WO2022067772A1 - A channel simulation method and a system thereof - Google Patents

A channel simulation method and a system thereof Download PDF

Info

Publication number
WO2022067772A1
WO2022067772A1 PCT/CN2020/119679 CN2020119679W WO2022067772A1 WO 2022067772 A1 WO2022067772 A1 WO 2022067772A1 CN 2020119679 W CN2020119679 W CN 2020119679W WO 2022067772 A1 WO2022067772 A1 WO 2022067772A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflecting
diffracting
vertices
scattering
paths
Prior art date
Application number
PCT/CN2020/119679
Other languages
French (fr)
Inventor
Yunsong GUI
Haowen Wang
Pingshan SUN
Yong Wang
Jianguo XIE
Weiye LIU
Yuhan TIAN
Original Assignee
Shanghai Research Center For Wireless Communications
Shanghai Institute Of Microsystem And Information Technology, Chinese Academy Of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Research Center For Wireless Communications, Shanghai Institute Of Microsystem And Information Technology, Chinese Academy Of Sciences filed Critical Shanghai Research Center For Wireless Communications
Priority to PCT/CN2020/119679 priority Critical patent/WO2022067772A1/en
Publication of WO2022067772A1 publication Critical patent/WO2022067772A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • H04B17/3912Simulation models, e.g. distribution of spectral power density or received signal strength indicator [RSSI] for a given geographic region

