现方式,基于充电器的总功率与所述第一拉载功率之间的差值运算,得到目标值(这里目标值泛指上述第一目标值、第二目标值和第三目标值中的任一者),可包括:
将所述充电器的总功率与所述第一拉载功率进行差值运算,得到中间功率;
若所述中间功率与功率调整基本步长A的商向下取整得到B,且B大于1,则所述目标值为B*A。
这里,功率调整基本步长A为预先设定的值。本步骤中,所述中间功率与功率调整基本步长A的商向下取整得到B,且B大于1,说明充电器通过第一充电接口输出功率富余,也就是,除去第一拉载功率,还有很多富余的功率未被利用,通过上述功率调整,将富余的功率分配至第二充电接口侧,可以达到提高多口充电器功率的有效利用率,且与第二充电接口连接的第二设备的充电时长大大缩短,增强快充效果,以及进一步提升用户的快充体验的目的。
再者,若所述中间功率与功率调整基本步长A的商向下取整得到B,且B小于1,则所述第二充电接口允许输出的最大功率维持原来的功率,也就是对所述第二充电接口允许输出的最大功率不作处理。
作为一可选的实现方式,所述第二充电接口为主接口,所述第一充电接口为从接口;本申请实施例的步骤301获取所述第一设备的第一拉载功率,可包括:
方式一,所述第二充电接口每隔第一时长获取所述第一设备的第一拉载 功率;
这里,由于与第一充电接口7连接的第一充电协议芯片5以及与第二充电接口8连接的第二充电协议芯片6进行通信连接,具体的,第一充电接口7的第一输入输出管脚和第二充电接口8的第二输入输出管脚级联,这里,第一输入输出管脚和第二输入输出管脚均为GPIO口,比如,该第一输入输出管脚和第二输入输出管脚为RT管脚。不同充电协议芯片之间通过GPIO口的级联进行通信,也就是利用单线通信来传输实时功率。
具体的,获取所述第一设备的第一拉载功率的步骤可包括:
1)在第二输入输出管脚的电平状态为第一目标状态的情况下,采集所述第二输入输出管脚的第一电平信息,所述第一电平信息包括:电平状态、电平状态改变时对应的时刻以及保持一电平状态不变的持续时间;
这里,第二输入输出管脚的电平状态包括高电平和低电平两种状态。这里,默认情况下是高电平。
需要说明的是,第一目标状态为低电平。这里,第一目标状态是由第二充电协议芯片触发的。具体的,当第二充电协议芯片需要传输第二充电接口的功率信息时,将其第二输入输出管脚拉成第一目标状态,如从默认的高电平拉成低电平。由于第一输入输出管脚与第二输入输出管脚级联,第一输入输出管脚的电平状态变为第一目标状态。
2)根据预先设定的通信时序以及传输规则,解析所述第一电平信息,得到第一通信指令和第一通信数据,所述第一通信指令用于表示所述第一电平信息中,对应指令传输时段内的电平状态;
这里,预先设定的通信时序如图4所示,其中,通信时序就是指,在通信线上按照时间顺序发生的电平变化,这些变化对通信的意义就叫时序。
需要说明的是,如图4所示,预先设定的通信时序中,通过低电平传输通信信息,如通信指令和通信数据。具体的,按照时间顺序每个低电平时段用于表示何种信息以及每个电平时段的时长(即时间规范)均已预设设定好,具体的时间规范如下表1所示:
表1
Figure PCTCN2021121256-appb-000001
对照上表的时间规范,具体说明图4中的通信时序。首先,从第一充电协议芯片的输入输出管脚被拉成低电平的时刻开始,持续9ms的低电平,对应通信时序中的Start,用于通信测试;之后,变为高电平3msT_cap;然后,变为低电平,且持续6ms,对应通信时序中的ACK,该ACK为对第二充电协议芯片的输入输出管脚进行反馈的,表明第一充电协议芯片与第二充电协议芯片能够正常通信;再然后,变为高电平9msT_wait;之后,进入正式信息传输。
即变为高电平9msT_wait之后,通过电平状态以及对应电平状态的持续时间传输通信命令,再然后变为高电平9msT_wait,之后,通过电平状态以及对应电平状态的持续时间传输该通信命令对应的通信数据。
在一示例中,如图4所示,变为高电平9msT_wait之后,变为3ms低电平、高电平3ms T_cap和低电平3ms,说明通信指令为“00”,表示A口(这里对应图2中的Type-A USB接口)的功率发送指令,也就是说后面传输的通信数据为A口发送的A口端的功率。之后,变为高电平9ms T_wait之后,变为3ms低电平、高电平3ms T_cap、3ms低电平、高电平3ms T_cap、6ms低电平、高电平3ms T_cap和6ms低电平,说明通信指令为“0011”,具体参照下表2,能够得到A口端的功率为10W。
还有,具体的通信信息说明如下表2所示:
表2
Figure PCTCN2021121256-appb-000002
3)在所述第一通信指令为通过第一充电接口获取功率的第一发送指令的情况下,确定所述第一通信数据为表征功率的数据,将对应所述第一通信数据的功率值确定为所述第一设备的第一拉载功率。
本步骤中,通信信息由第一预设数量的比特位表示,比特位的取值“0”或“1”是通过低电平以及保持低电平不变的持续时间体现的。比如,3ms低电平用于表示“0”,6ms低电平用于表示“1”。
