WO2022068507A1 - 一种滤波器及通信设备 - Google Patents

一种滤波器及通信设备 Download PDF

Info

Publication number
WO2022068507A1
WO2022068507A1 PCT/CN2021/115921 CN2021115921W WO2022068507A1 WO 2022068507 A1 WO2022068507 A1 WO 2022068507A1 CN 2021115921 W CN2021115921 W CN 2021115921W WO 2022068507 A1 WO2022068507 A1 WO 2022068507A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
coupling
frequency
basic component
component
Prior art date
Application number
PCT/CN2021/115921
Other languages
English (en)
French (fr)
Inventor
王华红
王盛杰
杨睿
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022068507A1 publication Critical patent/WO2022068507A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a filter and a communication device.
  • FIG. 1 and FIG. 2 The topology diagrams of several common filters in the prior art are shown in FIG. 1 and FIG. 2 .
  • S is the input end of the filter
  • L is the output end of the filter
  • 1 to 8 represent the resonance nodes in the filter.
  • the filter has 8 resonance nodes (resonant node 1 to resonance node 8, respectively).
  • the present application provides a filter and a communication device for improving the relatively independently controllable transmission zeros of the filter.
  • the present application provides a filter that includes a first component combination and a second component combination; wherein the first component combination includes at least a first basic component, and the first basic component includes a plurality of resonators, and the first basic part is used to generate part of the transmission zero of the filter; the second part combination includes at least a second basic part, the second basic part includes a plurality of resonators, and the second basic part is used to generate another part of the transmission of the filter Zero point; one resonator of the first basic part is coupled to one resonator of the second part combination only by frequency-dependent coupling.
  • the frequency-dependent coupling is used to generate a transmission zero
  • the transmission zero generated by the frequency-dependent coupling is an independently controllable transmission zero.
  • the coupling coefficient of the frequency-dependent coupling between the first component combination and the second component combination varies with frequency, so the frequency-dependent coupling can generate one transmission zero.
  • the frequency-variable coupling can be independently controlled by the transmission zero point generated by the frequency-variable coupling. The transmission zero can be controlled.
  • one resonator of the first basic component cascades one resonator in the second component combination through the frequency-variable coupling generated by the frequency-variable coupling structure.
  • the frequency-variable coupling of the combination of the first basic component and the second component is realized by the frequency-variable coupling structure.
  • the frequency-dependent coupling structure is a coupled resonator or an electromagnetic hybrid coupling structure.
  • the frequency-variable coupling of the combination of the first basic component and the second component is realized through different frequency-variable coupling structures.
  • the frequency-variable coupling structure is a coupling diaphragm, a coupling metal disk, a coupling pin or a coupling blind hole. Therefore, different types of coupling structures can be selected for different types of filters.
  • the transmission zero point generated by the first basic component is a transmission zero point that is closer to the passband of the filter; the transmission zero point generated by the second basic component is a transmission zero point that is closer to the passband of the filter.
  • the transmission zero point is closer; the transmission zero point generated by the frequency-dependent coupling is the transmission zero point farther from the passband of the filter.
  • the first basic component and the second basic component are any one of a Q-type basic component, a T-type basic component or a B-type basic component;
  • the T-type basic component is a basic component in which three resonators are coupled and connected in pairs;
  • the Q-type basic component is a basic component in which four resonators are arranged in a rectangle and any adjacent two resonators are coupled and connected, wherein two adjacent resonators are coupled and connected.
  • Each resonator is the input end and the output end of the Q-type basic component;
  • the B-type basic component is a basic component in which four resonators are arranged in a rectangle and any adjacent two resonators are coupled and connected;
  • the two diagonally arranged resonators are the input end and the output end of the B-type basic component, respectively.
  • Filters can be composed of different types of basic components.
  • the coupling connection between the resonators in the Q-type basic component, the T-type basic component, and the B-type basic component adopts frequency-dependent coupling or non-frequency-dependent coupling connection. That is, the resonators in the Q-type basic part, the T-type basic part and the B-type basic part can be connected in different coupling ways.
  • the second component combination further includes a separate resonator; the separate resonator is coupled and connected to a resonator of the second basic component; the first basic component passes through the The frequency-dependent coupling is cascaded with the first resonator; or a resonator of the first base part is coupled and connected to a resonator of the second base part through the frequency-dependent coupling.
  • the second component combination can be selected in different combinations.
  • the number of the second basic components is at least two, and the at least two second basic components are coupled and connected; a resonator in the first basic components is connected to the A resonator coupling connection in a second base part of the .
  • the second component combination can be selected in different combinations.
  • the at least two second basic components are basic components of different types; or the at least two second basic components are basic components of the same type.
  • the second component combination includes only one second basic component; the first basic component and the second basic component are cascaded through the frequency-dependent coupling.
  • Filters can also contain only basic components.
  • the resonator is any one of a coaxial dielectric resonator, an air waveguide resonator or a coaxial cavity resonator.
  • Resonators Different types of resonators can be used to form filters.
  • a communication device including a housing and the filter according to any one of the above-mentioned ones disposed in the housing.
  • the coupling coefficient of the frequency-dependent coupling between the first component combination and the second component combination varies with frequency, so the frequency-dependent coupling can generate one transmission zero.
  • the frequency-variable coupling can be independently controlled by the transmission zero point generated by the frequency-variable coupling. The transmission zero can be controlled.
  • Fig. 1 is the topology diagram of a kind of filter in the prior art
  • Fig. 2 is a topology diagram of another filter in the prior art
  • Fig. 3 is the normalized frequency response of the filter shown in Fig. 1;
  • Figure 4a shows the topology of the Q-type basic components
  • Figure 4b shows the topology of the T-shaped basic components
  • Figure 4c shows the topology of the B-type basic components
  • Figure 5a shows a topology diagram of the basic components of the Q-type frequency conversion
  • Figure 5b shows a topology diagram of the basic components of the T-type frequency conversion
  • Figure 5c shows the topology of the basic components of the B-type frequency conversion
  • Figure 6a shows a schematic structural diagram of a filter composed of a dielectric resonator
  • Figure 6b shows a schematic structural diagram of a filter composed of an air-waveguide resonator
  • Figure 6c shows a schematic structural diagram of a filter composed of a coaxial cavity resonator
  • FIG. 7 shows a structural block diagram of a filter provided by an embodiment of the present application.
  • FIG. 8 shows a topology diagram of a filter provided by an embodiment of the present application.
  • FIG. 9 shows the normalized frequency response of the 8th order-asymmetric 3 zeros corresponding to FIG. 8;
  • Figure 10 shows a schematic diagram of the frequency-dependent coupling coefficient
  • FIG. 11 shows a topology diagram of another filter provided by an embodiment of the present application.
  • FIG. 12 shows a topology diagram of another filter provided by an embodiment of the present application.
  • FIG. 13 shows a topology diagram of another filter provided by an embodiment of the present application.
  • FIG. 14 shows a topology diagram of another filter provided by an embodiment of the present application.
  • FIG. 15 shows a topology diagram of another filter provided by an embodiment of the present application.
  • FIG. 16 shows a topology diagram of another filter provided by an embodiment of the present application.
  • FIG. 17 shows a schematic structural diagram of a filter provided by an embodiment of the present application.
  • FIG. 18 shows a schematic structural diagram of another filter provided by an embodiment of the present application.
  • FIG. 19 shows a schematic structural diagram of another filter provided by an embodiment of the present application.
  • FIG. 20 shows a schematic structural diagram of another filter provided by an embodiment of the present application.
  • Fig. 21 shows the normalized frequency response of Fig. 20 corresponding to the 8th order-asymmetric 4 zeros
  • FIG. 22 shows a schematic structural diagram of another filter provided by an embodiment of the present application.
  • FIG. 23 shows a schematic structural diagram of another filter provided by an embodiment of the present application.
  • stands for frequency-dependent coupling.
  • the coupling coefficient of frequency-dependent coupling is not constant, and its coupling coefficient varies with the frequency of the filter's transmission signal.
  • the resonant node in the embodiment of the present application is the representation of the filter in the topology diagram, and the resonator node is used to represent the resonator in the topology diagram.
  • Cascading in this application refers to the series connection between components and components, or the series connection between components and combinations, or the series connection between components and combinations. The following first describes several specific basic components involved in the embodiments of the present application with reference to the accompanying drawings.
  • Fig. 4a shows a topological diagram of a Q-type basic component, which is a basic component composed of four resonators arranged in a rectangle and any adjacent two resonators coupled. It specifically includes four resonant nodes, and the four resonant nodes are represented by resonant node 1 , resonant node 2 , resonant node 3 , and resonant node 4 respectively.
  • Resonant node 1, resonant node 2, resonant node 3, and resonant node 4 form a rectangular structure, and any two adjacent resonant nodes are coupled and connected.
  • resonant node 2 and resonant node 4 Coupling connections are also possible.
  • the signal can flow through different paths during transmission, such as the signal flowing through the resonant nodes 1, 2, 3, 4, or through the resonant nodes 1, 2, 4, or the flow Via 1, 4 and other different paths.
  • the resonant nodes 2 and 4 can also be disconnected, in which case the signal flows through the resonant nodes 1 , 2 , 3 , 4 or through the resonant nodes 1 , 4 .
  • FIG. 4b shows the topology of the T-type basic component.
  • the T-type basic component is a basic component composed of three resonators coupled in pairs, which specifically includes three resonant nodes.
  • the three resonant nodes are respectively the resonant node 5, the resonant node 6.
  • Resonant node 7 represents.
  • the resonant node 5, the resonant node 6, and the resonant node 7 form a triangular structure, and any two adjacent resonant nodes are coupled and connected.
  • S is the input end
  • L is the output end
  • the signal can flow through different paths during transmission, such as the signal flows through the resonant nodes 5, 6, 7 or through different paths such as the resonant nodes 5, 7.
  • Figure 4c shows the topology of the B-type basic component, which is a basic component in which four resonators are arranged in a rectangle. Specifically, it includes four resonant nodes, and the four resonant nodes are respectively represented by a resonant node 8 , a resonant node 9 , a resonant node 10 , and a resonant node 11 .
  • the resonance node 8 , the resonance node 9 , the resonance node 10 , and the resonance node 11 form a rectangular structure, and any two adjacent resonance nodes are coupled and connected.
  • S is the input end
  • L is the output end
  • the signal can flow through different paths during transmission, such as the signal flowing through the resonant nodes 8, 9, 11 or through different paths such as the resonant nodes 8, 10, 11.
  • FIGS. 4a, 4b, and 4c are non-frequency-variable basic components, and the basic components provided by the embodiments of the present application may also adopt frequency-variable basic components.
  • FIGS. 4a, 4b, and 4c three types of frequency-varying basic components will be described in conjunction with Figures 5a-5c.
  • Fig. 5a shows a topology diagram of the Q-type frequency-variant basic component, and the difference from the Q-type non-frequency-variable basic component shown in Fig. 4a is that a frequency-variable coupling is used between the resonant node 1 and the resonant node 4.
  • Fig. 5b shows a topology diagram of the T-type frequency-varying basic component, and the difference from the T-type basic component shown in Fig. 4b is that the frequency-varying coupling is used between the resonant node 5 and the resonant node 7.
