WO2022068150A1 - 一种带环境振动补偿的生理信号检测传感器 - Google Patents

一种带环境振动补偿的生理信号检测传感器 Download PDF

Info

Publication number
WO2022068150A1
WO2022068150A1 PCT/CN2021/079270 CN2021079270W WO2022068150A1 WO 2022068150 A1 WO2022068150 A1 WO 2022068150A1 CN 2021079270 W CN2021079270 W CN 2021079270W WO 2022068150 A1 WO2022068150 A1 WO 2022068150A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration compensation
detection sensor
signal detection
physiological signal
piezoelectric film
Prior art date
Application number
PCT/CN2021/079270
Other languages
English (en)
French (fr)
Inventor
单华锋
王家冬
陈磊
查陈飞
沈驾
潘文超
Original Assignee
麒盛科技股份有限公司
浙江清华长三角研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 麒盛科技股份有限公司, 浙江清华长三角研究院 filed Critical 麒盛科技股份有限公司
Publication of WO2022068150A1 publication Critical patent/WO2022068150A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb

Definitions

  • the invention relates to the technical field of sensors, in particular to a physiological signal detection sensor with environmental vibration compensation.
  • Physiological phenomena such as breathing and heartbeat will generate weak vibration signals when the human body sleeps. These vibration signals will be transmitted to some sensors installed on the mattress, or through the mattress, to sensors installed on the bed or in the bed. This kind of weak vibration is sensed, but at the same time, when there is relatively strong vibration in the environment, such as the vibration caused by outdoor construction, the vibration caused by the passing of cars on the road, etc., the detection results will be affected.
  • the signal received by a simple force sensor is mixed with noise. When the noise is close to the signal frequency or has a large amplitude, it is difficult to distinguish the effective signal.
  • the present invention provides a physiological signal detection sensor with environmental vibration compensation, so as to solve the technical problem that the prior art is easily affected by the environmental vibration, resulting in measurement errors in the detection of physiological signals.
  • the present invention provides a physiological signal detection sensor with environmental vibration compensation
  • the physiological signal detection sensor with environmental vibration compensation includes: an upper casing, a lower casing and a circuit board; wherein, the upper casing and the The lower casing is connected to form an internal hollow structure, the upper casing and the lower casing can move relative to each other, and the circuit board is perpendicular to the direction of the telescopic movement;
  • the circuit board includes: a board body , at least one vibration compensation sensing assembly and at least one dynamic force sensing assembly;
  • the plate body is erected in the lower casing, and the plate body is provided with at least two openings;
  • the vibration compensation sensing assembly and the The dynamic force sensing components are respectively arranged in different openings;
  • the upper casing is provided with a convex point facing the lower casing, and the convex point is in contact with the dynamic force sensing component.
  • the vibration compensation sensing assembly includes: a vibration compensation cantilever beam, a first piezoelectric film and a mass; wherein, the end of the vibration compensation cantilever beam is connected to the inner wall of the opening, and the first piezoelectric film Both the membrane and the mass are arranged on the vibration compensation cantilever beam.
  • the first piezoelectric film is located in the middle of the vibration compensation cantilever beam, and the mass block is located at the head end of the vibration compensation cantilever beam.
  • the dynamic force sensing assembly includes: a pressure cantilever beam and a second piezoelectric film, and the second piezoelectric film is arranged on the pressure cantilever beam.
  • the second piezoelectric film is located in the middle of the pressure cantilever beam.
  • an elastic gasket one end of the elastic gasket is in surface contact with the second piezoelectric film, and the other end of the elastic gasket is in contact with the upper shell or the lower shell body connection.
  • the plate body is located between the two openings and is connected to the lower casing or the lower casing.
  • an elastic washer the elastic washer is arranged between the upper casing and the lower casing, and the upper casing is connected to the lower casing through the elastic washer.
  • the opening, the vibration compensation sensing component and the dynamic force sensing component are all elongated.
  • the plate body, the vibration compensation sensing assembly and the dynamic force sensing assembly are integrally formed.
  • the openings are respectively located on both sides of the plate body.
  • the openings are respectively located on one side of the board body and the middle of the board body.
  • the board body is provided with pads, and the pads are respectively electrically connected to the first piezoelectric film and the second piezoelectric film.
  • the chip is electrically connected to the board body.
  • the first piezoelectric film is made of polyvinylidene fluoride or polydimethylsiloxane.
  • the second piezoelectric film is made of polyvinylidene fluoride or polydimethylsiloxane.
  • the elastic gasket is made of silicone or rubber.
  • shielding layers are provided on the inner walls of the upper casing and the lower casing.
  • vibration compensation sensing assembly is parallel to the dynamic force sensing assembly.
  • the elastic gasket is made of silica gel or rubber.
  • FIG. 1 is a cross-sectional view of a physiological signal detection sensor with environmental vibration compensation according to an embodiment of the present invention along the extension center line of a dynamic force sensing assembly;
  • FIG. 2 is a cross-sectional view of a physiological signal detection sensor with environmental vibration compensation according to an embodiment of the present invention along an extension center line of a dynamic force sensing assembly;
  • FIG. 3 is a top view of the first embodiment of the circuit board in the embodiment of the present invention.
  • FIG. 4 is a top view of the second embodiment of the circuit board according to the embodiment of the present invention.
  • FIG. 1 is a sectional view of a physiological signal detection sensor with environmental vibration compensation according to an embodiment of the present invention along the extended center line of a dynamic force sensing assembly
  • FIG. 2 is a physiological signal detection with environmental vibration compensation according to an embodiment of the present invention.
  • a cross-sectional view of the sensor along the extension centerline of the dynamic force sensing assembly FIG. 3 is a top view of the first row of the circuit board in the embodiment of the present invention, and FIG. 4 is a top view of the second row of the circuit board in the embodiment of the present invention.
  • the physiological signal detection sensor with environmental vibration compensation provided by the present invention includes: an upper casing 1, a lower casing 2 and a circuit board 3; wherein, the upper casing 1 and the lower casing 2 connected to form an internal hollow structure, the upper casing 1 and the lower casing 2 can be relatively telescopically moved, and the circuit board 3 is perpendicular to the direction of the telescopic movement; the circuit board 3 includes: a board body 31.
