WO2022068514A1 - Ppg传感器和电子设备 - Google Patents

Ppg传感器和电子设备 Download PDF

Info

Publication number
WO2022068514A1
WO2022068514A1 PCT/CN2021/116121 CN2021116121W WO2022068514A1 WO 2022068514 A1 WO2022068514 A1 WO 2022068514A1 CN 2021116121 W CN2021116121 W CN 2021116121W WO 2022068514 A1 WO2022068514 A1 WO 2022068514A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pixels
emitting
pixel
receiving
Prior art date
Application number
PCT/CN2021/116121
Other languages
English (en)
French (fr)
Inventor
杨素林
李亚鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US18/247,232 priority Critical patent/US20240008340A1/en
Priority to EP21874175.9A priority patent/EP4207311A4/en
Publication of WO2022068514A1 publication Critical patent/WO2022068514A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/167Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers
    • H01L31/173Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers formed in, or on, a common substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/167Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present application relates to the field of electronic technology, and in particular, to a photoplethysmograph (PPG) sensor and an electronic device.
  • PPG photoplethysmograph
  • PPG sensor is a commonly used sensor on smart wearable devices such as smart watches and smart bracelets. Through this sensor, health data such as human heart rate and blood oxygen can be collected to provide a basis for human health analysis.
  • the PPG sensor mainly includes a light emitting diode (LED) light source and a photodetector (PD).
  • the detection principle is: the light signal is emitted by the LED, and after the light signal is transmitted to the skin, in the skin, part of the light signal will be transmitted to the skin.
  • Human tissue including blood absorbs, and part of the optical signal will be scattered and reflected, and part of the scattered and reflected optical signal will be received by the PD and converted into an electrical signal; among them, the scattered and reflected optical signal will follow the pulse of the human body.
  • the pulse wave changes can be detected based on the changes of the electrical signals detected by the PD, and then data such as heart rate and blood oxygen can be determined based on the pulse wave changes.
  • the LED is generally packaged on the LED substrate, and then mounted on the printed circuit board (PCB) together with the PD.
  • PCB printed circuit board
  • PD protection where there is a safety gap between the back cover and the LED.
  • the PPG sensor with this structure has higher assembly cost and larger volume.
  • the present application provides a PPG sensor and electronic device for reducing the assembly cost and volume of the PPG sensor.
  • an embodiment of the present application provides a PPG sensor, including: a substrate packaged in one, a first electrode, a light-emitting layer, a light-receiving layer, a second transparent electrode, and a transparent panel;
  • the substrate and the first electrode are located on one side of the light-emitting layer, the second transparent electrode and the transparent panel are located on the other side of the light-emitting layer; the light-receiving layer, the first electrode and the second transparent electrode are all located between the substrate and the transparent panel, The polarities of the first electrode and the second transparent electrode are opposite;
  • the light-emitting layer includes light-emitting pixels for emitting light signals, and the light-receiving layer includes light-emitting pixels for detecting light signals.
  • a display screen packaging process can be used to package the substrate, the first electrode, the light-emitting layer including the light-emitting pixels, the light-receiving layer including the light-receiving pixels, the second transparent electrode, and the transparent panel into an integrated structure.
  • the assembly cost and volume of the PPG sensor are reduced, and the thickness of the PPG sensor and the gap from the skin can be reduced.
  • the light-emitting layer further includes display pixels arranged in an array.
  • the light-emitting layer may further include display pixels, that is, the PPG sensor and the display screen may be integrated together, which can improve the integration degree of devices in the electronic device, thereby reducing the volume and weight of the electronic device.
  • the light-emitting layer and the light-receiving layer are integrated in the same light-emitting and light-receiving layer. This can reduce the thickness of the PPG sensor to some extent.
  • the light emitting layer includes a central area and an edge area around the central area, display pixels are distributed in the central area, and light-emitting pixels and light-receiving pixels are distributed in the edge area. This facilitates the fabrication of PPG sensors.
  • the display pixel includes a first display pixel, a second display pixel and a third display pixel of different colors, and the first display pixel, the second display pixel and the third display pixel involve The three colors are red, green and blue;
  • the first display pixels and the target pixels are alternately arranged in the first direction, the first display pixels and the second display pixels are alternately arranged in the second direction, and the second display pixels and the third display pixels are alternately arranged in the first direction cloth, the first direction is perpendicular to the second direction; both the light-emitting pixels and the light-receiving pixels include multiple, and the target pixel includes at least some of the light-emitting pixels and the light-receiving pixels.
  • the display pixels and the target pixels corresponding to the PPG sensor are alternately arranged, so that the target pixels are distributed evenly, thereby improving the signal collection effect.
  • the wavelengths involved in the light-emitting pixel include multiple wavelengths
  • the target pixel includes each light-emitting pixel and each light-receiving pixel
  • the target pixels adjacent to the light-receiving pixel are all light-emitting pixels.
  • light-emitting pixels of different wavelengths can emit light signals of different wavelengths
  • the light-receiving pixels can collect light signals of various wavelengths, so that more accurate detection results can be obtained during PPG detection
  • the target pixels adjacent to the light pixels are all light-emitting pixels, so that the light-receiving effect of the light-receiving pixels can be improved.
  • the light-emitting pixels adjacent to the light-receiving pixel include a red light-emitting pixel and an infrared light-emitting pixel, and the distance between the red light-emitting pixel and the light-receiving pixel is and the distance between the infrared light-emitting pixel and the light-receiving pixel is equal. In this way, when the blood oxygen detection is performed, the accuracy of the blood oxygen detection result can be improved.
  • the light-emitting pixel includes a first light-emitting pixel, a second light-emitting pixel and a green light-emitting pixel, one of the first light-emitting pixel and the second light-emitting pixel is a red light-emitting pixel, and the other One is an infrared light-emitting pixel; the first light-emitting pixel and the green light-emitting pixel are alternately arranged in the first direction, the first light-emitting pixel and the light-receiving pixel are alternately arranged in the second direction, and the light-receiving pixel and the second light-emitting pixel are arranged in the first direction. Alternately arranged in one direction.
  • the light-emitting pixels include at least part of the red display pixels and/or at least part of the green display pixels in the display pixels, and the target pixels include light-received pixels.
  • the light-emitting pixels and the display pixels share red and/or green display pixels, which can improve the utilization rate of the pixels and reduce the manufacturing complexity of the PPG sensor.
  • the light-emitting pixels further include infrared light-emitting pixels
  • the target pixels further include infrared light-emitting pixels
  • the target pixels adjacent to the light-receiving pixels are all infrared light-emitting pixels, and/or the target pixels adjacent to the infrared light-emitting pixels are all light-receiving pixels. In this way, the light-receiving effect of the light-receiving pixel can be improved.
  • each display pixel includes four sub-pixels of corresponding colors. This increases the number of pixels per unit area, which in turn increases the display resolution.
  • the display pixels include red display pixels, green display pixels, and blue display pixels
  • the light-emitting layer includes pixel units arranged in an array, and each pixel unit includes a pixel unit in the first aspect.
  • a red display pixel, a green display pixel, a blue display pixel and a target pixel are arranged in an upward sequence
  • the light-emitting pixels include a plurality of light-emitting pixels
  • the target pixels include at least some of the light-emitting pixels.
  • the light-emitting pixels include infrared light-emitting pixels, red light-emitting pixels, and green light-emitting pixels, and the target pixels include each light-emitting pixel;
  • the light-emitting pixels include infrared light-emitting pixels, at least part of the red display pixels and at least part of the green display pixels among the display pixels, and the target pixels include infrared light-emitting pixels.
  • the light-emitting layer and the light-receiving layer are integrated in the same light-emitting and light-receiving layer, and the target pixel further includes a light-receiving pixel. This can reduce the thickness of the PPG sensor to a certain extent.
  • each light-receiving pixel forms a light-receiving layer. This can improve space utilization and reduce the thickness of the PPG sensor.
  • the light source of the display pixel is a micro light emitting diode LED
  • the light source of the light emitting pixel is a micro LED or a vertical cavity surface emitting laser VCSEL.
  • the wavelengths involved in the light-emitting pixels include multiple types, the light-emitting layer and the light-receiving layer are integrated in the same light-emitting and light-receiving layer, and each Light-emitting pixels and light-receiving pixels of different wavelengths are alternately arranged.
  • the pixels adjacent to the light-receiving pixels are all light-emitting pixels. In this way, the light-receiving effect of the light-receiving pixel can be improved.
  • the light receiving layer is located between the second transparent electrode and the transparent panel.
  • the electronic device further includes a thin film transistor TFT layer located between the substrate and the first electrode, and the TFT layer integrates a driving circuit of the light-emitting pixel and a receiving circuit of the light-receiving pixel. This can further reduce the assembly cost and volume of the PPG sensor.
  • an analog front-end circuit AFE is integrated in the TFT layer, and the AFE is used for amplifying and sampling the optical signal received by the receiving circuit. This can further reduce the assembly cost and volume of the PPG sensor.
  • the PPG sensor further includes a polarizer and/or a touch panel located between the second transparent electrode and the transparent panel.
  • the polarizer can absorb the reflected light, reduce the reflection interference of external light, and enhance the contrast; through the touch panel, the PPG sensor can realize the touch detection function.
  • embodiments of the present application provide an electronic device, comprising: a main body and the PPG sensor described in the first aspect, wherein the PPG sensor is disposed on the main body and is electrically connected to a circuit board in the main body.
  • Fig. 1 is the working principle schematic diagram of a kind of existing PPG sensor
  • FIG. 2 is a schematic structural diagram of a conventional PPG sensor
  • FIG. 3 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another application scenario provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another application scenario provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an OLED display screen provided by an embodiment of the present application.
  • Fig. 7 is the relational schematic diagram of each encapsulation layer in Fig. 6;
  • FIG. 8 is a schematic diagram of a pixel arrangement structure of an OLED display screen provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the relationship between each packaging layer of the PPG sensor provided by the embodiment of the present application.
  • FIG. 10 is a schematic diagram of a pixel arrangement structure provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another pixel arrangement structure provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another pixel arrangement structure provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of the PPG sensor corresponding to FIG. 12;
  • FIG. 14 is another schematic structural diagram of the PPG sensor provided by the embodiment of the application.
  • FIG. 15 is another schematic structural diagram of the PPG sensor provided by the embodiment of the application.
  • FIG. 16 is a schematic diagram of another pixel arrangement structure provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of the working principle of an existing PPG sensor.
  • the PPG sensor mainly includes LEDs and PDs. In order to facilitate control, it may also include an analog front end (AFE).
  • the PD can be a photodetection device such as a photodiode or a phototransistor.
  • the AFE can drive the LED to emit light signals. After the light signals are transmitted to the skin, part of the light signals will be absorbed by human tissues (including blood), and the other part of the light signals will be scattered and reflected. Part of the optical signal will be received by the PD and converted into an electrical signal; after the AFE receives the electrical signal output by the PD, it can amplify and sample it to obtain a pulse wave signal.
  • the human heart beat will be transmitted to the skin capillaries through blood vessels, causing changes in blood volume.
  • the blood vessels expand, the blood volume increases, more light signals are absorbed, and the scattered signals are reduced;
  • the heart is diastolic,
  • the blood vessels are restored, the blood volume is restored, the absorbed light signal is reduced, and the scattered signal is increased. Therefore, the scattered and reflected light signals will change regularly with the pulse of the human body.
  • the pulse wave change can be detected based on the change of the electrical signal detected by the PD, and then the heart rate and blood oxygen can be determined based on the pulse wave change. etc. data.
  • the structure of the current PPG sensor package is generally shown in Figure 2.
  • the LED is packaged on the substrate, and the packaged LED and PD are mounted on the PCB. For protection, where there is a safety gap between the back cover and the LED.
  • the components are separated and the assembly process is many, resulting in high assembly cost; in addition, the overall volume of the PPG is relatively large, and the thickness (PCB thickness + LED substrate thickness + LED thickness + safety clearance + rear shell thickness) is thicker. , and the gap between LED and PD from the skin is too large, which is not conducive to PPG detection.
  • the embodiments of the present application provide a PPG sensor and an electronic device, mainly by adopting an organic light-emitting diode (organic light-emitting diode, OLED) display technology to realize the PPG sensor, so as to reduce the assembly cost and volume of the PPG sensor , reduce the thickness of the PPG sensor and the gap from the skin.
  • OLED organic light-emitting diode
  • the PPG sensor provided in the embodiment of the present application may be applied to a smart wearable device, where the smart wearable device may be a wearable device that can support human health monitoring, such as a smart watch, a smart bracelet, or a smart eye mask. It can be understood that the PPG sensor provided in the embodiments of the present application can also be used on electronic devices such as mobile phones, tablets, or computers, which are not particularly limited in the embodiments of the present application. For ease of understanding, several application scenarios of the PPG sensor are exemplarily described below by taking a smart watch as an example.
  • the first application scenario please refer to FIG. 3 , which is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • a display screen is provided on the front of the main body of the smart watch, and the PPG sensor can be arranged on the smart watch. the back of the body, in direct contact with the skin.
  • the PPG sensor can be controlled to achieve continuous, non-inductive PPG detection.
  • the working state of the PPG sensor can also be controlled through the on-off state of the PPG detection function.
  • the user can enable the PPG detection function through the relevant health management application.
  • the PPG sensor can be activated when the PPG detection function is enabled PPG detection; control the PPG sensor to stop PPG detection after detecting that the user has turned off the PPG detection function, or after detecting a preset time period.
  • the second application scenario please refer to FIG. 4 , which is a schematic diagram of another application scenario provided by the embodiment of the application.
  • the PPG sensor may be arranged on the side of the main body of the smart watch, for example, on the side of the main body In the case of a crown, the PPG sensor can be arranged on the side of the crown.
  • the user can measure the pulse wave signal by touching the PPG sensor with the skin of the finger or other parts of the body.
  • FIG. 5 is a schematic diagram of another application scenario provided by the embodiment of the application.
  • the PPG sensor can be integrated with the display screen and arranged on the main body of the smart watch. front.
  • the user can measure the pulse wave signal by touching the PPG sensor with the skin of the finger or other parts of the body.
  • the PPG sensor can be used for display; during PPG detection, the display can be stopped for PPG detection, or the display and PPG detection can be performed at the same time, or the display and PPG detection can be performed in a time-sharing manner, that is, the display and PPG detection can be performed alternately. PPG detection.
  • the PPG sensor can be directly or indirectly electrically connected to the main body's circuit board (not shown) to communicate with the processor on the circuit board to achieve PPG detection function and display function.
  • the PPG sensor can be soldered on the circuit board, or can be connected to the circuit board through some connecting wires and connection interfaces, which can be selected according to actual needs, which is not particularly limited in this embodiment.
  • the PPG sensor is implemented by an OLED display screen packaging process.
  • OLED display screen is first introduced below.
  • FIG. 6 is a schematic structural diagram of an OLED display screen provided by an embodiment of the present application
  • FIG. 7 is a schematic diagram of the relationship between each packaging layer in FIG. 6
  • the OLED display screen may include a substrate 01 , an anode 03 , a light-emitting layer 04 , a cathode 05 and a transparent panel 07 arranged in sequence from bottom to top.
