WO2022067853A1 - Signaling for rateless codes in wireless systems - Google Patents

Signaling for rateless codes in wireless systems Download PDF

Info

Publication number
WO2022067853A1
WO2022067853A1 PCT/CN2020/119787 CN2020119787W WO2022067853A1 WO 2022067853 A1 WO2022067853 A1 WO 2022067853A1 CN 2020119787 W CN2020119787 W CN 2020119787W WO 2022067853 A1 WO2022067853 A1 WO 2022067853A1
Authority
WO
WIPO (PCT)
Prior art keywords
shared channel
channel messages
multiple shared
control message
semi
Prior art date
Application number
PCT/CN2020/119787
Other languages
French (fr)
Inventor
Kangqi LIU
Liangming WU
Yu Zhang
Chao Wei
Chenxi HAO
Min Huang
Hao Xu
Qiaoyu Li
Wei XI
Rui Hu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/119787 priority Critical patent/WO2022067853A1/en
Publication of WO2022067853A1 publication Critical patent/WO2022067853A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/373Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35 with erasure correction and erasure determination, e.g. for packet loss recovery or setting of erasures for the decoding of Reed-Solomon codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/3761Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35 using code combining, i.e. using combining of codeword portions which may have been transmitted separately, e.g. Digital Fountain codes, Raptor codes or Luby Transform [LT] codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling

