WO2022068087A1 - 基于喷嘴内涡线空化诱导中空喷雾结构的柴油机喷油器 - Google Patents

基于喷嘴内涡线空化诱导中空喷雾结构的柴油机喷油器 Download PDF

Info

Publication number
WO2022068087A1
WO2022068087A1 PCT/CN2020/137072 CN2020137072W WO2022068087A1 WO 2022068087 A1 WO2022068087 A1 WO 2022068087A1 CN 2020137072 W CN2020137072 W CN 2020137072W WO 2022068087 A1 WO2022068087 A1 WO 2022068087A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle valve
nozzle
pressure chamber
axis
injector
Prior art date
Application number
PCT/CN2020/137072
Other languages
English (en)
French (fr)
Inventor
何志霞
郭根苗
管伟
王谦
王健权
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Publication of WO2022068087A1 publication Critical patent/WO2022068087A1/zh
Priority to US17/890,178 priority Critical patent/US11614061B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/06Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves being furnished at seated ends with pintle or plug shaped extensions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/182Discharge orifices being situated in different transversal planes with respect to valve member direction of movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1833Discharge orifices having changing cross sections, e.g. being divergent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1846Dimensional characteristics of discharge orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1866Valve seats or member ends having multiple cones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1893Details of valve member ends not covered by groups F02M61/1866 - F02M61/188
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention belongs to the technical field of diesel fuel injection atomization, and in particular relates to a diesel fuel injector based on a vortex line cavitation-induced hollow spray structure in a nozzle.
  • Diesel engine is an important equipment foundation to promote a country's economic growth and social operation.
  • the high-pressure common rail fuel injection system greatly improves the quality of fuel spray atomization, greatly improves the output power and torque of the diesel engine, and has become the mainstream development direction of the world's diesel engine power.
  • the electronically controlled injector in the system is the key to breaking through the high-pressure common rail fuel injection technology.
  • my country has developed into the main market and producer of diesel engines in the world, but there is still a certain gap between domestic electronically controlled injectors in performance, reliability and consistency compared with foreign products of the same generation, which has become a constraint to my country's realization of a new generation of diesel engines. one of the bottleneck technologies. Therefore, it is urgent to find out the atomization mechanism of fuel jet spray, realize precise control of fuel injection, and then optimize the combustion and emission performance of diesel engines.
  • the atomization mechanisms of high-pressure fuel jets mainly include: turbulence, aerodynamics and cavitation.
  • the turbulent flow inside the nozzle leads to unstable fluctuations on the surface of the fuel jet. These small-scale disturbances amplify the aerodynamic effects of the surrounding air, causing the liquid jet to break up and atomize. Because the time scale of the jet breaking process caused by the disturbance under the action of aerodynamics is much larger than the actual breaking process of the jet, the turbulent flow inside the nozzle is the main reason for the atomization of the liquid jet compared with the aerodynamics.
  • the cavitation phenomenon is a common gas-liquid two-phase flow inside a diesel engine nozzle under high pressure injection.
  • the cavitation flow increases the turbulent kinetic energy of the flow inside the nozzle and aggravates the instability of the fuel jet;
  • the bubbles will be injected out of the nozzle holes following the main flow of fuel, causing the jet to implode, causing a strong unstable disturbance and accelerating the process of jet fragmentation and atomization.
  • the cavitation phenomenon inside the nozzle of diesel injector can be divided into two types: geometrically induced cavitation and vortex cavitation according to different incentives.
