WO2022067599A1 - 三轴向霍尔磁力计 - Google Patents

三轴向霍尔磁力计 Download PDF

Info

Publication number
WO2022067599A1
WO2022067599A1 PCT/CN2020/119153 CN2020119153W WO2022067599A1 WO 2022067599 A1 WO2022067599 A1 WO 2022067599A1 CN 2020119153 W CN2020119153 W CN 2020119153W WO 2022067599 A1 WO2022067599 A1 WO 2022067599A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
vertical hall
components
beam deflection
magnetic
Prior art date
Application number
PCT/CN2020/119153
Other languages
English (en)
French (fr)
Inventor
罗杰
袁辅德
王坚奎
郑小明
Original Assignee
上海灿瑞科技股份有限公司
浙江恒拓电子科技有限公司
深圳灿鼎微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海灿瑞科技股份有限公司, 浙江恒拓电子科技有限公司, 深圳灿鼎微电子有限公司 filed Critical 上海灿瑞科技股份有限公司
Priority to US18/029,274 priority Critical patent/US20230366956A1/en
Priority to PCT/CN2020/119153 priority patent/WO2022067599A1/zh
Publication of WO2022067599A1 publication Critical patent/WO2022067599A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/101Semiconductor Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • G01R33/077Vertical Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0005Geometrical arrangement of magnetic sensor elements; Apparatus combining different magnetic sensor types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N59/00Integrated devices, or assemblies of multiple devices, comprising at least one galvanomagnetic or Hall-effect element covered by groups H10N50/00 - H10N52/00

Definitions

  • the invention relates to a three-axis magnetometer, in particular to a three-axis Hall magnetometer.
  • Magnetometers with three-axis linear output play an important role in the application of modern technology, and various functions can be realized, such as angle measurement, position or displacement measurement, and azimuth angle measurement. Its application fields range from industrial, automotive, various motor control, to commercial drones, smart home appliances or tools, as well as consumer electronics such as smartphones and virtual reality entertainment products.
  • the magnetometer realized by the Hall effect is one of the oldest and most mature technologies.
  • the advantages and characteristics of Hall magnetometers are linear output with high linearity to magnetic field strength, negligible hysteresis effect, and compatibility with semi-disc system. Among them, the compatibility of the semiconductor process makes it a very cost-effective competitor.
  • the lower sensitivity and single sensing axis are the two main limitations in the application of Hall technology compared to other technologies, especially magnetoresistive technology.
  • planar Hall element which is disposed on a substrate for carrying and has two pairs of electrodes opposite to each other.
  • the substrate can be a silicon chip.
  • the planar Hall device is an N-well on the substrate.
  • the substrate and the planar Hall device are integrally formed; the substrate can also be a carrier, on which the planar Hall component is placed.
  • the planar Hall component and the Hall device are two separate parts.
  • the electrodes can be connected to the planar Hall element through the substrate, or can be connected to the planar Hall element by wire bonding without passing through the substrate.
  • One pair of electrodes is connected to the power supply terminal Vdd and the ground terminal Gnd, and the other pair of electrodes is connected to the first output terminal V1 and the second output terminal V2.
  • the direction of the average current is shown by the solid arrow CL1 in FIG. 1 , and flows vertically from the power terminal Vdd to the ground terminal Gnd.
  • an external magnetic field B//D3 parallel to the direction D3 in the figure appears, the direction of the average current CL is deflected towards the output end V1 due to the Lorentz force, as shown by the dashed arrow CL2 in Figure 1 .
  • the deflection of the current establishes an electric field between the first output terminal V1 and the second output terminal V2, and the electric field is the output of the planar Hall element.
  • a typical planar Hall device only produces an output for the component of the magnetic field that is perpendicular to the plane of the substrate (ie, perpendicular to the page of Figure 1).
  • the three-axis Hall magnetometer uses a typical planar Hall assembly as shown in Figure 1 combined with two magnetic beam sensors.
  • the planar Hall assembly senses the magnetic field perpendicular to the plane of the substrate
  • the two magnetic flux sensors located on the plane of the substrate sense two magnetic field components parallel to the plane of the substrate in two directions that are magnetically perpendicular to each other.
  • the magnetic flux sensing component is composed of a ferromagnetic magnetic core and a conductor coil wound on the magnetic core, and its output can be the change of the inductive reactance caused by the magnetic field or the change of the magnetic flux caused by the magnetization of the magnetic core in the coil.
  • the sensitivity of the magnetic beam sensor is about two orders of magnitude higher than that of the Hall device.
  • the magnetic beam sensor is mainly used for geomagnetism measurement, and the magnetic beam sensor is more sensitive when measuring a small magnetic field.
  • the disadvantage of the above-mentioned first prior art is: since the magnetic saturation point of the magnetic core of the magnetic flux sensor is below 20 Gauss of the magnetic field intensity, the magnetic flux sensor loses its function when the magnetic core is saturated, so the planar Hall is combined in this way.
  • the working range of the three-axis Hall magnetometer formed by the assembly and the magnetic beam sensing assembly will be limited by the magnetic beam sensing assembly, and the narrow working range is a major limitation of the design.
  • the second triaxial Hall magnetometer provided by the prior art, that is, another way to realize triaxial sensing is to use a typical planar Hall component combined with two anisotropic magnetoresistances on the same chip components.
  • the planar Hall element senses the magnetic field components in the direction perpendicular to the substrate, and the two anisotropic magnetoresistive elements sense the magnetic field components in two mutually perpendicular directions parallel to the plane of the substrate.
  • the disadvantage of the above-mentioned second prior art is that although the sensitivity of the anisotropic magnetoresistive element is about 2 orders of magnitude higher than that of the Hall element, its working range is generally less than 30 Gauss.
  • the narrow working envelope is also a major limitation of this design.
  • the three-axis Hall magnetometer provided by the third prior art is a three-axis Hall magnetometer formed only by using a typical planar Hall component 301 .
  • the three-axis Hall magnetometer is composed of four typical planar Hall components 301 for sensing magnetic field components perpendicular to the plane of the substrate, and a magnetic flux deflection structure 302. Therefore, the four typical planar Hall components 301 are only The plane magnetic field component perpendicular to the substrate is sensed, and the magnetic field component parallel to the plane of the substrate is measured by folding the component parallel to the substrate to a vertical direction through the magnetic beam deflection structure 302 .
  • the magnetic beam deflecting structure 302 is disc-shaped.
  • planar Hall elements 301 The distribution of the planar Hall elements 301 is opposite to each other, and the two pairs are perpendicular to each other.
  • the distances between the four planar Hall elements 301 are equal to each other, and their positions are close to the edge of the magnetic beam deflection structure 302 .
  • the planar Hall device is embedded in the substrate, which is a part of the substrate.
  • the substrate is a silicon chip for carrying the Hall device.
  • the planar Hall device 301 is an N-well inside the substrate.
  • the magnetic beam deflection structure 302 is a soft magnetic ferromagnetic material with high magnetic permeability, which is placed on the substrate. From the side view shown in FIG.
  • the planar Hall device and the magnetic beam deflection structure 302 are Up and down relationship, and the planar Hall device and the magnetic beam deflection structure 302 are separated from each other without direct contact; the planar Hall device is located below the magnetic beam deflector near the edge, that is, the magnetic beam deflection structure 302 is up and down with the four planar Hall components 301 overlap.
  • the magnetic field lines FL near the edge of the magnetic beam deflection structure 302 are deflected due to the high magnetic permeability of the deflection structure itself, and the deflection produces
  • the magnetic field component parallel to the D3 direction can be sensed by the planar Hall element 301 distributed on the edge of the magnetic beam deflecting structure 302 .
  • the magnetic field strength in the D1 direction can be obtained correctly, wherein the magnetic field strength parallel to the D1 direction is the subtraction value of the readings of the two Hall devices in Figure 3; and the direction parallel to the D3 direction
  • the magnetic field strength of is the sum of the readings of the two Hall devices in Figure 3.
  • the D3-direction component of this deflection is proportional to the D1-direction magnetic field strength.
  • the magnetic field components in the D1 and D2 directions parallel to the substrate plane can be obtained through the magnetic beam deflection structure 302, and the magnetic field component in the D3 direction can be directly measured by all (four) planar Hall devices 301, and its value is four The sum of the values read by the Hall devices is divided by four.
  • FIG. 4 shows a typical magnetization curve of a disk-shaped or square-plate-shaped ferromagnetic material, with the total applied magnetic field H parallel to the D1 direction or the D2 direction (H//D1 or D2). It can be seen from Fig.
  • the output of the planar Hall device 301 will have a drift, which changes with the magnetization state of the magnetic flux deflecting structure 302 itself. This drift will cause inaccuracy of the measurement results in the measurement of lower magnetic field strength, and must rely on high-frequency correction to ensure the correctness of the output results. For high-field measurements, this effect is relatively small.