  • At least one vibration compensation sensing assembly 32 and at least one dynamic force sensing assembly 33 the plate body 31 is erected in the lower casing 2, and the plate body 31 is provided with at least two openings 311; the The vibration compensation sensing assembly 32 and the dynamic force sensing assembly 33 are respectively arranged in different openings 311 ; the upper casing 1 is provided with a bump 11 facing the lower casing 2 , the bump 11 in contact with the dynamic force sensing assembly 33 .
  • the upper casing 1 and the lower casing 2 form an inner space for installing the circuit board 3, the circuit board 3 is erected on the lower casing 2, and the circuit board 3 is fixedly connected with the lower casing 2, which helps to reduce the interference of environmental vibration.
  • the extrusion causes the upper shell 1 and the lower shell 2 to shrink relatively slightly, the force disappears, and the upper shell 1 and the lower shell 2 recover.
  • the relative telescopic movement between the upper casing 1 and the lower casing 2 is realized. It can be realized by controlling the hardness of the upper shell 1 and the lower shell 2 or adding elastic parts at the connection between the two.
  • the housing 1 is realized by using a material such as plastic, rubber, or a structure with a telescopic function such as a spring.
  • the board body 31 is provided with at least two openings 311, each opening 311 is provided with a vibration compensation sensing component 32 or a dynamic force sensing component 33, but the circuit board 3 is provided with at least one vibration compensation sensing component 32 and at least one vibration compensation sensing component 32.
  • a vibration compensation sensing component 32 for a dynamic force sensing component 33, an opening 311 can be added separately and a vibration compensation sensing component 32 or a dynamic force sensing component 33 can be added to further enhance the data collection performance of the sensor.
  • the vibration compensation sensing assembly 32 , the dynamic force sensing assembly 33 and the plate body 31 are in the same plane.
  • the bump 11 is used to cooperate with the dynamic force sensing assembly 33, preferably in surface contact, to transmit the pressure received by the upper casing 1 or the lower casing 2 to the dynamic force sensing assembly 33, and the dynamic force sensing assembly 33 outputs corresponding
  • the theoretical output of the vibration compensation sensing component 32 is zero, and when the external environment vibrates, due to inertia, both the vibration compensation sensing component 32 and the dynamic force sensing component 33 will have electrical signal output, and the signal is certain correlation.
  • the bump 11 transmits the pressure to the dynamic force sensing component 33, the dynamic force sensing component 33 outputs a dynamic force signal, and the vibration compensation transmits the pressure.
  • the sensor component 32 has no signal output; when the upper shell 1 and the lower shell 2 are affected by external pressure and external vibration, the vibration compensation sensor component 32 installed in an opening 311 and the circuit board 3 and the upper shell 1 and the lower shell 2 do not interfere with each other, the vibration compensation sensing component 32 takes the circuit board 3 as a fulcrum, and freely vibrates under the action of inertia to output vibration signals, and the dynamic force sensing component 33 outputs dynamic force signals, vibration signals and There is a certain correlation between the dynamic force signals, and the vibration signal makes a certain compensation for the dynamic force signal, eliminating or weakening the influence of environmental vibration on the sensor output signal.
  • the invention realizes the function of simultaneously collecting the dynamic force signal and the vibration compensation signal generated by the environmental vibration, and does not need to calibrate the time difference between the two signals, and does not need additional wiring, enhances the signal integrity, and avoids the need for external installation of the sensor.
  • the introduced installation error reduces the difficulty and cost of production, and helps to improve the speed of obtaining effective signals.
  • an elastic washer 4 such as silica gel or rubber material
  • the elastic washer 4 is arranged between the upper casing 1 and the lower casing 2, and the upper casing 1 passes through the elastic washer 4 is connected to the lower casing 2 .
  • the elastic washer 4 located between them will be squeezed to produce a slight relative displacement.
  • the lower shell will 2 and the upper casing 1 are restored to their original positions, ensuring the stability of the sensor structure and realizing pressure detection.
  • the small displacement of the upper shell 1 and the lower shell 2 towards each other is realized by the elastic washer 4 , which is the simplest and convenient for production and maintenance.
  • the openings 311 are located on two sides of the plate body 31 respectively.
  • the openings 311 are respectively located on one side of the plate body 31 and in the middle of the plate body 31 .
  • the dynamic force sensing component 33 is located in the middle, which can easily receive the pressure directly above, and the overall data is more stable, which helps to improve the accuracy of sensor detection. If it is placed on the side, it can also be placed, but the upper cover structure needs to be treated, otherwise it is more sensitive to the force detection of the upper cover side.
  • vibration compensation sensing assembly 32 is parallel to the dynamic force sensing assembly 33 .
  • the position of the opening 311 there is no specific requirement for the position of the opening 311, and even multiple cantilever beams can be set up, horizontal and vertical, but at least one must be in the same direction as the dynamic force sensing component 33, so that the detected external vibration is basically from the same direction, ensuring that the data correlation and enhance the accuracy of the detection results.
  • the vibration compensation sensing assembly 32 includes: a vibration compensation cantilever beam 321 , a first piezoelectric film 322 and a mass block 323 ; wherein, the end of the vibration compensation cantilever beam 321 Connected to the inner wall of the opening 311 , the first piezoelectric film 322 and the mass block 323 are both disposed on the vibration compensation cantilever beam 321 .
  • the vibration compensation cantilever beam 321 is provided with a mass block 323, which is installed by welding, riveting, gluing, and the like.
  • the vibration compensating cantilever beam 321 is suspended only when the end is connected to the inner wall of an opening 311, and does not interfere with the upper casing 1 and the lower casing 2.
  • the vibration compensating cantilever beam 321 can vibrate freely up and down.
  • the vibration compensating cantilever beam 321 generates corresponding vibration to generate a cyclic reciprocating displacement, so that the first piezoelectric film 322 is deformed, thereby outputting a corresponding electrical signal.
  • the structure is simple and practical, suitable for large-scale production and application, and the production cost is low.