另外,通信数据亦是如此,由第二预设数量的比特位表示。比特位的取值“0”或“1”通过低电平以及保持低电平不变的持续时间体现。
众所周知,通信是一个通信双方相互交互的过程,上述实施例对应的是第二充电接口获取第一充电接口实时功率,根据获取到的实时功率,第二充电协议芯片调整第二充电接口侧的输出功率的过程。相应的,第二充电接口也可发送本侧的实时功率,告知给第一充电协议芯片,在需要功率调整时,第一充电协议芯片也可根据第二充电接口侧的功率,调整第一充电接口侧的输出功率。
本申请实施例的步骤301获取所述第一设备的第一拉载功率,可包括:
方式二,在所述第一充电设备的第一拉载功率发生变化的情况下,所述第二充电接口接收所述第一充电接口发送的所述第一设备的第一拉载功率。
需要说明的是,在所述第一充电设备的第一拉载功率发生变化,且未达 到第一时长的情况下,第一充电协议芯片会主动发送信息,即第一拉载功率,给第二充电协议芯片,便于第二充电协议芯片及时获取到第一设备的第二拉载功率。
具体的,第一充电接口主动发送第一设备的第一拉载功率至第二充电接口,可包括:
将所述第一拉载功率按照预设规则进行数字化处理,得到用于表征所述第一拉载功率的第二通信数据;
这里,表征第一拉载功率的第二通信数据用若干个比特位表示。
生成第二发送指令,并基于所述第二发送指令,控制所述第一输入输出管脚的电平状态为第二目标状态;
这里,第二目标状态为低电平状态。默认情况下,第一输入输出管脚的电平状态为高电平。这里,通过第二发送指令触发第一输入输入输出管脚拉成低电平。
根据预先设定的通信时序以及传输规则,得到携带有所述第二通信数据和第二发送指令的第二电平信息,并通过所述第一输入输出管脚输出至所述第二输入输出管脚。
本步骤中,预先设定的通信时序以及传输规则已经在前述部分,即图4、表1和表2进行了说明,这里不再赘述。
这里,具体的,按照预先设定的通信时序以及传输规则,在经过Start、ACK以及高电平9msT_wait之后,将第二发送指令通过电平状态以及对应电平状态的持续时间的方式输出至第二输入输出管脚,然后,变为高电平9msT_wait,之后,将第二通信数据通过电平状态以及对应电平状态的持续时间的方式输出至第二输入输出管脚。
为了避免第二设备无限制的对充电器进行拉载,保证充电器的正常工作,作为一可选地实现方式,在本申请实施例的方法步骤302之后,所述方法还可包括:
将调整后的功率通过所述第二充电接口发送至所述第二设备。
需要说明的是,为了避免充电器在对不同电子设备进行充电的过程中,自身温度过高,本申请实施例的方法还可包括:获取充电器的温度信息。
这里,参考图2,可通过在充电器上设置第一温度采样模组和第二温度采样模组,以采集充电器的自身温度。
下面就图2,具体说明第一协议芯片和第二协议芯片通过输入输出管脚级联实现单线通信对应的几个通信场景。
如图2所示,第一充电协议芯片与第一充电接口连接,即与A口连接;第二充电协议芯片与第二充电接口连接,即与C口连接。
场景一
A口定时发送自己的功率信息给C口,例如A口发送信息3给C口,如图5所示,通信过程为:
A(Start)->C(ACK)->A(Command=00)->A(Data=0x03)
场景二
A口定时获取C口的功率信息,A口定时获得C口信息3,如图6所示,通信过程为:
A(Start)->C(ACK)->A(Command=01)->C(Data=0x03)
场景三
C口功率信息变化,C口主动发送信息给A口,C口发送信息3到A口,如图7所示,通信过程为:
C(Start)->A(ACK)->C(Command=01)->C(Data=0x03)
场景四
A口定时发送温度信息给C口,A口发送温度信息给C口,如图8所示,通信过程为:
A(Start)->C(ACK)->A(Command=10)->A(Data=0x03)。
上述场景A与C口之间通信,是以A口为主接口,C口为从接口而言的。当然,也可以以C口为主接口,A口为从接口,这里不做具体限定。
下面就一示例,结合图2,具体说明本申请实施例的充电控制方法的具 体实现,也就是功率分配的实施步骤。
首先,A口先插入手机,C口后插入手机(充电器总功率为60W,A、C口均支持快充,同时插入时,默认下提供A口的功率为30W,提供C口的功率30W)
S1,充电器的A口插入手机后,A口与A口端手机建立快充通信,A口提供60W的充电功率给A口端手机;
S2,充电器检测到C口有手机插入,C口与C口端手机进行快充通信,识别到C口为快充手机,充电器复位A口的充电过程使A口返回初始状态;
此时,充电器提供A口和C口最大功率均为30W。
这里,结合图2,具体的,充电器的第一充电协议芯片控制BUCK1电路不输出电压至A口的Vbus引脚,也就是复位A口的充电过程使A口返回初始状态。
S3,A口和C口端的手机分别进行30W的快充;此时,A口不断的发送信息给C口告知自己的功率或者不断的获取C口的实时功率;
S4,A、C口根据对方的拉载情况,实时调整自己的最大输出功率。
这里,对功率的动态分配进行一下说明。