  • the triaxial Hall magnetometer provided by the fourth prior art can also be magnetically realized by at least one vertical Hall component 401 carried on the substrate, and the vertical Hall component 401 can sense the magnetic field component parallel to the direction of the substrate.
  • FIGS. 5A-5B illustrate the structure of a typical vertical Hall assembly, which is equivalent to a typical planar Hall assembly placed vertically.
  • a typical vertical Hall element 401 has five electrodes 4011 arranged along the D1 direction parallel to the substrate, and the length of each electrode 4011 extends along the D2 direction parallel to the substrate 4012 and perpendicular to the D1 direction.
  • each electrode 4011 is mounted on a magnetic field sensing region 4013 and mounted on the substrate 4012 through the magnetic field sensing region 4013 .
  • the magnetic field sensing region 4013 of the Hall device is an N-well, which is usually surrounded by a P-well 4014, as shown in FIG. 5B, for the purpose of electrical isolation from other adjacent components.
  • the substrate 4012 is generally a P-type substrate.
  • the magnetic field sensing direction of the vertical Hall element shown in FIGS. 5A-5B is the D2 direction.
  • FIG. 6 shows the connection manner of the vertical Hall component 401 .
  • the two outermost electrodes are connected to each other and to the ground terminal Gnd, while the electrode located in the middle is connected to the power terminal Vdd, and the two electrodes located between the ground terminal Gnd and the power terminal Vdd are the first output terminals V1 and Vdd.
  • the second output terminal V2. The current flows from the power terminal to the left and right ground terminals respectively following a curved path.
  • the current path is shown by the solid arrow CL3 in FIG. 6 , and the path to the left and the right is symmetrical.
  • the first output terminal V1 and the second output terminal V2 measure the The electric field is thus the same, and the output of the vertical Hall element is zero.
  • the fourth prior art provides a three-axis Hall magnetometer, which is realized by combining two vertical Hall elements 401 and a typical planar Hall element 402 .
  • the three-axis Hall magnetometer includes two rectangular vertical Hall components 401 and one square planar Hall component 402 distributed on the same surface of the substrate.
  • the two vertical Hall elements 401 are distributed on the substrate perpendicular to each other, and are used for sensing the magnetic field components in the D1 and D2 directions respectively; the planar Hall elements 402 are used for sensing the magnetic field components perpendicular to the substrate direction (ie, the D3 direction).
  • the disadvantage of the above-mentioned fourth prior art is that the path of the current is significantly different between the planar Hall element 402 and the vertical Hall element 401 .
  • the current of the planar Hall component 402 is mainly parallel to the plane of the substrate, and the sensing area of the component extends in the plane of the parallel component; on the contrary, in the vertical Hall component 401, the component of the current in the direction perpendicular to the substrate is important, and the component of the component The sensing region extends in the depth direction of the substrate.
  • the optimization conditions of the N-well in the process are significantly different on the planar and vertical Hall components 401; for the planar Hall component, the shallower well will be beneficial to the improvement of the sensitivity; and for the vertical Hall component
  • the sensitivity is proportional to the depth of the N-well. Integrating two N-wells with completely different structures in the same process is a difficulty that is bound to be encountered in the realization of this design.
  • the existing three-axis magnetic sensing technology has the following disadvantages: small range; complex process; poor resistance to magnetic interference; high production cost.
  • the purpose of the present invention is to provide a three-axis Hall magnetometer, so as to expand the measuring range, simplify the process, improve the anti-magnetic interference characteristic, and reduce the production cost.
  • the present invention provides a three-axis Hall magnetometer, which is integrated on a single substrate, and includes at least one magnetic beam deflection structure located on a first plane and a second magnetic flux deflection structure located on a first plane parallel to the first plane.
  • the magnetic beam deflection structures are all elongated, with two parallel long sides, and the aspect ratio is greater than 2;
  • the magnetic beam deflection The structure includes at least one first-type magnetic beam deflection structure, and the first-type magnetic beam deflection structures all extend along a first direction on a first plane;
  • each vertical Hall component includes 5 vertical Hall components along the vertical Hall component electrodes extending in the sensing direction, and the sensing direction of each vertical hall component is parallel to the first plane;
  • the plurality of vertical hall components includes at least one first type vertical hall component and at least one second type vertical hall component Components, the first type of vertical Hall components and the second type of vertical Hall components are located near the long side of one of the first type of magnetic beam deflection structures, and their sensing directions are all perpendicular to the first type of magnetic beam deflection structure.
  • the plurality of vertical Hall components also include a sensing direction different from that of the first type of vertical Hall components and the second type of vertical Hall components At least one vertical Hall component of the third type of the sensing direction of the component.
  • the magnetic beam deflection structure further includes at least one second type magnetic beam deflection structure, and the long axes of the second type magnetic beam deflection structure all extend along a second direction on a first plane that is different from the first direction;
  • the Hall component further includes at least one vertical Hall component of the fourth type, and both the vertical Hall component of the third type and the vertical Hall component of the fourth type are located near the long side of one of the magnetic flux deflection structures of the second type, and the sensing direction of the vertical Hall component is are perpendicular to the long sides of the first type of magnetic beam deflection structure;
  • the third type of vertical Hall components and the fourth type of vertical Hall components are located on the first side and the second side of the second type of magnetic beam deflection structure near it, respectively
  • the first side and the second side of the second type of magnetic beam deflection structure are two opposite sides where the long side of the second type of magnetic beam deflection structure is located.
  • the magnetic beam deflection structures are all composed of magnetic materials with high magnetic permeability, and the relative magnetic permeability of the magnetic materials is higher than 100.
  • Each vertical Hall element is vertically spaced apart from its nearby magnetic flux deflection structures by an electrical insulating layer, and each vertical Hall element is spaced apart from each other in the direction of the second plane.
  • the first direction and the second direction are perpendicular to each other.
  • the number of the first type of magnetic beam deflection structure and the number of the second type of magnetic beam deflection structure is 2, the first type of vertical Hall component is located on the first side of one of the first type of magnetic beam deflection structure, the second The vertical Hall-like component is located on the second side of the other first-type magnetic beam deflection structure, the third-type vertical Hall component is located on the first side of one of the second-type magnetic beam deflection structures, and the fourth-type vertical Hall component is located on the first side of one of the second-type magnetic beam deflection structures. the second side of another second type of magnetic beam deflection structure.
  • the number of the third type of vertical Hall components and the fourth type of vertical Hall components is multiple, and the third type of vertical Hall components are arranged along the long side of the first side of the second type of magnetic flux deflection structure , the fourth type of vertical Hall components are arranged along the long side of the second side of the second type of magnetic beam deflection structure.
  • An even number of vertical Hall components are coupled and connected in the third type of vertical Hall components or the fourth type of vertical Hall components; or, at least one of the third type of vertical Hall components and at least one of the fourth type of vertical Hall components One is coupled and connected as a group, and the other at least one of the vertical Hall components of the third type and the other at least one of the vertical Hall components of the fourth type are also coupled and connected as a group, wherein each group is coupled and connected
  • the number of the third type of vertical Hall components is equal to the number of the fourth type of vertical Hall components.
  • the number of the first type of vertical Hall components and the number of the second type of vertical Hall components is multiple, and the third type of vertical Hall components is arranged along the long side of the first side of the first type of magnetic flux deflection structure , the second type of vertical Hall components are arranged along the long side of the second side of the first type of magnetic beam deflection structure.
  • An even number of vertical Hall components are coupled and connected in the first type of vertical Hall components or the second type of vertical Hall components; or, at least one of the first type of vertical Hall components and at least one of the second type of vertical Hall components.
  • One is coupled and connected as a group, and the other at least one of the vertical Hall components of the first type and the other at least one of the vertical Hall components of the second type are also coupled and connected as a group, wherein each group is coupled and connected
  • the number of the first type of vertical Hall components is equal to the number of the second type of vertical Hall components.
  • the three-axis Hall magnetometer of the present invention only includes vertical Hall components and does not include planar Hall components. There is only one N-well that needs to be optimized when optimizing the Hall components, and the process complexity is compared to The magnetometer composed of planar and vertical Hall components is much simpler, which simplifies the process.
  • the three-axis Hall magnetometer of the present invention is integrated on a single substrate, so it can be integrated into a single chip, and can support single-chip packaging, and the production cost is low.
  • the magnetic beam deflection structure of the three-axis Hall magnetometer of the present invention has a long side with an aspect ratio greater than 2, and the sensing direction is perpendicular to the long side, so the magnetic hysteresis in the sensing direction is compared to
  • the traditional magnetic beam deflection structure with a planar structure (quasi-two-dimensional) is greatly reduced, so the three-axis Hall magnetometer of the present invention will have better anti-strong magnetic interference performance in the application of low magnetic field sensing.
