WO2022068562A1 - Résonateur acoustique de volume, procédé de détermination de concentration en dopage, filtre, et dispositif électronique - Google Patents

Résonateur acoustique de volume, procédé de détermination de concentration en dopage, filtre, et dispositif électronique Download PDF

Info

Publication number
WO2022068562A1
WO2022068562A1 PCT/CN2021/117934 CN2021117934W WO2022068562A1 WO 2022068562 A1 WO2022068562 A1 WO 2022068562A1 CN 2021117934 W CN2021117934 W CN 2021117934W WO 2022068562 A1 WO2022068562 A1 WO 2022068562A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
doping concentration
thickness ratio
filter
layer thickness
Prior art date
Application number
PCT/CN2021/117934
Other languages
English (en)
Chinese (zh)
Inventor
庞慰
徐洋
杨清瑞
张孟伦
Original Assignee
诺思(天津)微系统有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诺思(天津)微系统有限责任公司 filed Critical 诺思(天津)微系统有限责任公司
Publication of WO2022068562A1 publication Critical patent/WO2022068562A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material

Definitions

  • Embodiments of the present disclosure relate to the field of semiconductors, and in particular, to a bulk acoustic wave resonator and a method for determining doping concentration, as well as a filter and an electronic device.
  • thin film bulk acoustic resonator As a new type of MEMS device, thin film bulk acoustic resonator (FBAR) has the advantages of small size, light weight, low insertion loss, high frequency bandwidth and high quality factor, which is well adapted to the replacement of wireless communication systems.
  • the area of the resonator will decrease, and the area of the resonator will decrease.
  • the area of the resonator will decrease.
  • the present disclosure is made to alleviate or solve at least one aspect of the above-mentioned problems in the prior art.
  • a bulk acoustic wave resonator comprising:
  • the piezoelectric layer being a piezoelectric layer including a doping element having a corresponding doping concentration
  • the resonant frequency of the resonator is higher than 2.5GHz, and has a layer thickness ratio E/P;
  • Embodiments of the present disclosure also relate to a method for determining a doping concentration, where the doping concentration is a doping concentration of a doping element of a piezoelectric layer of a bulk acoustic wave resonator, the resonator has an electromechanical coupling coefficient Kt 2 , so The resonant frequency of the resonator is higher than 2.5GHz and has a layer thickness ratio E/P, and the method includes the steps:
  • Embodiments of the present disclosure also relate to a filter comprising the resonator described above.
  • Embodiments of the present disclosure also relate to an electronic device including the above-mentioned filter or the above-mentioned resonator.
  • FIG. 1 is a schematic cross-sectional view of a bulk acoustic wave resonator
  • FIG. 2 is a graph exemplarily showing the relationship between the E/P value and the width of the raised structure and the Q value of the resonator;
  • FIG. 3 exemplarily shows the relationship between the width of the raised structure and the Q value of the resonator
  • Fig. 4 exemplarily shows the relationship diagram of E/P value and Kt 2 ;
  • FIG. 15 exemplarily shows a graph of the E/P value versus the area of the resonator for a Kt 2 of 5.9%;
  • Figure 1 shows a cross-sectional view of a typical sandwich-structured BAW resonator.
  • the reference numerals are described as follows:
  • Substrate, optional materials are single crystal silicon, gallium nitride, gallium arsenide, sapphire, quartz, silicon carbide, diamond, etc.
  • Acoustic mirror which can be a cavity, or a Bragg reflector and other equivalent forms.
  • the embodiment of the present disclosure adopts the form of a cavity.
  • Bottom electrode (including bottom electrode pins), the material can be selected from molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or a composite of the above metals or their alloys.
  • Piezoelectric layer which can be a single crystal piezoelectric material, optional, such as: single crystal aluminum nitride, single crystal gallium nitride, single crystal lithium niobate, single crystal lead zirconate titanate (PZT), single crystal Potassium niobate, single crystal quartz film, or single crystal lithium tantalate and other materials can also be polycrystalline piezoelectric materials (corresponding to single crystal, non-single crystal materials), optional, such as polycrystalline aluminum nitride, Zinc oxide, PZT, etc., can also be a rare earth element doped material containing a certain atomic ratio of the above materials, for example, can be doped aluminum nitride, and doped aluminum nitride contains at least one rare earth element, such as scandium (Sc), yttrium (Y), magnesium (Mg), titanium (Ti), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium
  • Top electrode (including top electrode pins), the material can be selected from molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or a composite of the above metals or their alloys.
  • Passivation layer or process layer which can be aluminum nitride, silicon nitride or silicon dioxide, etc.