1、同时插入电子设备后,默认多口充的A、C口对外最大提供功率为30W。
2、A、C不断检测端口的拉载情况,例如,10分钟以上,A口检测到电子设备拉载均在最大功率的50%以内,此时A口告知C口侧的充电IC,A口输出功率富余,C口侧的充电IC获得A口的功率信息后,调整C口对外最大提供功率,并告知给C口端的电子设备进行更大功率充电。
3、A口检测到A口端的电子设备退出快充,仅进行普通5v2A充电时,A口告知C口此时A口输出功率富余,C口侧的充电IC获得A口的功率信息后,调整C口对外最大提供功率,并告知给C口端的电子设备进行更大功率充电。
需要说明的是的,待到一个快充口端的电子设备充电充满后,充电器提供满功率60W给另外一个充电接口。
另外,在一示例中,A、C口同时进行快充时,如图2所示,A口有剩余的CC1和CC2口做温度检测,C口因为CC1与CC2要做快充协议的通信被占用了,没有多余的口进行温度检测,A口不断的传输自己的温度信息给C口,C口根据温度信息做过温保护。
本申请实施例的充电控制方法,在第一充电接口和第二充电接口分别与第一设备和第二设备连接,并进行快速充电的情况下,获取第一设备的第一拉载功率;在第一拉载功率满足预设条件的情况下,发送指令信息至所述第二充电接口,该指令信息用于指示将所述第二充电接口的输出功率调整至目标数值,如此,能够实现多口充电器功率的智能分配,提高多口充电器功率的有效利用率,提升用户的快充体验。
需要说明的是,本申请实施例提供的充电控制方法,执行主体可以为充电控制装置,或者该充电控制装置中的用于执行加载充电控制方法的控制模块。本申请实施例中以充电控制装置执行加载充电控制方法为例,说明本申请实施例提供的充电控制方法。
如图9所示,本申请实施例还提供了一种充电控制装置900,应用于充电器,该充电器包括至少两个充电接口和至少两个充电协议芯片,每一充电接口分别与对应的充电协议芯片连接,所述至少两个充电协议芯片之间彼此通信连接;所述装置包括:
获取模块901,用于在第一充电接口和第二充电接口分别与第一设备和第二设备连接,并进行快速充电的情况下,获取所述第一设备的第一拉载功率;
发送模块902,用于在所述第一拉载功率满足预设条件的情况下,发送指令信息至所述第二充电接口,所述指令信息用于指示将所述第二充电接口的输出功率调整至目标数值。
可选地,所述发送模块902包括:
第一发送单元,用于在所述第一拉载功率在预设时间内持续低于第一阈值的情况下,发送第一指令信息至所述第二充电接口,所述第一指令信息用 于指示调高所述第二充电接口的输出功率至第一目标值;或者,
第二发送单元,用于在所述第一拉载功率在单位时间内的下降量超过第二阈值情况下,发送第二指令信息至所述第二充电接口,所述第二指令信息用于指示调高所述第二充电接口的输出功率至第二目标值;或者,
第三发送单元,用于在所述第一拉载功率大于第一输出功率的情况下,发送第三指令信息至所述第二充电接口,所述第三指令信息用于指示降低所述第二充电接口的输出功率至第三目标值。
可选地,所述第二充电接口为主接口,所述第一充电接口为从接口;所述获取模块901具体用于:
所述第二充电接口每隔第一时长获取所述第一设备的第一拉载功率;或者,
在所述第一充电设备的第一拉载功率发生变化的情况下,所述第二充电接口接收所述第一充电接口发送的所述第一设备的第一拉载功率。
本申请实施例中的充电控制装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动电子设备,也可以为非移动电子设备。示例性的,示例性的,移动电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,非移动电子设备可以为网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的充电控制装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的充电控制装置能够实现图1至图8的方法实施例实现的各个过程,为避免重复,这里不再赘述。
本申请实施例的充电控制装置,通过获取模块在第一充电接口和第二充 电接口分别与第一设备和第二设备连接,并进行快速充电的情况下,获取第一设备的第一拉载功率;发送模块在第一拉载功率满足预设条件的情况下,发送指令信息至所述第二充电接口,该指令信息用于指示将所述第二充电接口的输出功率调整至目标数值,如此,能够实现多口充电器功率的智能分配,提高多口充电器功率的有效利用率,提升用户的快充体验。
可选地,本申请实施例还提供一种充电器,包括如上述实施例所述的充电控制装置。
