WO2022067738A1 - 患者位置显示方法、系统、电子设备及存储介质 - Google Patents

患者位置显示方法、系统、电子设备及存储介质 Download PDF

Info

Publication number
WO2022067738A1
WO2022067738A1 PCT/CN2020/119597 CN2020119597W WO2022067738A1 WO 2022067738 A1 WO2022067738 A1 WO 2022067738A1 CN 2020119597 W CN2020119597 W CN 2020119597W WO 2022067738 A1 WO2022067738 A1 WO 2022067738A1
Authority
WO
WIPO (PCT)
Prior art keywords
patient
real
interface
position deviation
deviation
Prior art date
Application number
PCT/CN2020/119597
Other languages
English (en)
French (fr)
Inventor
苟天昌
闫浩
Original Assignee
西安大医集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安大医集团股份有限公司 filed Critical 西安大医集团股份有限公司
Priority to CN202080105410.6A priority Critical patent/CN116234611A/zh
Priority to PCT/CN2020/119597 priority patent/WO2022067738A1/zh
Publication of WO2022067738A1 publication Critical patent/WO2022067738A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy

Definitions

  • the present application relates to the field of medical technology, and in particular, to a patient position display method, system, electronic device and storage medium.
  • the radiation therapy system emits particle beams through accelerators, etc., and the particle beams will pass through the human body from different angles to perform beam therapy on the focal organs in the radiation field.
  • the particle beam may cause damage to normal organs near the affected organ of the patient.
  • one of the technical problems solved by the embodiments of the present application is to provide a patient position display method, system, electronic device, and storage medium, so as to overcome or alleviate at least some of the problems existing in the prior art.
  • An embodiment of the present application provides a method for displaying a patient's position, which includes: determining and displaying all the patient's positions on an interface according to predetermined patient positioning information and the real-time positions of the patient in the directions of multiple coordinate axes during the beam-out treatment process.
  • An embodiment of the present application provides a patient position display system, including: a deviation determination module, configured to determine the patient's real-time position in the direction of multiple coordinate axes according to predetermined patient positioning information and the real-time position of the patient in the direction of multiple coordinate axes during the process of beam-out treatment.
  • the real-time position deviation of the patient in the directions of multiple coordinate axes is configured to generate a message for instructing the treating physician to perform a position adjustment operation in the multiple coordinate axis directions if the real-time position deviation meets the position adjustment condition.
  • first alarm information a display module for displaying the real-time position deviation of the patient in the directions of multiple coordinate axes in an interface, and for displaying the first alarm information in the interface.
  • An embodiment of the present application provides an electronic device, including: at least one processor, a memory, a communication interface, and a communication bus; the processor is connected to the memory and the communication interface through the communication bus, and the memory is used for Computer-executable instructions are stored, and the processor executes the computer-executable instructions stored in the memory to perform the above-described patient position display method.
  • An embodiment of the present application provides a computer storage medium, where the computer storage medium includes computer-executable instructions for a processor to execute the above-mentioned method for displaying a patient's position.
  • the patient's position in multiple coordinate axis directions is determined and displayed according to the predetermined patient positioning information and the real-time positions of the patient in the multiple coordinate axis directions during the beam outgoing treatment.
  • Real-time position deviation which can accurately monitor the position of the patient; if the real-time position deviation meets the position adjustment conditions, generate and display the first alarm information for instructing the treating physician to perform position adjustment operations in the directions of multiple coordinate axes . Therefore, through the first alarm information, the treating physician can adjust the position of the patient in some or all of the coordinate axis directions according to the real-time movement deviations in the multiple coordinate axis directions, so that it is possible to adjust the position of the patient in the direction of a large degree of deviation.
  • the patient's position is adjusted in the direction of the coordinate axis, which improves the accuracy of the patient's position adjustment and makes the position adjustment process more convenient.
  • the solution provided by this embodiment can accurately monitor and adjust the position of the patient, so as to avoid the problem of damage to other normal organs caused by the particle beam caused by the movement of the patient during the beam outgoing treatment.
  • FIG. 1 is a schematic structural diagram of a treatment system provided by the application.
  • FIG. 2 is a schematic flowchart of a method for displaying patient position provided by the application
  • 3A is a schematic flowchart of another patient position display method provided by the application.
  • 3B is a schematic diagram of a scene for determining the position of a patient provided by the application.
  • 3C is a schematic diagram of an interface for displaying first warning information provided by the present application.
  • 3D is a schematic diagram of another interface for displaying the first warning information provided by the present application.
  • 3E is a schematic diagram of an interface for displaying second warning information provided by the present application.
  • 3F is a schematic diagram of an interface for displaying start prompt information provided by the present application.
  • 3G is a schematic diagram of an interface for setting a threshold provided by the application.
  • FIG. 4 is a structural block diagram of a patient position display system according to an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • Beam beam therapy is generally used in tumor treatment. Because beam beam therapy needs to use particle beams emitted by accelerators to kill tumor cells and treat patients, it is usually necessary to place the treatment equipment in a dedicated computer room with shielding capability. In order to avoid injury to the operator or other personnel, and in order to reduce the injury of the particle beam to the patient, it is necessary to accurately monitor and adjust the patient's position.
  • the treatment system may include: a treatment couch 100 on which a treating physician carries a patient, an infrared positioning device 101 disposed near the treatment couch, and a position monitoring device 102 connected in communication with the infrared positioning device 101 .
  • the infrared positioning device 101 may be disposed at the end of the treatment couch 100 , that is, disposed on the side of the treatment couch 100 away from the radiotherapy equipment.
  • the communication connection between the infrared positioning device and the position monitoring device 102 may be a wired connection or a wireless connection, which is not limited in this embodiment.
  • the position monitoring apparatus 102 may be a processor integrated in the terminal device.
  • the terminal device may be an upper computer.
  • the infrared positioning device 101 can determine the patient positioning information of the patient before performing the beam outgoing therapy, and can determine the real-time position information of the patient in the directions of multiple coordinate systems during the outgoing beam therapy. (such as coordinate information), and send it to the position monitoring device 102 .
  • the location monitoring device may be used to perform the method steps in the subsequent embodiments. That is, the position monitoring device 102 can determine and display the patient in the multiple coordinate axis directions on the interface according to the predetermined patient positioning information and the real-time position of the patient in the multiple coordinate axis directions during the beam outgoing treatment.
  • Real-time position deviation if the real-time position deviation meets the position adjustment conditions, first alarm information for instructing the treating physician to perform position adjustment operations in the directions of multiple coordinate axes is generated and displayed on the interface.
  • the treating physician can adjust the patient's position in some or all of the coordinate axis directions when the patient moves according to the first warning information, so that the patient's position can be adjusted for the coordinate axis direction with a large degree of deviation.
  • the precise adjustment of the patient's position improves the accuracy of the patient's position adjustment, and makes the position adjustment process more convenient.
  • the position of the patient can be accurately monitored and adjusted, so as to avoid the problem of damage to other normal organs caused by the particle beam due to the movement of the patient during the beam-out treatment.
  • FIG. 2 a schematic flowchart of a method for displaying a patient's position provided by an embodiment of the present application is shown. As shown in the figure, the method for displaying a patient's position includes:
  • S201 Determine and display the real-time position deviation of the patient in the multiple coordinate axis directions on the interface according to the predetermined patient positioning information and the real-time positions of the patient in the multiple coordinate axis directions during the beam outgoing treatment.
  • the beam-out therapy can be a process of treating lesions such as tumors with particle beams formed by an accelerator of a radiotherapy device or the like.
  • the patient Before performing the beam-out treatment, the patient can be positioned, and thus the predetermined patient positioning information, that is, the position information of the patient that can ensure that the particle beam reaches the tumor is determined.
  • the patient positioning information may specifically include position information of a marker reference fixed on the patient.
  • the real-time position of the patient in the directions of multiple coordinate axes can be determined based on a standard coordinate system; or, the process of beam-out therapy can be determined based on the coordinate system of the treatment couch, the coordinate system of the acquisition device, etc.
  • the real-time position of the patient in the directions of multiple coordinate axes which is not limited in this embodiment.
  • the real-time position deviation of the patient in the directions of each coordinate axis can be determined.
  • the patient positioning information is the zero point information of the coordinate axis, and thus, the real-time position on each coordinate axis can be directly determined as the real-time position deviation of the patient in the direction of each coordinate axis; , after determining the patient's positioning, the positioning coordinates in each coordinate axis direction, and calculating the difference between the positioning coordinates and the real-time position coordinates in each coordinate axis direction, as the real-time position of the patient in each coordinate axis direction deviation.
  • the above is only an example, not a limitation of the present application.
  • the real-time position deviation of the patient in the directions of multiple coordinate axes can be displayed on the interface, so that the treating physician (such as the operating physician) can timely understand the real-time position deviation of the patient in the multiple coordinate axis directions.
  • the deviation of the position of the treating physician in the direction to accurately understand the position deviation of the patient.
  • the position adjustment condition is the position information corresponding to the inconsistency between the position where the particle beam arrives and the lesion position due to the movement of the patient.
  • the position adjustment condition can be set by those skilled in the art as required, which is not limited in this application.
  • the corresponding position adjustment conditions can be set.
  • the generated data is generated to instruct the treating physician to perform multiple coordinate axes.
  • the first alarm information for the position adjustment operation in the direction; or, a position adjustment condition can be set for the total position offset of the patient, when the total position offset corresponding to the position offset information in multiple coordinate axis directions conforms to the position adjustment
  • first alarm information is generated for instructing the treating physician to perform position adjustment operations in the directions of multiple coordinate axes.
  • the treating physician may, according to the displayed first alarm information, The position of the patient is adjusted in the direction of some or all of the coordinate axes, so that the position of the patient is adjusted according to the direction of the coordinate axis with a large degree of deviation, so as to improve the accuracy of the patient's position adjustment, and Makes the position adjustment process more convenient.
  • the real-time position of the patient in the directions of multiple coordinate axes is determined and displayed according to the pre-determined patient positioning information and the real-time positions of the patient in the directions of multiple coordinate axes during the beam-out treatment process.
  • the position deviation can accurately monitor the patient's position; if the real-time position deviation meets the position adjustment conditions, the first alarm information for instructing the treating physician to perform position adjustment operations in the directions of multiple coordinate axes is generated and displayed. Therefore, the first alarm information can enable the treating physician to adjust the position of the patient in some or all of the coordinate axis directions according to the real-time movement deviation in the directions of multiple coordinate axes, so that the coordinates with a large degree of deviation can be adjusted.
