WO2022068430A1 - 一种显示处理方法和装置 - Google Patents

一种显示处理方法和装置 Download PDF

Info

Publication number
WO2022068430A1
WO2022068430A1 PCT/CN2021/112658 CN2021112658W WO2022068430A1 WO 2022068430 A1 WO2022068430 A1 WO 2022068430A1 CN 2021112658 W CN2021112658 W CN 2021112658W WO 2022068430 A1 WO2022068430 A1 WO 2022068430A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate information
information
display
vertices
model
Prior art date
Application number
PCT/CN2021/112658
Other languages
English (en)
French (fr)
Inventor
吕耀宇
马占山
孙建康
薛亚冲
陈丽莉
张�浩
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2022068430A1 publication Critical patent/WO2022068430A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T13/00Animation
    • G06T13/203D [Three Dimensional] animation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/20Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display processing method and device.
  • a rotating stereoscopic display device refers to a display device that uses the high-speed rotation of the display panel, combined with the visual persistence effect of the human eye, to form a three-dimensional display space to achieve a three-dimensional display effect.
  • it is necessary to determine the displayed model. Data displayed for each phase.
  • the display data processing is relatively complicated, and more resources are required to complete the display data processing.
  • Embodiments of the present disclosure provide a display processing method and apparatus, so as to solve the problem that the existing display data processing is complicated and requires more resources.
  • an embodiment of the present disclosure provides a display processing method, which is applied to a rotating stereoscopic display device, where the rotating stereoscopic display device includes a display panel, and the display panel can be rotatably arranged; the display processing method includes:
  • model information of an image model in the image to be displayed wherein the image model includes at least one attribute set, and each attribute set includes a plurality of triangular faces constituting the image model;
  • the property combination is a material combination, and the material properties of the triangular faces in each of the material sets are the same.
  • the image model includes N attribute sets, where N is a positive integer
  • the traversing coordinate information of the vertices of each triangular face in each of the attribute sets includes:
  • the image model in the to-be-displayed image is a dynamic model, and the image model has multiple joint nodes;
  • the traversing the coordinate information of the vertices of each triangular face in each of the attribute sets further includes:
  • the model coordinates of the vertices of each triangular face are calculated according to the coordinate information of the joint nodes.
  • the image model further includes bones and skins, each of the bones is located between two adjacent joint nodes, the skins are bound to the bones, and the skins are composed of at least two joint nodes.
  • a set of said attributes consists of;
  • the calculation of the model coordinates of the vertices of each triangular surface according to the coordinate information of the joint nodes includes:
  • the coordinate information of each vertex of the triangular surface is calculated according to the coordinate information of the bone.
  • the traversing coordinate information of the vertices of each triangular face in each of the attribute sets includes:
  • the device coordinates being the coordinates in the device coordinate system established based on the rotating stereoscopic display device;
  • Marking information of each vertex is generated according to the phase information of the display panel and the device coordinates, where the marking information is used to mark the position between the fixed point of the triangular surface and each phase during the rotation of the display panel relation.
  • the determining the device coordinates of the vertices of each of the triangular faces includes:
  • model coordinates of the vertex of each of the triangular faces are the coordinates in the image model coordinate system
  • the device coordinates of the vertices of each of the triangular faces are calculated according to the scene coordinates.
  • generating the display data of the display panel at each phase according to the coordinate information of the vertexes of each of the triangular faces including
  • the display data of the display panel at the corresponding phase is generated according to the phase intersection line.
  • an embodiment of the present disclosure provides a display processing device for controlling a rotating stereoscopic display device, the rotating stereoscopic display device includes a display panel, and the display panel can be rotatably arranged; the display processing device includes:
  • a model information acquisition module configured to acquire model information of an image model in an image to be displayed, wherein the image model includes at least one attribute set, and each attribute set includes a plurality of triangular faces constituting the image model;
  • a coordinate information traversal module used for traversing the coordinate information of the vertices of each triangular face in each of the attribute sets according to the association relationship of the attribute sets;
  • a display data generation module configured to generate display data of the display panel at each phase according to the coordinate information of the vertexes of each of the triangular faces
  • the display module is used for displaying a picture according to the display data of each phase when the display panel is located in each phase.
  • the image model includes N attribute sets, where N is a positive integer;
  • the coordinate information traversal module includes:
  • a root node determination submodule for determining the root node of the image model
  • Index submodule for indexing the first attribute set according to the index relationship between the root node and the first attribute set, and obtains the coordinate information of the vertex of the triangular face in the first attribute set;
  • the indexing submodule is further configured to index the Mth attribute set according to the index information contained in the M-1th attribute set when N is greater than 1, and obtain the triangular surface of the Mth attribute set. Coordinate information of vertices, and so on, until the coordinate information of vertices of each triangular face in all attribute sets is obtained, where M is a positive integer less than or equal to N and greater than 1.
  • the image model in the to-be-displayed image is a dynamic model, and the image model has multiple joint nodes; the coordinate information traversal module further includes:
  • a coordinate information calculation submodule configured to calculate the coordinate information of each joint node in each of the animation frames according to the animation frame information
  • the model coordinate calculation sub-module is configured to calculate the model coordinates of the vertices of each triangular face according to the coordinate information of the joint nodes.
  • the image model further includes bones and skins, each of the bones is located between two adjacent joint nodes, the skins are bound to the bones, and the skins are composed of at least two joint nodes.
  • a set of said attributes consists of;
  • the model coordinate calculation submodule includes:
  • a bone coordinate calculation unit configured to determine the coordinate information of the bone according to the coordinate information of the joint node
  • the vertex coordinate calculation unit is configured to calculate the coordinate information of each vertex of the triangular surface according to the coordinate information of the bone based on the binding relationship between the skin and the bone.
  • the coordinate information traversal module includes:
  • a device coordinate calculation submodule configured to determine the device coordinates of the vertices of each of the triangular faces, the device coordinates being the coordinates in the device coordinate system established based on the rotating stereoscopic display device;
  • a marker information generation sub-module is used to generate marker information of each vertex according to the phase information of the display panel and the device coordinates, and the marker information is used to mark the fixed point of the triangular surface and the rotation process of the display panel The positional relationship between the phases in .
  • embodiments of the present disclosure provide an electronic device, including a processor, a memory, and a computer program stored on the memory and executable on the processor, where the computer program is executed by the processor When implementing the steps of the display processing method according to any one of the first aspects.
  • an embodiment of the present disclosure provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the steps of the display processing method described in any one of the first aspects. .
  • an embodiment of the present disclosure provides a display system, including a rotating stereoscopic display device and the display processing device according to any one of the second aspect, wherein the rotating stereoscopic display device includes a display panel, and the display panel can A rotation setting, the display processing device is used to control the rotating stereoscopic display device to display an image.
  • the embodiment of the present disclosure can obtain the phase angle of the image in each phase, that is, the display data of the display panel in each phase, as long as the image model is meshed once, which is helpful for Reduce the amount of data processing and improve the efficiency of display data processing.
  • FIG. 1 is a schematic structural diagram of a rotating stereoscopic display device according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a display processing method in an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of the intersection of the phase and the image model in an embodiment of the present disclosure
  • 4A is another flowchart of a display processing method in an embodiment of the present disclosure.
  • 4B is another flowchart of a display processing method according to an embodiment of the present disclosure.
  • 5A is a schematic diagram of an image model in an embodiment of the present disclosure.
  • 5B is a schematic diagram of yet another image model in an embodiment of the present disclosure.
  • 5C is a schematic diagram of an association relationship between joints in an embodiment of the present disclosure.
  • 6A is a schematic diagram of a scene of a display state in an embodiment of the present disclosure.
  • FIG. 6B is a schematic diagram of another scene of a display state in an embodiment of the present disclosure.
  • FIG. 7 is a structural diagram of a display processing apparatus according to an embodiment of the present disclosure.
  • the present disclosure provides a display processing method. As shown in FIG. 1 , the display processing method is applied to a rotating stereoscopic display device.
  • the rotating stereoscopic display device includes a display panel, and the display panel can be rotatably arranged.
  • one end of the display panel is fixed on a rotating shaft.
  • the display panel can be driven to rotate around the rotating shaft.
  • the display panel can also be driven to rotate in other ways, for example, by fixing the display panel on a rotatable base, etc., the rotation of the display panel can also be controlled.
  • the rotating shaft is located on one side of the display panel as an example.
  • the screen is driven by the rotating shaft to rotate around the rotating shaft, which is equivalent to forming a cylindrical display space.
  • Each rotation of the screen is equivalent to refreshing one frame of image. Since the image presents a three-dimensional effect, each frame of image is referred to as a volume frame in this embodiment.
  • the visual persistence effect of human eyes requires that the frame rate of the body frame is not less than 24Hz, so the display panel needs to refresh at least 24 body frames per second, that is to say, the rotation speed of the display panel is not less than 24 cycles per second (24r /s).