可选地,本申请实施例还提供一种充电器,包括处理器,存储器,存储在存储器上并可在所述处理器上运行的程序或指令,该程序或指令被处理器执行时实现上述充电控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要注意的是,本申请实施例中的充电器包括上述所述的移动电子设备和非移动电子设备。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述充电控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的充电器中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述充电控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意 在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (18)

  1. 一种充电器,,包括:电源插座、电压转换器、第一功率转换器、第二功率转换器、第一充电协议芯片、第二充电协议芯片、第一充电接口和第二充电接口;
    其中,所述电压转换器分别连接所述电源插座、所述第一功率转换器和所述第二功率转换器,所述电压转换器用于将交流电转换为直流电,所述第一功率转换器和所述第二功率转换器均用于直流功率变换;
    所述第一充电协议芯片分别连接所述第一功率转换器和所述第一充电接口;
    所述第二充电协议芯片分别连接所述第二功率转换器和所述第二充电接口;
    所述第一充电协议芯片与所述第二充电协议芯片通信连接。
  2. 根据权利要求1所述的充电器,其中,所述第一充电接口包括:
    用于充电的第一电压输出端,以及多个用于数据传输的第一数据传输端;
    其中,所述第一电压输出端连接所述第一功率转换器;所述第一数据传输端连接所述第一充电协议芯片。
  3. 根据权利要求2所述的充电器,还包括:
    设于所述第一电压输出端与所述第一功率转换器之间的第一采样输出模组;
    其中,所述第一采样输出模组与所述第一充电协议芯片连接,所述第一采样输出模块用于采样所述第一电压输出端的电压和电流。
  4. 根据权利要求1所述的充电器,其中,所述第二充电接口包括:
    用于充电的第二电压输出端,以及多个用于数据传输的第二数据传输端;
    其中,所述第二电压输出端连接所述第二功率转换器;所述第二数据传输端连接所述第二充电协议芯片。
  5. 根据权利要求4所述的充电器,还包括:
    设于所述第二电压输出端与所述第二功率转换器之间的第二采样输出模组;
    其中,所述第二采样输出模组与所述第二充电协议芯片连接,所述第二采样输出模组用于采集所述第二电压输出端的电压和电流。
  6. 一种充电控制方法,应用于如权利要求1至5任一项所述的充电器,包括:
    在第一充电接口和第二充电接口分别与第一设备和第二设备连接,并进行快速充电的情况下,获取所述第一设备的第一拉载功率;
    在所述第一拉载功率满足预设条件的情况下,发送指令信息至所述第二充电接口,所述指令信息用于指示将所述第二充电接口的输出功率调整至目标数值。
  7. 根据权利要求6所述的方法,其中,所述在所述第一拉载功率满足预设条件的情况下,发送指令信息至所述第二充电接口,包括:
    在所述第一拉载功率在预设时间内持续低于第一阈值的情况下,发送第一指令信息至所述第二充电接口,所述第一指令信息用于指示调高所述第二充电接口的输出功率至第一目标值;
    或者,在所述第一拉载功率在单位时间内的下降量超过第二阈值情况下,发送第二指令信息至所述第二充电接口,所述第二指令信息用于指示调高所述第二充电接口的输出功率至第二目标值;
    或者,在所述第一拉载功率大于第一输出功率的情况下,发送第三指令信息至所述第二充电接口,所述第三指令信息用于指示降低所述第二充电接口的输出功率至第三目标值。
  8. 根据权利要求7所述的方法,其中,所述第一目标值、所述第二目标值和所述第三目标值均由所述充电器的总功率与所述第一拉载功率之间的差值确定。
  9. 根据权利要求6所述的方法,其中,所述第二充电接口为主接口,所述第一充电接口为从接口;
    所述获取所述第一设备的第一拉载功率,包括:
    所述第二充电接口每隔第一时长获取所述第一设备的第一拉载功率;或者,
    在所述第一充电设备的第一拉载功率发生变化的情况下,所述第二充电接口接收所述第一充电接口发送的所述第一设备的第一拉载功率。
  10. 一种充电控制装置,包括:
    获取模块,用于在第一充电接口和第二充电接口分别与第一设备和第二设备连接,并进行快速充电的情况下,获取所述第一设备的第一拉载功率;
    发送模块,用于在所述第一拉载功率满足预设条件的情况下,发送指令信息至所述第二充电接口,所述指令信息用于指示将所述第二充电接口的输出功率调整至目标数值。
  11. 根据权利要求10所述的充电控制装置,其中,所述发送模块包括:
    第一发送单元,用于在所述第一拉载功率在预设时间内持续低于第一阈值的情况下,发送第一指令信息至所述第二充电接口,所述第一指令信息用于指示调高所述第二充电接口的输出功率至第一目标值;或者,
    第二发送单元,用于在所述第一拉载功率在单位时间内的下降量超过第二阈值情况下,发送第二指令信息至所述第二充电接口,所述第二指令信息用于指示调高所述第二充电接口的输出功率至第二目标值;或者,