  • the axial direction adjusts the patient's position in a targeted manner, which improves the accuracy of the patient's position adjustment and makes the position adjustment process more convenient.
  • the solution provided by this embodiment can accurately monitor and adjust the position of the patient, so as to avoid the problem of damage to other normal organs caused by the particle beam caused by the movement of the patient during the beam outgoing treatment.
  • the method in this embodiment can be executed by any suitable electronic device with data processing capability, including but not limited to: embedded device, server, mobile terminal (such as mobile phone, PAD, etc.), and PC.
  • embedded device such as mobile phone, PAD, etc.
  • PC personal computer
  • the patient position display method includes:
  • S301 Determine, through a binocular vision system, the real-time positions of the patient in the directions of multiple coordinate axes in the process of performing the beam-exit therapy.
  • the binocular vision system may include two image acquisition devices, for example, two cameras. After the images are respectively captured by the two image capturing devices, the coordinates of the target object (eg patient, marker reference, etc.) in the coordinate systems of the two image capturing devices can be determined according to the captured images. Combined with the positions of the two image acquisition devices themselves, the real-time coordinates of the target in the beam-exiting treatment environment can be determined, and thus, the real-time positions of the patient in the directions of multiple coordinate axes during the beam-extracting treatment can be determined.
  • the target object eg patient, marker reference, etc.
  • the origin of the coordinate system of the image acquisition device can be determined as the optical center of the image acquisition device, and the distance b between the optical centers of the two image acquisition devices can be determined.
  • the captured image can be drawn at the position f in front of the optical center of the lens, that is, on the plane corresponding to the focus. The amount of computation required to calculate the location.
  • the coordinates of a certain point P in the collected beam-out treatment environment in the two images corresponding to the two image acquisition devices are respectively P1 (u1,
  • (xc, yc, zc) are the coordinates of point P in the binocular vision system
  • b is the distance between the optical centers of the two image acquisition devices
  • f is the focal length
  • v2 is the coordinates of point P in the images of the two image acquisition devices.
  • the disparity of point P in the two images can be defined as:
  • (xc, yc, zc) can be obtained by calculation, that is, the three-dimensional coordinates of point P in the beam outgoing treatment environment can be determined.
  • the three-dimensional coordinates in the treatment environment may be: a first axis X extending along the width direction of the treatment couch 100 , a second axis Y extending along the length direction of the treatment couch 100 , and a height direction of the treatment couch 100 A three-dimensional coordinate system consisting of the extended third axis Z.
  • the above-mentioned P point can be determined by marking the reference.
  • the marker reference can be set on the body surface of the patient, the P point can be the center of the marker reference, and the like.
  • medical double-sided tape can be used to paste the reference objects on the patient's nose, forehead or chin; if the location to be treated is the patient's body, medical double-sided tape can be used
  • the glue sticks a marker reference at the location of the patient's chest.
  • the marker reference is preferably spherical.
  • using one marker reference object improves the efficiency of obtaining the patient's coordinate information, thereby improving the judgment
  • the efficiency of the patient's movement state that is, the monitoring efficiency and monitoring frequency of the patient's movement are improved.
  • the process and method for monitoring the movement of the patient are effectively simplified.
  • the marked reference object is a marked reference object reflecting infrared light
  • the adopted image acquisition device is an infrared positioning device.
  • the infrared positioning device is controlled to emit infrared light to the pre-set marker reference; then, when the infrared light is reflected by the marker reference, the infrared positioning device can The infrared light reflected by the reference object collects the coordinate information of the marked reference object, and sends the collected coordinate information, so as to determine the coordinates of the patient in the out-beam treatment environment.
  • the coordinates of the patient in the beam outgoing treatment environment can be determined in real time, that is, the real-time positions of the patient in the directions of multiple coordinate axes during the outgoing beam therapy are determined.
  • S302. Determine and display the real-time position deviation of the patient in the multiple coordinate axis directions on the interface according to the predetermined patient positioning information and the real-time positions of the patient in the multiple coordinate axis directions during the beam outgoing treatment.
  • position deviation information of the patient at different times may be acquired, and a position deviation line may be generated according to a time relationship; the position deviation line may be displayed on the interface.
  • the treating physician can directly determine the offset position of the patient's history according to the displayed position deviation line, so that the treating physician can understand the overall position offset of the patient during the treatment process.
  • the position deviation line may be displayed by at least one of discrete points and connecting lines.
  • the interface may include a setting area, and the setting area may include an endpoint setting button.
  • the display mode of the position deviation line can be switched to discrete points or connecting lines.
  • a pre-warning line can also be set in advance, and the movement deviation that exceeds the pre-warning line and the maintenance time period is longer than the preset time period can be highlighted. For example, it can be bolded or displayed in a more vibrant color.
  • a setting button for selecting a coordinate direction for displaying the real-time position deviation of the patient may be displayed in the setting area of the interface; when a setting operation for the setting button is received, the coordinates corresponding to the setting operation are displayed or hidden in the interface Orientation real-time position deviation.
  • the lower right corner of the interface may include a setting area.
  • the setting area of the display interface may display the X-axis display option " ⁇ X” and the Y-axis display option "”. ⁇ Y" and Z axis display option " ⁇ Z”.
  • the movement deviation of the patient in the direction of X-axis, Y-axis or Z-axis can be displayed or hidden according to the setting operation of " ⁇ X", Y-axis display option " ⁇ Y” and Z-axis display option " ⁇ Z" by the treating physician.
  • the real-time movement deviation of the patient in the X-axis direction can be displayed or hidden on the interface; when receiving the setting operation for the Y-axis display option, it can be displayed on the interface. Display or hide the real-time movement deviation of the patient in the Y-axis direction on the interface; when receiving the setting operation for the Z-axis display option, you can display or hide the real-time movement deviation of the patient in the Z-axis direction on the interface.
  • the position deviation information of the patient at different times can be obtained, and the offset of each coordinate at different times can be determined; the offset of each coordinate at different times can be displayed on the interface.
  • the treating physician can also know the offset of each coordinate at different times during the treatment process, so that the treating physician can understand the overall position shift of the patient during the treatment process.
  • the first alarm information is used to instruct the treating physician to adjust the position of the patient in some or all of the coordinate axis directions according to the real-time movement deviation in the multiple coordinate axis directions.
  • S303 includes: calculating the total amount of the patient's position offset according to the real-time position deviation of the patient in the directions of multiple coordinate axes; , the first alarm information is generated and displayed on the interface. Thereby, the amount of calculation can be reduced.
  • the real-time positional deviations in the x, y, and x axis directions are set as ⁇ X, ⁇ Y, and ⁇ Z, respectively.
  • the total amount of position offset can be:
  • the gated low threshold is preferably 1 mm.
  • generating and displaying first alarm information for instructing the treating physician to perform position adjustment operations in multiple coordinate axis directions includes: determining text information included in the first alarm information , and determine the coordinate axis to be adjusted corresponding to the first alarm information; display text information in the interface, and highlight the real-time deviation value of the coordinate axis to be adjusted, so as to instruct the treating physician to adjust the position of the patient in the direction of the coordinate axis to be adjusted. Adjustment.
  • displaying text information and highlighting the real-time deviation value of the coordinate axis to be adjusted it is convenient for the treating physician to perform a position adjustment operation according to the displayed text information and the highlighted real-time deviation value of the coordinate axis to be adjusted.
  • the real-time deviation value of the coordinate axis to be adjusted may be highlighted by means of bolding, adding a background color, etc., which is not limited in this embodiment.
  • generating and displaying the first alarm information for instructing the treating physician to perform position adjustment operations in the directions of multiple coordinate axes further includes: determining and displaying the adjustment in the directions of the coordinate axes to be adjusted in the interface.
  • the reference value is used to instruct the treating physician to adjust the position of the patient in the direction of the coordinate axis to be adjusted according to the adjustment reference value. Therefore, the treating physician can directly determine the adjustment distance of the position adjustment operation according to the adjustment reference value, which further facilitates the treating physician to perform the operation.
  • an offset distance may be set for each coordinate axis, and in the direction of the coordinate axis, the difference between the real-time position deviation of the treating physician and the offset distance is calculated, the adjustment reference value is determined, and in the interface The display is performed so that the treating physician adjusts the position of the patient in the direction of the coordinate axis to be adjusted according to the adjustment reference value.
  • the offset distances corresponding to different coordinate axes may be the same or different, which is not limited in this embodiment.
  • the real-time position deviation in the interface may also be directly used as the adjustment reference value, which is not limited in this embodiment.
  • the position adjustment condition includes: the duration of the movement of the patient is within the first duration range, or the real-time position deviation of the patient is within the first distance range.
  • the first duration range or the first distance range may be set by a person skilled in the art, which is not limited in this embodiment.
  • the first distance range is 2 millimeters (mm)-3mm
  • the first duration range is 1 second (s)-2s. It is determined according to the real-time position deviation that the movement deviation of the patient is 2.2 mm, and first alarm information is generated for instructing the treating physician to perform position adjustment operations in the directions of multiple coordinate axes. Alternatively, according to all real-time position deviations in a period of time, it is determined that the duration of the movement of the patient is 1.5s, and the first alarm information for instructing the treating physician to perform position adjustment operations in the directions of multiple coordinate axes is generated.
  • the movement deviation of the patient is 2.2mm, and the duration of the movement of the patient is 1.5s.
  • it is generated to instruct the treating physician to perform position adjustment operations in the directions of multiple coordinate axes. the first alarm information.
  • the first alarm information includes an alarm that conforms to the preset offset and an alarm that does not conform to the preset offset.
  • the preset offset may be set by those skilled in the art according to requirements, which is not limited in this embodiment.
  • the alarms that conform to the preset offset and the alarms that do not conform to the preset offset are displayed in different background colors or colors.
  • the alarms that meet the preset offset may be red, and the alarms that do not meet the preset offset may be green.
  • the upper right of the interface may include an icon, and the icon may have different background colors or different colors.
  • the icon is green, the background color of the text part at the upper right of the interface can also be green, corresponding to the alarm that does not meet the preset offset; when the icon is yellow, the background color of the text part at the upper right of the interface can also be yellow , which corresponds to an alarm that matches the preset offset.
  • the method further includes: determining the comprehensive risk of the patient's movement according to the position deviation of the patient; displaying the comprehensive risk of the patient's movement in the interface so that the treating physician decides whether to terminate the radiotherapy equipment to stop the out-of-beam therapy.