  • the contents displayed by the display panel at different positions are different, therefore, multiple phases need to be defined, and the display panel displays different contents at different phases.
  • the specific number of phases can be increased or decreased accordingly, and the rotation speed of the display panel can also be adaptively adjusted. Further, the refresh rate of the display panel can be determined according to the rotation speed of the display panel and the number of phases.
  • the resolution of the screen is width ⁇ height, where width is the horizontal resolution, height is the vertical resolution, the center distance of adjacent pixels is pitch, and the pixel side length is side.
  • the inventor of the present disclosure found in the process of implementing the technical solution of the present application that in order to generate display data, the size of the display space of the rotating stereoscopic display device can be determined first.
  • the display panel rotates around one end of the display panel as an example.
  • its display area forms a two-dimensional display plane.
  • the rotation range of the display panel forms a cylindrical display space.
  • the radius of the cylindrical display space is the width of the display panel
  • the height of the cylindrical display space is the height of the display panel.
  • the image displayed by the display panel in each phase is determined according to the image model, and the image can be displayed when the display panel moves to the corresponding phase.
  • each animation frame needs to perform multiple model meshes, and the workload is large.
  • the inventors of the present disclosure further propose the following technical solutions.
  • the display processing method includes the following steps:
  • Step 201 Obtain model information of an image model in an image to be displayed.
  • the image to be displayed may be a static image or a dynamic image.
  • the display model may be a static image model or a dynamic image model, and the image model includes at least one attribute set.
  • the attribute set refers to a set of triangular faces divided according to the same attribute.
  • the embodiment of the present disclosure further uses the material of the triangular face as the feature of dividing the attribute set for further description.
  • each attribute set is also called a set of materials, and the same material
  • the triangular faces in the collection are of the same material.
  • attributes such as the color of the triangular face, the position of the triangular face, and other attributes may also be considered to divide the attribute set.
  • Each material set includes a plurality of triangular surfaces that constitute the image model. It can be understood that each image model is actually composed of a plurality of small-sized triangular surfaces. In this embodiment, one or more material sets are set. in order to manage these triangular faces.
  • a material set can be set to accommodate these triangles; if the triangles that make up an image model include two or more materials, then you can Set up multiple collections accordingly, and divide the triangular faces with the same material into the same material collection.
  • the data in the material collection may also include other data related to the attributes of the triangular surface, specifically, including but not limited to the name of the material collection, material-related parameters, coordinate-related parameters, etc.
  • material-related parameters may include ambient light coefficient, material diffuse reflection coefficient, specular reflection coefficient, natural light coefficient, smooth coefficient, map file, etc.
  • Coordinate-related parameters may include vertex coordinate-related parameters of triangular faces, vertex normal-related parameters, Texture related parameters, surface normal related parameters, etc.
  • Step 202 Traverse the coordinate information of the vertices of each triangular face in each of the material sets according to the association relationship of the material sets.
  • the data structure of the model information in this embodiment further includes an association relationship of material sets, and the association relationship is used to implement an index to the material sets, so as to realize traversing the data in each material set, and specifically, to track the triangles contained in the material set. Coordinate information of the vertices of the face
  • Step 203 Generate display data of the display panel in each phase according to the coordinate information of the vertices of each of the triangular faces.
  • the display data of each phase of the real panel can be obtained.
  • this step 203 specifically includes
  • the display data of the display panel at the corresponding phase is generated according to the phase intersection line.
  • the pixels on the display panel are discrete, it may be difficult for the image displayed according to the pixels on the display panel to be completely consistent with the ideal intersection line. Therefore, it is necessary to further fit the ideal intersection line according to the pixel distribution on the display panel, and the fitting result That is, the actual display effect, which is called an approximate line of intersection in this embodiment.
  • Step 204 When the display panel is located in each phase, display a picture according to the display data of each phase.
  • Fig. 3 after determining the approximate intersection line corresponding to each phase, arrange the approximate intersection lines of all phases in sequence according to the phase order, that is, the order of the rotation angle, and when the display panel is in the specified phase, the corresponding For example, when the display panel rotates to the first phase, control the display panel to display the image corresponding to the phase, and when the display panel rotates to the second phase, control the display panel to display the image corresponding to the second phase , and so on, the three-dimensional image can be displayed by rotating the display device.
  • the phase order that is, the order of the rotation angle
  • the embodiment of the present disclosure can obtain the phase angle of the image in each phase, that is, the display data of the display panel in each phase, as long as the image model is meshed once, which is helpful for Reduce the amount of data processing and improve the efficiency of display data processing.
  • the image model includes N material sets, where N is a positive integer.
  • step 202 includes:
  • N index the Mth material set according to the index information contained in the M-1th material set, and obtain the coordinate information of the vertices of the triangular faces in the Mth material set, and so on, Until the coordinate information of the vertices of each triangular face in all material sets is obtained, where M is a positive integer less than or equal to N and greater than 1.
  • the association relationship of the material collection includes the association relationship between the root node and the material collection.
  • the first material collection is indexed by the root node, so as to obtain the content of the first material collection.
  • the coordinate information of the vertices of each triangular face of , the first material set refers to the material set directly associated with the root node.
  • the association relationship of material sets also includes the association relationship between different material sets. Specifically, each material set It has a node pointer to the next material set, where the node pointer of the last material set is empty.
  • this embodiment realizes that the first material collection is indexed by the root node according to the association relationship of material collections, and further completes the indexing of all material collections, which helps to reduce workload and improve data processing efficiency.
  • the image model in the image to be displayed is also a static model.
  • the images displayed by the display panel at the same position are the same. Therefore, , when the display panel moves to the specified phase, it only needs to display a specific image.
  • the image to be displayed is a dynamic image
  • the image model in the image to be displayed is also a dynamic model.
  • the images displayed on the same position of the display panel may be different, so it is necessary to further adjust the display panel displayed image.
  • the image model has a plurality of joint nodes
  • the traversing the coordinate information of the vertices of each triangular face in each of the attribute sets further includes:
  • the model coordinates of the vertices of each triangular face are calculated according to the coordinate information of the joint nodes.
  • animation frame information is further obtained, and the image model in each animation frame can be understood as a static model.
  • the image model in each animation frame can be understood as a static model.
  • the vertex coordinates of each triangular face are calculated according to the relationship between the joint nodes and the vertices of the triangular face, and the model coordinates of the vertices of the triangular face are further determined.
  • the image model in the image to be displayed is a dynamic model
  • the image model includes bones and skins, each of the bones is located between two adjacent joint nodes, and the skins are bound to the bones.
  • the skin consists of at least one material collection.
  • the calculation of the model coordinates of the vertices of each triangular surface according to the coordinate information of the joint nodes includes:
  • the coordinate information of each vertex of the triangular surface is calculated according to the coordinate information of the bone.
  • the material collection is first indexed by the root node, and the relevant information of the triangular surface is further obtained. Further, in this embodiment, joint nodes are also required to be indexed, and animation frame information is further obtained, and the position of each joint node is calculated according to the animation frame information. . Next, the degree of influence of the joints on the vertices of the triangular face is determined according to the relationship between the joints, the bones and the triangular faces, so as to update the coordinate information of the vertices of the triangular face in combination with the influence of the joints on the vertex positions of the triangular face.
  • the animation frame information should at least include the time, sequence number, joint nodes in the animation frame, the transformation relationship T_anim between adjacent joints, and the animation frame pointer to the next animation frame, where, when the animation frame is the last frame , the animation frame pointer is null.
  • a bone can be understood as a frame with fixed attributes between two joint nodes. Therefore, after the coordinate information of each joint node is determined, the position of the bone between the joint nodes can also be determined accordingly. change information.
  • the skin is bound to the bone. Therefore, after the position change information of the bone is determined, the position change information of the skin can be further obtained according to the motion information of the bone.
  • the position change information of the skin can be further obtained according to the motion information of the bone.
  • the joint information in the display data includes at least joint node information, a joint name, and a joint serial number. Further, there may be a certain relationship and master-slave relationship between the joints.
  • the joint When the joint has an upper-level joint, or when there is a parent joint, it can further include the signal of the parent joint and the transformation between the joint and the parent joint.
  • the relationship is recorded as T_pc; since the skin and bones are bound, that is to say, there is a certain binding relationship between the vertex coordinates of the triangular surface and the joints, and the transformation relationship is recorded as T_cv; the transformation relationship between the joints and the model coordinates Denoted as T_mc.
  • a total of three joints including joint0 to joint2 are used as an example for illustration. These three joints are related in sequence.
  • the transformation relationship between adjacent joints is first updated according to the transformation relationship T_anim between adjacent joints.