  • the light-emitting principle of the OLED display screen is: when there is a forward bias, the cathode 05 generates electrons, and the anode 03 generates holes. Internal recombination, thereby exciting the molecules of the light-emitting layer to generate singlet excitons, and the singlet exciton radiation decays and emits light.
  • the substrate 01 can play a supporting role, which can be made of glass or plastic material;
  • the transparent panel 07 mainly plays the role of protecting the entire display screen, and its material is usually glass, of course, it can also be other materials, as long as it can transmit light , and has a certain strength.
  • the cathode 05 and the anode 03 can be formed by an evaporation process, and the positions of the two can be interchanged, and the electrode close to the transparent panel 07 is a transparent electrode, so as to facilitate the transmission of light.
  • the OLED display screen may include top emission and bottom emission. When bottom emission is used, each layer at the bottom of the light-emitting layer 04 is a transparent structure. FIG. 6 is an example of top emission for illustration.
  • the light-emitting layer 04 is composed of organic material molecules, and the pixel array in the light-emitting layer 04 can be formed by processes such as evaporation or inkjet printing, wherein each pixel can emit light under the driving of the driving circuit, and by controlling the magnitude of the current, it can be adjusted.
  • the luminous intensity of the pixel is composed of organic material molecules, and the pixel array in the light-emitting layer 04 can be formed by processes such as evaporation or inkjet printing, wherein each pixel can emit light under the driving of the driving circuit, and by controlling the magnitude of the current, it can be adjusted.
  • the luminous intensity of the pixel is composed of organic material molecules, and the pixel array in the light-emitting layer 04 can be formed by processes such as evaporation or inkjet printing, wherein each pixel can emit light under the driving of the driving circuit, and by controlling the magnitude of the current, it can be adjusted.
  • the luminous intensity of the pixel is composed of organic material molecules, and the pixel array
  • OLED display can be divided into passive matrix organic light-emitting diode (PMOLED) and active matrix organic light-emitting diode (AMOLED).
  • PMOLED passive matrix organic light-emitting diode
  • AMOLED active matrix organic light-emitting diode
  • the PMOLED includes a matrix of cathode strips and anode strips arranged vertically, pixels are formed at the intersections of the cathode strips and anode strips, and the pixels in the array are illuminated by applying current to the selected cathode strips and anode strips through an external driving circuit.
  • a thin film transistor (TFT) layer is formed between the substrate 01 and the electrode to realize pixel driving.
  • This method has high driving accuracy.
  • Figures 6 and 7 take AMOLED as an example for illustration.
  • the TFT layer 02 formed between the substrate 01 and the anode 03 can be controlled by controlling the TFT layer 02 to control each pixel in the light-emitting layer 04 to work to generate a corresponding image.
  • the TFT layer 02 can be formed through the processes of film formation, exposure, and etching.
  • a buffer layer 06 can also be formed between the transparent panel 07 and the cathode 05 for connection or other functions.
  • a polarizer can be added between the transparent panel 07 and the cathode 05 to absorb reflected light and reduce the External light reflections interfere while enhancing contrast.
  • the polarizer can be located in the buffer layer 06 .
  • Pixels in the light-emitting layer 04 may include different colors, and FIG. 6 exemplarily shows one red (red, R) pixel, one green (green, G) pixel, and one blue (blue, B) pixel.
  • the pixels can be arranged according to certain rules.
  • FIG. 8 is a schematic diagram of a pixel arrangement structure of an OLED display screen provided by an embodiment of the present application. As shown in FIG. 8 , the pixel arrangement modes of the pixel array in the light-emitting layer 04 may include the following:
  • the first type RGB arrangement, as shown in (a) of Figure 8, R pixels, G pixels and B pixels are arranged side by side to form a pixel unit, and the pixel units are repeatedly arranged in the row and column directions to form a pixel array.
  • FIG. 6 takes the RGB arrangement as an example for exemplary illustration, which shows the pixel structure of one pixel unit.
  • the second type: RGBW arrangement as shown in (b) in FIG. 8 , the RGBW arrangement method is to add white (white, W) pixels to the original RGB pixels.
  • each pixel unit of the Pentile arrangement is composed of RG or BG. When displayed, each pixel unit shares red pixels or blue pixels with adjacent pixels. .
  • the light emitting layer 04 may also adopt other pixel arrangements, such as honeycomb arrangement, diamond arrangement, etc., which are not particularly limited in this embodiment.
  • FIG. 9 is a schematic diagram of the relationship between the packaging layers of the PPG sensor provided by the embodiment of the application.
  • the PPG sensor includes: a substrate 11 packaged in one body, a first electrode 13 , a light-emitting and light-receiving layer 14 , a second transparent Electrode 15 and transparent panel 18 .
  • the substrate 11 and the first electrode 13 are both located on one side of the light-emitting and light-receiving layer 14, and the second transparent electrode 15 and the transparent panel 18 are both located on the other side of the light-emitting and light-receiving layer 14; the first electrode 13 and the second transparent electrode 15 are located between the substrate 11 and the transparent panel 18, and the polarities of the first electrode 13 and the second transparent electrode 15 are opposite; pixel.
  • the light-emitting pixel and the light-receiving pixel can also be located in different layers, that is, the light-emitting pixel is located in the light-emitting layer, the light-receiving pixel is located in the light-receiving layer, and the light-emitting layer and the light-receiving layer are separately arranged, and FIG. 9 shows the light-emitting layer. It is exemplified that the light-emitting and light-receiving layers are integrated in the same light-emitting light-receiving layer 14 as an example.
  • the structure and functions of the substrate 11 and the transparent panel 18 are similar to those of the substrate 11 and the transparent panel 18 in the above-mentioned OLED display screen, and will not be repeated here.
  • the first electrode 13 may be an anode or a cathode, and correspondingly, the second transparent electrode 15 is a cathode or an anode.
  • the first electrode 13 may be made of transparent or non-transparent material.
  • the light-emitting and light-receiving layer 14 can be formed by using organic material molecules, and the specific material is not particularly limited in this application.
  • the light-emitting pixels and light-receiving pixels in the light-emitting and light-receiving layer 14 may also be formed by an evaporation process or other processes.
  • the light source of the light-emitting pixel may be an LED, a micro (Micro) LED, or a vertical-cavity surface-emitting laser (VCSEL), etc., and the light-receiving pixel may use a PD device or a PD chip.
  • a polarizer 16 may be disposed between the second transparent electrode 15 and the transparent panel 18 to absorb reflected light, reduce reflection interference of external light, and enhance contrast.
  • the polarizer 16 can also be replaced with a filter or an array filter to filter out light signals of irrelevant wavelengths and improve signal contrast or signal quality. For example, in the PD that is only responsible for receiving red light, the position corresponding to the array filter is transparent. If the wavelength of red light is exceeded, other wavelengths of light cannot be transmitted.
  • a touch panel 17 may also be disposed between the second transparent electrode 15 and the transparent panel 18 to serve as a touch input or a trigger condition for starting PPG detection.
  • PPG detection can be started when the user's touch operation is detected; or, PPG detection can be started when the user's continuous touch time exceeds a preset time duration; or, when the PPG detection function is enabled, when When the user's touch operation is detected, the PPG detection starts.
  • the specific PPG detection startup mode can be selected as required, which is not particularly limited in this embodiment.
  • the touch panel 17 can be a capacitive sensor for wear detection.
  • PPG detection can be performed in this case.
  • the specific timing for starting the PPG detection is similar to the previous one.
  • the PPG detection can be started when it is detected that the smart watch is being worn; or the PPG detection can be started when the smart watch is determined to be in the wearing state when the PPG detection function is turned on.
  • the PPG detection is performed, and the specific starting manner of the PPG detection is not particularly limited in this embodiment.
  • the polarizer 16 and the touch panel 17 are disposed between the second transparent electrode 15 and the transparent panel 18 at the same time, the polarizer 16 may be located between the touch panel 17 and the transparent panel 18, or the touch panel 17 may be located between the polarizer 16 and the touch panel 18.
  • the space between the transparent panels 18 can be selected as required. In FIG. 9 , only the touch panel 17 is positioned between the polarizer 16 and the transparent panel 18 as an example for illustration, which is not intended to limit the present application.
  • the light-emitting and light-receiving layer 14 may further include display pixels arranged in an array, that is, the PPG sensor and the OLED display screen may be integrated together. It can be understood that, in the case where the PPG sensor is not used on the front of the smart watch, display pixels may not be provided to save costs.
  • the following describes the pixel arrangement structure when the PPG sensor includes display pixels and the pixel arrangement structure when it does not include display pixels.
  • light-emitting pixels and light-receiving pixels may be arranged around the display pixel array, that is, the light-emitting and light-receiving layer 14 may include a central area and an edge area around the central area.
  • the display pixels are distributed in the central area, and the light-emitting pixels and The light-receiving pixels are distributed in the edge area.
  • the pixel arrangement of the display pixels may be RGB arrangement, RGBW arrangement or Pentile arrangement, etc.; both light-emitting pixels and light-receiving pixels may be one or more, and the specific number is not particularly limited in this embodiment.
  • light-emitting pixels or light-receiving pixels can be set at some pixel positions of the display pixel array.
  • the light-emitting pixels, light-receiving pixels and display pixels can be arranged irregularly or according to certain rules to improve the display effect and PPG detection effect. .
  • FIG. 10 is a schematic diagram of a pixel arrangement structure provided by an embodiment of the present application.
  • the display pixels include a first display pixel, a second display pixel, and a third display pixel of different colors.
  • the three colors involved in the display pixel and the third display pixel are red, green and blue, respectively.
  • the first display pixels and the target pixels are alternately arranged in the first direction, the first display pixels and the second display pixels are alternately arranged in the second direction, and the second display pixels and the third display pixels are alternately arranged in the first direction cloth, the first direction is perpendicular to the second direction; both the light-emitting pixels and the light-receiving pixels may include multiple, and the target pixels include light-emitting pixels and light-receiving pixels.
  • the first display pixel is the B display pixel
  • the second display pixel is the G display pixel
  • the third display pixel is the R display pixel
  • the first direction is the row direction as an example for illustration. It is not intended to limit the present application, and in specific implementation, the positions of the R display pixels, the G display pixels, and the B display pixels may be interchanged, and the first direction may also be the column direction.
  • the adjacent first display pixel, second display pixel and third display pixel can be regarded as a pixel unit, and by controlling the luminous intensity of the first display pixel, the second display pixel and the third display pixel, So that the pixel unit can emit light of different colors.
  • each display pixel may include four sub-pixels of corresponding colors, for example, the R display pixel in the figure includes four R sub-pixels, the G display pixel includes four G sub-pixels, The B display pixel includes four B sub-pixels, wherein these sub-pixels are represented by solid-line square boxes, the letters R, G, and B in the boxes represent the colors of the corresponding sub-pixels, and the dotted-line square boxes outside the solid-line square box represent the corresponding sub-pixels. display pixels.
  • adjacent R sub-pixels, G sub-pixels, and B sub-pixels can be used as one pixel unit, which can increase the number of pixels per unit area, thereby improving the display resolution.
  • the wavelengths involved in the light-emitting pixels may include various wavelengths.
  • the light-emitting pixels may include R light-emitting pixels, G light-emitting pixels, and infrared (Infrared, IR) light-emitting pixels, wherein these light-emitting pixels
  • IR infrared
  • light-receiving pixels are represented by dashed square boxes that do not include solid-line square boxes.
  • the letters R, G, and IR in the boxes represent the corresponding types of light-emitting pixels
  • PD represents light-receiving pixels.
  • Each light-receiving pixel PD can receive optical signals of one or more wavelengths.
  • the light-emitting pixels may include one or more of R light-emitting pixels, G light-emitting pixels, and IR light-emitting pixels, and the wavelengths involved in the light-emitting pixels may also include other wavelengths, which are not particularly limited in this embodiment;
  • Each light-emitting pixel may also include multiple (for example, four) sub-pixels corresponding to wavelengths, which may be selected as required during specific implementation.
  • the light-emitting pixels and the light-receiving pixels When the light-emitting pixels and the light-receiving pixels are arranged, they may be arranged irregularly or according to certain rules, so as to improve the PPG detection effect. As shown in FIG. 10 , the target pixels adjacent to the light-receiving pixels may all be light-emitting pixels, which can improve the light-receiving effect of the light-receiving pixels.
  • the distance between the R light-emitting pixel and the light-receiving pixel PD and the distance between the IR light-emitting pixel and the light-receiving pixel PD distances are equal.
  • the R light-emitting pixels and the IR light-emitting pixels may be located in the row direction or the column direction of the light receiving pixel PD, or may be located on the four diagonal corners of the square with the light receiving pixel PD as the center.
  • the positional relationship among the R-emitting pixels, the G-emitting pixels, the IR-emitting pixels, and the light-emitting pixels may be as shown in FIG.
  • the pixels and the G light-emitting pixels are alternately arranged in the first direction, the first light-emitting pixels and the light-receiving pixels are alternately arranged in the second direction, and the light-receiving pixels and the second light-emitting pixels are alternately arranged in the first direction, wherein, One of the first light-emitting pixel and the second light-emitting pixel is an R light-emitting pixel, and the other is an IR light-emitting pixel.
  • FIG. 11 is a schematic diagram of another pixel arrangement structure provided by the embodiment of the present application.
  • the light-emitting pixel may also share the R pixel and the G pixel with the display pixel, wherein , the R display pixels and G display pixels in the display pixels may all be shared pixels or some of them may be shared pixels, that is, the light-emitting pixels may include at least some R display pixels and at least some G display pixels in the display pixels.
  • the target pixels may include light-receiving pixels, the light-emitting pixels may also include other pixels, and the target pixels may also include the other pixels.
  • the light-emitting pixels may include IR light-emitting pixels, and the target pixels may also include the IR light-emitting pixels.
  • the structure of the display pixels and the arrangement relationship between the display pixels and the target pixels are similar to those in FIG. 10 , and will not be repeated here.
  • the light-emitting pixels and the light-receiving pixels When the light-emitting pixels and the light-receiving pixels are arranged, they may be arranged irregularly or according to certain rules, so as to improve the PPG detection effect. As shown in FIG. 11 , when the target pixels include IR light-emitting pixels, the target pixels adjacent to the light-receiving pixels PD may all be IR light-emitting pixels, and the target pixels adjacent to the IR light-emitting pixels may also be light-receiving pixels PD. , which can improve the light-receiving effect of the light-receiving pixel.
  • the target pixels can all be light-receiving pixels PD; the light-emitting pixels and the display pixels can share one or more of the R pixels, G pixels, and B pixels.
  • the light-emitting pixel and the display pixel share the R pixel and the G pixel as an example for illustrative description.
  • FIG. 12 is a schematic diagram of another pixel arrangement structure provided by an embodiment of the present application
  • FIG. 13 is a schematic structural diagram of the PPG sensor corresponding to FIG. 12
  • the display pixels include R display pixels, G display pixels, and B display pixels.
  • the light-emitting and light-receiving layer 14 includes pixel units arranged in an array, and each pixel unit includes a sequence of pixels in the first direction.
  • the array of one R display pixel, one G display pixel, one B display pixel and one target pixel may include multiple light-emitting pixels and light-receiving pixels, and the target pixel may include at least some of the light-emitting pixels and light-receiving pixels.
  • the pixel unit when the first direction is the row direction, the pixel unit may correspond to a four-column pixel structure; when the first direction is the column direction, the pixel unit may correspond to a four-row pixel structure, that is, each pixel unit corresponds to a pixel structure of four rows.
  • the display pixels can be arranged in a three-row or three-column RGB arrangement, and the light-emitting pixels and the light-receiving pixels can be correspondingly arranged in a fourth row or a fourth column.
  • the first direction is taken as an example of the row direction for exemplary illustration, which is not intended to limit the present application.