  • the change of the nozzle flow channel induces the flow to shrink, the pressure drops, and the cloud-like geometry induces cavitation along the wall of the nozzle hole.
  • the Chinese authorized invention patent "a method for realizing premixed combustion by using cavitation jet enhancement” provides a method for realizing gas-liquid two-phase oil jet injection by adopting stepped sudden expansion shape nozzle holes, but It mainly utilizes geometrically induced cavitation, and the problem of cavitation damage of the nozzle is exacerbated.
  • the present invention proposes a diesel fuel injector based on a vortex line cavitation-induced hollow spray structure in the nozzle.
  • the phenomenon of vortex cavitation in the injector is strengthened to effectively improve the fuel atomization quality of the injector.
  • a diesel fuel injector based on a vortex cavitation-induced hollow spray structure in a nozzle comprising a needle valve, a needle valve body, a nozzle hole and a pressure chamber; the axis of the needle valve of the fuel injector coincides with the axis of the needle valve body, so the The head of the needle valve body is evenly distributed with a plurality of identical tapered conical nozzle holes, and the outlet ends of all nozzle holes are connected with the pressure chamber; the pressure chamber of the fuel injector is composed of equal diameter hemispheres and cylinders; the pressure The radius of the chamber ball is R, and the height of the pressure chamber is H, and 0 ⁇ R ⁇ H; the radius R of the pressure chamber ball and the height H of the pressure chamber of the pressure chamber of the injector are limited by the diameter of the nozzle inlet D in , and the following conditions must be met:
  • the pressure chamber height is 1.5D in ⁇ H ⁇ 5D in , and the pressure chamber sphere radius R>3/5H;
  • the nozzle hole opening height h of the injector refers to the distance between the center of the nozzle inlet section and the bottom plane of the pressure chamber, h ⁇ H and h must meet the following conditions:
  • the nozzle opening height is 1.2D in ⁇ h ⁇ 3D in ;
  • l is the distance from the bottom end face of the needle valve to the intersection of the nozzle hole axis and the needle valve axis
  • l 0 is the minimum value of the distance l from the bottom end face of the needle valve to the intersection point of the nozzle hole axis and the needle valve axis
  • l 1 is the needle valve 1 reaching the The maximum value of l at the maximum lift.
  • the distance l of the intersection point between the axis and the needle valve axis takes the minimum value l 0 , and l 0 ⁇ 0; with the fuel injection, the needle valve opens, l gradually increases, and l takes the maximum value l 1 until the needle valve reaches the maximum lift ; At the end of fuel injection, l gradually decreases from l 1 to l 0 ;
  • the inclination angle of the nozzle hole is 70° ⁇ 77.5°
  • the taper coefficient of the nozzle hole is 1 ⁇ K ⁇ 3
  • the taper coefficient Among them, D in and D out represent the inlet and outlet diameters of the orifice, respectively, and L represents the length of the orifice.
  • the needle valve head is conical, the bottom end face of the needle valve head is a point, and the cone apex angle is the angle ⁇ n of the needle valve head, 60° ⁇ n ⁇ 90 °;
  • the head of the needle valve is a truncated cone, and its bottom end surface is a plane, and the angle between the two generatrixes of the cross-section of the truncated cone passing through the shaft is used to represent the angle of the head of the needle valve, with ⁇ n ⁇ 60°.
  • a diesel fuel injector based on the vortex line cavitation-induced hollow spray structure in the nozzle described in the present invention can strengthen and stabilize the vortex line cavitation phenomenon in the diesel fuel injector by optimizing the geometric parameters of the injector nozzle, which can effectively improve the Fuel spray atomization quality.
  • Fig. 1 is a schematic diagram of the structure of a diesel fuel injector nozzle
  • Fig. 2 is a partial enlarged view of the nozzle structure of the nozzle of the diesel engine fuel injector
  • Figure 3 is a schematic diagram of the shape of the head of the injector needle valve of the present invention, 3a is the head of the conical needle valve, and 3b is the head of the truncated needle valve;