Definitions

  • the present invention relates to a channel simulation method and a system thereof, and belongs to the field of wireless communication technologies.
  • the propagation-graph (PG) simulation method can only be used to evaluate scattering propagation mechanism in the wireless channels through calculating scattering matrices.
  • the other two basic multipaths propagation mechanisms, reflection and diffraction which are also thought to be the three basic radio propagation mechanisms as well as scattering, are play vital roles in the realistic wireless propagation channels.
  • the effects of reflection and diffraction are different with scattering, such as the distance effects on power gain, coefficients on the surfaces, and steering vectors of the propagation directions occur on the surfaces of boundaries.
  • reflection and diffraction propagation effects need to be evaluated separately with scattering.
  • the present invention is directed to provide a channel simulation method.
  • the present invention is further directed to provide a channel simulation system.
  • the present invention is further directed to provide Computer program comprising instructions for performing the channel simulation method.
  • the present invention adopts the following technical solution.
  • a channel simulation method propagation paths among transmitters, receivers, scattering vertices, reflecting vertices, and diffracting vertices being identified based propagation-graph of the propagation, comprising the following steps:
  • the scattering channel transfer function is obtained based on Rs (f) , s (f) and Ts (f) ,
  • Ts (f) represents scattering transfer matrices of scattering paths from the transmitters to the scattering vertices; s (f) represents scattering transfer matrices of scattering paths between the scattering vertices, Rs (f) represents scattering transfer matrices of scattering paths from the scattering vertices to the receivers.
  • the scattering channel transfer function can be calculated as
  • H s (f) D (f) +Rs (f) (I-s (f) ) -1 Ts (f)
  • I is unit matrix
  • D (f) is channel transfer function of LoS paths propagation between the transmitters and the receivers.
  • the reflecting channel transfer function is obtained based T r (f) , r n (f) , and Rr n (f) ,
  • T r (f) denotes reflecting transfer matrices of reflecting paths from the transmitter to the reflecting vertices
  • r n (f) denotes reflecting transfer matrices of the reflecting paths among the reflecting vertices after bouncing n times among the reflecting vertices
  • Rr n (f) denotes reflecting transfer matrices of the reflecting paths from the reflecting vertices to the receiver after bouncing among the reflecting vertices for n times.
  • the reflecting channel transfer function can be calculated as
  • Rr 1 (f) denotes reflecting transfer matrices of the reflecting paths from the reflecting vertices to the receivers after bouncing among the reflecting vertices for once
  • r n-1 (f) denotes reflecting transfer matrices of the reflecting paths among the reflecting vertices after bouncing n-1 times
  • Rr n (f) denotes reflecting transfer matrices of the reflecting paths from the reflecting vertices to the receivers after bouncing among the reflecting vertices for n times.
  • the reflecting transfer matrices T r (f) , r n (f) , and R rn (f) can be calculated based on reflecting entries
  • g gain (f) of the entries in the reflecting transfer matrices can be calculated based on the single-lobe directive scattering models without continuous distance addition; g path of the entries in the reflecting transfer matrices contains continuous distance factors D n , which is calculated by a sequential approach.
  • the diffracting channel transfer function is obtained based Td (f) , Rd (f) , and d (f) ,
  • Td (f) denotes diffracting transfer matrices of diffracting paths from the transmitters to the diffracting vertices
  • Rd (f) denotes diffracting transfer matrices of diffracting paths from the diffracting vertices to the receivers
  • d (f) denotes diffracting transfer matrices of diffracting paths among the diffracting vertices.
  • the diffracting channel transfer function can be calculated as
  • Rd 1 (f) denotes diffracting transfer matrices of the diffracting paths from the diffracting vertices to the receivers after bouncing among the diffracting vertices for once
  • d n-1 (f) denotes diffracting transfer matrices of the diffracting paths among the diffracting vertices after bouncing n-1 times
  • Rd n (f) denotes diffracting transfer matrices of the diffracting paths from the diffracting vertices to the receivers after bouncing among the diffracting vertices for n times.
  • the diffracting transfer matrices T d (f) , d n (f) , and Rd n (f) can be calculated by diffracting entries, which is factorized into two parts g gaind (f) and g pathd ,
  • g gaind (f) of the entries in the diffracting transfer matrices can be calculated based on the single-lobe directive scattering models without continuous distance addition; g pathd of the entries in the diffracting transfer matrices contains continuous distance factors D n , which is calculated by a sequential approach.
  • a channel simulation system being configured for deploying the channel simulation method of any one of claims 1-10.
  • Computer program comprising instructions for performing the channel simulation method of any one of claims 1-10 when said instructions are executed by an apparatus.
  • the present invention can be used to predict the coverage performance of a base station and to monitor communication quality of a cell, and also to detect the positioning performances of different sensors in positioning system or Internet of things (IOT) , as well as to analyze the communication quality in IOT.
  • IOT Internet of things
  • This application can simultaneously calculate the effects of channel multipath components generated by the propagation mechanisms including the reflection, scattering, and diffraction in an efficient and direct way with low complexity. Consequently, the simulation results obtained exhibit fidelity and yield broad applications in the field of wireless communication, radar, and environment sensing.
  • FIG. 1 is a schematic diagram of a full propagation graph model according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the transfer matrices model for the full propagation graph model in FIG. 1;
  • FIG. 3 is a schematic flowchart of channel simulation method of the present invention.
  • a PG based channel simulation method of the present invention has the capability of reproducing reflection, diffraction, and scattering effects of wave propagation through matrices operation structure of conventional PG method, so as to keep the advantage in the reduction of time complexity.
  • the PG based channel simulation method is implemented in the following steps.
  • the digital map is constructed based on the same size of realistic environment in a conventional way.
  • there are three approaches to generate realistic environment based digital map i.e. using laser scanner to obtain cloud points described data, downloading map information from open source map e.g. OpenStreetMap (OSM) or other geographic information software e.g. ArcGis, and constructing indoor scenarios based on geometric solid figures in Matlab.
  • OpenStreetMap OSM
  • ArcGis geographic information software
  • S2 Discretizing the digital map, transmitters (Tx) , and receivers (Rx) into vertices.
  • the Tx and Rx are regarded as Vtx and Vrx, respectively.
  • the objects in the digital map can be discretized into Vs and Vr based on the surface roughness of the obstacles along the paths from the Vtx to the Vrx. If the surface roughness of the obstacles are comparable to the signal wavelength, the vertices are classified as Vs. If the surface roughness of the obstacle are rather small when compared to the signal wavelength, the vertices are classified into Vr.
  • the absorbing knife edges of obstacles in the digital map are discretized and classified as the Vd.
  • Identifying propagation paths includes the following steps.
  • LoS path a line of sight (LoS) path between Vtx and Vrx, is identified and denoted as ⁇ d .
  • the LoS paths exist among vertices, e.g. Vtx and Vrx, If any pair of vertices above are visible, which means they are not obstructed by other obstacles, then LoS path exits between the two vertices.
  • the scattering paths includes 3 kinds of paths, ⁇ Ts , ⁇ Rs and ⁇ ss .
  • the paths from the Vtx to scattering vertices (Vs) are identified and denoted as ⁇ Ts ; the paths from the Vs to the Vrx are identified and denoted as ⁇ Rs ; and the paths between the scattering vertices are identified and denoted as ⁇ ss .
  • the scattering paths exist among vertices, e.g. Tx and Vs, Vs and Vs, Vs and Rx. If the scattering vertices (including the transceiver and the scattering vertices) of any scattering path are visible, which means they are not obstructed by other obstacles, the scattering paths between the scattering vertices are identified.
  • the reflecting paths includes 3 kinds of paths, ⁇ Tr , ⁇ Rr and ⁇ rr .
  • the reflecting paths from the Vtx to the reflecting vertices (Vr) are identified and denoted as ⁇ Tr
  • the paths from the reflecting vertices Vr to the Vrx are identified and denoted as ⁇ Rr
  • the paths between reflecting vertices are identified and denoted as ⁇ rr .
  • the reflecting paths exist between the reflecting vertices, e.g. Vtx and Vr, Vr and Vr, Vr and Vrx. If the reflecting vertices (including the transceiver and the reflecting vertices) of any reflecting path meet with the Snell’s law, which means incident angles and reflecting angles are equal, the reflecting path between the reflecting vertices is identified.
  • the diffracting paths includes 3 kinds of paths, ⁇ Td , ⁇ Rd , and ⁇ dd .
  • the diffracting paths from the Vtx to diffracting vertices (Vd) are identified and denoted as ⁇ Td
  • the paths from the diffracting vertices to the Vrx are identified and denoted as ⁇ Rd
  • the paths between diffracting vertices (Vd) are identified and denoted as ⁇ dd ;
  • the diffracting vertices (including the transceiver and the diffracting vertices) of each diffracting path are visible, which means they are not obstructed by other obstacles, the diffracting path between the two diffracting vertices is identified.