Definitions

  • the present disclosure relates to wireless communications, including signaling for rateless codes in wireless systems.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • one or more wireless devices may use rateless coding techniques for more efficient communications.
  • a base station may transmit downlink control information (DCI) to a user equipment (UE) .
  • DCI downlink control information
  • the DCI may schedule each rateless shared channel individually, and each DCI may include scheduling parameters for the respective rateless shared channel. Individually configuring such channels may result in increased signaling overhead.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support signaling for rateless codes in wireless systems.
  • the described techniques provide for configuring multiple shared channel messages where each of the multiple shared channel messages are encoded with a rateless coding scheme.
  • a user equipment (UE) a receive a control message from a base station that schedules multiple shared channel messages, each of which associated with a rateless coding scheme.
  • the control message may include source block number (SBN) information, encoding symbol identifier (ESI) information, or both, for a starting packet of the multiple shared channel messages.
  • SBN source block number
  • EI encoding symbol identifier
  • the UE may determine a set of scheduling parameters for the multiple shared channel messages based on the control message and may transmit or receive one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters, the SBN information, the ESI information, or any combination thereof.
  • a method of wireless communications at a UE may include receiving, from a base station, a control message scheduling multiple shared channel messages, each of the multiple shared channel messages associated with a rateless coding scheme, where the control message includes source block number information and encoding symbol identifier information for a starting packet of the multiple shared channel messages, determining a set of scheduling parameters for the multiple shared channel messages based on the control message, and transmitting or receiving one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based on the source block number information and the encoding symbol identifier information.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive, from a base station, a control message scheduling multiple shared channel messages, each of the multiple shared channel messages associated with a rateless coding scheme, where the control message includes source block number information and encoding symbol identifier information for a starting packet of the multiple shared channel messages, determine a set of scheduling parameters for the multiple shared channel messages based on the control message, and transmit or receiving one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based on the source block number information and the encoding symbol identifier information.
  • the apparatus may include means for receiving, from a base station, a control message scheduling multiple shared channel messages, each of the multiple shared channel messages associated with a rateless coding scheme, where the control message includes source block number information and encoding symbol identifier information for a starting packet of the multiple shared channel messages, determining a set of scheduling parameters for the multiple shared channel messages based on the control message, and transmitting or receiving one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based on the source block number information and the encoding symbol identifier information.
  • a non-transitory computer-readable medium storing code for wireless communications at a UE is described.
  • the code may include instructions executable by a processor to receive, from a base station, a control message scheduling multiple shared channel messages, each of the multiple shared channel messages associated with a rateless coding scheme, where the control message includes source block number information and encoding symbol identifier information for a starting packet of the multiple shared channel messages, determine a set of scheduling parameters for the multiple shared channel messages based on the control message, and transmit or receiving one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based on the source block number information and the encoding symbol identifier information.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a semi-persistent configuration from the base station indicating a set of periodic time-frequency resources configured for the UE, where the control message schedules the multiple shared channel messages via the set of periodic time-frequency resources of the semi-persistent configuration.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving multiple semi-persistent configurations including the semi-persistent configuration from the base station, each of the multiple semi-persistent configurations associated with a different periodicity, and determining to use the semi-persistent configuration of the multiple semi-persistent configurations for transmitting or receiving the one or more encoded packets of the multiple shared channel messages based on the control message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a periodicity of the set of periodic time-frequency resources based on a number of encoded packets associated with the multiple shared channel messages.
  • the semi-persistent configuration corresponds to a set of downlink resources or a configured grant for uplink resources.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for decoding the one or more encoded packets based on a duration associated with the source block number information or the encoding symbol identifier information, where the control message includes an indication of the duration.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for encoding one or more source packets of the multiple shared channel messages to obtain the one or more encoded packets based on a duration associated with the source block number information or the encoding symbol identifier information, where the control message includes an indication of the duration.
  • the source block number information includes an index of a source block number of a source block corresponding to the starting packet of the multiple shared channels.
  • the encoding symbol identifier information includes an index of an encoding symbol identifier of an encoding symbol corresponding to the starting packet of the multiple shared channels.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving multiple semi-persistent configurations including the semi-persistent configuration from the base station, determining one or more semi-persistent processes for the multiple shared channel messages based on the control message, where each of the one or more semi-persistent processes corresponds to a respective semi-persistent configuration of the multiple semi-persistent configurations, and transmitting or receiving the one or more encoded packets via one or more sets of time-frequency resources for the multiple shared channel messages, where the one or more sets of time-frequency resources corresponds to the respective semi-persistent configurations.
  • each of the multiple semi-persistent configurations may be associated with a different set of time-frequency resources.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting or receiving the multiple shared channel messages based on a periodicity indicated by the control message.
  • monitoring for the multiple shared channel messages may include operations, features, means, or instructions for transmitting or receiving a number of multiple shared channel messages based on the number of multiple shared channel messages indicated by the control message.
  • the set of scheduling parameters may be the same for each of the multiple shared channel messages.
  • a method of wireless communications at a base station may include identifying multiple shared channel messages for a UE, each of the multiple shared channel messages associated with a rateless coding scheme, determining source block number information and encoding symbol identifier information for a starting packet of the multiple shared channel messages, and transmitting, to a UE, a control message scheduling the multiple shared channel messages, where the control message includes the source block number information and the encoding symbol identifier information for a starting packet of the multiple shared channel messages.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to identify multiple shared channel messages for a UE, each of the multiple shared channel messages associated with a rateless coding scheme, determine source block number information and encoding symbol identifier information for a starting packet of the multiple shared channel messages, and transmit, to a UE, a control message scheduling the multiple shared channel messages, where the control message includes the source block number information and the encoding symbol identifier information for a starting packet of the multiple shared channel messages.
  • the apparatus may include means for identifying multiple shared channel messages for a UE, each of the multiple shared channel messages associated with a rateless coding scheme, determining source block number information and encoding symbol identifier information for a starting packet of the multiple shared channel messages, and transmitting, to a UE, a control message scheduling the multiple shared channel messages, where the control message includes the source block number information and the encoding symbol identifier information for a starting packet of the multiple shared channel messages.
  • a non-transitory computer-readable medium storing code for wireless communications at a base station is described.
  • the code may include instructions executable by a processor to identify multiple shared channel messages for a UE, each of the multiple shared channel messages associated with a rateless coding scheme, determine source block number information and encoding symbol identifier information for a starting packet of the multiple shared channel messages, and transmit, to a UE, a control message scheduling the multiple shared channel messages, where the control message includes the source block number information and the encoding symbol identifier information for a starting packet of the multiple shared channel messages.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a semi-persistent configuration to the UE indicating a set of periodic time-frequency resources configured for the UE, where the control message schedules the multiple shared channel messages via the set of periodic time-frequency resources of the semi-persistent configuration.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting multiple semi-persistent configurations including the semi-persistent configuration to the UE, each of the multiple semi-persistent configurations associated with a different periodicity, and transmitting, in the control message, an indication to the UE to use the semi-persistent configuration of the multiple semi-persistent configurations for transmitting or receiving one or more encoded packets of the multiple shared channel messages.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a periodicity of the set of periodic time-frequency resources based on a number of encoded packets associated with the multiple shared channel messages, where the semi-persistent configuration indicates the periodicity.
  • the semi-persistent configuration corresponds to a set of downlink resources or a configured grant for uplink resources.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a duration associated with the source block number information or the encoding symbol identifier information, where the control message includes an indication of the duration.
  • the source block number information includes an index of a source block number of a source block corresponding to the starting packet of the multiple shared channels.
  • the encoding symbol identifier information includes an index of an encoding symbol identifier of an encoding symbol corresponding to the starting packet of the multiple shared channels.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting multiple semi-persistent configurations including the semi-persistent configuration to the UE, determining one or more semi-persistent processes for the multiple shared channel messages, where each of the one or more semi-persistent processes corresponds to a respective semi-persistent configuration of the multiple semi-persistent configurations, and transmitting or receiving the one or more encoded packets via one or more sets of time-frequency resources for the multiple shared channel messages, where the one or more sets of time-frequency resources corresponds to the respective semi-persistent configurations.
  • each of the multiple semi-persistent configurations may be associated with a different set of time-frequency resources.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a periodicity for communicating the multiple shared channel messages, and transmitting an indication of the periodicity in the control message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a number of multiple shared channel messages for communicating with the UE, and transmitting an indication of the number of multiple shared channel messages in the control message.
  • a set of scheduling parameters may be the same for each of the multiple shared channel messages, and the control message indicates the set of scheduling parameters.
  • FIG. 1 illustrates an example of a wireless communications system that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • FIG. 2 illustrates an example of a wireless communications system that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • FIG. 3A and 3B illustrate examples of a resource configurations that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • FIG. 4 illustrates an example of a process flow that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • FIGs. 5 and 6 show block diagrams of devices that support signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • FIG. 7 shows a block diagram of a communications manager that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • FIG. 8 shows a diagram of a system including a device that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • FIGs. 9 and 10 show block diagrams of devices that support signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • FIG. 11 shows a block diagram of a communications manager that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • FIG. 12 shows a diagram of a system including a device that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • FIGs. 13 through 17 show flowcharts illustrating methods that support signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • Some wireless communications systems may use rateless coding, such as raptor codes, Luby transform codes, or other fountain codes, for shared channel messages such as physical downlink shared channel (PDSCH) or physical uplink shared channel (PUSCH) data transmissions.
  • rateless coding scheme may be based on the service or message type (e.g., control plane data, user plane data) being communicated.
  • Rateless coding schemes are considered rateless coding in that the transmitted packets may be recovered at the receiver so long as the number of received packets is equal to or greater than that of the number of source packets, regardless of which packets are successfully received.
  • a base station may transmit respective control messages for each scheduled PDSCH or PUSCH data transmission to separately configure transmission parameters and source block information.
  • scheduling parameters and source block information may stay the same for multiple consecutive rateless control channels. Separately configuring each rateless channel transmission may result in increased signaling overhead and inefficient use of communication resources, among other issues.
  • a UE may receive a single uplink grant that schedules multiple PUSCH messages or alternatively, a single downlink grant that schedules multiple PDSCH messages.
  • the UE may also receive source block number (SBN) information or encoding symbol identifier (ESI) information to use for encoding or decoding the shared channel data transmissions.
  • SBN source block number
  • EI encoding symbol identifier
  • the wireless communications system may use semi-persistent scheduling (SPS) to configure or schedule multiple shared channel data transmissions.
  • SPS semi-persistent scheduling
  • a base station may configure a UE with multiple SPS configurations having different periodicities via radio resource control (RRC) signaling.
  • RRC radio resource control
  • the base station may transmit a signal, such as a configured scheduling (CS) activation DCI, to dynamically change the SPS periodicity based on the number of encoded packets.
  • CS configured scheduling
  • the wireless communications system may use semi-persistent scheduling to configure shared channel data transmissions with multiple simultaneous processes, such as SPS processes.
  • the encoded packets may be divided into several subsets and the UE may be configured with multiple SPS process for simultaneous transmission using different time resources, or different frequency resources, or both.
  • the wireless communications system may use dynamic scheduling to configure multiple shared channel data transmissions.
  • the periodicity and the number of PUSCH and PDSCH data transmission may be dynamically indicated to the UE (e.g., in DCI) .
  • the techniques employed by the UE may provide benefits and enhancements to the operation of the UE. For example, operations performed by the UE may reduce the communication resources used for DCI and the scheduling of multiple rateless messages. The resources saved may be used for data transmission and may increase the reliability, or efficiency, or both of the wireless communications system.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are further illustrated by and described with reference to a resource configuration and process flow diagrams. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to signaling for rateless codes in wireless systems.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
  • the communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115.
  • Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 e.g., the base stations 105, the UEs 115, or both
  • the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing ( ⁇ f) and a cyclic prefix.
  • a carrier may be divided into one or more BWPs having the same or different numerologies.
  • a UE 115 may be configured with multiple BWPs.
  • a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra- reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to IP services 150 for one or more network operators.
  • the IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • the UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) .
  • a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • Wireless communications system 100 may support the scheduling of multiple shared channels (e.g., PUSCH or PUCCH) that are associated with a rateless coding scheme in a single DCI.
  • a base station 105 may transmit DCI to a UE 115 to configure scheduling parameters (MCS, etc. ) for multiple shared channels.
  • the DCI may in some cases configure the UE with the source block information (e.g., source block information (e.g., SBN) and encoding symbol information (e.g., ESI) for multiple shared channels for use in the encoding or decoding processes for the multiple shared channels.
  • UE 115 may use the SBN and ESI to encode or decode packets of the multiple shared channels.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • wireless communications system 200 may implement aspects of wireless communications system 100. Aspects of the described techniques may be implemented at or by base station 105-a or UE 115-a, which may be respective examples of base station 105 and UE 115 as described herein. Base station 105-a may transmit communication signaling to UE 115-a on downlink 205 and UE 115-a may transmit communication signaling to base station 105-a on uplink 225 within coverage area 110-a.
  • base station 105-a may be configured or otherwise act as a transmitting device performing a data transmission to UE 115-a (e.g., a downlink transmission) , which may be configured or otherwise act as a receiving device in this scenario.
  • UE 115-a may implement various aspects of the described techniques when acting as or otherwise configured as the transmitting device performing a data transmission to base station 105-a (e.g., an uplink transmission) , which may be configured or otherwise acting as the receiving device in this scenario.
  • such wireless transmissions may be performed by base station 105-a to another base station or by UE 115-a to another UE.
  • Aspects of the described techniques are not limited to the downlink transmission scenario, but may, instead, be equally applicable to the uplink transmission scenario.
  • Wireless communications system 200 may utilize fountain codes, which are rateless codes in that the number of encoded packets to be transmitted is potentially limitless.
  • the transmitted packets may be recovered at the receiver side so long as the number of received packets is equal to or greater than the number of source packets regardless of which packets are received successfully decoded.
  • rateless codes include Luby transform (LT) codes, raptor codes (an enhanced code based on variations of low-density parity-check (LDPC) and LT codes) , and the like.
  • Fountain codes are also referred to as network codes because they may be applied to the network/application layer (e.g., for MBMS, IAB, and the like) .
  • each encoded symbol would either be decoded correctly or discarded (e.g., the encoded packet (s) transmitted during a symbol) .
  • This approach permits a block number (e.g., a block number (e.g., SBN) ) or a symbol identifier (e.g., an ESI) associated with the packet (s) to be added as a header to the encoded symbols.
  • the SBN generally corresponds to an integer identifier for the source block to which the encoded symbols within the packet relate.
  • the ESI generally corresponds to an integer identifier for a corresponding encoding symbol (e.g., the column of the original generator matrix) of a set of encoding symbols of the packet.
  • Each encoded packet may include the SBN, the ESI, and the encoding symbol (s) .
  • the transmitting device and receiving device may determine which source symbols (e.g., which column of the original generator matrix) were selected to generate the encoded symbol.
  • Fountain codes are rateless codes with theoretically an unlimited number of columns in the original generator matrix generated by the transmitting device.
  • the transmitting device may have K symbols for transmission to the receiving device.
  • the original generator matrix may therefore be generated with K rows (corresponding to the K symbols) and, as the fountain code is a rateless code, a potentially infinite number of columns.
  • the number of transmitted packets may correspond to the formula:
  • the recovered packets (e.g., the received packets) may correspond to the formula:
  • the condition or scenario for the receiving device to recover the packets may include G′ according to the received packets being invertible or the rank of G′ being K.
  • a design rule for the original generator matrix is that G′ is invertible with minimum N.
  • the encoding process for each encoding symbol may include the transmitting device randomly choosing a degree d i from a degree distribution and randomly choosing d i distinct source symbols with uniform distribution and performing an exclusive or (XOR) function on them.
  • XOR exclusive or
  • the decoding process may include a belief propagation technique, gaussian elimination process, and the like. For example, the receiving device may find an encoding symbol t j that is connected to only one source symbol S i . The receiving device may set S i to t j , XOR S i to all encoding symbols that are connected to S i , and remove all edges connected to the source symbol S i . The receiving device may repeat this until all S i are determined. If there are no encoding symbols that are connected to only one source symbol, then the decoding process fails.
  • a belief propagation technique gaussian elimination process, and the like. For example, the receiving device may find an encoding symbol t j that is connected to only one source symbol S i . The receiving device may set S i to t j , XOR S i to all encoding symbols that are connected to S i , and remove all edges connected to the source symbol S i . The receiving device may repeat this until all S i are determined
  • Raptor codes generally reduce the encoding and decoding complexity of LT codes by reducing the average degree (e.g., LDPC plus weak LT code with a small averaging degree, such as three) .
  • the precoding process may include generating some redundant symbols, such as S LDPC symbols (each source symbol will appear three times in all LDPC symbols) and H half symbols (each encoding symbol containing ceiling (H/2) source symbols) .
  • the encoding process for each encoding symbol may include randomly choosing a degree d i from a degree distribution, e.g., may choose d i distinct source symbols and XOR them.
  • the number of redundant symbols may be based on the first K intermediate symbols.
  • the data partitioning and encoding process may be based on the different layers of the protocol stack of the transmitting device. For example, N d bits of data may be received at the PDCP layer. The N d bits may be partitioned into l packets with N b bits per packet (e.g., each of S 0 , S 1 , S 2 , ..., S l-2 , S l-1 may correspond to an N b -bit packet) .
  • N b bits per packet e.g., each of S 0 , S 1 , S 2 , ..., S l-2 , S l-1 may correspond to an N b -bit packet
  • an erasure correction code (such as fountain codes/rateless coding) may be used to encode across the l packets to generate a stream of L encoded packets (e.g., packets of P 0 , P 1 , P 2 , P 3 , ..., P L-1 ) .
  • each packet may consist of N S symbols after error-correction, coding and modulation (e.g., each packet P may include X 0 , X 1 , X 2 , ..., X Ns-1 ) .
  • Each information symbol may include Q bits (e.g., N b ⁇ N S Q) .
  • Base station 105-a may transmit configuration message 210 to configure UE 115-a for communications using rateless codes.
  • Configuration message 210 may configure UE 115-a via RRC signaling.
  • base station 105-a may configure UE 115-a with a SPS configuration which specify a set of periodic time-frequency resources.
  • the configuration message 210 may configure multiple semi-persistent processes associated with different periodicities for time-frequency resources.
  • the configuration message 210 may configure multiple semi-persistent process associated with different frequency resources.
  • Base station 105-a may transmit control message 215 to schedule and configure one or more encoded packets 220 of multiple shared channel messages, such as downlink encoded packets 220-a or uplink encoded packets 220-b.
  • the control message may contain control signaling and encoding information for multiple consecutive encoded packets 220.
  • the control message 215 may contain DCI for the scheduled encoded packets 220.
  • the DCI may contain SBN and ESI information for the scheduled encoded packets 220.
  • the control message 215 may indicate the number of encoded packets 220 to be transmitted. Additionally or alternatively, the DCI may contain the start index of SBN and ESI and the duration of the SBN and ESI.
  • base station 105-a may configure UE 115-a for communication using SPS via configuration message 210.
  • Configuration message 210 may configure multiple SPS processes with varying periodicities for communication between UE 115-a and base station 105-a.
  • Base station 105-a may transmit control message 215 to schedule and configure one or more encoded packets 220.
  • UE 115-a may dynamically change the SPS periodicity based on the number of encoded packets identified in control message 215.
  • the CS activation DCI from control message 215 may be used to determine which SPS configuration should be used.
  • the CS activation DCI may be used to override the RRC configured periodicity.
  • base station 105-a may transmit multiple rateless coding based encoded packets 220 at a periodicity based on the number of encoded packets 220 to UE 115-a using a single control message 215 for scheduling information, SBN, and ESI.
  • base station 105-a may configure UE 115-a for communication using SPS via configuration message 210 where the SPS configuration includes multiple simultaneous process.
  • UE 115-a may be configured with time and frequency resources for simultaneous transmission of encoded packets.
  • Base station 105-a may transmit control message 215 to UE 115-a scheduling transmission of multiple encoded packets 220 of a shared channel communication on different time and frequency resources.
  • control message 215 may configure UE 115-a to transmit two or more encoded packets 220 on different configured frequency resources simultaneously.
  • the encoded packets 220 of the shared channel communication may be divided into two or more subsets to be transmitted on different frequency resources.
  • the control message 215 may contain the DCI, SBN, and ESI to configure all of the encoded packet 220 transmissions across the various configured time and frequency resources.
  • base station 105-a may adjust the configuration in the configuration message 210 and control message 215 to determine an optimal resource configuration for wireless communications system 200.
  • the base station 105-a may determine to configure communications where there is one control message 215 per encoded packet 220 based at least in part on one or more system characteristics.
  • the base station 105-a may configure one DCI per encoded packet 220 and include the SBN and ESI indication in the encoded packet 220 based at least in part on a UE capability.
  • the base station 105-a may group more encoded packets 220 per control message 215 based at least in part on a preference for one or more parameters including but not limited to data transmission rate, transmission reliability, coding rate, and efficiency.
  • base station 105-a may dynamically schedule transmission or reception of rateless coding based encoded packets 220.
  • base station 105-a may transmit a single grant (e.g., an uplink grant or a downlink grant) to schedule one or more encoded packets 220.
  • base station 105-a may transmit control message 215 containing DCI to configure the single grant for multiple encoded packets 220.
  • the DCI may dynamically indicate the periodicity for transmitting the encoded packets 220. Additionally or alternatively, the total number of encoded packets in encoded packets 220 may be dynamically indicated by DCI in control message 215. Additionally or alternatively, the DCI may dynamically indicate the start index of SBN and ESI in control message 215.
  • DCI zero may carry the periodicity, number of encoded packets 220, and the start index of SBN and ESI.
  • DCI one may carry the periodicity, number of encoded packets 220 and the start index of SBN and ESI.
  • scheduling and configuring multiple encoding packets with a single control message may significantly reduce the signaling overhead related to transmitting rateless coding based encoded packets 220.
  • the DCI consumption may be reduced and the number of bits associated with SBN and ESI indication may be reduced.
  • the resources saved may be used for data transmission and may increase the data rate, efficiency, or both. Additionally or alternatively, the resources saved may be used for DCI transmission and may increase the reliability of DCI transmission. Also, with the proposed scheme, the coding rate may be lower, increasing the transmission reliability.
  • FIG. 3A and 3B illustrate examples of a resource configurations 300-a and 300-b that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • resource configurations 300-a and 300-b may implement aspects of wireless communications system 100 and wireless communications system 200, as described with reference to FIGs. 1 and 2, respectively.
  • the resource configurations 300-a and 300-b may be configured by base station 105 as described with reference to FIGs. 1 and 2, respectively.
  • FIG. 3A illustrates an example of a resource configuration 300-a that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • Resource configuration 300-a shows an example of a resource configuration where each encoded symbol 310 is individually configured by a DCI 305.
  • DCI 305-a configures encoding symbol 310-a
  • DCI 305-b configures encoding symbol 310-b, and so forth.
  • the base station may determine to configure each encoded symbol 310 based on one or more system conditions or preferences, such as a UE capability.
  • DCI 305 may contain SBN and ESI indication, but in other examples, the SBN and ESI indication may be transmitted in the encoded symbol or symbols.
  • a base station may configure resource configuration 300-a for communication between the base station and a UE in a configuration message, which may be an example of configuration message 210 described in reference to FIG. 2.
  • FIG. 3B illustrates and example of a resource configuration 300-b that support signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • Resource configuration 300-b shows an example of a resource configuration where multiple encoded symbols 310-d through 310-x are configured by a single DCI 305-d.
  • DCI-d may include the SBN and ESI indication for each of the encoded symbols 310-d through 310-x.
  • resource configuration 300-b may be configured semi-statically (e.g., SPS) .
  • DCI 305-d will be transmitted by the base station to activate the SPS transmission.
  • DCI 305-d may contain indications of the number of encoded symbols 310 configured by DCI 305-d, and the base station and the UE may determine the periodicity of the SPS, from a plurality of configured SPS periodicities based on the number of encoded symbols 310 configured by DCI 305-d.
  • the DCI configured periodicity may override an RRC configured periodicity.
  • resource configuration 300-b may be configured dynamically.
  • a base station may transmit a DCI to configure a UE to receive multiple encoding symbols 310 or to configure the UE with uplink resources and configuration to transmit multiple encoded symbols 310 to the base station.
  • the DCI 305-d will schedule the multiple encoded symbols 310-d through 310-x.
  • the DCI may also configure the start index and duration of the SBN and ESI for the encoded symbols 310.
  • FIG. 4 illustrates an example of a process flow 400 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • process flow 400 may implement aspects of wireless communications system 100 and the wireless communications system 200 described with reference to FIGs. 1 and 2, respectively.
  • the process flow 400 may be based on a configuration by a base station 105-b and implemented by a UE 115-b to promote signaling efficiency for the wireless communications system.
  • the process flow 400 may also be based on a configuration by the base station 105-b and implemented by the UE 115-b to promote high reliability and low latency wireless communications, among other benefits.
  • the operations between the base station 105-b and the UE 115-b may be transmitted in a different order than the example order shown, or the operations performed by the base station 105-b and the UE 115-b may be performed in different orders or at different times. Some operations may also be omitted from the process flow 400, and other operations may be added to the process flow 400.
  • the base station 105-b and the UE 115-b may be examples of a base station 105 and a UE 115 as described with reference to FIGs. 1 and 2, respectively.
  • base station 105-b may identify multiple shared channel messages for a UE, where each of the multiple shared channels may be associated with a rateless coding scheme.
  • base station 105-b may determine SBN information and ESI information for starting packet of the multiple shared channel messages.
  • the SBN information includes an index of SBN of a source block correspond to the starting packet of the multiple shared channels.
  • the ESI information includes an index of an ESI of an encoding symbol corresponding to the starting packet of the multiple shared channels.
  • UE 115-a may receive, from base station 105-b, a semi-persistent configuration indicating a set of periodic time-frequency resources configured for the UE, where the control message schedules the multiple shared channel messages via the set of periodic time-frequency resources of the semi-persistent configuration.
  • UE 115-a may receive multiple semi-persistent configurations including the semi-persistent configuration from the base station, each of the multiple semi-persistent configurations associated with a different periodicity.
  • UE 115-a may determine to use the semi-persistent configuration of the multiple semi-persistent configurations for transmitting or receiving the one or more encoded packets of the multiple shared channel messages based on the control message.