  • the material can be selected from molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or the above metals or their alloys.
  • the electromechanical coupling coefficient Kt 2 is related to the value of the layer thickness ratio E/P and the doping concentration of the doping element in the piezoelectric layer.
  • the Q value of the bulk acoustic wave resonator is related to the value of the layer thickness ratio E/P.
  • the area of the resonator (referring to the area of the effective area of the resonator, and the effective area refers to the area formed by the overlapping portion of the top electrode, the piezoelectric layer, the bottom electrode and the acoustic mirror of the resonator in the thickness direction of the resonator) is in
  • the electromechanical coupling coefficient of the resonator is fixed, it decreases as the resonant frequency of the resonator increases.
  • the present disclosure proposes a method to maintain Kt 2 stable by selecting a doping concentration lower than a doping concentration based on a specific layer thickness ratio (ie, setting an upper limit value of the doping concentration), and making the area of the resonator In a relatively small case, the power capacity problem caused by the small unit area of the resonator is alleviated or eliminated.
  • the present disclosure may further define the lower limit of the layer thickness ratio, and improve the performance of the resonator based on the layer thickness ratio higher than the lower limit of the layer thickness ratio.
  • the layer thickness ratio E/P is briefly described below.
  • the thickness of the bottom electrode 103 is t1
  • the thickness of the piezoelectric layer 104 is t2
  • the thickness of the top electrode 105 is t3
  • the thickness of the passivation layer 106 above the top electrode is t4 .
  • the ratio of the electrode thickness to the piezoelectric layer thickness that is, the layer thickness ratio E/P, is defined as (t1+t3)/t2.
  • the ratio of the electrode thickness to the piezoelectric layer thickness is defined, that is, the layer thickness ratio E/P is (t1+t3+t4*a)/t2, where a and the passivation layer 106 resonate
  • the rate of influence of the frequency Fs is related to the ratio of the rate of influence of the top electrode 105 to the resonant frequency Fs.
  • the rate of influence of the thickness of the passivation layer 106 on the resonant frequency Fs of the resonator is V1 nm/MHz, and the thickness of the top electrode 105
  • the doping concentration of the element doped in the piezoelectric layer is briefly described below.
  • Doping means that a portion of one or more elements in the original undoped piezoelectric material is replaced by a doping element.
  • the doping concentration is defined as: in a unit volume, the atomic number of the doping element, and the total atomic number of the above-mentioned one or more elements partially replaced by the doping element and the atomic number of the doping element and the ratio.
  • the piezoelectric layer is aluminum nitride and the doping element is scandium
  • the doping concentration is the ratio of the number of scandium atoms to the sum of the number of aluminum atoms and scandium atoms per unit volume. (Sc/Al+Sc).
  • FIG. 2 is a graph exemplarily showing the relationship between the layer thickness ratio E/P value and the convex structure width and the Q value of the resonator.
  • the ordinate is the Q value of the resonator
  • the abscissa has two layers
  • the first layer is the layer thickness ratio E/P of the resonator
  • the second layer is the width L (unit is ⁇ m) of the protruding structure 107 .
  • FIG. 2 exemplarily shows the resonator Q value of the Band1TX frequency band (1920-1980 MHz) as a function of the layer thickness ratio E/P.
  • FIG. 2 exemplarily shows the Q-values of the resonator at different protrusion structure widths L under different layer thickness ratios E/P.
  • the layer thickness ratio E/P is less than 1, the peaks of the two corresponding Q values in FIG. 3 both deteriorate as the layer thickness ratio E/P becomes smaller.
  • the value of the layer thickness ratio E/P can directly affect the Q value of the resonator.
  • the value of the layer thickness ratio E/P should not be lower than 0.75.
  • FIG. 4 exemplarily shows the relationship between the E/P value and Kt 2 , wherein the abscissa is the E/P value and the ordinate is Kt 2 . More specifically, FIG. 4 exemplarily shows the change of kt 2 with the layer thickness ratio E/P when the piezoelectric layer is a piezoelectric layer of aluminum nitride doped with metal scandium element and the doping concentration is 8.2%. It can be seen that kt 2 increases as the layer thickness ratio E/P decreases. However, on the premise that the resonator performance is not seriously deteriorated, it is concluded from Fig. 2 that kt 2 cannot be improved by infinitely reducing the E/P value.
  • 5-14 exemplarily show graphs of doping concentration versus Kt 2 , where the abscissa is the doping concentration and the ordinate is Kt 2 . It can be seen that Kt 2 increases as the doping concentration increases.