  • the magnetic beam deflection structure of the triaxial Hall magnetometer of the present invention has long sides and an aspect ratio greater than 2, and its magnetization saturation field in the width direction is much larger than that of the traditional magnetic beam with a planar structure (quasi-two-dimensional) Therefore, the working range of the magnetometer of the present invention is significantly larger than that of the magnetometer based on the magnetic beam deflection structure of the planar structure.
  • FIG. 1 is a schematic structural diagram of a typical planar Hall device used for magnetic field sensing.
  • FIG. 2 is a schematic top-view structural diagram of a three-axis Hall magnetometer implemented by a magnetic beam deflection structure provided by a third prior art.
  • FIG. 3 is a schematic cross-sectional view along the line A-A in FIG. 2 .
  • FIG. 4 is a typical magnetization curve diagram of a disc-shaped or square-shaped flat plate ferromagnetic material.
  • FIG. 5A-5B are schematic structural diagrams of a typical vertical Hall component, wherein FIG. 5A is a top view, and FIG. 5B is a schematic cross-sectional view along the line A-A in FIG. 5A .
  • Figure 6 is a diagram of the current path in the vertical Hall device.
  • FIG. 7 is a schematic structural diagram of a three-axis Hall magnetometer composed of a planar Hall component and two vertical Hall components.
  • FIG. 8 is a schematic structural diagram of a three-axis Hall magnetometer according to the first embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view taken along line B-B in FIG. 8 .
  • FIG. 10 is a schematic diagram of coupling and connection of two vertical Hall components according to an embodiment of the present invention.
  • FIGS. 11A-11B are schematic diagrams of magnetic field lines near the magnetic flux deflection structure of the three-axis Hall magnetometer shown in FIG. 8 , wherein FIG. 11A shows the case where the applied magnetic field is parallel to the second direction, and FIG. 11B shows The case where the applied magnetic field is parallel to the third direction.
  • 12A-12B are schematic diagrams of a method for measuring three-axis magnetic field components implemented by the three-axis Hall magnetometer of the present invention.
  • FIG. 13 is a typical magnetization curve diagram of an elongated magnetic flux deflection structure along its width direction.
  • FIG. 14 is a schematic structural diagram of a three-axis Hall magnetometer according to a second embodiment of the present invention.
  • 15 is a schematic structural diagram of a three-axis Hall magnetometer according to a third embodiment of the present invention.
  • 16 is a schematic structural diagram of a three-axis Hall magnetometer according to a fourth embodiment of the present invention.
  • FIG. 17 is a schematic cross-sectional view taken along line C-C in FIG. 16 .
  • FIG. 18 is a schematic structural diagram of a three-axis Hall magnetometer according to a fifth embodiment of the present invention.
  • the present invention provides a three-axis Hall magnetometer, which is integrated on a single substrate and does not need to include a planar Hall component.
  • the triaxial Hall magnetometer includes at least one beam deflection structure on a first plane and a plurality of vertical Hall components on a second plane parallel to the first plane.
  • each magnetic beam deflection structure is in the shape of a long strip, has two long sides parallel to each other, and has a large aspect ratio, and the aspect ratio is greater than 2.
  • the magnetic beam deflection structure is composed of a magnetic material with high magnetic permeability, and the relative magnetic permeability of the magnetic material is higher than 100.
  • the length of the elongated shape of the magnetic beam deflection structure is greater than 30um, and the width is greater than 3um.
  • Each vertical Hall component includes five electrodes extending along the sensing direction of the vertical Hall component, and the sensing direction of each vertical Hall component is parallel to the first plane on which the substrate is located. At least one vertical Hall component is distributed near the long side of each magnetic beam deflection structure, and each vertical Hall component is located near at most one magnetic beam deflection structure, so that the magnetic field component deflected by the magnetic beam deflection structure can be sensed by the nearby vertical Hall components.
  • the magnetic beam deflection structure includes at least one first type magnetic beam deflection structure extending along a first direction on the first plane, and both the first type vertical Hall component and the second type vertical Hall component are located in one of the first type Near the long sides of the magnetic beam deflection structure, the sensing directions of the first type of vertical Hall components and the second type of vertical Hall components are both perpendicular to the long sides of the first type of magnetic beam deflection structure, and the first type of vertical Hall components
  • the first side and the second side of the first type of magnetic beam deflection structure and the second type of vertical Hall components are respectively located near it, and the first side and the second side of the first type of magnetic beam deflection structure are the first type of magnetic beam deflection structure.
  • the two opposite sides where the long side of the folded structure is located.
  • the magnetic field component perpendicular to the plane of the substrate is deflected by the magnetic beam deflection structure and sensed by a plurality of vertical Hall devices.
  • the plurality of vertical Hall components further include at least one third type of vertical Hall components whose sensing direction is different from the sensing direction of the first type of vertical Hall components and the second type of vertical Hall components, whereby the first type of vertical Hall components
  • the Hall components and the second type of vertical Hall components are inclined or vertically distributed on the same substrate relative to the third type of vertical Hall components. Seoul components are directly sensed.
  • the first type of vertical Hall components or the second type of vertical Hall components are arranged to be arranged along the extension direction of the magnetic flux deflection structure.
  • the magnetic beam deflection structure may further include the magnetic beam deflection structure and at least one second-type magnetic beam deflection structure, and the long axes of the second-type magnetic beam deflection structures are all along a first plane different from the first magnetic beam deflection structure. One direction extends in the second direction.
  • the plurality of vertical Hall components in addition to including at least one third type of vertical Hall components whose sensing direction is different from the sensing direction of the first type of vertical Hall components and the second type of vertical Hall components, the plurality of vertical Hall components also include a sensing A fourth type of vertical Hall component in the same direction as the sensing direction of the third type of vertical Hall component.
  • Both the third-type vertical Hall components and the fourth-type vertical Hall components are located near the long side of one of the second-type magnetic beam deflection structures, and their sensing directions are both perpendicular to the long sides of the first-type magnetic beam deflection structures ;
  • the third type of vertical Hall component and the fourth type of vertical Hall component are located on the first side and the second side of the second type of magnetic beam deflection structure, respectively, and the first side and the second side of the second type of magnetic beam deflection structure.
  • the two sides are two opposite sides where the long side of the second type of magnetic beam deflection structure is located.
  • the three-axis Hall magnetometer As shown in FIG. 8 , the three-axis Hall magnetometer according to the first embodiment of the present invention consists of a substrate 501 located on a first plane, two magnetic beam deflection structures fixed on the substrate 501 and a plurality of vertical Hall components.
  • the magnetic beam deflection structure can be independent of the substrate 501 and fixed on the upper surface of the substrate 501 , or can be grown (eg, electroplated) on the upper surface of the substrate 501 and formed integrally therewith.
  • Each magnetic beam deflecting structure is in the shape of a long strip and has a large aspect ratio, and its aspect ratio is greater than 2.
  • the two magnetic beam deflection structures are located on the same plane, including a first-type magnetic beam deflection structure 502 and a second-type magnetic beam deflection structure 503 .
  • the first type of magnetic beam deflection structure 502 extends along the first direction D1 on the first plane
  • the second type of magnetic beam deflection structure 503 extends along the second direction D2 on the first plane.
  • first direction D1 and the second direction D2 are perpendicular to each other.
  • the relative relationship between the first type of magnetic beam deflection structure 502 and the second type of magnetic beam deflection structure 503 is important in the angle between their long axes, not their relative positions, so there is a greater degree of freedom in arrangement.
  • the first type of magnetic beam deflection The combined shape of the structure 502 and the second type of magnetic beam deflecting structure 503 may be L-shape, T-shape or any other shape.
  • the vertical Hall device can be embedded in the substrate as a part of the substrate, or can be independent of the substrate 501 and fixed on the upper surface of the substrate 501.
  • the vertical Hall components include at least one first-type vertical Hall components A1 and A2 and at least one second-type vertical Hall components A3 and A4 distributed near the first-type magnetic beam deflection structure 502 .
  • the sensing directions of the Hall elements A1, A2 and the second-type vertical Hall elements A3, A4 are the same, and both are perpendicular to the extending direction of the first-type magnetic beam deflection structure 502, that is, on the first plane and perpendicular to the first In the second direction D2 of the direction D1, each electrode of the first type of vertical Hall components A1, A2 and the second type of vertical Hall components A3, A4 extends along the second direction D2, so it can be used to measure the second direction The magnetic field of D2.
  • first-type vertical Hall components A1, A2 and the second-type vertical Hall components A3, A4 are located on the first and second sides of the first-type magnetic flux deflecting structure 502 near them, respectively.
  • the two sides are two opposite sides where the long side of the first type of magnetic beam deflection structure 502 is located.
  • the number of the first type of vertical Hall components A1 and A2 is two, and the number of the second type of vertical Hall components A3 and A4 is two.