  • the line of sight (LoS) paths between Vtx and Vrx are identified based on the visibility of Vtx and Vrx; the scattering paths are identified based on the visibility of the corresponding vertices; the reflecting paths are identified based on the Snell’s law; the diffracting paths are identified based on the visibility of the corresponding vertices.
  • LoS line of sight
  • the propagation effects of scattering are calculated by conventional PG algorithm.
  • the scattering channel transfer function H s (f) is calculated based on scattering transfer matrices Ts (f) , s (f) , and Rs (f) .
  • Ts (f) represents scattering transfer matrices of the scattering paths from the transmitters to the scattering vertices (from Vtx to Vs)
  • s (f) represents scattering transfer matrices of the scattering paths between the scattering vertices (from Vs to Vs)
  • Rs (f) represents scattering transfer matrices of the scattering paths from the scattering vertices to the receivers (from Vs to Vrx) .
  • the transfer entries of the scattering transfer matrices can be expressed as
  • a e (f)
  • f is a carrier frequency of the signal from Tx to Rx
  • ⁇ e is delay of the signal from Tx to Rx
  • is an edge gain
  • H s (f) D (f) +Rs (f) (I-s (f) ) -1 Ts (f) (4)
  • I is unit matrix
  • D (f) is channel transfer function of LoS paths propagation, which can be calculated by Friis equation as well known. It is seen that the scattering channel transfer function Hs (f) is a function of D (f) , Rs (f) , s (f) and Ts (f) .
  • T r (f) denotes reflecting transfer matrices of the reflecting paths from the transmitter to the reflecting vertices (Vtx to Vr)
  • Rr (f) denotes the reflecting transfer matrices of the reflecting paths from the reflecting vertices to the receivers (Vr to Vrx)
  • r (f) denotes the reflecting transfer matrices of the reflecting paths among the reflecting vertices (from a first Vr to a second Vr) .
  • in the reflecting transfer matrices Tr (f) , Rr (f) , and r (f) can be factorized into two parts g gain (f) and g path as
  • the calculation of the reflecting transfer matrices needs to apply the following transform to adapt the continuous distance addition in reflecting calculation principles as the following method:
  • the continuous distance addition Dn is defined as
  • d n means the distance of from the (n-1) th reflecting vertices to the nth reflecting vertices.
  • the continuous distance addition Dn can be obtained as
  • I is a unit matrix
  • dTr distance matrices of Vtx and Vr
  • dRr distance matrices of Vrx and Vr
  • n are distance matrices among Vrs.
  • the reflecting transfer matrices r n (f) , and R rn (f) can be obtained sequentially.
  • r n (f) denotes reflecting transfer matrices of the reflecting paths between the reflecting vertices (from a first Vr to a second Vr) after bouncing n times among the reflecting vertices; and
  • Rr n (f) denotes reflecting transfer matrices of the reflecting paths from the reflecting vertices to the receivers (from Vrs to Rx) after bouncing among the reflecting vertices for n times.
  • the reflecting channel transfer function H r (f) caused by reflecting propagation can be calculated as
  • T r (f) denotes the reflecting transfer matrices from the transmitter to the reflecting vertices (from Vtx to Vr)
  • Rr 1 (f) denotes reflecting transfer matrices of the reflecting paths from the reflecting vertices to the receivers (from Vrs to Rx) after bouncing among the reflecting vertices for once
  • r n-1 (f) reflecting transfer matrices of the reflecting paths among the reflecting vertices (from a first Vr to a second Vr) after bouncing n-1 times
  • Rr n (f) denotes reflecting transfer matrices of the reflecting paths from the reflecting vertices to the receivers (from Vrs to Rx) after bouncing among the reflecting vertices for n times.
  • Rr 1 (f) denotes reflecting transfer matrices of the reflecting paths from the reflecting vertices to the receivers after bouncing among the reflecting vertices for once; r n-1 (f) denotes reflecting transfer matrices of the reflecting paths among the reflecting vertices after bouncing n-1 times; Rr n (f) denotes reflecting transfer matrices of the reflecting paths from the reflecting vertices to the receivers after bouncing among the reflecting vertices for n times.
  • the diffraction propagation graph algorithm includes the following steps:
  • the diffracting propagation path includes diffracting paths from Vtx to Vd, diffracting paths from Vd to Vrx and diffracting paths from Vd to Vd.
  • Td (f) denotes diffracting transfer matrices of diffracting paths from the transmitters to the diffracting vertices (from Vtx to Vd)
  • Rd (f) denotes diffracting transfer matrices of diffracting paths from the diffracting vertices to the receivers (from Vd to Vrx)
  • d (f) denotes diffracting transfer matrices of diffracting paths among the diffracting vertices (from Vd to Vd) .
  • the gain of the diffracting paths is calculated in a similar way with the calculation of the gain of the reflecting paths.
  • g gaind (f) of the entries in the diffracting transfer matrices can be calculated based on the single-lobe directive scattering models without continuous distance addition;
  • g pathd of the entries in the diffracting transfer matrices contains continuous distance factors D n , which is calculated by a sequential approach.
  • g gaind (f) of the diffracting transfer matrices can be calculated as
  • D ( ⁇ ) denotes the steering angle function in GTD theory
  • ⁇ n denotes the steering angle of the nth diffracting knife-edge
  • d t , dr and d d represent the Euclidean distance from Vtx to Vd, from Vd to Vrx, and from Vd to Vd, respectively. That is, g gaind (f) of entries in the diffracting transfer matrices can be generated based on the Geometry Theory Diffraction (GTD) model without continuous distance addition.
  • GTD Geometry Theory Diffraction
  • the g pathd of entries in the diffracting transfer matrices can be calculated sequentially based on the following mathematical matrix transform as
  • dTd is the distance matrices of Vtx and Vd
  • dRd is the distance matrices of Vrx and Vd
  • n are the distance matrices among Vd and Vd.
  • the diffracting transfer matrices Rdn (f) and dn (f) can be obtained sequentially.
  • Rdn (f) denotes the diffracting transfer matrix of the from Vd to Vrx after diffracting by Vds for n times
  • dn (f) denotes the transfer matrix bouncing among Vd for the n times, respectively.
  • the diffracting channel transfer function H d (f) caused by the diffracting propagation paths can be calculated as:
  • Rd 1 (f) denotes diffracting transfer matrices of the diffracting paths from the diffracting vertices to the receivers after bouncing among the diffracting vertices for once
  • d n-1 (f) denotes diffracting transfer matrices of the diffracting paths among the diffracting vertices after bouncing n-1 times
  • Rd n (f) denotes diffracting transfer matrices of the diffracting paths from the diffracting vertices to the receivers after bouncing among the diffracting vertices for n times.
  • the total channel transfer function H (f) can be calculated as
  • H (f) H s (f) + H r (f) + H d (f)
  • H (t) CIR (Channel Impulse Response) of the propagation, H (t) can be obtained, by way of applying Fourier transform on the total channel transfer function H (f) .
  • the novel PG algorithm-based channel simulation method is capability of reproducing reflection, diffraction, and scattering effects of wave propagation. At the same time, it still makes use of the matrices operation to keep the advantage in the reduction of time complexity. Furthermore, a sequential approach is applied to calculate the entries to efficiently reduce calculating complexity. For those advantages, the simulation method can be applied broadly in the field of wireless communication in 3G, 4G, 5G system as well as IOT system.
  • the invention can be used to predict the coverage performance of a base station and to monitor communication quality of a cell, be used for 4G communication detection and the like, and also be used to predict the performance of array antenna and millimeter wave communication in the next generation communication.
  • TDOA localization sensors For some positioning systems, such as TDOA localization sensors, it can be used to generate realistic-environment based CIRs. Based on the CIRs information and detect the positioning performances of different sensors.
  • radio wave communications such as propagation channels of vehicles, Unmanned Aerial Vehicles (UAVs) , etc.
  • UAVs Unmanned Aerial Vehicles
  • This application can simultaneously calculate the effects of channel multipath components generated by the propagation mechanisms including the reflection, scattering, and diffraction in an efficient and direct way with low complexity. Consequently, the simulation results obtained exhibit fidelity and yield broad applications in the field of wireless communication, radar, and environment sensing.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention discloses a channel simulation method, propagation paths among transmitters, receivers, scattering vertices, reflecting vertices, and diffracting vertices being identified based propagation-graph of the propagation, comprising the following steps: calculating the propagation effects of scattering by the transmitters, receivers, the scattering vertices, to obtain a scattering channel transfer function; calculating the propagation effects of reflection by the transmitters, receivers, the reflecting vertices, to obtain a reflecting channel transfer function; calculating the propagation effects of diffraction by the transmitters, receivers, the diffracting vertices, to obtain a diffracting channel transfer function; calculating the total channel transfer function by adding the scattering channel transfer function, the reflecting channel transfer function, and the diffracting channel transfer function. According to the present invention, the channel simulation results obtained exhibit fidelity and yield broad applications in the field of wireless communication, radar, and environment sensing.