  • the first piezoelectric film 322 is attached to the upper surface or the lower surface of the vibration compensation cantilever beam 321 in order to pursue a larger area of the piezoelectric film to facilitate attachment, and more importantly, to enhance the vibration compensation sensing component 32 signal output.
  • the first piezoelectric film 322 is located in the middle of the vibration compensation cantilever beam 321 , and the mass block 323 is located at the head end of the vibration compensation cantilever beam 321 .
  • the first piezoelectric film 322 is arranged in the middle of the vibration compensating cantilever beam 321 , the mass block 323 arranged at the head end of the vibration compensating cantilever beam 321 helps to strengthen the vibration inertia, and the mass block 323 enhances the sensitivity of the vibration compensating cantilever beam 321 to vibration feedback , the reciprocating deformation of the vibration compensation cantilever beam 321 is strengthened, and the first piezoelectric film 322 located in the middle of the vibration compensation cantilever beam 321 is uniformly deformed, and the generated electrical signal is more than other positions. smaller, further improving the accuracy of the vibration signal output by the sensor.
  • the dynamic force sensing assembly 33 includes: a pressure cantilever beam 331 and a second piezoelectric film 332 , and the second piezoelectric film 332 is provided on the pressure cantilever beam 331 superior.
  • the upper casing 1 is in contact with the pressure cantilever beam 331 through the bump 11, and the second piezoelectric film 332 is attached to the upper or lower surface of the pressure cantilever beam 331, so as to pursue a larger area of the piezoelectric film, which is convenient for attaching, and more It is important to enhance the signal output of the dynamic force sensing assembly 33 .
  • the pressure cantilever beam 331 is also deformed, and the piezoelectric film is also deformed and an electrical signal is output.
  • the structure is simple and practical, suitable for large-scale production and application, and the production cost is low.
  • the second piezoelectric film 332 is located in the middle of the pressure cantilever beam 331 .
  • the second piezoelectric film 332 is arranged in the middle of the pressure cantilever beam 331 , and the vibration compensation cantilever beam 321 causes its own deformation due to vibration compensation, so that the piezoelectric film in the middle is uniformly deformed, and the generated electrical signal is compared with other positions.
  • the fluctuation range of the electrical signal generated by the first piezoelectric film 322 is smaller, which further improves the accuracy of the pressure signal output by the sensor.
  • FIG. 1 it also includes: an elastic gasket 5 , one end of the elastic gasket 5 is in surface contact with the second piezoelectric film 332 , and the other end of the elastic gasket 5 is in surface contact with the second piezoelectric film 332 .
  • the upper casing 1 or the lower casing 2 are connected.
  • An elastic gasket 5 is added between the second piezoelectric film 332 and the upper casing 1 or the lower casing 2, and the size is equivalent to that of the pressure cantilever beam 331, so that there is a certain pre-pressure between the elastic gasket 5 and the pressure cantilever beam 331, Loading on the pressure piezoelectric film they hold can also relieve the vibration interference of the upper shell 1 or the lower shell 2 caused by external force, so as to obtain a more accurate dynamic force signal.
  • the elastic gasket 5 can be made of soft elastic materials such as silica gel or rubber, and the thickness is 1 mm. According to the height of the connector between the boards, the thickness of the soft silica gel will also change accordingly.
  • the hardness of soft silicone can be selected from 20 to 40 Shore hardness, which can be adjusted according to the compressive stress to be measured.
  • the elastic gasket 5 can also press the second piezoelectric film 332 to prevent it from falling off accidentally.
  • the plate body 31 is located between the two openings 311 and is connected to the lower case 2 or the lower case 2 .
  • the circuit board 3 is fixedly mounted on the lower casing 2 by fixing screw columns, so that the vibration compensation sensing components 32 and the dynamic force sensing components 33 located on both sides do not interfere with each other during vibration. Optimize signal accuracy.
  • the opening 311 , the vibration compensation sensing assembly 32 and the dynamic force sensing assembly 33 are all elongated.
  • the sensitivity is higher, and the deformation becomes uniform, which is helpful for signal acquisition.
  • the plate body 31 , the vibration compensation sensing assembly 32 and the dynamic force sensing assembly 33 are integrally formed.
  • the strength between the reinforcement plate body 31 , the vibration compensation sensing assembly 32 and the dynamic force sensing assembly 33 improves overall durability, reduces the number of parts and assembly procedures, and improves production efficiency.
  • the board body 31 is provided with pads 312 , and the pads 312 are respectively electrically connected to the first piezoelectric film 322 and the second piezoelectric film 332 .
  • the pads 312 can be divided into signal pads and ground pads, the signal pads are electrically connected to the positive electrode of the piezoelectric film, and the ground pads are electrically connected to the negative electrode of the piezoelectric film.
  • the transmission of signals is realized while supplying power.
  • the chip is electrically connected to the board body 31 .
  • the chip is shown in the figure.
  • the collected two-way signals are sent to the processor at the same time.
  • the compensation algorithm the influence of environmental vibration on the sensor is eliminated, useful signals are obtained, and the accuracy of the data collected by the sensor is optimized.
  • the first piezoelectric film 322 is made of polyvinylidene fluoride or polydimethylsiloxane.
  • the material of the piezoelectric film is selected from common piezoelectric materials, such as polyvinylidene fluoride (PVDF), polydimethylsiloxane (PDMS), etc.
  • the first piezoelectric film 322 and the second piezoelectric film 332 can be selected from the above-mentioned materials. Material.
  • the vibration compensating cantilever beam 321 and the pressure cantilever beam 331 are deformed by vibration and pressure, respectively, the first piezoelectric film 322 and the second piezoelectric film 332 are driven to deform to generate electrical signals.
  • These piezoelectric materials have light weight, wide frequency response, high voltage voltage constant, and simple vibration mode, which help to optimize the performance of the sensor.
  • shielding layers are provided on the inner walls of the upper casing 1 and the lower casing 2 .
  • the upper casing 1 and the lower casing 2 are provided with shielding layers (not shown in the figure), especially the inner walls of the two are respectively provided with shielding layers, and the shielding layers are formed by electroplating the surfaces of the two or directly attaching conductive layers. Cloth and other materials can further enhance the sensor's suppression effect on external radiation interference and improve the accuracy of the signal.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Dentistry (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