  • Fig. 5c shows a topology diagram of the B-type frequency-variant basic component, and the difference from the B-type basic component shown in Fig. 4c is that the frequency-variable coupling is used between the resonant node 8 and the resonant node 9.
  • resonators can be used to form the basic components described above.
  • Different types of resonators such as coaxial dielectric resonators, air waveguide resonators or coaxial cavity resonators can be used as the resonators.
  • FIG. 6a shows a schematic structural diagram of a filter 10 composed of a coaxial dielectric resonator.
  • the dielectric layer 11 is used as the main body of the filter 10 , and the resonator is realized by using the resonance blind hole 14 .
  • the dielectric layer 11 is provided with a dielectric coupling window 13 and a coupling blind hole 12 , and the resonators are coupled and connected through the dielectric coupling window 13 and the coupling blind hole 12 .
  • the electrical coupling connection between the resonators is realized through the coupling blind hole 12
  • the magnetic coupling connection between the resonators is realized through the coupling window 13 .
  • the surface of the dielectric layer 11 is a metal plating layer to form the resonance effect of the resonator 10 .
  • FIG. 6b shows a schematic structural diagram of the filter 20 composed of air-waveguide resonators.
  • the metal outer wall 21 is used as the main body of the filter 20, and the metal outer wall 21 has a hollow cavity, and the cavity is filled with air.
  • a cross-shaped metal coupling film 22 is arranged in the cavity, and the metal coupling film 22 divides the cavity into four sub-cavities, thereby forming four resonators 23 .
  • a metal coupling film 22 is used to realize the coupling connection between the four resonators 23 . Both the magnetic coupling and the electrical coupling between the resonators can be realized by using 22 pieces of metal coupling films.
  • FIG. 6c shows a schematic structural diagram of a filter 30 composed of coaxial cavity resonators.
  • the filter 30 includes a metal outer wall 31 and a plurality of resonators 33 .
  • the resonator 33 adopts a metal coaxial cavity, the inner side of the metal outer wall 31 has a spacer 32, the resonator 33 is electrically coupled and connected through the combination 34 of a metal disk and a metal rod, and the magnetic coupling between the resonators 33 is realized through an air coupling window 35. Coupling connection.
  • the resonator of the T-type basic component or the Q-type basic component can also be composed of different types of resonators such as the above-mentioned coaxial dielectric type, air waveguide type, or metal coaxial cavity, which will not be described in detail here.
  • frequency-variable coupling When frequency-variable coupling is used between resonators, it can be realized by a frequency-variable coupling structure.
  • the frequency-variable coupling structure can be a coupled resonator or an electromagnetic hybrid coupling structure, and the frequency-variable coupling of the combination of the first basic component and the second component can be realized through the frequency-variable coupling structure.
  • the frequency-variable coupling structure may be a combination of a coupling diaphragm, a coupling metal disk and a metal rod, or a combination of a coupling pin and a coupling blind hole, etc.
  • the resonators use different types of resonators shown in Figures 6a to 6c. When a resonator is used, a matched frequency-variable coupling structure can be selected to realize the frequency-variable coupling. The specific matching method will not be repeated here.
  • the filter provided by the embodiment of the present application includes a plurality of resonators, the plurality of resonators are coupled and connected, and according to the transmission path of the signal, the plurality of resonators are divided into a first component combination and a second component combination.
  • the first component combination is a combination of multiple resonators, which at least includes a first basic component.
  • the first component combination includes the first basic component, or includes the first basic component and a separate resonator.
  • the first component combination is used to generate partial transmission zeros of the filter, in particular by the first basic component it contains.
  • the first component combination includes individual resonators
  • the individual resonators do not create transmission zeros of the filter.
  • the second component combination is also a combination consisting of a resonator, and the second component combination includes at least the second basic component.
  • the second component combination is used to generate the transmission zeros of the filter part, in particular the partial transmission zeros of the filter are generated by the second basic component in the second component combination.
  • the second assembly of components may also contain a single resonator that functions identically to the single resonator in the first assembly of components.
  • FIG. 7 shows a structural block diagram of the first component combination 100 and the second component combination 200 provided by the embodiment of the present application.
  • Both the first component assembly 100 and the second component assembly 200 are composed of a plurality of resonators.
  • the first component combination 100 includes at least a first basic component, and the first basic component includes a plurality of resonators.
  • the first basic component may be the above-mentioned Q-type basic component, T-type basic component or B-type basic component , to generate partial transmission zeros of the filter through the first basic element.
  • the second component assembly 200 includes at least a second basic component, and the second basic component includes a plurality of resonators.
  • the second basic component may be the above-mentioned Q-type basic component, T-type basic component, or B-type basic component, to Another part of the filter is generated by the second basic component transmission zeros.
  • one resonator of the first basic part in the first part assembly 100 is coupled to one resonator in the second part assembly by frequency-dependent coupling 300 only.
  • the frequency variable coupling 300 is used to generate a transmission zero, and the transmission zero generated by the frequency variable coupling 300 is an independently controllable transmission zero.
  • first and second in the embodiments of the present application are only for the convenience of description, and the names for the distinction of components do not represent actual meanings.
  • first component combination 100 is the component combination in the filter connected to the signal input end
  • second component combination 200 is the component combination in the filter connected with the signal output end.
  • the first component combination 100 and the second component combination 200 may include only basic components, or may include a combination of basic components and individual resonators.
  • the resonators composed of different types of the first component combination 100 and the second component combination 200 will be described in detail below with reference to the specific drawings.
  • FIG. 8 shows that the first component assembly 100 includes only one first basic component 110 , and the second component assembly 200 includes only one second basic component 210 , between the first basic component 110 and the second basic component 210 . Cascaded by frequency-dependent coupling.
  • the first basic component 110 is a B-type basic component, which includes a resonance node 1 , a resonance node 2 , a resonance node 3 , and a resonance node 4 .
  • the second basic component 210 is a B-type basic component, which includes a resonance node 5 , a resonance node 6 , a resonance node 7 , and a resonance node 8 .
  • the resonant node 1 is connected to the input end of the filter, the resonant node 5 and the resonant node 4 are cascaded through frequency conversion coupling, and the resonant node 8 is connected to the output end of the filter.
  • FIG. 9 shows the normalized frequency response of the 8th order-asymmetric 3 zero corresponding to FIG. 8 .
  • the 8th order refers to that the filter has eight resonant nodes, and the eight resonant nodes are the four resonant nodes (resonant node 1, resonant node 2, resonant node 3 and resonant node 4) of the first basic component and the first The four resonant nodes (resonant node 5, resonant node 6, resonant node 7 and resonant node 8) of the two basic components 210.
  • the four resonant nodes of the first basic component generate a transmission zero tz2-b that is closer to the passband of the filter
  • the second basic component 210 generates a transmission zero tz3-b that is closer to the passband of the filter.
  • the frequency-dependent coupling between the first base element and the second base element produces a transmission zero tz1-b that is relatively far from the filter passband.
  • frequency-variable coupling is used to generate a transmission zero farther away from the bandpass of the filter, it is convenient to set up a frequency-variable coupling structure in the filter.
  • the above-mentioned transmission zero point tz2-b and transmission zero point tz3-b are relatively independently controllable transmission zero points
  • the transmission zero point tz1-b is an independently controllable transmission zero point.
  • the filter is a two-port network, which has very little or zero attenuation to the signal in a certain frequency range, so that the signal can pass easily, and this frequency range is the passband of the filter.
  • FIG. 10 shows a schematic diagram of a frequency-dependent coupling coefficient.
  • the coupling coefficient M( ⁇ ) of the "frequency-dependent coupling ⁇ " is not a constant, but changes with the frequency of the transmission signal of the filter.
  • the coupling coefficient M( ⁇ 0 ) of the center frequency position point ⁇ 0 satisfies the amplitude and phase requirements of the transmission and reflection of the filter, and M( ⁇ 0 ) can be a positive number or a negative number.
  • the frequency-dependent coupling can produce independently controllable transmissions relatively far from the filter passband when only frequency-dependent coupling between the first and second fundamental components is used Zero point tz1-b.
  • the filter shown in Figure 8 can generate three transmission zeros, including transmission zeros tz2-b and tz3-b that are close to the passband of the filter, and those that are relatively far away from the passband of the filter.
  • the transmission zero tz1-b of and at the same time avoid the "difficult problem of realizing the transmission zero close to the passband of the filter by the frequency-dependent coupling structure".
  • there are a total of 8 resonant nodes included in the filter shown in FIG. 8 and the filter can generate a limited number (3) of controllable transmission zeros by using fewer orders.
  • FIG. 11 is a modification of the filter shown in FIG. 8 .
  • the first basic component 110 is a B-type basic component, including resonant node 1 , resonant node 2 , resonant node 3 and resonant node 4 .
  • the second basic component 210 is a Q-type basic component, and includes a resonant node 5 , a resonant node 6 , a resonant node 7 and a resonant node 8 , wherein the resonant node 5 and the resonant node 8 are adjacent.
  • the resonant node 1 is connected to the input end of the filter, the resonant node 5 and the resonant node 4 are cascaded through frequency conversion coupling, and the resonant node 8 is connected to the output end of the filter.
  • FIG. 12 shows that the first component assembly 110 includes only one first basic component 110 , the second component assembly 200 includes only one second basic component 210 , and the space between the first basic component 110 and the second basic component 210 is 300 cascades through frequency variable coupling.
  • the first basic component 110 is a Q-type basic component, which includes a resonance node 1 , a resonance node 2 , a resonance node 3 , and a resonance node 4 .
  • the second basic component 210 is a Q-type basic component, which includes a resonance node 5 , a resonance node 6 , a resonance node 7 , and a resonance node 8 , and the resonance point 5 and the resonance point 8 are adjacent.
  • the resonant node 1 is connected to the input end of the filter, the resonant node 5 and the resonant node 4 are cascaded through frequency conversion coupling, and the resonant node 8 is connected to the output end of the filter.
  • FIG. 13 shows that the first component assembly 110 includes only one first basic component 110 , and the second component assembly 200 includes only one second basic component 210 , between the first basic component 110 and the second basic component 210 300 cascades through frequency variable coupling.
  • the first basic component 110 is a T-shaped basic component, which includes a resonance node 1 , a resonance node 2 , and a resonance node 3 .
  • the second basic component 210 is a T-shaped basic component, which includes a resonance node 5 , a resonance node 6 , and a resonance node 7 .
  • the resonant node 1 is connected to the input end of the filter; the resonant node 4 is connected to the resonant node 3 through frequency conversion coupling, and the resonant node 6 is connected to the output end of the filter.
  • FIG. 8 , FIG. 11 , FIG. 12 and FIG. 13 only illustrate several specific ways of cascading the first basic component 110 and the second basic component 210 .
  • the cascading between the first component combination 110 and the second component combination 200 provided in this embodiment of the present application includes, but is not limited to: cascading of B-type basic components and B-type basic components, and B-type basic components and Q-type basic components Cascade, cascade of B-type basic parts and T-type basic parts, cascade of Q-type basic parts and Q-type basic parts, cascade of Q-type basic parts and T-type basic parts, T-type basic parts and T-type basic parts Cascading of components, etc.