Description

A CHANNEL SIMULATION METHOD AND A SYSTEM THEREOF TECHNICAL FIELD
The present invention relates to a channel simulation method and a system thereof, and belongs to the field of wireless communication technologies.
RELATED ART
It is well known that, the propagation-graph (PG) simulation method can only be used to evaluate scattering propagation mechanism in the wireless channels through calculating scattering matrices. However, the other two basic multipaths propagation mechanisms, reflection and diffraction which are also thought to be the three basic radio propagation mechanisms as well as scattering, are play vital roles in the realistic wireless propagation channels. Meanwhile, the effects of reflection and diffraction are different with scattering, such as the distance effects on power gain, coefficients on the surfaces, and steering vectors of the propagation directions occur on the surfaces of boundaries. Thus, reflection and diffraction propagation effects need to be evaluated separately with scattering.
Some researchers have realized the facts mentioned above, however their main works were concentrated on the following aspects: 1) using approximate methods to estimate the effects of reflection propagation with different coefficients for scattering and reflection; 2) using hybrid methods with Ray-tracing (RT) to evaluate Specular components (SCs) , and PG to evaluate Diffuse components (DCs) ; 3) using machine learning related methods to modify different scattering coefficients for each link according to measurement results in an approximate way. On the one hand, these approximate methods need to be modified based on measurement of the environments, thus these methods are not flexibly applied in universal scenarios. On the other hand, the utilization of the RT in these hybrid methods may result in an increasement of time complexity.
SUMMARY
Accordingly, the present invention is directed to provide a channel simulation method.
The present invention is further directed to provide a channel simulation system.
The present invention is further directed to provide Computer program comprising instructions for performing the channel simulation method.
To achieve the above objectives, the present invention adopts the following technical solution.
A channel simulation method, propagation paths among transmitters, receivers, scattering vertices, reflecting vertices, and diffracting vertices being identified based propagation-graph of the propagation, comprising the following steps:
calculating the propagation effects of scattering by the transmitters, receivers, the scattering vertices, to obtain a scattering channel transfer function;
calculating the propagation effects of reflection by the transmitters, receivers, the reflecting vertices, to obtain a reflecting channel transfer function;
calculating the propagation effects of diffraction by the transmitters, receivers, the diffracting vertices, to obtain a diffracting channel transfer function;
calculating the total channel transfer function by adding the scattering channel transfer function, the reflecting channel transfer function, and the diffracting channel transfer function.
Preferably, the scattering channel transfer function is obtained based on Rs (f) , s (f) and Ts (f) ,
Ts (f) represents scattering transfer matrices of scattering paths from the transmitters to the scattering vertices; s (f) represents scattering transfer matrices of scattering paths between the scattering vertices, Rs (f) represents scattering transfer matrices of scattering paths from the scattering vertices to the receivers.
Preferably, the scattering channel transfer function can be calculated as
H s (f) =D (f) +Rs (f) (I-s (f) )  -1Ts (f)
where, I is unit matrix, D (f) is channel transfer function of LoS paths propagation  between the transmitters and the receivers.
Preferably, the reflecting channel transfer function is obtained based T r (f) , r n (f) , and Rr n (f) ,
T r (f) denotes reflecting transfer matrices of reflecting paths from the transmitter to the reflecting vertices; r n (f) denotes reflecting transfer matrices of the reflecting paths among the reflecting vertices after bouncing n times among the reflecting vertices; and Rr n (f) denotes reflecting transfer matrices of the reflecting paths from the reflecting vertices to the receiver after bouncing among the reflecting vertices for n times.
Preferably, the reflecting channel transfer function can be calculated as
Figure PCTCN2020119679-appb-000001
where, Rr 1 (f) denotes reflecting transfer matrices of the reflecting paths from the reflecting vertices to the receivers after bouncing among the reflecting vertices for once; r n-1 (f) denotes reflecting transfer matrices of the reflecting paths among the reflecting vertices after bouncing n-1 times; Rr n (f) denotes reflecting transfer matrices of the reflecting paths from the reflecting vertices to the receivers after bouncing among the reflecting vertices for n times.
Preferably, the reflecting transfer matrices T r (f) , r n (f) , and R rn (f) can be calculated based on reflecting entries |g e (f) |, which is factorized into two parts g gain (f) and g path,
g gain (f) of the entries in the reflecting transfer matrices can be calculated based on the single-lobe directive scattering models without continuous distance addition; g path of the entries in the reflecting transfer matrices contains continuous distance factors D n, which is calculated by a sequential approach.
Preferably, the diffracting channel transfer function is obtained based Td (f) , Rd (f) , and d (f) ,
Td (f) denotes diffracting transfer matrices of diffracting paths from the transmitters to the diffracting vertices, Rd (f) denotes diffracting transfer matrices of diffracting paths from the diffracting vertices to the receivers, and d (f) denotes diffracting transfer matrices of diffracting paths among the diffracting vertices.
Preferably, the diffracting channel transfer function can be calculated as
Figure PCTCN2020119679-appb-000002
where, Rd 1 (f) denotes diffracting transfer matrices of the diffracting paths from the diffracting vertices to the receivers after bouncing among the diffracting vertices for once; d n-1 (f) denotes diffracting transfer matrices of the diffracting paths among the diffracting vertices after bouncing n-1 times; Rd n (f) denotes diffracting transfer matrices of the diffracting paths from the diffracting vertices to the receivers after bouncing among the diffracting vertices for n times.
Preferably, the diffracting transfer matrices T d (f) , d n (f) , and Rd n (f) can be calculated by diffracting entries, which is factorized into two parts g gaind (f) and g pathd,
g gaind (f) of the entries in the diffracting transfer matrices can be calculated based on the single-lobe directive scattering models without continuous distance addition; g pathd of the entries in the diffracting transfer matrices contains continuous distance factors D n, which is calculated by a sequential approach.
Preferably, further comprising calculating Channel Impulse Response by way of applying Fourier transform on the total channel transfer function.
A channel simulation system being configured for deploying the channel simulation method of any one of claims 1-10.
Computer program comprising instructions for performing the channel simulation method of any one of claims 1-10 when said instructions are executed by an apparatus.
The present invention can be used to predict the coverage performance of a base station and to monitor communication quality of a cell, and also to detect the positioning performances of different sensors in positioning system or Internet of things (IOT) , as well as to analyze the communication quality in IOT.
This application can simultaneously calculate the effects of channel multipath components generated by the propagation mechanisms including the reflection, scattering, and diffraction in an efficient and direct way with low complexity. Consequently, the simulation results obtained exhibit fidelity and yield broad  applications in the field of wireless communication, radar, and environment sensing.
BRIEF DESCRIPTION OF THE DRAWINGS
The present disclosure will become more fully understood from the detailed description given herein below for illustration only, and thus are not limitative of the present disclosure, and wherein:
FIG. 1 is a schematic diagram of a full propagation graph model according to an embodiment of the present invention;
FIG. 2 is a schematic diagram of the transfer matrices model for the full propagation graph model in FIG. 1;