  • a higher value of the layer thickness ratio E/P can be selected, for example, the value of the layer thickness ratio E/P should not be lower than 0.75 to ensure a higher Q value of the resonator (but at this time Kt 2 cannot reach performance requirements or not fully satisfied), at the same time, the Kt 2 is increased to meet the performance requirements or improve the performance by selecting a doping concentration above a predetermined value. Therefore, on the premise of ensuring the resonator performance (higher Q value), kt 2 can be increased by increasing the doping concentration.
  • Kt 2 is related to the value of the layer thickness ratio E/P and the doping concentration, and the E/P value is limited by the lower limit (as explained before, not less than 0.75), even if it is desired that the larger the Kt 2 , the better, Kt 2 also has an upper limit, which is determined by the lower limit of E/P, 0.75.
  • the kt 2 of the resonator can be increased by selecting the doping concentration.
  • the resonator with kt 2 selected there is a better range of doping concentration determined by the E/P value to ensure the high performance of the resonator.
  • the thickness t2 of the piezoelectric layer becomes smaller with kt2 fixed.
  • the area of the 50 ⁇ resonator becomes smaller.
  • the area of the 50 ⁇ resonator at 1.75GHz is about 21000 ⁇ m 2
  • the area of the 50 ⁇ resonator at 3.5GHz is about 5200 ⁇ m 2 .
  • FIG. 15 exemplarily shows a graph of the layer thickness ratio E/P value versus the area of the resonator, where Kt 2 is 5.9%.
  • the vertical axis is the area of the resonator in ⁇ m 2
  • the horizontal axis is the E/P value. Therefore, for a fixed Kt 2 , based on what is shown in FIG. 15 , the area of the resonator can be increased by reducing the layer thickness ratio E/P.
  • Kt 2 increases with the doping concentration unchanged.
  • Kt 2 decreases as the doping concentration decreases.
  • the layer thickness ratio E/P can be reduced to increase the area, while reducing the doping concentration to keep the Kt 2 of the resonator stable (ie unchanged). Or float by 5% relative to the original value, in the embodiment of the present disclosure, take the same as an example for illustration).
  • the value of the layer thickness ratio E/P is selected to be not greater than 3 and the upper limit value of the doping concentration is determined based on the E/P value.
  • the area of the resonator can be increased by reducing the E/P value. It is also necessary to set the doping concentration in an optimal range, and the upper limit of the optimal range is determined based on the smaller value of the layer thickness ratio E/P (3 in the present disclosure), so that both Increasing the area of the resonator (by choosing a smaller E/P value) also keeps Kt 2 stable by choosing a smaller doping concentration value corresponding to that E/P value.
  • the present disclosure also proposes a method for determining a doping concentration of a piezoelectric layer of a bulk acoustic wave resonator, where the piezoelectric layer of the resonator is a piezoelectric layer including a doping element, and the doping element has a corresponding doping concentration.
  • y corresponds to Kt 2
  • x corresponds to the doping concentration a1.
  • the E/P value in order to keep the Q value of the resonator at a relatively high value, the E/P value is not less than 0.75.
  • y corresponds to Kt 2
  • x corresponds to doping concentration b2.
  • the above resonators (selecting a suitable doping concentration based on the layer thickness ratio E/P to increase the resonator area while keeping Kt 2 stable) can also be used in filters.
  • the filter is a filter in a frequency band of 2.515GHz-2.675GHz or a frequency band of 3.3GHz-3.6GHz; and the range of the doping concentration of the resonator in the filter is 14.4 %-26.5%. Further, the doping concentration of the resonator in the filter ranges from 15.7% to 26.5%.
  • the filter is a filter in the frequency band of 4.8GHz-4.96GHz; and the doping concentration of the resonator in the filter ranges from 1% to 12.4%. Further, the doping concentration of the resonator in the filter ranges from 2.6% to 12.4%.
  • the filter is a filter in the frequency band of 5.15GHz-5.85GHz; and the doping concentration of the resonator in the filter ranges from 28.5% to 37%. Further, the doping concentration of the resonator in the filter ranges from 28.8% to 37%.
  • the upper limit value of the doping concentration of the piezoelectric layer of the resonator is selected based on the value of the selected layer thickness ratio E/P, so that the Kt 2 of the resonator can be guaranteed to be stable.
  • the resonator has a larger area.
  • the lower limit value of the doping concentration of the piezoelectric layer of the resonator can also be selected based on the value of the selected layer thickness ratio E/P, which also ensures that the resonator has a higher Q value.
  • the present disclosure provides an effective guiding solution for how to select the doping concentration of the doping element of the piezoelectric layer to obtain a larger resonator area.