  • the display pixels may also include other pixels, such as W display pixels.
  • the pixel units may also include the W display pixels, and the W display pixels may be located after the B display pixels, that is, the display pixels in each pixel unit may use four lines. Or in a four-column RGBW arrangement, the light-emitting pixels and the light-receiving pixels may be correspondingly arranged in the fifth row or the fifth column.
  • the light-emitting pixels may not share pixels with the display pixels, that is, the target pixels may include light-emitting pixels and light-receiving pixels.
  • the light-emitting pixels may include IR light-emitting pixels, R light-emitting pixels, and G light-emitting pixels.
  • the light-emitting pixels may also include pixels with other wavelengths, which may be selected as required.
  • the light-emitting pixels may also share pixels with the display pixels, that is, the light-emitting pixels may include at least some R display pixels and at least some G display pixels in the display pixels.
  • the target pixel may include a light-receiving pixel, a light-emitting pixel may also include other pixels, and the target pixel may also include the other pixel.
  • the light-emitting pixel may include an IR light-emitting pixel, and the target pixel may also include the IR light-emitting pixel.
  • a pixel unit including IR light-emitting pixels is taken as an example for illustration.
  • the arrangement relationship between the light-emitting pixels and the light-receiving pixels is similar to the pixel arrangement shown in Figure 10 and Figure 11, which can be arranged irregularly or according to certain rules to improve the PPG detection effect. Reference may be made to the related descriptions in the pixel arrangement manners shown in FIG. 10 and FIG. 11 , which will not be repeated here.
  • the light-emitting layer 141 and the light-receiving layer 142 may also be disposed separately.
  • both the display pixels and the light-emitting pixels may be located in the light-emitting layer 141
  • the light-receiving pixel PD may be located in the light-receiving layer 142 .
  • FIG. 14 is a schematic diagram of the position of a light-receiving pixel provided by an embodiment of the present application. As shown in FIG. 14 , there are isolation columns between adjacent pixels in the display pixel and the target pixel, and the light-receiving pixels may be arranged on the isolation columns. , each light-receiving pixel forms a light-receiving layer 142 .
  • the isolation column can be an insulating material, which is used to separate different pixels to realize a pixel array; the light-receiving pixels can be arranged on the top of the isolation column.
  • the number of light-receiving pixels can be one or more, and the specific number can be selected according to needs; when it includes multiple, it can be evenly distributed on the isolation column, and each light-receiving pixel arranged on the isolation column forms a plurality of spaced distributions.
  • Light receiving layer 142 is an insulating material, which is used to separate different pixels to realize a pixel array; the light-receiving pixels can be arranged on the top of the isolation column.
  • the number of light-receiving pixels can be one or more, and the specific number can be selected according to needs; when it includes multiple, it can be evenly distributed on the isolation column, and each light-receiving pixel arranged on the isolation column forms a plurality of spaced distributions.
  • Light receiving layer 142 is an insulating material, which is used
  • the positional relationship between the light-emitting pixel and the display pixel may be consistent with the positional relationship between the light-emitting pixel and the display pixel in the embodiment shown in FIG. 10 , FIG. 11 or FIG. 12 . It can be understood that when the pixel shown in FIG. When the positional relationship between the light-emitting pixels and the display pixels in the arrangement, in the case where the light-emitting pixels only include shared pixels, the pixel unit may not include the target pixel, that is, each pixel unit may be three rows or three columns of RGB pixels Arrangement structure, or a four-row or four-column RGBW pixel arrangement structure.
  • the light-receiving layer 142 may be an integral structure, and FIG. 15 is a schematic diagram of the location of another light-receiving pixel provided in this embodiment of the application. As shown in FIG. 15 , the light-receiving layer 142 may be located at between the transparent panel 18 and the second transparent electrode 15 to improve the light-receiving effect.
  • the light-receiving layer 142 may form a larger light-receiving pixel PD as a whole to better receive light, and may also form multiple light-receiving pixels PD to reduce interference between received light of different wavelengths.
  • the light-emitting pixels and light-receiving pixels there may be one or more light-emitting pixels and light-receiving pixels, and the wavelengths involved in the light-emitting pixels may include multiple types.
  • the light-emitting pixels and light-receiving pixels may form pixel structures of multiple rows and columns as shown in FIG. 16 , or may form a honeycomb pixel structure or other pixel structures.
  • the light-emitting pixels and the light-receiving pixels can be arranged irregularly or according to certain rules, so as to improve the display effect and the PPG detection effect.
  • the arrangement rule may be: light-emitting pixels and light-receiving pixels of various wavelengths are alternately arranged, and/or the pixels adjacent to the light-receiving pixels are all light-emitting pixels.
  • the light-emitting pixel and the light-receiving pixel form a pixel structure of multiple rows and columns, the positional relationship between them is similar to the positional relationship between the light-emitting pixel and the light-receiving pixel in the pixel arrangement structure shown in FIG. 10 , here No longer.
  • the light-receiving pixels can also be arranged in the isolation column or the light-receiving layer 142 of the integrated structure, which can be selected according to the needs. It is not repeated here.
  • the PPG sensor may further include a TFT layer 12, and the TFT layer 12 may integrate the driving circuit of the light-emitting pixel and the receiving circuit of the light-receiving pixel; when the display pixel is integrated in the PPG sensor, the TFT layer 12 It is also possible to integrate driver circuits for display pixels. This can further reduce the assembly cost and volume of the PPG sensor.
  • the TFT layer 12 may integrate an AFE, and the AFE may perform processing such as amplifying and sampling on the optical signal received by the receiving circuit.
  • the PPG sensor can use LED to form a sensor of ordinary size as required, or can use Micro LED and/or VCSEL (for example, Micro LED is used for display pixels, and VCSEL is used for light-emitting pixels) to form micro sensors. Selection is required, which is not particularly limited in this embodiment.
  • a display screen packaging process can be used to package the substrate, the first electrode, the light-emitting layer including the light-emitting pixels, the light-receiving layer including the light-receiving pixels, the second transparent electrode, and the transparent panel into an integrated structure.
  • the assembly cost and volume of the PPG sensor are reduced, and the thickness of the PPG sensor and the gap from the skin can be reduced.
  • an embodiment of the present application further provides an electronic device. Please refer to FIG. 17 , which is a schematic structural diagram of the electronic device provided by the embodiment of the present application.
  • the electronic device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a Universal Serial Bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2 , mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, headphone jack 170D, sensor module 180, buttons 190, motor 191, indicator 192, camera 193, display screen 194, and Subscriber Identification Module (Subscriber Identification Module, SIM) card interface 195 and so on.
  • SIM Subscriber Identification Module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light.
  • the structures illustrated in the embodiments of the present invention do not constitute a specific limitation on the electronic device 100 .
  • the electronic device 100 may include more or less components than shown, or combine some components, or separate some components, or arrange different components.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 can control the PPG sensor 180N to work, process the signals collected by the PPG sensor 180N, and realize PPG detection functions such as heart rate detection and blood oxygen detection; and can control the PPG sensor 180N to display images, Video, etc., to realize the display function.
  • PPG detection functions such as heart rate detection and blood oxygen detection
  • the processor 110 may include one or more processing units, for example, the processor 110 may include an application processor (Application Processor, AP), a modem processor, a graphics processor (Graphics Processing Unit, GPU), an image signal processor (Image Signal Processor, ISP), controller, memory, video codec, Digital Signal Processor (DSP), baseband processor, and/or Neural-network Processing Unit (NPU) Wait. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • an application processor Application Processor, AP
  • modem processor a graphics processor
  • ISP image signal processor
  • DSP Digital Signal Processor
  • NPU Neural-network Processing Unit
  • the controller may be the nerve center and command center of the electronic device 100 .
  • the controller can generate an operation control signal according to the instruction operation code and timing signal, and complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the memory in processor 110 is cache memory. This memory may hold instructions or data that have just been used or recycled by the processor 110 . If the processor 110 needs to use the instruction or data again, it can be called directly from the memory. Repeated accesses are avoided and the latency of the processor 110 is reduced, thereby increasing the efficiency of the system.
  • the processor 110 may include one or more interfaces.
  • the interface can include an integrated circuit (Inter-Integrated Circuit, I2C) interface, an integrated circuit built-in audio (Inter-Integrated circuit Sound, I2S) interface, a pulse code modulation (Pulse Code Modulation, PCM) interface, Universal Asynchronous Transmitter (Universal Asynchronous Transmitter) Receiver/Transmitter, UART) interface, Mobile Industry Processor Interface (MIPI), General-Purpose Input/Output (GPIO) interface, Subscriber Identity Module (SIM) interface, and / or Universal Serial Bus (Universal Serial Bus, USB) interface, etc.
  • I2C Inter-Integrated Circuit
  • I2S integrated circuit Sound
  • PCM pulse code modulation
  • PCM Pulse Code Modulation
  • Universal Asynchronous Transmitter Universal Asynchronous Transmitter
  • GPIO General-Purpose Input/Output
  • SIM Subscriber Identity Module
  • USB Universal Serial Bus
  • the charging management module 140 is used to receive charging input from the charger.
  • the power management module 141 is used for connecting the battery 142 , the charging management module 140 and the processor 110 .
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140 and supplies power to the processor 110 , the internal memory 121 , the external memory, the display screen 194 , the camera 193 , and the wireless communication module 160 .
  • the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle times, battery health status (leakage, impedance).
  • the power management module 141 may also be provided in the processor 110 .
  • the power management module 141 and the charging management module 140 may also be provided in the same device.
  • the wireless communication function of the electronic device 100 may be implemented by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modulation and demodulation processor, the baseband processor, and the like.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 100 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • the antenna 1 can be multiplexed as a diversity antenna of the wireless local area network. In other embodiments, the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 150 may provide wireless communication solutions including 2G/3G/4G/5G etc. applied on the electronic device 100 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (Low Noise Amplifier, LNA) and the like.
  • the mobile communication module 150 can receive electromagnetic waves from the antenna 1, filter and amplify the received electromagnetic waves, and transmit them to the modulation and demodulation processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modulation and demodulation processor, and then turn it into an electromagnetic wave for radiation through the antenna 1 .
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 may be provided in the same device as at least part of the modules of the processor 110 .
  • the wireless communication module 160 can provide wireless local area networks (Wireless Local Area Networks, WLAN) (such as wireless fidelity (Wireless Fidelity, Wi-Fi) networks), Bluetooth (Bluetooth, BT), global navigation satellites applied on the electronic device 100 System (Global Navigation Satellite System, GNSS), Frequency Modulation (Frequency Modulation, FM), Near Field Communication (Near Field Communication, NFC), Infrared (Infrared, IR) and other wireless communication solutions.
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110 , perform frequency modulation on it, amplify the signal, and convert it into electromagnetic waves for radiation through the antenna 2 .
  • the antenna 1 of the electronic device 100 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the electronic device 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technologies may include Global System for Mobile communications (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (CDMA), broadband Code Division Multiple Access (Wideband Code Division Multiple Access, WCDMA), Time Division Synchronous Code Division Multiple Access (Time Division-Synchronous Code Division Multiple Access, TD-SCDMA), Long Term Evolution (Long Term Evolution, LTE), BT, GNSS, WLAN , NFC, FM, and/or IR technology, etc.
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • Long Term Evolution Long Term Evolution
  • WLAN Wireless Local Area Network
  • the GNSS may include Global Positioning System (Global Positioning System, GPS), Global Navigation Satellite System (Global Navigation Satellite System, GNSS), BeiDou Navigation Satellite System (BeiDou Navigation Satellite System, BDS), Quasi-Zenith Satellite System (Quasi - Zenith Satellite System, QZSS) and/or Satellite Based Augmentation Systems (SBAS).
  • Global Positioning System Global Positioning System, GPS
  • Global Navigation Satellite System Global Navigation Satellite System
  • GNSS Global Navigation Satellite System
  • BeiDou Navigation Satellite System BeiDou Navigation Satellite System
  • BDS BeiDou Navigation Satellite System
  • Quasi-Zenith Satellite System Quasi- Zenith Satellite System
  • QZSS Satellite Based Augmentation Systems
  • the electronic device 100 implements a display function through a GPU, a display screen 194, an application processor, and the like.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 194 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or alter display information.
  • Display screen 194 is used to display images, videos, and the like.
  • Display screen 194 includes a display panel.
  • the display panel can be a Liquid Crystal Display (LCD), an Organic Light-Emitting Diode (OLED), an Active-Matrix Organic Light-Emitting Diode or an Active-Matrix Organic Light-Emitting Diode (Active-Matrix Organic Light).
  • Emitting Diode, AMOLED flexible light-emitting diode
  • FLED Flexible Light-emitting diode
  • Mini LED Micro LED
  • Quantum Dot Light Emitting Diodes QLED
  • the electronic device 100 may include one or N display screens 194 , where N is a positive integer greater than one.
  • the electronic device 100 may implement a shooting function through an ISP, a camera 193, a video codec, a GPU, a display screen 194, an application processor, and the like.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device 100 .
  • the external memory card communicates with the processor 110 through the external memory interface 120 to realize the data storage function. For example to save files like music, video etc in external memory card.
  • Internal memory 121 may be used to store computer executable program code, which includes instructions.
  • the processor 110 executes various functional applications and data processing of the electronic device 100 by executing the instructions stored in the internal memory 121 .
  • the internal memory 121 may include a storage program area and a storage data area.
  • the storage program area may store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), and the like.
  • the storage data area may store data (such as audio data, phone book, etc.) created during the use of the electronic device 100 and the like.
  • the internal memory 121 may include high-speed random access memory, and may also include non-volatile memory, such as at least one disk storage device, flash memory device, Universal Flash Storage (Universal Flash Storage, UFS) and the like.
  • the electronic device 100 may implement audio functions through an audio module 170, a speaker 170A, a receiver 170B, a microphone 170C, an earphone interface 170D, an application processor, and the like. Such as music playback, recording, etc.
  • the PPG sensor 180N can be used to measure the pulse wave signal, and it can be an independent device with the display screen, or can be integrated with the display screen.
  • the application processor can analyze the heart rate information and blood oxygen information based on the pulse wave signal obtained by the PPG sensor 180N, so as to realize the heart rate detection function and the blood oxygen detection function.
  • the specific structure of the PPG sensor 180N reference may be made to the foregoing embodiments, which will not be repeated here.
  • the disclosed apparatus/device and method may be implemented in other manners.
  • the apparatus/equipment embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the term “if” may be contextually interpreted as “when” or “once” or “in response to determining” or “in response to detecting “.
  • the phrases “if it is determined” or “if the [described condition or event] is detected” may be interpreted, depending on the context, to mean “once it is determined” or “in response to the determination” or “once the [described condition or event] is detected. ]” or “in response to detection of the [described condition or event]”.
  • references in this specification to "one embodiment” or “some embodiments” and the like mean that a particular feature, structure or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Pulmonology (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Geometry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供一种PPG传感器和电子设备,涉及电子技术领域,其中,电子设备包括:主体和PPG传感器,PPG传感器设置在主体上,并与主体内的电路板电连接。PPG传感器包括:封装于一体的基板、第一电极、发光层、收光层、第二透明电极和透明面板;基板和第一电极均位于发光层的一侧,第二透明电极和透明面板均位于发光层的另一侧;收光层、第一电极和第二透明电极均位于基板和透明面板之间,第一电极和第二透明电极的极性相反;发光层包括用于发射光信号的发光像素,收光层包括用于探测光信号的收光像素。本申请提供的技术方案,可以降低PPG传感器的组装成本和体积,并可以减小PPG传感器的厚度和距离皮肤的间隙。