FIG. 3 is a schematic flowchart of channel simulation method of the present invention.
DETAILED DESCRIPTION
Technical content of the present invention is described in detail below with reference to accompanying drawings and specific embodiments.
A PG based channel simulation method of the present invention has the capability of reproducing reflection, diffraction, and scattering effects of wave propagation through matrices operation structure of conventional PG method, so as to keep the advantage in the reduction of time complexity.
The PG based channel simulation method is implemented in the following steps.
S1: Constructing digital map according to the realistic propagation environments.
The digital map is constructed based on the same size of realistic environment in a conventional way. Basically, there are three approaches to generate realistic environment based digital map, i.e. using laser scanner to obtain cloud points described data, downloading map information from open source map e.g. OpenStreetMap (OSM) or other geographic information software e.g. ArcGis, and constructing indoor scenarios based on geometric solid figures in Matlab.
S2: Discretizing the digital map, transmitters (Tx) , and receivers (Rx) into vertices.
Classify the vertices into transmitting vertices (Vtx) , receiving vertices (Vrx) ,  scattering vertices (Vs) , reflecting vertices (Vr) , and diffracting vertices (Vd) .
The Tx and Rx are regarded as Vtx and Vrx, respectively. The objects in the digital map can be discretized into Vs and Vr based on the surface roughness of the obstacles along the paths from the Vtx to the Vrx. If the surface roughness of the obstacles are comparable to the signal wavelength, the vertices are classified as Vs. If the surface roughness of the obstacle are rather small when compared to the signal wavelength, the vertices are classified into Vr. The absorbing knife edges of obstacles in the digital map are discretized and classified as the Vd.
S3: Identify scattering paths among transceivers and Vs, identify reflecting paths among transceivers and Vr, identify diffracting paths among transceivers and Vd;
Identifying propagation paths includes the following steps.
As is shown in FIG. 1, a line of sight (LoS) path between Vtx and Vrx, is identified and denoted as ε d. The LoS paths exist among vertices, e.g. Vtx and Vrx, If any pair of vertices above are visible, which means they are not obstructed by other obstacles, then LoS path exits between the two vertices.
The scattering paths includes 3 kinds of paths, ε Ts, ε Rs and ε ss. The paths from the Vtx to scattering vertices (Vs) are identified and denoted as ε Ts; the paths from the Vs to the Vrx are identified and denoted as ε Rs; and the paths between the scattering vertices are identified and denoted as ε ss. Thus, the scattering paths exist among vertices, e.g. Tx and Vs, Vs and Vs, Vs and Rx. If the scattering vertices (including the transceiver and the scattering vertices) of any scattering path are visible, which means they are not obstructed by other obstacles, the scattering paths between the scattering vertices are identified.
The reflecting paths includes 3 kinds of paths, ε Tr, ε Rr and ε rr. The reflecting paths from the Vtx to the reflecting vertices (Vr) are identified and denoted as ε Tr, the paths from the reflecting vertices Vr to the Vrx are identified and denoted as ε Rr, and the paths between reflecting vertices are identified and denoted as ε rr. The reflecting paths exist between the reflecting vertices, e.g. Vtx and Vr, Vr and Vr, Vr and Vrx. If the reflecting vertices (including the transceiver and the reflecting vertices) of any reflecting path meet with the Snell’s law, which means incident angles and reflecting angles are equal,  the reflecting path between the reflecting vertices is identified.
The diffracting paths includes 3 kinds of paths, ε Td, ε Rd, and ε dd. The diffracting paths from the Vtx to diffracting vertices (Vd) are identified and denoted as ε Td, the paths from the diffracting vertices to the Vrx are identified and denoted as ε Rd, and the paths between diffracting vertices (Vd) are identified and denoted as ε dd; For the identification of the diffracting paths, if the diffracting vertices (including the transceiver and the diffracting vertices) of each diffracting path are visible, which means they are not obstructed by other obstacles, the diffracting path between the two diffracting vertices is identified.
In another word, the line of sight (LoS) paths between Vtx and Vrx are identified based on the visibility of Vtx and Vrx; the scattering paths are identified based on the visibility of the corresponding vertices; the reflecting paths are identified based on the Snell’s law; the diffracting paths are identified based on the visibility of the corresponding vertices.
S4: Calculating the propagation effects of scattering using PG algorithm.
The propagation effects of scattering are calculated by conventional PG algorithm.
The scattering channel transfer function H s (f) is calculated based on scattering transfer matrices Ts (f) , s (f) , and Rs (f) . Ts (f) represents scattering transfer matrices of the scattering paths from the transmitters to the scattering vertices (from Vtx to Vs) , s (f) represents scattering transfer matrices of the scattering paths between the scattering vertices (from Vs to Vs) , Rs (f) represents scattering transfer matrices of the scattering paths from the scattering vertices to the receivers (from Vs to Vrx) .
The transfer entries of the scattering transfer matrices can be expressed as
A e (f) =|g e (f) |·exp (-j2πfτ e+jφ)     (1) .
where f is a carrier frequency of the signal from Tx to Rx, τ e is delay of the signal from Tx to Rx, 
Figure PCTCN2020119679-appb-000003
is a random variable following uniform distribution on the interval [0, 2π) , |g e (f) | is an edge gain, which can be calculated as
Figure PCTCN2020119679-appb-000004
Where S represents the scattering loss, odi (e) denotes the number of the edges from the initial scatter vertices to other scatter vertices, g 2 denotes power of the initial scatterers; and for any edges belong to ε (any one of ε Ts, ε Rs and ε ss) , the following equations are obtained:
Figure PCTCN2020119679-appb-000005
and
Figure PCTCN2020119679-appb-000006
in which
Figure PCTCN2020119679-appb-000007
with d e= ||r v-r v′|| .
where c is the speed of light, ||. || denotes two dimensional norm space, r v denotes the position vector of a vertices v.
Then, the scattering channel transfer function H s (f) caused by the scattering propagation effects can be calculated as
H s (f) =D (f) +Rs (f) (I-s (f) )  -1Ts (f)    (4)
where, I is unit matrix, D (f) is channel transfer function of LoS paths propagation, which can be calculated by Friis equation as well known. It is seen that the scattering channel transfer function Hs (f) is a function of D (f) , Rs (f) , s (f) and Ts (f) .
S5: Calculating the propagation effects of reflection using the reflection PG algorithm.
The propagation effects of the reflection are calculated using reflection PG algorithm, in the following two steps:
1) Calculating path gain of each reflecting path and generating reflecting transfer matrices Tr (f) , Rr (f) , and r (f) ;
T r (f) denotes reflecting transfer matrices of the reflecting paths from the transmitter to the reflecting vertices (Vtx to Vr) , Rr (f) denotes the reflecting transfer matrices of the reflecting paths from the reflecting vertices to the receivers (Vr to Vrx) , and r (f) denotes the reflecting transfer matrices of the reflecting paths among the reflecting vertices (from a first Vr to a second Vr) .
2) Calculating reflecting channel transfer function H r (f) which is caused by reflecting propagation.
The gain parts of the entries |g e (f) | in the reflecting transfer matrices Tr (f) , Rr (f) , and r (f) can be factorized into two parts g gain (f) and g path as
|g e (f) | 2=|g gain (f) | 2·|g path| 2           (5) .
g gain (f) of the reflecting transfer matrices can be calculated as
Figure PCTCN2020119679-appb-000008
where S represents the reflecting loss, dS denotes the reflecting area of Vr, θi represents an angle between incident direction of a wave and a normal vector of a reflecting surface, θs represents an angle between reflecting direction of the wave and the normal vector of the reflecting surface. That is, g gain (f) of entries in the reflecting transfer matrices can be calculated based on the single-lobe directive scattering models without continuous distance addition.