  • UE 115-a may determine a periodicity of the set of periodic time-frequency resources based on a number of encoded packets associated with the multiple shared channel messages.
  • UE 115-b may receive, from base station 105-b, a control message scheduling multiple shared channel messages, each of the multiple shared channel messages associated with a rateless coding scheme, where the control message includes SBN information and ESI information for a starting packet of the multiple shared channel messages.
  • UE 115-b may determine a set of scheduling parameters for the multiple shared channel messages based on the control message. In some cases, UE 115-a may determine a periodicity of the set of periodic time-frequency resources based on a number of encoded packets associated with the multiple shared channel messages.
  • UE 115-b may transmit or receive one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based on the SBN information and the ESI information.
  • FIG. 5 shows a block diagram 500 of a device 505 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • the device 505 may be an example of aspects of a UE 115 as described herein.
  • the device 505 may include a receiver 510, a communications manager 515, and a transmitter 520.
  • the device 505 may also include a one or more processors, memory coupled with the one or more processors, and instructions stored in the memory that are executable by the one or more processors to enable the one or more processors to perform resource configuration features discussed herein. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to signaling for rateless codes in wireless systems, etc. ) . Information may be passed on to other components of the device 505.
  • the receiver 510 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the receiver 510 may utilize a single antenna or a set of antennas.
  • the communications manager 515 may receive, from a base station, a control message scheduling multiple shared channel messages, each of the multiple shared channel messages associated with a rateless coding scheme, where the control message includes SBN information and ESI information for a starting packet of the multiple shared channel messages, determine a set of scheduling parameters for the multiple shared channel messages based on the control message, and transmit or receiving one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based on the SBN information and the ESI information.
  • the communications manager 515 may be an example of aspects of the communications manager 810 described herein.
  • the communications manager 515 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 515, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 515 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 515, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 515, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 520 may transmit signals generated by other components of the device 505.
  • the transmitter 520 may be collocated with a receiver 510 in a transceiver module.
  • the transmitter 520 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the transmitter 520 may utilize a single antenna or a set of antennas.
  • the communications manager 515 may be implemented as an integrated circuit or chipset for a mobile device modem, and the receiver 510 and transmitter 520 may be implemented as analog components (e.g., amplifiers, filters, antennas) coupled with the mobile device modem to enable wireless transmission and reception over one or more bands.
  • analog components e.g., amplifiers, filters, antennas
  • the communications manager 515 as described herein may be implemented to realize one or more potential advantages.
  • One implementation may allow the device 505 to reduce signaling overhead related to transmitting DCI, source block information, and ESI for each encoded packet of multiple shared channel messages between the device 505 and a base station. Based on the techniques for reducing signaling overhead between the device 505 and the base station, the device 505 may support one or more of increased data rate, increased reliability, and increased coding rate.
  • the device 505 may increase the reliability and data rate of transmitting multiple shared channel messages with a rateless coding scheme, and, accordingly, may communicate over the channel with a greater likelihood of successful communications. In some examples, based on a greater likelihood of successful communications, the device 505 may more efficiently power a processor or one or more processing units associated with transmitting multiple shared channel messages with a rateless coding scheme, which may enable the device to save power and increase battery life.
  • FIG. 6 shows a block diagram 600 of a device 605 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • the device 605 may be an example of aspects of a device 505, or a UE 115 as described herein.
  • the device 605 may include a receiver 610, a communications manager 615, and a transmitter 635.
  • the device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to signaling for rateless codes in wireless systems, etc. ) . Information may be passed on to other components of the device 605.
  • the receiver 610 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the receiver 610 may utilize a single antenna or a set of antennas.
  • the communications manager 615 may be an example of aspects of the communications manager 515 as described herein.
  • the communications manager 615 may include a control message receiver 620, a scheduling parameter component 625, and a messaging component 630.
  • the communications manager 615 may be an example of aspects of the communications manager 810 described herein.
  • the Control Message Receiver 620 may receive, from a base station, a control message scheduling multiple shared channel messages, each of the multiple shared channel messages associated with a rateless coding scheme, where the control message includes SBN information and ESI information for a starting packet of the multiple shared channel messages.
  • the Scheduling Parameter Component 625 may determine a set of scheduling parameters for the multiple shared channel messages based on the control message.
  • the Messaging Component 630 may transmit or receiving one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based on the SBN information and the ESI information.
  • the transmitter 635 may transmit signals generated by other components of the device 605.
  • the transmitter 635 may be collocated with a receiver 610 in a transceiver module.
  • the transmitter 635 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the transmitter 635 may utilize a single antenna or a set of antennas.
  • control message receiver 620, scheduling parameter component 625, and messaging component 630 may each be or be at least a part of a processor (e.g., a transceiver processor, or a radio processor, or a transmitter processor, or a receiver processor) .
  • the processor may be coupled with memory and execute instructions stored in the memory that enable the processor to perform or facilitate the features of control message receiver 620, scheduling parameter component 625, and messaging component 630 discussed herein.
  • a transceiver processor may be collocated with an/or communicate with (e.g., direct the operations of) a transceiver of the device.
  • a radio processor may be collocated with or communicate with (e.g., direct the operations of) a radio (e.g., an NR radio, an LTE radio, a Wi-Fi radio) of the device.
  • a transmitter processor may be collocated with or communicate with (e.g., direct the operations of) a transmitter of the device.
  • a receiver processor may be collocated with or communicate with (e.g., direct the operations of) a receiver of the device.
  • FIG. 7 shows a block diagram 700 of a communications manager 705 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • the communications manager 705 may be an example of aspects of a communications manager 515, a communications manager 615, or a communications manager 810 described herein.
  • the communications manager 705 may include a control message receiver 710, a scheduling parameter component 715, a messaging component 720, a SPS receiver 725, a multi-SPS receiver 730, a configuration component 735, a periodicity component 740, a decoding component 745, an encoding component 750, and a message component 755.
  • Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the Control Message Receiver 710 may receive, from a base station, a control message scheduling multiple shared channel messages, each of the multiple shared channel messages associated with a rateless coding scheme, where the control message includes SBN information and ESI information for a starting packet of the multiple shared channel messages.
  • the SBN information includes an index of a SBN of a source block corresponding to the starting packet of the multiple shared channels.
  • the ESI information includes an index of an ESI of an encoding symbol corresponding to the starting packet of the multiple shared channels.
  • the Scheduling Parameter Component 715 may determine a set of scheduling parameters for the multiple shared channel messages based on the control message.
  • the set of scheduling parameters is the same for each of the multiple shared channel messages.
  • the Messaging Component 720 may transmit or receiving one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based on the SBN information and the ESI information.
  • the SPS Receiver 725 may receive a semi-persistent configuration from the base station indicating a set of periodic time-frequency resources configured for the UE, where the control message schedules the multiple shared channel messages via the set of periodic time-frequency resources of the semi-persistent configuration.
  • the semi-persistent configuration corresponds to a set of downlink resources or a configured grant for uplink resources.
  • the Multi-SPS Receiver 730 may receive multiple semi-persistent configurations including the semi-persistent configuration from the base station, each of the multiple semi-persistent configurations associated with a different periodicity.
  • the Multi-SPS Receiver 730 may receive multiple semi-persistent configurations including the semi-persistent configuration from the base station.
  • each of the multiple semi-persistent configurations is associated with a different set of time-frequency resources.
  • the Configuration Component 735 may determine to use the semi-persistent configuration of the multiple semi-persistent configurations for transmitting or receiving the one or more encoded packets of the multiple shared channel messages based on the control message.
  • the Configuration Component 735 may determine one or more semi-persistent processes for the multiple shared channel messages based on the control message, where each of the one or more semi-persistent processes corresponds to a respective semi-persistent configuration of the multiple semi-persistent configurations.
  • the Periodicity Component 740 may determine a periodicity of the set of periodic time-frequency resources based on a number of encoded packets associated with the multiple shared channel messages.
  • the Decoding Component 745 may decode the one or more encoded packets based on a duration associated with the SBN information or the ESI information, where the control message includes an indication of the duration.
  • the Encoding Component 750 may encode one or more source packets of the multiple shared channel messages to obtain the one or more encoded packets based on a duration associated with the SBN information or the ESI information, where the control message includes an indication of the duration.
  • the Message Component 755 may transmit or receiving the one or more encoded packets via one or more sets of time-frequency resources for the multiple shared channel messages, where the one or more sets of time-frequency resources corresponds to the respective semi-persistent configurations.
  • the Message Component 755 may transmit or receiving the multiple shared channel messages based on a periodicity indicated by the control message.
  • the Message Component 755 may transmit or receiving a number of multiple shared channel messages based on the number of multiple shared channel messages indicated by the control message.
  • control message receiver 710 may each be or be at least a part of a processor (e.g., a transceiver processor, or a radio processor, or a transmitter processor, or a receiver processor) .
  • a processor e.g., a transceiver processor, or a radio processor, or a transmitter processor, or a receiver processor
  • the processor may be coupled with memory and execute instructions stored in the memory that enable the processor to perform or facilitate the features of control message receiver 710, messaging component 720, multi-SPS receiver 730, periodicity component 740, encoding component 750, scheduling parameter component 715, SPS receiver, 725, configuration component 735, decoding component 745, and message component 755 discussed herein.
  • FIG. 8 shows a diagram of a system 800 including a device 805 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • the device 805 may be an example of or include the components of device 505, device 605, or a UE 115 as described herein.
  • the device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 810, an I/O controller 815, a transceiver 820, an antenna 825, memory 830, and a processor 840. These components may be in electronic communication via one or more buses (e.g., bus 845) .
  • buses e.g., bus 845
  • the communications manager 810 may receive, from a base station, a control message scheduling multiple shared channel messages, each of the multiple shared channel messages associated with a rateless coding scheme, where the control message includes SBN information and ESI information for a starting packet of the multiple shared channel messages, determine a set of scheduling parameters for the multiple shared channel messages based on the control message, and transmit or receiving one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based on the SBN information and the ESI information.
  • the I/O controller 815 may manage input and output signals for the device 805.
  • the I/O controller 815 may also manage peripherals not integrated into the device 805.
  • the I/O controller 815 may represent a physical connection or port to an external peripheral.
  • the I/O controller 815 may utilize an operating system such as or another known operating system.
  • the I/O controller 815 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 815 may be implemented as part of a processor.
  • a user may interact with the device 805 via the I/O controller 815 or via hardware components controlled by the I/O controller 815.
  • the transceiver 820 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 820 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 820 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 825. However, in some cases the device may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 830 may include RAM and ROM.
  • the memory 830 may store computer-readable, computer-executable code 835 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 830 may contain, among other things, a basic input output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic input output system
  • the processor 840 may include an intelligent hardware device, (e.g., a general-purpose processor, a digital signal processor (DSP) , a CPU, a microcontroller, an ASIC, an field programmable gate array (FPGA) , a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 840 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 840.
  • the processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting signaling for rateless codes in wireless systems) .
  • the code 835 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 835 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory.
  • the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 9 shows a block diagram 900 of a device 905 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • the device 905 may be an example of aspects of a base station 105 as described herein.
  • the device 905 may include a receiver 910, a communications manager 915, and a transmitter 920.
  • the device 905 may also include a one or more processors, memory coupled with the one or more processors, and instructions stored in the memory that are executable by the one or more processors to enable the one or more processors to perform the resource configuration features discussed herein.
  • Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to signaling for rateless codes in wireless systems, etc. ) . Information may be passed on to other components of the device 905.
  • the receiver 910 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the receiver 910 may utilize a single antenna or a set of antennas.
  • the communications manager 915 may identify multiple shared channel messages for a UE, each of the multiple shared channel messages associated with a rateless coding scheme, determine SBN information and ESI information for a starting packet of the multiple shared channel messages, and transmit, to a UE, a control message scheduling the multiple shared channel messages, where the control message includes the SBN information and the ESI information for a starting packet of the multiple shared channel messages.
  • the communications manager 915 may be an example of aspects of the communications manager 1210 described herein.
  • the communications manager 915 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 915, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 915 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 915, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 915, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 920 may transmit signals generated by other components of the device 905.
  • the transmitter 920 may be collocated with a receiver 910 in a transceiver module.
  • the transmitter 920 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the transmitter 920 may utilize a single antenna or a set of antennas.
  • FIG. 10 shows a block diagram 1000 of a device 1005 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • the device 1005 may be an example of aspects of a device 905, or a base station 105 as described herein.
  • the device 1005 may include a receiver 1010, a communications manager 1015, and a transmitter 1035.
  • the device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to signaling for rateless codes in wireless systems, etc. ) . Information may be passed on to other components of the device 1005.
  • the receiver 1010 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the receiver 1010 may utilize a single antenna or a set of antennas.
  • the communications manager 1015 may be an example of aspects of the communications manager 915 as described herein.
  • the communications manager 1015 may include a message component 1020, an encoding component 1025, and a control message component 1030.
  • the communications manager 1015 may be an example of aspects of the communications manager 1210 described herein.
  • the Message Component 1020 may identify multiple shared channel messages for a UE, each of the multiple shared channel messages associated with a rateless coding scheme.
  • the Encoding Component 1025 may determine SBN information and ESI information for a starting packet of the multiple shared channel messages.
  • the Control Message Component 1030 may transmit, to a UE, a control message scheduling the multiple shared channel messages, where the control message includes the SBN information and the ESI information for a starting packet of the multiple shared channel messages.
  • the transmitter 1035 may transmit signals generated by other components of the device 1005.
  • the transmitter 1035 may be collocated with a receiver 1010 in a transceiver module.
  • the transmitter 1035 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the transmitter 1035 may utilize a single antenna or a set of antennas.
  • the message component 1020, encoding component 1025, and control message component 1030 may each be or be at least a part of a processor (e.g., a transceiver processor, or a radio processor, or a transmitter processor, or a receiver processor) .
  • the processor may be coupled with memory and execute instructions stored in the memory that enable the processor to perform or facilitate the features of message component 1020, encoding component 1025, and control message component 1030 discussed herein.
  • a transceiver processor may be collocated with an/or communicate with (e.g., direct the operations of) a transceiver of the device.
  • a radio processor may be collocated with or communicate with (e.g., direct the operations of) a radio (e.g., an NR radio, an LTE radio, a Wi-Fi radio) of the device.
  • a transmitter processor may be collocated with or communicate with (e.g., direct the operations of) a transmitter of the device.
  • a receiver processor may be collocated with or communicate with (e.g., direct the operations of) a receiver of the device.
  • FIG. 11 shows a block diagram 1100 of a communications manager 1105 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • the communications manager 1105 may be an example of aspects of a communications manager 915, a communications manager 1015, or a communications manager 1210 described herein.
  • the communications manager 1105 may include a message component 1110, an encoding component 1115, a control message component 1120, a configuration component 1125, a SPS component 1130, a periodicity component 1135, a duration component 1140, and a signaling component 1145. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the Message Component 1110 may identify multiple shared channel messages for a UE, each of the multiple shared channel messages associated with a rateless coding scheme.
  • the Message Component 1110 may determine a number of multiple shared channel messages for communicating with the UE.
  • the Encoding Component 1115 may determine SBN information and ESI information for a starting packet of the multiple shared channel messages.
  • the SBN information includes an index of a SBN of a source block corresponding to the starting packet of the multiple shared channels.
  • the ESI information includes an index of an ESI of an encoding symbol corresponding to the starting packet of the multiple shared channels.
  • the Control Message Component 1120 may transmit, to a UE, a control message scheduling the multiple shared channel messages, where the control message includes the SBN information and the ESI information for a starting packet of the multiple shared channel messages.
  • Control Message Component 1120 may transmit an indication of the periodicity in the control message.
  • Control Message Component 1120 may transmit an indication of the number of multiple shared channel messages in the control message.
  • a set of scheduling parameters is the same for each of the multiple shared channel messages.
  • control message indicates the set of scheduling parameters.
  • the Configuration Component 1125 may transmit a semi-persistent configuration to the UE indicating a set of periodic time-frequency resources configured for the UE, where the control message schedules the multiple shared channel messages via the set of periodic time-frequency resources of the semi-persistent configuration.
  • the Configuration Component 1125 may transmit, in the control message, an indication to the UE to use the semi-persistent configuration of the multiple semi-persistent configurations for transmitting or receiving one or more encoded packets of the multiple shared channel messages.
  • the Configuration Component 1125 may transmit multiple semi-persistent configurations including the semi-persistent configuration to the UE.
  • the semi-persistent configuration corresponds to a set of downlink resources or a configured grant for uplink resources.
  • the SPS Component 1130 may transmit multiple semi-persistent configurations including the semi-persistent configuration to the UE, each of the multiple semi-persistent configurations associated with a different periodicity.
  • the SPS Component 1130 may determine one or more semi-persistent processes for the multiple shared channel messages, where each of the one or more semi-persistent processes corresponds to a respective semi-persistent configuration of the multiple semi-persistent configurations.
  • each of the multiple semi-persistent configurations is associated with a different set of time-frequency resources.
  • the Periodicity Component 1135 may determine a periodicity of the set of periodic time-frequency resources based on a number of encoded packets associated with the multiple shared channel messages, where the semi-persistent configuration indicates the periodicity.
  • the Periodicity Component 1135 may determine a periodicity for communicating the multiple shared channel messages.
  • the Duration Component 1140 may determine a duration associated with the SBN information or the ESI information, where the control message includes an indication of the duration.
  • the Signaling Component 1145 may transmit or receiving the one or more encoded packets via one or more sets of time-frequency resources for the multiple shared channel messages, where the one or more sets of time-frequency resources corresponds to the respective semi-persistent configurations.
  • the message component 1110, encoding component 1115, control message component 1120, configuration component 1125, SPS component 1130, periodicity component 1135, duration component 1140, and signaling component 1145 may each be or be at least a part of a processor (e.g., a transceiver processor, or a radio processor, or a transmitter processor, or a receiver processor) .
  • the processor may be coupled with memory and execute instructions stored in the memory that enable the processor to perform or facilitate the features of message component 1110, encoding component 1115, control message component 1120, configuration component 1125, SPS component 1130, periodicity component 1135, duration component 1140, and signaling component 1145 discussed herein.
  • FIG. 12 shows a diagram of a system 1200 including a device 1205 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • the device 1205 may be an example of or include the components of device 905, device 1005, or a base station 105 as described herein.
  • the device 1205 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1210, a network communications manager 1215, a transceiver 1220, an antenna 1225, memory 1230, a processor 1240, and an inter-station communications manager 1245. These components may be in electronic communication via one or more buses (e.g., bus 1250) .
  • buses e.g., bus 1250
  • the communications manager 1210 may identify multiple shared channel messages for a UE, each of the multiple shared channel messages associated with a rateless coding scheme, determine SBN information and ESI information for a starting packet of the multiple shared channel messages, and transmit, to a UE, a control message scheduling the multiple shared channel messages, where the control message includes the SBN information and the ESI information for a starting packet of the multiple shared channel messages.
  • the network communications manager 1215 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 1215 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 1220 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1220 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1220 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1225. However, in some cases the device may have more than one antenna 1225, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1230 may include RAM, ROM, or a combination thereof.
  • the memory 1230 may store computer-readable code 1235 including instructions that, when executed by a processor (e.g., the processor 1240) cause the device to perform various functions described herein.
  • a processor e.g., the processor 1240
  • the memory 1230 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1240 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1240 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 1240.
  • the processor 1240 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1230) to cause the device 1205 to perform various functions (e.g., functions or tasks supporting signaling for rateless codes in wireless systems) .
  • the inter-station communications manager 1245 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1245 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1245 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
  • the code 1235 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1235 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1235 may not be directly executable by the processor 1240 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 13 shows a flowchart illustrating a method 1300 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • the operations of method 1300 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive, from a base station, a control message scheduling multiple shared channel messages, each of the multiple shared channel messages associated with a rateless coding scheme, where the control message includes SBN information and ESI information for a starting packet of the multiple shared channel messages.
  • the operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a Control Message Receiver as described with reference to FIGs. 5 through 8.
  • the UE may determine a set of scheduling parameters for the multiple shared channel messages based on the control message.
  • the operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a Scheduling Parameter Component as described with reference to FIGs. 5 through 8.
  • the UE may transmit or receiving one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based on the SBN information and the ESI information.
  • the operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a Messaging Component as described with reference to FIGs. 5 through 8.
  • FIG. 14 shows a flowchart illustrating a method 1400 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • the operations of method 1400 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive, from a base station, a control message scheduling multiple shared channel messages, each of the multiple shared channel messages associated with a rateless coding scheme, where the control message includes SBN information and ESI information for a starting packet of the multiple shared channel messages.
  • the operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a Control Message Receiver as described with reference to FIGs. 5 through 8.
  • the UE may receive a semi-persistent configuration from the base station indicating a set of periodic time-frequency resources configured for the UE, where the control message schedules the multiple shared channel messages via the set of periodic time-frequency resources of the semi-persistent configuration.
  • the operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a SPS Receiver as described with reference to FIGs. 5 through 8.
  • the UE may determine a set of scheduling parameters for the multiple shared channel messages based on the control message.
  • the operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a Scheduling Parameter Component as described with reference to FIGs. 5 through 8.
  • the UE may transmit or receiving one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based on the SBN information and the ESI information.
  • the operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by a Messaging Component as described with reference to FIGs. 5 through 8.
  • FIG. 15 shows a flowchart illustrating a method 1500 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • the operations of method 1500 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive, from a base station, a control message scheduling multiple shared channel messages, each of the multiple shared channel messages associated with a rateless coding scheme, where the control message includes SBN information and ESI information for a starting packet of the multiple shared channel messages.
  • the operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a Control Message Receiver as described with reference to FIGs. 5 through 8.
  • the UE may receive multiple semi-persistent configurations including the semi-persistent configuration from the base station.
  • the operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a Multi-SPS Receiver as described with reference to FIGs. 5 through 8.
  • the UE may determine a set of scheduling parameters for the multiple shared channel messages based on the control message.
  • the operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a Scheduling Parameter Component as described with reference to FIGs. 5 through 8.
  • the UE may determine one or more semi-persistent processes for the multiple shared channel messages based on the control message, where each of the one or more semi-persistent processes corresponds to a respective semi-persistent configuration of the multiple semi-persistent configurations.
  • the operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a Configuration Component as described with reference to FIGs. 5 through 8.
  • the UE may transmit or receiving one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based on the SBN information and the ESI information.
  • the operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by a Messaging Component as described with reference to FIGs. 5 through 8.
  • the UE may transmit or receiving the one or more encoded packets via one or more sets of time-frequency resources for the multiple shared channel messages, where the one or more sets of time-frequency resources corresponds to the respective semi-persistent configurations.
  • the operations of 1530 may be performed according to the methods described herein. In some examples, aspects of the operations of 1530 may be performed by a Message Component as described with reference to FIGs. 5 through 8.
  • FIG. 16 shows a flowchart illustrating a method 1600 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • the operations of method 1600 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may identify multiple shared channel messages for a UE, each of the multiple shared channel messages associated with a rateless coding scheme.
  • the operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a Message Component as described with reference to FIGs. 9 through 12.
  • the base station may determine SBN information and ESI information for a starting packet of the multiple shared channel messages.
  • the operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by an Encoding Component as described with reference to FIGs. 9 through 12.
  • the base station may transmit, to a UE, a control message scheduling the multiple shared channel messages, where the control message includes the SBN information and the ESI information for a starting packet of the multiple shared channel messages.
  • the operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a Control Message Component as described with reference to FIGs. 9 through 12.
  • FIG. 17 shows a flowchart illustrating a method 1700 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
  • the operations of method 1700 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may identify multiple shared channel messages for a UE, each of the multiple shared channel messages associated with a rateless coding scheme.
  • the operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a Message Component as described with reference to FIGs. 9 through 12.
  • the base station may transmit a semi-persistent configuration to the UE indicating a set of periodic time-frequency resources configured for the UE, where the control message schedules the multiple shared channel messages via the set of periodic time-frequency resources of the semi-persistent configuration.
  • the operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a Configuration Component as described with reference to FIGs. 9 through 12.
  • the base station may determine SBN information and ESI information for a starting packet of the multiple shared channel messages.
  • the operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by an Encoding Component as described with reference to FIGs. 9 through 12.
  • the base station may transmit, to a UE, a control message scheduling the multiple shared channel messages, where the control message includes the SBN information and the ESI information for a starting packet of the multiple shared channel messages.
  • the operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by a Control Message Component as described with reference to FIGs. 9 through 12.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
  • non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • flash memory compact disk (CD) ROM or other optical disk storage
  • CD compact disk
  • magnetic disk storage or other magnetic storage devices or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer,
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
  • the phrase “based on” shall not be construed as a reference to a closed set of conditions.
  • an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure.
  • the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”