  • the values of T_pc0, T_pc1 and T_pc2 and further obtain the change relationship between the joint and the model coordinates as shown in formula (1).
  • the coordinate transformation parameter T_cv from the vertex to the joint and the coordinate transformation parameter T_mc from the joint to the model are extracted to complete the update of the vertex position in combination with formula (1).
  • the skin includes a triangular surface ABC
  • the joint index joint_indices bound to vertex A is [1, 2], that is, joint1 and joint2 in FIG. 5C
  • the weight joint_weights is [m, n ], where the weight refers to the influence of the joint on the vertex, which is specifically determined by the relationship between the joint and the vertex.
  • the two transformation matrices of joint joint1 are T_mc1 and T_cv1 respectively
  • the two transformation matrices of joint joint2 are T_mc2 and T_cv2 then the following formula (2) can be used to further realize the tracking and updating of the model coordinates of vertex A.
  • p_model0 and p_model1 are the model coordinates of vertex A before and after updating, respectively.
  • the coordinate information includes model coordinates, scene coordinates, device coordinates, and marker information.
  • the above step 202 includes:
  • the device coordinates being the coordinates in the device coordinate system established based on the rotating stereoscopic display device;
  • the label information of each vertex is generated according to the phase information of the display panel and the device coordinates.
  • the relative positional relationship between the phase and the image model of the display panel is determined by the device coordinate system established based on the rotating stereoscopic display device. Therefore, in this embodiment, the device coordinates of the triangular surface are first determined, and then according to the display panel.
  • the step of determining the device coordinates of the vertices of each said triangular face comprises:
  • model coordinates of the vertex of each of the triangular faces are the coordinates in the image model coordinate system
  • the device coordinates of the vertices of each of the triangular faces are calculated according to the scene coordinates.
  • the model coordinates are the coordinates in the image model coordinate system, that is, the coordinates in the coordinate system established separately based on the image model are mainly reflected in the relative position in the image model;
  • the scene coordinates are the image scene coordinate system The coordinates in , reflect the relative position of the image model in the scene;
  • the device coordinates are the coordinates in the device coordinate system established based on the rotating stereo display device, and reflect the relative position with the display panel or with the hardware devices such as the rotating shaft. Specifically, it can be calculated by the following formula.
  • p_model is the model coordinate
  • T_sm is the conversion relationship between the model coordinate and the scene coordinate
  • p_scene is the scene coordinate
  • T_ds is the conversion relationship between the scene coordinate and the device coordinate
  • p_devece is the device coordinate.
  • marker information is further generated based on the device coordinates. As shown in FIG. 6A and FIG. 6B , the marking information is used to mark the positional relationship between the fixed point of the triangular surface and each phase during the rotation process of the display panel.
  • Fig. 6A ABC is a triangular surface, and only the adjacent phase i and phase i+1 are shown in the figure. Please continue to refer to Fig. 6A and Fig. 6B.
  • the vertex B is located between the phase i and the phase i+1, that is Say, in this embodiment, it is marked as B(i,1+1), and similarly, vertex A can be marked as A(i-1,1), and vertex C is marked as C(i+1,1+2) .
  • the label information of each vertex can be determined.
  • the deflection angle ⁇ of the vertex is calculated by the above formula (4), and then the sign information p_sign is calculated according to the deflection angle ⁇ .
  • p_decive.y and p_device.x are the scene coordinates y and the scene coordinates x in the coordinate system xoy shown in FIG. 6B respectively; sections represent the total number of phases, for example, in this embodiment, every 2° is a phase, A total of 180 phases are included, and the value of sections is 180; the floor() function is a round-down function. In this way, the label information of each vertex can be calculated by the above formula.
  • the phase information intersecting with the triangular face can also be determined.
  • the labeling information of the vertices of the triangular face ABC is A(i-1,1), B(i,1+1), C(i+1,1+2). Therefore, it can be determined that the triangular face
  • the edge AB of ABC passes through phase i
  • AC passes through phase i and phase i+1
  • BC passes through phase i+1.
  • edge of triangular face ABC and phase i have two intersection points, denoted as D and E, There are two intersection points between the edge of the triangular face ABC and the phase i+1, denoted as M and N, then it can be further determined that the ideal intersection of the triangular face and the phase i is the line segment DE, and the ideal intersection of the phase i+1 is MN.
  • An embodiment of the present disclosure further provides a display processing device, which is applied to a rotary stereoscopic display device, where the rotary stereoscopic display device includes a display panel and a rotating shaft, the display panel is disposed on the rotating shaft and can rotate around the rotating shaft .
  • the display processing apparatus 700 includes:
  • a model information acquisition module 701 configured to acquire model information of an image model in an image to be displayed, wherein the image model includes at least one attribute set, and each attribute set includes a plurality of triangular faces constituting the image model to obtain the to-be-displayed Model information of an image model in an image, wherein the image model includes at least one attribute set, and each attribute set includes a plurality of triangular faces constituting the image model;
  • the coordinate information traversal module 702 is configured to traverse the coordinate information of the vertices of each triangular face in each attribute set according to the association relationship of the attribute set;
  • a display data generation module 703, configured to generate display data of the display panel at each phase according to the coordinate information of the vertices of each of the triangular faces;
  • the display module 704 is configured to display a picture according to the display data of each phase when the display panel is located in each phase.
  • the properties are combined into a material set, and the material properties of the triangular faces in each of the material sets are the same.
  • the image model includes N attribute sets, where N is a positive integer
  • the coordinate information traversal module 702 includes:
  • a root node determination submodule for determining the root node of the image model
  • an indexing submodule configured to index the first attribute set according to the index relationship between the root node and the first attribute set, and obtain the coordinate information of the vertices of the triangular face in the first attribute set;
  • the indexing submodule is further configured to index the Mth attribute set according to the index information contained in the M-1th attribute set when N is greater than 1, and obtain the triangular surface of the Mth attribute set. Coordinate information of vertices, and so on, until the coordinate information of vertices of each triangular face in all attribute sets is obtained, where M is a positive integer less than or equal to N and greater than 1.
  • the image model in the to-be-displayed image is a dynamic model, and the image model has multiple joint nodes;
  • the coordinate information traversal module 702 further includes:
  • a coordinate information calculation submodule configured to calculate the coordinate information of each joint node in each of the animation frames according to the animation frame information
  • the model coordinate calculation sub-module is configured to calculate the model coordinates of the vertices of each triangular face according to the coordinate information of the joint nodes.
  • the image model further includes bones and skins, each of the bones is located between two adjacent joint nodes, the skins are bound to the bones, and the skins are composed of at least two joint nodes.
  • a set of said attributes consists of;
  • the model coordinate calculation submodule includes:
  • a bone coordinate calculation unit configured to determine the coordinate information of the bone according to the coordinate information of the joint node
  • the vertex coordinate calculation unit is configured to calculate the coordinate information of each vertex of the triangular surface according to the coordinate information of the bone based on the binding relationship between the skin and the bone.
  • the coordinate information traversal module 702 includes:
  • a device coordinate calculation submodule configured to determine the device coordinates of the vertices of each of the triangular faces, the device coordinates being the coordinates in the device coordinate system established based on the rotating stereoscopic display device;
  • a marker information generation sub-module is used to generate marker information of each vertex according to the phase information of the display panel and the device coordinates, and the marker information is used to mark the fixed point of the triangular surface and the rotation process of the display panel The positional relationship between the phases in .
  • the device coordinate calculation submodule includes:
  • model coordinate obtaining unit used for obtaining the model coordinates of the vertex of each of the triangular faces, the model coordinates being the coordinates in the image model coordinate system;
  • a scene coordinate calculation unit configured to calculate scene coordinates of the vertices of each of the triangular faces according to the model coordinates, where the scene coordinates are coordinates in an image scene coordinate system;
  • a device coordinate calculation unit configured to calculate the device coordinates of the vertices of each of the triangular faces according to the scene coordinates.
  • the display data generation module 703 includes
  • phase intersection determination sub-module configured to determine the phase intersection between the display panel and the triangular surface at each phase according to the marking information of the triangular surface
  • a display data generating sub-module is configured to generate display data of the display panel at the corresponding phase according to the phase intersection line.
  • Embodiments of the present disclosure also provide an electronic device, including a processor, a memory, and a computer program stored on the memory and executable on the processor, where the computer program is executed by the processor to achieve the following: The steps of any one of the above display processing methods.
  • An embodiment of the present disclosure provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, implements the steps of any one of the display processing methods described above.
  • An embodiment of the present disclosure provides a display system, including a rotating stereoscopic display device and the display processing device 700 described in any one of the above, wherein the rotating stereoscopic display device includes a display panel, the display panel can be rotatably arranged, and the display The processing device is used for controlling the rotating stereoscopic display device to display an image.
  • the disclosed apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solutions in the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present invention can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a ROM, a RAM, a magnetic disk, or an optical disk and other mediums that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Architecture (AREA)
  • Computer Graphics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Processing Or Creating Images (AREA)