Description

PPG传感器和电子设备
本申请要求于2020年09月29日提交国家知识产权局、申请号为202011050618.0、申请名称为“PPG传感器和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,尤其涉及一种光电容积描记(photoplethysmograph,PPG)传感器和电子设备。
背景技术
PPG传感器是智能手表和智能手环等智能穿戴设备上比较常用的传感器,通过该传感器可以收集人体的心率和血氧等健康数据,为人体健康分析提供依据。
PPG传感器主要包括发光二极管(light emitting diode,LED)光源和光探测器(photodetector,PD),其检测原理为:通过LED发射光信号,光信号传输到皮肤后,在皮肤里面,部分光信号会被人体组织(包括血液)吸收,部分光信号会发生散射和反射,散射和反射的光信号有一部分会被PD接收,转成电信号;其中,散射和反射的光信号会随着人体脉搏的搏动而呈现规律性变化,基于PD检测的电信号的变化即可检测到脉搏波变化情况,进而可以基于脉搏波变化情况确定心率和血氧等数据。
目前的PPG传感器,一般是将LED封装在LED基板上后,与PD一起贴装在印刷电路板(printed circuit board,PCB)上,整机组装时,在PCB上装配后盖,以对LED和PD进行保护,其中,后盖与LED之间存在安全间隙。这种结构的PPG传感器,组装成本较高,且体积较大。
发明内容
有鉴于此,本申请提供一种PPG传感器和电子设备,用于降低PPG传感器的组装成本和体积。
为了实现上述目的,第一方面,本申请实施例提供一种PPG传感器,包括:封装于一体的基板、第一电极、发光层、收光层、第二透明电极和透明面板;
基板和第一电极均位于发光层的一侧,第二透明电极和透明面板均位于发光层的另一侧;收光层、第一电极和第二透明电极均位于基板和透明面板之间,第一电极和第二透明电极的极性相反;
发光层包括用于发射光信号的发光像素,收光层包括用于探测光信号的收光像素。
本实施例提供的PPG传感器,可以采用显示屏封装工艺将基板、第一电极、包含发光像素发光层、包含收光像素的收光层、第二透明电极和透明面板封装为一体结构,这样可以降低PPG传感器的组装成本和体积,并可以减小PPG传感器的厚度和距离皮肤的间隙。
在第一方面的一种可能的实施方式中,发光层还包括阵列排布的显示像素。
上述实施方式中,发光层还可以包括显示像素,即PPG传感器和显示屏可以集成在一起,这样可以提高电子设备中器件的集成度,从而可以减小电子设备的体积和重量。
在第一方面的一种可能的实施方式中,发光层与收光层集成在同一发光收光层中。这 样可以在一定程度上减小PPG传感器的厚度。
在第一方面的一种可能的实施方式中,发光层包括中央区域和位于中央区域四周的边缘区域,显示像素分布在中央区域中,发光像素和收光像素分布在边缘区域中。这样便于PPG传感器的制作。
在第一方面的一种可能的实施方式中,显示像素包括不同颜色的第一显示像素、第二显示像素和第三显示像素,第一显示像素、第二显示像素和第三显示像素所涉及的三种颜色分别为红色、绿色和蓝色;
第一显示像素与目标像素在第一方向上交替排布,第一显示像素与第二显示像素在第二方向上交替排布,第二显示像素与第三显示像素在第一方向上交替排布,第一方向与第二方向垂直;发光像素和收光像素均包括多个,目标像素包括发光像素和收光像素中的至少部分像素。
该实施方式中,显示像素与PPG传感器对应的目标像素交替排布,这样目标像素分布比较均匀,从而可以提高信号采集效果。
在第一方面的一种可能的实施方式中,发光像素所涉及的波长包括多种,目标像素包括各发光像素和各收光像素,与收光像素相邻的目标像素均为发光像素。这样,通过不同波长的发光像素可以发出不同波长的光信号,对应的,收光像素则可以采集到多种波长的光信号,从而在进行PPG检测时可以得到更准确的检测结果;而且,收光像素相邻的目标像素均为发光像素,这样可以提高收光像素的光接收效果。
在第一方面的一种可能的实施方式中,对于每个收光像素,与收光像素相邻的发光像素中包括红色发光像素和红外发光像素,红色发光像素与收光像素之间的距离和红外发光像素与收光像素之间的距离相等。这样在进行血氧检测时,可以提高血氧检测结果的准确性。
在第一方面的一种可能的实施方式中,发光像素包括第一发光像素、第二发光像素和绿色发光像素,第一发光像素和第二发光像素中的其中之一为红色发光像素,另一个为红外发光像素;第一发光像素与绿色发光像素在第一方向上交替排布,第一发光像素与收光像素在第二方向上交替排布,收光像素与第二发光像素在第一方向上交替排布。
在第一方面的一种可能的实施方式中,发光像素包括显示像素中的至少部分红色显示像素和/或至少部分绿色显示像素,目标像素包括收光像素。
该实施方式中,发光像素与显示像素共用红色和/或绿色显示像素,这样可以提高像素的利用率,降低PPG传感器的制作复杂度。
在第一方面的一种可能的实施方式中,发光像素还包括红外发光像素,目标像素还包括红外发光像素;
与收光像素相邻的目标像素均为红外发光像素,和/或,与红外发光像素相邻的目标像素均为收光像素。这样可以提高收光像素的光接收效果。
在第一方面的一种可能的实施方式中,每个显示像素均包括四个对应颜色的子像素。这样可以提高单位面积上的像素数量,从而可以提高显示分辨率。
在第一方面的一种可能的实施方式中,显示像素包括红色显示像素、绿色显示像素和蓝色显示像素,发光层包括呈阵列式排布的像素单元,每个像素单元包括在第一方向上顺序排列的一个红色显示像素、一个绿色显示像素、一个蓝色显示像素和一个目标像素,发 光像素包括多个,目标像素包括发光像素中的至少部分像素。
在第一方面的一种可能的实施方式中,发光像素包括红外发光像素、红色发光像素和绿色发光像素,目标像素包括各发光像素;
或者,发光像素包括红外发光像素、显示像素中的至少部分红色显示像素和至少部分绿色显示像素,目标像素包括红外发光像素。
在第一方面的一种可能的实施方式中,发光层与收光层集成在同一发光收光层中,目标像素还包括收光像素。这样可以在一定程度上减小PPG传感器的厚度。
在第一方面的一种可能的实施方式中,显示像素和目标像素中的相邻像素之间均具有隔离柱,收光像素设置在隔离柱上,每个收光像素形成一个收光层。这样可以提高空间利用率,减小PPG传感器的厚度。
在第一方面的一种可能的实施方式中,显示像素的光源为微型发光二极管LED,发光像素的光源为微型LED或者垂直腔面发射激光器VCSEL。这样可以实现微型PPG传感器,从而可以扩大PPG传感器的适用范围。
在第一方面的一种可能的实施方式中,发光像素和收光像素均包括多个,发光像素所涉及的波长包括多种,发光层与收光层集成在同一发光收光层中,各种波长的发光像素和收光像素之间交替排列。
在第一方面的一种可能的实施方式中,与收光像素相邻的像素均为发光像素。这样可以提高收光像素的光接收效果。
在第一方面的一种可能的实施方式中,收光层位于第二透明电极与透明面板之间。
在第一方面的一种可能的实施方式中,电子设备还包括位于基板和第一电极之间的薄膜晶体管TFT层,TFT层集成有发光像素的驱动电路和收光像素的接收电路。这样可以进一步降低PPG传感器的组装成本和体积。
在第一方面的一种可能的实施方式中,TFT层集成有模拟前端电路AFE,AFE用于对接收电路接收的光信号进行放大和采样处理。这样可以进一步降低PPG传感器的组装成本和体积。
在第一方面的一种可能的实施方式中,PPG传感器还包括位于第二透明电极和透明面板之间的偏光片和/或触摸面板。通过偏光片可以吸收反射光,降低外界光线反射干扰,同时增强对比度;通过触摸面板可以使PPG传感器实现触摸检测功能。
第二方面,本申请实施例提供一种电子设备,包括:主体和上述第一方面所述的PPG传感器,其中,PPG传感器设置在主体上,并与主体内的电路板电连接。
可以理解的是,上述第二方面的有益效果可以参见上述第一方面中的相关描述,在此不再赘述。
附图说明
图1为现有的一种PPG传感器的工作原理示意图;
图2为现有的一种PPG传感器的结构示意图;
图3为本申请实施例提供的一种应用场景示意图;
图4为本申请实施例提供的另一种应用场景示意图;
图5为本申请实施例提供的又一种应用场景示意图;
图6为本申请实施例提供的OLED显示屏的结构示意图;
图7为图6中各封装层的关系示意图;
图8为本申请实施例提供的OLED显示屏的像素排列结构示意图;
图9为本申请实施例提供的PPG传感器的各封装层的关系示意图;
图10为本申请实施例提供的一种像素排列结构示意图;
图11为本申请实施例提供的另一种像素排列结构示意图;
图12为本申请实施例提供的又一种像素排列结构示意图;
图13为图12对应的PPG传感器的一种结构示意图;
图14为本申请实施例提供的PPG传感器的另一种结构示意图;
图15为本申请实施例提供的PPG传感器的又一种结构示意图;
图16为本申请实施例提供的又一种像素排列结构示意图;
图17为本申请实施例提供的电子设备的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。本申请实施例的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
目前,PPG传感器经常被用于智能穿戴设备上,以测量人体心率和血氧等生理数据。图1为现有的一种PPG传感器的工作原理示意图,如图1所示,PPG传感器主要包括LED和PD,为了便于控制,其还可以包括模拟前端电路(analog front end,AFE)。其中,PD可以是光电二极管或光电晶体管等光电探测器件。
在工作时,AFE可以驱动LED发射光信号,光信号传输到皮肤后,在皮肤里面,一部分光信号会被人体组织(包括血液)吸收,另一部分光信号会发生散射和反射,散射和反射的光信号有一部分会被PD接收,转成电信号;AFE接收到PD输出的电信号后,可以对其进行放大和采样,得到脉搏波信号。
由于人体的心脏搏动会通过血管传递到皮肤毛细血管,引起血容积的变化,其中,当心脏收缩时,血管膨胀,血容积增加,吸收的光信号更多,散射的信号减少;心脏舒张时,血管恢复,血容积恢复,吸收的光信号减少,散射的信号增强。因此,散射和反射的光信号会随着人体脉搏的搏动而呈现规律性变化,基于PD检测的电信号的变化即可检测到脉搏波变化情况,进而可以基于脉搏波变化情况确定心率和血氧等数据。
目前的PPG传感器封装后的结构一般如图2所示,LED封装在基板上,封装后的LED和PD贴装在PCB上,整机组装时,在PCB上装配后盖,以对LED和PD进行保护,其中,后盖与LED之间存在安全间隙。
这种结构的PPG传感器,各器件分离,组装工序多,导致组装成本较高;另外,PPG整体体积较大,厚度(PCB厚度+LED基板厚度+LED厚度+安全间隙+后壳厚度)较厚,且LED和PD距离皮肤的间隙过大,不利于PPG检测。
为了解决上述技术问题,本申请实施例提供一种PPG传感器和电子设备,主要通过采用有机发光二极管(organic light-emitting diode,OLED)显示屏工艺实现PPG传感器,来降低PPG传感器的组装成本和体积,减小PPG传感器的厚度和距离皮肤的间隙。
本申请实施例提供的PPG传感器可以应用于智能穿戴设备上,其中,智能穿戴设备可以是智能手表、智能手环或智能眼罩等可支持人体健康监测的穿戴设备。可以理解的是,本申请实施例提供的PPG传感器也可以用于手机、平板或电脑等电子设备上,本申请实施 例对此不做特别限定。为了便于理解,下面以智能手表为例进行示例性说明PPG传感器的几种应用场景。
第一种应用场景:请参见图3,图3为本申请实施例提供的一种应用场景示意图,如图3所示,智能手表的主体的正面设置有显示屏,PPG传感器可以设置在智能手表的主体的背面,直接与皮肤接触。
在实际应用时,可以控制PPG传感器实现连续、无感的PPG检测。当然,也可以通过PPG检测功能的开关状态控制PPG传感器的工作状态,例如用户可以通过相关的健康管理应用开启PPG检测功能,对应的,则可以在PPG检测功能开启的情况下,启动PPG传感器进行PPG检测;在检测到用户关闭PPG检测功能,或者在检测预设时长后,控制PPG传感器停止PPG检测。
第二种应用场景:请参见图4,图4为本申请实施例提供的另一种应用场景示意图,如图4所示,PPG传感器可以设置在智能手表的主体的侧面,例如,在主体侧面设置有表冠的情况下,PPG传感器可以设置在表冠的侧面。
在进行PPG检测时,用户可以通过手指或身体其他部位皮肤接触PPG传感器,进行脉搏波信号的测量。
第三种应用场景:请参见图5,图5为本申请实施例提供的又一种应用场景示意图,如图5所示,PPG传感器可以与显示屏集成在一起,设置在智能手表的主体的正面。
在进行PPG检测时,用户可以通过手指或身体其他部位皮肤接触PPG传感器,进行脉搏波信号的测量。智能手表正常工作时,PPG传感器可以用于显示;在进行PPG检测时,可以停止显示进行PPG检测,或者可以同时进行显示和PPG检测,也可以分时进行显示和PPG检测,即交替进行显示和PPG检测。