g path of the reflecting transfer matrices, contains continuous distance factors. Preferentially, the calculation of the reflecting transfer matrices needs to apply the following transform to adapt the continuous distance addition in reflecting calculation principles as the following method:
The continuous distance addition Dn is defined as
Figure PCTCN2020119679-appb-000009
In which, d n means the distance of from the (n-1) th reflecting vertices to the nth reflecting vertices.
Applying the following manipulation, we can obtain a sequential approach for calculating D n based on D n-1 as
Figure PCTCN2020119679-appb-000010
with d`n defined as the so-called equivalent distance
Figure PCTCN2020119679-appb-000011
The above mathematical transform is also applied for the calculation of g path of the reflection matrices,
Figure PCTCN2020119679-appb-000012
The continuous distance addition Dn can be obtained as
Figure PCTCN2020119679-appb-000013
where I is a unit matrix, dTr is distance matrices of Vtx and Vr, dRr is distance matrices of Vrx and Vr, d rr, 1=d rr, 2=…=d rr, n are distance matrices among Vrs.
The reflecting transfer matrices r n (f) , and R rn (f) can be obtained sequentially. r n (f) denotes reflecting transfer matrices of the reflecting paths between the reflecting vertices (from a first Vr to a second Vr) after bouncing n times among the reflecting  vertices; and Rr n (f) denotes reflecting transfer matrices of the reflecting paths from the reflecting vertices to the receivers (from Vrs to Rx) after bouncing among the reflecting vertices for n times.
The reflecting channel transfer function H r (f) caused by reflecting propagation can be calculated as
Figure PCTCN2020119679-appb-000014
where, T r (f) denotes the reflecting transfer matrices from the transmitter to the reflecting vertices (from Vtx to Vr) , Rr 1 (f) denotes reflecting transfer matrices of the reflecting paths from the reflecting vertices to the receivers (from Vrs to Rx) after bouncing among the reflecting vertices for once, r n-1 (f) reflecting transfer matrices of the reflecting paths among the reflecting vertices (from a first Vr to a second Vr) after bouncing n-1 times, Rr n (f) denotes reflecting transfer matrices of the reflecting paths from the reflecting vertices to the receivers (from Vrs to Rx) after bouncing among the reflecting vertices for n times.
Rr 1 (f) denotes reflecting transfer matrices of the reflecting paths from the reflecting vertices to the receivers after bouncing among the reflecting vertices for once; r n-1 (f) denotes reflecting transfer matrices of the reflecting paths among the reflecting vertices after bouncing n-1 times; Rr n (f) denotes reflecting transfer matrices of the reflecting paths from the reflecting vertices to the receivers after bouncing among the reflecting vertices for n times.
S6: Calculating the propagation effects of diffraction using diffraction propagation graph algorithm.
The diffraction propagation graph algorithm includes the following steps:
1) calculating path gains of every diffracting path and generating diffracting transfer functions Td (f) , Rd (f) , and d (f) ; and
2) calculating diffracting channel transfer function H d (f) based on Td (f) , Rd (f) , and d (f) .
The diffracting propagation path includes diffracting paths from Vtx to Vd,  diffracting paths from Vd to Vrx and diffracting paths from Vd to Vd. Td (f) denotes diffracting transfer matrices of diffracting paths from the transmitters to the diffracting vertices (from Vtx to Vd) , Rd (f) denotes diffracting transfer matrices of diffracting paths from the diffracting vertices to the receivers (from Vd to Vrx) , and d (f) denotes diffracting transfer matrices of diffracting paths among the diffracting vertices (from Vd to Vd) .
The gain of the diffracting paths is calculated in a similar way with the calculation of the gain of the reflecting paths. g gaind (f) of the entries in the diffracting transfer matrices can be calculated based on the single-lobe directive scattering models without continuous distance addition; g pathd of the entries in the diffracting transfer matrices contains continuous distance factors D n, which is calculated by a sequential approach.
According to the equations 5-6, g gaind (f) of the diffracting transfer matrices can be calculated as
Figure PCTCN2020119679-appb-000015
where D (θ) denotes the steering angle function in GTD theory, θn denotes the steering angle of the nth diffracting knife-edge, d t, dr and d d represent the Euclidean distance from Vtx to Vd, from Vd to Vrx, and from Vd to Vd, respectively. That is, g gaind (f) of entries in the diffracting transfer matrices can be generated based on the Geometry Theory Diffraction (GTD) model without continuous distance addition.
The g pathd of entries in the diffracting transfer matrices can be calculated sequentially based on the following mathematical matrix transform as
Figure PCTCN2020119679-appb-000016
the Dn can be obtained as
Figure PCTCN2020119679-appb-000017
where dTd is the distance matrices of Vtx and Vd, dRd is the distance matrices of Vrx and Vd, d dd, 1=d dd, 2=…=d dd, n are the distance matrices among Vd and Vd.
After applying the mathematical transform, the diffracting transfer matrices Rdn (f) and dn (f) can be obtained sequentially. Rdn (f) denotes the diffracting transfer matrix of the from Vd to Vrx after diffracting by Vds for n times, and dn (f) denotes the transfer matrix bouncing among Vd for the n times, respectively.
Thus, the diffracting channel transfer function H d (f) caused by the diffracting propagation paths can be calculated as:
Figure PCTCN2020119679-appb-000018
Rd 1 (f) denotes diffracting transfer matrices of the diffracting paths from the diffracting vertices to the receivers after bouncing among the diffracting vertices for once, d n-1 (f) denotes diffracting transfer matrices of the diffracting paths among the diffracting vertices after bouncing n-1 times, Rd n (f) denotes diffracting transfer matrices of the diffracting paths from the diffracting vertices to the receivers after bouncing among the diffracting vertices for n times.
S7: Obtaining the total propagation effects by adding the scattering channel transfer function, the reflection channel transfer function, and the diffraction channel transfer function.
The total channel transfer function H (f) can be calculated as
H (f) = H s (f) + H r (f) + H d (f)
CIR (Channel Impulse Response) of the propagation, H (t) can be obtained, by way of applying Fourier transform on the total channel transfer function H (f) .
The novel PG algorithm-based channel simulation method is capability of reproducing reflection, diffraction, and scattering effects of wave propagation. At the same time, it still makes use of the matrices operation to keep the advantage in the reduction of time complexity. Furthermore, a sequential approach is applied to calculate the entries to efficiently reduce calculating complexity. For those advantages, the simulation method can be applied broadly in the field of wireless communication in 3G, 4G, 5G system as well as IOT system.
For telecom equipment provider companies and operator companies, the invention can be used to predict the coverage performance of a base station and to monitor communication quality of a cell, be used for 4G communication detection and the like, and also be used to predict the performance of array antenna and millimeter wave communication in the next generation communication.
For some positioning systems, such as TDOA localization sensors, it can be used to generate realistic-environment based CIRs. Based on the CIRs information and detect the positioning performances of different sensors.
In the future IOT scenario, it can be used to analyze the communication quality of any object connected by radio wave communications, such as propagation channels of vehicles, Unmanned Aerial Vehicles (UAVs) , etc.
This application can simultaneously calculate the effects of channel multipath components generated by the propagation mechanisms including the reflection, scattering, and diffraction in an efficient and direct way with low complexity. Consequently, the simulation results obtained exhibit fidelity and yield broad applications in the field of wireless communication, radar, and environment sensing.
The propagation-graph based channel simulation method and system provided in the present invention is described in detail above. Any apparent modification made to the present invention by persons of ordinary skill in the art without departing from the essence of the present invention constitutes violation on patent rights of the present invention, and the persons should bear corresponding legal liabilities.