    第三发送单元,用于在所述第一拉载功率大于第一输出功率的情况下,发送第三指令信息至所述第二充电接口,所述第三指令信息用于指示降低所述第二充电接口的输出功率至第三目标值。
  12. 根据权利要求11所述的充电控制装置,其中,所述第一目标值、所述第二目标值和所述第三目标值均由所述充电器的总功率与所述第一拉载功率之间的差值确定。
  13. 根据权利要求10所述的充电控制装置,其中,所述第二充电接口为主接口,所述第一充电接口为从接口;所述获取模块具体用于:
    所述第二充电接口每隔第一时长获取所述第一设备的第一拉载功率;或 者,
    在所述第一充电设备的第一拉载功率发生变化的情况下,所述第二充电接口接收所述第一充电接口发送的所述第一设备的第一拉载功率。
  14. 一种充电器,包括:如权利要求10至13任一项所述的充电控制装置。
  15. 一种充电器,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求6至9中任一项所述的充电控制方法的步骤。
  16. 一种可读存储介质,其中,所述可读存储介质上存储有程序或指令,所述程序或指令被处理器执行时实现如权利要求6至9中任一项所述的充电控制方法的步骤。
  17. 一种芯片,包括处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求6至9中任一项所述的充电控制方法的步骤。
  18. 一种计算机程序产品,其中,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如权利要求6至9中任一项所述的充电控制方法的步骤。
PCT/CN2021/121256 2020-09-29 2021-09-28 充电器、充电控制方法及装置 WO2022068802A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011049947.3A CN112202222B (zh) 2020-09-29 2020-09-29 充电器、充电控制方法及装置
CN202011049947.3 2020-09-29

Publications (1)

Publication Number Publication Date
WO2022068802A1 true WO2022068802A1 (zh) 2022-04-07

Family

ID=74008451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121256 WO2022068802A1 (zh) 2020-09-29 2021-09-28 充电器、充电控制方法及装置

Country Status (2)

Country Link
CN (1) CN112202222B (zh)
WO (1) WO2022068802A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116031964A (zh) * 2022-05-30 2023-04-28 荣耀终端有限公司 充电控制的方法及终端设备
CN116031965A (zh) * 2022-06-30 2023-04-28 荣耀终端有限公司 充电方法、装置、电源适配器和存储介质
CN116505628A (zh) * 2023-06-28 2023-07-28 深圳市澳博森科技有限公司 一种智能多端口适配器充电控制方法及系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112202222B (zh) * 2020-09-29 2023-03-14 维沃移动通信有限公司 充电器、充电控制方法及装置
CN112886656B (zh) * 2021-01-15 2024-06-11 维沃移动通信有限公司 转换设备和充电系统
CN113193620B (zh) * 2021-04-26 2024-05-17 维沃移动通信有限公司 充电功率调整方法、装置和电子设备
CN113410886A (zh) * 2021-06-23 2021-09-17 深圳传音控股股份有限公司 一种充电控制方法、移动终端及存储介质
CN114069768B (zh) * 2021-09-17 2023-03-24 荣耀终端有限公司 充电电路、充电控制方法、装置和电子设备
CN114123380A (zh) * 2021-10-15 2022-03-01 华为数字能源技术有限公司 充电装置、充电器以及充电功率调整方法
CN114094662B (zh) * 2021-11-18 2024-04-23 闪极科技(深圳)有限公司 多口快速充电器的智能功率分配方法
CN115224770B (zh) * 2022-08-11 2024-03-22 绍兴光大芯业微电子有限公司 实现多功率多配置全时域的pd超级快充soc系统