  • FIG. 4 is a schematic diagram of two typical vortex line cavitation flow patterns in the injector nozzle of the present invention.
  • FIG. 5 is a schematic diagram showing the effect of the hollow structure fuel spray pre-realized by the fuel injector of the present invention.
  • Needle valve In the figure, 1. Needle valve, 2. Needle valve body, 3. Orifice, 4. Pressure chamber.
  • a diesel fuel injector based on the vortex line cavitation-induced hollow spray structure in the nozzle proposed by the present invention by strengthening and controlling the vortex line cavitation phenomenon inside the nozzle of the diesel engine fuel injector, the fuel jet has a hollow spray structure, thereby optimizing Fuel jet atomization quality.
  • the diesel fuel injector shown in Figure 1 includes a needle valve 1, a needle valve body 2, a nozzle hole 3 and a pressure chamber 4; the axis of the needle valve 1 of the fuel injector coincides with the axis of the needle valve body 2; the needle valve The head of the body 2 is evenly distributed with 3-8 identical tapered conical nozzle holes 3.
  • the tapered nozzle holes 3 can effectively suppress the geometrically induced cavitation and at the same time strengthen the vortex line cavitation phenomenon, as shown in Figure 2 A partial enlarged view of the nozzle structure is shown; by optimizing the design of the structural parameters of the diesel fuel injector, the structural parameters include the pressure chamber ball radius R, the pressure chamber height H, the nozzle taper coefficient K, the nozzle inclination angle ⁇ , the needle The distance l from the bottom end face of the valve to the intersection of the nozzle hole axis and the needle valve axis and the nozzle hole opening height h.
  • the inclination angle of the injection hole 3 is 70° ⁇ 77.5°, and the taper coefficient of the injection hole 3 is 1 ⁇ K ⁇ 3.
  • the taper coefficient of nozzle hole 3 is defined as: Among them, D in and D out represent the inlet and outlet diameters of the orifice, respectively, and L represents the length of the orifice.
  • the head of the needle valve 1 is conical or truncated, as shown in Figure 3.
  • the head of the needle valve 1 is conical, the bottom end face of the head of the needle valve 1 is a point, and the top angle of the cone is the angle ⁇ n of the head of the needle valve 1, 60° ⁇ n ⁇ 90 °;
  • the head of valve 1 is a truncated cone, its bottom face is a plane, and the angle between the two bus bars of the cross-section of the truncated truncated shaft is used to represent the angle of the head of needle valve 1, with ⁇ n ⁇ 60°, and the height of the truncated cone is in the pressure range.
  • the value within the allowable range of the chamber structure is as large as possible.
  • the distance l from the bottom end face of the needle valve 1 to the intersection of the axis of the nozzle hole 3 and the axis of the needle valve 1 takes the minimum value l 0 , and l 0 ⁇ 0; as the fuel injection starts, the needle valve 1 opens, l Gradually increase, until the needle valve 1 reaches the maximum lift, l takes the maximum value l 1 ; at the end of fuel injection, l gradually decreases from l 1 to l 0 .
  • l ⁇ 0 means that the bottom end face of the needle valve 1 is closer to the bottom of the pressure chamber 4 than the intersection of the axis of the nozzle hole 3 and the axis of the needle valve 1;
  • l>0 means that the intersection of the axis of the nozzle hole 3 and the axis of the needle valve 1 is closer to the bottom of the pressure chamber 4 than the bottom end face of the needle valve 1;
  • the pressure chamber 4 of the injector is composed of equal diameter hemispheres and cylinders; the radius of the sphere is R, the height of the pressure chamber is H, and 0 ⁇ R ⁇ H.
  • the pressure chamber height is 1.5D in ⁇ H ⁇ 5D in , and the pressure chamber sphere radius R>3/5H.
  • the nozzle hole opening height h of the injector refers to the distance between the center of the nozzle inlet section and the bottom plane of the pressure chamber, h ⁇ H and h must meet the following conditions:
  • the nozzle opening height is 1.2D in ⁇ h ⁇ 3D in .
  • Figure 4 shows the schematic diagrams of two typical vortex cavitation flow patterns in the nozzle.
  • the fuel jet of the injector is a hollow spray structure with swirl flow, as shown in Figure 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