  • the material of the piezoelectric layer is not limited to aluminum nitride, but can also be other piezoelectric materials listed in the present disclosure
  • the doping element is not limited to scandium metal, and can also be used in the present disclosure. Other doped metal elements listed.
  • the aluminum nitride doped scandium element is used as an example to illustrate how to determine the upper limit value or the upper limit of the doping concentration of the piezoelectric layer of the resonator based on the value of the selected layer thickness ratio E/P lower limit.
  • each numerical range except that it is explicitly stated that it does not include the endpoint value, may be the endpoint value, but also the middle value of each numerical range, and these are all within the protection scope of the present disclosure. .
  • BAW resonators can be used to form other semiconductor devices besides filters.
  • a bulk acoustic wave resonator comprising:
  • the piezoelectric layer being a piezoelectric layer including a doping element having a corresponding doping concentration
  • the resonant frequency of the resonator is higher than 2.5GHz, and has a layer thickness ratio E/P;
  • the piezoelectric layer is an aluminum nitride layer doped with scandium, and a1 is determined by the following formula:
  • Kt 2 0.2977a1 2 +0.2085a1+0.033.
  • the resonant frequency of the resonator is higher than 3.0GHz;
  • the piezoelectric layer is an aluminum nitride layer doped with scandium, and a3 is determined by the following formula:
  • Kt 2 0.3093a2 2 +0.2149a2+0.0342.
  • the resonant frequency of the resonator is higher than 3.5GHz
  • the piezoelectric layer is an aluminum nitride layer doped with scandium, and a3 is determined by the following formula:
  • Kt 2 0.3437a3 2 +0.2137a3+0.0364.
  • the resonant frequency of the resonator is higher than 4GHz
  • the piezoelectric layer is an aluminum nitride layer doped with scandium, and a4 is determined by the following formula:
  • Kt 2 0.3508a4 2 +0.2213a4+0.0378.
  • the resonant frequency of the resonator is higher than 4.5GHz
  • the piezoelectric layer is an aluminum nitride layer doped with scandium, and a5 is determined by the following formula:
  • the resonant frequency of the resonator is higher than 5GHz
  • the piezoelectric layer is an aluminum nitride layer doped with scandium, and a6 is determined by the following formula:
  • Kt 2 0.407a6 2 +0.2315a6+0.0421.
  • the resonant frequency of the resonator is higher than 6 GHz;
  • the piezoelectric layer is an aluminum nitride layer doped with scandium, and a7 is determined by the following formula:
  • Kt 2 0.4801a7 2 +0.2157a7+0.0461.
  • the piezoelectric layer is an aluminum nitride layer doped with scandium, and b1 is determined by the following formula:
  • Kt 2 0.3909b1 2 +0.3056b1+0.062.
  • the piezoelectric layer is an aluminum nitride layer doped with scandium, and b2 is determined by the following formula:
  • Kt 2 0.4463b2 2 +0.2869b2+0.0603.
  • the piezoelectric layer is an aluminum nitride layer doped with scandium, and b3 is determined by the following formula:
  • Kt 2 0.4147b3 2 +0.2774b3+0.057.
  • a filter comprising a plurality of bulk acoustic wave resonators according to any one of 1-20.
  • the filter is a filter in the frequency band 2.515GHz-2.675GHz or in the frequency band 3.3GHz-3.6GHz;
  • the doping concentration of the resonators in the filter ranges from 14.4% to 26.5%.
  • the doping concentration of the resonators in the filter ranges from 15.7% to 26.5%.
  • the filter is a filter in the 4.8GHz-4.96GHz frequency band.
  • the doping concentration of the resonators in the filter ranges from 1% to 12.4%.
  • the doping concentration of the resonators in the filter ranges from 2.6% to 12.4%.
  • the filter is a filter in the 5.15GHz-5.85GHz frequency band.
  • the doping concentration of the resonators in the filter ranges from 28.5% to 37%.
  • the doping concentration of the resonators in the filter ranges from 28.8% to 37%.
  • a method for determining a doping concentration wherein the doping concentration is the doping concentration of a doping element of a piezoelectric layer of a bulk acoustic wave resonator, the resonator has an electromechanical coupling coefficient Kt 2 , and the resonance of the resonator is The frequency is higher than 2.5GHz and has a layer thickness ratio E/P, the method comprises the steps:
  • the piezoelectric layer is an aluminum nitride layer doped with scandium, and a1 is determined by the following formula:
  • Kt 2 0.2977a1 2 +0.2085a1+0.033.
  • the piezoelectric layer is an aluminum nitride layer doped with scandium, and b1 is determined by the following formula:
  • Kt 2 0.3909b1 2 +0.3056b1+0.062.
  • An electronic device comprising the filter according to any one of 21-27, or the bulk acoustic wave resonator according to any one of 1-20.
  • the electronic equipment here includes but is not limited to intermediate products such as RF front-end, filter and amplifier modules, and terminal products such as mobile phones, WIFI, and drones.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