  • the treating physician can understand the comprehensive risk caused by the patient's moving during the treatment process, thereby assisting the treating physician in making a decision, and improving the accuracy of the decision-making result.
  • the combined risk may include the risk of damage to other organs caused by the particle beam during treatment due to patient movement.
  • the method further includes: synchronously updating the real-time position deviation displayed in the interface in response to the position adjustment operation performed by the treating physician.
  • the method further includes:
  • the preset termination condition is the position information corresponding to when the arrival position of the particle beam overlaps with other organs due to the movement of the patient.
  • the preset termination condition can be set by those skilled in the art as required, which is not limited in this application.
  • a corresponding preset termination condition can be set for each coordinate axis direction.
  • a message for instructing to stop the beam treatment will be generated.
  • a preset termination condition can be set for the total position offset of the patient, when the position corresponding to the position offset information in the multiple coordinate axis directions
  • a stop instruction for instructing to stop the outgoing beam therapy is generated, and second alarm information for prompting the stop of the outgoing beam therapy is displayed.
  • the preset termination condition includes: the duration of the movement of the patient is within the second duration range, or the real-time position deviation of the patient is within the second distance range.
  • the second distance range is from 3mm to ⁇
  • the second duration range is from 2s to ⁇ . It is determined according to the real-time position deviation that the movement deviation of the patient is 4 mm, a stop instruction for instructing to stop the beam-out treatment is generated, and second alarm information for prompting the stop of the beam-out treatment is displayed. Or, according to all real-time position deviations in a period of time, it is determined that the duration of the movement of the patient is 2.5s, then a stop instruction is generated for instructing to stop the outgoing beam therapy, and second alarm information is displayed for prompting the stop of the outgoing beam therapy. Or, according to all real-time position deviations in a period of time, it is determined that the movement deviation of the patient is 4mm, and the duration of the patient's movement is 2.5s. The second warning message that the beam therapy is stopped.
  • the method further includes:
  • the preset treatment conditions are used to indicate that the patient's position is stably maintained at a position corresponding to the placement information, and the preset treatment conditions can be set by those skilled in the art according to requirements, which are not limited in this application.
  • the corresponding preset treatment conditions can be set for each coordinate axis direction.
  • the real-time position deviation meets the preset treatment conditions, it will be generated and displayed to indicate the start of the treatment.
  • the prompt information of the beam therapy; or, a preset termination condition can be set for the total position offset of the patient.
  • the preset treatment conditions include: the duration for which the real-time position deviation of the patient is less than the third distance threshold is greater than the third duration threshold.
  • the third distance range is 0 to 5 mm
  • the third duration range is 20 s to ⁇ .
  • the real-time position deviation it is determined that the movement deviation of the patient is less than or equal to 4 mm, and the deviation is maintained for 25 s, and then a prompt message for instructing the start of beam-out treatment is generated and displayed.
  • first distance range, second distance range, and third distance range may be the same or different; the above-mentioned first duration range, second duration range, and third duration range may be the same or different. This embodiment does not limit this.
  • the above-mentioned thresholds can be set through an interface, such as the interface shown in FIG. 3G , for example, the first distance range and the second distance can be determined by setting the gated low threshold and the gated high threshold. range and the third distance range, assuming that the gated low threshold is 1mm and the gated high threshold is 2mm, then it can be determined that the first distance range is 1mm-2mm, and the second distance range is 2mm-
  • the third distance range is 0-1mm; similarly, the above duration range can be determined by the beam holding time and beam recovery time. Assuming that the beam holding time is 20s and the beam holding recovery is 5s, the first The duration range is 0mm-5s, the second distance range is 5s- ⁇ , and the third distance range is 20s- ⁇ ; the frequency of collecting images through the binocular vision system can also be determined by setting the frequency.
  • the position is accurately monitored; if the real-time position deviation meets the position adjustment conditions, first alarm information for instructing the treating physician to perform position adjustment operations in the directions of multiple coordinate axes is generated and displayed, and the first alarm information is used to instruct the treating physician
  • the position of the patient is adjusted in some or all of the coordinate axis directions, so that the patient position can be adjusted for the coordinate axis direction with a large degree of deviation, which improves the performance of the patient.
  • the accuracy of the patient's position adjustment and makes the position adjustment process more convenient.
  • FIG. 4 is a structural block diagram of a patient position display system according to an embodiment of the present invention. As shown in FIG. 4 , the system may include: a deviation determination module 401 , an alarm module 402 , and a display module 403 .
  • the deviation determination module 401 is used to determine the real-time position deviation of the patient in the directions of the multiple coordinate axes according to the predetermined patient positioning information and the real-time positions of the patient in the directions of the multiple coordinate axes during the beam-out treatment;
  • an alarm module 402 configured to generate first alarm information for instructing the treating physician to perform position adjustment operations in the directions of multiple coordinate axes if the real-time position deviation meets the position adjustment condition;
  • the display module 403 is configured to display the real-time position deviation of the patient in the directions of multiple coordinate axes in the interface, and to display the first alarm information in the interface.
  • the interface further includes a setting area, displaying a setting button for selecting a coordinate direction for displaying the real-time position deviation of the patient.
  • the deviation determination module is used to obtain the position deviation information of the patient at different times; the display module is used to display the position deviation line generated according to the time relationship in the interface.
  • the deviation determination module is used to obtain patient position information at different times, and determine the offset of each coordinate at different times; the display module is used to display the offset of each coordinate at different times on the interface.
  • the first alarm information includes an alarm that conforms to the preset offset and an alarm that does not conform to the preset offset.
  • the alarms that conform to the preset offset and the alarms that do not conform to the preset offset are displayed in different background colors or colors.
  • it also includes a risk warning module for determining the comprehensive risk of the patient's movement according to the position deviation of the patient; a display module for displaying the comprehensive risk of the patient's movement in the interface, so that the treating physician can decide whether to terminate the device and stop the beam therapy. .
  • the patient position display system provided by the present application further includes a sending module for sending the position deviation to the control system of the radiotherapy equipment.
  • a receiving module configured to receive the patient's positioning information.
  • the position display system and the treatment planning system or control system are independent systems and can communicate with each other to obtain patient positioning information, and send position deviations to the control system to use the control system to move the patient based on the positioning information.
  • the real-time position of the patient in the directions of the multiple coordinate axes is determined and displayed according to the pre-determined patient positioning information and the real-time position of the patient in the directions of multiple coordinate axes during the beam-out treatment process.
  • the position of the patient can be accurately monitored; if the real-time position deviation meets the position adjustment conditions, first alarm information for instructing the treating physician to perform position adjustment operations in multiple coordinate axis directions is generated and displayed. Therefore, the first alarm information can enable the treating physician to adjust the position of the patient in some or all of the coordinate axis directions according to the real-time movement deviation in the directions of multiple coordinate axes, so that the coordinates with a large degree of deviation can be adjusted.
  • the axial direction adjusts the patient's position in a targeted manner, which improves the accuracy of the patient's position adjustment and makes the position adjustment process more convenient.
  • the solution provided by this embodiment can accurately monitor and adjust the position of the patient, so as to avoid the problem of damage to other normal organs caused by the particle beam caused by the movement of the patient during the beam outgoing treatment.
  • FIG. 5 a schematic structural diagram of an electronic device according to Embodiment 8 of the present application is shown.
  • the specific embodiments of the present application do not limit the specific implementation of the electronic device.
  • the electronic device may include: a processor (processor) 502 , a communication interface (Communications Interface) 504 , a memory (memory) 506 , and a communication bus 508 .
  • processor processor
  • Communication interface Communication interface
  • memory memory
  • communication bus 508 a communication bus
  • the processor 502 , the communication interface 504 , and the memory 506 communicate with each other through the communication bus 508 .
  • the communication interface 504 is used to communicate with other electronic devices such as terminal devices or servers.
  • the processor 502 is configured to execute the program 510, and specifically may execute the relevant steps in the above embodiments of the method for displaying the patient position.
  • the program 510 may include program code including computer operation instructions.
  • the processor 502 may be a central processing unit (CPU), or a specific integrated circuit ASIC (Application Specific Integrated Circuit), or one or more integrated circuits configured to implement the embodiments of the present application.
  • the one or more processors included in the electronic device may be the same type of processors, such as one or more CPUs; or may be different types of processors, such as one or more CPUs and one or more ASICs.
  • the memory 506 is used to store the program 510 .
  • Memory 506 may include high-speed RAM memory, and may also include non-volatile memory, such as at least one disk memory.
  • the program 510 can specifically be used to cause the processor 502 to execute the patient position display method provided by the foregoing embodiments.
  • each component/step described in the embodiments of the present application may be split into more components/steps, or two or more components/steps or part of operations of components/steps may be combined into New components/steps to achieve the purpose of the embodiments of the present application.
  • the above-mentioned methods according to the embodiments of the present application can be implemented in hardware, firmware, or as software or computer codes that can be stored in a recording medium (such as CD ROM, RAM, floppy disk, hard disk, or magneto-optical disk), or implemented through Network downloaded computer code originally stored in a remote recording medium or non-transitory machine-readable medium and will be stored in a local recording medium so that the methods described herein can be stored on a computer using a general purpose computer, special purpose processor or programmable or such software processing on a recording medium of dedicated hardware such as ASIC or FPGA.
  • a recording medium such as CD ROM, RAM, floppy disk, hard disk, or magneto-optical disk
  • Network downloaded computer code originally stored in a remote recording medium or non-transitory machine-readable medium and will be stored in a local recording medium so that the methods described herein can be stored on a computer using a general purpose computer, special purpose processor or programmable or such software processing on a recording medium of dedicated hardware such as A
  • a computer, processor, microprocessor controller or programmable hardware includes storage components (eg, RAM, ROM, flash memory, etc.) that can store or receive software or computer code, when the software or computer code is or hardware access and execution, implements the patient location display method described herein.
  • storage components eg, RAM, ROM, flash memory, etc.
  • execution of the code converts the general purpose computer into a special purpose computer for executing the patient position display method shown herein.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Rehabilitation Tools (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种患者位置显示方法、系统、电子设备及存储介质,其中,患者位置显示方法包括:根据预先确定的患者摆位信息,以及进行出束治疗的过程中患者在多个坐标轴方向上的实时位置,确定并在界面中显示患者在多个坐标轴方向上实时的位置偏差(S201);若实时位置偏差符合位置调整条件,则生成并在界面中显示用于指示治疗医师在多个坐标轴方向上进行位置调整操作的第一告警信息(S202)。