  • the number of the first basic component 110 and the second basic component 210 is not specifically limited in the embodiment of the present application.
  • the number of the first basic component 110 may be one or two. , three, etc. at least one basic component; the number of the second basic component 210 may be one, two, three, etc. different situations.
  • a non-frequency-dependent coupling cascade or a frequency-dependent coupling cascade can be used between the at least two first basic components 110; when there are at least two second basic components 210, The second basic components 210 are cascaded with non-frequency-dependent coupling or cascaded with frequency-dependent coupling.
  • the at least two first basic components 110 may be the same type or different types of basic components, such as one first basic component 110 is a B-type base part, and the other first base part 110 is a T-type base part.
  • At least two second base parts 210 may be the same type or different types of base parts, for example, one second base part 210 is a B-type base part, and the other second base part 210 is a T-type base part.
  • the filter provided by the embodiments of the present application may also adopt other combinations of the first component and the second component.
  • it can include several cases: in the first case, some resonators in the first component combination constitute basic components, and some resonators are separate resonators; some of the resonators in the second component combination constitute basic components, and some The resonators are separate resonators.
  • all the resonators in the first component combination constitute the basic component; some resonators in the second component combination constitute the basic component, and some of the resonators are separate resonators.
  • some resonators in the first component combination constitute basic components, and some resonators are separate resonators; all resonators in the second component combination constitute basic components.
  • the first component combination includes only one first basic component, and the second component combination includes a separate resonator in addition to a second basic component.
  • the individual resonator is coupled and connected to the second basic component; the first basic component is cascaded with the individual resonator through frequency-dependent coupling, which will be described in detail below with reference to the accompanying drawings.
  • FIG. 14 shows that the first component assembly 100 includes only one first basic component 110, and the second component assembly 200 includes only one second basic component 210 and a single resonator. Therein, the first basic component 110 and the individual resonators are cascaded through frequency-dependent coupling 300 .
  • the first basic component 110 is a Q-type basic component, which includes a resonance node 1 , a resonance node 2 , a resonance node 3 , and a resonance node 4 .
  • the second component combination 200 includes a separate resonator (resonant node 5 generated by the separate resonator) and a second basic component 210.
  • the second basic component 210 adopts a Q-type basic component, and the Q-type basic component includes a resonant node 6, a resonant node 7.
  • Resonant node 8 and resonant node 9, resonant node 6 and resonant node 9 are adjacent.
  • the resonant node 1 is connected to the input end of the filter; the resonant node 5 and the resonant node 4 are cascaded by frequency-dependent coupling 300; the non-frequency-dependent coupling between the resonant node 5 and the resonant node 6 is cascaded, of course, a frequency-dependent coupling can also be used.
  • the coupling is cascaded; the resonant node 9 is connected to the output of the filter.
  • FIG. 15 shows that the first component assembly 100 includes only one first basic component 110, and the second component assembly 200 includes only one second basic component 210 and a single resonator. Therein, the first basic component 110 and the individual resonators are cascaded through frequency-dependent coupling 300 .
  • the first basic component 110 is a B-type basic component, which includes a resonant node 1, a resonant node 2, a resonant node 3, and a resonant node 4, and the resonant node 1 and the resonant node 4 are arranged diagonally.
  • the second component combination 200 includes a separate resonator (resonant node 5 generated by the separate resonator) and a second basic component 210.
  • the second basic component 210 adopts a B-type basic component, and the B-type basic component includes a resonant node 6, a resonant node 7.
  • the resonant node 8 and the resonant node 9, the resonant node 6 and the resonant node 9 are arranged diagonally.
  • the resonant node 1 is connected to the input end of the filter
  • the resonant node 5 and the resonant node 4 are cascaded through the frequency-dependent coupling 300
  • the non-frequency-dependent coupling between the resonant node 5 and the resonant node 6 is cascaded
  • the resonant node 9 is connected to the filter output connection.
  • FIG. 16 shows that the first component assembly 100 includes only one first basic component 110, and the second component assembly 200 includes only one second basic component 210 and a single resonator. Therein, the first basic component 110 and the individual resonators are cascaded through frequency-dependent coupling 300 .
  • the first basic component 110 is a T-shaped basic component, which includes a resonance node 1 , a resonance node 2 , and a resonance node 3 .
  • the second component combination 200 includes a separate resonator (resonant node 4 generated by the separate resonator) and a second basic component 210.
  • the second basic component 210 adopts a T-shaped basic component, and the T-shaped basic component includes a resonant node 5, a resonant node 6. Resonant node 7.
  • the resonant node 1 is connected to the input end of the filter; the resonant node 4 and the resonant node 3 are cascaded through frequency-dependent coupling 300, the non-frequency-dependent coupling between the resonant node 4 and the resonant node 5 is cascaded, and the resonant node 7 is connected to the filter output connection.
  • FIGS. 14-16 illustrate that the second component combination 200 adopts the combined form of a single filter and a second basic component 210 .
  • FIGS. 14 to 16 are only a specific example of the filter, and the first component assembly 100 may also be connected to the second component assembly 200 in other ways.
  • a single resonator is cascaded with the second basic component 210 through frequency-dependent coupling 300; the first basic component 110 is cascaded with the second basic component 210 through frequency-dependent coupling 300, and the single resonator is connected to the output end of the filter.
  • FIG. 17 shows a schematic structural diagram of a specific filter
  • FIG. 17 shows that the first component combination and the second component combination are implemented in the form of a dielectric coaxial waveguide.
  • the filter adopts the dielectric layer as the main body, and the resonator adopts the resonance blind hole to realize.
  • Eight resonant blind holes are opened on the dielectric layer as eight resonators, and the eight resonators are arranged in an array.
  • the eight resonators are named as the first resonator 111, the second resonator 112, the third resonator 113, the fourth resonator 114, the fifth resonator 211, the sixth resonator 212, the seventh resonator resonator 213 and eighth resonator 214 .
  • the first resonator 111 generates resonance node 1
  • the second resonator 112 generates resonance node 2
  • the third resonator 113 generates resonance node 3
  • the fourth resonator 114 generates resonance node 4
  • the fifth resonator 211 generates resonance node 4. 5.
  • the sixth resonator 212 generates the resonance node 6
  • the seventh resonator 213 generates the resonance node 7
  • the eighth resonator 214 generates the resonance node 8 .
  • the first resonator 111, the second resonator 112, the third resonator 113, and the fourth resonator 114 constitute the first basic component.
  • the electrical coupling cascade is realized between the first resonator 111 and the third resonator 113 through the coupling blind hole 401, and between the first resonator 111 and the second resonator 112, the third resonator 113 and the fourth resonator
  • a magnetic coupling cascade is implemented between the second resonator 112 and the fourth resonator 114 through the coupling window 402 .
  • the above four resonators make up the B-type basic part.
  • the fifth resonator 211, the sixth resonator 212, the seventh resonator 213, and the eighth resonator 214 constitute the second basic component.
  • the sixth resonator 212 and the eighth resonator 214 are electrically coupled in cascade through the blind coupling hole 401, and between the fifth resonator 211 and the seventh resonator 213, the fifth resonator 211 and the sixth resonator Magnetic coupling cascades are implemented between 212 and between the seventh resonator 213 and the eighth resonator 214 through the coupling window 402 .
  • the above four resonators make up the B-type basic part.
  • the first basic component and the second basic component are cascaded through the frequency-dependent coupling between the fourth resonator 114 and the fifth resonator 211 .
  • the frequency-variable coupling between the two basic components is realized through the frequency-variable coupling blind hole 403 disposed between the fourth resonator 114 and the fifth resonator 211 .
  • the surface of the dielectric is metal plated to form the resonance effect of the resonator.
  • the filter forms a topology as shown in Fig. 8.
  • the first basic component and the second basic component respectively generate two independently controllable transmission zeros tz2-b and tz3- which are closer to the passband of the filter.
  • the frequency-dependent coupling blind hole 403 produces an independently controllable transmission zero tz1-b relatively far from the passband of the filter.
  • the topology of Figure 8 is realized as a whole to produce "two transmission zeros that are close to the passband of the filter and one transmission zero that is relatively far from the passband of the filter".
  • There are a total of eight resonators so that the Fewer resonators enable a limited number (eg, 3) of relatively independently controllable transmission zeros.
  • FIG. 18 some numbers in FIG. 18 may refer to the same numbers in FIG. 17 .
  • the difference from the filter shown in FIG. 17 is that the filter shown in FIG. 18 adopts the air waveguide form to realize the topology shown in FIG. 8 .
  • the filter adopts a metal outer wall as the main body of the resonator, and the metal outer wall forms a hollow cavity, and the cavity is filled with air.
  • a cross-shaped metal coupling film is arranged in the cavity, and the metal coupling film divides the cavity into eight sub-cavities, thereby forming eight resonators.
  • a metal coupling film is used to realize the coupling connection between the eight resonators.
  • the eight resonators are named as the first resonator 111, the second resonator 112, the third resonator 113, the fourth resonator 114, the fifth resonator 211, the sixth resonator 212, the seventh resonator resonator 213 and eighth resonator 214 .
  • the first resonator 111 generates resonance node 1
  • the second resonator 112 generates resonance node 2
  • the third resonator 113 generates resonance node 3
  • the fourth resonator 114 generates resonance node 4
  • the fifth resonator 211 generates resonance node 4.
  • the sixth resonator 212 generates the resonance node 6
  • the seventh resonator 213 generates the resonance node 7
  • the eighth resonator 214 generates the resonance node 8 .
  • the first resonator 111 , the second resonator 112 , the third resonator 113 , and the fourth resonator 114 constitute the first basic part 110 .
  • between the first resonator 111 and the second resonator 112 between the first resonator 111 and the third resonator 113, between the second resonator 112 and the fourth resonator 114, between the third resonator 113 and the Magnetic coupling and electrical coupling are achieved between the fourth resonators 114 through the metal coupling film 404 .
  • the above four resonators make up the B-type basic part.
  • the fifth resonator 211 , the sixth resonator 212 , the seventh resonator 213 , and the eighth resonator 214 constitute the second basic part 210 .
  • between the sixth resonator 212 and the eighth resonator 214, between the fifth resonator 211 and the seventh resonator 213, between the fifth resonator 211 and the sixth resonator 212, between the seventh resonator 213 and the Magnetic coupling and electrical coupling are achieved between the eighth resonators 214 through the metal coupling film 404 .
  • the above four resonators make up the B-type basic part.
  • the first basic part 110 and the second basic part 210 are cascaded through the frequency-dependent coupling between the fourth resonator 114 and the fifth resonator 211 .
  • the frequency-variable coupling between the two basic components is realized through the frequency-variable coupling window 405 disposed between the fourth resonator 114 and the fifth resonator 211 .
  • FIG. 19 some reference numbers in FIG. 19 may refer to the same reference numbers in FIG. 17 .
  • the difference from the filter shown in FIG. 17 is that the filter shown in FIG. 18 uses a metal coaxial cavity.
  • the filter adopts a metal outer wall as the main body, and the metal outer wall is divided into eight metal coaxial cavities by spacers, and the eight metal coaxial cavities are used as eight resonators, and the eight resonators are coupled and connected.
  • the eight resonators are named as the first resonator 111, the second resonator 112, the third resonator 113, the fourth resonator 114, the fifth resonator 211, the sixth resonator 212, the seventh resonator resonator 213 and eighth resonator 214 .