Claims (12)

  1. A channel simulation method, propagation paths among transmitters, receivers, scattering vertices, reflecting vertices, and diffracting vertices being identified based propagation-graph of the propagation, comprising the following steps:
    calculating the propagation effects of scattering by the transmitters, receivers, the scattering vertices, to obtain a scattering channel transfer function;
    calculating the propagation effects of reflection by the transmitters, receivers, the reflecting vertices, to obtain a reflecting channel transfer function;
    calculating the propagation effects of diffraction by the transmitters, receivers, the diffracting vertices, to obtain a diffracting channel transfer function;
    calculating the total channel transfer function by adding the scattering channel transfer function, the reflecting channel transfer function, and the diffracting channel transfer function.
  2. The channel simulation method of claim 1, wherein the scattering channel transfer function is obtained based on Rs (f) , s (f) and Ts (f) ,
    Ts (f) represents scattering transfer matrices of scattering paths from the transmitters to the scattering vertices; s (f) represents scattering transfer matrices of scattering paths between the scattering vertices, Rs (f) represents scattering transfer matrices of scattering paths from the scattering vertices to the receivers.
  3. The channel simulation method of claim 2, wherein the scattering channel transfer function can be calculated as
    H s (f) =D (f) +Rs (f) (I-s (f) )  -1Ts (f)
    where, I is unit matrix, D (f) is channel transfer function of LoS paths propagation between the transmitters and the receivers.
  4. The channel simulation method of claims 1 or 3, wherein the reflecting channel transfer function is obtained based T r (f) , r n (f) , and Rr n (f) ,
    T r (f) denotes reflecting transfer matrices of reflecting paths from the transmitter to  the reflecting vertices; r n (f) denotes reflecting transfer matrices of the reflecting paths among the reflecting vertices after bouncing n times among the reflecting vertices; and Rr n (f) denotes reflecting transfer matrices of the reflecting paths from the reflecting vertices to the receiver after bouncing among the reflecting vertices for n times.
  5. The channel simulation method of claim 4, wherein the reflecting channel transfer function can be calculated as
    Figure PCTCN2020119679-appb-100001
    where, Rr 1 (f) denotes reflecting transfer matrices of the reflecting paths from the reflecting vertices to the receivers after bouncing among the reflecting vertices for once; r n-1 (f) denotes reflecting transfer matrices of the reflecting paths among the reflecting vertices after bouncing n-1 times; Rr n (f) denotes reflecting transfer matrices of the reflecting paths from the reflecting vertices to the receivers after bouncing among the reflecting vertices for n times.
  6. The channel simulation method of claim 5, wherein the reflecting transfer matrices T r (f) , r n (f) , and R rn (f) can be calculated based on reflecting entries |g e (f) |, which is factorized into two parts g gain (f) and g path,
    g gain (f) of the entries in the reflecting transfer matrices can be calculated based on the single-lobe directive scattering models without continuous distance addition; g path of the entries in the reflecting transfer matrices contains continuous distance factors D n, which is calculated by a sequential approach.
  7. The channel simulation method of claims 1 or 3, wherein the diffracting channel transfer function is obtained based Td (f) , Rd (f) , and d (f) ,
    Td (f) denotes diffracting transfer matrices of diffracting paths from the transmitters to the diffracting vertices, Rd (f) denotes diffracting transfer matrices of diffracting paths from the diffracting vertices to the receivers, and d (f) denotes diffracting transfer matrices of diffracting paths among the diffracting vertices.
  8. The channel simulation method of claim 4, wherein the diffracting channel transfer function can be calculated as
    Figure PCTCN2020119679-appb-100002
    where, Rd 1 (f) denotes diffracting transfer matrices of the diffracting paths from the diffracting vertices to the receivers after bouncing among the diffracting vertices for once; d n-1 (f) denotes diffracting transfer matrices of the diffracting paths among the diffracting vertices after bouncing n-1 times; Rd n (f) denotes diffracting transfer matrices of the diffracting paths from the diffracting vertices to the receivers after bouncing among the diffracting vertices for n times.
  9. The channel simulation method of claim 8, wherein the diffracting transfer matrices T d (f) , d n (f) , and Rd n (f) can be calculated by diffracting entries, which is factorized into two parts g gaind (f) and g pathd,
    g gaind (f) of the entries in the diffracting transfer matrices can be calculated based on the single-lobe directive scattering models without continuous distance addition; g pathd of the entries in the diffracting transfer matrices contains continuous distance factors D n, which is calculated by a sequential approach.
  10. The channel simulation method of claims 1, 6 or 8, wherein further comprising calculating Channel Impulse Response by way of applying Fourier transform on the total channel transfer function.
  11. A channel simulation system being configured for deploying the channel simulation method of any one of claims 1-10.
  12. Computer program comprising instructions for performing the channel simulation method of any one of claims 1-10 when said instructions are executed by an apparatus.
PCT/CN2020/119679 2020-09-30 2020-09-30 A channel simulation method and a system thereof WO2022067772A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119679 WO2022067772A1 (en) 2020-09-30 2020-09-30 A channel simulation method and a system thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119679 WO2022067772A1 (en) 2020-09-30 2020-09-30 A channel simulation method and a system thereof