Description

患者位置显示方法、系统、电子设备及存储介质 技术领域
本申请涉及医疗技术领域,尤其涉及一种患者位置显示方法、系统、电子设备及存储介质。
背景技术
随着医疗技术的发展,放射治疗已经成为医疗诊断与治疗中的重要手段。放疗系统通过加速器等发出粒子束,粒子束会从不同角度穿过人体,对射野内的病灶器官实施出束治疗。在实施出束治疗时,粒子束会可能对患者的病灶器官附近的正常器官造成伤害。
因此,为了尽量避免在出束治疗过程中粒子束对患者的伤害,需要对患者位置等进行准确地监控以及调整。通常的调整方案,一般基于操作人员的经验进行调整,调整精度较低,增加了出束治疗过程的风险。
发明内容
有鉴于此,本申请实施例所解决的技术问题之一在于提供患者位置显示方法、系统、电子设备及存储介质,用以克服或缓解现有技术中存在的至少部分问题。
本申请实施例提供一种患者位置显示方法,包括:根据预先确定的患者摆位信息,以及进行出束治疗的过程中患者在多个坐标轴方向上的实时位置,确定并在界面中显示所述患者在多个坐标轴方向上实时的位置偏差;若所述实时位置偏差符合位置调整条件,则生成并在所述界面中显示用于指示治疗医师在多个坐标轴方向上进行位置调整操作的第一告警信息。
本申请实施例提供一种患者位置显示系统,包括:偏差确定模块,用于根据预先确定的患者摆位信息,以及进行出束治疗的过程中患者在多个坐标轴方向上的实时位置,确定所述患者在多个坐标轴方向上实时的位置偏差;告警模块,用于若所述实时位置偏差符合位置调整条件,则生成用于指示治疗医师在多个坐标轴方向上进行位置调整操作的第一告警信息;显示模块,用于在界面中显示所述患者在多个坐标轴方向上实时的位置偏差,以及用于在所述界面中显示所述第一告警信息。
本申请实施例提供一种电子设备,包括:至少一个处理器、存储 器、通信接口和通信总线;所述处理器与所述存储器、所述通信接口通过所述通信总线连接,所述存储器用于存储计算机执行指令,所述处理器执行所述存储器存储的所述计算机执行指令,以执行上述的患者位置显示方法。
本申请实施例提供一种计算机存储介质,所述计算机存储介质包括计算机执行指令,用于处理器执行上述的患者位置显示方法。
由以上技术方案可见,通过根据预先确定的患者摆位信息,以及进行出束治疗的过程中患者在多个坐标轴方向上的实时位置,确定并显示所述患者在多个坐标轴方向上的实时位置偏差,可以对患者的位置进行精确的监控;若所述实时位置偏差符合位置调整条件,则生成并显示用于指示治疗医师在多个坐标轴方向上进行位置调整操作的第一告警信息。由此,通过第一告警信息可以使得治疗医师能够根据多个坐标轴方向上的实时移动偏差,在部分或全部坐标轴方向上对所述患者的位置进行调整,实现了可以针对偏差程度较大的坐标轴方向对患者位置进行针对性调整,提高了患者位置调整的精度,且使得位置调整过程更加便捷。且,本实施例提供的方案,可对患者的位置进行准确地监控以及调整,避免出束治疗过程中由于患者的移动导致粒子束造成其他正常器官损伤的问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请实施例中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为本申请提供的一种治疗系统的结构示意图;
图2为本申请提供的一种患者位置显示方法的流程示意图;
图3A为本申请提供的另一种患者位置显示方法的流程示意图;
图3B为本申请提供的一种确定患者位置的场景示意图;
图3C为本申请提供的一种显示第一警告信息的界面示意图;
图3D为本申请提供的另一种显示第一警告信息的界面示意图;
图3E为本申请提供的一种显示第二警告信息的界面示意图;
图3F为本申请提供的一种显示开始提示信息的界面示意图;
图3G为本申请提供的一种设置阈值的界面示意图;
图4为本申请实施例的一种患者位置显示系统的结构框图;
图5为根据本申请实施例的一种电子设备的结构示意图。
具体实施方式
为了使本领域的人员更好地理解本申请实施例中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请实施例一部分实施例,而不 是全部的实施例。基于本申请实施例中的实施例,本领域普通技术人员所获得的所有其他实施例,都应当属于本申请实施例保护的范围。
出束治疗一般应用于肿瘤治疗中,由于出束治疗需通过加速器等发出的粒子束线杀死肿瘤细胞,对患者进行治疗,因此,通常需要将治疗用设备放置在具有屏蔽能力的专用机房中,以避免对操作者或其他人员造成伤害,并且为了减少粒子束对患者的伤害,需要对患者位置等进行准确地监控以及调整。
为了便于理解本方案,先对治疗系统进行举例说明,但并不作为本申请的限定。
如图1所示,治疗系统可以包括:治疗医师承载患者的治疗床100、设置在治疗床附近的红外定位装置101,以及与该红外定位装置101通信连接的位置监控装置102。
示例的,参考图1,该红外定位装置101可以设置在治疗床100的末端,即设置在治疗床100上远离放疗设备的一侧。
应当理解的是,红外定位装置与位置监控装置102之间的通信连接可以为有线连接或者无线连接,本实施例对此不进行限定。
位置监控装置102可以为集成在终端设备中的处理器。例如,该终端设备可以为上位机。
在本发明实施例中,该红外定位装置101可以在进行出束治疗前,确定患者的患者摆位信息,并可以在出束治疗过程中,确定患者在多个坐标系方向上的实时位置信息(如坐标信息),并发送至位置监控装置102。位置监控装置可以用于执行后续实施例中的方法步骤。即,位置监控装置102可以根据预先确定的患者摆位信息,以及进行出束治疗的过程中患者在多个坐标轴方向上的实时位置,确定并在界面中显示患者在多个坐标轴方向上实时的位置偏差;若实时位置偏差符合位置调整条件,则生成并在界面中显示用于指示治疗医师在多个坐标轴方向上进行位置调整操作的第一告警信息。
示例的,治疗医师可以根据第一警告信息,在患者发生移动时,在部分或全部坐标轴方向上对患者的位置进行调整,实现了可以针对偏差程度较大的坐标轴方向对患者位置进行针对性调整,提高了患者位置调整的精度,且使得位置调整过程更加便捷。
通过本申请的方案,可对患者的位置进行准确地监控以及调整,避免出束治疗过程中由于患者的移动导致粒子束对其他正常器官造成损伤的问题。
下面通过具体的方法实施例,对本申请的方案进行详细说明。
参见图2,示出了本申请实施例提供的一种患者位置显示方法的流程示意图,如图所示,患者位置显示方法包括:
S201、根据预先确定的患者摆位信息,以及进行出束治疗的过程中患者在多个坐标轴方向上的实时位置,确定并在界面中显示患者在多个坐标轴方向上实时的位置偏差。
出束治疗,可以为通过放疗设备的加速器等形成的粒子束治疗肿瘤等病灶的过程。
在进行出束治疗前,可以对患者进行摆位,由此预先确定的患者摆位信息,即确定能够保证粒子束到达肿瘤的患者位置信息。示例的,患者摆位信息具体可以包括固定在患者上的标记参考物的位置信息。
在出束治疗过程中,可以基于标准的坐标系,确定患者在多个坐标轴方向上的实时位置;或者,可以基于治疗床坐标系、采集设备坐标系等,确定进行出束治疗的过程中患者在多个坐标轴方向上的实时位置,本实施例对此不进行限定。
根据确定的患者摆位信息,以及患者在多个坐标轴上的实时位置,可以确定患者在各个坐标轴方向上的实时位置偏差。示例的,可以确定患者摆位信息为坐标轴的零点信息,由此,可以直接确定各个坐标轴上的实时位置为患者在各个坐标轴方向上的实时位置偏差;或者,可以根据患者摆位信息,确定患者摆位后,在各个坐标轴方向上的摆位坐标,并计算各个坐标轴方向上,摆位坐标与实时位置坐标的差值,以此作为患者在各个坐标轴方向上的实时位置偏差。应当理解的是,上述仅为举例说明,并不作为本申请的限定。