  • the first type of vertical Hall elements A1 and A2 are arranged along the long side of the first side of the first type of magnetic beam deflection structure 502
  • the second type of vertical Hall elements A3 and A4 are arranged along the first type of magnetic beam deflection structure 502
  • the long side of the second side is aligned.
  • the vertical hall component further includes at least one third type vertical hall component B1, B2 and at least one fourth type vertical hall component B3, B4 distributed near the second type magnetic beam deflecting structure 503, the third
  • the vertical Hall-like components B1 and B2 and the fourth-type vertical Hall components B3 and B4 have the same sensing direction, and the sensing directions are all perpendicular to the extending direction of the second-type magnetic beam deflection structure 503 , that is, on the first plane.
  • the electrodes of the third-type vertical Hall components B1, B2 and the fourth-type vertical Hall components B3, B4 are all parallel to the first direction D1.
  • the third-type vertical Hall components B1, B2 and the fourth-type vertical Hall components B3, B4 are located on the first and second sides of the second-type magnetic flux deflecting structure 503 near them, respectively, and the second-type magnetic flux deflecting structure
  • the first side and the second side of 503 are two opposite sides where the long side of the second-type magnetic beam deflection structure 503 is located.
  • the number of the third type of vertical Hall components B1 and B2 is two
  • the number of the fourth type of vertical Hall components B3 and B4 is two. In other embodiments, there may be any number.
  • the third type of vertical Hall components B1 and B2 are arranged along the long sides of the first side of the second type of magnetic flux deflecting structure 503
  • the fourth type of vertical Hall components B3 and B4 are arranged along the length of the second type of magnetic beam deflection structure 503 .
  • the long sides of the second side are arranged.
  • FIG. 9 shows a cross section along the line B-B in FIG. 8 , which shows that the first type of vertical Hall element A2 and the second type of vertical Hall element A4 are both located below the first type of magnetic flux deflection structure 502 (similar to Ground, the first type of vertical Hall element A1 and the second type of vertical Hall element A3 are also located below the first type of magnetic flux deflection structure 502).
  • the first type of vertical Hall components A2 and the second type of vertical Hall components A4 are respectively separated from their nearby magnetic flux deflection structures by an electrical insulating layer 504 in the vertical direction.
  • each The vertical Hall components are vertically spaced apart from their nearby magnetic flux deflecting structures by an electrical insulating layer.
  • Each vertical hall element A1, A2, A3, and A4 can overlap with its nearby magnetic flux deflection structure (or not overlap), but between each vertical hall element A1, A2, A3, and A4 They are spaced apart from each other in the direction of the second plane by a distance of more than one micrometer (um).
  • the third type of vertical Hall elements B1 and B2 and the fourth type of vertical Hall elements B3 and B4 are located below the second type of magnetic flux deflection structure 503 .
  • the third-type vertical Hall elements B1, B2 and the fourth-type vertical Hall elements B3, B4 are respectively vertically spaced from their nearby magnetic flux deflection structures by an electrical insulating layer.
  • the third-type vertical Hall components B1, B2 and the fourth-type vertical Hall components B3, B4 can all overlap with their nearby magnetic flux deflection structures, but the gap between each vertical Hall component B1, B2, B3, B4 spaced apart from each other by a distance of more than one micrometer (um).
  • a single sensing element can be formed by coupling and connecting an even number of the first type vertical Hall elements A1 and A2 or an even number of the second type vertical Hall elements A3 and A4; At least one of the vertical Hall elements A3 and A4 of the second type can be coupled and connected (eg, A1 and A3, or A1 and A4) to form a single sensing element.
  • a single sensing element can be formed by coupling and connecting an even number of the first type vertical Hall elements A1 and A2 or an even number of the second type vertical Hall elements A3 and A4; At least one of the vertical Hall elements A3 and A4 of the second type can be coupled and connected (eg, A1 and A3, or A1 and A4) to form a single sensing element.
  • At least one of the first type of vertical Hall elements A1 and A2 and at least one of the second type of vertical Hall elements A3 and A4 are formed as a group and coupled to connect (for example, A1 and A3 , or A1 and A4), the resulting sensing component can only generate output for a single-direction magnetic field (including output to the parallel magnetic field or anti-parallel magnetic field of two vertical Hall components), the first type of vertical Hall component A1
  • the other at least one of A2 and the other at least one of the second-type vertical Hall components A3 and A4 are also coupled and connected as a group to generate an output for the magnetic field in the other direction, wherein each group is coupled and connected
  • the number of the first type of vertical Hall components is equal to the number of the second type of vertical Hall components. In this embodiment, the number of the first-type vertical Hall element and the second-type vertical Hall element coupled to each group is one.
  • At least two first-type vertical Hall components A1, A2 and at least two second-type vertical Hall components A3, A4 are required to obtain the first-type vertical Hall components and the second-type vertical Hall components respectively through coupling connection
  • the output of the parallel magnetic field and the anti-parallel magnetic field of the Hall element further obtains the external magnetic field components parallel to the second direction D2 and the third direction D3.
  • the third type of vertical Hall components B1, B2 can be coupled with at least one of the fourth type of vertical Hall components B3, B4 (for example, B1 and B3, or B1 and B4) to form a single sense test components.
  • the sensing component output obtained by coupling and connecting the multiple vertical Hall components is the average value of the signals of the multiple vertical Hall components.
  • a major function of the coupling of vertical Hall devices is to reduce the output drift of the device under zero magnetic field.
  • FIG. 10 exemplarily shows a connection schematic diagram of the coupled connection of two vertical Hall components according to an embodiment of the present invention.
  • Each vertical Hall component includes a first electrode G1, a second electrode G2, a third electrode G3, a fourth electrode G4 and a fifth electrode G5 sequentially arranged in one direction, wherein the first vertical Hall component
  • the first electrode G1 and the fifth electrode G5 are connected to the fourth electrode G4 of the second vertical Hall component and are both connected to the power supply terminal Vdd, and the second electrode G2 of the first vertical Hall component is connected to the second vertical Hall component.
  • the first electrode G1 and the fifth electrode G5 of the component are connected and both are connected to the second output terminal V2, and the third electrode G3 of the first vertical Hall component is connected to the second electrode G2 of the second vertical Hall component and both are connected.
  • the fourth electrode G4 of the first vertical Hall element is connected to the third electrode G3 of the second vertical Hall element and both are connected to the first output terminal V1.
  • FIG. 11A when the three-axis Hall magnetometer of the present invention is exposed to an external magnetic field (B//D2) parallel to the second direction D2, the magnetic field lines FL near the first type of magnetic flux deflection structure 502 will be deflected toward the direction of the first type of magnetic beam deflecting structure 502, as shown by the dashed arrow in FIG. 11A.
  • the deflection generates magnetic field components in the second direction D2 and the third direction D3 (the third direction D3 is perpendicular to the first plane) at the first type of vertical Hall element A2 and the second type of vertical Hall element A4, where parallel to the
  • the magnetic field component in the second direction D2 is shown by the solid arrow, and will be sensed by the first type of vertical Hall element A2 and the second type of vertical Hall element A4.
  • the first type of vertical Hall element A2 and the second type of vertical Hall element A4 sense the parallel magnetic fields of the first type of vertical Hall element and the second type of vertical Hall element, That is, the magnetic fields whose directions are all parallel to the second direction D2 have the same intensity.
  • the magnetic field lines FL near the first type of magnetic flux deflection structure 502 will be deflected toward the direction of the first type of magnetic beam deflecting structure 502, as shown by the dashed arrow in FIG. 11B.
  • the deflection generates magnetic field components in the second direction D2 and the third direction D3 at the first type of vertical Hall elements A2 and the second type of vertical Hall elements A4, wherein the magnetic field components parallel to the second direction D2 are indicated by solid arrows
  • the display will be sensed by the first type of vertical Hall element A2 and the second type of vertical Hall element A4.
  • FIG. 11B when the three-axis Hall magnetometer of the present invention is exposed to an external magnetic field (B//D3) parallel to the third direction D3, the magnetic field lines FL near the first type of magnetic flux deflection structure 502 will be deflected toward the direction of the first type of magnetic beam deflecting structure 502, as shown by the dashed arrow in FIG. 11B.
  • the deflection generates magnetic field components in the second
  • the first type of vertical Hall element A2 will be sensed parallel to the second direction D2 while the second type of vertical Hall component A4 will sense the magnetic field anti-parallel to the second direction D2, the first type of vertical Hall component A2 and the second type of vertical Hall component A4 sense the first The anti-parallel magnetic fields of the vertical Hall-like element and the second-type vertical Hall element, that is, the magnetic fields sensed by the first-type vertical Hall element A2 and the second-type vertical Hall element A4 have opposite directions but the same absolute value.
  • FIGS. 12A-12B illustrate a method for measuring magnetic field components in three axes (ie, three directions D1 , D2 , and D3 ) realized by the three-axis Hall magnetometer of the present invention.