  • the first resonator 111 generates resonance node 1
  • the second resonator 112 generates resonance node 2
  • the third resonator 113 generates resonance node 3
  • the fourth resonator 114 generates resonance node 4
  • the fifth resonator 211 generates resonance node 4.
  • the sixth resonator 212 generates the resonance node 6
  • the seventh resonator 213 generates the resonance node 7
  • the eighth resonator 214 generates the resonance node 8 .
  • the first resonator 111, the second resonator 112, the third resonator 113, and the fourth resonator 114 constitute the first basic component.
  • the electrical coupling cascade is realized between the first resonator 111 and the third resonator 113 through the metal disk and the metal rod assembly 406, and between the first resonator 111 and the second resonator 112, between the second resonator 112 and the third resonator
  • the magnetic coupling cascade is realized between the four resonators 114 and between the third resonator 113 and the fourth resonator 114 through the coupling window 408 .
  • the above four resonators make up the B-type basic part.
  • the fifth resonator 211 , the sixth resonator 212 , the seventh resonator 213 , and the eighth resonator 214 constitute the second basic part 210 .
  • the electrical coupling cascade is realized between the sixth resonator 212 and the eighth resonator 214 through the metal disk and the metal rod assembly 407, and between the fifth resonator 211 and the seventh resonator 213, between the fifth resonator 211 and the first resonator
  • the magnetic coupling cascade is realized between the six resonators 212 and between the seventh resonator 213 and the eighth resonator 214 through the coupling window 408 .
  • the above four resonators make up the B-type basic part.
  • the first basic component and the second basic component are cascaded through the frequency-dependent coupling between the fourth resonator 114 and the fifth resonator 211 .
  • the frequency-variable coupling between the two basic components is realized through the frequency-variable coupling metal disk-metal rod 407 disposed between the fourth resonator 114 and the fifth resonator 211 .
  • the filter provided by the embodiment of the present invention adopts B-type basic components (resonant nodes 1, 2, 3, and 4) through frequency-dependent coupling (such as frequency-dependent coupling blind holes or coupling diaphragms or frequency-dependent couplings).
  • Variable coupling metal disk/rod) cascade B-type basic components (resonant nodes 5, 6, 7, 8), so that 3 transmission zeros can be generated.
  • transmission zeros tz2-b and tz3-b that are relatively close to the band, and there are also transmission zeros tz1-b that are relatively far away from the filter passband. problem, and can achieve a limited number (such as 3) relatively independently controllable transmission zeros through fewer resonant nodes.
  • the B-type basic components (resonance nodes 1, 2, 3, 4) and the B-type basic components (resonance nodes 5, 6, 7, 8) are cascaded with frequency-dependent coupling, without the second Coupling path, so the generated transmission zero can be independently controllable, and the cascaded channel is the only path that the main signal must go through.
  • FIG. 20 shows a schematic structural diagram of a specific filter
  • FIG. 20 shows that the first component combination and the second component combination are implemented in the form of a dielectric coaxial waveguide.
  • the filter adopts the dielectric layer as the main body, and the resonator adopts the resonance blind hole to realize.
  • Eight resonant blind holes are opened on the dielectric layer as eight resonators, and the eight resonators are arranged in an array.
  • the eight resonators are named as the first resonator 111, the second resonator 112, the third resonator 113, the fourth resonator 114, the fifth resonator 211, the sixth resonator 212, the seventh resonator 213 and eighth resonator 214 .
  • the first resonator 111 generates resonance node 1
  • the second resonator 112 generates resonance node 2
  • the third resonator 113 generates resonance node 3
  • the fourth resonator 114 generates resonance node 4
  • the fifth resonator 211 generates resonance node 4. 5.
  • the sixth resonator 212 generates the resonance node 6
  • the seventh resonator 213 generates the resonance node 7
  • the eighth resonator 214 generates the resonance node 8 .
  • the first resonator 111, the second resonator 112, the third resonator 113, and the fourth resonator 114 constitute the first basic component.
  • the electrical coupling cascade is realized between the first resonator 111 and the third resonator 113 through the coupling blind hole 401, and between the first resonator 111 and the second resonator 112, the third resonator 113 and the fourth resonator
  • a magnetic coupling cascade is implemented between the second resonator 112 and the fourth resonator 114 through the coupling window 402 .
  • the above four resonators make up the B-type basic part.
  • the fifth resonator 211, the sixth resonator 212, the seventh resonator 213, and the eighth resonator 214 constitute the second basic component.
  • the seventh resonator 213 and the eighth resonator 214 are electrically coupled in cascade through the blind coupling hole 401, and between the fifth resonator 211 and the sixth resonator 212, the sixth resonator 212 and the seventh resonator
  • a magnetic coupling cascade is implemented between the fifth resonator 211 and the eighth resonator 214 through the coupling window 402 .
  • the above four resonators make up the Q-type basic component.
  • the first basic component and the second basic component are cascaded through the frequency-dependent coupling between the fourth resonator 114 and the fifth resonator 211 .
  • the frequency-variable coupling between the two basic components is realized through the frequency-variable coupling blind hole 403 disposed between the fourth resonator 114 and the fifth resonator 211 .
  • the surface of the dielectric is metal plated to form the resonance effect of the resonator.
  • the topology diagram 21 shows the transmission zero produced by the filter shown in Figure 20, the B basic component produces an independently controllable transmission zero tz3-bq closer to the filter passband; the Q basic component produces a The two independently controllable transmission zeros tz2-bq and tz4-bq are closer to the passband of the filter; the frequency-dependent coupling produces an independent controllable transmission zero tz1-bq that is relatively far from the passband of the filter.
  • three transmission zeros close to the filter passband and one transmission zero relatively far from the filter passband are implemented as a whole.
  • the filter adopts a total of 8 resonators, which can pass through fewer resonant nodes to realize a limited number (such as 4) of relatively independent and controllable transmission zeros.
  • FIG. 22 some reference numerals in FIG. 22 may refer to the same reference numerals in FIG. 20 .
  • the difference from the filter shown in FIG. 20 is that the filter shown in FIG. 22 uses an air waveguide.
  • the filter adopts a metal outer wall as the main body of the resonator, the metal outer wall has a hollow cavity, and the cavity is air.
  • a cross-shaped metal coupling film is arranged in the cavity, and the metal coupling film divides the cavity into eight sub-cavities, thereby forming eight resonators.
  • a metal coupling film is used to realize the coupling connection between the eight resonators.
  • the eight resonators are named as the first resonator 111, the second resonator 112, the third resonator 113, the fourth resonator 114, the fifth resonator 211, the sixth resonator 212, the seventh resonator resonator 213 and eighth resonator 214 .
  • the first resonator 111 generates resonance node 1
  • the second resonator 112 generates resonance node 2
  • the third resonator 113 generates resonance node 3
  • the fourth resonator 114 generates resonance node 4
  • the fifth resonator 211 generates resonance node 4.
  • the sixth resonator 212 generates the resonance node 6
  • the seventh resonator 213 generates the resonance node 7
  • the eighth resonator 214 generates the resonance node 8 .
  • the first resonator 111 , the second resonator 112 , the third resonator 113 , and the fourth resonator 114 constitute the first basic part 110 .
  • between the first resonator 111 and the second resonator 112 between the first resonator 111 and the third resonator 113, between the second resonator 112 and the fourth resonator 114, between the third resonator 113 and the Magnetic coupling and electrical coupling are achieved between the fourth resonators 114 through the metal coupling film 404 .
  • the above four resonators make up the B-type basic part.
  • the fifth resonator 211 , the sixth resonator 212 , the seventh resonator 213 , and the eighth resonator 214 constitute the second basic part 210 .
  • between the fifth resonator 211 and the eighth resonator 214, between the fifth resonator 211 and the sixth resonator 212, between the seventh resonator 213 and the eighth resonator 214, between the sixth resonator 212 and the Magnetic coupling and electrical coupling are achieved between the seventh resonators 213 through the metal coupling film 404 .
  • the above four resonators make up the Q-type basic part.
  • the first basic part and the second basic part are cascaded through the frequency-dependent coupling between the fourth resonator 114 and the fifth resonator 211.
  • the frequency-variable coupling between the two basic components is realized through the frequency-variable coupling window 405 disposed between the fourth resonator 114 and the fifth resonator 211 .
  • FIG. 23 the same numbers in FIG. 20 may be referred to for some of the numerals in FIG. 23 .
  • the difference from the filter shown in FIG. 20 is that the filter shown in FIG. 23 uses a coaxial cavity.
  • the filter adopts a metal outer wall as the main body, and the metal outer wall is divided into eight metal coaxial cavities by spacers, and the eight metal coaxial cavities are used as eight resonators, and the eight resonators are coupled and connected.
  • the eight resonators are named as the first resonator 111, the second resonator 112, the third resonator 113, the fourth resonator 114, the fifth resonator 211, the sixth resonator 212, the seventh resonator resonator 213 and eighth resonator 214 .
  • the first resonator 111 generates resonance node 1
  • the second resonator 112 generates resonance node 2
  • the third resonator 113 generates resonance node 3
  • the fourth resonator 114 generates resonance node 4
  • the fifth resonator 211 generates resonance node 4.
  • the sixth resonator 212 generates the resonance node 6
  • the seventh resonator 213 generates the resonance node 7
  • the eighth resonator 214 generates the resonance node 8 .
  • the first resonator 111, the second resonator 112, the third resonator 113, and the fourth resonator 114 constitute the first basic component.
  • the electrical coupling cascade is realized between the first resonator 111 and the third resonator 113 through the metal disk and the metal rod assembly 406, and between the first resonator 111 and the second resonator 112, between the second resonator 112 and the third resonator
  • the magnetic coupling cascade is realized between the four resonators 114 and between the third resonator 113 and the fourth resonator 114 through the coupling window 408 .
  • the above four resonators make up the B-type basic part.
  • the fifth resonator 211, the sixth resonator 212, the seventh resonator 213, and the eighth resonator 214 constitute the second basic component.
  • the electrical coupling cascade is realized between the seventh resonator 213 and the eighth resonator 214 through the metal disk and the metal rod assembly 407, and between the fifth resonator 211 and the eighth resonator 214, the fifth resonator 211 and the first resonator
  • the magnetic coupling cascade is realized between the six resonators 212 and between the sixth resonator 212 and the seventh resonator 213 through the coupling window 408 .
  • the above four resonators make up the Q-type basic part.
  • the first basic part 110 and the second basic part 210 are cascaded through the frequency-dependent coupling between the fourth resonator 114 and the fifth resonator 211 .
  • the frequency-variable coupling between the two basic components is realized through the frequency-variable coupling metal disk-metal rod 407 disposed between the fourth resonator 114 and the fifth resonator 211 .
  • the filter provided by the embodiment of the present application uses frequency-dependent coupling “ ⁇ ” cascaded Q-type basic components through B-type basic components to achieve an 8th-order-asymmetric 4-zero filter. Normalized frequency response.
  • the B-type basic component can generate an independently controllable transmission zero tz3-bq closer to the filter passband; the Q-type basic component can generate two independently controllable transmission zeros closer to the filter passband. Controlling transmission zeros tz2-bq and tz4-bq; frequency-dependent coupling produces independently controllable transmission zeros tz1-bq relatively far from the filter passband.
  • the filter uses a total of eight resonators, which can pass less
  • the resonant node realizes a limited number (such as 4) of relatively independently controllable transmission zeros.
  • Embodiments of the present application also provide a communication device, where the communication device may be a wireless communication device, a transceiver, or a radio frequency front end of a base station.
  • the communication device includes a housing and a filter of any of the above disposed within the housing.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种滤波器及通信设备,滤波器包括第一部件组合和第二部件组合;第一部件组合包括第一基本部件,第二部件组合包括第二基本部件,两个基本部件用于产生滤波器的部分传输零点;第一基本部件仅通过频变耦合与第二部件组合中的一个谐振器耦合连接。频变耦合用于产生一个传输零点,且频变耦合产生的传输零点为独立可控制的传输零点。第一部件组合和第二部件组合之间的频变耦合的耦合系数是随频率变化的,因此频变耦合可产生1个传输零点。频变耦合作为第一部件组合和第二部件组合的唯一的主信号传输路径,因此频变耦合产生的传输零点是可以独立可控制的,滤波器采用较少的阶数可产生有限个可控制传输零点。