确定出患者在多个坐标轴方向上的实时位置偏差后,可以在界面中显示患者在多个坐标轴方向上的实时位置偏差,使治疗医师(例如操作医师)能够及时了解在多个坐标轴方向上治疗医师位置的偏差情况,以准确了解患者的位置偏移情况。应当理解的是,上述仅为举例说明,并不作为本申请的限定。
S202、若实时位置偏差符合位置调整条件,则生成并在界面中显示用于指示治疗医师在多个坐标轴方向上进行位置调整操作的第一告警信息。
本实施例中,位置调整条件即患者移动导致粒子束到达的位置与病灶位置不一致对应的位置信息,位置调整条件可以由本领域的技术人员根据需求设置,本申请对此不进行限定。
示例的,针对每个坐标轴方向,均可以设置对应的位置调整条件,对应的,在任意坐标轴方向上,若实时位置偏差符合位置调整条件,则生成用于指示治疗医师在多个坐标轴方向上进行位置调整操作的第一告警信息;或者,可以针对患者的位置偏移总量设置一位置调整条件,当多个坐标轴方向的位置偏移信息对应的位置偏移总量符合位置调整条件时,则生成用于指示治疗医师在多个坐标轴方向上进行位置调整操作的第一告警信息。应当理解的是,上述仅为举例说明,并不作为本申请的限定。
本实施例中,在界面中显示用于指示治疗医师在多个坐标轴方向上进行位置调整操作的第一告警信息后,治疗医师可以根据显示的第一告警信息,根据多个坐标轴方向上的实时移动偏差,在部分或全部坐标轴方向上对患者的位置进行调整,由此,针对偏差程度较大的坐标轴方向对患者位置进行针对性调整,以此提高患者的位置调整精度,且使得位置调整过程更加 便捷。
本实施例提供的方案,通过根据预先确定的患者摆位信息,以及进行出束治疗的过程中患者在多个坐标轴方向上的实时位置,确定并显示患者在多个坐标轴方向上的实时位置偏差,可以对患者的位置进行精确的监控;若实时位置偏差符合位置调整条件,则生成并显示用于指示治疗医师在多个坐标轴方向上进行位置调整操作的第一告警信息。由此,通过第一告警信息可以使得治疗医师能够根据多个坐标轴方向上的实时移动偏差,在部分或全部坐标轴方向上对患者的位置进行调整,实现了可以针对偏差程度较大的坐标轴方向对患者位置进行针对性调整,提高了患者位置调整的精度,且使得位置调整过程更加便捷。且,本实施例提供的方案,可对患者的位置进行准确地监控以及调整,避免出束治疗过程中由于患者的移动导致粒子束造成其他正常器官损伤的问题。
本实施例的方法可以由任意适当的具有数据处理能力的电子设备执行,包括但不限于:嵌入式设备、服务器、移动终端(如手机、PAD等)和PC机等。
参见图3A,示出了本申请实施例提供的另一种患者位置显示方法的流程示意图,如图所示,患者位置显示方法包括:
S301、通过双目视觉系统,确定进行出束治疗的过程中患者在多个坐标轴方向上的实时位置。
本实施例中,双目视觉系统中可以包括两个图像采集设备,例如两个摄像机。当通过两个图像采集设备分别采集图像后,可以根据采集的图像,确定目标物(例如患者、标记参考物等)在两个图像采集设备的坐标系中的坐标。再结合两个图像采集设备自身的位置,可以确定目标物的在出束治疗环境中的实时坐标,由此,可以确定出束治疗的过程中患者在多个坐标轴方向上的实时位置。
具体的,本实施例中,参见图3B,可以确定图像采集设备的坐标系原点为图像采集设备的光心,并确定两个图像采集设备的光心之间的距离b。之后可以将采集的图像绘制在镜头的光心前f处,即焦点对应的平面上,绘制的图像的平面坐标系和图像采集设备的坐标系中的x、y轴可以相同,以减小后续计算位置所需的计算量。
采集的出束治疗环境中的某一点P,在两个图像采集设备对应的两个图像(为区分,分别称为左图像和右图像)中的坐标分别为P1(u1,
v1)和P2(u2,v2)。
假设两个图像的绘制平面相同,则P点对应的y坐标相同,即v1=v2。
根据三角集合运算可知:
Figure PCTCN2020119597-appb-000001
其中,(xc,yc,zc)为P点在双目视觉系统中的坐标,b为两个图像采集设备的光心之间的距离,f为焦距,P1(u1,v1)和P2(u2,
v2)为P点在两个图像采集设备的图像中的坐标。
可以定义P点在两个图像中的视差为:
Figure PCTCN2020119597-appb-000002
由此,可以计算得到(xc,yc,zc),即确定P点在出束治疗环境中的三维坐标。
本实施例中,治疗环境中的三维坐标可以为:沿治疗床100的宽度方向延伸的第一轴线X,沿治疗床100的长度方向延伸的第二轴线Y,以及沿治疗床100的高度方向延伸的第三轴线Z组成的三维坐标系。
本实施例中,上述P点可以通过标记参考物确定。例如,标记参考物可以设置在患者的体表,P点可以为标记参考物的中心等。
另外,若待治疗位置为患者的头部,则可以使用医用双面胶在患者的鼻尖、额头或者下巴等位置粘贴标记参考物;若待治疗位置为患者的体部,则可以使用医用双面胶在患者的胸腔位置粘贴标记参考物。标记参考物优选为球形。
另外,由于本发明实施例的标记参考物可以为一个,也可以为多个,与采用多个标记参考物相比,采用一个标记参考物提高了获取患者的坐标信息的效率,进而提高了判断患者的移动状态的效率,即提高了对患者移动的监控效率和监控频率。并且,还有效的简化了监控患者移动的流程和方法。
本发明实施例中,以标记参考物为反射红外光的标记参考物、采用的图像采集装置为红外定位装置为例。在患者摆位完成初始以及在出束治疗的过程中,控制红外定位装置向预先设置的标记参考物发射红外光;然后,当红外光被标记参考物反射后,该红外定位装置即可以根据标记参考物反射的红外光,采集标记参考物的坐标信息,并发送采集到的坐标信息,从而确定可以确定患者在出束治疗环境中的坐标。
本实施例中,可以按照上述方案,实时确定患者在出束治疗环境中的坐标,即确定进行出束治疗的过程中患者在多个坐标轴方向上的实时位置。
当然,应当理解的是,上述仅为举例说明,并不作为本申请的限定。
S302、根据预先确定的患者摆位信息,以及进行出束治疗的过程中患者在多个坐标轴方向上的实时位置,确定并在界面中显示患者在多个坐标轴方向上实时的位置偏差。
本步骤的具体实现方式可参考上述实施例,在此不再赘述。
示例的,本实施例中,可以获取不同时刻的患者位置偏差信息并 根据时间关系生成位置偏差线条;在界面中显示位置偏差线条。由此,治疗医师可以直接根据显示的位置偏差线条,确定患者历史的偏移位置,从而可以使得治疗医师能够了解治疗过程中患者整体的位置偏移情况。
示例的,可以通过离散点、连线方式中的至少其中之一显示位置偏差线条。
另外,界面中可以包括设置区域,设置区域中可以包括端点设置按钮,当接收到对端点设置按钮的设置操作时,可以将位置偏差线条的显示方式切换为离散点或者连线。
需要说明的是,为了便于治疗医师根据界面,可靠且快速的确定患者的移动情况,还可以预先设置预警线,对于超出该预警线且维持时间段大于预设时间段的移动偏差可以突出显示。例如,可以加粗或者以较为鲜明的颜色显示。
本实施例中,可以在界面的设置区域中显示用于选择显示患者实时位置偏差的坐标方向的设置按钮;当接收到针对设置按钮的设置操作时,在界面中显示或隐藏设置操作对应的坐标方向实时的位置偏差。示例的,如图3C所示,界面右下角可以包括设置区域,在显示患者的历史的移动偏差时,显示界面的设置区域中可以显示有X轴显示选项“△X”、Y轴显示选项“△Y”和Z轴显示选项“△Z”。可以根据治疗医师对“△X”、Y轴显示选项“△Y”和Z轴显示选项“△Z”的设置操作,显示或者隐藏患者在X轴、Y轴或者Z轴方向上的移动偏差。