与主体上的显示屏和电路板之间的连接方式类似,PPG传感器可以通过直接或间接的方式,与主体的电路板(未示出)电连接,以便与电路板上的处理器通信,实现PPG检测功能和显示功能。例如:PPG传感器可以焊接在电路板上,也可以通过一些连接线和连接接口与电路板连接在一起,具体实现时可以根据需要选择,本实施例对此不做特别限定。
如前所述,本申请实施例中,PPG传感器采用OLED显示屏封装工艺实现,为了便于理解,下面先对OLED显示屏进行介绍。
图6为本申请实施例提供的OLED显示屏的结构示意图,图7为图6中各封装层的关系示意图。如图6和图7所示,OLED显示屏可以包括从底到顶顺序设置的基板01、阳极03、发光层04、阴极05和透明面板07。
OLED显示屏的发光原理为:在有正向偏压时,阴极05产生电子,阳极03产生空穴,在电场力的作用下,电子和空穴被传输到发光层04,然后在发光层04内复合,从而激发发光层分子产生单态激子,单态激子辐射衰减而发光。
其中,基板01可以起到支撑作用,其可以采用玻璃或塑料材质;透明面板07主要起到保护整个显示屏的作用,其材质通常为玻璃,当然,其也可以是其他材质,只要可以透光,并具有一定的强度即可。
阴极05和阳极03可以通过蒸镀工艺形成,两者的位置可以互换,靠近透明面板07的电极为透明电极,以便于光线的传输。OLED显示屏可以包括顶发光和底发光,当为底发光时,发光层04底部的各层为透明结构,图6是以顶发光为例进行示例性说明。
发光层04由有机材料分子构成,可以通过蒸镀或喷墨打印等工艺形成发光层04中的像素阵列,其中,每个像素可以在驱动电路的驱动下发光,通过控制电流的大小,可以调整像素的发光强度。
按照像素驱动方式来分,OLED显示屏可以分为无源矩阵有机发光二极管(passive matrix organic light-emitting diode,PMOLED)和有源矩阵有机发光二极管(active matrix organic light-emitting diode,AMOLED)。
其中,PMOLED包括垂直设置的阴极带和阳极带矩阵,阴极带与阳极带的交叉点处形成像素,通过外部驱动电路向选取的阴极带和阳极带施加电流来点亮阵列中的像素。
AMOLED是在基板01与电极之间形成薄膜晶体管(thin film transistor,TFT)层,实现像素驱动,该方式驱动精度较高,图6和图7即是以AMOLED为例进行示例性说明,如图中所示,基板01与阳极03之间形成TFT层02可通过控制该TFT层02来控制发光层04中各个像素进行工作,以产生相应的图像。其中,TFT层02可以通过成膜、曝光、蚀刻工艺形成。
如图6所示,透明面板07和阴极05之间还可以形成缓冲层06,起到连接或其他作用,例如,可以在透明面板07和阴极05之间添加偏光片,来吸收反射光,降低外界光线反射干扰,同时增强对比度。该偏光片可位于缓冲层06。
发光层04中的像素可以包括不同的颜色,图6中示例性的示出了一个红色(red,R)像素、一个绿色(green,G)像素和一个蓝色(blue,B)像素。各像素可以按照一定的规则排列。图8为本申请实施例提供的OLED显示屏的像素排列结构示意图,如图8所示,发光层04中像素阵列的像素排列方式可以包括如下几种:
第一种:RGB排列,如图8中的(a)所示,R像素、G像素和B像素并排排列形成一个像素单元,像素单元在行和列方向上重复排列形成像素阵列。图6中即是以RGB排列为例进行示例性说明,其示出了一个像素单元的像素结构。
第二种:RGBW排列,如图8中的(b)所示,RGBW排列方式是在原有的RGB像素上增加了白色(white,W)像素。
第三种:Pentile排列,如图8中的(c)所示,Pentile排列的每个像素单元由RG或者BG构成,显示的时候,每个像素单元和旁边的像素共享红色像素或蓝色像素。
可以理解的是,上述只是列举了三种常见的像素排列方式,发光层04也可以采用其他像素排列方式,例如蜂窝排列、钻石排列等,本实施例对此不做特别限定。
下面对PPG传感器的结构进行说明。
图9为本申请实施例提供的PPG传感器的各封装层的关系示意图,如图9所示,PPG传感器包括:封装于一体的基板11、第一电极13、发光收光层14、第二透明电极15和透明面板18。其中,基板11和第一电极13均位于发光收光层14的一侧,第二透明电极15和透明面板18均位于发光收光层14的另一侧;第一电极13和第二透明电极15均位于基板11和透明面板18之间,第一电极13和第二透明电极15的极性相反;发光收光层14包括用于发射光信号的发光像素和用于探测光信号的收光像素。
可以理解的是,发光像素和收光像素也可以位于不同层中,即发光像素位于发光层中,收光像素位于收光层中,发光层和收光层分离设置,图9是以发光层和收光层集成在同一发光收光层14中为例进行示例性说明。
具体的,基板11和透明面板18与上述OLED显示屏中基板11和透明面板18的结构和作用类似,此处不再赘述。
第一电极13可以是阳极或者阴极,对应的,第二透明电极15为阴极或者阳极。第一电极13可以是透明或者非透明材质。
发光收光层14可以采用有机材料分子形成,具体的材料本申请不做特别限定。发光收光层14中的发光像素和收光像素也可以通过蒸镀工艺或其他工艺形成。其中,发光像素的光源可以是LED、微型(Micro)LED或垂直腔面发射激光器(vertical-cavity surface-emitting laser,VCSEL)等,收光像素可以采用PD器件或PD芯片。
如图9所示,第二透明电极15和透明面板18之间可以设置偏光片16,来吸收反射光,降低外界光线反射干扰,同时增强对比度。偏光片16也可以替换为滤光片或阵列滤波片,以滤除无关波长的光信号,提高信号对比度或信号质量,例如,在只负责接收红光的PD,阵列滤波片对应的位置为透过红色光波长,其他波长光都不能透过。
第二透明电极15和透明面板18之间也可以设置触摸面板17,以作为触摸输入或者启动PPG检测的触发条件。例如:可以在检测到用户的触摸操作时,开始进行PPG检测;或者,在检测到用户的持续触摸时间超过预设时长时,开始进行PPG检测;或者,在PPG检测功能开启的情况下,当检测到用户的触摸操作时,开始进行PPG检测。具体的PPG检测启动方式可以根据需要选择,本实施例对此不做特别限定。
当PPG传感器用于智能手表的背面时,触摸面板17可以为电容传感器(Capacitive Sensor),用来作为佩戴检测。当皮肤接触PPG传感器时,可以检测到智能手表处于佩戴状态,此种情况下可以进行PPG检测。具体的PPG检测开始检测的时机与前面类似,可以在检测到智能手表处于佩戴状态时,即开始进行PPG检测;也可以在PPG检测功能开启的情况下,在确定智能手表处于佩戴状态时,开始进行PPG检测,具体的PPG检测启动方式本实施例不做特别限定。
当第二透明电极15和透明面板18之间同时设置偏光片16和触摸面板17时,可以是偏光片16位于触摸面板17与透明面板18之间,也可以是触摸面板17位于偏光片16与透明面板18之间,具体可以根据需要选择,图9中只是以触摸面板17位于偏光片16与透明面板18之间为例进行示例性说明,其并非用于限定本申请。
为了扩大应用范围,发光收光层14中还可以包括呈阵列式排布的显示像素,即PPG传感器和OLED显示屏可以集成在一起。可以理解的是,对于PPG传感器不用于智能手表的正面的情况,可以不设置显示像素,以节省成本。
下面对PPG传感器包括显示像素时的像素排列结构和不包括显示像素时的像素排列结构分别进行说明。
(1)PPG传感器包括显示像素的情况。
在形成像素时,可以在显示像素阵列的周围设置发光像素和收光像素,即发光收光层14可以包括中央区域和位于中央区域四周的边缘区域,显示像素分布在中央区域中,发光像素和收光像素分布在边缘区域中。其中,显示像素的像素排列方式可以是RGB排列、RGBW排列或Pentile排列等;发光像素和收光像素均可以是一个或多个,具体数量本实施例不做特别限定。
也可以在显示像素阵列的部分像素位置设置发光像素或收光像素,发光像素、收光像 素与显示像素之间可以不规则排列,也可以按照一定的规则排列,以提高显示效果和PPG检测效果。
图10为本申请实施例提供的一种像素排列结构示意图,如图10所示,显示像素包括不同颜色的第一显示像素、第二显示像素和第三显示像素,第一显示像素、第二显示像素和第三显示像素所涉及的三种颜色分别为红色、绿色和蓝色。
第一显示像素与目标像素在第一方向上交替排布,第一显示像素与第二显示像素在第二方向上交替排布,第二显示像素与第三显示像素在第一方向上交替排布,第一方向与第二方向垂直;发光像素和收光像素均可以包括多个,目标像素包括发光像素和收光像素。
需要说明的是,图10中是以第一显示像素为B显示像素、第二显示像素为G显示像素、第三显示像素为R显示像素、第一方向为行方向为例进行示例性说明,其并非用于限定本申请,具体实现时,R显示像素、G显示像素和B显示像素之间的位置可以互换,第一方向也可以是列方向。
其中,在显示时,可以将相邻的第一显示像素、第二显示像素和第三显示像素作为一个像素单元,通过控制第一显示像素、第二显示像素和第三显示像素的发光强度,使得像素单元可以发出不同颜色的光。
为了提高显示分辨率,本实施例中,每个显示像素均可以包括四个对应颜色的子像素,例如图中的R显示像素包括四个R子像素,G显示像素包括四个G子像素、B显示像素包括四个B子像素,其中,这些子像素用实线正方形框表示,框中的字母R、G、B表示对应的子像素的颜色,实线正方形框外的虚线正方形框表示对应的显示像素。在显示时,可以将相邻的R子像素、G子像素和B子像素作为一个像素单元,这样可以提高单位面积上的像素数量,进而可以提高显示分辨率。
本实施例中,发光像素所涉及的波长可以包括多种,如图10中所示的,发光像素可以包括R发光像素、G发光像素和红外(Infrared,IR)发光像素,其中,这些发光像素和收光像素用不包含实线正方形框的虚线正方形框表示,框中的字母R、G、IR表示对应的发光像素的种类,PD表示收光像素。每个收光像素PD可以接收一种或多种波长的光信号。
可以理解的是,发光像素可以包括R发光像素、G发光像素和IR发光像素中的一种或多种,发光像素所涉及的波长也可以包括其他波长,本实施例对此不做特别限定;每个发光像素也可以包括多个(例如四个)对应波长的子像素,具体实现时可以根据需要选择。
发光像素和收光像素之间在进行排布时,可以不规则排布,也可以按照一定的规则排布,以提高PPG检测效果。如图10中所示的,与收光像素相邻的目标像素可以均为发光像素,这样可以提高收光像素的光接收效果。
为了提高血氧检测结果的准确性,对于相邻的R发光像素、IR发光像素和收光像素PD,R发光像素与收光像素PD之间的距离和IR发光像素与收光像素PD之间的距离相等。
在具体实现时,R发光像素和IR发光像素可以位于收光像素PD的行方向或列方向上,也可以位于以收光像素PD为中心的正方形的四个对角上。
作为一种可选的实施方式,当发光像素包括G发光像素时,R发光像素、G发光像素、IR发光像素和收光像素之间的位置关系可以如图10中所示的,第一发光像素与G发光像素在第一方向上交替排布,第一发光像素与收光像素在第二方向上交替排布,收光像素与第二发光像素在第一方向上交替排布,其中,第一发光像素和第二发光像素中的其中之一 为R发光像素,另一个为IR发光像素。
图11为本申请实施例提供的另一种像素排列结构示意图,如图11所示,为了提高像素利用率,本申请实施例中,发光像素也可以与显示像素共享R像素和G像素,其中,显示像素中的R显示像素和G显示像素,可以全部作为共享像素,也可以部分作为共享像素,即发光像素可以包括显示像素中的至少部分R显示像素和至少部分G显示像素。目标像素可以包括收光像素,发光像素还可以包括其他像素,目标像素则也可以包括该其他像素,比如发光像素包括IR发光像素,目标像素则也可以包括该IR发光像素。
其中,显示像素的结构和显示像素与目标像素之间的排列关系与图10中类似,此处不再赘述。
发光像素和收光像素之间在进行排布时,可以不规则排布,也可以按照一定的规则排布,以提高PPG检测效果。如图11中所示的,目标像素包括IR发光像素时,与收光像素PD相邻的目标像素可以均为IR发光像素,与IR发光像素相邻的目标像素也可以均为收光像素PD,这样可以提高收光像素的光接收效果。
可以理解的是,在发光像素不包括IR发光像素的情况下,目标像素可以均为收光像素PD;发光像素与显示像素可以共享R像素、G像素和B像素中的一种或多种像素,本实施例中只是以发光像素与显示像素共享R像素和G像素为例进行示例性说明。