一种带环境振动补偿的生理信号检测传感器,传感器包括:上壳体(1)、下壳体(2)和电路板(3);其中,上壳体(1)与下壳体(2)连接形成内部中空结构,上壳体(1)与下壳体(2)之间可相对伸缩运动,电路板(3)与伸缩运动的方向垂直;电路板(3)包括:板本体(31)、至少一个振动补偿传感组件(32)和至少一个动态力传感组件(33);板本体(31)架设于下壳体(2)内,板本体(31)设有至少两个开口;振动补偿传感组件(32)和动态力传感组件(33)分别设于不同的开口(311)中;上壳体(1)设有朝向下壳体(2)的凸点(11),凸点(11)与动态力传感组件(33)接触。通过集成环境振动补偿电路和结构,在一定程度上消除环境振动噪声的影响,提高传感器检测的准确性。

Description

一种带环境振动补偿的生理信号检测传感器 技术领域
本发明涉及传感器技术领域,尤其涉及一种带环境振动补偿的生理信号检测传感器。
背景技术
人体睡眠时呼吸、心跳等生理现象都会产生微弱的振动信号,这些振动信号会传递到某些安装到床垫上的传感器,或通过床垫,传递到安装于床板上或床板内传感器上,传感器感测这种微弱振动,但同时,当所处环境有比较强烈的振动时,比如户外施工带来的振动,路边汽车驶过带来的振动等,检测结果会受到影响。单纯的力传感器接收到的信号混合了噪声,当噪声与信号频率相近,或幅度较大时,很难区分有效信号。
发明内容
本发明提供一种带环境振动补偿的生理信号检测传感器,以解决现有技术易受环境振动影响,导致生理信号检测时出现测量误差的技术问题。
为此,本发明提供的一种带环境振动补偿的生理信号检测传感器,该带环境振动补偿的生理信号检测传感器包括:上壳体、下壳体和电路板;其中,所述上壳体与所述下壳体连接形成内部中空结构,所述上壳体与所述下壳体之间可相对伸缩运动,所述电路板与所述伸缩运动的方向垂直;所述电路板包括:板本体、至少一个振动补偿传感组件和至少一个动态力传感组件;所述板本体架设于所述下壳体内,所述板本体设有至少两个开口;所述振动补偿传感组件和所述动态力传感组件分别设于不同的所述开口中;所述上壳体设有朝向所述下壳体的凸点,所述凸点与所述动态力传感组件的接触。
进一步地,所述振动补偿传感组件包括:振动补偿悬臂梁、第一压电薄膜和质量块;其中,所述振动补偿悬臂梁的末端与所述开口的内壁连接,所述第 一压电薄膜和所述质量块均设于所述振动补偿悬臂梁上。
进一步地,所述第一压电薄膜位于所述振动补偿悬臂梁的中部,所述质量块位于所述振动补偿悬臂梁的首端。
进一步地,所述动态力传感组件包括:压力悬臂梁和第二压电薄膜,所述第二压电薄膜设于所述压力悬臂梁上。
进一步地,所述第二压电薄膜位于所述压力悬臂梁的中部。
进一步地,还包括:弹性垫片,所述弹性垫片的一端与所述第二压电薄膜之间为面接触,所述弹性垫片的另一端与所述上壳体或所述下壳体连接。
进一步地,所述板本体位于两个开口之间处与所述下壳体或下壳体连接。
进一步地,还包括:弹性垫圈,所述弹性垫圈设于所述上壳体和所述下壳体之间,所述上壳体通过所述弹性垫圈与所述下壳体连接。
进一步地,所述开口、所述振动补偿传感组件和所述动态力传感组件均为长条形。
进一步地,所述板本体、所述振动补偿传感组件和所述动态力传感组件为一体成型。
进一步地,所述开口分别位于所述板本体的两侧。
进一步地,所述开口分别位于所述板本体的一侧和所述板本体的中部。
进一步地,所述板本体设有焊盘,所述焊盘分别与所述第一压电薄膜和所述第二压电薄膜电连接。
进一步地,还包括芯片:所述芯片与所述板本体电连接。
进一步地,所述第一压电薄膜为聚偏氟乙烯或聚二甲基硅氧烷材质。
进一步地,所述第二压电薄膜为聚偏氟乙烯或聚二甲基硅氧烷材质。
进一步地,所述弹性垫圈为硅胶或橡胶材质。
进一步地,所述上壳体和所述下壳体的内壁上均设有屏蔽层。
进一步地,所述振动补偿传感组件与所述动态力传感组件平行。
进一步地,所述弹性垫片为硅胶或橡胶材质。
通过集成环境振动补偿电路和结构,在一定程度上消除环境振动噪声的 影响,提高传感器检测的准确性。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明实施例的一种带环境振动补偿的生理信号检测传感器沿动态力传感组件延展中心线的剖面图;
图2为本发明实施例的一种带环境振动补偿的生理信号检测传感器沿动态力传感组件延展中心线的剖面图;
图3为本发明实施例中电路板的第一实施列俯视图;
图4为本发明实施例中电路板的第二实施列俯视图。
附图标记说明:
1-上壳体、2-下壳体、3-电路板、4-弹性垫圈、5-弹性垫片;
11-凸点、31-板本体、32-振动补偿传感组件、33-动态力传感组件;
311-开口、312-焊盘、321-振动补偿悬臂梁、322-第一压电薄膜、323-质量块、331-压力悬臂梁、332-第二压电薄膜。
具体实施方式
下面结合附图对本发明作进一步详细描述。