也即是,在接收到针对X轴显示选项的设置操作时,可以在界面上显示或隐藏患者在X轴方向上实时的移动偏差;在接收到针对Y轴显示选项的设置操作时,可以在界面上显示或隐藏患者在Y轴方向上实时的移动偏差;在接收到针对Z轴显示选项的设置操作时,可以在界面上显示或隐藏患者在Z轴方向上实时的移动偏差。
示例的,本实施例中,可以获取不同时刻的患者位置偏差信息,确定不同时刻下各坐标的偏移量;在界面中显示不同时刻下各坐标的偏移量。由此,治疗医师也可以了解到治疗过程中不同时刻下各坐标的偏移量,从而可以使得治疗医师能够了解治疗过程中患者整体的位置偏移情况。
S303、若实时位置偏差符合位置调整条件,则生成并在界面中显示用于指示治疗医师在多个坐标轴方向上进行位置调整操作的第一告警信息。
第一告警信息用于指示治疗医师根据多个坐标轴方向上的实时移动偏差,在部分或全部坐标轴方向上对患者的位置进行调整。
示例的,本实施例中,S303包括:根据患者在多个坐标轴方向上的实时的位置偏差,计算患者的位置偏移总量;若根据位置偏移总量确定实时位置偏差符合位置调整条件,则生成并在界面中显示第一告警信息。由此,可以减小计算量。
具体的,设在x、y、x轴方向上的实时的位置偏差分别为△X、△Y、△Z。则位置偏移总量可以为:
Figure PCTCN2020119597-appb-000003
若确定位置偏移总量大于预设门控低阈值,则可以确定实时位置偏差符合位置调整条件,并生成以及在界面中显示第一告警信息。门控低阈值的具体数值可以由本领域的技术人员确定,本实施例对此不进行限定。示例的,门控低阈值优选为1mm。
示例的,本实施例中,参见图3C、D,生成并显示用于指示治疗医师在多个坐标轴方向上进行位置调整操作的第一告警信息,包括:确定第一告警信息包括的文字信息,以及确定第一告警信息对应的待调整坐标轴;在界面中显示文字信息,并将待调整坐标轴的实时偏差值突出显示,以指示治疗医师在待调整坐标轴方向上对患者的位置进行调整。通过显示文字信息,并将待调整坐标轴的实时偏差值突出显示,可以便于治疗医师根据显示的文字信息、以及突出显示的待调整坐标轴的实时偏差值进行位置调整操作。
具体的,可以通过加粗、增加底色等方式,对待调整坐标轴的实时偏差值进行突出显示,本实施例对此不进行限定。
示例的,本实施例中,生成并显示用于指示治疗医师在多个坐标轴方向上进行位置调整操作的第一告警信息,还包括:确定并在界面中显示待调整坐标轴方向上的调整参考值,以指示治疗医师根据调整参考值,在待调整坐标轴方向上对患者的位置进行调整。由此,治疗医师可以直接根据调整参考值,确定位置调整操作的调整距离,进一步便于治疗医师进行操作。
例如,本实施例中,可以针对每个坐标轴设置一偏移距离,在该坐标轴方向上,计算治疗医师的实时位置偏差与偏移距离的差值,确定调整参考值,并在界面中进行显示,使得治疗医师根据调整参考值,在待调整坐标轴方向上对患者的位置进行调整。不同的坐标轴对应的偏移距离可以相同,也可以不同,本实施例对此不进行限定。
当然,在其他实现方式中,也可以直接将界面中实时的位置偏差作为调整参考值,本实施例对此不进行限定。
示例的,本实施例中,位置调整条件包括:患者发生移动的持续时长位于第一时长范围内,或者,患者实时的位置偏差位于第一距离范围内。本实施例中,第一时长范围或者第一距离范围可以由本领域的工作人员进行设置,本实施例对此不进行限定。
示例的,假设第一距离范围为2毫米(mm)-3mm,第一时长范围为1秒(s)-2s。根据实时位置偏差确定患者的移动偏差为2.2mm,则生成用于指示治疗医师在多个坐标轴方向上进行位置调整操作的第一告警信息。或者,根据一段时间内所有的实时位置偏差确定患者发生移动的持续时长为1.5s,则生成用于指示治疗医师在多个坐标轴方向上进行位置调整操作的第一告警信息。或者,根据一段时间内所有的实时位置偏差确定患者的移动偏差为2.2mm,且患者发生移动的持续时长为1.5s,此时生成用于指示治疗医 师在多个坐标轴方向上进行位置调整操作的第一告警信息。
示例的,本实施例中,第一告警信息包括符合预设偏移的告警,以及不符合预设偏移的告警。同样,预设偏移可以由本领域的技术人员根据需求设置,本实施例对此不进行限定。
示例的,符合预设偏移的告警和不符合预设偏移的告警通过不同底色或颜色区别显示。例如,符合预设偏移的告警可以为红色,不符合预设偏移的告警可以为绿色。
例如,界面右上方可以包括一图标,图标可以有不同的底色或者不同的颜色。当图标为绿色时,界面右上方的文字部分的底色也可以为绿色,对应于不符合预设偏移的告警;当图标为黄色时,界面右上方的文字部分的底色也可以为黄色,对应于符合预设偏移的告警。
示例的,本实施例中,方法还包括:根据患者的位置偏差,确定患者移动的综合风险;在界面中显示患者移动的综合风险以便治疗医师决策是否终止放疗设备从而停止出束治疗。
通过显示患者移动的综合风险,可以使得治疗医师了解到治疗过程中由于患者移动导致的综合风险,进而辅助治疗医师进行决策,提高了决策结果的准确性。
综合风险可以包括:由于患者移动导致治疗时的粒子束对其他器官造成损伤的风险等。
示例的,本实施例中,若治疗医师根据第一告警信息进行了位置调整操作,则方法还包括:响应于治疗医师进行的位置调整操作,同步更新界面中显示的实时位置偏差。
示例的,本实施例中,方法还包括:
S304、若实时位置偏差符合预设终止条件,则生成用于指示停止出束治疗的停止指令,并在界面中显示用于提示出束治疗停止的第二告警信息。
本实施例中,预设终止条件即患者移动导致粒子束的到达位置与其他器官重叠时对应的位置信息,预设终止条件可以由本领域的技术人员根据需求设置,本申请对此不进行限定。
示例的,针对每个坐标轴方向,均可以设置对应的预设终止条件,对应的,在任意坐标轴方向上,若实时位置偏差符合预设终止条件,则生成用于指示停止出束治疗的停止指令,并显示用于提示出束治疗停止的第二告警信息;或者,可以针对患者的位置偏移总量设置一预设终止条件,当多个坐标轴方向的位置偏移信息对应的位置偏移总量符合预设终止条件时,则生成用于指示停止出束治疗的停止指令,并显示用于提示出束治疗停止的第二告警信息。应当理解的是,上述仅为举例说明,并不作为本申请的限定。
本实施例中,预设终止条件包括:患者发生移动的持续时长位于第二时长范围内,或者,患者的实时位置偏差位于第二距离范围内。
示例的,如图3E所示,假设第二距离范围为3mm至∞,第二时长 范围为2s至∞。根据实时位置偏差确定患者的移动偏差为4mm,则生成用于指示停止出束治疗的停止指令,并显示用于提示出束治疗停止的第二告警信息。或者,根据一段时间内所有的实时位置偏差确定患者发生移动的持续时长为2.5s,则生成用于指示停止出束治疗的停止指令,并显示用于提示出束治疗停止的第二告警信息。或者,根据一段时间内所有的实时位置偏差确定患者的移动偏差为4mm,且患者发生移动的持续时长为2.5s,此时生成用于指示停止出束治疗的停止指令,并显示用于提示出束治疗停止的第二告警信息。
示例的,本实施例中,方法还包括:
S305、若实时位置偏差符合预设治疗条件,则生成并显示用于指示开始进行出束治疗的提示信息。
本实施例中,预设治疗条件用于指示患者位置稳定保持在与摆位信息相对应的位置处,预设治疗条件可以由本领域的技术人员根据需求设置,本申请对此不进行限定。
示例的,针对每个坐标轴方向,均可以设置对应的预设治疗条件,对应的,在所有坐标轴方向上,若实时位置偏差符合预设治疗条件,则生成并显示用于指示开始进行出束治疗的提示信息;或者,可以针对患者的位置偏移总量设置一预设终止条件,当多个坐标轴方向的位置偏移信息对应的位置偏移总量符合预设治疗条件时,则生成并显示用于指示开始进行出束治疗的提示信息。应当理解的是,上述仅为举例说明,并不作为本申请的限定。
本实施例中,预设治疗条件包括:患者的实时位置偏差小于第三距离阈值的持续时长大于第三时长阈值。