图12为本申请实施例提供的又一种像素排列结构示意图,图13为图12对应的PPG传感器的一种结构示意图。如图12和图13所示,显示像素包括R显示像素、G显示像素和B显示像素,发光收光层14包括呈阵列式排布的像素单元,每个像素单元包括在第一方向上顺序排列的一个R显示像素、一个G显示像素、一个B显示像素和一个目标像素,发光像素和收光像素均可以包括多个,目标像素可以包括发光像素和收光像素中的至少部分像素。
其中,第一方向为行方向时,像素单元对应的可以为四列的像素结构;当第一方向为列方向时,像素单元对应的可以为四行的像素结构,即每个像素单元中的显示像素可以采用三行或三列的RGB排列方式,发光像素和收光像素可以对应设置为第四行或第四列。图中是以第一方向为行方向为例进行示例性说明,其并非用于限定本申请。
显示像素也可以包括其他像素,比如W显示像素,对应的,像素单元中也可以包括该W显示像素,W显示像素可以位于B显示像素之后,即每个像素单元中的显示像素可以采用四行或四列的RGBW排列方式,发光像素和收光像素可以对应设置为第五行或第五列。
与图10所示的像素排列方式类似,发光像素可以不与显示像素共享像素,即目标像素可以包括各发光像素和收光像素。其中,发光像素可以包括IR发光像素、R发光像素和G发光像素,当然,发光像素也可以包括其他波长的像素,具体可根据需要选择。
同样的,与图11所示的像素排列方式类似,发光像素也可以与显示像素共享像素,即发光像素可以包括显示像素中的至少部分R显示像素和至少部分G显示像素。目标像素可以包括收光像素,发光像素还可以包括其他像素,目标像素则也可以包括该其他像素,比如发光像素包括IR发光像素,目标像素则也可以包括该IR发光像素,图13中即是以一个包含有IR发光像素的像素单元为例进行示例性说明。
发光像素和收光像素之间的排列关系与图10和图11所示的像素排列方式类似,可以 不规则排布,也可以按照一定的规则排布,以提高PPG检测效果,具体的排列方式可以参考图10和图11所示的像素排列方式中的相关描述,此处不再赘述。
如前所述,发光层141与收光层142也可以分离设置,对应的,显示像素和发光像素均可以位于发光层141,收光像素PD可以位于收光层142。图14为本申请实施例提供的一种收光像素的位置示意图,如图14所示,显示像素和目标像素中的相邻像素之间均具有隔离柱,收光像素可以设置在隔离柱上,每个收光像素形成一个收光层142。
其中,隔离柱可以为绝缘材质,用于将不同像素隔开,实现像素阵列;收光像素可以设置在隔离柱的顶端。收光像素的数量可以是一个或多个,具体数量可以根据需要选择;其包括多个时,可以均匀的分布在隔离柱上,设置在隔离柱上的各个收光像素形成间隔分布的多个收光层142。
发光像素和显示像素之间的位置关系可以与图10、图11或图12所示实施方式中发光像素和显示像素之间的位置关系一致,可以理解的是,当采用图12所示的像素排列方式中发光像素和显示像素之间的位置关系时,在发光像素只包括共享像素的情况下,像素单元中可以不包括目标像素,即每个像素单元可以为三行或三列的RGB像素排列结构,或者为四行或四列的RGBW像素排列结构。
作为另一种可选的实施方式,收光层142可以是一体结构,图15为本申请实施例提供的另一种收光像素的位置示意图,如图15所示,收光层142可以位于透明面板18与第二透明电极15之间,以提高收光效果。
该实施方式与图14所示的实施方式的不同之处只是在于收光像素的位置不同,其他相关描述类似,此处不再赘述。
其中,收光层142可以整体形成一个较大的收光像素PD,以更好的接收光线;也可以形成多个收光像素PD,以减少接收的不同波长的光线间的干扰。
(2)PPG传感器不包括显示像素的情况。
与前述实施方式类似,发光像素和收光像素均可以是一个或多个,发光像素所涉及的波长可以包括多种。当发光像素和收光像素包括多个时,发光像素与收光像素可以如图16所示的形成多行和多列的像素结构,也可以形成蜂窝状像素结构或其他像素结构。
发光像素与收光像素之间可以不规则排列,也可以按照一定的规则排列,以提高显示效果和PPG检测效果。例如,排列规则可以为:各种波长的发光像素和收光像素之间交替排列,和/或,与收光像素相邻的像素均为发光像素。当发光像素与收光像素形成多行和多列的像素结构时,两者之间的位置关系与图10所示的像素排列结构中发光像素与收光像素之间的位置关系类似,此处不再赘述。
与图14和图15所示的实施方式类似,收光像素也可以设置在隔离柱或者一体结构的收光层142中,具体均可以根据需要选择,相关描述可以参见图14和图15,此处不再赘述。
如图9所示,本实施例中,PPG传感器还可以包括TFT层12,TFT层12可以集成发光像素的驱动电路和收光像素的接收电路;当PPG传感器中集成显示像素时,TFT层12还可以集成显示像素的驱动电路。这样可以进一步降低PPG传感器的组装成本和体积。
进一步的,TFT层12可以集成AFE,AFE可以对接收电路接收的光信号进行放大和采样等处理。
本申请实施例中,PPG传感器可以根据需要采用LED形成普通尺寸的传感器,也可以采用Micro LED和/或VCSEL(比如显示像素采用Micro LED,发光像素采用VCSEL)形成微型传感器,具体都可以根据实际需要选择,本实施例对此不做特别限定。
本实施例提供的PPG传感器,可以采用显示屏封装工艺将基板、第一电极、包含发光像素发光层、包含收光像素的收光层、第二透明电极和透明面板封装为一体结构,这样可以降低PPG传感器的组装成本和体积,并可以减小PPG传感器的厚度和距离皮肤的间隙。
基于同一发明构思,本申请实施例还提供一种电子设备,请参阅图17,图17为本申请实施例提供的电子设备的结构示意图。
电子设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(Universal Serial Bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(Subscriber Identification Module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M,PPG传感器180N等。
可以理解的是,本发明实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以控制PPG传感器180N工作,处理PPG传感器180N采集的信号,实现心率检测和血氧检测等PPG检测功能;并可以在PPG传感器180N集成显示像素的情况下,控制PPG传感器180N显示图像、视频等,实现显示功能。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(Application Processor,AP),调制解调处理器,图形处理器(Graphics Processing Unit,GPU),图像信号处理器(Image Signal Processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(Digital Signal Processor,DSP),基带处理器,和/或神经网络处理器(Neural-network Processing Unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是电子设备100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(Inter-Integrated Circuit,I2C)接口,集成电路内置音频(Inter-Integrated circuit Sound,I2S)接口,脉冲编码调制(Pulse Code Modulation,PCM)接口,通用异步收发传输器(Universal  Asynchronous Receiver/Transmitter,UART)接口,移动产业处理器接口(Mobile Industry Processor Interface,MIPI),通用输入输出(General-Purpose Input/Output,GPIO)接口,用户标识模块(Subscriber Identity Module,SIM)接口,和/或通用串行总线(Universal Serial Bus,USB)接口等。
充电管理模块140用于从充电器接收充电输入。电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(Low Noise Amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(Wireless Local Area Networks,WLAN)(如无线保真(Wireless Fidelity,Wi-Fi)网络),蓝牙(Bluetooth,BT),全球导航卫星系统(Global Navigation Satellite System,GNSS),调频(Frequency Modulation,FM),近距离无线通信技术(Near Field Communication,NFC),红外技术(Infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(Global System for Mobile communications,GSM),通用分组无线服务(General Packet Radio Service,GPRS),码分多址接入(Code Division Multiple Access,CDMA),宽带码分多址(Wideband Code Division Multiple Access,WCDMA),时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA),长期演进(Long Term Evolution,LTE),BT,GNSS,WLAN,NFC, FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(Global Positioning System,GPS),全球导航卫星系统(Global Navigation Satellite System,GNSS),北斗卫星导航系统(BeiDou Navigation Satellite System,BDS),准天顶卫星系统(Quasi-Zenith Satellite System,QZSS)和/或星基增强系统(Satellite Based Augmentation Systems,SBAS)。
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(Liquid Crystal Display,LCD),有机发光二极管(Organic Light-Emitting Diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(Active-Matrix Organic Light Emitting Diode的,AMOLED),柔性发光二极管(Flex Light-Emitting Diode,FLED),Mini LED,Micro LED,量子点发光二极管(Quantum Dot Light Emitting Diodes,QLED)等。在一些实施例中,电子设备100可以包括1个或N个显示屏194,N为大于1的正整数。
电子设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器121的指令,从而执行电子设备100的各种功能应用以及数据处理。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(Universal Flash Storage,UFS)等。
电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
PPG传感器180N可以用于测量脉搏波信号,其与显示屏可以分别为独立的器件,也可以与显示屏集成在一起。应用处理器可以基于所述PPG传感器180N获取的脉搏波信号解析心率信息和血氧信息,实现心率检测功能和血氧检测功能。PPG传感器180N的具体结构可以参见前述实施例,此处不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
在本申请所提供的实施例中,应该理解到,所揭露的装置/设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点, 所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本申请说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。
另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (22)