La présente invention concerne un résonateur acoustique de volume, comprenant : un substrat ; un miroir acoustique ; une électrode inférieure ; une couche piézoélectrique, la couche piézoélectrique étant une couche piézoélectrique comprenant un élément dopant, l'élément dopant ayant une concentration en dopage correspondante ; et une électrode supérieure, le résonateur ayant une fréquence de résonance supérieure à 2,5 GHz, et ayant un rapport d'épaisseur de couche E/P ; le résonateur a un coefficient de couplage électromécanique Kt2 ; et la concentration en dopage est inférieure à a1, a1 étant une concentration en dopage correspondant au coefficient de couplage électromécanique Kt2lorsque le rapport d'épaisseur de couche E/P = 3. La présente invention concerne également un procédé de détermination de concentration en dopage, la concentration en dopage étant une concentration en dopage d'un élément dopant d'une couche piézoélectrique d'un résonateur acoustique de volume, le résonateur ayant un coefficient de couplage électromécanique Kt2, le résonateur ayant une fréquence de résonance supérieure à 2,5 GHz et ayant un rapport d'épaisseur de couche E/P, le procédé comprenant les étapes consistant à : sur la base du rapport d'épaisseur de couche E/P, sélectionner la concentration en dopage devant être inférieure à a1, a1 étant une concentration en dopage correspondant au coefficient de couplage électromécanique Kt2 lorsque le rapport d'épaisseur de couche du résonateur E/P = 3. La présente invention concerne en outre un filtre et un dispositif électronique.
PCT/CN2021/117934 2020-09-30 2021-09-13 Résonateur acoustique de volume, procédé de détermination de concentration en dopage, filtre, et dispositif électronique WO2022068562A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011065223.8 2020-09-30
CN202011065223.8A CN114337572A (zh) 2020-09-30 2020-09-30 体声波谐振器、掺杂浓度确定方法、滤波器及电子设备