示例的,如图3F所示,假设第三距离范围为0至5mm,第三时长范围为20s至∞。根据实时位置偏差确定患者的移动偏差小于或等于4mm,且保持了25s,则生成并显示用于指示开始进行出束治疗的提示信息。
另外需要说明的是,上述第一距离范围、第二距离范围、第三距离范围可以相同,也可以不同;上述第一时长范围、第二时长范围、第三时长范围可以相同,也可以不同,本实施例对此不进行限定。
另外,本实施例中,可以通过一界面,例如图3G所示界面,对上述的阈值进行设定,例如,通过设置门控低阈值和门控高阈值,确定第一距离范围、第二距离范围以及第三距离范围,假设门控低阈值为1mm,门控高阈值为2mm,则可以确定第一距离范围为1mm-2mm,第二距离范围为2mm-
∞,第三距离范围为0-1mm;类似的,可以通过束流保持时间和束流恢复时间,确定上述时长范围,假设束流保持时间为20s,束流保持恢复为5s,则可以确定第一时长范围为0mm-5s,第二距离范围为5s-∞,第三距离范围为20s-∞;还可以通过设置频率确定通过双目视觉系统采集图像的频率。
通过根据预先确定的患者摆位信息,以及进行出束治疗的过程中患者在多个坐标轴方向上的实时位置,确定并显示患者在多个坐标轴方向上的实时位置偏差,可以对患者的位置进行精确的监控;若实时位置偏差符合 位置调整条件,则生成并显示用于指示治疗医师在多个坐标轴方向上进行位置调整操作的第一告警信息,第一告警信息用于指示治疗医师根据多个坐标轴方向上的实时移动偏差,在部分或全部坐标轴方向上对患者的位置进行调整,由此,可以针对偏差程度较大的坐标轴方向对患者位置进行针对性调整,提高了患者位置调整的精度,且使得位置调整过程更加便捷。
图4是本发明实施例提供的一种患者位置显示系统的结构框图。如图4所示,该系统可以包括:偏差确定模块401、告警模块402、显示模块403。
偏差确定模块401,用于根据预先确定的患者摆位信息,以及进行出束治疗的过程中患者在多个坐标轴方向上的实时位置,确定患者在多个坐标轴方向上实时的位置偏差;
告警模块402,用于若实时位置偏差符合位置调整条件,则生成用于指示治疗医师在多个坐标轴方向上进行位置调整操作的第一告警信息;
显示模块403,用于在界面中显示患者在多个坐标轴方向上实时的位置偏差,以及用于在界面中显示第一告警信息。
示例的,界面中还包括设置区域,显示用于选择显示患者实时位置偏差的坐标方向的设置按钮。
示例的,偏差确定模块用于获取不同时刻的患者位置偏差信息;显示模块,用于在界面中显示根据时间关系生成位置偏差线条。
示例的,偏差确定模块用于获取不同时刻的患者位置信息,确定不同时刻下各坐标的偏移量;显示模块,用于在界面中显示不同时刻下各坐标的偏移量。
示例的,述第一告警信息包括符合预设偏移的告警,以及不符合预设偏移的告警。
示例的,符合预设偏移的告警和不符合预设偏移的告警通过不同底色或颜色区别显示。
示例的,还包括风险预警模块,用于根据患者的位置偏差,确定患者移动的综合风险;显示模块,用于在界面中显示患者移动的综合风险以便治疗医师决策是否终止设备从而停止出束治疗。
示例的,本申请提供的患者位置显示系统,还包括发送模块,用于向放疗设备的控制系统发送位置偏差。示例的,还包括:接收模块,用于接收患者的摆位信息。该位置显示系统和治疗计划系统或控制系统分别为独立系统并可相互传送信息,以便获取患者摆位信息,并将位置偏差发给控制系统来利用控制系统基于摆位信息来移动患者。
由以上技术方案可见,通过根据预先确定的患者摆位信息,以及进行出束治疗的过程中患者在多个坐标轴方向上的实时位置,确定并显示患者在多个坐标轴方向上的实时位置偏差,可以对患者的位置进行精确的监控;若实时位置偏差符合位置调整条件,则生成并显示用于指示治疗医师在多个坐标轴方向上进行位置调整操作的第一告警信息。由此,通过第一告警信息可以使得治疗医师能够根据多个坐标轴方向上的实时移动偏差,在部分 或全部坐标轴方向上对患者的位置进行调整,实现了可以针对偏差程度较大的坐标轴方向对患者位置进行针对性调整,提高了患者位置调整的精度,且使得位置调整过程更加便捷。且,本实施例提供的方案,可对患者的位置进行准确地监控以及调整,避免出束治疗过程中由于患者的移动导致粒子束造成其他正常器官损伤的问题。
参照图5,示出了根据本申请实施例八的一种电子设备的结构示意图,本申请具体实施例并不对电子设备的具体实现做限定。
如图5所示,该电子设备可以包括:处理器(processor)502、通信接口(Communications Interface)504、存储器(memory)506、以及通信总线508。
其中:
处理器502、通信接口504、以及存储器506通过通信总线508完成相互间的通信。
通信接口504,用于与其它电子设备如终端设备或服务器进行通信。
处理器502,用于执行程序510,具体可以执行上述患者位置显示方法实施例中的相关步骤。
具体地,程序510可以包括程序代码,该程序代码包括计算机操作指令。
处理器502可能是中央处理器CPU,或者是特定集成电路ASIC(Application Specific Integrated Circuit),或者是被配置成实施本申请实施例的一个或多个集成电路。电子设备包括的一个或多个处理器,可以是同一类型的处理器,如一个或多个CPU;也可以是不同类型的处理器,如一个或多个CPU以及一个或多个ASIC。
存储器506,用于存放程序510。存储器506可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
程序510具体可以用于使得处理器502执行前述实施例提供的患者位置显示方法。
程序510中各步骤的具体实现可以参见上述患者位置显示方法实施例中的相应步骤和单元中对应的描述,在此不赘述。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的设备和模块的具体工作过程,可以参考前述方法实施例中的对应过程描述,在此不再赘述。
需要指出,根据实施的需要,可将本申请实施例中描述的各个部件/步骤拆分为更多部件/步骤,也可将两个或多个部件/步骤或者部件/步骤的部分操作组合成新的部件/步骤,以实现本申请实施例的目的。
上述根据本申请实施例的方法可在硬件、固件中实现,或者被实现为可存储在记录介质(诸如CD ROM、RAM、软盘、硬盘或磁光盘)中的软件或计算机代码,或者被实现通过网络下载的原始存储在远程记录介质或非暂时机器可读介质中并将被存储在本地记录介质中的计算机代码,从而在此 描述的方法可被存储在使用通用计算机、专用处理器或者可编程或专用硬件(诸如ASIC或FPGA)的记录介质上的这样的软件处理。可以理解,计算机、处理器、微处理器控制器或可编程硬件包括可存储或接收软件或计算机代码的存储组件(例如,RAM、ROM、闪存等),当软件或计算机代码被计算机、处理器或硬件访问且执行时,实现在此描述的患者位置显示方法。此外,当通用计算机访问用于实现在此示出的患者位置显示方法的代码时,代码的执行将通用计算机转换为用于执行在此示出的患者位置显示方法的专用计算机。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及方法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
以上实施方式仅用于说明本申请实施例,而并非对本申请实施例的限制,有关技术领域的普通技术人员,在不脱离本申请实施例的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本申请实施例的范畴,本申请实施例的专利保护范围应由权利要求限定。