Abstract

Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive a control message, from a base station, scheduling multiple shared channel messages, each associated with a rateless coding scheme. The control message may include source block number information and encoding symbol identifier information for a starting packet of the multiple shared channel messages. The UE may determine a set of scheduling parameters for the multiple shared channel messages based at least in part on the control message. The UE may transmit or receive one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based on the source block number information and the encoding symbol identifier information.

Description

SIGNALING FOR RATELESS CODES IN WIRELESS SYSTEMS
FIELD OF TECHNOLOGY
The present disclosure relates to wireless communications, including signaling for rateless codes in wireless systems.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
In some examples, one or more wireless devices may use rateless coding techniques for more efficient communications. To schedule the one or more rateless shared channel transmissions (e.g., a physical uplink shared channel (PUSCH) or a physical downlink shared channel (PDSCH) ) , a base station may transmit downlink control information (DCI) to a user equipment (UE) . The DCI may schedule each rateless shared channel individually, and each DCI may include scheduling parameters for the respective rateless shared channel. Individually configuring such channels may result in increased signaling overhead.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support signaling for rateless codes in wireless systems. Generally, the described techniques provide for configuring multiple shared channel messages where each of the multiple shared channel messages are encoded with a rateless coding scheme. A user equipment (UE) a receive a control message from a base station that schedules multiple shared channel messages, each of which associated with a rateless coding scheme. The control message may include source block number (SBN) information, encoding symbol identifier (ESI) information, or both, for a starting packet of the multiple shared channel messages. The UE may determine a set of scheduling parameters for the multiple shared channel messages based on the control message and may transmit or receive one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters, the SBN information, the ESI information, or any combination thereof.
A method of wireless communications at a UE is described. The method may include receiving, from a base station, a control message scheduling multiple shared channel messages, each of the multiple shared channel messages associated with a rateless coding scheme, where the control message includes source block number information and encoding symbol identifier information for a starting packet of the multiple shared channel messages, determining a set of scheduling parameters for the multiple shared channel messages based on the control message, and transmitting or receiving one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based on the source block number information and the encoding symbol identifier information.
An apparatus for wireless communications at a UE is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive, from a base station, a control message scheduling multiple shared channel messages, each of the multiple shared channel messages associated with a rateless coding scheme, where the control message includes source block number information and encoding symbol identifier information for a starting packet of the multiple shared channel messages, determine a set of scheduling parameters for the multiple shared channel messages based on  the control message, and transmit or receiving one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based on the source block number information and the encoding symbol identifier information.
Another apparatus for wireless communications at a UE is described. The apparatus may include means for receiving, from a base station, a control message scheduling multiple shared channel messages, each of the multiple shared channel messages associated with a rateless coding scheme, where the control message includes source block number information and encoding symbol identifier information for a starting packet of the multiple shared channel messages, determining a set of scheduling parameters for the multiple shared channel messages based on the control message, and transmitting or receiving one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based on the source block number information and the encoding symbol identifier information.
A non-transitory computer-readable medium storing code for wireless communications at a UE is described. The code may include instructions executable by a processor to receive, from a base station, a control message scheduling multiple shared channel messages, each of the multiple shared channel messages associated with a rateless coding scheme, where the control message includes source block number information and encoding symbol identifier information for a starting packet of the multiple shared channel messages, determine a set of scheduling parameters for the multiple shared channel messages based on the control message, and transmit or receiving one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based on the source block number information and the encoding symbol identifier information.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a semi-persistent configuration from the base station indicating a set of periodic time-frequency resources configured for the UE, where the control message schedules the multiple shared channel messages via the set of periodic time-frequency resources of the semi-persistent configuration.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for  receiving multiple semi-persistent configurations including the semi-persistent configuration from the base station, each of the multiple semi-persistent configurations associated with a different periodicity, and determining to use the semi-persistent configuration of the multiple semi-persistent configurations for transmitting or receiving the one or more encoded packets of the multiple shared channel messages based on the control message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a periodicity of the set of periodic time-frequency resources based on a number of encoded packets associated with the multiple shared channel messages.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the semi-persistent configuration corresponds to a set of downlink resources or a configured grant for uplink resources.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for decoding the one or more encoded packets based on a duration associated with the source block number information or the encoding symbol identifier information, where the control message includes an indication of the duration.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for encoding one or more source packets of the multiple shared channel messages to obtain the one or more encoded packets based on a duration associated with the source block number information or the encoding symbol identifier information, where the control message includes an indication of the duration.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the source block number information includes an index of a source block number of a source block corresponding to the starting packet of the multiple shared channels.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the encoding symbol identifier information includes an  index of an encoding symbol identifier of an encoding symbol corresponding to the starting packet of the multiple shared channels.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving multiple semi-persistent configurations including the semi-persistent configuration from the base station, determining one or more semi-persistent processes for the multiple shared channel messages based on the control message, where each of the one or more semi-persistent processes corresponds to a respective semi-persistent configuration of the multiple semi-persistent configurations, and transmitting or receiving the one or more encoded packets via one or more sets of time-frequency resources for the multiple shared channel messages, where the one or more sets of time-frequency resources corresponds to the respective semi-persistent configurations.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, each of the multiple semi-persistent configurations may be associated with a different set of time-frequency resources.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting or receiving the multiple shared channel messages based on a periodicity indicated by the control message.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, monitoring for the multiple shared channel messages may include operations, features, means, or instructions for transmitting or receiving a number of multiple shared channel messages based on the number of multiple shared channel messages indicated by the control message.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the set of scheduling parameters may be the same for each of the multiple shared channel messages.
A method of wireless communications at a base station is described. The method may include identifying multiple shared channel messages for a UE, each of the multiple shared channel messages associated with a rateless coding scheme, determining source block  number information and encoding symbol identifier information for a starting packet of the multiple shared channel messages, and transmitting, to a UE, a control message scheduling the multiple shared channel messages, where the control message includes the source block number information and the encoding symbol identifier information for a starting packet of the multiple shared channel messages.
An apparatus for wireless communications at a base station is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to identify multiple shared channel messages for a UE, each of the multiple shared channel messages associated with a rateless coding scheme, determine source block number information and encoding symbol identifier information for a starting packet of the multiple shared channel messages, and transmit, to a UE, a control message scheduling the multiple shared channel messages, where the control message includes the source block number information and the encoding symbol identifier information for a starting packet of the multiple shared channel messages.
Another apparatus for wireless communications at a base station is described. The apparatus may include means for identifying multiple shared channel messages for a UE, each of the multiple shared channel messages associated with a rateless coding scheme, determining source block number information and encoding symbol identifier information for a starting packet of the multiple shared channel messages, and transmitting, to a UE, a control message scheduling the multiple shared channel messages, where the control message includes the source block number information and the encoding symbol identifier information for a starting packet of the multiple shared channel messages.
A non-transitory computer-readable medium storing code for wireless communications at a base station is described. The code may include instructions executable by a processor to identify multiple shared channel messages for a UE, each of the multiple shared channel messages associated with a rateless coding scheme, determine source block number information and encoding symbol identifier information for a starting packet of the multiple shared channel messages, and transmit, to a UE, a control message scheduling the multiple shared channel messages, where the control message includes the source block  number information and the encoding symbol identifier information for a starting packet of the multiple shared channel messages.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a semi-persistent configuration to the UE indicating a set of periodic time-frequency resources configured for the UE, where the control message schedules the multiple shared channel messages via the set of periodic time-frequency resources of the semi-persistent configuration.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting multiple semi-persistent configurations including the semi-persistent configuration to the UE, each of the multiple semi-persistent configurations associated with a different periodicity, and transmitting, in the control message, an indication to the UE to use the semi-persistent configuration of the multiple semi-persistent configurations for transmitting or receiving one or more encoded packets of the multiple shared channel messages.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a periodicity of the set of periodic time-frequency resources based on a number of encoded packets associated with the multiple shared channel messages, where the semi-persistent configuration indicates the periodicity.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the semi-persistent configuration corresponds to a set of downlink resources or a configured grant for uplink resources.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a duration associated with the source block number information or the encoding symbol identifier information, where the control message includes an indication of the duration.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the source block number information includes an index of a source block number of a source block corresponding to the starting packet of the multiple shared channels.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the encoding symbol identifier information includes an index of an encoding symbol identifier of an encoding symbol corresponding to the starting packet of the multiple shared channels.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting multiple semi-persistent configurations including the semi-persistent configuration to the UE, determining one or more semi-persistent processes for the multiple shared channel messages, where each of the one or more semi-persistent processes corresponds to a respective semi-persistent configuration of the multiple semi-persistent configurations, and transmitting or receiving the one or more encoded packets via one or more sets of time-frequency resources for the multiple shared channel messages, where the one or more sets of time-frequency resources corresponds to the respective semi-persistent configurations.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, each of the multiple semi-persistent configurations may be associated with a different set of time-frequency resources.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a periodicity for communicating the multiple shared channel messages, and transmitting an indication of the periodicity in the control message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a number of multiple shared channel messages for communicating with the UE, and transmitting an indication of the number of multiple shared channel messages in the control message.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, a set of scheduling parameters may be the same for each of the multiple shared channel messages, and the control message indicates the set of scheduling parameters.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a wireless communications system that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
FIG. 3A and 3B illustrate examples of a resource configurations that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
FIG. 4 illustrates an example of a process flow that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
FIGs. 5 and 6 show block diagrams of devices that support signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
FIG. 7 shows a block diagram of a communications manager that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
FIG. 8 shows a diagram of a system including a device that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
FIGs. 9 and 10 show block diagrams of devices that support signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
FIG. 11 shows a block diagram of a communications manager that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
FIG. 12 shows a diagram of a system including a device that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
FIGs. 13 through 17 show flowcharts illustrating methods that support signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
Some wireless communications systems may use rateless coding, such as raptor codes, Luby transform codes, or other fountain codes, for shared channel messages such as physical downlink shared channel (PDSCH) or physical uplink shared channel (PUSCH) data transmissions. For example, the rateless coding scheme may be based on the service or message type (e.g., control plane data, user plane data) being communicated. Rateless coding schemes are considered rateless coding in that the transmitted packets may be recovered at the receiver so long as the number of received packets is equal to or greater than that of the number of source packets, regardless of which packets are successfully received.
In some implementations of rateless codes, a base station may transmit respective control messages for each scheduled PDSCH or PUSCH data transmission to separately configure transmission parameters and source block information. In some cases, however, scheduling parameters and source block information may stay the same for multiple consecutive rateless control channels. Separately configuring each rateless channel transmission may result in increased signaling overhead and inefficient use of communication resources, among other issues.
Various aspects of the present disclosure relate to configuring a UE to support reduced signaling for rateless codes in wireless systems. A UE may receive a single uplink grant that schedules multiple PUSCH messages or alternatively, a single downlink grant that schedules multiple PDSCH messages. The UE may also receive source block number (SBN) information or encoding symbol identifier (ESI) information to use for encoding or decoding the shared channel data transmissions.
In some examples, the wireless communications system may use semi-persistent scheduling (SPS) to configure or schedule multiple shared channel data transmissions. In some cases, a base station may configure a UE with multiple SPS configurations having different periodicities via radio resource control (RRC) signaling. In some aspects, the base  station may transmit a signal, such as a configured scheduling (CS) activation DCI, to dynamically change the SPS periodicity based on the number of encoded packets.
In some examples, the wireless communications system may use semi-persistent scheduling to configure shared channel data transmissions with multiple simultaneous processes, such as SPS processes. In such cases, the encoded packets may be divided into several subsets and the UE may be configured with multiple SPS process for simultaneous transmission using different time resources, or different frequency resources, or both.
In some examples, the wireless communications system may use dynamic scheduling to configure multiple shared channel data transmissions. In such cases, the periodicity and the number of PUSCH and PDSCH data transmission may be dynamically indicated to the UE (e.g., in DCI) .
Aspects of the subject matter described int his disclosure may be implemented to realize one or more of the following potential improvements, among others. The techniques employed by the UE may provide benefits and enhancements to the operation of the UE. For example, operations performed by the UE may reduce the communication resources used for DCI and the scheduling of multiple rateless messages. The resources saved may be used for data transmission and may increase the reliability, or efficiency, or both of the wireless communications system.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are further illustrated by and described with reference to a resource configuration and process flow diagrams. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to signaling for rateless codes in wireless systems.
FIG. 1 illustrates an example of a wireless communications system 100 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband  communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers. A carrier may be associated with a frequency channel (e.g., an evolved universal mobile  telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115. A carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
The communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) . Devices of the wireless communications system 100 (e.g., the base stations 105, the UEs 115, or both) may have hardware configurations that support communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths. In some examples, each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more  resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing (Δf) and a cyclic prefix. A carrier may be divided into one or more BWPs having the same or different numerologies. In some examples, a UE 115 may be configured with multiple BWPs. In some examples, a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s=1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of  symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra- reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to IP services 150 for one or more network  operators. The IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include  downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the  bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data. At the physical layer, transport channels may be mapped to physical channels.
The UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) . In some examples, a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
Wireless communications system 100 may support the scheduling of multiple shared channels (e.g., PUSCH or PUCCH) that are associated with a rateless coding scheme in a single DCI. For example, a base station 105 may transmit DCI to a UE 115 to configure scheduling parameters (MCS, etc. ) for multiple shared channels. The DCI may in some cases configure the UE with the source block information (e.g., source block information (e.g., SBN) and encoding symbol information (e.g., ESI) for multiple shared channels for use in the encoding or decoding processes for the multiple shared channels. UE 115 may use the SBN and ESI to encode or decode packets of the multiple shared channels.
FIG. 2 illustrates an example of a wireless communications system 200 that supports signaling for rateless codes in wireless systems in accordance with aspects of the  present disclosure. In some examples, wireless communications system 200 may implement aspects of wireless communications system 100. Aspects of the described techniques may be implemented at or by base station 105-a or UE 115-a, which may be respective examples of base station 105 and UE 115 as described herein. Base station 105-a may transmit communication signaling to UE 115-a on downlink 205 and UE 115-a may transmit communication signaling to base station 105-a on uplink 225 within coverage area 110-a.
In some aspects, base station 105-a may be configured or otherwise act as a transmitting device performing a data transmission to UE 115-a (e.g., a downlink transmission) , which may be configured or otherwise act as a receiving device in this scenario. However, it is to be understood that UE 115-a may implement various aspects of the described techniques when acting as or otherwise configured as the transmitting device performing a data transmission to base station 105-a (e.g., an uplink transmission) , which may be configured or otherwise acting as the receiving device in this scenario. In some examples, such wireless transmissions may be performed by base station 105-a to another base station or by UE 115-a to another UE. Aspects of the described techniques, however, are not limited to the downlink transmission scenario, but may, instead, be equally applicable to the uplink transmission scenario.
Wireless communications system 200 may utilize fountain codes, which are rateless codes in that the number of encoded packets to be transmitted is potentially limitless. For example, the transmitted packets may be recovered at the receiver side so long as the number of received packets is equal to or greater than the number of source packets regardless of which packets are received successfully decoded. Examples of such rateless codes include Luby transform (LT) codes, raptor codes (an enhanced code based on variations of low-density parity-check (LDPC) and LT codes) , and the like.
Fountain codes are also referred to as network codes because they may be applied to the network/application layer (e.g., for MBMS, IAB, and the like) . At the receiving device, each encoded symbol would either be decoded correctly or discarded (e.g., the encoded packet (s) transmitted during a symbol) . This approach permits a block number (e.g., a block number (e.g., SBN) ) or a symbol identifier (e.g., an ESI) associated with the packet (s) to be added as a header to the encoded symbols. The SBN generally corresponds to an integer identifier for the source block to which the encoded symbols within the packet relate. The  ESI generally corresponds to an integer identifier for a corresponding encoding symbol (e.g., the column of the original generator matrix) of a set of encoding symbols of the packet. Each encoded packet may include the SBN, the ESI, and the encoding symbol (s) . Based on the SBN and ESI, the transmitting device and receiving device may determine which source symbols (e.g., which column of the original generator matrix) were selected to generate the encoded symbol.
Fountain codes are rateless codes with theoretically an unlimited number of columns in the original generator matrix generated by the transmitting device. For example, the transmitting device may have K symbols for transmission to the receiving device. The original generator matrix may therefore be generated with K rows (corresponding to the K symbols) and, as the fountain code is a rateless code, a potentially infinite number of columns. The number of transmitted packets may correspond to the formula:
Figure PCTCN2020119787-appb-000001
The recovered packets (e.g., the received packets) may correspond to the formula:
Figure PCTCN2020119787-appb-000002
The condition or scenario for the receiving device to recover the packets may include G′ according to the received packets being invertible or the rank of G′ being K. A design rule for the original generator matrix is that G′ is invertible with minimum N.
With respect to LT codes, efficient methods may be utilized to realize the function of fountain codes. For example, the encoding process for each encoding symbol may include the transmitting device randomly choosing a degree d i from a degree distribution and randomly choosing d i distinct source symbols with uniform distribution and performing an exclusive or (XOR) function on them.
At the receiving device, the decoding process may include a belief propagation technique, gaussian elimination process, and the like. For example, the receiving device may find an encoding symbol t j that is connected to only one source symbol S i. The receiving device may set S i to t j, XOR S i to all encoding symbols that are connected to S i, and remove all edges connected to the source symbol S i. The receiving device may repeat this until all S i  are determined. If there are no encoding symbols that are connected to only one source symbol, then the decoding process fails.
Raptor codes generally reduce the encoding and decoding complexity of LT codes by reducing the average degree (e.g., LDPC plus weak LT code with a small averaging degree, such as three) . The precoding process may include generating some redundant symbols, such as S LDPC symbols (each source symbol will appear three times in all LDPC symbols) and H half symbols (each encoding symbol containing ceiling (H/2) source symbols) . The encoding process for each encoding symbol may include randomly choosing a degree d i from a degree distribution, e.g., may choose d i distinct source symbols and XOR them. The number of redundant symbols may be based on the first K intermediate symbols.
The data partitioning and encoding process may be based on the different layers of the protocol stack of the transmitting device. For example, N d bits of data may be received at the PDCP layer. The N d bits may be partitioned into l packets with N bbits per packet (e.g., each of S 0, S 1, S 2, ..., S l-2, S l-1 may correspond to an N b-bit packet) . In the RLC layer, an erasure correction code (such as fountain codes/rateless coding) may be used to encode across the l packets to generate a stream of L encoded packets (e.g., packets of P 0, P 1, P 2, P 3, ..., P L-1) . At the MAC/physical layer, each packet may consist of N S symbols after error-correction, coding and modulation (e.g., each packet P may include X 0, X 1, X 2, ..., X Ns-1) . Each information symbol may include Q bits (e.g., N b ≤ N SQ) .
Base station 105-a may transmit configuration message 210 to configure UE 115-a for communications using rateless codes. Configuration message 210 may configure UE 115-a via RRC signaling. In some cases, base station 105-a may configure UE 115-a with a SPS configuration which specify a set of periodic time-frequency resources. In other cases, the configuration message 210 may configure multiple semi-persistent processes associated with different periodicities for time-frequency resources. In other cases, the configuration message 210 may configure multiple semi-persistent process associated with different frequency resources.
Base station 105-a may transmit control message 215 to schedule and configure one or more encoded packets 220 of multiple shared channel messages, such as downlink encoded packets 220-a or uplink encoded packets 220-b. In some cases, the control message may contain control signaling and encoding information for multiple consecutive encoded  packets 220. The control message 215 may contain DCI for the scheduled encoded packets 220. In some cases, the DCI may contain SBN and ESI information for the scheduled encoded packets 220. In some cases, the control message 215 may indicate the number of encoded packets 220 to be transmitted. Additionally or alternatively, the DCI may contain the start index of SBN and ESI and the duration of the SBN and ESI.
In some examples, base station 105-a may configure UE 115-a for communication using SPS via configuration message 210. Configuration message 210 may configure multiple SPS processes with varying periodicities for communication between UE 115-a and base station 105-a. Base station 105-a may transmit control message 215 to schedule and configure one or more encoded packets 220. UE 115-a may dynamically change the SPS periodicity based on the number of encoded packets identified in control message 215. In some cases, the CS activation DCI from control message 215 may be used to determine which SPS configuration should be used. In some cases, the CS activation DCI may be used to override the RRC configured periodicity. Even though the CS activation DCI may be used to override the RRC configured periodicity, in some cases it may not be desirable to allow the DCI to trigger retransmission for rateless coding based encoded packets 220 nor allow the DCI to override the original MCS. In this example, base station 105-a may transmit multiple rateless coding based encoded packets 220 at a periodicity based on the number of encoded packets 220 to UE 115-a using a single control message 215 for scheduling information, SBN, and ESI.
In some examples, base station 105-a may configure UE 115-a for communication using SPS via configuration message 210 where the SPS configuration includes multiple simultaneous process. In this examples, UE 115-a may be configured with time and frequency resources for simultaneous transmission of encoded packets. Base station 105-a may transmit control message 215 to UE 115-a scheduling transmission of multiple encoded packets 220 of a shared channel communication on different time and frequency resources. For example, control message 215 may configure UE 115-a to transmit two or more encoded packets 220 on different configured frequency resources simultaneously. In some cases, the encoded packets 220 of the shared channel communication may be divided into two or more subsets to be transmitted on different frequency resources. The control message 215 may contain the DCI, SBN, and ESI to configure all of the encoded packet 220 transmissions across the various configured time and frequency resources.
In some cases, base station 105-a may adjust the configuration in the configuration message 210 and control message 215 to determine an optimal resource configuration for wireless communications system 200. In some cases, the base station 105-a may determine to configure communications where there is one control message 215 per encoded packet 220 based at least in part on one or more system characteristics. For example, the base station 105-a may configure one DCI per encoded packet 220 and include the SBN and ESI indication in the encoded packet 220 based at least in part on a UE capability. In other examples, the base station 105-a may group more encoded packets 220 per control message 215 based at least in part on a preference for one or more parameters including but not limited to data transmission rate, transmission reliability, coding rate, and efficiency.
In some examples, base station 105-a may dynamically schedule transmission or reception of rateless coding based encoded packets 220. In this example, base station 105-a may transmit a single grant (e.g., an uplink grant or a downlink grant) to schedule one or more encoded packets 220. In some cases, base station 105-a may transmit control message 215 containing DCI to configure the single grant for multiple encoded packets 220. The DCI may dynamically indicate the periodicity for transmitting the encoded packets 220. Additionally or alternatively, the total number of encoded packets in encoded packets 220 may be dynamically indicated by DCI in control message 215. Additionally or alternatively, the DCI may dynamically indicate the start index of SBN and ESI in control message 215. In some cases, for uplink signaling, DCI zero may carry the periodicity, number of encoded packets 220, and the start index of SBN and ESI. In some cases, for downlink signaling, DCI one may carry the periodicity, number of encoded packets 220 and the start index of SBN and ESI.
In some cases, scheduling and configuring multiple encoding packets with a single control message may significantly reduce the signaling overhead related to transmitting rateless coding based encoded packets 220. In some cases, the DCI consumption may be reduced and the number of bits associated with SBN and ESI indication may be reduced. In some cases, the resources saved may be used for data transmission and may increase the data rate, efficiency, or both. Additionally or alternatively, the resources saved may be used for DCI transmission and may increase the reliability of DCI transmission. Also, with the proposed scheme, the coding rate may be lower, increasing the transmission reliability.
FIG. 3A and 3B illustrate examples of a resource configurations 300-a and 300-b that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure. In some examples, resource configurations 300-a and 300-b may implement aspects of wireless communications system 100 and wireless communications system 200, as described with reference to FIGs. 1 and 2, respectively. The resource configurations 300-a and 300-b may be configured by base station 105 as described with reference to FIGs. 1 and 2, respectively.
FIG. 3A illustrates an example of a resource configuration 300-a that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure. Resource configuration 300-a shows an example of a resource configuration where each encoded symbol 310 is individually configured by a DCI 305. In this example, DCI 305-a configures encoding symbol 310-a, DCI 305-b configures encoding symbol 310-b, and so forth. The base station may determine to configure each encoded symbol 310 based on one or more system conditions or preferences, such as a UE capability. In some examples, DCI 305 may contain SBN and ESI indication, but in other examples, the SBN and ESI indication may be transmitted in the encoded symbol or symbols. A base station may configure resource configuration 300-a for communication between the base station and a UE in a configuration message, which may be an example of configuration message 210 described in reference to FIG. 2.
FIG. 3B illustrates and example of a resource configuration 300-b that support signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure. Resource configuration 300-b shows an example of a resource configuration where multiple encoded symbols 310-d through 310-x are configured by a single DCI 305-d. DCI-d may include the SBN and ESI indication for each of the encoded symbols 310-d through 310-x.
In some cases, resource configuration 300-b may be configured semi-statically (e.g., SPS) . In this case, DCI 305-d will be transmitted by the base station to activate the SPS transmission. DCI 305-d may contain indications of the number of encoded symbols 310 configured by DCI 305-d, and the base station and the UE may determine the periodicity of the SPS, from a plurality of configured SPS periodicities based on the number of encoded  symbols 310 configured by DCI 305-d. In some cases, the DCI configured periodicity may override an RRC configured periodicity.
In some cases, resource configuration 300-b may be configured dynamically. A base station may transmit a DCI to configure a UE to receive multiple encoding symbols 310 or to configure the UE with uplink resources and configuration to transmit multiple encoded symbols 310 to the base station. In this case, the DCI 305-d will schedule the multiple encoded symbols 310-d through 310-x. Additionally or alternatively, the DCI may also configure the start index and duration of the SBN and ESI for the encoded symbols 310.
FIG. 4 illustrates an example of a process flow 400 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure. In some examples, process flow 400 may implement aspects of wireless communications system 100 and the wireless communications system 200 described with reference to FIGs. 1 and 2, respectively. The process flow 400 may be based on a configuration by a base station 105-b and implemented by a UE 115-b to promote signaling efficiency for the wireless communications system. The process flow 400 may also be based on a configuration by the base station 105-b and implemented by the UE 115-b to promote high reliability and low latency wireless communications, among other benefits.
In the following description of the process flow 400, the operations between the base station 105-b and the UE 115-b may be transmitted in a different order than the example order shown, or the operations performed by the base station 105-b and the UE 115-b may be performed in different orders or at different times. Some operations may also be omitted from the process flow 400, and other operations may be added to the process flow 400. The base station 105-b and the UE 115-b may be examples of a base station 105 and a UE 115 as described with reference to FIGs. 1 and 2, respectively.
At 405, base station 105-b may identify multiple shared channel messages for a UE, where each of the multiple shared channels may be associated with a rateless coding scheme.
At 410, base station 105-b may determine SBN information and ESI information for starting packet of the multiple shared channel messages. In some examples, the SBN information includes an index of SBN of a source block correspond to the starting packet of the multiple shared channels. In some examples, the ESI information includes an index of an  ESI of an encoding symbol corresponding to the starting packet of the multiple shared channels.
At 415, UE 115-a may receive, from base station 105-b, a semi-persistent configuration indicating a set of periodic time-frequency resources configured for the UE, where the control message schedules the multiple shared channel messages via the set of periodic time-frequency resources of the semi-persistent configuration. In some examples, UE 115-a may receive multiple semi-persistent configurations including the semi-persistent configuration from the base station, each of the multiple semi-persistent configurations associated with a different periodicity. UE 115-a may determine to use the semi-persistent configuration of the multiple semi-persistent configurations for transmitting or receiving the one or more encoded packets of the multiple shared channel messages based on the control message. In some cases, UE 115-a may determine a periodicity of the set of periodic time-frequency resources based on a number of encoded packets associated with the multiple shared channel messages.
At 420, UE 115-b may receive, from base station 105-b, a control message scheduling multiple shared channel messages, each of the multiple shared channel messages associated with a rateless coding scheme, where the control message includes SBN information and ESI information for a starting packet of the multiple shared channel messages.
At 425, UE 115-b may determine a set of scheduling parameters for the multiple shared channel messages based on the control message. In some cases, UE 115-a may determine a periodicity of the set of periodic time-frequency resources based on a number of encoded packets associated with the multiple shared channel messages.
At 430, UE 115-b may transmit or receive one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based on the SBN information and the ESI information.
FIG. 5 shows a block diagram 500 of a device 505 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure. The device 505 may be an example of aspects of a UE 115 as described herein. The device 505 may include a receiver 510, a communications manager 515, and a transmitter 520. The device 505 may also include a one or more processors, memory coupled with the one or more  processors, and instructions stored in the memory that are executable by the one or more processors to enable the one or more processors to perform resource configuration features discussed herein. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to signaling for rateless codes in wireless systems, etc. ) . Information may be passed on to other components of the device 505. The receiver 510 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The receiver 510 may utilize a single antenna or a set of antennas.
The communications manager 515 may receive, from a base station, a control message scheduling multiple shared channel messages, each of the multiple shared channel messages associated with a rateless coding scheme, where the control message includes SBN information and ESI information for a starting packet of the multiple shared channel messages, determine a set of scheduling parameters for the multiple shared channel messages based on the control message, and transmit or receiving one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based on the SBN information and the ESI information. The communications manager 515 may be an example of aspects of the communications manager 810 described herein.
The communications manager 515, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 515, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 515, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 515, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some  examples, the communications manager 515, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 520 may transmit signals generated by other components of the device 505. In some examples, the transmitter 520 may be collocated with a receiver 510 in a transceiver module. For example, the transmitter 520 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The transmitter 520 may utilize a single antenna or a set of antennas.
In some examples, the communications manager 515 may be implemented as an integrated circuit or chipset for a mobile device modem, and the receiver 510 and transmitter 520 may be implemented as analog components (e.g., amplifiers, filters, antennas) coupled with the mobile device modem to enable wireless transmission and reception over one or more bands.
The communications manager 515 as described herein may be implemented to realize one or more potential advantages. One implementation may allow the device 505 to reduce signaling overhead related to transmitting DCI, source block information, and ESI for each encoded packet of multiple shared channel messages between the device 505 and a base station. Based on the techniques for reducing signaling overhead between the device 505 and the base station, the device 505 may support one or more of increased data rate, increased reliability, and increased coding rate.
As such, the device 505 may increase the reliability and data rate of transmitting multiple shared channel messages with a rateless coding scheme, and, accordingly, may communicate over the channel with a greater likelihood of successful communications. In some examples, based on a greater likelihood of successful communications, the device 505 may more efficiently power a processor or one or more processing units associated with transmitting multiple shared channel messages with a rateless coding scheme, which may enable the device to save power and increase battery life.
FIG. 6 shows a block diagram 600 of a device 605 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure. The  device 605 may be an example of aspects of a device 505, or a UE 115 as described herein. The device 605 may include a receiver 610, a communications manager 615, and a transmitter 635. The device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to signaling for rateless codes in wireless systems, etc. ) . Information may be passed on to other components of the device 605. The receiver 610 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The receiver 610 may utilize a single antenna or a set of antennas.
The communications manager 615 may be an example of aspects of the communications manager 515 as described herein. The communications manager 615 may include a control message receiver 620, a scheduling parameter component 625, and a messaging component 630. The communications manager 615 may be an example of aspects of the communications manager 810 described herein.
The Control Message Receiver 620 may receive, from a base station, a control message scheduling multiple shared channel messages, each of the multiple shared channel messages associated with a rateless coding scheme, where the control message includes SBN information and ESI information for a starting packet of the multiple shared channel messages.
The Scheduling Parameter Component 625 may determine a set of scheduling parameters for the multiple shared channel messages based on the control message.
The Messaging Component 630 may transmit or receiving one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based on the SBN information and the ESI information.
The transmitter 635 may transmit signals generated by other components of the device 605. In some examples, the transmitter 635 may be collocated with a receiver 610 in a transceiver module. For example, the transmitter 635 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The transmitter 635 may utilize a single antenna or a set of antennas.
In some cases, the control message receiver 620, scheduling parameter component 625, and messaging component 630 may each be or be at least a part of a processor (e.g., a transceiver processor, or a radio processor, or a transmitter processor, or a receiver processor) . The processor may be coupled with memory and execute instructions stored in the memory that enable the processor to perform or facilitate the features of control message receiver 620, scheduling parameter component 625, and messaging component 630 discussed herein. A transceiver processor may be collocated with an/or communicate with (e.g., direct the operations of) a transceiver of the device. A radio processor may be collocated with or communicate with (e.g., direct the operations of) a radio (e.g., an NR radio, an LTE radio, a Wi-Fi radio) of the device. A transmitter processor may be collocated with or communicate with (e.g., direct the operations of) a transmitter of the device. A receiver processor may be collocated with or communicate with (e.g., direct the operations of) a receiver of the device.
FIG. 7 shows a block diagram 700 of a communications manager 705 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure. The communications manager 705 may be an example of aspects of a communications manager 515, a communications manager 615, or a communications manager 810 described herein. The communications manager 705 may include a control message receiver 710, a scheduling parameter component 715, a messaging component 720, a SPS receiver 725, a multi-SPS receiver 730, a configuration component 735, a periodicity component 740, a decoding component 745, an encoding component 750, and a message component 755. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The Control Message Receiver 710 may receive, from a base station, a control message scheduling multiple shared channel messages, each of the multiple shared channel messages associated with a rateless coding scheme, where the control message includes SBN information and ESI information for a starting packet of the multiple shared channel messages.
In some cases, the SBN information includes an index of a SBN of a source block corresponding to the starting packet of the multiple shared channels.
In some cases, the ESI information includes an index of an ESI of an encoding symbol corresponding to the starting packet of the multiple shared channels.
The Scheduling Parameter Component 715 may determine a set of scheduling parameters for the multiple shared channel messages based on the control message.
In some cases, the set of scheduling parameters is the same for each of the multiple shared channel messages.
The Messaging Component 720 may transmit or receiving one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based on the SBN information and the ESI information.
The SPS Receiver 725 may receive a semi-persistent configuration from the base station indicating a set of periodic time-frequency resources configured for the UE, where the control message schedules the multiple shared channel messages via the set of periodic time-frequency resources of the semi-persistent configuration.
In some cases, the semi-persistent configuration corresponds to a set of downlink resources or a configured grant for uplink resources.
The Multi-SPS Receiver 730 may receive multiple semi-persistent configurations including the semi-persistent configuration from the base station, each of the multiple semi-persistent configurations associated with a different periodicity.
In some examples, the Multi-SPS Receiver 730 may receive multiple semi-persistent configurations including the semi-persistent configuration from the base station.
In some cases, each of the multiple semi-persistent configurations is associated with a different set of time-frequency resources.
The Configuration Component 735 may determine to use the semi-persistent configuration of the multiple semi-persistent configurations for transmitting or receiving the one or more encoded packets of the multiple shared channel messages based on the control message.
In some examples, the Configuration Component 735 may determine one or more semi-persistent processes for the multiple shared channel messages based on the control message, where each of the one or more semi-persistent processes corresponds to a respective semi-persistent configuration of the multiple semi-persistent configurations.
The Periodicity Component 740 may determine a periodicity of the set of periodic time-frequency resources based on a number of encoded packets associated with the multiple shared channel messages.
The Decoding Component 745 may decode the one or more encoded packets based on a duration associated with the SBN information or the ESI information, where the control message includes an indication of the duration.
The Encoding Component 750 may encode one or more source packets of the multiple shared channel messages to obtain the one or more encoded packets based on a duration associated with the SBN information or the ESI information, where the control message includes an indication of the duration.