  • the first type of vertical Hall elements A1 and A2 and the second type of vertical Hall elements A3 and A4 have the same output;
  • the outputs of the first type of vertical Hall components A1 and A2 are the same, while the outputs of the second type of vertical Hall components A3 and A4 are the same as the outputs of the first type of vertical Hall components A1 and A2 of the same intensity and opposite directions.
  • the outputs of the first type of vertical Hall components A1, A2 and the second type of vertical Hall components A3 and A4 are added, and the average value is calculated (that is, divided by the first type of vertical Hall components A1, A2 and the second type of vertical Hall components A1, A2 and the second type of vertical Hall components.
  • the obtained parallel magnetic field strengths of the first type vertical Hall components A1, A2 and the second type vertical Hall components A3, A4 are the magnetic field strengths parallel to the second direction D2, and The magnetic field component in the third direction D3 will be canceled; subtract the sum of the outputs of the second type of vertical Hall components A3 and A4 from the sum of the outputs of the first type of vertical Hall components A1 and A2, and calculate the average value (that is, divide the Taking the total number of the first type of vertical Hall components A1, A2 and the second type of vertical Hall components A3, A4), the obtained first type of vertical Hall components A1, A2 and the second type of vertical Hall components A3, A4
  • the strength of the antiparallel magnetic field is the strength of the magnetic field parallel to the third direction D3, and the magnetic field component in the second direction D2 will be canceled.
  • the external magnetic field components parallel to the second direction D2 and the third direction D3 are sensed and output by the first-type vertical Hall element and the second-type vertical Hall element.
  • the third type of vertical Hall components B1, B2 and the fourth type of vertical Hall components B3, B4 have the same output; and when the externally applied magnetic field is parallel to the first direction D1 In the three directions D3, the outputs of the third type of vertical Hall components B1 and B2 are the same, while the outputs of the fourth type of vertical Hall components B3 and B4 have the same intensity and direction as the outputs of the third type of vertical Hall components B1 and B2. on the contrary.
  • the third-type vertical Hall components B1, B2 and the fourth-type vertical Hall components B3 and B4, and calculating the average value, the third-type vertical Hall components B1, B2 and the fourth-type vertical Hall components can be obtained.
  • the strength of the parallel magnetic field of the components B3 and B4, the strength of the parallel magnetic field is the strength of the magnetic field parallel to the first direction D1, and the magnetic field component of the third direction D3 will be canceled;
  • the third type of vertical Hall components B1, B2 Subtract the sum of the outputs of the fourth type of vertical Hall components B3 and B4 from the sum of the outputs of
  • the strength of the anti-parallel magnetic field, the strength of the anti-parallel magnetic field is the strength of the magnetic field in the third direction D3, and the magnetic field component in the first direction D1 will be canceled.
  • the external magnetic field components parallel to the first direction D1 and the third direction D3 are sensed and output by the third-type vertical Hall element and the fourth-type vertical Hall element.
  • the triaxial Hall magnetometer of the present invention has the following two special advantages in terms of performance: (1) extremely low hysteresis and (2) large working range.
  • Figure 13 shows a typical magnetization curve of the long-stripe magnetic flux deflection structure with a large aspect ratio in the triaxial Hall magnetometer of the present invention.
  • the magnetization curve records the magnetic beam deflection structure in the direction of its short axis.
  • the external magnetic field increases from the minimum value (maximum negative field) to the maximum value (maximum positive field), and then returns to the minimum value, the magnetic moment of the material itself increases. Variety.
  • the area enclosed by the magnetization curve of the elongated magnetic beam deflection structure in the present invention is obviously smaller, and has significantly smaller residual Magnetization, coercivity, and significantly higher magnetization saturation fields.
  • the magnetic beam deflection structure adopted in the present invention will improve the resistance of the designed magnetometer to external strong magnetic field interference through its low hysteresis phenomenon, and improve the three-axis Hall magnetometer of the present invention.
  • the accuracy of the output after magnetic interference, this characteristic is especially obvious in the measurement of low magnetic field.
  • the higher saturation magnetic field in the width direction of the magnetic flux deflection structure of the present invention provides a higher working range of the three-axis Hall magnetometer of the present invention.
  • This feature has obvious advantages in strong magnetic field measurement applications, such as angle detection applications with permanent magnets. Because once the magnetic beam deflection structure is close to the magnetization saturation state, its magnetic permeability will be significantly reduced, and the deflection effect on the adjacent magnetic field will be sharply weakened, resulting in the loss of sensitivity of the magnetometer that produces the output by measuring the deflection field.
  • a three-axis Hall magnetometer is composed of a substrate 601 located on the first plane, a magnetic beam deflection structure fixed on the substrate 601, and a plurality of It consists of vertical Hall components.
  • each magnetic beam deflection structure is a long strip and has a large aspect ratio, and the aspect ratio is greater than 2.
  • the magnetic beam deflection structure is the first type magnetic beam deflection structure 602 , and the first type magnetic beam deflection structure 502 extends along the first direction D1 on the first plane.
  • the vertical Hall components include at least one first-type vertical Hall components A1', A2' and at least one second-type vertical Hall components A3', A4' distributed near the first-type magnetic beam deflection structure 602.
  • the sensing directions of the first type of vertical Hall components A1', A2' and the second type of vertical Hall components A3', A4' are the same, and both are perpendicular to the extension direction of the first type of magnetic beam deflection structure 602, and are in the first plane.
  • the second direction D2 that is up and perpendicular to the first direction D1, and the first type of magnetic flux biases near which the first type of vertical Hall components A1', A2' and the second type of vertical Hall components A3', A4' are respectively located
  • the first side and the second side of the folded structure 602 are two opposite sides where the long side of the first type of magnetic beam deflection structure 602 is located.
  • the number of the first type of vertical Hall components A1', A2' is two
  • the number of the second type of vertical Hall components A3', A4' is two.
  • the first type of vertical Hall elements A1', A2' are arranged along the long side of the first side of the first type of magnetic beam deflection structure 602, and the second type of vertical Hall elements A3', A4' are arranged along the first type of magnetic beam The long sides of the second side of the deflection structure 602 are arranged. As shown in FIG. 14 , each of the electrodes of the first type vertical Hall components A1', A2' and the second type vertical Hall components A3', A4' extends along the second direction D2, so they can be used to measure the first The magnetic field in the two directions D2.
  • the sensing element may be composed of an even number of first-type vertical Hall elements A1', A2' or an even number of second-type vertical Hall elements A3', A4' coupled and connected; in addition, the first At least one of the vertical Hall-like components A1', A2' may be coupled to at least one of the second-type vertical Hall components A3', A4' (for example, A1' and A3', or A1' and A4'), to form a single sensing component.
  • the first At least one of the vertical Hall-like components A1', A2' may be coupled to at least one of the second-type vertical Hall components A3', A4' (for example, A1' and A3', or A1' and A4'), to form a single sensing component.
  • At least one of the first-type vertical Hall components A1', A2' and at least one of the second-type vertical Hall components A3', A4' are as a group and are coupled and connected ( For example, after A1' and A3', or A1' and A4'), to generate an output for the magnetic field in a single direction, therefore, at least one other of the first type of vertical Hall components A1', A2' is perpendicular to the second type
  • the other at least one of the Hall components A3', A4' is also connected as a group and coupled to generate an output for the magnetic field in the other direction, wherein the number of the first type of vertical Hall components coupled and connected in each group is equal to The number of vertical Hall components of the second type is equal.
  • the output of the parallel magnetic field and the anti-parallel magnetic field of the assembly is obtained, thereby obtaining the external magnetic field components parallel to the second direction D2 and the third direction D3. Otherwise, at least two first-type vertical Hall components A1', A2' and at least two second-type vertical Hall components A3', A4' are required to obtain the first-type vertical Hall components and The output of parallel and anti-parallel magnetic fields of the second type of vertical Hall components.
  • the external magnetic field components parallel to the second direction D2 and the third direction D3 are sensed and output by the first type of vertical Hall elements A1', A2' and the second type of vertical Hall elements A3', A4'.
  • the vertical hall component further includes at least one third type vertical hall component B1', B2', and the sensing directions of the third type vertical hall components B1', B2' are both the first on the first plane Direction D1.
  • the number of the third type vertical Hall elements B1', B2' is two, and they are arranged along the second direction D2.
  • a single sensing component may be an even number of vertical Hall components.
  • a third type of vertical Hall components B1' and B2' are coupled and connected; a main function of the coupling and connection of the vertical Hall components is to reduce the output drift of the components under zero magnetic field.
  • the external magnetic field component parallel to the second direction D2 is sensed and output by the third type of vertical Hall elements B1', B2'.