图1为本发明实施例的一种带环境振动补偿的生理信号检测传感器沿动态力传感组件延展中心线的剖面图、图2为本发明实施例的一种带环境振动补偿的生理信号检测传感器沿动态力传感组件延展中心线的剖面图、图3为本发明实施例中电路板的第一实施列俯视图、图4为本发明实施例中电路板的第二实施列俯视图,如图1至图4所示,本发明提供的带环境振动补偿的生理信号检测传感器包括:上壳体1、下壳体2和电路板3;其中,所述上壳体1与所述下壳体2连接形成内部中空结构,所述上壳体1与所述下壳体2之间可相对伸缩运动,所述电路板3与所述伸缩运动的方向垂直;所述电路板3包括:板本体31、至少一个振动补偿传感组件32和至少一个动态力传感组件33;所述板本体31架设于所述下壳体2内,所述板本体31设 有至少两个开口311;所述振动补偿传感组件32和所述动态力传感组件33分别设于不同的所述开口311中;所述上壳体1设有朝向所述下壳体2的凸点11,所述凸点11与所述动态力传感组件33的接触。
上壳体1和下壳体2形成一个内部空间用于安装电路板3,电路板3架设在下壳体2上,电路板3与下壳体2固定连接,有助于减少环境振动的干扰。上壳体1、下壳体2的外表面垂直方向受力时,挤压使得上壳体1、下壳体2产生相对的微小收缩,受力消失,上壳体1、下壳体2恢复原状,实现上壳体1与下壳体2之间可相对伸缩运动。可以通过控制上壳体1和下壳体2的硬度或在两者连接处增设弹性件实现,上壳体1和下壳体2的硬度可以通过材料的选择、厚度、结构的设计实现,如上壳体1使用塑料、橡胶等材料或弹簧之类的具备伸缩功能的结构实现,在现有技术中存在大量的相关技术方案可供选择,不再列举。板本体31上设有至少两个开口311,每个开口311中单独设置一个振动补偿传感组件32或动态力传感组件33,但电路板3设有至少一个振动补偿传感组件32和至少一个动态力传感组件33,还可单独增设开口311并增加振动补偿传感组件32或动态力传感组件33,进一步强化传感器的数据采集性能。振动补偿传感组件32、动态力传感组件33和板本体31处于同一个平面内。凸点11用于与动态力传感组件33配合,最好是面接触,将上壳体1或下壳体2受到的压力传递给动态力传感组件33,动态力传感组件33输出相应的动态力信号,此时振动补偿传感组件32理论输出为零,而当外界环境振动时,由于惯性,振动补偿传感组件32和动态力传感组件33都会有电信号输出,且信号呈一定相关性。
当传感器安装至采集位置,上壳体1、下壳体2仅受到外部压力时,凸点11将压力传递至动态力传感组件33,动态力传感组件33输出动态力信号,振动补偿传感组件32无信号输出;上壳体1、下壳体2受到外部压力的同时又受到外部振动影响时,安装于某一开口311中的振动补偿传感组件32与电路板3、上壳体1和下壳体2之间互不干涉,振动补偿传感组件32以电路板3为支点,在惯性的作用下自由振动输出振动信号,动态力传感组件33输出动态力信号,振动信号和动态力信号之间呈现出一定的相关性,振动信号对动态力信号做出一定的补偿,消除或减弱环境振动对传感器输出 信号的影响。
本发明实现了同时采集动态力信号和环境振动产生的振动补偿信号的功能,且无需校准两种信号之间的时差,也无需额外的接线,增强了信号完整性,避免了因传感器的外部安装引入的安装误差,降低了生产难度和成本,有助于提升获取有效信号的速度。通过集成环境振动补偿电路和结构,在一定程度上消除环境振动噪声的影响,提高传感器检测的准确性。
优选地,还包括:弹性垫圈4,如硅胶、橡胶材质,所述弹性垫圈4设于所述上壳体1和所述下壳体2之间,所述上壳体1通过所述弹性垫圈4与所述下壳体2连接。
当上壳体1或下壳体2受外力影响压向对方时,会挤压位于两者之间的弹性垫圈4产生微小相向位移,外力消失后,由于弹性垫圈4自身具备弹性,下壳体2和上壳体1恢复至原始位置,保证传感器结构的稳定,并实现压力检测。通过弹性垫圈4实现上壳体1和下壳体2的相向微小位移,此种方式最为简单,方便生产和维护。
优选地,如图3所示,所述开口311分别位于所述板本体31的两侧。
优选地,如图4所示,所述开口311分别位于所述板本体31的一侧和所述板本体31的中部。
增加悬臂梁,就要增加电路处理单元,所以从成本和功能考虑,两个比较好。动态力传感组件33位于中间,可方便接收正上方压力,整体数据更加稳定,有助于提高传感器检测的准确性。如果放置侧边也可以,但上盖结构要做处理,否则他对上盖一边的力检测比敏感。
进一步地,所述振动补偿传感组件32与所述动态力传感组件33平行。
开口311位置并没有特定的要求,甚至可以设置多个悬臂梁,横纵垂直,但至少保证一个与动态力传感组件33同方向,这样检测外部振动也基本来自同一个方向,保证数据之间的相关性,增强检测结果的准确性。
进一步地,如图2至图4所示,所述振动补偿传感组件32包括:振动补偿悬臂梁321、第一压电薄膜322和质量块323;其中,所述振动补偿悬臂梁321的末端与所述开口311的内壁连接,所述第一压电薄膜322和所述质量块323均设于所述振动补偿悬臂梁321上。