Publications (1)

Publication Number Publication Date
WO2022067772A1 true WO2022067772A1 (en) 2022-04-07

Family

ID=80949446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119679 WO2022067772A1 (en) 2020-09-30 2020-09-30 A channel simulation method and a system thereof

Country Status (1)

Country Link
WO (1) WO2022067772A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110125014A1 (en) * 2008-06-09 2011-05-26 Centre National De La Recherche Scientifique - Cnrs - Sounding Method and Device using Wave Propagation
CN103365962A (en) * 2013-06-19 2013-10-23 山东润谱通信工程有限公司 Building and calibrating method for construction material wireless propagation loss parameter database
CN105721085A (en) * 2016-02-05 2016-06-29 中国科学院上海微系统与信息技术研究所 Modeling method for terahertz indoor communication channel
CN105721087A (en) * 2016-03-21 2016-06-29 北京交通大学 Propagation graph theory based channel modeling method in non-line-of-sight type interval tunnel environment
CN108718224A (en) * 2018-05-02 2018-10-30 上海市无线电监测站 A kind of radio communication channel emulated computation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110125014A1 (en) * 2008-06-09 2011-05-26 Centre National De La Recherche Scientifique - Cnrs - Sounding Method and Device using Wave Propagation
CN103365962A (en) * 2013-06-19 2013-10-23 山东润谱通信工程有限公司 Building and calibrating method for construction material wireless propagation loss parameter database
CN105721085A (en) * 2016-02-05 2016-06-29 中国科学院上海微系统与信息技术研究所 Modeling method for terahertz indoor communication channel
CN105721087A (en) * 2016-03-21 2016-06-29 北京交通大学 Propagation graph theory based channel modeling method in non-line-of-sight type interval tunnel environment
CN108718224A (en) * 2018-05-02 2018-10-30 上海市无线电监测站 A kind of radio communication channel emulated computation method

Similar Documents

Publication Publication Date Title
Klautau et al. LIDAR data for deep learning-based mmWave beam-selection
Chen et al. Channel modeling and performance analysis for UAV relay systems
Guerci et al. Joint design and operation of shared spectrum access for radar and communications
CN106357313B (en) MIMO trunk channel outage probability calculation method towards UAV Communication
Tataria et al. Standardization of propagation models for terrestrial cellular systems: A historical perspective
CN104994517B (en) A kind of high altitude platform MIMO communication system three dimensional channel modeling method
CN110611527B (en) Array antenna, beam forming method and sensing and communication integrated system
Mursia et al. RISe of flight: RIS-empowered UAV communications for robust and reliable air-to-ground networks
CN108811082B (en) Wireless positioning method, system and positioning terminal
Eskandari et al. Model predictive control-based 3D navigation of a RIS-equipped UAV for LoS wireless communication with a ground intelligent vehicle
CN111181673B (en) 3D wireless channel modeling method based on double-mobile scene
WO2022067772A1 (en) A channel simulation method and a system thereof
Salous et al. IRACON channel measurements and models
Jiang et al. A geometry-based 3D non-stationary UAV-MIMO channel model allowing 3D arbitrary trajectories
Ranjith et al. A multi-fusion integrated end-to-end deep kernel CNN based channel estimation for hybrid range UM-MIMO 6G communication systems
Mehrnia et al. Ray tracing-based maritime channel analysis for millimeter radiowaves
Wu et al. Learning from UAV experimental results for performance modeling of reconfigurable intelligent surface flying platform
Alexandropoulos et al. Joint localization and channel estimation for UAV-assisted millimeter wave communications
Vanderveen Estimation of parametric channel models in wireless communication networks
Yang et al. Channel state information-based multi-dimensional parameter estimation for massive RF data in smart environments
CN113162712B (en) Multi-beam channel modeling method based on propagation diagram theory
Aksan et al. Channel characterization for aircraft integrated antennas via machine learning
Mao et al. ML-based delay–angle-joint path loss prediction for UAV mmWave channels
Wahl et al. Wave propagation inside and around vehicles in dynamic time variant scenarios
Han et al. Terahertz channel modeling for integrated sensing and communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955795

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20955795

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.11.2023)