Abstract

本公开提供一种显示处理方法和装置。显示处理方法应用于旋转立体显示装置,旋转立体显示装置包括显示面板,显示面板可转动设置;显示处理方法包括:获取待显示图像中的图像模型的模型信息,其中,图像模型包括至少一个材质集合,每一材质集合包括构成图像模型的多个三角面;根据材质集合的关联关系,遍历每一材质集合中各三角面的顶点的坐标信息;根据每一三角面的顶点的坐标信息生成显示面板在每一相位的显示数据;在显示面板位于各相位时,根据各相位的显示数据显示画面。本公开实施例有助于降低数据处理数量,提高显示数据处理效率。

Description

一种显示处理方法和装置
相关申请的交叉引用
本申请主张在2020年9月30日在中国提交的中国专利申请号202011061769.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示处理方法和装置。
背景技术
旋转立体显示装置指的是利用显示面板高速旋转,结合人眼的视觉暂留效应,形成立体的显示空间,以实现三维显示效果的显示装置,使用过程中,需要确定显示的模型在显示面板的每一相位显示的数据。相关技术中,对于显示数据处理较为复杂,需要占用较多的资源才能完成显示数据的处理。
发明内容
本公开实施例提供一种显示处理方法和装置,以解决现有显示数据处理较为复杂,需要占用较多的资源的问题。
第一方面,本公开实施例提供了一种显示处理方法,应用于旋转立体显示装置,所述旋转立体显示装置包括显示面板,所述显示面板可转动设置;所述显示处理方法包括:
获取待显示图像中的图像模型的模型信息,其中,所述图像模型包括至少一个属性集合,每一属性集合包括构成所述图像模型的多个三角面;
根据属性集合的关联关系,遍历每一所述属性集合中各三角面的顶点的坐标信息;
根据每一所述三角面的顶点的坐标信息生成所述显示面板在每一相位的显示数据;
在所述显示面板位于各相位时,根据各相位的显示数据显示画面。
在一些实施例中,所述属性结合为材质结合,每一所述材质集合内的各 三角面的材质属性相同。
在一些实施例中,所述图像模型包括N个属性集合,N为正整数;
所述遍历每一所述属性集合中各三角面的顶点的坐标信息,包括:
确定所述图像模型的根节点;
根据所述根节点与第一个属性集合之间的索引关系索引第一个属性集合,并获取所述第一个属性集合中三角面的顶点的坐标信息;
在N大于1的情况下,根据第M-1个属性集合中包含的索引信息索引第M个属性集合,并获取所述第M个属性集合中三角面的顶点的坐标信息,依此类推,直至获取全部属性集合中各三角面的顶点的坐标信息,其中,M为小于或等于N,且大于1的正整数。
在一些实施例中,所述待显示图像中的图像模型为动态模型,所述图像模型多个关节节点;
所述遍历每一所述属性集合中各三角面的顶点的坐标信息,还包括:
获取所述图像模型的动画帧信息;
根据所述动画帧信息计算各关节节点在每一所述动画帧内的坐标信息;
根据所述关节节点的坐标信息计算各三角面的顶点的模型坐标。
在一些实施例中,所述图像模型还包括骨骼和蒙皮,每一所述骨骼位于相邻两个关节节点之间,所述蒙皮与所述骨骼相绑定,所述蒙皮由至少一个所述属性集合构成;
所述根据所述关节节点的坐标信息计算各三角面的顶点的模型坐标,包括:
根据所述关节节点的坐标信息确定所述骨骼的坐标信息;
基于所述蒙皮和所述骨骼的绑定关系,根据所述骨骼的坐标信息计算各所述三角面的顶点的坐标信息。
在一些实施例中,所述遍历每一所述属性集合中各三角面的顶点的坐标信息,包括:
确定每一所述三角面的顶点的设备坐标,所述设备坐标为所述基于所述旋转立体显示装置建立的设备坐标系中的坐标;
根据所述显示面板的相位信息和所述设备坐标生成各所述顶点的标记信 息,所述标记信息用于标记所述三角面的定点与所述显示面板旋转过程中的各相位之间的位置关系。
在一些实施例中,所述确定每一所述三角面的顶点的设备坐标,包括:
获取每一所述三角面的顶点的模型坐标,所述模型坐标为图像模型坐标系中的坐标;
根据所述模型坐标计算各所述三角面的顶点的场景坐标,所述场景坐标为图像场景坐标系中的坐标;
根据所述场景坐标计算各所述三角面的顶点的设备坐标。
在一些实施例中,所述根据每一所述三角面的顶点的坐标信息生成所述显示面板在每一相位的显示数据,包括
根据所述三角面的标记信息确定所述显示面板在各相位与所述三角面的相位交线;
根据所述相位交线生成所述显示面板在相应相位的显示数据。
第二方面,本公开实施例提供了一种显示处理装置,用于控制旋转立体显示装置,所述旋转立体显示装置包括显示面板,所述显示面板可转动设置;所述显示处理装置包括:
模型信息获取模块,用于获取待显示图像中的图像模型的模型信息,其中,所述图像模型包括至少一个属性集合,每一属性集合包括构成所述图像模型的多个三角面;
坐标信息遍历模块,用于根据属性集合的关联关系,遍历每一所述属性集合中各三角面的顶点的坐标信息;
显示数据生成模块,用于根据每一所述三角面的顶点的坐标信息生成所述显示面板在每一相位的显示数据;
显示模块,用于在所述显示面板位于各相位时,根据各相位的显示数据显示画面。
在一些实施例中,所述图像模型包括N个属性集合,N为正整数;所述坐标信息遍历模块包括:
根节点确定子模块,用于确定所述图像模型的根节点;
索引子模块,用于根据所述根节点与第一个属性集合之间的索引关系索 引第一个属性集合,并获取所述第一个属性集合中三角面的顶点的坐标信息;
所述索引子模块,还用于在N大于1的情况下,根据第M-1个属性集合中包含的索引信息索引第M个属性集合,并获取所述第M个属性集合中三角面的顶点的坐标信息,依此类推,直至获取全部属性集合中各三角面的顶点的坐标信息,其中,M为小于或等于N,且大于1的正整数。
在一些实施例中,所述待显示图像中的图像模型为动态模型,所述图像模型多个关节节点;所述坐标信息遍历模块还包括:
获取子模块,用于获取所述图像模型的动画帧信息;
坐标信息计算子模块,用于根据所述动画帧信息计算各关节节点在每一所述动画帧内的坐标信息;
模型坐标计算子模块,用于根据所述关节节点的坐标信息计算各三角面的顶点的模型坐标。
在一些实施例中,所述图像模型还包括骨骼和蒙皮,每一所述骨骼位于相邻两个关节节点之间,所述蒙皮与所述骨骼相绑定,所述蒙皮由至少一个所述属性集合构成;
所述模型坐标计算子模块包括:
骨骼坐标计算单元,用于根据所述关节节点的坐标信息确定所述骨骼的坐标信息;
顶点坐标计算单元,用于基于所述蒙皮和所述骨骼的绑定关系,根据所述骨骼的坐标信息计算各所述三角面的顶点的坐标信息。
在一些实施例中,所述坐标信息遍历模块,包括:
设备坐标计算子模块,用于确定每一所述三角面的顶点的设备坐标,所述设备坐标为所述基于所述旋转立体显示装置建立的设备坐标系中的坐标;
标记信息生成子模块,用于根据所述显示面板的相位信息和所述设备坐标生成各所述顶点的标记信息,所述标记信息用于标记所述三角面的定点与所述显示面板旋转过程中的各相位之间的位置关系。
第三方面,本公开实施例提供了一种电子设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面中任一项所述的显示处理方法的步骤。
第四方面,本公开实施例提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现第一方面中任一项所述的显示处理方法的步骤。
第五方面,本公开实施例提供了一种显示系统,包括旋转立体显示装置和第二方面中任一项所述的显示处理装置,所述旋转立体显示装置包括显示面板,所述显示面板可转动设置,所述显示处理装置用于控制所述旋转立体显示装置显示图像。
本公开实施例通根据材质集合的关联关系,只要对图像模型进行一次网格化处理,即可实现获取图像在各个相位的相位角线,也就是显示面板在各个相位的显示数据,有助于降低数据处理数量,提高显示数据处理效率。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获取其他的附图。
图1是本公开一实施例中旋转立体显示装置的结构示意图;
图2是本公开一实施例中显示处理方法的流程图;
图3是本公开一实施例中相位与图像模型的交线示意图;
图4A是本公开一实施例中显示处理方法的又一流程图;
图4B是本公开一实施例中显示处理方法的又一流程图;
图5A是本公开一实施例中图像模型的示意图;
图5B是本公开一实施例中又一图像模型的示意图;
图5C是本公开一实施例中关节之间关联关系的示意图;
图6A是本公开一实施例中显示状态的场景示意图;
图6B是本公开一实施例中显示状态的又一场景示意图;
图7是本公开一实施例中显示处理装置的结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获取的所有其他实施例,都属于本公开保护的范围。
本公开提供了一种显示处理方法,如图1所示,该显示处理方法应用于旋转立体显示装置,旋转立体显示装置包括显示面板,显示面板可转动设置。
在一个实施例中,该显示面板的一端固定于一转轴上,实施时,通过驱动该转轴旋转能够实现带动显示面板绕该转轴旋转。
显然,在其他一些实施例中,还可以通过其他方式带动显示面板旋转,例如,通过将显示面板固定于一可旋转的底座上等方式,同样能能够实现控制显示面板转动。
请继续参阅图1,本实施例中以转轴位于显示面板的一侧边为例说明,屏幕在转轴的带动下绕该转轴旋转,这样,相当于形成一圆柱状的显示空间。屏幕每旋转一周,相当于刷新一帧图像,由于该图像呈现三维立体效果,因此,本实施例中将每一帧图像称作一个体帧。