振动补偿悬臂梁321上设有质量块323,通过焊接、铆接、胶黏等方式安装。振动补偿悬臂梁321仅末端与某一开口311的内壁连接时限悬空设置,并与上壳体1、下壳体2互不干涉,振动补偿悬臂梁321可上下可自由振动。当上壳体1、下壳体2受到外部振动影响时,在质量块323的配合下,振动补偿悬臂梁321产生相应振动产生循环往复的位移,使得第一压电薄膜322形变,从而输出相应的电信号。该结构简单实用,适宜规模化生产和应用,生产成本较低。
优选地,第一压电薄膜322贴附于振动补偿悬臂梁321的上表面或下表面,以追求较大面积的压电薄膜,方便贴附,更重要的是增强振动补偿传感组件32的信号输出。
进一步地,如图2至图4所示,所述第一压电薄膜322位于所述振动补偿悬臂梁321的中部,所述质量块323位于所述振动补偿悬臂梁321的首端。
第一压电薄膜322设于振动补偿悬臂梁321的中部,设于振动补偿悬臂梁321首端的质量块323有助于强化振动惯性,质量块323强化振动补偿悬臂梁321对振动反馈的灵敏性,强化振动补偿悬臂梁321的往复形变,位于振动补偿悬臂梁321中部的第一压电薄膜322随之均匀形变,产生的电信号较其他位置设置第一压电薄膜322产生的电信号波动范围更小,进一步提高传感器输出的振动信号准确度。
进一步地,如图3和图4所示,所述动态力传感组件33包括:压力悬臂梁331和第二压电薄膜332,所述第二压电薄膜332设于所述压力悬臂梁331上。
上壳体1与压力悬臂梁331通过凸点11接触,第二压电薄膜332贴附于压力悬臂梁331的上表面或下表面,以追求较大面积的压电薄膜,方便贴附,更重要的是增强动态力传感组件33的信号输出。当上壳体1或下壳体2受到外部压力时,压力悬臂梁331也随之产生形变,压电薄膜同样产生形变并输出电信号。该结构简单实用,适宜规模化生产和应用,生产成本较低。
进一步地,如图2至图4所示,所述第二压电薄膜332位于所述压力悬臂梁331的中部。
第二压电薄膜332设于压力悬臂梁331的中部,振动补偿悬臂梁321因 振动产生振动补偿促使自身发生形变使得位于其中部的压电薄膜随之均匀形变,产生的电信号较其他位置设置第一压电薄膜322产生的电信号波动范围更小,进一步提高传感器输出的压力信号准确度。
进一步地,如图1所示,还包括:弹性垫片5,所述弹性垫片5的一端与所述第二压电薄膜332之间为面接触,所述弹性垫片5的另一端与所述上壳体1或所述下壳体2连接。
第二压电薄膜332与上壳体1或下壳体2之间增设弹性垫片5,尺寸与压力悬臂梁331尺寸相当,使弹性垫片5与压力悬臂梁331之间有一定预压力,加载到他们所夹持的压力压电膜上,还可以缓解上壳体1或下壳体2受到外力产生的振动干扰,从而获得更准确的动态力信号。
弹性垫片5可使用硅胶或橡胶等软质弹性材料,厚度为1mm,根据板间连接器的高度,软硅胶的厚度也将随之变化。软硅胶的硬度可选20至40邵氏硬度,可根据待测压应力调整。此外弹性垫片5还可压住第二压电薄膜332,防止其意外脱落。
进一步地,如图3和图4所示,所述板本体31位于两个开口311之间处与所述下壳体2或下壳体2连接。
电路板3通过固定螺丝柱固定安装于下壳体2上,使位于两侧的振动补偿传感组件32和动态力传感组件33在振动时互不干扰。优化信号的准确性。
进一步地,如图3和图4所示,所述开口311、所述振动补偿传感组件32和所述动态力传感组件33均为长条形。灵敏性更高,形变更为均匀,有助于信号的采集。
进一步地,如图3和图4所示,所述板本体31、所述振动补偿传感组件32和所述动态力传感组件33为一体成型。
强化板本体31、振动补偿传感组件32和动态力传感组件33之间的强度,提升整体的耐用性,减少了零件的数量和装配工序,生产效率得到提高。
进一步地,如图3和图4所示,所述板本体31设有焊盘312,所述焊盘312分别与所述第一压电薄膜322和所述第二压电薄膜332电连接。
焊盘312可分为信号焊盘和地焊盘,信号焊盘与压电薄膜的正极电连接,地焊盘与压电薄膜的负极电连接。供电的同时实现信号的传输。
进一步地,还包括:芯片,所述芯片与所述板本体31电连接。
芯片在图中为示出。采集到的两路信号同时送到处理器,通过补偿算法,消除环境振动对传感器影响,获取有用信号,优化本传感器采集数据的准确性。
进一步地,所述第一压电薄膜322为聚偏氟乙烯或聚二甲基硅氧烷材质。
压电薄膜的材料选择常见的压电材料,例如聚偏氟乙烯(PVDF)、聚二甲基硅氧烷(PDMS)等,第一压电薄膜322和第二压电薄膜332均可以选用上述材料。振动补偿悬臂梁321和压力悬臂梁331分别受到振动和压力产生形变时,第一压电薄膜322和第二压电薄膜332被带动形变,产生电信号。这些压电材料具有质量轻、频响宽、高压电电压常数且振动模式单纯,有助于优化传感器的性能。
进一步地,所述上壳体1和所述下壳体2的内壁上均设有屏蔽层。
上壳体1和下壳体2设有屏蔽层(图中未示出),尤其是两者的内壁上分别设有屏蔽层,通过对两者表面进行电镀处理形成屏蔽层或者直接贴附导电布等材料,进一步增强传感器对外接辐射干扰的抑制效果,提升信号的准确性。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。