一种基于喷嘴内涡线空化诱导中空喷雾结构的柴油机喷油器,包括针阀(1)、针阀体(2)、喷孔(3)和压力室(4)。喷油器的针阀的轴线与针阀体的轴线重合,针阀体的头部均布有多个相同的渐缩圆锥形的喷孔,所有喷孔的出口端均与压力室连通,喷油器的压力室由等直径的半球和圆柱组成。通过对喷油器几何结构进行优化,实现对不同负荷下柴油机喷油器内涡线空化现象进行强化,有效提高喷油器燃油雾化质量。

Description

基于喷嘴内涡线空化诱导中空喷雾结构的柴油机喷油器 技术领域
本发明属于柴油机燃油喷射雾化技术领域,尤其涉及一种基于喷嘴内涡线空化诱导中空喷雾结构的柴油机喷油器。
背景技术
柴油机是推动一个国家经济增长、社会运行的重要装备基础。高压共轨燃油喷射系统极大改善了燃油喷雾雾化质量,大幅提高了柴油机输出功率和扭矩,已成为世界柴油机动力的主流发展方向。系统中的电控喷油器作为联系燃油喷射和射流雾化的核心部件,是突破高压共轨燃油喷射技术的关键。当前,我国已发展成为全球柴油机的主要市场和生产国家,但国产电控喷油器在性能、可靠性及一致性上较国外同代产品仍存在一定差距,这已成为制约我国实现新一代柴油机的瓶颈技术之一。因此,亟需探明燃油射流喷雾雾化机理,实现对燃油喷射的精准控制,进而优化柴油机燃烧和排放性能。
目前,高压燃油射流雾化机理主要包括:湍流、空气动力学和空化。喷嘴内部湍流导致燃油射流表面出现不稳定波动,这些小尺度扰动放大了周围空气的气体动力学作用,引起液体射流破碎、雾化。由于空气动力学作用下的扰动所引起的射流破碎过程的时间尺度远大于射流的实际破碎过程,所以相比于空气动力学,喷嘴内部湍流是导致液体射流雾化的主要原因。而空化现象是高压喷射下柴油机喷嘴内部一种常见的气液两相流动,空化流动一方面增大了喷嘴内部流动的湍动能,加剧了燃油射流的不稳定性;另一方面,空化泡会跟随燃油主流被喷射出喷孔使射流发生内爆,引起强烈的不稳定扰动,加速射流破碎和雾化过程。柴油机喷油器喷嘴内部的空化现象根据诱因不同可被区分为几何诱导空化和涡线空化两种。其一、当燃油经喷油器喷嘴喷出时,喷嘴流道的改变诱使流动收缩、压力下降,沿喷孔壁面附近出现云片状几何诱导空化。其二、燃油经柴油机喷嘴喷出时,在喷嘴压力室和喷孔内因强烈的旋涡流动形成低压涡核区,沿涡核区域产生线形旋涡空化。现有的研究表明,与喷嘴内部湍流相比燃油流经喷油器喷嘴时产生的空化现象对燃油喷雾雾化过程的影响更为显著,尤其是涡线空化现象会导致射流呈中空喷雾形态,大大增加喷雾锥角;同时,涡线空化对喷孔流通性和喷嘴空蚀损毁问题的影响较小。然而,燃油喷射过程中柴油机喷嘴内部的涡线空化强度不稳定,因此涡线空化难以被有效应用于燃油雾化领域。
现有技术中,如CN105332840A中国授权发明专利“一种利用空化射流强化实现预混 燃烧的方法”提供了一种采用阶梯式突扩形状喷孔实现气液两相油束喷射的方法,但是其主要利用了几何诱导空化,喷嘴的空蚀损毁问题被加剧。针对涡线空化,如目前处于实质审查状态的CN108197390A中国发明专利“一种两相低温液体膨胀机抗空化的优化设计方法”和CN108561195A中国发明专利“一种低温液体膨胀机内旋涡空化流动的有效控制方法”旨在抑制液力机械中涡线空化现象的发生,从而避免涡线空化现象对液力机械性能造成不良影响;CN109681361A中国发明专利“一种基于旋涡空化效应强化喷雾的喷油嘴”公开了一种利用喷嘴内旋涡空化来强化喷雾的喷油器,但其核心在于对针阀升程的限制方法。综上所述,目前没有发现有关基于喷嘴内涡线空化诱导中空喷雾结构的柴油机喷油器的公开报道。
发明内容
为了解决现有技术中的不足,本发明提出了一种基于喷嘴内涡线空化诱导中空喷雾结构的柴油机喷油器,通过对喷油器几何结构进行优化,实现对不同负荷下柴油机喷油器内涡线空化现象进行强化,有效提高喷油器燃油雾化质量。
本发明所采用的技术方案如下:
一种基于喷嘴内涡线空化诱导中空喷雾结构的柴油机喷油器,包括针阀、针阀体、喷孔和压力室;喷油器的针阀的轴线与针阀体的轴线重合,所述针阀体的头部均布有多个相同的渐缩圆锥形的喷孔,所有喷孔的出口端均与压力室连通;喷油器的压力室由等直径的半球和圆柱组成;压力室球半径为R,压力室高度为H,有0<R≤H;喷油器的压力室的压力室球半径R和压力室高度H受喷孔入口直径D in限制,需满足以下条件:
当l 0≤l≤0时,压力室高度H>1.5D in,而压力室球半径R<1/2H;
当0<l≤l 1时,压力室高度1.5D in<H<5D in,而压力室球半径R>3/5H;
喷油器的喷孔开孔高度h指喷孔入口截面圆心与压力室底平面间的距离,h<H且h需满足以下条件:
当l 0≤l≤0时,喷孔开孔高度h>D in
当0<l≤l 1时,喷孔开孔高度1.2D in<h<3D in