Publications (1)

Publication Number Publication Date
WO2022068562A1 true WO2022068562A1 (fr) 2022-04-07

Family

ID=80949646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117934 WO2022068562A1 (fr) 2020-09-30 2021-09-13 Résonateur acoustique de volume, procédé de détermination de concentration en dopage, filtre, et dispositif électronique

Country Status (2)

Country Link
CN (1) CN114337572A (fr)
WO (1) WO2022068562A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115001428A (zh) * 2022-07-11 2022-09-02 深圳新声半导体有限公司 一种用于薄膜滤波器的薄膜浓度掺杂方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115133899A (zh) * 2021-03-29 2022-09-30 诺思(天津)微系统有限责任公司 具有钨电极的体声波谐振器、滤波器及电子设备
CN114866058B (zh) * 2022-07-06 2023-02-17 深圳新声半导体有限公司 一种基于Sc掺杂浓度变化的体声波滤波器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109889177A (zh) * 2018-12-26 2019-06-14 天津大学 具有掺杂隔离结构的体声波谐振器
CN111010131A (zh) * 2019-06-06 2020-04-14 天津大学 掺杂浓度变化的体声波谐振器、滤波器及电子设备
CN111010120A (zh) * 2019-09-20 2020-04-14 天津大学 具有调节层的体声波谐振器、滤波器和电子设备
CN111030636A (zh) * 2019-07-15 2020-04-17 天津大学 带声学阻抗失配结构的体声波谐振器、滤波器及电子设备
CN111313857A (zh) * 2019-11-29 2020-06-19 天津大学 设置有插入结构与温补层的体声波谐振器、滤波器和电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109889177A (zh) * 2018-12-26 2019-06-14 天津大学 具有掺杂隔离结构的体声波谐振器
CN111010131A (zh) * 2019-06-06 2020-04-14 天津大学 掺杂浓度变化的体声波谐振器、滤波器及电子设备
CN111030636A (zh) * 2019-07-15 2020-04-17 天津大学 带声学阻抗失配结构的体声波谐振器、滤波器及电子设备
CN111010120A (zh) * 2019-09-20 2020-04-14 天津大学 具有调节层的体声波谐振器、滤波器和电子设备
CN111313857A (zh) * 2019-11-29 2020-06-19 天津大学 设置有插入结构与温补层的体声波谐振器、滤波器和电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115001428A (zh) * 2022-07-11 2022-09-02 深圳新声半导体有限公司 一种用于薄膜滤波器的薄膜浓度掺杂方法

Also Published As

Publication number Publication date
CN114337572A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2022068562A1 (fr) Résonateur acoustique de volume, procédé de détermination de concentration en dopage, filtre, et dispositif électronique
WO2021042741A1 (fr) Résonateur à ondes acoustiques de volume avec couche piézoélectrique ayant une structure d'insert, et filtre et dispositif électronique
EP4033660A1 (fr) Résonateur acoustique de volume à couche de réglage, filtre et dispositif électronique
WO2022083352A1 (fr) Ensemble et résonateur acoustique en volume, filtre et dispositif électronique
US11018651B2 (en) Bulk acoustic wave resonators having doped piezoelectric material and an adhesion and diffusion barrier layer
WO2020134803A1 (fr) Résonateur à ondes acoustiques de volume ayant une épaisseur d'électrode asymétrique, filtre et dispositif électronique
CN111953314B (zh) 滤波器设计方法和滤波器、多工器、通信设备
CN114079430A (zh) 带叠层凸起结构的体声波谐振器及其制造方法、滤波器及电子设备
CN114744974A (zh) 体声波谐振器及其制造方法、滤波器及电子设备
WO2022062910A1 (fr) Résonateur acoustique en volume et ensemble, procédé de réglage de différence de coefficient de couplage électromécanique, et filtre et dispositif électronique
EP3902138A1 (fr) Résonateur à aire efficace réduite sur la base du dopage d'éléments, filtre et dispositif électronique
EP3883130A1 (fr) Résonateur à ondes acoustiques de volume, filtre et dispositif électronique
WO2022068552A1 (fr) Résonateur acoustique de volume, procédé de détermination de la concentration de dopage, filtre, et dispositif électronique
WO2022068561A1 (fr) Résonateur acoustique de volume, procédé de détermination de concentration de dopage, filtre, et dispositif électronique
WO2024087628A1 (fr) Résonateur à ondes acoustiques de volume pour sélectionner un angle de structure en saillie pour améliorer les performances
CN114553169A (zh) 利用凸起结构降低声阻抗的体声波谐振器、滤波器及电子设备
WO2023030359A1 (fr) Résonateur acoustique en volume comprenant une électrode à fente, un filtre et un dispositif électronique
WO2022001861A1 (fr) Résonateur acoustique de volume à couche d'insertion pour augmenter la puissance, filtre et dispositif électronique
WO2022037572A1 (fr) Résonateur acoustique de volume avec électrode supérieure ayant des espaces supérieur et inférieur, son procédé de fabrication, filtre et dispositif électronique
CN217037147U (zh) 声学谐振器、包括其的滤波器和包括其的双工器和多工器
WO2022135252A1 (fr) Résonateur acoustique de volume à couche de compensation de température, filtre et dispositif électronique
CN111355464A (zh) 基于环形凸起调整有效机电耦合系数的装置
CN114257199A (zh) 具有声阻层的体声波谐振器及其组件和制造方法、滤波器和电子设备
WO2022247902A1 (fr) Résonateur acoustique en vrac comprenant un substrat en carbure de silicium, filtre et dispositif électronique
WO2022161135A1 (fr) Filtre ayant un nitrure d'aluminium dopé au scandium en tant que couche piézoélectrique et dispositif électronique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874223

Country of ref document: EP

Kind code of ref document: A1