  • FIG. 15 shows a three-axis Hall magnetometer according to a third embodiment of the present invention, which consists of a substrate (not shown) located on a first plane, and two first A magnetic beam deflection structure 701, two second magnetic beam deflection structures 702, at least one first type vertical Hall component A1", A2", at least one second type vertical Hall component group A3", A4", at least one A third-type vertical Hall component group B1", B2" and at least one fourth-type vertical Hall component B3", B4" are composed.
  • each of the magnetic beam deflection structures 701 and 702 is in the shape of a long strip and has a large aspect ratio, and the aspect ratio is greater than 2.
  • the number of the first type of magnetic beam deflection structures 701 is two, both extending along the first direction D1 on the first plane
  • the number of the second type of magnetic beam deflection structures 702 is two, both extending along the first direction D1 on the first plane.
  • a second direction D2 extending on the first plane and perpendicular to the first direction.
  • the relative relationship between the first type of magnetic beam deflection structure 701 and the second type of magnetic beam deflection structure 702 is mainly about the angle between their long axes, not their relative positions, so there is a greater degree of freedom in arrangement, and the combined shape of the two can be Be a square, rectangle, "+" shape or any other shape.
  • the vertical Hall components include at least one first-type vertical Hall component A1", A2" and at least one second-type vertical Hall component A3", A4" distributed near the first-type magnetic beam deflecting structure 701.
  • the sensing directions of the first-type vertical Hall components A1", A2" and the second-type vertical Hall components A3", A4" are the same, and both are perpendicular to the extension direction of the first-type magnetic beam deflection structure 701, that is, the first On the plane and perpendicular to the second direction D2 of the first direction D1, the first type of vertical Hall components A1", A2" and the second type of vertical Hall components A3", A4" each include 5 electrodes, the first type of vertical Hall components A1", A2" and A4".
  • Each electrode of the Hall components A1", A2" and the second type vertical Hall components A3", A4" extends along the second direction D2, and thus can be used to measure the magnetic field in the second direction D2.
  • the first-type vertical Hall components A1", A2" and the second-type vertical Hall components A3", A4" are located on the first side and the second side of the first-type magnetic flux deflecting structure 701 near them, respectively.
  • One side and the second side are two opposite sides where the long side of the first type of magnetic beam deflection structure 701 is located.
  • the number of the first type of vertical Hall elements A1" and A2" is two
  • the number of the second type of vertical Hall elements A3" and A4" is two.
  • the first-type vertical Hall components A1", A2" are located on the first side of one of the first-type magnetic beam deflection structures 701, and the second-type vertical Hall components A3" and A4" are located on the other first-type magnetic beam deflection structure The second side of the 701.
  • the vertical Hall components further include at least one third-type vertical Hall component B1", B2" and at least one fourth-type vertical Hall component B3", distributed near the second-type magnetic flux deflecting structure 702 B4", the third-type vertical Hall components B1", B2” and the fourth-type vertical Hall components B3", B4" have the same sensing direction, and the sensing directions are all perpendicular to the second-type magnetic flux deflection structure 702
  • the extending direction is the first direction D1 on the first plane, and the electrodes of the third type of vertical Hall elements B1", B2" and the fourth type of vertical Hall elements B3", B4" are parallel to the first direction D1.
  • the third-type vertical Hall components B1", B2" and the fourth-type vertical Hall components B3", B4" are located on the first and second sides of the second-type magnetic flux deflecting structure 503 near them, respectively.
  • the first side and the second side of the magnetic beam deflection structure 503 are two opposite sides where the long side of the second type of magnetic beam deflection structure 503 is located.
  • the number of the third type of vertical Hall components B1 ′′ and B2 ′′ is two
  • the number of the fourth type of vertical Hall components B3 ′′ and B4 ′′ is two.
  • the third type of vertical Hall components B1 ′′, B2 ′′ are located on the first side of one of the second type of magnetic beam deflection structures 702
  • the fourth type of vertical Hall components B3 ′′ and B4 ′′ are located on the other of the second type of magnetic beam deflection structures Second side of 702.
  • a single sensing component can be an even number of first-type vertical Hall components A1”, A2” or an even number of second-type vertical Hall components A3”, A4”
  • at least one of the first-type vertical Hall components A1", A2” may be connected with at least one of the second-type vertical Hall components A3", A4" (for example, A1" and A3", or A1" and A4") are coupled and connected to form a single sensing component.
  • At least one of the first-type vertical Hall components A1 ′′, A2 ′′ and at least one of the second-type vertical Hall components A3 ′′ and A4 ′′ form a group and are coupled and connected ( For example, A1" and A3", or A1" and A4"), to generate output for a single-direction magnetic field, and at least one of the first type of vertical Hall elements A1", A2" and the second type of vertical Hall elements
  • the other at least one of A3", A4" is also connected as a group and coupled to generate an output for the magnetic field in the other direction, wherein the number of the first type of vertical Hall elements coupled to each group and the number of the second type of vertical Hall elements The number of vertical Hall components is equal.
  • the output of the parallel magnetic field and the anti-parallel magnetic field of the Hall element further obtains the external magnetic field components parallel to the second direction D2 and the third direction D3. Otherwise, at least two first-type vertical Hall components A1", A2" and at least two second-type vertical Hall components A3", A4" are required to obtain the first-type vertical Hall components and The output of parallel and anti-parallel magnetic fields of the second type of vertical Hall components.
  • the external magnetic field components parallel to the second direction D2 and the third direction D3 are sensed and output by the first-type vertical Hall elements A1", A2" and the second-type vertical Hall elements A3", A4".
  • any two vertical Hall components in the third type of vertical Hall components B1", B2" and the fourth type of vertical Hall components B3", B4" work as independent devices.
  • at least one of the third-type vertical Hall components B1", B2" may be combined with at least one of the fourth-type vertical Hall components B3", B4" (eg B1" and B3", or B1" and B4") are coupled to form a single sensing component.
  • the external magnetic field components parallel to the first direction D1 and the third direction D3 are sensed and output by the third-type vertical Hall elements B1", B2" and the fourth-type vertical Hall elements B3", B4".
  • the three-axis Hall magnetometer 16 shows a three-axis Hall magnetometer combined with coils according to the fourth embodiment of the present invention, and its structure is basically the same as that of the three-axis Hall magnetometer of the first embodiment of the present invention.
  • the three-axis Hall magnetometer further includes at least one coil 805, and the coil 805 is placed in the vicinity of all the vertical Hall components, so as to generate a reference magnetic field around the vertical Hall components through the coil 805 , for the calibration or function test of the three-axis Hall magnetometer of the present invention.
  • the first-type vertical Hall elements A1, A2 and the second-type vertical Hall elements A3, A4 are symmetrically disposed with respect to the first-type magnetic flux deflection structure 502, the third-type vertical Hall elements B1, B2 and the fourth The vertical Hall-like components B3 and B4 are symmetrically arranged with respect to the second-type magnetic beam deflection structure 503 , so the coil 805 is symmetrically arranged relative to the first-type magnetic beam deflection structure 502 and relative to the second-type magnetic beam deflection structure 503 , so as to The symmetry of the generated magnetic field is guaranteed.
  • the number of coils 805 can be arbitrarily set as required. In this embodiment, the number of coils 805 is one, and two ends of the coils 805 are connected to the power supply terminal V and the ground terminal G respectively.
  • the coil 805 may be located above all the vertical Hall components (the first type of vertical Hall components A2 and the second type of vertical Hall components A4 in FIG. 17 ).
  • a first electrical insulating layer 806 is arranged between the vertical Hall element and the coil 805, and a second electrical insulating layer is arranged between the coil 805 and the magnetic beam deflection structure (the first type of magnetic beam deflection structure 502 in FIG. 17 ). 807.
  • a current flows from the power terminal V in FIG. 16 to the ground terminal G through the coil 805 , a magnetic field is generated around the coil 805 , and the magnetic field line FL is shown in FIG. 17 .
  • the first-type vertical Hall element A2 and the second-type vertical Hall element A4 sense a magnetic field component parallel to the second direction D2 and an antiparallel to the second direction D2, respectively, as indicated by the dashed arrows in FIG. 17 . Show. Therefore, the output of the anti-parallel magnetic fields of the first type of vertical Hall components and the second type of vertical Hall components can be corrected.
  • a three-axis Hall magnetometer combined with coils according to the fifth embodiment of the present invention is shown, and its structure is basically the same as that of the three-axis Hall magnetometer of the third embodiment of the present invention.
  • the three-axis Hall magnetometer further includes at least one coil 905, and the coil 905 is placed in the vicinity of all the vertical Hall components, so as to generate a reference magnetic field around the vertical Hall components through the coil 905 , for the calibration or function test of the three-axis Hall magnetometer of the present invention.
  • the coil can also be combined with the three-axis Hall magnetometer of other embodiments of the present invention, such as a three-axis Hall magnetometer with a magnetic beam deflection structure.