Description

一种滤波器及通信设备
相关申请的交叉引用
本申请要求在2020年09月30日提交中国专利局、申请号为202011066502.6、申请名称为“一种滤波器及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及到通信技术领域,尤其涉及到一种滤波器及通信设备。
背景技术
现代无线通信的频谱资源越来越密集,导致滤波器的规格要求越来越严格,包括带外抑制、插损、体积、成本等。现有技术中的滤波器可以使用较少的谐振器实现滤波器较高带外抑制,即实现尽量多的传输零点。但是现有技术中的滤波器无法实现对传输零点的独立可控制。如图1和图2所示的几种常见的现有技术中的滤波器的拓扑图。在图1中,S为滤波器的输入端,L为滤波器的输出端,1~8表示滤波器内的谐振节点。在图2中,滤波器具有8个谐振节点(分别为谐振节点1~谐振节点8)。图1和图2中的现有技术中的两种滤波器实现图3中所示的归一化频率响应,图3中的3个传输零点(传输零点a、b、c)的频率位置跟图1和图2中的谐振节点和耦合系数均有关系,且3个传输零点无法实现传输零点的相对独立可控制。
发明内容
本申请提供了一种滤波器及通信设备,用于改善滤波器的传输零点的相对独立可控制。
第一方面,本申请提供了一种滤波器,该滤波器包第一部件组合和第二部件组合;其中,第一部件组合至少包括第一基本部件,第一基本部件包括多个谐振器,且第一基本部件用于产生滤波器的部分传输零点;第二部件组合至少包括第二基本部件,第二基本部件包括多个谐振器,且第二基本部件用于产生滤波器的另一部分传输零点;第一基本部件的一个谐振器仅通过频变耦合与第二部件组合中的一个谐振器耦合连接。其中,频变耦合用于产生一个传输零点,且频变耦合产生的传输零点为独立可控制的传输零点。在上述技术方案中,第一部件组合和第二部件组合之间的频变耦合的耦合系数是随频率变化的,因此频变耦合可产生1个传输零点。频变耦合作为第一部件组合和第二部件组合的唯一的主信号传输路径,因此频变耦合产生的传输零点是可以独立可控制的,实现了滤波器采用较少的阶数可产生有限个可控制传输零点。
在一个可选的方案中,所述第一基本部件的一个谐振器通过频变耦合结构产生的频变耦合级联所述第二部件组合中的一个谐振器。通过频变耦合结构实现第一基本部件和第二部件组合的频变耦合。
在一个可选的方案中,所述频变耦合结构为耦合谐振器或电磁混合耦合结构。通过不同的频变耦合结构实现第一基本部件和第二部件组合的频变耦合。
在一个可选的方案中,所述频变耦合结构为耦合膜片、耦合金属盘、耦合销钉或耦合盲孔。从而可针对不同类型的滤波器选用不同类型的耦合结构。
在一个可选的方案中,所述第一基本部件产生的传输零点为离所述滤波器通带较近的传输零点;所述第二基本部件产生的传输零点为离所述滤波器通带较近的传输零点;所述频变耦合产生的传输零点为离所述滤波器通带较远的传输零点。以方便设置频变耦合结构。
在一个可选的方案中,所述第一基本部件和所述第二基本部件为Q型基本部件、T型基本部件或B型基本部件中的任一种类型的基本部件;所述T型基本部件为三个谐振器两两耦合连接的基本部件;所述Q型基本部件为四个谐振器排列成矩形且任意相邻的两个谐振器耦合连接的基本部件,其中,相邻的两个谐振器分别为所述Q型基本部件的输入端和输出端;所述B型基本部件为四个谐振器排列成矩形且任意相邻的两个谐振器耦合连接的基本部件;其中,呈对角设置的两个谐振器分别为所述B型基本部件的输入端和输出端。可采用不同类型的基本部件组成滤波器。
在一个可选的方案中,所述Q型基本部件、T型基本部件和B型基本部件中的谐振器之间耦合连接时采用频变耦合或非频变耦合连接。即Q型基本部件、T型基本部件和B型基本部件内的谐振器可采用不同的耦合方式连接。
在一个可选的方案中,所述第二部件组合还包括单独的谐振器;所述单独的谐振器与所述第二基本部件的一个谐振器耦合连接;所述第一基本部件通过所述频变耦合与所述第一谐振器级联;或所述第一基本部件的一个谐振器通过所述频变耦合与所述第二基本部件的一个谐振器耦合连接。第二部件组合可选用不同的组合方式。
在一个可选的方案中,所述第二基本部件的个数为至少两个,且所述至少两个第二基本部件之间耦合连接;所述第一基本部件中的一个谐振器与其中的一个第二基本部件中的一个谐振器耦合连接。第二部件组合可选用不同的组合方式。
在一个可选的方案中,所述至少两个第二基本部件为不同类型的基本部件;或所述至少两个第二基本部件为相同类型的基本部件。
在一个可选的方案中,所述第二部件组合仅包含一个第二基本部件;所述第一基本部件和所述第二基本部件之间通过所述频变耦合级联。滤波器还可仅包含基本部件。
在一个可选的方案中,所述谐振器为同轴型介质谐振器、空气波导型谐振器或同轴腔体谐振器中的任一种。谐振器可采用不同类型的谐振器组成滤波器。
第二方面,提供了一种通信设备,该通信设备包括壳体以及设置在所述壳体内的上述任一项所述的滤波器。在上述技术方案中,第一部件组合和第二部件组合之间的频变耦合的耦合系数是随频率变化的,因此频变耦合可产生1个传输零点。频变耦合作为第一部件组合和第二部件组合的唯一的主信号传输路径,因此频变耦合产生的传输零点是可以独立可控制的,实现了滤波器采用较少的阶数可产生有限个可控制传输零点。
附图说明
图1为现有技术中的一种滤波器的拓扑图;
图2为现有技术中的另一种滤波器的拓扑图;
图3为图1所示的滤波器的归一化频率响应;
图4a示出了Q型基本部件的拓扑图;
图4b示出了T型基本部件的拓扑图;
图4c示出了B型基本部件的拓扑图;
图5a示出了Q型频变基本部件的拓扑图;
图5b示出了T型频变基本部件的拓扑图;
图5c示出了B型频变基本部件的拓扑图;
图6a示出了介质谐振器组成滤波器的结构示意图;
图6b示出了空气波导型谐振器组成滤波器的结构示意图;
图6c示出了同轴腔体谐振器组成滤波器的结构示意图;
图7示出了本申请实施例提供的滤波器的结构框图;
图8示出了本申请实施例提供的一种滤波器的拓扑图;
图9示出了图8对应的8阶-不对称3零点的归一化频率响应;
图10示出了频变耦合系数的示意图;
图11示出了本申请实施例提供的另一种滤波器的拓扑图;
图12示出了本申请实施例提供的另一种滤波器的拓扑图;
图13示出了本申请实施例提供的另一种滤波器的拓扑图;
图14示出了本申请实施例提供的另一种滤波器的拓扑图;
图15示出了本申请实施例提供的另一种滤波器的拓扑图;
图16示出了本申请实施例提供的另一种滤波器的拓扑图;
图17示出了本申请实施例提供的一种滤波器的结构示意图;
图18示出了本申请实施例提供的另一种滤波器的结构示意图;
图19示出了本申请实施例提供的另一种滤波器的结构示意图;
图20示出了本申请实施例提供的另一种滤波器的结构示意图;
图21示出了图20对应的8阶-不对称4零点的归一化频率响应;
图22示出了本申请实施例提供的另一种滤波器的结构示意图;
图23示出了本申请实施例提供的另一种滤波器的结构示意图。
具体实施方式
下面将结合附图对本申请实施例作进一步描述。
首先说明本申请的滤波器,在形成滤波器时,常用方法是级联“Q型基本部件”、“T型基本部件”或“B型基本部件”来实现多个可独立可控制的传输零点。其中,“Q型基本部件”、“T型基本部件”和“B型基本部件”作为滤波器的基本部件,该基本部件用于产生滤波器的传输零点并提供带外抑制。下面结合附图说明一下上述基本部件,其中,在下文附图中,“─”代表非频变耦合,非频变耦合的耦合系数为常数,不随滤波器传输信号的频率变化。“↗”代表频变耦合,频变耦合的耦合系数不是常数,其耦合系数随滤波器传输信号的频率变化。应理解,本申请实施例中的谐振节点为滤波器在拓扑图中的表述,在拓扑图中用谐振节点代表谐振器。在本申请中级联指代的是部件和部件之间串联、或部件和组合之间串联,或者组合和组合之间串联。下面首先结合附图说明一下本申请实施例中涉及到的几种具体的基本部件。
图4a示出了Q型基本部件的拓扑图,Q型基本部件为四个谐振器排列成矩形且任意相邻的两个谐振器耦合组成的基本部件。其具体包括四个谐振节点,四个谐振节点分别用谐振节点1、谐振节点2、谐振节点3、谐振节点4表示。谐振节点1、谐振节点2、谐振 节点3、谐振节点4组成一个矩形结构,且任意相邻的两个谐振节点之间耦合连接,另外,作为一个可选的方案,谐振节点2和谐振节点4之间也可以耦合连接。其中,S为输入端,L为输出端,信号在传输时可流经不同的路径,如信号流经谐振节点1、2、3、4、或者流经谐振节点1、2、4、或者流经1、4等不同的路径。作为一个变形,还可谐振节点2和4不连接,此时,信号流经谐振节点1、2、3、4或者流经谐振节点1、4。
图4b示出了T型基本部件的拓扑图,T型基本部件为三个谐振器两两耦合组成的基本部件,其具体包括三个谐振节点,三个谐振节点分别用谐振节点5、谐振节点6、谐振节点7表示。谐振节点5、谐振节点6、谐振节点7组成一个三角形结构,且任意相邻的两个谐振节点之间耦合连接。其中,S为输入端,L为输出端,信号在传输时可流经不同的路径,如信号流经谐振节点5、6、7或者流经谐振节点5、7等不同的路径。
图4c示出了B型基本部件的拓扑图,B型基本部件为四个谐振器排列成矩形的基本部件。其具体包括四个谐振节点,四个谐振节点分别用谐振节点8、谐振节点9、谐振节点10、谐振节点11表示。谐振节点8、谐振节点9、谐振节点10、谐振节点11组成矩形结构,且任意相邻的两个谐振节点之间耦合连接。其中,S为输入端,L为输出端,信号在传输时可流经不同的路径,如信号流经谐振节点8、9、11或者流经谐振节点8、10、11等不同的路径。
上述图4a、图4b及图4c中示例的几个基本部件为非频变基本部件,本申请实施例提供的基本部件也可采用频变基本部件。参考图5a~图5c,结合图5a~图5c对三种类型的频变基本部件进行说明。
图5a示出了Q型频变基本部件的拓扑图,与图4a所示的Q型非频变基本部件的区别在于谐振节点1和谐振节点4之间采用频变耦合。
图5b示出了T型频变基本部件的拓扑图,与图4b所示的T型基本部件的区别在于谐振节点5和谐振节点7之间采用频变耦合。
图5c示出了B型频变基本部件的拓扑图,与图4c所示的B型基本部件的区别在于谐振节点8和谐振节点9之间采用频变耦合。
在组成上述的基本部件时,可采用不同类型的谐振器组成。谐振器可采用同轴型介质谐振器、空气波导型谐振器或同轴腔体谐振器等不同类型的谐振器。以B型基本部件为例进行说明。
如图6a所示,图6a示出了同轴型介质谐振器组成滤波器10的结构示意图。采用介质层11作为滤波器10的主体,谐振器采用谐振盲孔14实现。介质层11上开设有介质耦合窗13和耦合盲孔12,谐振器之间通过介质耦合窗13及耦合盲孔12实现耦合连接。如谐振器之间通过耦合盲孔12实现电耦合连接,谐振器之间通过耦合窗13实现磁耦合连接。另外,介质层11表面是金属镀层,以形成谐振器10的谐振效果。
如图6b所示,图6b示出了空气波导型谐振器组成滤波器20的结构示意图。采用金属外壁21作为滤波器20的主体,金属外壁21内具有中空的腔体,腔体内为空气。腔体内设置有十字交叉型的金属耦合膜22,金属耦合膜22将腔体划分为四个子腔体,从而划分形成四个谐振器23。四个谐振器23之间采用金属耦合膜22实现耦合连接。谐振器之间的磁耦合和电耦合均可采用金属耦合膜22片实现。
如图6c所示,图6c示出了同轴腔体谐振器组成滤波器30的结构示意图。该滤波器30包括金属外壁31和多个谐振器33。谐振器33采用金属同轴腔,金属外壁31的内侧具 有隔条32,谐振器33之间通过金属盘和金属杆的组合34实现电耦合连接,谐振器33之间通过空气耦合窗35实现磁耦合连接。
同理,T型基本部件或者Q型基本部件的谐振器也可采用上述同轴型介质型、空气波导型或金属同轴腔等不同类型的谐振器组成,在此不再详细赘述。
在谐振器之间采用频变耦合时,可通过频变耦合结构实现。示例性的,频变耦合结构可为耦合谐振器或电磁混合耦合结构,且通过频变耦合结构可实现第一基本部件和第二部件组合的频变耦合。具体的,频变耦合结构可为耦合膜片、耦合金属盘和金属杆的组合,也可为耦合销钉和耦合盲孔的组合等,在谐振器采用图6a~图6c所示的不同类型的谐振器时,可对应选择匹配的频变耦合结构实现频变耦合,具体的配合方式,在此不再一一赘述。
下面结合上述的谐振器之间的耦合方式以及谐振器组成的基本部件说明本申请实施例提供的滤波器。本申请实施例提供的滤波器包括多个谐振器,多个谐振器之间耦合连接,并且按照信号的传输路径,多个谐振器划分为第一部件组合和第二部件组合。其中,第一部件组合是多个谐振器组成的一个组合,其至少包括第一基本部件,示例性的,第一部件组合包括第一基本部件,或包括第一基本部件及单独的谐振器。第一部件组合用于产生滤波器的部分传输零点,具体通过其包含的第一基本部件产生滤波器的部分传输零点。在第一部件组合包含单独的谐振器时,单独的谐振器不产生滤波器的传输零点。同理,第二部件组合也是一个谐振器组成的组合,第二部件组合至少包括第二基本部件。第二部件组合用于产生滤波器部分的传输零点,具体通过第二部件组合中的第二基本部件产生滤波器的部分传输零点。另外,第二部件组合也可包含单独的谐振器,该单独的谐振器与第一部件组合中的单独的谐振器功能相同。下面结合具体的附图详细说明本申请实施例提供的第一部件组合和第二部件组合。