CN116169758B (zh) * 2023-04-25 2024-05-03 厦门英麦科芯集成科技有限公司 输出功率的调整方法以及充电器
CN116418094B (zh) * 2023-06-07 2023-09-22 厦门英麦科芯集成科技有限公司 充电器以及充电器的单总线通信方法
CN116418093B (zh) * 2023-06-07 2023-10-24 厦门英麦科芯集成科技有限公司 充电器以及充电器的双向通信方法
CN116937751B (zh) * 2023-09-13 2023-12-22 深圳市金致卓科技有限公司 一种兼容多种协议的充电器的电路及控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205882808U (zh) * 2016-07-01 2017-01-11 Tcl通力电子(惠州)有限公司 多端口电源输出电路和充电设备
CN209088592U (zh) * 2018-12-26 2019-07-09 深圳曜佳信息技术有限公司 一种双路dc降压输出pd智能功率分配的快充电路
CN110380489A (zh) * 2019-08-08 2019-10-25 珠海英集芯半导体有限公司 一种可以自动调节功率的快充电路及方法
CN210092932U (zh) * 2019-08-02 2020-02-18 深圳市福佳电器有限公司 一种type a和type c接口的组合充电器
CN111313515A (zh) * 2020-04-20 2020-06-19 深圳英集芯科技有限公司 一种多输出口的快充切换电路及方法
CN211296285U (zh) * 2019-11-22 2020-08-18 湖南炬神电子有限公司 一种多口pd输出充电器
US20200287403A1 (en) * 2017-09-30 2020-09-10 Anker Innovations Technology Co., Ltd. Method of controlling an output power of a charging device, a circuit, and a charging device
CN112202222A (zh) * 2020-09-29 2021-01-08 维沃移动通信有限公司 充电器、充电控制方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140049209A1 (en) * 2012-08-16 2014-02-20 Chin-Ching Chang Charging converter
CN108649676A (zh) * 2018-06-15 2018-10-12 上海脱颖网络科技有限公司 一种自动调整和分配功率的快充电源及其使用方法
US11791650B2 (en) * 2019-03-18 2023-10-17 Texas Instruments Incorporated Multiple output charging system and controller
CN110138048A (zh) * 2019-06-10 2019-08-16 宁波科曼电子科技有限公司 一种可自动分配功率的电源及其使用方法
CN210898617U (zh) * 2019-12-31 2020-06-30 无锡速芯微电子有限公司 一种双口快充充电器
CN111628537B (zh) * 2020-04-24 2022-07-29 杭州士兰微电子股份有限公司 多路充电电路及其协议控制模块和控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205882808U (zh) * 2016-07-01 2017-01-11 Tcl通力电子(惠州)有限公司 多端口电源输出电路和充电设备
US20200287403A1 (en) * 2017-09-30 2020-09-10 Anker Innovations Technology Co., Ltd. Method of controlling an output power of a charging device, a circuit, and a charging device
CN209088592U (zh) * 2018-12-26 2019-07-09 深圳曜佳信息技术有限公司 一种双路dc降压输出pd智能功率分配的快充电路
CN210092932U (zh) * 2019-08-02 2020-02-18 深圳市福佳电器有限公司 一种type a和type c接口的组合充电器
CN110380489A (zh) * 2019-08-08 2019-10-25 珠海英集芯半导体有限公司 一种可以自动调节功率的快充电路及方法
CN211296285U (zh) * 2019-11-22 2020-08-18 湖南炬神电子有限公司 一种多口pd输出充电器