  • the included angle between the extension directions of the first type of magnetic beam deflection structure and the second type of magnetic beam deflection structure may also be between 60 and 120 degrees, while the angle between the first type of vertical Hall component and the second type of vertical Hall component
  • the sensing direction is still perpendicular to the extension direction of the first type of magnetic beam deflection structure, and the sensing directions of the third type of vertical Hall components and the fourth type of vertical Hall components are still perpendicular to the extension direction of the second type of magnetic beam deflection structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

一种三轴向霍尔磁力计,包括位于第一平面上的磁束偏折结构(502,503)和位于第二平面上的多个垂直霍尔组件(A1,A2,A3,A4,B1,B2,B3,B4),不包括平面霍尔组件,磁束偏折结构(502,503)均为长条形,且长宽比大于2;磁束偏折结构(502,503)包括第一类磁束偏折结构(502),第一类磁束偏折结构(502)均沿第一平面上的第一方向(D1)延伸;每个垂直霍尔组件(A1,A2,A3,A4,B1,B2,B3,B4)的感测方向均平行于第一平面;垂直霍尔组件(A1,A2,A3,A4,B1,B2,B3,B4)包括第一类垂直霍尔组件(A1,A2)和第二类垂直霍尔组件(A3,A4),两者均位于第一类磁束偏折结构(502)的长边附近,感测方向均垂直于第一类磁束偏折结构(502)的长边;两者分别位于第一类磁束偏折结构(502)的第一侧和第二侧;多个垂直霍尔组件(A1,A2,A3,A4,B1,B2,B3,B4)还包括感测方向不同于第一类垂直霍尔组件(A1,A2)和第二类垂直霍尔组件(A3,A4)的感测方向的第三类垂直霍尔组件(B1,B2)。

Description

三轴向霍尔磁力计 技术领域
本发明涉及三轴磁力计,具体涉及一种三轴向霍尔磁力计。
背景技术
具有三轴线性输出的磁力计在现代科技的应用扮演重要的角色,多种功能可被实现,如角度量测、位置或位移量测、以及方位角量测等。其应用的领域从工业、汽车、各种马达控制,到商用领域的无人机、智能家电或工具,以至于消费类电子产品如智能手机与虚拟现实类娱乐产品等。
在各种磁力测量的技术中,利用霍尔效应实现的磁力计是发展最久,最成熟的技术之一。霍尔磁力计的优势与特点为对磁场强度具有高线性度的线性输出、可忽略的磁滞效应,及与半讨体制程兼容性。其中半导体制程的兼容性使其成为极具成本优势的竞争者。而另一方面,相较于其搭技术特别是磁阻技术较低的感度,与单一感测轴向为霍尔技术在应用方面的两个主要限制。
目前,有多种现有技术可以实现磁力计的三轴线性输出。
如图1所示,目前的多种现有技术往往基于一个典型的平面霍尔组件,该平面霍尔组件设置于一用于承载的基板上,且具有彼此相对的两对电极。其中,基板可为硅芯片,此时,平面霍尔器件是基板上的N阱,在此状况下基板与平面霍尔器件一体成形;基板也可以是一载板,将平面霍尔组件放置其上,此状况下平面霍尔组件与霍尔器件为分开的两部分。电极可透过基板与平面霍尔组件连接,亦可不透过基板以打线与平面霍尔组件连接。其中一对电极连接到电源端Vdd和地端Gnd,而另外一对电极连接到第一输出端V1和第二输出端V2。当外加磁场为零时(B=0),平均电流的方向如图1中的实线箭号CL1所示,由电源端Vdd垂直流向地端Gnd。当一平行于图中D3方向的外加磁场出现(B//D3)时,平均电流CL的方向因劳伦兹力的作用而往输出端V1偏折,如图1中虚线箭号CL2所示。电流的偏折在第一输出端V1与第二输出端V2之间建立了一个电场,该电场即为此平面霍尔组件的输出。一个典型的平面霍尔组件只对垂直于基板所在平面(即垂直于图1的纸面)的磁场分量产生输出。
在许多应用上,三轴向的磁场感测是必要的。有一些用霍尔组件实现三轴向磁场感测的方法被提出来,并请被制作成产品应用于工业与商用以及消费领域。
第一种现有技术:
第一种现有技术所提供的三轴向霍尔磁力计使用了一个典型的如图1所示的平面霍尔组件并结合两个磁束传感器,平面霍尔组件感测垂直于基板平面的磁场分量;而两个位于基板平面的磁束感测计感测平行于基板平面的两个彼此磁垂直方向的磁场分量。该磁束感测组件由一个铁磁性磁芯与缠绕于该磁芯上的导体线圈所构成,其输出可为由于磁场导致的感抗变化或线圈内磁芯的磁化而导致的磁束变化。磁束感测计的感度约高于霍尔器件两个数量级,该磁束感测计主要用于地磁量测,在小磁场量测时,磁束感测计较灵敏。
上述第一种现有技术的缺点在于:由于磁束感测计的磁芯的磁饱和点在磁场强度20高斯以下,当磁芯饱和后该磁束传感器则失去功能,故此以此方式结合平面霍尔组件与磁束感测组件所形成的三轴向霍尔磁力计,其工作范围将受限于磁束感测组件,狭窄的工作范围为此设计的一大限制。
第二种现有技术:
第二种现有技术所提供的三轴向霍尔磁力计,即另一个实现三轴向感测的方式为在同一芯片上,使用一个典型的平面霍尔组件结合两个异向性磁阻组件。平面霍尔组件感测垂直于基板方向的磁场分量,而该两个异向型磁阻组件感测平行于基板平面两个互相垂直方向的磁场分量。
上述第二种现有技术的缺点在于:虽然异向性磁阻组件的感度高于霍尔组件约2个数量级,但其工作范围一般却小于30高斯。狭窄的工作范围亦为此设计的一大限制。
第三种现有技术:
如图2所示,第三种现有技术所提供的三轴向霍尔磁力计,为一个仅使用典型的平面霍尔组件301形成的三轴向霍尔磁力计。该三轴向霍尔磁力计由四个感测垂直基板平面磁场分量的典型的平面霍尔组件301,与一个磁束偏折结构302构成,由此,四个典型的平面霍尔组件301都只感测垂直于基板的平面磁场分量,平行于基板平面的磁场分量则透过磁束偏折结构302将平行于基板的分量折到垂直方向来进行量测。该磁束偏折结构302为圆盘型。平面霍尔组件301的分布为两两相对,而两对之间彼此垂直。四个平面霍尔组件301彼此间的距离相等,并且其位置接近于磁束偏折结构302的边缘。
如图3所示,平面霍尔器件镶嵌在基板内部,为基板的一部份,基板为一硅芯片,用于承载霍尔器件,通常该平面霍尔组件301为一在基板内部的N阱,而该磁束偏折结构302为一具有高导磁率的软磁性铁磁材料,其放置于基板之上,由图3所示的侧视图来看,平面霍尔器件与磁束偏折结构302为上下关系,且平面霍尔器件与磁束偏折结构302彼此分离没有直接接触;平面霍尔器件位于磁束偏折器下方靠近边缘处,即该磁束偏折结构302与四个平面霍尔组件301上下重迭。由此,当一磁场平行于D1方向出现(B//D1)时,在磁束偏折结构302边缘附近的磁力线FL,因偏折结构自身的高导磁率而产生偏折,该偏折产生了平行于D3方向的磁场分量,而该分量可被分布于磁束偏折结构302边缘的平面霍尔组件301所感测。藉由简单的数学运算,D1方向的磁场强度可正确地的被得到,其中,平行于D1方向的磁场强度为图3中的两个霍尔器件的读数的相减值;而平行于D3方向的磁场强度则为图3中的这两个霍尔器件的读数的相加值。该偏折的D3方向分量正比于D1方向的磁场强度。平行于基板平面的D1与D2方向磁场分量可透过磁束偏折结构302而得到,而D3方向的磁场分量则可直接被所有的(四个)平面霍尔组件301量测,其值为四个霍尔器件读取值的总和除以四。