参考图7,图7示出了本申请实施例提供的第一部件组合100和第二部件组合200的结构框图。第一部件组合100和第二部件组合200均由多个谐振器组成。其中,第一部件组合100至少包含第一基本部件,第一基本部件包含多个谐振器,示例性的,第一基本部件可为上述的Q型基本部件、T型基本部件或B型基本部件,以通过第一基本部件产生滤波器的部分传输零点。第二部件组合200至少包含第二基本部件,第二基本部件包含多个谐振器,示例性的,第二基本部件可为上述的Q型基本部件、T型基本部件或B型基本部件,以通过第二基本部件产生滤波器的另一部分传输零点。另外,第一部件组合100中的第一基本部件的一个谐振器通过仅频变耦合300与第二部件组合中的一个谐振器耦合连接。其中,频变耦合300用于产生一个传输零点,且该频变耦合300产生的传输零点为独立可控的传输零点。
应理解本申请实施例中的“第一”和“第二”仅仅为方便描述时,对部件的区分进行的命名,并不代表实际意义。其中,第一部件组合100为滤波器中与信号输入端连接的部件组合,第二部件组合200为滤波器中与信号输出端连接的部件组合。
在本申请实施例中,第一部件组合100和第二部件组合200即可仅包含基本部件,也可包含基本部件与单独谐振器的组合。下面结合具体的附图详细对不同类型的第一部件组合100和第二部件组合200组成的谐振器进行说明。
参考图8,图8示出了第一部件组合100仅包含一个第一基本部件110,第二部件组合200仅包含一个第二基本部件210,第一基本部件110和第二基本部件210之间通过频变耦合级联。
第一基本部件110采用B型基本部件,其包含谐振节点1、谐振节点2、谐振节点3、谐振节点4。第二基本部件210采用B型基本部件,其包含谐振节点5、谐振节点6、谐振节点7、谐振节点8。其中,谐振节点1与滤波器的输入端连接、谐振节点5与谐振节点4通过频变耦合级联,谐振节点8与滤波器的输出端连接。
参考图9,图9示出了图8对应的8阶-不对称3零点的归一化频率响应。其中,8阶指代的是滤波器具有八个谐振节点,八个谐振节点分别为第一基本部件的四个谐振节点(谐振节点1、谐振节点2、谐振节点3和谐振节点4)和第二基本部件210的四个谐振节点(谐振节点5、谐振节点6、谐振节点7和谐振节点8)。其中,第一基本部件的四个谐振节点产生离滤波器通带较近的传输零点tz2-b,第二基本部件210产生离滤波器通带较近的传输零点tz3-b。第一基本部件和第二基本部件之间的频变耦合产生离滤波器通带相对较远的传输零点tz1-b。在采用频变耦合产生离滤波器带通较远的传输零点时,方便在滤波器内设置频变耦合结构。上述的传输零点tz2-b和传输零点tz3-b为相对独立可控制的传输零点,而传输零点tz1-b为独立可控制的传输零点。
需要解释的是,滤波器是一种双端口网络,它在某一规定的频率范围内,对信号的衰耗很小或为零,使信号容易通过,这个频率范围为滤波器的通带。
一并参考图10,图10示出了频变耦合系数的示意图。在本申请实施例中“频变耦合↗”的耦合系数M(ω)不是常数,而是随滤波器传输信号的频率变化而变化。频变耦合产生的传输零点是可以独立可控制的,频变耦合产生的传输零点位置ω tz的耦合系数M(ω tz)=0。中心频率位置点ω 0的耦合系数M(ω 0)满足滤波器的传输和反射的幅度和相位要求,M(ω 0)可以是正数,也可以是负数。结合图9所示的归一化频率响应图,在第一基本部件和第二基本部件之间仅通过频变耦合时,频变耦合可产生离滤波器通带相对较远的独立可控制传输零点tz1-b。
由上述描述可看出,图8所示的滤波器可产生3个传输零点,既有离滤波器通带较近的传输零点tz2-b和tz3-b,也有离滤波器通带相对较远的传输零点tz1-b,同时避免了“频变耦合结构实现离滤波器通带较近的传输零点实现难的问题”。另外,在图8所示的滤波器中包含的谐振节点一共有8个,滤波器采用较少的阶数可产生有限个(3)可控制传输零点。
参考图11,图11为图8所示的滤波器的一种变形,第一基本部件110为B型基本部件,包含谐振节点1、谐振节点2、谐振节点3及谐振节点4。第二基本部件210为Q型基本部件,包含谐振节点5、谐振节点6、谐振节点7及谐振节点8,其中,谐振节点5和谐振节点8相邻。其中,谐振节点1与滤波器的输入端连接、谐振节点5与谐振节点4通过频变耦合级联,谐振节点8与滤波器的输出端连接。
参考图12,图12示出了第一部件组合110仅包含一个第一基本部件110,第二部件组合200仅包含一个第二基本部件210,第一基本部件110和第二基本部件210之间通过频变耦合300级联。
第一基本部件110采用Q型基本部件,其包含谐振节点1、谐振节点2、谐振节点3、谐振节点4。第二基本部件210采用Q型基本部件,其包含谐振节点5、谐振节点6、谐振节点7、谐振节点8,且谐振点5和谐振点8相邻。其中,谐振节点1与滤波器的输入端连接、谐振节点5与谐振节点4通过频变耦合级联,谐振节点8与滤波器的输出端连接。
参考图13,图13示出了第一部件组合110仅包含一个第一基本部件110,第二部件组 合200仅包含一个第二基本部件210,第一基本部件110和第二基本部件210之间通过频变耦合300级联。第一基本部件110采用T型基本部件,其包含谐振节点1、谐振节点2、谐振节点3。第二基本部件210采用T型基本部件,其包含谐振节点5、谐振节点6、谐振节点7。其中,谐振节点1与滤波器的输入端连接;谐振节点4与谐振节点3通过频变耦合连接,谐振节点6与滤波器的输出端连接。
应理解,图8、图11、图12和图13仅示例出了几种具体的第一基本部件110和第二基本部件210级联的方式。本申请实施例提供的第一部件组合110和第二部件组合200之间的级联包括但不限定:B型基本部件与B型基本部件的级联、B型基本部件与Q型基本部件的级联、B型基本部件与T型基本部件的级联、Q型基本部件与Q型基本部件的级联、Q型基本部件与T型基本部件的级联、T型基本部件与T型基本部件的级联等情况。
作为一个可选的方案,在本申请实施例中并不具体限定第一基本部件110和第二基本部件210的个数,示例性的,第一基本部件110的个数可为一个、两个、三个等至少一个基本部件的情况;第二基本部件210的个数可为一个、两个、三个等不同的情况。在第一基本部件110为至少两个时,至少两个第一基本部件110之间可采用非频变耦合级联或采用频变耦合级联;在第二基本部件210为至少两个时,第二基本部件210之间采用非频变耦合级联或采用频变耦合级联。
作为一个可选的方案,在第一基本部件110和第二基本部件210为至少两个时,至少两个第一基本部件110可为相同类型或者不同类型的基本部件,如一个第一基本部件110为B型基本部件,另一个第一基本部件110为T型基本部件。至少两个第二基本部件210可为相同类型或者不同类型的基本部件,如一个第二基本部件210为B型基本部件,另一个第二基本部件210为T型基本部件。
在上述示例中,第一部件组合中的所有谐振器组合形成基本部件,第二部件组合中的所有谐振器组合形成基本部件,第一部件组合和第二部件组合中没有单独的谐振器。但除上述情况外,本申请实施例提供的滤波器还可采用其他方式的第一部件组合和第二部件组合。示例性的,可包含几种情况:第一种情况,第一部件组合中部分谐振器组成基本部件,部分谐振器为单独的谐振器;第二部件组合中部分的谐振器组成基本部件,部分谐振器为单独的谐振器。第二种情况,第一部件组合中的所有谐振器组成基本部件;第二部件组合中部分谐振器组成基本部件,部分谐振器为单独的谐振器。第三种情况,第一部件组合中部分谐振器组成基本部件,部分谐振器为单独的谐振器;第二部件组合中所有谐振器组成基本部件。
下面以第二种情况为例进行说明。此时,第一部件组合仅包含一个第一基本部件,第二部件组合除包含一个第二基本部件外,还包括单独的谐振器。其中,单独的谐振器与第二基本部件耦合连接;第一基本部件通过频变耦合与单独的谐振器级联,下面结合附图详细说明。
参考图14,图14示出了第一部件组合100仅包含一个第一基本部件110,第二部件组合200仅包含一个第二基本部件210和一个单独的谐振器。其中,第一基本部件110与单独的谐振器通过频变耦合300级联。
第一基本部件110采用Q型基本部件,其包含谐振节点1、谐振节点2、谐振节点3、谐振节点4。第二部件组合200包括单独的谐振器(单独的谐振器产生的谐振节点5)和第二基本部件210,第二基本部件210采用Q型基本部件,Q型基本部件包含谐振节点6、 谐振节点7、谐振节点8和谐振节点9,谐振节点6和谐振节点9相邻。其中,谐振节点1与滤波器的输入端连接;谐振节点5与谐振节点4通过频变耦合300级联;谐振节点5和谐振节点6之间非频变耦合级联,当然也可采用频变耦合级联;谐振节点9与滤波器的输出端连接。
参考图15,图15示出了第一部件组合100仅包含一个第一基本部件110,第二部件组合200仅包含一个第二基本部件210和一个单独的谐振器。其中,第一基本部件110与单独的谐振器通过频变耦合300级联。
第一基本部件110采用B型基本部件,其包含谐振节点1、谐振节点2、谐振节点3、谐振节点4,谐振节点1和谐振节点4呈对角设置。第二部件组合200包括单独的谐振器(单独的谐振器产生的谐振节点5)和第二基本部件210,第二基本部件210采用B型基本部件,B型基本部件包含谐振节点6、谐振节点7、谐振节点8和谐振节点9,谐振节点6和谐振节点9呈对角设置。其中,谐振节点1与滤波器的输入端连接,谐振节点5与谐振节点4通过频变耦合300级联,谐振节点5和谐振节点6之间非频变耦合级联,谐振节点9与滤波器的输出端连接。
参考图16,图16示出了第一部件组合100仅包含一个第一基本部件110,第二部件组合200仅包含一个第二基本部件210和一个单独的谐振器。其中,第一基本部件110与单独的谐振器通过频变耦合300级联。
第一基本部件110采用T型基本部件,其包含谐振节点1、谐振节点2、谐振节点3。第二部件组合200包括单独的谐振器(单独的谐振器产生的谐振节点4)和第二基本部件210,第二基本部件210采用T型基本部件,T型基本部件包含谐振节点5、谐振节点6、谐振节点7。其中,谐振节点1与滤波器的输入端连接;谐振节点4与谐振节点3通过频变耦合300级联,谐振节点4和谐振节点5之间非频变耦合级联,谐振节点7与滤波器的输出端连接。
图14~图16示例出了第二部件组合200采用一个单独的滤波器和一个第二基本部件210的组合形式。但应理解,图14~图16仅为滤波器的一种具体示例,第一部件组合100还可采用其他的方式与第二部件组合200连接。如单独的谐振器与第二基本部件210通过频变耦合300级联;第一基本部件110通过频变耦合300与第二基本部件210级联,单独的谐振器与滤波器的输出端连接。
为方便理解本申请实施例提供的滤波器,下面结合具体的附图详细的说明。
参考图17,图17示出了一种具体的滤波器的结构示意,图17示出了第一部件组合和第二部件组合采用介质同轴波导形式实现。
滤波器采用介质层作为主体,谐振器采用谐振盲孔实现。在介质层上开设八个谐振盲孔作为八个谐振器,八个谐振器呈阵列排列。为方便描述,将八个谐振器分别命名为第一谐振器111、第二谐振器112、第三谐振器113、第四谐振器114、第五谐振器211、第六谐振器212、第七谐振器213和第八谐振器214。其中,第一谐振器111产生谐振节点1、第二谐振器112产生谐振节点2、第三谐振器113产生谐振节点3、第四谐振器114产生谐振节点4、第五谐振器211产生谐振节点5、第六谐振器212产生谐振节点6、第七谐振器213产生谐振节点7、第八谐振器214产生谐振节点8。
第一谐振器111、第二谐振器112、第三谐振器113、第四谐振器114组成第一基本部件。其中,第一谐振器111和第三谐振器113之间通过耦合盲孔401实现电耦合级联,第 一谐振器111和第二谐振器112之间、第三谐振器113和第四谐振器114之间、第二谐振器112和第四谐振器114之间通过耦合窗口402实现磁耦合级联。上述四个谐振器组成B型基本部件。
第五谐振器211、第六谐振器212、第七谐振器213、第八谐振器214组成第二基本部件。其中,第六谐振器212和第八谐振器214之间通过耦合盲孔401实现电耦合级联,第五谐振器211和第七谐振器213之间、第五谐振器211和第六谐振器212之间、第七谐振器213和第八谐振器214之间通过耦合窗口402实现磁耦合级联。上述四个谐振器组成B型基本部件。
第一基本部件和第二基本部件之间通过第四谐振器114和第五谐振器211之间频变耦合级联。在具体实现时,通过设置在第四谐振器114和第五谐振器211之间的频变耦合盲孔403实现两个基本部件之间的频变耦合。