CN111313515A (zh) * 2020-04-20 2020-06-19 深圳英集芯科技有限公司 一种多输出口的快充切换电路及方法
CN112202222A (zh) * 2020-09-29 2021-01-08 维沃移动通信有限公司 充电器、充电控制方法及装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116031964A (zh) * 2022-05-30 2023-04-28 荣耀终端有限公司 充电控制的方法及终端设备
CN116031964B (zh) * 2022-05-30 2023-12-22 荣耀终端有限公司 充电控制的方法及终端设备
CN116031965A (zh) * 2022-06-30 2023-04-28 荣耀终端有限公司 充电方法、装置、电源适配器和存储介质
CN116031965B (zh) * 2022-06-30 2023-10-27 荣耀终端有限公司 充电方法、装置、电源适配器和存储介质
CN116505628A (zh) * 2023-06-28 2023-07-28 深圳市澳博森科技有限公司 一种智能多端口适配器充电控制方法及系统
CN116505628B (zh) * 2023-06-28 2024-01-19 深圳市澳博森科技有限公司 一种智能多端口适配器充电控制方法及系统

Also Published As

Publication number Publication date
CN112202222A (zh) 2021-01-08
CN112202222B (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2022068802A1 (zh) 充电器、充电控制方法及装置
JP6516380B2 (ja) 充電方法、モバイルデバイス、充電デバイス、および充電システム
EP3131171B1 (en) Power adaptor, terminal and charging system
TWI625912B (zh) 行動終端
WO2018214459A1 (zh) 电源适配设备、控制方法及装置
EP3374842B1 (en) Port controller with power contract negotiation capability
US11398741B2 (en) Charging device and a charging method thereof
US20180120910A1 (en) System and method to manage power for port controller based power supplies using a common power source
EP4145669A1 (en) Charging/discharging circuit and electronic device
CN101593990A (zh) 实现usb端口智能式电源管理的方法、装置及集成电路
WO2020124590A1 (zh) 多节电芯的充电方法、装置、介质及电子设备
CN107643998B (zh) 基于智能模块实现otg和充电双功能的系统
WO2023000814A1 (zh) 电源适配器及充电控制方法
WO2017197736A1 (zh) 一种充电方法、充电器及终端
WO2015113461A1 (zh) 电源适配器和终端
US20210234393A1 (en) Multimode usb-c power transmission and conversion supporting improved battery charging
WO2018072443A1 (zh) 一种充电方法、设备及存储介质
CN109245194B (zh) 多设备无线充电方法、系统、设备及存储介质
CN215378538U (zh) 多口智能快充设备
CN113672067B (zh) 雷电扩展坞及配置装置
CN109066906B (zh) 一种充电电路及一体式头戴设备
US20180054067A1 (en) Self-Loop Detection Method and Apparatus for Charging Device
WO2015154377A1 (zh) 大负载终端的电源控制方法及装置、计算机程序及载体
CN116505628B (zh) 一种智能多端口适配器充电控制方法及系统
CN118199225B (zh) 充电控制方法、储能设备和可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874462

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21874462

Country of ref document: EP

Kind code of ref document: A1