一般来说,人眼视觉暂留效应要求体帧的帧率不小于24Hz,因此显示面板每秒钟至少需要刷新24个体帧,也就是说,显示面板的旋转速度不小于每秒24周(24r/s)。
进一步的,显示面板在不同位置显示的内容是不同的,因此,需要定义多个相位,显示面板在不同相位显示不同的内容。本实施例中以间隔2°定义为一个相位为例说明,则每一体帧具有180个相位,分别对应180幅截面图形。因此,该显示面板的刷新频率不小于180*24=4320Hz。
显示,实施时,相位的具体数量可以相应的增加或减少,显示面板的旋转速度同样可以做出适应性调整,进一步的,可以根据显示面板的旋转速度和相位数量确定显示面板的刷新频率。
记屏幕的分辨率为width×height,其中,width为横向分辨率,height为纵向分辨率,相邻像素的中心距离为pitch、像素边长为side,屏幕的像素绕转轴旋转时,在空间中的显示位置称为每一体帧的体素。
本公开的发明人在实现本申请的技术方案过程中发现,为了生成显示数 据,可以先确定该旋转立体显示装置的显示空间的尺寸。
如图1所示,以显示面板绕其一端旋转为例说明,在显示面板静止时,其显示区域形成一二维显示平面,当显示面板旋转时,显示面板的旋转范围形成一圆柱状显示空间,该圆柱状显示空间的半径为显示面板的宽度,该圆柱状显示空间的高为显示面板的高度。
接下来,将图像模型通过平移和缩放操作,使该图像模型完整的位于该显示空间内。
进一步的,根据该图像模型确定显示面板在每一相位显示的图像,并在显示面板移动至相应的相位时,显示该图像即可。
然而对显示数据处理过程中,针对每一相位对应的图像,均需要进行一次模型的网格化处理(mesh),以获取相应的显示数据,如果显示的画面为包括多个动画帧的动态图像,则每一动画帧均需要进行多次模型mesh,工作量较大。
本公开发明人进一步提出以下技术方案。
在一个实施例中,如图2所示,该显示处理方法包括以下步骤:
步骤201:获取待显示图像中的图像模型的模型信息。
本实施例中,待显示图像可以为静态图像,也可以为动态图像,相应的,其显示模型可以为静态的图像模型,也可以为动态的图像模型,图像模型包括至少一个属性集合。
属性集合指的是按照相同的属性划分的三角面集合,本公开实施例进一步以三角面的材质作为划分属性集合的特征做进一步说明,这样,每一属性集合也称作一个材质集合,同一材质集合中三角面的材质相同。
显然,在其他一些实施例中,还可以考虑以三角面的颜色、三角面的位置等属性进行属性集合的划分。
每一材质集合包括构成图像模型的多个三角面,可以理解为,每一图像模型实际上是由多个小尺寸的三角面构成的,本实施例中,设置了一个或多个材质集合,以便于管理这些三角面。
应当理解的是,一个图像模型的不同部分可能相同,也可能存在一定的差异,本实施例中将相同的三角面划分至同一材质集合。
换句话说,如果构成一个图像模型的三角面的材质均是相同的,那么可以设置一个材质集合容纳这些三角面;如果构成一个图像模型的三角面包括两种或两种以上材质,那么,可以相应的设置多个集合,并将材质相同的三角面划分至同一材质集合。
材质集合中的数据还可能包括其他与三角面属性相关的数据,具体的,包括但不限于材质集合的名称、材质相关参数、坐标相关参数等。例如,材质相关参数可能包括环境光系数、材质的漫反射系数、镜面反射系数、自然光系数、光滑系数、贴图文件等,坐标相关参数可能包括三角面的顶点坐标相关参数、顶点法线相关参数、纹理相关参数、面法线相关参数等。
步骤202:根据材质集合的关联关系,遍历每一所述材质集合中各三角面的顶点的坐标信息。
本实施例中模型信息的数据结构进一步还包括材质集合的关联关系,该关联关系用于实现对于材质集合的索引,以实现遍历各材质集合中的数据,具体的,为材质集合追踪包含的三角面的顶点的坐标信息
步骤203:根据每一所述三角面的顶点的坐标信息生成所述显示面板在每一相位的显示数据。
在确定了个三角面的顶点的坐标信息之后,进一步结合显示面板的相位信息,能够获得现实面板在每一相位的显示数据。
在本公开的一些实施例中,该步骤203具体包括
根据所述三角面的标记信息确定所述显示面板在各相位与所述三角面的相位交线;
根据所述相位交线生成所述显示面板在相应相位的显示数据。
如图3所示,首先确定各个相位的截面方程,然后根据截面方程和图像模型的数据求交集,该交集也就是每一相位的截面与图像模型的相位交线,本实施例中又将其称作理想交线。
由于显示面板上的像素是离散的,因此,根据显示面板上像素显示的图像可能难以完全与该理想交线一致,因此,需要进一步根据显示面板上像素分布拟合该理想交线,拟合结果也就是实际显示效果,本实施例中将其称作近似交线。
步骤204:在所述显示面板位于各相位时,根据各相位的显示数据显示画面。
请继续参阅图3,在确定每一相位对应的近似交线之后,将所有相位的近似交线按照相位顺序,也就是旋转角度的顺序依次编排,并在显示面板位于指定的相位时,显示相应的图像,例如,在显示面板旋转至第一个相位时,控制显示面板显示与该相位对应的图像,在显示面板旋转至第二个相位时,控制显示面板显示与该第二相位对应的图像,依此类推,即可实现通过旋转显示装置显示三维立体图像。
本公开实施例通根据材质集合的关联关系,只要对图像模型进行一次网格化处理,即可实现获取图像在各个相位的相位角线,也就是显示面板在各个相位的显示数据,有助于降低数据处理数量,提高显示数据处理效率。
在本公开的一些实施例中,图像模型包括N个材质集合,N为正整数。
在本实施例中,上述步骤202包括:
确定所述图像模型的根节点;
根据所述根节点与第一个材质集合之间的索引关系索引第一个材质集合,并获取所述第一个材质集合中三角面的顶点的坐标信息;
在N大于1的情况下,根据第M-1个材质集合中包含的索引信息索引第M个材质集合,并获取所述第M个材质集合中三角面的顶点的坐标信息,依此类推,直至获取全部材质集合中各三角面的顶点的坐标信息,其中,M为小于或等于N,且大于1的正整数。
本实施例,材质集合的关联关系包括根节点与材质集合之间的关联关系,遍历材质集合的起始阶段,首先由根节点索引第一个材质集合,以获取该第一个材质集合中包含的各三角面的顶点的坐标信息,该第一个材质集合指的是直接与根节点关联的材质集合。
如图4A所示,在材质集合的数量为一个的情况下,也就是N等于1的情况下,在遍历第一个材质集合之后,实际上已经完成了对于全部材质集合的遍历。
请继续参阅图4A,在材质集合的数量多于一个的情况下,也就是N大于1的情况下,材质集合的关联关系还包括不同材质集合之间的关联关系,具 体的,每一材质集合具有指向下一材质集合的节点指针,其中,最后一个材质集合的节点指针为空,这样,在遍历一个材质集合,并获取了该材质集合中三角面的顶点的坐标信息之后,根据该节点指针能够实现对下一个材质集合的索引,依此类推,直至索引到为空的节点指针,就完成针对全部材质集合的遍历,并获取全部材质集合中三角面的顶点的坐标信息,进一步,还可以获取法向量、面法线、顶点法线等和图像模型相关的信息。
这样,本实施例通过根据材质集合的关联关系,实现了由根节点索引第一个材质集合,并进一步完成全部材质集合的索引,有助于降低工作量,提高数据处理效率。
应当理解的是,在待显示的图像为静态图像时,待显示图像中的图像模型也为静态模型,在显示面板旋转的多个周期内,显示面板在同一位置显示的图像是相同的,因此,当显示面板移动至指定的相位时,只要显示特定的图像即可。而待显示的图像为动态图像时,待显示图像中的图像模型也为动态模型,在显示面板旋转的多个周期内,显示面板在同一位置显示的图像可能存在差异,因此需要进一步调整显示面板显示的图像。
在本公开的一些实施例中,所述图像模型多个关节节点;
所述遍历每一所述属性集合中各三角面的顶点的坐标信息,还包括:
获取所述图像模型的动画帧信息;
根据所述动画帧信息计算各关节节点在每一所述动画帧内的坐标信息;
根据所述关节节点的坐标信息计算各三角面的顶点的模型坐标。
如图4B所示,在图像模型为动态模型的情况下,本实施例中进一步获取动画帧信息,每一动画帧中的图像模型可以理解为一个静态模型,通过获取不同动画帧信息,能够获取各关节节点在不同动画帧中的位置变化信息。
在确定了关节节点在不同动画帧中的位置变化信息之后,根据关节节点与三角面的顶点之间的关联关系计算出个三角面的顶点坐标,并进一步确定三角面顶点的模型坐标。
进一步的,在一个实施例中,待显示图像中的图像模型为动态模型,图像模型包括骨骼和蒙皮,每一所述骨骼位于相邻两个关节节点之间,蒙皮与骨骼相绑定,蒙皮由至少一个材质集合构成。
所述根据所述关节节点的坐标信息计算各三角面的顶点的模型坐标,包括:
根据所述关节节点的坐标信息确定所述骨骼的坐标信息;
基于所述蒙皮和所述骨骼的绑定关系,根据所述骨骼的坐标信息计算各所述三角面的顶点的坐标信息。
实施时,首先由根节点索引材质集合并进一步获取其中的三角面相关信息,进一步的,本实施例中还需要索引关节节点,并进一步获取动画帧信息,根据动画帧信息计算各关节节点的位置。接下来,根据关节、骨骼以及三角面之间的关联关系确定关节对于三角面顶点的影响程度,以结合关节对于三角面的顶点位置的影响,更新三角面的顶点的坐标信息。
动画帧信息中至少应当包括该动画帧的时刻、序号、其中的关节节点、相邻关节之间的变换关系T_anim,以及指向下一动画帧的动画帧指针,其中,当动画帧为最后一帧时,该动画帧指针为空。
如图5A所示,骨骼可以理解为位于两个关节节点之间具有固定属性的框架,因此,在确定了各关节节点的坐标信息之后,也就能相应确定位于关节节点之间的骨骼的位置变化信息。