另外,介质表面是金属镀层,以形成谐振器的谐振效果。
在采用上述结构时,滤波器形成如图8所示的拓扑图,第一基本部件和第二基本部件分别产生离滤波器通带较近的两个独立可控制传输零点tz2-b和tz3-b,频变耦合盲孔403产生离滤波器通带相对较远的独立可控制传输零点tz1-b。由此整体上实现了拓扑图8产生“离滤波器通带较近的2个传输零点和离滤波器通带相对较远的1个传输零点”,谐振器一共有8个,从而可通过较少的谐振器实现了有限个(如3个)可相对独立可控制的传输零点。
参考图18,图18的部分标号可参考图17中的相同标号,与图17所示的滤波器的区别在于图18所示的滤波器采用空气波导形式实现如图8所示的拓扑图。
滤波器采用金属外壁作为谐振器的主体,金属外壁围合成一个中空的腔体,腔体内为空气。腔体内设置有十字交叉型的金属耦合膜,金属耦合膜将腔体划分为八个子腔体,从而划分形成八个谐振器。八个谐振器之间采用金属耦合膜实现耦合连接。
为方便描述,将八个谐振器分别命名为第一谐振器111、第二谐振器112、第三谐振器113、第四谐振器114、第五谐振器211、第六谐振器212、第七谐振器213和第八谐振器214。其中,第一谐振器111产生谐振节点1、第二谐振器112产生谐振节点2、第三谐振器113产生谐振节点3、第四谐振器114产生谐振节点4、第五谐振器211产生谐振节点5、第六谐振器212产生谐振节点6、第七谐振器213产生谐振节点7、第八谐振器214产生谐振节点8。
第一谐振器111、第二谐振器112、第三谐振器113、第四谐振器114组成第一基本部件110。其中,第一谐振器111和第二谐振器112之间、第一谐振器111和第三谐振器113之间、第二谐振器112和第四谐振器114之间、第三谐振器113和第四谐振器114之间通过金属耦合膜404实现磁耦合和电耦合。上述四个谐振器组成B型基本部件。
第五谐振器211、第六谐振器212、第七谐振器213、第八谐振器214组成第二基本部件210。其中,第六谐振器212和第八谐振器214之间、第五谐振器211和第七谐振器213之间、第五谐振器211和第六谐振器212之间、第七谐振器213和第八谐振器214之间通过金属耦合膜404实现磁耦合和电耦合。上述四个谐振器组成B型基本部件。
第一基本部件110和第二基本部件210之间通过第四谐振器114和第五谐振器211之间频变耦合级联。在具体实现时,通过设置在第四谐振器114和第五谐振器211之间的频变耦合窗口405实现两个基本部件之间的频变耦合。
参考图19,图19的部分标号可参考图17中的相同标号,与图17所示的滤波器的区别在于图18所示的滤波器采用金属同轴腔体。
滤波器采用金属外壁作为主体,金属外壁内通过隔条划分为八个金属同轴腔,八个金属同轴腔作为八个谐振器,八个谐振器之间耦合连接。
为方便描述,将八个谐振器分别命名为第一谐振器111、第二谐振器112、第三谐振器113、第四谐振器114、第五谐振器211、第六谐振器212、第七谐振器213和第八谐振器214。其中,第一谐振器111产生谐振节点1、第二谐振器112产生谐振节点2、第三谐振器113产生谐振节点3、第四谐振器114产生谐振节点4、第五谐振器211产生谐振节点5、第六谐振器212产生谐振节点6、第七谐振器213产生谐振节点7、第八谐振器214产生谐振节点8。
第一谐振器111、第二谐振器112、第三谐振器113、第四谐振器114组成第一基本部件。其中,第一谐振器111和第三谐振器113之间通过金属盘和金属杆组件406实现电耦合级联,第一谐振器111和第二谐振器112之间、第二谐振器112和第四谐振器114之间、第三谐振器113和第四谐振器114之间通过耦合窗口408实现磁耦合级联。上述四个谐振器组成B型基本部件。
第五谐振器211、第六谐振器212、第七谐振器213、第八谐振器214组成第二基本部件210。其中,第六谐振器212和第八谐振器214之间通过金属盘和金属杆组件407实现电耦合级联,第五谐振器211和第七谐振器213之间、第五谐振器211和第六谐振器212之间、第七谐振器213和第八谐振器214之间通过耦合窗口408实现磁耦合级联。上述四个谐振器组成B型基本部件。
第一基本部件和第二基本部件之间通过第四谐振器114和第五谐振器211之间频变耦合级联。在具体实现时,通过设置在第四谐振器114和第五谐振器211之间的频变耦合金属盘-金属杆407实现两个基本部件之间的频变耦合。
参考上述图17~图19,本发明实施例提供的滤波器通过采用B型基本部件(谐振节点1、2、3、4)通过频变耦合(如频变耦合盲孔或耦合膜片或频变耦合金属盘/杆)级联B型基本部件(谐振节点5、6、7、8),从而可产生3个传输零点,具体可参考图9,上述3个传输零点既有离滤波器通带较近的传输零点tz2-b和tz3-b,也有离滤波器通带相对较远的传输零点tz1-b,同时避免了频变结构实现离滤波器通带较近的传输零点实现难的问题,并且可通过较少的谐振节点,实现了有限个(如3个)可相对独立可控制的传输零点。
在采用上述结构时,B型基本部件(谐振节点1、2、3、4)与B型基本部件(谐振节点5、6、7、8)之间采用频变耦合级联,无第二条耦合路径,所以产生的传输零点是可以独立可控制的,而级联的通道是主信号必经且唯一路径。
参考图20,图20示出了一种具体的滤波器的结构示意,图20示出了第一部件组合和第二部件组合采用介质同轴波导形式实现。
滤波器采用介质层作为主体,谐振器采用谐振盲孔实现。在介质层上开设八个谐振盲孔作为八个谐振器,八个谐振器阵列排列。为方便描述,将八个谐振器分别命名为第一谐振器111、第二谐振器112、第三谐振器113、第四谐振器114、第五谐振器211、第六谐振器212、第七谐振器213和第八谐振器214。其中,第一谐振器111产生谐振节点1、第二谐振器112产生谐振节点2、第三谐振器113产生谐振节点3、第四谐振器114产生谐振节点4、第五谐振器211产生谐振节点5、第六谐振器212产生谐振节点6、第七谐振器213 产生谐振节点7、第八谐振器214产生谐振节点8。
第一谐振器111、第二谐振器112、第三谐振器113、第四谐振器114组成第一基本部件。其中,第一谐振器111和第三谐振器113之间通过耦合盲孔401实现电耦合级联,第一谐振器111和第二谐振器112之间、第三谐振器113和第四谐振器114之间、第二谐振器112和第四谐振器114之间通过耦合窗口402实现磁耦合级联。上述四个谐振器组成B型基本部件。第五谐振器211、第六谐振器212、第七谐振器213、第八谐振器214组成第二基本部件。其中,第七谐振器213和第八谐振器214之间通过耦合盲孔401实现电耦合级联,第五谐振器211和第六谐振器212之间、第六谐振器212和第七谐振器213之间、第五谐振器211和第八谐振器214之间通过耦合窗口402实现磁耦合级联。上述四个谐振器组成Q型基本部件。
第一基本部件和第二基本部件之间通过第四谐振器114和第五谐振器211之间频变耦合级联。在具体实现时,通过设置在第四谐振器114和第五谐振器211之间的频变耦合盲孔403实现两个基本部件之间的频变耦合。
另外,介质表面是金属镀层,以形成谐振器的谐振效果。
参考图21,拓扑图21示出了图20所示的滤波器产生的传输零点,B基本部件产生离滤波器通带较近的1个独立可控制传输零点tz3-bq;Q基本部件产生离滤波器通带较近的两个独立可控制传输零点tz2-bq和tz4-bq;频变耦合产生离滤波器通带相对较远的独立可控制传输零点tz1-bq。由此整体实现了离滤波器通带较近的3个传输零点和离滤波器通带相对较远的1个传输零点。另外滤波器采用的谐振器一共有8个,可通过较少的谐振节点,实现了有限个(如4个)可相对独立可控制的传输零点。
参考图22,图22的部分标号可参考图20中的相同标号,与图20所示的滤波器的区别在于图22所示的滤波器采用空气波导。
滤波器采用金属外壁作为谐振器的主体,金属外壁内具有中空的腔体,腔体内为空气。腔体内设置有十字交叉型的金属耦合膜,金属耦合膜将腔体划分为八个子腔体,从而划分形成八个谐振器。八个谐振器之间采用金属耦合膜实现耦合连接。
为方便描述,将八个谐振器分别命名为第一谐振器111、第二谐振器112、第三谐振器113、第四谐振器114、第五谐振器211、第六谐振器212、第七谐振器213和第八谐振器214。其中,第一谐振器111产生谐振节点1、第二谐振器112产生谐振节点2、第三谐振器113产生谐振节点3、第四谐振器114产生谐振节点4、第五谐振器211产生谐振节点5、第六谐振器212产生谐振节点6、第七谐振器213产生谐振节点7、第八谐振器214产生谐振节点8。
第一谐振器111、第二谐振器112、第三谐振器113、第四谐振器114组成第一基本部件110。其中,第一谐振器111和第二谐振器112之间、第一谐振器111和第三谐振器113之间、第二谐振器112和第四谐振器114之间、第三谐振器113和第四谐振器114之间通过金属耦合膜404实现磁耦合和电耦合。上述四个谐振器组成B型基本部件。
第五谐振器211、第六谐振器212、第七谐振器213、第八谐振器214组成第二基本部件210。其中,第五谐振器211和第八谐振器214之间、第五谐振器211和第六谐振器212之间、第七谐振器213和第八谐振器214之间、第六谐振器212和第七谐振器213之间通过金属耦合膜404实现磁耦合和电耦合。上述四个谐振器组成Q型基本部件。
第一基本部件和第二基本部件之间通过第四谐振器114和第五谐振器211之间频变耦 合级联。在具体实现时,通过设置在第四谐振器114和第五谐振器211之间的频变耦合窗口405实现两个基本部件之间的频变耦合。
参考图23,图23的部分标号可参考图20中的相同标号,与图20所示的滤波器的区别在于图23所示的滤波器采用同轴腔体。
滤波器采用金属外壁作为主体,金属外壁内通过隔条划分为八个金属同轴腔,八个金属同轴腔作为八个谐振器,八个谐振器之间耦合连接。
为方便描述,将八个谐振器分别命名为第一谐振器111、第二谐振器112、第三谐振器113、第四谐振器114、第五谐振器211、第六谐振器212、第七谐振器213和第八谐振器214。其中,第一谐振器111产生谐振节点1、第二谐振器112产生谐振节点2、第三谐振器113产生谐振节点3、第四谐振器114产生谐振节点4、第五谐振器211产生谐振节点5、第六谐振器212产生谐振节点6、第七谐振器213产生谐振节点7、第八谐振器214产生谐振节点8。
第一谐振器111、第二谐振器112、第三谐振器113、第四谐振器114组成第一基本部件。其中,第一谐振器111和第三谐振器113之间通过金属盘和金属杆组件406实现电耦合级联,第一谐振器111和第二谐振器112之间、第二谐振器112和第四谐振器114之间、第三谐振器113和第四谐振器114之间通过耦合窗口408实现磁耦合级联。上述四个谐振器组成B型基本部件。
第五谐振器211、第六谐振器212、第七谐振器213、第八谐振器214组成第二基本部件。其中,第七谐振器213和第八谐振器214之间通过金属盘和金属杆组件407实现电耦合级联,第五谐振器211和第八谐振器214之间、第五谐振器211和第六谐振器212之间、第六谐振器212和第七谐振器213之间通过耦合窗口408实现磁耦合级联。上述四个谐振器组成Q型基本部件。
第一基本部件110和第二基本部件210之间通过第四谐振器114和第五谐振器211之间频变耦合级联。在具体实现时,通过设置在第四谐振器114和第五谐振器211之间的频变耦合金属盘-金属杆407实现两个基本部件之间的频变耦合。
通过上述图20、图22及图23可看出,本申请实施例提供的滤波器通过B型基本部件采用频变耦合“↗”级联Q型基本部件实现了8阶-不对称4零点的归一化频率响应。在采用上述滤波器时,B型基本部件可产生离滤波器通带较近的1个独立可控制传输零点tz3-bq;Q型基本部件可产生离滤波器通带较近的两个独立可控制传输零点tz2-bq和tz4-bq;频变耦合可产生离滤波器通带相对较远的独立可控制传输零点tz1-bq。由此整体实现了产生离滤波器通带较近的3个传输零点和离滤波器通带相对较远的1个传输零点,另外,滤波器采用的谐振器一共有8个,可通过较少的谐振节点,实现了有限个(如4个)可相对独立可控制的传输零点。
本申请实施例还提供了一种通信设备,该通信设备可为无线通信设备、收发机、基站的射频前端。该通信设备包括壳体以及设置在壳体内的上述任一项的滤波器。通过采用第一部件组合和第二部件组合之间采用频变耦合作为唯一的主信号传输路径,而频变耦合的耦合系数M(ω)不是常数,而是随频率变化,因此频变耦合产生的传输零点是可以独立可控制,从而可通过较少的谐振节点,实现了有限个可相对独立可控制的传输零点。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内, 则本申请也意图包含这些改动和变型在内。