The Message Component 755 may transmit or receiving the one or more encoded packets via one or more sets of time-frequency resources for the multiple shared channel messages, where the one or more sets of time-frequency resources corresponds to the respective semi-persistent configurations.
In some examples, the Message Component 755 may transmit or receiving the multiple shared channel messages based on a periodicity indicated by the control message.
In some examples, the Message Component 755 may transmit or receiving a number of multiple shared channel messages based on the number of multiple shared channel messages indicated by the control message.
In some cases, the control message receiver 710, messaging component 720, multi-SPS receiver 730, periodicity component 740, encoding component 750, scheduling parameter component 715, SPS receiver, 725, configuration component 735, decoding component 745, and message component 755 may each be or be at least a part of a processor (e.g., a transceiver processor, or a radio processor, or a transmitter processor, or a receiver processor) . The processor may be coupled with memory and execute instructions stored in the memory that enable the processor to perform or facilitate the features of control message receiver 710, messaging component 720, multi-SPS receiver 730, periodicity component 740, encoding component 750, scheduling parameter component 715, SPS receiver, 725, configuration component 735, decoding component 745, and message component 755 discussed herein.
FIG. 8 shows a diagram of a system 800 including a device 805 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure. The device 805 may be an example of or include the components of device 505, device 605, or a UE 115 as described herein. The device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 810, an I/O controller 815, a transceiver 820, an antenna 825, memory 830, and a processor 840. These components may be in electronic communication via one or more buses (e.g., bus 845) .
The communications manager 810 may receive, from a base station, a control message scheduling multiple shared channel messages, each of the multiple shared channel messages associated with a rateless coding scheme, where the control message includes SBN information and ESI information for a starting packet of the multiple shared channel messages, determine a set of scheduling parameters for the multiple shared channel messages based on the control message, and transmit or receiving one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based on the SBN information and the ESI information.
The I/O controller 815 may manage input and output signals for the device 805. The I/O controller 815 may also manage peripherals not integrated into the device 805. In some cases, the I/O controller 815 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 815 may utilize an operating system such as
Figure PCTCN2020119787-appb-000003
or another known operating system. In other cases, the I/O controller 815 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 815 may be implemented as part of a processor. In some cases, a user may interact with the device 805 via the I/O controller 815 or via hardware components controlled by the I/O controller 815.
The transceiver 820 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 820 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 820 may also include a modem to modulate the packets and provide the  modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 825. However, in some cases the device may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 830 may include RAM and ROM. The memory 830 may store computer-readable, computer-executable code 835 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 830 may contain, among other things, a basic input output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 840 may include an intelligent hardware device, (e.g., a general-purpose processor, a digital signal processor (DSP) , a CPU, a microcontroller, an ASIC, an field programmable gate array (FPGA) , a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 840 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 840. The processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting signaling for rateless codes in wireless systems) .
The code 835 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 835 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 9 shows a block diagram 900 of a device 905 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure. The device 905 may be an example of aspects of a base station 105 as described herein. The device 905 may include a receiver 910, a communications manager 915, and a transmitter 920. The device 905 may also include a one or more processors, memory coupled with the  one or more processors, and instructions stored in the memory that are executable by the one or more processors to enable the one or more processors to perform the resource configuration features discussed herein. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to signaling for rateless codes in wireless systems, etc. ) . Information may be passed on to other components of the device 905. The receiver 910 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The receiver 910 may utilize a single antenna or a set of antennas.
The communications manager 915 may identify multiple shared channel messages for a UE, each of the multiple shared channel messages associated with a rateless coding scheme, determine SBN information and ESI information for a starting packet of the multiple shared channel messages, and transmit, to a UE, a control message scheduling the multiple shared channel messages, where the control message includes the SBN information and the ESI information for a starting packet of the multiple shared channel messages. The communications manager 915 may be an example of aspects of the communications manager 1210 described herein.
The communications manager 915, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 915, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 915, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 915, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 915, or its sub-components, may be combined with  one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 920 may transmit signals generated by other components of the device 905. In some examples, the transmitter 920 may be collocated with a receiver 910 in a transceiver module. For example, the transmitter 920 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The transmitter 920 may utilize a single antenna or a set of antennas.
FIG. 10 shows a block diagram 1000 of a device 1005 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure. The device 1005 may be an example of aspects of a device 905, or a base station 105 as described herein. The device 1005 may include a receiver 1010, a communications manager 1015, and a transmitter 1035. The device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to signaling for rateless codes in wireless systems, etc. ) . Information may be passed on to other components of the device 1005. The receiver 1010 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The receiver 1010 may utilize a single antenna or a set of antennas.
The communications manager 1015 may be an example of aspects of the communications manager 915 as described herein. The communications manager 1015 may include a message component 1020, an encoding component 1025, and a control message component 1030. The communications manager 1015 may be an example of aspects of the communications manager 1210 described herein.
The Message Component 1020 may identify multiple shared channel messages for a UE, each of the multiple shared channel messages associated with a rateless coding scheme.
The Encoding Component 1025 may determine SBN information and ESI information for a starting packet of the multiple shared channel messages.
The Control Message Component 1030 may transmit, to a UE, a control message scheduling the multiple shared channel messages, where the control message includes the SBN information and the ESI information for a starting packet of the multiple shared channel messages.
The transmitter 1035 may transmit signals generated by other components of the device 1005. In some examples, the transmitter 1035 may be collocated with a receiver 1010 in a transceiver module. For example, the transmitter 1035 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The transmitter 1035 may utilize a single antenna or a set of antennas.
In some cases, the message component 1020, encoding component 1025, and control message component 1030 may each be or be at least a part of a processor (e.g., a transceiver processor, or a radio processor, or a transmitter processor, or a receiver processor) . The processor may be coupled with memory and execute instructions stored in the memory that enable the processor to perform or facilitate the features of message component 1020, encoding component 1025, and control message component 1030 discussed herein. A transceiver processor may be collocated with an/or communicate with (e.g., direct the operations of) a transceiver of the device. A radio processor may be collocated with or communicate with (e.g., direct the operations of) a radio (e.g., an NR radio, an LTE radio, a Wi-Fi radio) of the device. A transmitter processor may be collocated with or communicate with (e.g., direct the operations of) a transmitter of the device. A receiver processor may be collocated with or communicate with (e.g., direct the operations of) a receiver of the device.
FIG. 11 shows a block diagram 1100 of a communications manager 1105 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure. The communications manager 1105 may be an example of aspects of a communications manager 915, a communications manager 1015, or a communications manager 1210 described herein. The communications manager 1105 may include a message component 1110, an encoding component 1115, a control message component 1120, a configuration component 1125, a SPS component 1130, a periodicity component 1135, a duration component 1140, and a signaling component 1145. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The Message Component 1110 may identify multiple shared channel messages for a UE, each of the multiple shared channel messages associated with a rateless coding scheme.
In some examples, the Message Component 1110 may determine a number of multiple shared channel messages for communicating with the UE.
The Encoding Component 1115 may determine SBN information and ESI information for a starting packet of the multiple shared channel messages.
In some cases, the SBN information includes an index of a SBN of a source block corresponding to the starting packet of the multiple shared channels.
In some cases, the ESI information includes an index of an ESI of an encoding symbol corresponding to the starting packet of the multiple shared channels.
The Control Message Component 1120 may transmit, to a UE, a control message scheduling the multiple shared channel messages, where the control message includes the SBN information and the ESI information for a starting packet of the multiple shared channel messages.
In some examples, the Control Message Component 1120 may transmit an indication of the periodicity in the control message.
In some examples, the Control Message Component 1120 may transmit an indication of the number of multiple shared channel messages in the control message.
In some cases, a set of scheduling parameters is the same for each of the multiple shared channel messages.
In some cases, the control message indicates the set of scheduling parameters.
The Configuration Component 1125 may transmit a semi-persistent configuration to the UE indicating a set of periodic time-frequency resources configured for the UE, where the control message schedules the multiple shared channel messages via the set of periodic time-frequency resources of the semi-persistent configuration.
In some examples, the Configuration Component 1125 may transmit, in the control message, an indication to the UE to use the semi-persistent configuration of the  multiple semi-persistent configurations for transmitting or receiving one or more encoded packets of the multiple shared channel messages.
In some examples, the Configuration Component 1125 may transmit multiple semi-persistent configurations including the semi-persistent configuration to the UE.
In some cases, the semi-persistent configuration corresponds to a set of downlink resources or a configured grant for uplink resources.
The SPS Component 1130 may transmit multiple semi-persistent configurations including the semi-persistent configuration to the UE, each of the multiple semi-persistent configurations associated with a different periodicity.
In some examples, the SPS Component 1130 may determine one or more semi-persistent processes for the multiple shared channel messages, where each of the one or more semi-persistent processes corresponds to a respective semi-persistent configuration of the multiple semi-persistent configurations.
In some cases, each of the multiple semi-persistent configurations is associated with a different set of time-frequency resources.
The Periodicity Component 1135 may determine a periodicity of the set of periodic time-frequency resources based on a number of encoded packets associated with the multiple shared channel messages, where the semi-persistent configuration indicates the periodicity.
In some examples, the Periodicity Component 1135 may determine a periodicity for communicating the multiple shared channel messages.
The Duration Component 1140 may determine a duration associated with the SBN information or the ESI information, where the control message includes an indication of the duration.
The Signaling Component 1145 may transmit or receiving the one or more encoded packets via one or more sets of time-frequency resources for the multiple shared channel messages, where the one or more sets of time-frequency resources corresponds to the respective semi-persistent configurations.
In some cases, the message component 1110, encoding component 1115, control message component 1120, configuration component 1125, SPS component 1130, periodicity component 1135, duration component 1140, and signaling component 1145 may each be or be at least a part of a processor (e.g., a transceiver processor, or a radio processor, or a transmitter processor, or a receiver processor) . The processor may be coupled with memory and execute instructions stored in the memory that enable the processor to perform or facilitate the features of message component 1110, encoding component 1115, control message component 1120, configuration component 1125, SPS component 1130, periodicity component 1135, duration component 1140, and signaling component 1145 discussed herein.
FIG. 12 shows a diagram of a system 1200 including a device 1205 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure. The device 1205 may be an example of or include the components of device 905, device 1005, or a base station 105 as described herein. The device 1205 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1210, a network communications manager 1215, a transceiver 1220, an antenna 1225, memory 1230, a processor 1240, and an inter-station communications manager 1245. These components may be in electronic communication via one or more buses (e.g., bus 1250) .
The communications manager 1210 may identify multiple shared channel messages for a UE, each of the multiple shared channel messages associated with a rateless coding scheme, determine SBN information and ESI information for a starting packet of the multiple shared channel messages, and transmit, to a UE, a control message scheduling the multiple shared channel messages, where the control message includes the SBN information and the ESI information for a starting packet of the multiple shared channel messages.
The network communications manager 1215 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 1215 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 1220 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1220 may represent a wireless transceiver and may communicate bi-directionally with another wireless  transceiver. The transceiver 1220 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1225. However, in some cases the device may have more than one antenna 1225, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1230 may include RAM, ROM, or a combination thereof. The memory 1230 may store computer-readable code 1235 including instructions that, when executed by a processor (e.g., the processor 1240) cause the device to perform various functions described herein. In some cases, the memory 1230 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1240 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1240 may be configured to operate a memory array using a memory controller. In some cases, a memory controller may be integrated into processor 1240. The processor 1240 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1230) to cause the device 1205 to perform various functions (e.g., functions or tasks supporting signaling for rateless codes in wireless systems) .
The inter-station communications manager 1245 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1245 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1245 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
The code 1235 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1235 may be  stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1235 may not be directly executable by the processor 1240 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 13 shows a flowchart illustrating a method 1300 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure. The operations of method 1300 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1305, the UE may receive, from a base station, a control message scheduling multiple shared channel messages, each of the multiple shared channel messages associated with a rateless coding scheme, where the control message includes SBN information and ESI information for a starting packet of the multiple shared channel messages. The operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a Control Message Receiver as described with reference to FIGs. 5 through 8.
At 1310, the UE may determine a set of scheduling parameters for the multiple shared channel messages based on the control message. The operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a Scheduling Parameter Component as described with reference to FIGs. 5 through 8.
At 1315, the UE may transmit or receiving one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based on the SBN information and the ESI information. The operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a Messaging Component as described with reference to FIGs. 5 through 8.
FIG. 14 shows a flowchart illustrating a method 1400 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure. The operations of method 1400 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1405, the UE may receive, from a base station, a control message scheduling multiple shared channel messages, each of the multiple shared channel messages associated with a rateless coding scheme, where the control message includes SBN information and ESI information for a starting packet of the multiple shared channel messages. The operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a Control Message Receiver as described with reference to FIGs. 5 through 8.
At 1410, the UE may receive a semi-persistent configuration from the base station indicating a set of periodic time-frequency resources configured for the UE, where the control message schedules the multiple shared channel messages via the set of periodic time-frequency resources of the semi-persistent configuration. The operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a SPS Receiver as described with reference to FIGs. 5 through 8.
At 1415, the UE may determine a set of scheduling parameters for the multiple shared channel messages based on the control message. The operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a Scheduling Parameter Component as described with reference to FIGs. 5 through 8.
At 1420, the UE may transmit or receiving one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based on the SBN information and the ESI information. The operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of  1420 may be performed by a Messaging Component as described with reference to FIGs. 5 through 8.
FIG. 15 shows a flowchart illustrating a method 1500 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure. The operations of method 1500 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1505, the UE may receive, from a base station, a control message scheduling multiple shared channel messages, each of the multiple shared channel messages associated with a rateless coding scheme, where the control message includes SBN information and ESI information for a starting packet of the multiple shared channel messages. The operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a Control Message Receiver as described with reference to FIGs. 5 through 8.
At 1510, the UE may receive multiple semi-persistent configurations including the semi-persistent configuration from the base station. The operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a Multi-SPS Receiver as described with reference to FIGs. 5 through 8.
At 1515, the UE may determine a set of scheduling parameters for the multiple shared channel messages based on the control message. The operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a Scheduling Parameter Component as described with reference to FIGs. 5 through 8.
At 1520, the UE may determine one or more semi-persistent processes for the multiple shared channel messages based on the control message, where each of the one or more semi-persistent processes corresponds to a respective semi-persistent configuration of the multiple semi-persistent configurations. The operations of 1520 may be performed  according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a Configuration Component as described with reference to FIGs. 5 through 8.
At 1525, the UE may transmit or receiving one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based on the SBN information and the ESI information. The operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by a Messaging Component as described with reference to FIGs. 5 through 8.
At 1530, the UE may transmit or receiving the one or more encoded packets via one or more sets of time-frequency resources for the multiple shared channel messages, where the one or more sets of time-frequency resources corresponds to the respective semi-persistent configurations. The operations of 1530 may be performed according to the methods described herein. In some examples, aspects of the operations of 1530 may be performed by a Message Component as described with reference to FIGs. 5 through 8.
FIG. 16 shows a flowchart illustrating a method 1600 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure. The operations of method 1600 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 9 through 12. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1605, the base station may identify multiple shared channel messages for a UE, each of the multiple shared channel messages associated with a rateless coding scheme. The operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a Message Component as described with reference to FIGs. 9 through 12.
At 1610, the base station may determine SBN information and ESI information for a starting packet of the multiple shared channel messages. The operations of 1610 may be  performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by an Encoding Component as described with reference to FIGs. 9 through 12.
At 1615, the base station may transmit, to a UE, a control message scheduling the multiple shared channel messages, where the control message includes the SBN information and the ESI information for a starting packet of the multiple shared channel messages. The operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a Control Message Component as described with reference to FIGs. 9 through 12.
FIG. 17 shows a flowchart illustrating a method 1700 that supports signaling for rateless codes in wireless systems in accordance with aspects of the present disclosure. The operations of method 1700 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 9 through 12. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1705, the base station may identify multiple shared channel messages for a UE, each of the multiple shared channel messages associated with a rateless coding scheme. The operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a Message Component as described with reference to FIGs. 9 through 12.
At 1710, the base station may transmit a semi-persistent configuration to the UE indicating a set of periodic time-frequency resources configured for the UE, where the control message schedules the multiple shared channel messages via the set of periodic time-frequency resources of the semi-persistent configuration. The operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a Configuration Component as described with reference to FIGs. 9 through 12.
At 1715, the base station may determine SBN information and ESI information for a starting packet of the multiple shared channel messages. The operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by an Encoding Component as described with reference to FIGs. 9 through 12.
At 1720, the base station may transmit, to a UE, a control message scheduling the multiple shared channel messages, where the control message includes the SBN information and the ESI information for a starting packet of the multiple shared channel messages. The operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by a Control Message Component as described with reference to FIGs. 9 through 12.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or  transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.  Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or mcs
or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a  person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (33)