  1. 一种电子设备,其特征在于,包括:主体和光电容积描记PPG传感器,其中,所述PPG传感器设置在所述主体上,并与所述主体内的电路板电连接;所述PPG传感器包括:封装于一体的基板、第一电极、发光层、收光层、第二透明电极和透明面板;
    所述基板和所述第一电极均位于所述发光层的一侧,所述第二透明电极和所述透明面板均位于所述发光层的另一侧;所述收光层、所述第一电极和所述第二透明电极均位于所述基板和所述透明面板之间,所述第一电极和所述第二透明电极的极性相反;
    所述发光层包括用于发射光信号的发光像素,所述收光层包括用于探测所述光信号的收光像素。
  2. 根据权利要求1所述的电子设备,其特征在于,所述发光层还包括阵列排布的显示像素。
  3. 根据权利要求2所述的电子设备,其特征在于,所述发光层与所述收光层集成在同一发光收光层中。
  4. 根据权利要求3所述的电子设备,其特征在于,所述发光层包括中央区域和位于所述中央区域四周的边缘区域,所述显示像素分布在所述中央区域中,所述发光像素和所述收光像素分布在所述边缘区域中。
  5. 根据权利要求3所述的电子设备,其特征在于,所述显示像素包括不同颜色的第一显示像素、第二显示像素和第三显示像素,所述第一显示像素、所述第二显示像素和所述第三显示像素所涉及的三种颜色分别为红色、绿色和蓝色;
    所述第一显示像素与目标像素在第一方向上交替排布,所述第一显示像素与所述第二显示像素在第二方向上交替排布,所述第二显示像素与第三显示像素在所述第一方向上交替排布,所述第一方向与所述第二方向垂直;所述发光像素和所述收光像素均包括多个,所述目标像素包括所述发光像素和所述收光像素中的至少部分像素。
  6. 根据权利要求5所述的电子设备,其特征在于,所述发光像素所涉及的波长包括多种,所述目标像素包括各所述发光像素和各所述收光像素,与所述收光像素相邻的目标像素均为所述发光像素。
  7. 根据权利要求6所述的电子设备,其特征在于,对于每个收光像素,与所述收光像素相邻的发光像素中包括红色发光像素和红外发光像素,所述红色发光像素与所述收光像素之间的距离和所述红外发光像素与所述收光像素之间的距离相等。
  8. 根据权利要求7所述的电子设备,其特征在于,所述发光像素包括第一发光像素、第二发光像素和绿色发光像素,所述第一发光像素和所述第二发光像素中的其中之一为所述红色发光像素,另一个为所述红外发光像素;
    所述第一发光像素与所述绿色发光像素在第一方向上交替排布,所述第一发光像素与所述收光像素在第二方向上交替排布,所述收光像素与所述第二发光像素在第一方向上交替排布。
  9. 根据权利要求5所述的电子设备,其特征在于,所述发光像素包括所述显示像素中的至少部分红色显示像素和/或至少部分绿色显示像素,所述目标像素包括所述收光像素。
  10. 根据权利要求9所述的电子设备,其特征在于,所述发光像素还包括红外发光像素,所述目标像素还包括所述红外发光像素;
    与所述收光像素相邻的目标像素均为所述红外发光像素,和/或,与所述红外发光像素相邻的目标像素均为所述收光像素。
  11. 根据权利要求5所述的电子设备,其特征在于,每个显示像素均包括四个对应颜色的子像素。
  12. 根据权利要求2所述的电子设备,其特征在于,所述显示像素包括红色显示像素、绿色显示像素和蓝色显示像素,所述发光层包括呈阵列式排布的像素单元,每个像素单元包括在第一方向上顺序排列的一个红色显示像素、一个绿色显示像素、一个蓝色显示像素和一个目标像素,所述发光像素包括多个,所述目标像素包括所述发光像素中的至少部分像素。
  13. 根据权利要求12所述的电子设备,其特征在于,所述发光像素包括红外发光像素、红色发光像素和绿色发光像素,所述目标像素包括各所述发光像素;
    或者,所述发光像素包括红外发光像素、所述显示像素中的至少部分红色显示像素和至少部分绿色显示像素,所述目标像素包括所述红外发光像素。
  14. 根据权利要求13所述的电子设备,其特征在于,所述发光层与所述收光层集成在同一发光收光层中,所述目标像素还包括所述收光像素。
  15. 根据权利要求13所述的电子设备,其特征在于,所述显示像素和所述目标像素中的相邻像素之间均具有隔离柱,所述收光像素设置在所述隔离柱上,每个收光像素形成一个所述收光层。
  16. 根据权利要求2所述的电子设备,其特征在于,所述显示像素的光源为微型发光二极管LED,所述发光像素的光源为微型LED或者垂直腔面发射激光器VCSEL。
  17. 根据权利要求1所述的电子设备,其特征在于,所述发光像素和所述收光像素均包括多个,所述发光像素所涉及的波长包括多种,所述发光层与所述收光层集成在同一发光收光层中,各种波长的所述发光像素和所述收光像素之间交替排列。
  18. 根据权利要求17所述的电子设备,其特征在于,与所述收光像素相邻的像素均为发光像素。
  19. 根据权利要求1所述的电子设备,其特征在于,所述收光层位于所述第二透明电极与所述透明面板之间。
  20. 根据权利要求1所述的电子设备,其特征在于,所述电子设备还包括位于所述基板和所述第一电极之间的薄膜晶体管TFT层,所述TFT层集成有所述发光像素的驱动电路和所述收光像素的接收电路。
  21. 根据权利要求20所述的电子设备,其特征在于,所述TFT层集成有模拟前端电路AFE,所述AFE用于对所述接收电路接收的光信号进行放大和采样处理。
  22. 根据权利要求1-21任一项所述的电子设备,其特征在于,所述PPG传感器还包括位于所述第二透明电极和所述透明面板之间的偏光片和/或触摸面板。
PCT/CN2021/116121 2020-09-29 2021-09-02 Ppg传感器和电子设备 WO2022068514A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/247,232 US20240008340A1 (en) 2020-09-29 2021-09-02 Ppg sensor and electronic device
EP21874175.9A EP4207311A4 (en) 2020-09-29 2021-09-02 PPG SENSOR AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011050618.0A CN114361264A (zh) 2020-09-29 2020-09-29 Ppg传感器和电子设备
CN202011050618.0 2020-09-29