Claims (20)

  1. 一种带环境振动补偿的生理信号检测传感器,其特征在于,包括:上壳体、下壳体和电路板;
    其中,所述上壳体与所述下壳体连接形成内部中空结构,所述上壳体与所述下壳体之间可相对伸缩运动,所述电路板与所述伸缩运动的方向垂直;
    所述电路板包括:板本体、至少一个振动补偿传感组件和至少一个动态力传感组件;
    所述板本体架设于所述下壳体内,所述板本体设有至少两个开口;
    所述振动补偿传感组件和所述动态力传感组件分别设于不同的所述开口中;
    所述上壳体设有朝向所述下壳体的凸点,所述凸点与所述动态力传感组件的接触。
  2. 根据权利要求1所述的带环境振动补偿的生理信号检测传感器,其特征在于,所述振动补偿传感组件包括:振动补偿悬臂梁、第一压电薄膜和质量块;
    其中,所述振动补偿悬臂梁的末端与所述开口的内壁连接,所述第一压电薄膜和所述质量块均设于所述振动补偿悬臂梁上。
  3. 根据权利要求2所述的带环境振动补偿的生理信号检测传感器,其特征在于,所述第一压电薄膜位于所述振动补偿悬臂梁的中部,所述质量块位于所述振动补偿悬臂梁的首端。
  4. 根据权利要求1所述的带环境振动补偿的生理信号检测传感器,其特征在于,所述动态力传感组件包括:压力悬臂梁和第二压电薄膜,所述第二压电薄膜设于所述压力悬臂梁上。
  5. 根据权利要求4所述的带环境振动补偿的生理信号检测传感器,其特征在于,所述第二压电薄膜位于所述压力悬臂梁的中部。
  6. 根据权利要求1至5中任意一项所述的带环境振动补偿的生理信号检测传感器,其特征在于,还包括:弹性垫片,所述弹性垫片的一端与所述第二压电薄膜之间为面接触,所述弹性垫片的另一端与所述上壳体或所述下壳体连接。
  7. 根据权利要求6所述的带环境振动补偿的生理信号检测传感器,其特征在于,所述板本体位于两个开口之间处与所述下壳体或下壳体连接。
  8. 根据权利要求6所述的带环境振动补偿的生理信号检测传感器,其特征在于,还包括:弹性垫圈,所述弹性垫圈设于所述上壳体和所述下壳体之间,所述上壳体通过所述弹性垫圈与所述下壳体连接。
  9. 根据权利要求6所述的带环境振动补偿的生理信号检测传感器,其特征在于,所述开口、所述振动补偿传感组件和所述动态力传感组件均为长条形。
  10. 根据权利要求6所述的带环境振动补偿的生理信号检测传感器,其特征在于,所述板本体、所述振动补偿传感组件和所述动态力传感组件为一体成型。
  11. 根据权利要求6所述的带环境振动补偿的生理信号检测传感器,其特征在于,所述开口分别位于所述板本体的两侧。
  12. 根据权利要求6所述的带环境振动补偿的生理信号检测传感器,其特征在于,所述开口分别位于所述板本体的一侧和所述板本体的中部。
  13. 根据权利要求6所述的带环境振动补偿的生理信号检测传感器,其特征在于,所述板本体设有焊盘,所述焊盘分别与所述第一压电薄膜和所述第二压电薄膜电连接。
  14. 根据权利要求13所述的带环境振动补偿的生理信号检测传感器,其特征在于,还包括芯片:所述芯片与所述板本体电连接。
  15. 根据权利要求2或3所述的带环境振动补偿的生理信号检测传感器,其特征在于,所述第一压电薄膜为聚偏氟乙烯或聚二甲基硅氧烷材质。
  16. 根据权利要求4或5所述的带环境振动补偿的生理信号检测传感器,其特征在于,所述第二压电薄膜为聚偏氟乙烯或聚二甲基硅氧烷材质。
  17. 根据权利要求8所述的带环境振动补偿的生理信号检测传感器,其特征在于,所述弹性垫圈为硅胶或橡胶材质。
  18. 根据权利要求6所述的带环境振动补偿的生理信号检测传感器,其特征在于,所述上壳体和所述下壳体的内壁上均设有屏蔽层。
  19. 根据权利要求1至5中任意一项所述的带环境振动补偿的生理信号检测传感器,其特征在于,所述振动补偿传感组件与所述动态力传感组件平行。
  20. 根据权利要求6所述的带环境振动补偿的生理信号检测传感器,其特征在于,所述弹性垫片为硅胶或橡胶材质。
PCT/CN2021/079270 2020-09-29 2021-03-05 一种带环境振动补偿的生理信号检测传感器 WO2022068150A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011054605.0 2020-09-29
CN202011054605.0A CN114305395A (zh) 2020-09-29 2020-09-29 一种带环境振动补偿的生理信号检测传感器