如图5A和图5B所示,蒙皮与骨骼相绑定,因此,确定了骨骼的位置变化信息之后,进一步可以根据骨骼的运动信息得到蒙皮的位置变化信息。实施时,首先根据蒙皮与骨骼的位置关系,确定影响蒙皮每一部分的骨骼,并进一步根据该骨骼的位置变化信息确定蒙皮的位置的更新。
本实施例中,显示数据中的关节信息至少包括关节的节点信息、关节名称、关节序号。进一步的,关节之间还可能存在一定关联关系和主从关系,在关节存在上一级关节时,或称存在父关节时,进一步还可以包括父关节的信号、关节与父关节之间的变换关系记作T_pc;由于蒙皮和骨骼是绑定的,也就是说,三角面的顶点坐标和关节之间存一定绑定关系,其变换关系记作T_cv;关节和模型坐标之间的变换关系记作T_mc。
如图5C所示,以共计包括joint0至joint2共计三个关节为例说明,这三个关节依次关联,实施时,先根据相邻关节之间的变换关系T_anim更新相邻关节之间的变换关系T_pc0、T_pc1和T_pc2的值,进一步获得关节与模型坐 标之间的变化关系如公式(1)所示。
Figure PCTCN2021112658-appb-000001
由于根据蒙皮和骨骼的关联关系,提取顶点到关节的坐标变换参数T_cv和关节到模型的坐标变换参数T_mc结合公式(1)完成顶点位置的更新。
如图5C所示,在一个实施例中,蒙皮包括三角面ABC,顶点A绑定的关节索引joint_indices为[1,2],即图5C中joint1和joint2,其权重joint_weights为[m,n],这里,权重指的是关节对于顶点的影响大小,具体由关节和顶点之间的关联关系确定。关节joint1的两个分别变换矩阵为T_mc1和T_cv1,关节joint2的两个变换矩阵为T_mc2和T_cv2,则可以进一步通过以下公式(2)实现对于顶点A的模型坐标的跟踪和更新。
p_model1=(T_mc1×T_cv1×m+T_mc2×T_cv2×n)×p_model0……(2)
其中,p_model0和p_model1分别为顶点A更新前和更新后的模型坐标。
在本公开的一些实施例中,坐标信息包括模型坐标、场景坐标、设备坐标和标记信息。
上述步骤202包括:
确定每一所述三角面的顶点的设备坐标,所述设备坐标为所述基于所述旋转立体显示装置建立的设备坐标系中的坐标;
根据所述显示面板的相位信息和所述设备坐标生成各所述顶点的标记信息。
应当理解的是,显示面板的相位和图像模型是通过基于旋转立体显示装置建立的设备坐标系确定其相对位置关系的,因此,本实施例中,首先确定三角面的设备坐标,然后根据显示面板的相位信息确定三角面各顶点的标记信息。
在一个实施例中,确定每一所述三角面的顶点的设备坐标的步骤包括:
获取每一所述三角面的顶点的模型坐标,所述模型坐标为图像模型坐标系中的坐标;
根据所述模型坐标计算各所述三角面的顶点的场景坐标,所述场景坐标为图像场景坐标系中的坐标;
根据所述场景坐标计算各所述三角面的顶点的设备坐标。
本实施例中,模型坐标为图像模型坐标系中的坐标,也就是说,在基于图像模型单独建立的坐标系中的坐标,主要体现在图像模型中的相对位置;场景坐标为图像场景坐标系中的坐标,体现了图像模型在场景中的相对位置;设备坐标为基于旋转立体显示装置建立的设备坐标系中的坐标,体现了与显示面板或与转轴等硬件设备的相对位置。具体可以通过以下公式计算。
p_devece=T_ds×p_scene=T_ds×T_sm×p_model……(3)
上述公式(1)中,p_model为模型坐标,T_sm为模型坐标和场景坐标之间的换算关系,p_scene为场景坐标,T_ds为场景坐标和设备坐标之间的换算关系,p_devece为设备坐标。
在确定了设备坐标后,进一步基于设备坐标生成标记信息。如图6A和图6B所示,标记信息用于标记三角面的定点与显示面板旋转过程中的各相位之间的位置关系。
图6A中ABC为一个三角面,图中仅示出了相邻的相位i和相位i+1,请继续参阅图6A和图6B,顶点B位于相位i和相位i+1之间,也就是说,本实施例中将其标记为B(i,1+1),同理,进一步可以标记顶点A为A(i-1,1),顶点C为C(i+1,1+2)。依此类推,可以确定各个顶点的标记信息。
Figure PCTCN2021112658-appb-000002
实施时,由上述公式(4)计算顶点的偏转角度θ,然后根据偏转角度θ计算标记信息p_sign。上述公式中,p_decive.y和p_device.x分别为图6B所示坐标系xoy中的场景坐标y和场景坐标x;sections代表相位的总数量,例如,本实施例中每2°为一个相位,共计包括180个相位,则sections的值为180;floor()函数为向下取整函数。这样,通过上述公式能够计算出每一顶点的标记信息。
在确定了每一三角面的顶点的标记信息之后,也就能够确定与该三角面相交的相位信息。请参阅图6A,三角面ABC的顶点的标记信息为A(i-1,1)、B(i,1+1),C(i+1,1+2),因此,可以确定,三角面ABC的边AB穿过相位 i,AC穿过相位i和相位i+1,BC穿过相位i+1,进一步可以确定三角面ABC的边和相位i有两个交点,记为D和E,三角面ABC的边和相位i+1有两个交点,记为M和N,则进一步能够确定三角面和相位i的理想交线为线段DE,和相位i+1的理想交线为MN。
本公开实施例还提供了一种显示处理装置,应用于旋转立体显示装置,所述旋转立体显示装置包括显示面板和转轴,所述显示面板设置于所述转轴上,且能够绕所述转轴旋转。
如图7所示,所述显示处理装置700包括:
模型信息获取模块701,用于获取待显示图像中的图像模型的模型信息,其中,所述图像模型包括至少一个属性集合,每一属性集合包括构成所述图像模型的多个三角面获取待显示图像中的图像模型的模型信息,其中,所述图像模型包括至少一个属性集合,每一属性集合包括构成所述图像模型的多个三角面;
坐标信息遍历模块702,用于根据属性集合的关联关系,遍历每一所述属性集合中各三角面的顶点的坐标信息;
显示数据生成模块703,用于根据每一所述三角面的顶点的坐标信息生成所述显示面板在每一相位的显示数据;
显示模块704,用于在所述显示面板位于各相位时,根据各相位的显示数据显示画面。
在一些实施例中,所述属性结合为材质集合,每一所述材质集合内的各三角面的材质属性相同。
在一些实施例中,所述图像模型包括N个属性集合,N为正整数;
所述坐标信息遍历模块702包括:
根节点确定子模块,用于确定所述图像模型的根节点;
索引子模块,用于根据所述根节点与第一个属性集合之间的索引关系索引第一个属性集合,并获取所述第一个属性集合中三角面的顶点的坐标信息;
所述索引子模块,还用于在N大于1的情况下,根据第M-1个属性集合中包含的索引信息索引第M个属性集合,并获取所述第M个属性集合中三角面的顶点的坐标信息,依此类推,直至获取全部属性集合中各三角面的顶 点的坐标信息,其中,M为小于或等于N,且大于1的正整数。
在一些实施例中,所述待显示图像中的图像模型为动态模型,所述图像模型多个关节节点;
所述坐标信息遍历模块702还包括:
获取子模块,用于获取所述图像模型的动画帧信息;
坐标信息计算子模块,用于根据所述动画帧信息计算各关节节点在每一所述动画帧内的坐标信息;
模型坐标计算子模块,用于根据所述关节节点的坐标信息计算各三角面的顶点的模型坐标。
在一些实施例中,所述图像模型还包括骨骼和蒙皮,每一所述骨骼位于相邻两个关节节点之间,所述蒙皮与所述骨骼相绑定,所述蒙皮由至少一个所述属性集合构成;
所述模型坐标计算子模块包括:
骨骼坐标计算单元,用于根据所述关节节点的坐标信息确定所述骨骼的坐标信息;
顶点坐标计算单元,用于基于所述蒙皮和所述骨骼的绑定关系,根据所述骨骼的坐标信息计算各所述三角面的顶点的坐标信息。
在一些实施例中,所述坐标信息遍历模块702,包括:
设备坐标计算子模块,用于确定每一所述三角面的顶点的设备坐标,所述设备坐标为所述基于所述旋转立体显示装置建立的设备坐标系中的坐标;
标记信息生成子模块,用于根据所述显示面板的相位信息和所述设备坐标生成各所述顶点的标记信息,所述标记信息用于标记所述三角面的定点与所述显示面板旋转过程中的各相位之间的位置关系。
在一些实施例中,所述设备坐标计算子模块包括:
模型坐标获取单元,用于获取每一所述三角面的顶点的模型坐标,所述模型坐标为图像模型坐标系中的坐标;
场景坐标计算单元,用于根据所述模型坐标计算各所述三角面的顶点的场景坐标,所述场景坐标为图像场景坐标系中的坐标;
设备坐标计算单元,用于根据所述场景坐标计算各所述三角面的顶点的 设备坐标。
在一些实施例中,所述显示数据生成模块703包括
相位交线确定子模块,用于根据所述三角面的标记信息确定所述显示面板在各相位与所述三角面的相位交线;
显示数据生成子模块,用于根据所述相位交线生成所述显示面板在相应相位的显示数据。
本公开实施例还提供了一种电子设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如以上任一项所述的显示处理方法的步骤。
本公开实施例提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以上任一项所述的显示处理方法的步骤。
本公开实施例提供了一种显示系统,包括旋转立体显示装置和以上任一项所述的显示处理装置700,所述旋转立体显示装置包括显示面板,所述显示面板可转动设置,所述显示处理装置用于控制所述旋转立体显示装置显示图像。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接, 可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (16)