Claims (13)

  1. 一种滤波器,其特征在于,包括:第一部件组合和第二部件组合;其中,
    所述第一部件组合至少包括第一基本部件,所述第一基本部件包括多个谐振器,且所述第一基本部件用于产生所述滤波器的部分传输零点;
    所述第二部件组合至少包括第二基本部件,所述第二基本部件包括多个谐振器,且所述第二基本部件用于产生所述滤波器的另一部分传输零点;
    所述第一基本部件的一个谐振器仅通过频变耦合与所述第二部件组合中的一个谐振器耦合连接;
    所述频变耦合用于产生一个传输零点,且所述频变耦合产生的传输零点为独立可控制的传输零点。
  2. 如权利要求1所述的滤波器,其特征在于,所述第一基本部件的一个谐振器通过频变耦合结构产生的频变耦合级联所述第二部件组合中的一个谐振器。
  3. 如权利要求2所述的滤波器,其特征在于,所述频变耦合结构为耦合谐振器或电磁混合耦合结构。
  4. 如权利要求2或3所述的滤波器,其特征在于,所述频变耦合结构为耦合膜片、耦合金属盘、耦合销钉或耦合盲孔。
  5. 如权利要求1~4任一项所述的滤波器,其特征在于,所述第一基本部件产生的传输零点为离所述滤波器通带较近的传输零点;
    所述第二基本部件产生的传输零点为离所述滤波器通带较近的传输零点;
    所述频变耦合产生的传输零点为离所述滤波器通带较远的传输零点。
  6. 如权利要求1~5任一项所述的滤波器,其特征在于,所述第一基本部件和所述第二基本部件为Q型基本部件、T型基本部件或B型基本部件中的任一种类型的基本部件;
    所述T型基本部件为三个谐振器两两耦合连接的基本部件;
    所述Q型基本部件为四个谐振器排列成矩形且任意相邻的两个谐振器耦合连接的基本部件,其中,相邻的两个谐振器分别为所述Q型基本部件的输入端和输出端;
    所述B型基本部件为四个谐振器排列成矩形且任意相邻的两个谐振器耦合连接的基本部件;其中,呈对角设置的两个谐振器分别为所述B型基本部件的输入端和输出端。
  7. 如权利要求6所述的滤波器,其特征在于,所述Q型基本部件、T型基本部件和B型基本部件中的谐振器之间耦合连接时采用频变耦合或非频变耦合连接。
  8. 如权利要求1~7任一项所述的滤波器,其特征在于,所述第二部件组合还包括单独的谐振器;所述单独的谐振器与所述第二基本部件的一个谐振器耦合连接;
    所述第一基本部件通过所述频变耦合与所述第一谐振器级联;或所述第一基本部件的一个谐振器通过所述频变耦合与所述第二基本部件的一个谐振器耦合连接。
  9. 如权利要求1~7任一项所述的滤波器,其特征在于,所述第二基本部件的个数为至少两个,且所述至少两个第二基本部件之间耦合连接;所述第一基本部件中的一个谐振器与其中的一个第二基本部件中的一个谐振器耦合连接。
  10. 如权利要求9所述的滤波器,其特征在于,所述至少两个第二基本部件为相同类型或不同类型的基本部件。
  11. 如权利要求1~7任一项所述的滤波器,其特征在于,所述第二部件组合仅包含一个 第二基本部件;所述第一基本部件和所述第二基本部件之间通过所述频变耦合级联。
  12. 如权利要求1~11任一项所述的滤波器,其特征在于,所述谐振器为同轴型介质谐振器、空气波导型谐振器或同轴腔体谐振器中的任一种。
  13. 一种通信设备,其特征在于,包括壳体以及设置在所述壳体内的如权利要求1~12任一项所述的滤波器。
PCT/CN2021/115921 2020-09-30 2021-09-01 一种滤波器及通信设备 WO2022068507A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011066502.6 2020-09-30
CN202011066502.6A CN114335936B (zh) 2020-09-30 2020-09-30 一种滤波器及通信设备

Publications (1)

Publication Number Publication Date
WO2022068507A1 true WO2022068507A1 (zh) 2022-04-07

Family

ID=80949595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115921 WO2022068507A1 (zh) 2020-09-30 2021-09-01 一种滤波器及通信设备

Country Status (2)

Country Link
CN (1) CN114335936B (zh)
WO (1) WO2022068507A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115241618A (zh) * 2022-07-29 2022-10-25 西安空间无线电技术研究所 一种频变交叉耦合同轴滤波器及其设计方法
CN115425382A (zh) * 2022-08-29 2022-12-02 大富科技(安徽)股份有限公司 三模介质谐振器及介质滤波器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101626101A (zh) * 2009-08-11 2010-01-13 京信通信系统(中国)有限公司 腔体介质滤波器及其带外抑制方法
CN102683769A (zh) * 2011-06-15 2012-09-19 吴芬 腔体滤波器、双工器、合路器及其传输零点频率调试方法
CN106025465A (zh) * 2016-06-07 2016-10-12 中国电子科技集团公司第三十六研究所 一种腔体滤波器
CN111463529A (zh) * 2020-01-19 2020-07-28 武汉凡谷陶瓷材料有限公司 一种容性耦合装置及滤波器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556613B (zh) * 2019-09-29 2024-06-04 江西一创新材料有限公司 一种介质滤波器及调节传输零点对称性的交叉耦合结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101626101A (zh) * 2009-08-11 2010-01-13 京信通信系统(中国)有限公司 腔体介质滤波器及其带外抑制方法
CN102683769A (zh) * 2011-06-15 2012-09-19 吴芬 腔体滤波器、双工器、合路器及其传输零点频率调试方法
CN106025465A (zh) * 2016-06-07 2016-10-12 中国电子科技集团公司第三十六研究所 一种腔体滤波器
CN111463529A (zh) * 2020-01-19 2020-07-28 武汉凡谷陶瓷材料有限公司 一种容性耦合装置及滤波器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115241618A (zh) * 2022-07-29 2022-10-25 西安空间无线电技术研究所 一种频变交叉耦合同轴滤波器及其设计方法
CN115241618B (zh) * 2022-07-29 2024-05-03 西安空间无线电技术研究所 一种频变交叉耦合同轴滤波器及其设计方法
CN115425382A (zh) * 2022-08-29 2022-12-02 大富科技(安徽)股份有限公司 三模介质谐振器及介质滤波器
WO2024046276A1 (zh) * 2022-08-29 2024-03-07 大富科技(安徽)股份有限公司 三模介质谐振器及介质滤波器
CN115425382B (zh) * 2022-08-29 2024-05-14 大富科技(安徽)股份有限公司 三模介质谐振器及介质滤波器

Also Published As

Publication number Publication date
CN114335936B (zh) 2022-12-02
CN114335936A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2022068507A1 (zh) 一种滤波器及通信设备
Cameron et al. Synthesis of advanced microwave filters without diagonal cross-couplings
Gomez-Garcia et al. Using the branch-line directional coupler in the design of microwave bandpass filters
CN107078708B (zh) 子网络增强型无反射滤波器拓扑
CN110797613A (zh) 一种十阶六陷波的介质波导滤波器
Pfitzenmaier Synthesis and realization of narrow-band canonical microwave bandpass filters exhibiting linear phase and transmission zeros
Azad et al. Design and performance analysis of 2.45 GHz microwave bandpass filter with reduced harmonics
US7764146B2 (en) Cavity microwave filter assembly with lossy networks
CN110380167B (zh) 一种微带线形式的可调单端到平衡滤波器
US9859599B2 (en) Bandstop filters with minimum through-line length
Huang et al. Cross‐coupled dielectric waveguide filter
CN207690974U (zh) 基片集成波导滤波器
CN109509943B (zh) 介质波导滤波器
Miek et al. Ku-band waveguide filter with multiple transmission zeros by resonant source to load and bypass cross-coupling
Miek et al. Improved fully canonical phase equalized W-band waveguide filter with dispersive coupling inverter
Wu et al. Novel microstrip coupled-line bandpass filters with shortened coupled sections for stopband extension
Padmavathi et al. Analysis and design of reflectionless filters for c band applications
CN110797612B (zh) 基于负群时延导纳变换器的自均衡线性相位滤波器
CN110350279B (zh) 一种具有滤波功能的基片集成波导功分器
CA2281004C (en) Microwave filter having cascaded subfilters with preset electrical responses
Zhang et al. Exhaustive synthesis and realization of extended-box topologies with dispersive couplings
CN209183692U (zh) 介质波导滤波器
Li et al. Design of compact bandpass filter based on EMSIW cavities
Miek et al. Realization of folded W-band waveguide filters with additional asymmetric resonant transmission zeros
CN110896163A (zh) 可实现单个带外传输零点的介质波导滤波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874168

Country of ref document: EP

Kind code of ref document: A1