其中,l针阀底端面到喷孔轴线与针阀轴线交点的距离,l 0为针阀底端面到喷孔轴线与针阀轴线交点的距离l取的最小值,l 1为针阀1达到最大升程时l取的最大值。
进一步,针阀底端面到喷孔轴线与针阀轴线交点的距离l=0表示喷孔轴线与针阀轴线的交点位于针阀底端面内,针阀在落座时,针阀底端面到喷孔轴线与针阀轴线交点的距离l取最小值l 0,且l 0<0;随着燃油启喷,针阀开启,l逐渐增大,直至针阀达到最大升程时l 取最大值l 1;在喷油结束阶段,l自l 1逐渐减小至l 0
进一步,喷孔的倾斜角70°≤θ≤77.5°,喷孔的锥度系数1≤K≤3,锥度系数
Figure PCTCN2020137072-appb-000001
其中,D in和D out分别代表喷孔的入口和出口直径,L代表喷孔长度。
进一步,针阀头部为圆锥形,针阀头部的底端面为一个点,圆锥顶角即为针阀头部夹角θ n,有60°≤θ n≤90°;
进一步,针阀头部为圆台,其底端面为一个平面,利用圆台经过轴的截面的两条母线间的夹角表征针阀头部夹角,有θ n≤60°。
本发明的有益效果:
本发明所述的一种基于喷嘴内涡线空化诱导中空喷雾结构的柴油机喷油器,通过优化喷油器喷嘴几何参数实现强化和稳定柴油机喷油器内涡线空化现象,可以有效提高燃油喷雾雾化质量。
附图说明
图1为柴油机喷油器喷嘴结构示意图;
图2为柴油机喷油器喷嘴的喷孔结构局部放大图;
图3为本发明喷油器针阀头部形状示意图,3a为圆锥形针阀头部,3b为圆台形针阀头部;
图4为本发明喷油器喷嘴内两种典型的涡线空化流态示意图;
图5为本发明喷油器预实现的中空结构燃油喷雾效果示意图。
图中,1、针阀,2、针阀体,3、喷孔,4、压力室。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。
本发明所提出的一种基于喷嘴内涡线空化诱导中空喷雾结构的柴油机喷油器,通过强化和控制柴油机喷油器喷嘴内部涡线空化现象,使燃油射流呈中空喷雾结构,从而优化燃油射流雾化质量。如图1所示的柴油机喷油器包括针阀1、针阀体2、喷孔3和压力室4;喷油器的针阀1的轴线与针阀体2的轴线重合;所述针阀体2的头部均布有3-8个相同的渐缩圆锥形的喷孔3,渐缩形的喷孔3能有效抑制几何诱导空化,同时强化涡线空化现象,图2给出了喷孔结构的局部放大图;通过对柴油机喷油器的结构参数进行优化设计,结构参数具体包括压力室球半径R、压力室高度H、喷孔锥度系数K、喷孔倾斜角θ、针阀底端 面到喷孔轴线与针阀轴线交点的距离l和喷孔开孔高度h。
喷孔3的倾斜角70°≤θ≤77.5°,喷孔3的锥度系数1≤K≤3。喷孔3的锥度系数的定义为:
Figure PCTCN2020137072-appb-000002
其中,D in和D out分别代表喷孔的入口和出口直径,L代表喷孔长度。
针阀1头部为圆锥形或圆台形,如图3所示。当针阀1头部为圆锥形时,针阀1头部的底端面为一个点,圆锥顶角即为针阀1头部夹角θ n,有60°≤θ n≤90°;当针阀1头部为圆台时,其底端面为一个平面,利用圆台经过轴的截面的两条母线间的夹角表征针阀1头部夹角,有θ n≤60°,且圆台高度在压力室结构允许范围内取值尽可能大。
针阀1在落座时,针阀1底端面到喷孔3轴线与针阀1轴线交点的距离l取最小值l 0,且l 0<0;随着燃油启喷,针阀1开启,l逐渐增大,直至针阀1达到最大升程时l取最大值l 1;在喷油结束阶段,l自l 1逐渐减小至l 0
l值的“正”和“负”代表针阀1头部和喷孔3轴线与针阀1轴线交点间的相对位置:
l<0表示针阀1底端面较喷孔3轴线与针阀1轴线的交点更靠近压力室4的底部;
l>0表示喷孔3轴线与针阀1轴线的交点较针阀1底端面更靠近压力室4的底部;
l=0表示喷孔3轴线与针阀1轴线的交点位于针阀1底端面内。
喷油器的压力室4由等直径的半球和圆柱组成;球半径为R,压力室高度为H,有0<R≤H。
喷油器的压力室4的结构参数R和H受喷孔3入口直径D in限制,需满足以下条件:
当l 0≤l≤0时,压力室高度H>1.5D in,而压力室球半径R<1/2H;
当0<l≤l 1时,压力室高度1.5D in<H<5D in,而压力室球半径R>3/5H。
喷油器的喷孔开孔高度h指喷孔入口截面圆心与压力室底平面间的距离,h<H且h需满足以下条件:
当l 0≤l≤0时,喷孔开孔高度h>D in
当0<l≤l 1时,喷孔开孔高度1.2D in<h<3D in
喷油器在燃油喷射过程中喷嘴内部持续出现强烈涡线空化,图4给出了喷嘴内两种典型的涡线空化流态示意图。
喷油器的燃油射流呈带旋流的中空喷雾结构,如图5所示。
以上实施例仅用于说明本发明的设计思想和特点,其目的在于使本领域内的技术人员能够了解本发明的内容并据以实施,本发明的保护范围不限于上述实施例。所以,凡依据本发明所揭示的原理、设计思路所作的等同变化或修饰,均在本发明的保护范围之内。