  1. 一种显示处理方法,应用于旋转立体显示装置,所述旋转立体显示装置包括显示面板,所述显示面板可转动设置;所述显示处理方法包括:
    获取待显示图像中的图像模型的模型信息,其中,所述图像模型包括至少一个属性集合,每一属性集合包括构成所述图像模型的多个三角面;
    根据属性集合的关联关系,遍历每一所述属性集合中各三角面的顶点的坐标信息;
    根据每一所述三角面的顶点的坐标信息生成所述显示面板在每一相位的显示数据;
    在所述显示面板位于各相位时,根据各相位的显示数据显示画面。
  2. 如权利要求1所述的显示处理方法,其中,所述属性结合为材质集合,每一所述材质集合内的各三角面的材质属性相同。
  3. 如权利要求1所述的显示处理方法,其中,所述图像模型包括N个属性集合,N为正整数;
    所述遍历每一所述属性集合中各三角面的顶点的坐标信息,包括:
    确定所述图像模型的根节点;
    根据所述根节点与第一个属性集合之间的索引关系索引第一个属性集合,并获取所述第一个属性集合中三角面的顶点的坐标信息;
    在N大于1的情况下,根据第M-1个属性集合中包含的索引信息索引第M个属性集合,并获取所述第M个属性集合中三角面的顶点的坐标信息,依此类推,直至获取全部属性集合中各三角面的顶点的坐标信息,其中,M为小于或等于N,且大于1的正整数。
  4. 如权利要求1所述的显示处理方法,其中,所述待显示图像中的图像模型为动态模型,所述图像模型多个关节节点;
    所述遍历每一所述属性集合中各三角面的顶点的坐标信息,还包括:
    获取所述图像模型的动画帧信息;
    根据所述动画帧信息计算各关节节点在每一所述动画帧内的坐标信息;
    根据所述关节节点的坐标信息计算各三角面的顶点的模型坐标。
  5. 如权利要求4所述的显示处理方法,其中,所述图像模型还包括骨骼和蒙皮,每一所述骨骼位于相邻两个关节节点之间,所述蒙皮与所述骨骼相绑定,所述蒙皮由至少一个所述属性集合构成;
    所述根据所述关节节点的坐标信息计算各三角面的顶点的模型坐标,包括:
    根据所述关节节点的坐标信息确定所述骨骼的坐标信息;
    基于所述蒙皮和所述骨骼的绑定关系,根据所述骨骼的坐标信息计算各所述三角面的顶点的坐标信息。
  6. 如权利要求3至5中任一项所述的显示处理方法,其中,所述遍历每一所述属性集合中各三角面的顶点的坐标信息,包括:
    确定每一所述三角面的顶点的设备坐标,所述设备坐标为所述基于所述旋转立体显示装置建立的设备坐标系中的坐标;
    根据所述显示面板的相位信息和所述设备坐标生成各所述顶点的标记信息,所述标记信息用于标记所述三角面的定点与所述显示面板旋转过程中的各相位之间的位置关系。
  7. 如权利要求6所述的显示处理方法,其中,所述确定每一所述三角面的顶点的设备坐标,包括:
    获取每一所述三角面的顶点的模型坐标,所述模型坐标为图像模型坐标系中的坐标;
    根据所述模型坐标计算各所述三角面的顶点的场景坐标,所述场景坐标为图像场景坐标系中的坐标;
    根据所述场景坐标计算各所述三角面的顶点的设备坐标。
  8. 如权利要求7所述的显示处理方法,其中,所述根据每一所述三角面的顶点的坐标信息生成所述显示面板在每一相位的显示数据,包括
    根据所述三角面的标记信息确定所述显示面板在各相位与所述三角面的相位交线;
    根据所述相位交线生成所述显示面板在相应相位的显示数据。
  9. 一种显示处理装置,用于控制旋转立体显示装置,所述旋转立体显示装置包括显示面板,所述显示面板可转动设置;所述显示处理装置包括:
    模型信息获取模块,用于获取待显示图像中的图像模型的模型信息,其中,所述图像模型包括至少一个属性集合,每一属性集合包括构成所述图像模型的多个三角面;
    坐标信息遍历模块,用于根据属性集合的关联关系,遍历每一所述属性集合中各三角面的顶点的坐标信息;
    显示数据生成模块,用于根据每一所述三角面的顶点的坐标信息生成所述显示面板在每一相位的显示数据;
    显示模块,用于在所述显示面板位于各相位时,根据各相位的显示数据显示画面。
  10. 如权利要求9所述的装置,其中,所述图像模型包括N个属性集合,N为正整数;所述坐标信息遍历模块包括:
    根节点确定子模块,用于确定所述图像模型的根节点;
    索引子模块,用于根据所述根节点与第一个属性集合之间的索引关系索引第一个属性集合,并获取所述第一个属性集合中三角面的顶点的坐标信息;
    所述索引子模块,还用于在N大于1的情况下,根据第M-1个属性集合中包含的索引信息索引第M个属性集合,并获取所述第M个属性集合中三角面的顶点的坐标信息,依此类推,直至获取全部属性集合中各三角面的顶点的坐标信息,其中,M为小于或等于N,且大于1的正整数。
  11. 如权利要求9所述的装置,其中,所述待显示图像中的图像模型为动态模型,所述图像模型多个关节节点;所述坐标信息遍历模块还包括:
    获取子模块,用于获取所述图像模型的动画帧信息;
    坐标信息计算子模块,用于根据所述动画帧信息计算各关节节点在每一所述动画帧内的坐标信息;
    模型坐标计算子模块,用于根据所述关节节点的坐标信息计算各三角面的顶点的模型坐标。
  12. 如权利要求11所述的装置,其中,所述图像模型还包括骨骼和蒙皮,每一所述骨骼位于相邻两个关节节点之间,所述蒙皮与所述骨骼相绑定,所述蒙皮由至少一个所述属性集合构成;
    所述模型坐标计算子模块包括:
    骨骼坐标计算单元,用于根据所述关节节点的坐标信息确定所述骨骼的坐标信息;
    顶点坐标计算单元,用于基于所述蒙皮和所述骨骼的绑定关系,根据所述骨骼的坐标信息计算各所述三角面的顶点的坐标信息。
  13. 如权利要求10至12中任一项所述的显示处理装置,其中,所述坐标信息遍历模块,包括:
    设备坐标计算子模块,用于确定每一所述三角面的顶点的设备坐标,所述设备坐标为所述基于所述旋转立体显示装置建立的设备坐标系中的坐标;
    标记信息生成子模块,用于根据所述显示面板的相位信息和所述设备坐标生成各所述顶点的标记信息,所述标记信息用于标记所述三角面的定点与所述显示面板旋转过程中的各相位之间的位置关系。
  14. 一种电子设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至8中任一项所述的显示处理方法的步骤。
  15. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至8中任一项所述的显示处理方法的步骤。
  16. 一种显示系统,包括旋转立体显示装置和权利要求9至13中任一项所述的显示处理装置,所述旋转立体显示装置包括显示面板,所述显示面板可转动设置,所述电子设备用于控制所述旋转立体显示装置显示图像。
PCT/CN2021/112658 2020-09-30 2021-08-16 一种显示处理方法和装置 WO2022068430A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011061769.6A CN112200892A (zh) 2020-09-30 2020-09-30 一种显示处理方法和装置
CN202011061769.6 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022068430A1 true WO2022068430A1 (zh) 2022-04-07