Publications (1)

Publication Number Publication Date
WO2022068150A1 true WO2022068150A1 (zh) 2022-04-07

Family

ID=80951038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079270 WO2022068150A1 (zh) 2020-09-29 2021-03-05 一种带环境振动补偿的生理信号检测传感器

Country Status (2)

Country Link
CN (1) CN114305395A (zh)
WO (1) WO2022068150A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4951510A (en) * 1988-07-14 1990-08-28 University Of Hawaii Multidimensional force sensor
CN1159573A (zh) * 1996-03-07 1997-09-17 三星电子株式会社 振动检测传感器
US6230565B1 (en) * 1997-05-29 2001-05-15 Alliedsignal Inc. Pressure-compensated transducers, pressure-compensated accelerometers, force-sensing methods, and acceleration-sensing methods
US6293154B1 (en) * 1999-12-10 2001-09-25 Kulite Semiconductor Products Vibration compensated pressure sensing assembly
CN101281071A (zh) * 2008-05-29 2008-10-08 北京航空航天大学 一种双谐振梁式微机械压力传感器
US20100083764A1 (en) * 2008-10-02 2010-04-08 Kulite Semiconductor Products, Inc. Redundant self compensating leadless pressure sensor
US20160291761A1 (en) * 2015-03-31 2016-10-06 Synaptics Incorporated Force enhanced input device vibration compensation
CN110068418A (zh) * 2019-03-21 2019-07-30 慧石(上海)测控科技有限公司 一种可在振动环境中工作的压力及加速度多功能传感器
CN111649767A (zh) * 2019-12-26 2020-09-11 麒盛科技股份有限公司 一种分体式压电传感器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4951510A (en) * 1988-07-14 1990-08-28 University Of Hawaii Multidimensional force sensor
CN1159573A (zh) * 1996-03-07 1997-09-17 三星电子株式会社 振动检测传感器
US6230565B1 (en) * 1997-05-29 2001-05-15 Alliedsignal Inc. Pressure-compensated transducers, pressure-compensated accelerometers, force-sensing methods, and acceleration-sensing methods
US6293154B1 (en) * 1999-12-10 2001-09-25 Kulite Semiconductor Products Vibration compensated pressure sensing assembly
CN101281071A (zh) * 2008-05-29 2008-10-08 北京航空航天大学 一种双谐振梁式微机械压力传感器
US20100083764A1 (en) * 2008-10-02 2010-04-08 Kulite Semiconductor Products, Inc. Redundant self compensating leadless pressure sensor
US20160291761A1 (en) * 2015-03-31 2016-10-06 Synaptics Incorporated Force enhanced input device vibration compensation
CN110068418A (zh) * 2019-03-21 2019-07-30 慧石(上海)测控科技有限公司 一种可在振动环境中工作的压力及加速度多功能传感器
CN111649767A (zh) * 2019-12-26 2020-09-11 麒盛科技股份有限公司 一种分体式压电传感器

Also Published As

Publication number Publication date
CN114305395A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
US5099702A (en) Perimeter mounted polymeric piezoelectric transducer pad
US11796411B2 (en) Sensor with a flexible plate
US5177472A (en) Vibrating input pen used for a coordinate input apparatus
KR20120023008A (ko) 생체 정보 검출 장치
JP4820407B2 (ja) 振動遮断装置
CN109828123B (zh) 一种基于长周期光纤光栅弯曲特性的二维加速度传感器及测量方法
JP4904704B2 (ja) 荷重検知装置
JP2011120794A5 (zh)
WO2022068150A1 (zh) 一种带环境振动补偿的生理信号检测传感器
CN214387453U (zh) 一种带环境振动补偿的生理信号检测传感器
KR102337688B1 (ko) 가속도 센서 및 이를 구비하는 음향 벡터 센서
RU2546968C1 (ru) Комбинированный гидроакустический приемник
CN1296727C (zh) 一种三分量振动检测装置
CN215677388U (zh) 一种高灵敏柔性触觉传感器及智能设备
WO2019153666A1 (zh) 一体式生理信号检测传感器
JP2007212191A (ja) 加速度センサ
CN109990888A (zh) 一种大量程力测量机构
US20200072607A1 (en) Sensor device and electronic apparatus
CN207855679U (zh) 新型血压测量装置
JP4774733B2 (ja) 複合センサ
CN105675919A (zh) 一种基于光纤光栅的低频加速度传感器
CN219265544U (zh) 一种波纹膜片式的压电压力传感器
CN214250909U (zh) 一种裂缝检测装置
JP3297887B2 (ja) 静電容量式センサー
JPS6229931Y2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21873817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21873817

Country of ref document: EP

Kind code of ref document: A1