Claims (5)

  1. 一种基于喷嘴内涡线空化诱导中空喷雾结构的柴油机喷油器,其特征在于,包括针阀(1)、针阀体(2)、喷孔(3)和压力室(4);喷油器的针阀(1)的轴线与针阀体(2)的轴线重合,所述针阀体(2)的头部均布有多个相同的渐缩圆锥形的喷孔(3),所有喷孔(3)的出口端均与压力室(4)连通;喷油器的压力室(4)由等直径的半球和圆柱组成;压力室球半径为R,压力室高度为H,有0<R≤H;喷油器的压力室(4)的压力室球半径R和压力室高度H受喷孔(3)入口直径D in限制,需满足以下条件:
    当l 0≤l≤0时,压力室高度H>1.5D in,而压力室球半径R<1/2H;
    当0<l≤l 1时,压力室高度1.5D in<H<5D in,而压力室球半径R>3/5H;
    喷油器的喷孔开孔高度h指喷孔入口截面圆心与压力室底平面间的距离,h<H且h需满足以下条件:
    当l 0≤l≤0时,喷孔开孔高度h>D in
    当0<l≤l 1时,喷孔开孔高度1.2D in<h<3D in
    其中,l针阀底端面到喷孔轴线与针阀轴线交点的距离,l 0为针阀1底端面到喷孔(3)轴线与针阀(1)轴线交点的距离l取的最小值,l 1为针阀(1)达到最大升程时l取的最大值。
  2. 根据权利要求1所述的一种基于喷嘴内涡线空化诱导中空喷雾结构的柴油机喷油器,其特征在于,针阀(1)底端面到喷孔(3)轴线与针阀(1)轴线交点的距离l=0表示喷孔(3)轴线与针阀(1)轴线的交点位于针阀1底端面内,针阀1在落座时,针阀1底端面到喷孔(3)轴线与针阀(1)轴线交点的距离l取最小值l 0,且l 0<0;随着燃油启喷,针阀(1)开启,l逐渐增大,直至针阀(1)达到最大升程时l取最大值l 1;在喷油结束阶段,l自l 1逐渐减小至l 0
  3. 根据权利要求2所述的一种基于喷嘴内涡线空化诱导中空喷雾结构的柴油机喷油器,其特征在于,喷孔(3)的倾斜角70°≤θ≤77.5°,喷孔(3)的锥度系数1≤K≤3,锥度系数
    Figure PCTCN2020137072-appb-100001
    其中,D in和D out分别代表喷孔的入口和出口直径,L代表喷孔长度。
  4. 根据权利要求1、2或3所述的一种基于喷嘴内涡线空化诱导中空喷雾结构的柴油机喷油器,其特征在于,针阀(1)头部为圆锥形,针阀(1)头部的底端面为一个点,圆锥顶角即为针阀(1)头部夹角θ n,有60°≤θ n≤90°。
  5. 根据权利要求1、2或3所述的一种基于喷嘴内涡线空化诱导中空喷雾结构的柴油机喷油器,其特征在于,针阀(1)头部为圆台,其底端面为一个平面,利用圆台经过轴的截面的两条母线间的夹角表征针阀(1)头部夹角,有θ n≤60°。
PCT/CN2020/137072 2020-09-30 2020-12-17 基于喷嘴内涡线空化诱导中空喷雾结构的柴油机喷油器 WO2022068087A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/890,178 US11614061B2 (en) 2020-09-30 2022-08-17 Diesel fuel injector based on hollow spray structure induced by vortex cavitation in nozzle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011056867.0 2020-09-30
CN202011056867.0A CN112228262B (zh) 2020-09-30 2020-09-30 一种基于喷嘴内涡线空化诱导中空喷雾结构的柴油机喷油器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/890,178 Continuation US11614061B2 (en) 2020-09-30 2022-08-17 Diesel fuel injector based on hollow spray structure induced by vortex cavitation in nozzle