  1. A method for wireless communications at a user equipment (UE) , comprising:
    receiving, from a base station, a control message scheduling multiple shared channel messages, each of the multiple shared channel messages associated with a rateless coding scheme, wherein the control message comprises source block number information and encoding symbol identifier information for a starting packet of the multiple shared channel messages;
    determining a set of scheduling parameters for the multiple shared channel messages based at least in part on the control message; and
    transmitting or receiving one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based at least in part on the source block number information and the encoding symbol identifier information.
  2. The method of claim 1, further comprising:
    receiving a semi-persistent configuration from the base station indicating a set of periodic time-frequency resources configured for the UE, wherein the control message schedules the multiple shared channel messages via the set of periodic time-frequency resources of the semi-persistent configuration.
  3. The method of claim 2, further comprising:
    receiving multiple semi-persistent configurations including the semi-persistent configuration from the base station, each of the multiple semi-persistent configurations associated with a different periodicity; and
    determining to use the semi-persistent configuration of the multiple semi-persistent configurations for transmitting or receiving the one or more encoded packets of the multiple shared channel messages based at least in part on the control message.
  4. The method of claim 2, further comprising:
    determining a periodicity of the set of periodic time-frequency resources based at least in part on a number of encoded packets associated with the multiple shared channel messages.
  5. The method of claim 2, wherein the semi-persistent configuration corresponds to a set of downlink resources or a configured grant for uplink resources.
  6. The method of claim 1, further comprising:
    decoding the one or more encoded packets based at least in part on a duration associated with the source block number information or the encoding symbol identifier information, wherein the control message comprises an indication of the duration.
  7. The method of claim 1, further comprising:
    encoding one or more source packets of the multiple shared channel messages to obtain the one or more encoded packets based at least in part on a duration associated with the source block number information or the encoding symbol identifier information, wherein the control message comprises an indication of the duration.
  8. The method of claim 1, wherein the source block number information comprises an index of a source block number of a source block corresponding to the starting packet of the multiple shared channels.
  9. The method of claim 1, wherein the encoding symbol identifier information comprises an index of an encoding symbol identifier of an encoding symbol corresponding to the starting packet of the multiple shared channels.
  10. The method of claim 1, further comprising:
    receiving multiple semi-persistent configurations including the semi-persistent configuration from the base station;
    determining one or more semi-persistent processes for the multiple shared channel messages based at least in part on the control message, wherein each of the one or more semi-persistent processes corresponds to a respective semi-persistent configuration of the multiple semi-persistent configurations; and
    transmitting or receiving the one or more encoded packets via one or more sets of time-frequency resources for the multiple shared channel messages, wherein the one or more sets of time-frequency resources corresponds to the respective semi-persistent configurations.
  11. The method of claim 10, wherein each of the multiple semi-persistent configurations is associated with a different set of time-frequency resources.
  12. The method of claim 1, further comprising:
    transmitting or receiving the multiple shared channel messages based at least in part on a periodicity indicated by the control message.
  13. The method of claim 1, wherein monitoring for the multiple shared channel messages comprises:
    transmitting or receiving a number of multiple shared channel messages based at least in part on the number of multiple shared channel messages indicated by the control message.
  14. The method of claim 1, wherein the set of scheduling parameters is the same for each of the multiple shared channel messages.
  15. A method for wireless communications at a base station, comprising:
    identifying multiple shared channel messages for a user equipment (UE) , each of the multiple shared channel messages associated with a rateless coding scheme;
    determining source block number information and encoding symbol identifier information for a starting packet of the multiple shared channel messages; and
    transmitting, to a UE, a control message scheduling the multiple shared channel messages, wherein the control message comprises the source block number information and the encoding symbol identifier information for a starting packet of the multiple shared channel messages.
  16. The method of claim 15, further comprising:
    transmitting a semi-persistent configuration to the UE indicating a set of periodic time-frequency resources configured for the UE, wherein the control message schedules the multiple shared channel messages via the set of periodic time-frequency resources of the semi-persistent configuration.
  17. The method of claim 16, further comprising:
    transmitting multiple semi-persistent configurations including the semi-persistent configuration to the UE, each of the multiple semi-persistent configurations associated with a different periodicity; and
    transmitting, in the control message, an indication to the UE to use the semi-persistent configuration of the multiple semi-persistent configurations for transmitting or receiving one or more encoded packets of the multiple shared channel messages.
  18. The method of claim 16, further comprising:
    determining a periodicity of the set of periodic time-frequency resources based at least in part on a number of encoded packets associated with the multiple shared channel messages, wherein the semi-persistent configuration indicates the periodicity.
  19. The method of claim 16, wherein the semi-persistent configuration corresponds to a set of downlink resources or a configured grant for uplink resources.
  20. The method of claim 15, further comprising:
    determining a duration associated with the source block number information or the encoding symbol identifier information, wherein the control message comprises an indication of the duration.
  21. The method of claim 15, wherein the source block number information comprises an index of a source block number of a source block corresponding to the starting packet of the multiple shared channels.
  22. The method of claim 15, wherein the encoding symbol identifier information comprises an index of an encoding symbol identifier of an encoding symbol corresponding to the starting packet of the multiple shared channels.
  23. The method of claim 15, further comprising:
    transmitting multiple semi-persistent configurations including the semi-persistent configuration to the UE;
    determining one or more semi-persistent processes for the multiple shared channel messages, wherein each of the one or more semi-persistent processes corresponds to a respective semi-persistent configuration of the multiple semi-persistent configurations; and
    transmitting or receiving the one or more encoded packets via one or more sets of time-frequency resources for the multiple shared channel messages, wherein the one or more sets of time-frequency resources corresponds to the respective semi-persistent configurations.
  24. The method of claim 23, wherein each of the multiple semi-persistent configurations is associated with a different set of time-frequency resources.
  25. The method of claim 15, further comprising:
    determining a periodicity for communicating the multiple shared channel messages; and
    transmitting an indication of the periodicity in the control message.
  26. The method of claim 15, further comprising:
    determining a number of multiple shared channel messages for communicating with the UE; and
    transmitting an indication of the number of multiple shared channel messages in the control message.
  27. The method of claim 15, wherein:
    a set of scheduling parameters is the same for each of the multiple shared channel messages; and
    the control message indicates the set of scheduling parameters.
  28. An apparatus for wireless communications at a user equipment (UE) , comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive, from a base station, a control message scheduling multiple shared channel messages, each of the multiple shared channel messages associated with a rateless coding scheme, wherein the control message comprises source block number information and encoding symbol identifier information for a starting packet of the multiple shared channel messages;
    determine a set of scheduling parameters for the multiple shared channel messages based at least in part on the control message; and
    transmit or receiving one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based at least in part on the source block number information and the encoding symbol identifier information.
  29. An apparatus for wireless communications at a base station, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    identify multiple shared channel messages for a user equipment (UE) , each of the multiple shared channel messages associated with a rateless coding scheme;
    determine source block number information and encoding symbol identifier information for a starting packet of the multiple shared channel messages; and
    transmit, to a UE, a control message scheduling the multiple shared channel messages, wherein the control message comprises the source block number information and the encoding symbol identifier information for a starting packet of the multiple shared channel messages.
  30. An apparatus for wireless communications at a user equipment (UE) , comprising:
    means for receiving, from a base station, a control message scheduling multiple shared channel messages, each of the multiple shared channel messages associated with a rateless coding scheme, wherein the control message comprises source block number information and encoding symbol identifier information for a starting packet of the multiple shared channel messages;
    means for determining a set of scheduling parameters for the multiple shared channel messages based at least in part on the control message; and
    means for transmitting or receiving one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based at least in part on the source block number information and the encoding symbol identifier information.
  31. An apparatus for wireless communications at a base station, comprising:
    means for identifying multiple shared channel messages for a user equipment (UE) , each of the multiple shared channel messages associated with a rateless coding scheme;
    means for determining source block number information and encoding symbol identifier information for a starting packet of the multiple shared channel messages; and
    means for transmitting, to a UE, a control message scheduling the multiple shared channel messages, wherein the control message comprises the source block number information and the encoding symbol identifier information for a starting packet of the multiple shared channel messages.
  32. A non-transitory computer-readable medium storing code for wireless communications at a user equipment (UE) , the code comprising instructions executable by a processor to:
    receive, from a base station, a control message scheduling multiple shared channel messages, each of the multiple shared channel messages associated with a rateless coding scheme, wherein the control message comprises source block number information and encoding symbol identifier information for a starting packet of the multiple shared channel messages;
    determine a set of scheduling parameters for the multiple shared channel messages based at least in part on the control message; and
    transmit or receiving one or more encoded packets of the multiple shared channel messages in accordance with the set of scheduling parameters based at least in part on the source block number information and the encoding symbol identifier information.
  33. A non-transitory computer-readable medium storing code for wireless communications at a base station, the code comprising instructions executable by a processor to:
    identify multiple shared channel messages for a user equipment (UE) , each of the multiple shared channel messages associated with a rateless coding scheme;
    determine source block number information and encoding symbol identifier information for a starting packet of the multiple shared channel messages; and
    transmit, to a UE, a control message scheduling the multiple shared channel messages, wherein the control message comprises the source block number information and the encoding symbol identifier information for a starting packet of the multiple shared channel messages.
PCT/CN2020/119787 2020-10-02 2020-10-02 Signaling for rateless codes in wireless systems WO2022067853A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119787 WO2022067853A1 (en) 2020-10-02 2020-10-02 Signaling for rateless codes in wireless systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119787 WO2022067853A1 (en) 2020-10-02 2020-10-02 Signaling for rateless codes in wireless systems