Family

ID=74013545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112658 WO2022068430A1 (zh) 2020-09-30 2021-08-16 一种显示处理方法和装置

Country Status (2)

Country Link
CN (1) CN112200892A (zh)
WO (1) WO2022068430A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116385652A (zh) * 2023-04-11 2023-07-04 广州图石科技有限公司 一种参数化几何多线程离散方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112200892A (zh) * 2020-09-30 2021-01-08 京东方科技集团股份有限公司 一种显示处理方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103295260A (zh) * 2013-06-08 2013-09-11 华东师范大学 一种基于旋转体三维显示器的实时体三维数据生成方法
US20150262419A1 (en) * 2014-03-13 2015-09-17 Shalong Maa Stereoscopic 3D display model and mobile device user interface systems and methods
CN108986157A (zh) * 2018-07-12 2018-12-11 李慧勤 一种基于双目相机的虚拟发型交互装置及使用方法
CN109872390A (zh) * 2017-12-04 2019-06-11 星际空间(天津)科技发展有限公司 一种海量三维模型的组织方法
CN112200892A (zh) * 2020-09-30 2021-01-08 京东方科技集团股份有限公司 一种显示处理方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103295260A (zh) * 2013-06-08 2013-09-11 华东师范大学 一种基于旋转体三维显示器的实时体三维数据生成方法
US20150262419A1 (en) * 2014-03-13 2015-09-17 Shalong Maa Stereoscopic 3D display model and mobile device user interface systems and methods
CN109872390A (zh) * 2017-12-04 2019-06-11 星际空间(天津)科技发展有限公司 一种海量三维模型的组织方法
CN108986157A (zh) * 2018-07-12 2018-12-11 李慧勤 一种基于双目相机的虚拟发型交互装置及使用方法
CN112200892A (zh) * 2020-09-30 2021-01-08 京东方科技集团股份有限公司 一种显示处理方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG JUN: "Research on True 3D Volumetric Display Technique Based on the Rotation of a Display Panel", MASTER THESIS, TIANJIN POLYTECHNIC UNIVERSITY, CN, 15 December 2011 (2011-12-15), CN , XP055920231, ISSN: 1674-0246 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116385652A (zh) * 2023-04-11 2023-07-04 广州图石科技有限公司 一种参数化几何多线程离散方法及系统
CN116385652B (zh) * 2023-04-11 2024-02-20 广州图石科技有限公司 一种参数化几何多线程离散方法及系统

Also Published As

Publication number Publication date
CN112200892A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
US10096157B2 (en) Generation of three-dimensional imagery from a two-dimensional image using a depth map
JP4555722B2 (ja) 立体映像生成装置
US6525731B1 (en) Dynamic view-dependent texture mapping
US8884947B2 (en) Image processing apparatus and image processing method
WO2022068430A1 (zh) 一种显示处理方法和装置
US7382374B2 (en) Computerized method and computer system for positioning a pointer
US9754398B1 (en) Animation curve reduction for mobile application user interface objects
JPH08315171A (ja) アニメーションデータの作成方法および作成装置
JP2020173529A (ja) 情報処理装置、情報処理方法、及びプログラム
Penaranda et al. Real-time correction of panoramic images using hyperbolic Möbius transformations
KR100381817B1 (ko) 제트버퍼를 이용한 입체영상 생성방법 및 기록매체
US5793372A (en) Methods and apparatus for rapidly rendering photo-realistic surfaces on 3-dimensional wire frames automatically using user defined points
JP6719596B2 (ja) 画像生成装置、及び画像表示制御装置
EP3871037B1 (en) Efficiency enhancements to construction of virtual reality environments
CN111047674A (zh) 一种动画渲染方法及装置
CN115841539A (zh) 一种基于可视外壳的三维光场生成方法和装置
JP2001222723A (ja) 立体視画像の生成方法及び同装置
LaMar et al. A multilayered image cache for scientific visualization
Harish et al. Designing perspectively correct multiplanar displays
EP4318403A2 (en) Improving image reconstruction with view-dependent surface irradiance
US10453247B1 (en) Vertex shift for rendering 360 stereoscopic content
JPH11175758A (ja) 立体表示方法および装置
JP2022067171A (ja) 生成装置、生成方法、及び、プログラム
Anderson 3d engine for immersive virtual environments
Lu Efficient simulation of lens distortion in OpenGL

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874092

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17907090

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874092

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.07.2023)