Publications (1)

Publication Number Publication Date
WO2022068087A1 true WO2022068087A1 (zh) 2022-04-07

Family

ID=74120381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137072 WO2022068087A1 (zh) 2020-09-30 2020-12-17 基于喷嘴内涡线空化诱导中空喷雾结构的柴油机喷油器

Country Status (3)

Country Link
US (1) US11614061B2 (zh)
CN (1) CN112228262B (zh)
WO (1) WO2022068087A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114060192A (zh) * 2021-10-28 2022-02-18 江苏大学 一种分段式喷油嘴及其优化设计方法
CN114718789B (zh) * 2022-03-21 2023-04-18 潍柴动力股份有限公司 一种参数评价方法及装置
CN114357632B (zh) * 2022-03-21 2022-07-15 潍柴动力股份有限公司 一种喷油器优化方法及装置
CN116398311B (zh) * 2023-06-07 2023-08-18 潍柴动力股份有限公司 多策略燃料喷射方法、装置、设备和汽车
CN116378842B (zh) * 2023-06-07 2023-09-19 潍柴动力股份有限公司 燃料喷射方法、装置、设备和汽车

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2876750B1 (fr) * 2004-10-19 2010-09-17 Renault Sas Buse d'injection possedant des trous de conicites differentes et moteur comportant une telle buse
CN105332840A (zh) * 2015-10-31 2016-02-17 北京工业大学 一种利用空化射流强化实现预混燃烧的方法
CN106150818A (zh) * 2016-08-24 2016-11-23 江苏大学 一种带不对称扰动的内燃机椭圆形喷孔喷油器
CN106948989A (zh) * 2017-03-24 2017-07-14 大连交通大学 一种机车柴油机喷嘴及其制造方法
CN109681361A (zh) * 2018-11-29 2019-04-26 江苏大学 一种基于旋涡空化效应强化喷雾的喷油嘴