Publications (1)

Publication Number Publication Date
WO2022067853A1 true WO2022067853A1 (en) 2022-04-07

Family

ID=80949498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119787 WO2022067853A1 (en) 2020-10-02 2020-10-02 Signaling for rateless codes in wireless systems

Country Status (1)

Country Link
WO (1) WO2022067853A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001320422A (en) * 2000-03-03 2001-11-16 Ntt Docomo Inc Method and apparatus for packet transmission attended with header compression
WO2009086690A1 (en) * 2008-01-04 2009-07-16 Lucent Technologies Inc. Transmission methods, network equipment, user equipment and telecommunication system
CN101841391A (en) * 2009-03-16 2010-09-22 宏达国际电子股份有限公司 Handle the method and the related communication devices thereof of packet error
US20150215133A1 (en) * 2014-01-28 2015-07-30 Futurewei Technologies, Inc. System and Method for Video Multicasting
US20190357196A1 (en) * 2018-05-17 2019-11-21 At&T Intellectual Property I, L.P. Network coding for bandwidth efficient reliability improvement for urllc service

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001320422A (en) * 2000-03-03 2001-11-16 Ntt Docomo Inc Method and apparatus for packet transmission attended with header compression
WO2009086690A1 (en) * 2008-01-04 2009-07-16 Lucent Technologies Inc. Transmission methods, network equipment, user equipment and telecommunication system
CN101841391A (en) * 2009-03-16 2010-09-22 宏达国际电子股份有限公司 Handle the method and the related communication devices thereof of packet error
US20150215133A1 (en) * 2014-01-28 2015-07-30 Futurewei Technologies, Inc. System and Method for Video Multicasting
US20190357196A1 (en) * 2018-05-17 2019-11-21 At&T Intellectual Property I, L.P. Network coding for bandwidth efficient reliability improvement for urllc service

Similar Documents

Publication Publication Date Title
US11653375B2 (en) Transmit power adjustment for full duplex feedback
US11909691B2 (en) On-demand negative acknowledgment resource request
US11564248B2 (en) Techniques for activation and deactivation of resources configured across multiple component carriers
WO2021223236A1 (en) Unequal erasure protection for prioritized data transmission
US11889327B2 (en) Network coding with dynamic redundancy overhead
US11792824B2 (en) Multicast feedback and retransmission for transport block grouping
US11553460B2 (en) Transmit and receive switching for sidelink communications
US20220376837A1 (en) Feedback process reuse in wireless communications
WO2022216467A1 (en) Techniques for transport block transmission over multiple slots
WO2022041187A1 (en) Degree selection schemes for rapid tornado (raptor) codes in multicast and broadcast services and in unicast services
US11909470B2 (en) Joint broadcast and unicast design for multiple-input multiple-output systems
WO2021195837A1 (en) Two-stage feedback procedures
EP4169191A1 (en) Group feedback for multicast communications
WO2022067853A1 (en) Signaling for rateless codes in wireless systems
WO2022042623A1 (en) Indication scheme for rateless codes transmissions without feedback information
WO2022067837A1 (en) Control signaling for rateless codes with feedback
WO2022006850A1 (en) Transmitting encoding symbol identifier of raptor codes using control channel coding
US20220240245A1 (en) Generating a feedback codebook
WO2021179287A1 (en) Raptor code feedback
US20230291420A1 (en) Information indication for raptor codes
WO2022036674A1 (en) Window adjustment coding techniques for wireless communications systems
WO2022056807A1 (en) Rateless coding over a packet data convergence protocol layer
US20230224092A1 (en) Mirs re-transmission optimization for groupcast utilizing network coding
US20230224012A1 (en) Feedback codebook generation based on transmission scheduling rules
WO2022000259A1 (en) Assistance signaling for radio link control retransmissions

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955873

Country of ref document: EP

Kind code of ref document: A1