Claims (28)

  1. 一种患者位置显示方法,其特征在于,包括:
    根据预先确定的患者摆位信息,以及进行出束治疗的过程中患者在多个坐标轴方向上的实时位置,确定并在界面中显示所述患者在多个坐标轴方向上实时的位置偏差;
    若所述实时位置偏差符合位置调整条件,则生成并在所述界面中显示用于指示治疗医师在多个坐标轴方向上进行位置调整操作的第一告警信息。
  2. 根据权利要求1所述的方法,其特征在于,所述若所述实时位置偏差符合位置调整条件,则生成并在所述界面中显示用于指示治疗医师在多个坐标轴方向上进行位置调整操作的第一告警信息,包括:
    根据所述患者在多个坐标轴方向上实时的位置偏差,计算所述患者的位置偏移总量;
    若根据所述位置偏移总量确定所述实时位置偏差符合位置调整条件,则生成并在所述界面中显示所述第一告警信息。
  3. 根据权利要求1所述的方法,其特征在于,所述生成并在所述界面中显示用于指示治疗医师在多个坐标轴方向上进行位置调整操作的第一告警信息,包括:
    确定所述第一告警信息包括的文字信息,以及确定所述第一告警信息对应的待调整坐标轴;
    在所述界面中显示所述文字信息,并将所述待调整坐标轴的实时偏差值突出显示,以指示所述治疗医师在所述待调整坐标轴方向上对所述患者的位置进行调整。
  4. 根据权利要求3所述的方法,其特征在于,所述生成并在所述界面中显示用于指示治疗医师在多个坐标轴方向上进行位置调整操作的第一告警信息,还包括:
    确定并在所述界面中显示所述待调整坐标轴方向上的调整参考值,以指 示所述治疗医师根据所述调整参考值,在所述待调整坐标轴方向上对所述患者的位置进行调整。
  5. 根据权利要求1所述的方法,其特征在于,所述位置调整条件包括:所述患者发生移动的持续时长位于第一时长范围内,或者,所述患者实时的位置偏差位于第一距离范围内。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在界面的设置区域中显示用于选择显示所述患者实时位置偏差的坐标方向的设置按钮;
    当接收到针对所述设置按钮的设置操作时,在所述界面中显示或隐藏所述设置操作对应的坐标方向实时的位置偏差。
  7. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取不同时刻的患者位置偏差信息并根据时间关系生成位置偏差线条;
    在所述界面中显示所述位置偏差线条。
  8. 根据权利要求1所述的方法,其特征在于,所述方法还包括:获取不同时刻的患者位置偏差信息,确定不同时刻下各坐标的偏移量;
    在所述界面中显示不同时刻下各坐标的偏移量。
  9. 根据权利要求1所述的方法,其特征在于,所述第一告警信息包括符合预设偏移的告警,以及不符合预设偏移的告警。
  10. 根据权利要求9所述的方法,其特征在于,所述符合预设偏移的告警和所述不符合预设偏移的告警通过不同底色或颜色区别显示。
  11. 根据权利要求1所述的方法,其特征在于,所述方法还包括:根据所述患者的位置偏差,确定患者移动的综合风险;
    在所述界面中显示所述患者移动的综合风险以便治疗医师决策是否终止设备从而停止出束治疗。
  12. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    响应于所述治疗医师进行的位置调整操作,同步更新所述界面中显示的所述实时位置偏差。
  13. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    若所述实时位置偏差符合预设终止条件,则生成用于指示停止出束治疗的停止指令,并在所述界面中显示用于提示出束治疗停止的第二告警信息。
  14. 根据权利要求13所述的方法,其特征在于,所述预设终止条件包括:所述患者发生移动的持续时长位于第二时长范围内,或者,所述患者实时的位置偏差位于第二距离范围内。
  15. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    若所述实时位置偏差符合预设治疗条件,则生成并在所述界面中显示用于指示开始进行出束治疗的提示信息。
  16. 根据权利要求15所述的方法,其特征在于,所述预设治疗条件包括:所述患者实时的位置偏差小于第三距离阈值的持续时长大于第三时长阈值。
  17. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    通过双目视觉系统,确定进行出束治疗的过程中所述患者在多个坐标轴方向上的实时位置。
  18. 一种患者位置显示系统,其特征在于,包括:
    偏差确定模块,用于根据预先确定的患者摆位信息,以及进行出束治疗的过程中患者在多个坐标轴方向上的实时位置,确定所述患者在多个坐标轴方向上实时的位置偏差;
    告警模块,用于若所述实时位置偏差符合位置调整条件,则生成用于指示治疗医师在多个坐标轴方向上进行位置调整操作的第一告警信息;
    显示模块,用于在界面中显示所述患者在多个坐标轴方向上实时的位置偏差,以及用于在所述界面中显示所述第一告警信息。
  19. 根据权利要求18所述的系统,其特征在于,所述界面中还包括设置区域,显示用于选择显示所述患者实时位置偏差的坐标方向的设置按钮。
  20. 根据权利要求18所述的系统,其特征在于,所述偏差确定模块用于获取不同时刻的患者位置偏差信息;
    所述显示模块,用于在所述界面中显示根据时间关系生成位置偏差线条。
  21. 根据权利要求18所述的系统,其特征在于,所述偏差确定模块用于获取不同时刻的患者位置信息,确定不同时刻下各坐标的偏移量;
    所述显示模块,用于在所述界面中显示不同时刻下各坐标的偏移量。
  22. 根据权利要求18所述的系统,其特征在于,所述第一告警信息包括符合预设偏移的告警,以及不符合预设偏移的告警。
  23. 根据权利要求22所述的系统,其特征在于,所述符合预设偏移的告警和所述不符合预设偏移的告警通过不同底色或颜色区别显示。
  24. 根据权利要求18所述的系统,其特征在于,还包括风险预警模块,用于根据所述患者的位置偏差,确定患者移动的综合风险;
    所述显示模块,用于在所述界面中显示所述患者移动的综合风险以便治疗医师决策是否终止设备从而停止出束治疗。
  25. 根据权利要求18所述的系统,其特征在于,还包括:
    接收模块,用于接收患者的摆位信息。
  26. 根据权利要求25所述的系统,其特征在于,还包括:
    发送模块,用于向放疗设备的控制系统发送所述位置偏差。
  27. 一种电子设备,其特征在于,包括:至少一个处理器、存储器、通信接口和通信总线;
    所述处理器与所述存储器、所述通信接口通过所述通信总线连接,所述存储器用于存储计算机执行指令,所述处理器执行所述存储器存储的所述计算机执行指令,以执行如权利要求1-17中任一项所述的患者位置显示方法。
  28. 一种计算机存储介质,其特征在于,所述计算机存储介质包括计算机执行指令,用于处理器执行如权利要求1-17任一项所述的患者位置显示方法。
PCT/CN2020/119597 2020-09-30 2020-09-30 患者位置显示方法、系统、电子设备及存储介质 WO2022067738A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080105410.6A CN116234611A (zh) 2020-09-30 2020-09-30 患者位置显示方法、系统、电子设备及存储介质
PCT/CN2020/119597 WO2022067738A1 (zh) 2020-09-30 2020-09-30 患者位置显示方法、系统、电子设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119597 WO2022067738A1 (zh) 2020-09-30 2020-09-30 患者位置显示方法、系统、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022067738A1 true WO2022067738A1 (zh) 2022-04-07

Family

ID=80951127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119597 WO2022067738A1 (zh) 2020-09-30 2020-09-30 患者位置显示方法、系统、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN116234611A (zh)
WO (1) WO2022067738A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102697560A (zh) * 2012-05-17 2012-10-03 深圳市一体医疗科技股份有限公司 一种无创肿瘤定位系统及定位方法
CN106943678A (zh) * 2017-04-06 2017-07-14 北京大学第医院 一种自动放疗摆位的方法及装置
CN108273199A (zh) * 2018-01-19 2018-07-13 深圳市奥沃医学新技术发展有限公司 一种位置检测方法、装置及放射治疗系统
CN110911002A (zh) * 2019-11-20 2020-03-24 广州科莱瑞迪医疗器材股份有限公司 放疗固定装置的监测方法、装置及放疗固定装置监测系统
US20200171328A1 (en) * 2018-11-30 2020-06-04 Accuray, Inc. Integrated helical fan-beam computed tomography in image-guided radiation treatment device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109124764B (zh) * 2018-09-29 2020-07-14 上海联影医疗科技有限公司 手术引导装置以及手术系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102697560A (zh) * 2012-05-17 2012-10-03 深圳市一体医疗科技股份有限公司 一种无创肿瘤定位系统及定位方法
CN106943678A (zh) * 2017-04-06 2017-07-14 北京大学第医院 一种自动放疗摆位的方法及装置
CN108273199A (zh) * 2018-01-19 2018-07-13 深圳市奥沃医学新技术发展有限公司 一种位置检测方法、装置及放射治疗系统
US20200171328A1 (en) * 2018-11-30 2020-06-04 Accuray, Inc. Integrated helical fan-beam computed tomography in image-guided radiation treatment device
CN110911002A (zh) * 2019-11-20 2020-03-24 广州科莱瑞迪医疗器材股份有限公司 放疗固定装置的监测方法、装置及放疗固定装置监测系统

Also Published As

Publication number Publication date
CN116234611A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
US9886534B2 (en) System and method for collision avoidance in medical systems
US11024084B2 (en) Systems and methods for providing medical information and for performing a medically-related process using augmented reality technology
US20190105514A1 (en) Optical system for radiation treatment
US10825251B2 (en) Systems and methods for providing medical information and for performing a medically-related process using augmented reality technology
WO2017211225A1 (zh) 一种基于实时反馈的增强现实人体定位导航方法及装置
US20190142359A1 (en) Surgical positioning system and positioning method
WO2022083372A1 (zh) 手术机器人的调整系统、方法、介质及计算机设备
US9492685B2 (en) Method and apparatus for controlling and monitoring position of radiation treatment system
US20160106516A1 (en) Systems for automated biomechanical computerized surgery
WO2021164614A1 (zh) 骨折复位的计算机辅助方法、装置及电子设备
CN115363762A (zh) 手术机器人的摆位方法、装置及计算机设备
CN113276111A (zh) 手术机器人控制系统、控制方法
WO2022067738A1 (zh) 患者位置显示方法、系统、电子设备及存储介质
CN112043359B (zh) 乳腺穿刺方法、装置、设备及存储介质
WO2023078249A1 (zh) 一种手术机器人避障方法、系统、装置和存储介质
CN113344926A (zh) 胆胰超声图像识别方法、装置、服务器及存储介质
KR20230051477A (ko) 매니퓰레이터 제어방법과 피부 표면 처리설비
WO2019046825A1 (en) IMPROVED ULTRASONIC SYSTEMS AND METHODS
US20240100701A1 (en) Method for determining safety-limit zone, and device, reset method and medical robot using the same
US20230041251A1 (en) Control method and device for positioning, radiotherapy system, and storage medium
WO2021056446A1 (zh) 患者移动状态的检测方法、装置及系统
CN113662594A (zh) 乳腺穿刺定位/活检方法、装置、计算机设备和存储介质
US20180276846A1 (en) Patient-mounted or patient support-mounted camera for position monitoring during medical procedures
CN114077243A (zh) 一种医疗辅助设备的运动控制方法和系统
US20150119699A1 (en) System and method for triggering an imaging process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955762

Country of ref document: EP

Kind code of ref document: A1