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023950A (ja) * 2005-07-20 2007-02-01 Bosch Corp 内燃機関のための燃料噴射ポンプ
CN102182599A (zh) * 2011-03-30 2011-09-14 潍柴动力股份有限公司 一种二甲醚发动机燃油供给系统及其喷油器
JP2013019386A (ja) * 2011-07-13 2013-01-31 Toyota Central R&D Labs Inc 燃料噴射弁
CN102434345A (zh) * 2011-11-17 2012-05-02 东风朝阳柴油机有限责任公司 涡流室式柴油机电控喷油器
US9470197B2 (en) * 2012-12-21 2016-10-18 Caterpillar Inc. Fuel injector having turbulence-reducing sac
CN202983659U (zh) * 2012-12-26 2013-06-12 中国船舶重工集团公司第七○二研究所 一种涡流空化器
DE102013217371A1 (de) * 2013-08-30 2015-03-05 Robert Bosch Gmbh Kraftstoffinjektor
JP2017008861A (ja) * 2015-06-24 2017-01-12 株式会社デンソー 燃料噴射ノズル
CN104989573A (zh) * 2015-07-16 2015-10-21 江苏大学 一种涡流室式柴油机用长型短结构喷油器
CN108561195B (zh) 2018-01-04 2020-11-10 西安交通大学 一种低温液体膨胀机内旋涡空化流动的有效控制方法
CN108197390B (zh) 2018-01-04 2020-08-28 西安交通大学 一种两相低温液体膨胀机抗空化的优化设计方法
DE102018209101A1 (de) * 2018-06-08 2019-12-12 Robert Bosch Gmbh Injektor und Brennkraftmaschine mit adaptivem Einspritzverhalten
CN110801950A (zh) * 2018-08-05 2020-02-18 大连理工大学 一种带部分扭转式窄缝型喷孔的喷嘴
CN210714904U (zh) * 2019-06-27 2020-06-09 南昌大学 一种错位双孔透明喷嘴
CN114060192A (zh) * 2021-10-28 2022-02-18 江苏大学 一种分段式喷油嘴及其优化设计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2876750B1 (fr) * 2004-10-19 2010-09-17 Renault Sas Buse d'injection possedant des trous de conicites differentes et moteur comportant une telle buse
CN105332840A (zh) * 2015-10-31 2016-02-17 北京工业大学 一种利用空化射流强化实现预混燃烧的方法
CN106150818A (zh) * 2016-08-24 2016-11-23 江苏大学 一种带不对称扰动的内燃机椭圆形喷孔喷油器
CN106948989A (zh) * 2017-03-24 2017-07-14 大连交通大学 一种机车柴油机喷嘴及其制造方法
CN109681361A (zh) * 2018-11-29 2019-04-26 江苏大学 一种基于旋涡空化效应强化喷雾的喷油嘴

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, ZHOU: "Experimental Study of String Cavitation in Real-size Optical High-Pressure Common Rail Injector Nozzles and Its Effects on Spray", CHINESE MASTER’S THESES FULL-TEXT DATABASE, ENGINEERING SCIENCE AND TECHNOLOGY, no. 10, 15 October 2019 (2019-10-15), pages 1 - 93, XP055918919 *

Also Published As

Publication number Publication date
CN112228262B (zh) 2022-07-22
US20220389894A1 (en) 2022-12-08
CN112228262A (zh) 2021-01-15
US11614061B2 (en) 2023-03-28

Similar Documents

Publication Publication Date Title
WO2022068087A1 (zh) 基于喷嘴内涡线空化诱导中空喷雾结构的柴油机喷油器
CN202350096U (zh) 一种双油路燃油喷嘴
US20110068188A1 (en) Fuel injector for permitting efficient combustion
CN103134079A (zh) 一种双油路燃油喷嘴
CN101294533A (zh) 内燃机交叉喷孔式喷油嘴
WO2015177897A1 (ja) ディーゼルエンジンの燃焼室構造
CN105332840B (zh) 一种柴油机喷油器及其实现预混燃烧的方法
CN102182600A (zh) 具有扰动区的内燃机喷油嘴
CN112879149A (zh) 一种适用于高功率密度柴油机的非对称燃烧室系统
CN112879148B (zh) 一种适用于高功率密度柴油机的非对称燃烧室系统
CN112412677B (zh) 一种高强化柴油机卷流喷嘴
JPS60142051A (ja) 内燃機関の燃料噴射弁
CN113187637B (zh) 一种带交汇结构的复合孔喷嘴
CN206860338U (zh) 一种机车柴油机喷嘴
US10662866B2 (en) Diesel engine and method for fuel distribution and combustion in combustion chamber of diesel engine
WO2020199347A1 (zh) 一种龙卷风式喷嘴
JP2014047698A (ja) 燃料噴射弁
CN109681361A (zh) 一种基于旋涡空化效应强化喷雾的喷油嘴
CN203285600U (zh) 倒锥形喷孔的喷油嘴
CN118188250A (zh) 一种具有交叉喷射孔的阀套、喷油方法及喷油装置
CN114635814B (zh) 一种加强高强化柴油机油气混合的缩放喷管加速混合器
CN220354160U (zh) 一种燃料电池引射器的喷嘴结构
CN118167522A (zh) 一种具有伞状布置喷孔的喷油阀体、喷油嘴及发动机
CN104929837B (zh) 一种气液两态混合喷射的柴油喷油嘴
CN220622031U (zh) 一种提高双切向进气道涡流比的结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956103

Country of ref document: EP

Kind code of ref document: A1