Publications (1)

Publication Number Publication Date
WO2022068514A1 true WO2022068514A1 (zh) 2022-04-07

Family

ID=80951125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116121 WO2022068514A1 (zh) 2020-09-29 2021-09-02 Ppg传感器和电子设备

Country Status (4)

Country Link
US (1) US20240008340A1 (zh)
EP (1) EP4207311A4 (zh)
CN (1) CN114361264A (zh)
WO (1) WO2022068514A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160313176A1 (en) * 2015-04-21 2016-10-27 Salutron, Inc. User-wearable devices including uv light exposure detector with calibration for skin tone
CN109475328A (zh) * 2016-06-09 2019-03-15 因赛特系统公司 用于检测生物特性的集成发光显示器及传感器
CN110141197A (zh) * 2019-06-15 2019-08-20 出门问问信息科技有限公司 带有显示屏的电子设备
CN211265482U (zh) * 2020-02-28 2020-08-14 上海和辉光电有限公司 显示面板和显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110109562A (zh) * 2018-02-01 2019-08-09 鸿富锦精密工业(深圳)有限公司 微型led触控显示面板
KR102094596B1 (ko) * 2018-03-30 2020-03-27 한국과학기술원 생체 정보 감지 센서

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160313176A1 (en) * 2015-04-21 2016-10-27 Salutron, Inc. User-wearable devices including uv light exposure detector with calibration for skin tone
CN109475328A (zh) * 2016-06-09 2019-03-15 因赛特系统公司 用于检测生物特性的集成发光显示器及传感器
CN110141197A (zh) * 2019-06-15 2019-08-20 出门问问信息科技有限公司 带有显示屏的电子设备
CN211265482U (zh) * 2020-02-28 2020-08-14 上海和辉光电有限公司 显示面板和显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4207311A4

Also Published As

Publication number Publication date
US20240008340A1 (en) 2024-01-04
EP4207311A4 (en) 2024-02-14
CN114361264A (zh) 2022-04-15
EP4207311A1 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
US20200323489A1 (en) Wearable electronic device including biometric sensor and wireless charging module
CN111034161B (zh) 包括使用显示面板的结构的天线的电子装置
US11998326B2 (en) Smart wearable device
WO2021147396A1 (zh) 图标管理方法及智能终端
WO2021254438A1 (zh) 驱动控制方法及相关设备
US11790819B2 (en) Compensation method and electronic device
WO2020125278A1 (zh) 光线传输方法及装置
WO2022027972A1 (zh) 一种设备搜寻方法以及电子设备
US20220367550A1 (en) Mobile terminal and image photographing method
US20220286548A1 (en) Electronic Device
US20190380586A1 (en) Biometric information sensing device and controlling method thereof
WO2022068514A1 (zh) Ppg传感器和电子设备
US11594199B2 (en) Electronic device with multiple ambient light sensors
WO2022206607A1 (zh) 显示模组、电子设备及其控制方法和控制装置
US20220211284A1 (en) Electronic device including multiple optical sensors and method for controlling the same
WO2023273470A1 (zh) 显示面板、显示屏及电子设备
WO2021098590A1 (zh) 生物试纸模组以及电子设备
WO2019170121A1 (zh) 摄像头模组及移动终端
US20220087549A1 (en) Apparatus for measuring bio-information, and electronic device including the same
US20230074565A1 (en) Electronic device and method for detecting tremor in electronic device
US20220167855A1 (en) Biological information measuring apparatus and electronic device including the same
WO2024128822A1 (ko) 생체 정보를 측정하기 위한 전자 장치 및 그 전자 장치에서의 동작 방법
WO2024017112A1 (zh) 一种光源调光方法和电子设备
CN116682367B (zh) 一种屏幕环境光检测方法、电子设备及介质
CN113571007B (zh) 子像素驱动电路以及像素驱动电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874175

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18247232

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021874175

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021874175

Country of ref document: EP

Effective date: 20230414

NENP Non-entry into the national phase

Ref country code: DE