上述第三种现有技术的缺点在于:由于平行于基板平面的磁场分量测量是藉由高导磁率的磁束偏折结构302所产生的磁场偏折,故该磁束偏折结构302自身因外在磁场而产生的磁化状态变化,将直接影响平面霍尔组件301的输出。图4显示了一个圆盘型或方形平板状铁磁性材料典型的磁化曲线,齐总外加磁场H平行于D1方向或D2方向(H//D1或D2)。由图4可知,当外加磁场H的磁场强度逐渐增加时,材料中的磁矩逐渐朝向外加磁场H的正向方向排列,并且在高磁场区域随着排列接近完整而接近饱和;当磁场移除后,一个残余的磁化量M r被留下,它可被一个外加磁场H的反向方向的磁场(磁场强度绝对值为H c)所中和。该残余磁化量M为外加磁场H的函数,亦即其随外加磁场的方向与强度改变。因此,平面霍尔组件301的输出将产生一漂移,其随磁束偏折结构302自身磁化状态而该变。此飘移在较低磁场强度的量测时将造成测量结果的失准,必须靠高频率的校正以确保输出结果的正确性。对高场的量测而言,此影响相对较小。
第四种现有技术:
第四种现有技术所提供的三轴向霍尔磁力计还可以由基板上承载的至少一个垂直霍尔组 件401磁实现,该垂直霍尔组件401可感测平行于基板方向的磁场分量。
图5A-图5B示出了一个典型的垂直霍尔组件的结构,该垂直霍尔组件等效于一个垂直摆放的典型的平面霍尔组件。典型的垂直霍尔组件401共有五个沿着平行于基板的D1方向排列的电极4011,每个电极4011的长度沿着平行于基板4012且垂直于D1方向的D2方向延伸。在本实施例中,每个电极4011安装于一磁场感测区域4013上并通过该磁场感测区域4013安装于基板4012上。霍尔组件的磁场感测区域4013是一个N阱,该N阱通常被一个P阱4014所包围,如图5B所示,其目的为与其他相邻组件的电气绝缘。基板4012通常为一P型基板。图5A-图5B所示的垂直霍尔组件的磁场感测方向为D2方向。
如图6示出了垂直霍尔组件401的连接方式。位于最外侧的两个电极彼此相连并连接到地端Gnd,而位于中间的电极连接到电源端Vdd,而位于地端Gnd与电源端Vdd之间的两个电极则为第一输出端V1与第二输出端V2。电流从电源端循一曲线的路径分别流至左右两个地端。当外部磁场为零(B=0)时,电流路径如图6中实线箭头CL3所示,向左与向右的路径呈现对称,第一输出端V1与第二输出端V2所量测到的电场因而相同,垂直霍尔组件输出为零。当一平行于D2方向的外部磁场出现(B//D2)时,由电源端向左与向右的电流路径由于劳伦兹力的作用而变得不对称,电流路径如图6中虚线箭头CL4所示。非对称的电流路径导致了第一输出端V1与第二输出端V2所测量到的电场不一致,垂直霍尔组件因而产生输出。
如图7所示为第四种现有技术所提供的三轴向霍尔磁力计,其藉由结合两个垂直霍尔组件401与一个典型的平面霍尔组件402来实现。所述三轴向霍尔磁力计包括分布在基板的同一个面上的两个矩形的垂直霍尔组件401和一个方形的平面霍尔组件402。两个垂直霍尔组件401彼此垂直分布于基板上,分别用于感测D1与D2方向磁场分量;平面霍尔组件402用于感测垂直于基板方向(即D3方向)的磁场分量。
上述第四种现有技术的缺点在于:电流的路径在平面霍尔组件402与垂直霍尔组件401中有显着的差别。平面霍尔组件402的电流主要平行于基板的平面,组件的感测区在平行组件的平面延伸;相反地,在垂直霍尔组件401中,电流在垂直基板方向的分量是重要的,组件的感测区域在基板的深度方向延伸。基于此差别,制程上N阱的优化条件,在平面与垂直霍尔组件401上有着显著的不同;对平面霍尔组件而言,较浅的阱会有利于感度的提升;而对于垂直霍尔组件401而言,感度则正比于N阱的深度。在同一个制程中整合两种结构截然不同的N阱,是此设计在实现上势必遭遇的困难。
综上,现有的三轴磁性感测技术具有以下缺点:量程小;工艺复杂;磁干扰抵抗性差;生产成本较高。
发明内容
本发明的目的在于提供一种三轴向霍尔磁力计,以扩大量程,简化工艺,提高抗磁干扰特性,并降低生产成本。
为了实现上述目的,本发明提供一种三轴向霍尔磁力计,其整合于单一的基板上,包括位于一第一平面上的至少一个磁束偏折结构和位于一平行于第一平面的第二平面上的多个垂直霍尔组件,不包括平面霍尔组件,所述磁束偏折结构均为长条形,具有两条平行的长边,且长宽比大于2;所述磁束偏折结构包括至少一个第一类磁束偏折结构,所述第一类磁束偏折结构均沿一第一平面上的第一方向延伸;每个垂直霍尔组件包括5个沿着该垂直霍尔组件的感测方向延伸的电极,每个垂直霍尔组件的感测方向均平行于第一平面;多个垂直霍尔组件包括至少一 个第一类垂直霍尔组件和至少一个第二类垂直霍尔组件,第一类垂直霍尔组件和第二类垂直霍尔组件均位于其中一个第一类磁束偏折结构的长边附近,其感测方向均垂直于所述第一类磁束偏折结构的长边;第一类垂直霍尔组件和第二类垂直霍尔组件分别位于其附近的第一类磁束偏折结构的第一侧和第二侧,第一类磁束偏折结构的第一侧和第二侧为第一类磁束偏折结构的长边所在的两个相反的侧面;多个垂直霍尔组件还包括感测方向不同于第一类垂直霍尔组件和第二类垂直霍尔组件的感测方向的至少一个第三类垂直霍尔组件。
所述磁束偏折结构还包括至少一个第二类磁束偏折结构,第二类磁束偏折结构的长轴均沿一第一平面上的不同于第一方向的第二方向延伸;多个垂直霍尔组件还包括至少一个第四类垂直霍尔组件,第三类垂直霍尔组件和第四类垂直霍尔组件均位于其中一个第二类磁束偏折结构的长边附近,其感测方向均垂直于所述第一类磁束偏折结构的长边;第三类垂直霍尔组件和第四类垂直霍尔组件分别位于其附近的第二类磁束偏折结构的第一侧和第二侧,第二类磁束偏折结构的第一侧和第二侧为第二类磁束偏折结构的长边所在的两个相反的侧面。
所述磁束偏折结构均由具有高导磁率的磁性材料所构成,所述磁性材料的相对导磁率高于100。
每个垂直霍尔组件均与其附近的磁束偏折结构在竖直方向上通过电气绝缘层间隔开,每个垂直霍尔组件之间在第二平面的方向上彼此间隔开。
所述第一方向与第二方向彼此垂直。
所述第一类磁束偏折结构和所述第二类磁束偏折结构的数量均为2个,第一类垂直霍尔组件位于其中一个第一类磁束偏折结构的第一侧,第二类垂直霍尔组件位于另一个第一类磁束偏折结构的第二侧,第三类垂直霍尔组件位于其中一个第二类磁束偏折结构的第一侧,第四类垂直霍尔组件位于另一个第二类磁束偏折结构的第二侧。
所述第三类垂直霍尔组件和第四类垂直霍尔组件的数量均为多个,所述第三类垂直霍尔组件沿着第二类磁束偏折结构的第一侧的长边排列,所述第四类垂直霍尔组件沿着第二类磁束偏折结构的第二侧的长边排列。
第三类垂直霍尔组件或第四类垂直霍尔组件中存在偶数个垂直霍尔组件耦合连接;或者,第三类垂直霍尔组件中的至少一个和第四类垂直霍尔组件中的至少一个作为一组并耦合连接,第三类垂直霍尔组件中的另外的至少一个与第四类垂直霍尔组件中的另外的至少一个也作为一组并耦合连接,其中,每一组耦合连接的第三类垂直霍尔组件的数量和第四类垂直霍尔组件的数量相等。
所述第一类垂直霍尔组件和第二类垂直霍尔组件的数量均为多个,所述第三类垂直霍尔组件沿着第一类磁束偏折结构的第一侧的长边排列,所述第二类垂直霍尔组件沿着第一类磁束偏折结构的第二侧的长边排列。
第一类垂直霍尔组件或第二类垂直霍尔组件中存在偶数个垂直霍尔组件耦合连接;或者,第一类垂直霍尔组件中的至少一个和第二类垂直霍尔组件中的至少一个作为一组并耦合连接,第一类垂直霍尔组件中的另外的至少一个与第二类垂直霍尔组件中的另外的至少一个也作为一组并耦合连接,其中,每一组耦合连接的第一类垂直霍尔组件的数量和第二类垂直霍尔组件的数量相等。
本发明的三轴向霍尔磁力计具有以下优点:
(1)本发明的三轴向霍尔磁力计仅仅包括垂直霍尔组件,而不包括平面霍尔组件,针对霍尔组件优化时所需优化的N阱只有一种,制程复杂度相较于由平面与垂直两种霍尔组件所构成的 磁力计单纯许多,简化了工艺。
(2)本发明的三轴向霍尔磁力计被整合在单一基板上,因此可被整合进单一芯片内,并可支持单芯片封装,生产成本较低。
(3)本发明的三轴向霍尔磁力计的磁束偏折结构具有长边且长宽比大于2,且感测方向垂直于长边,故其在感测方向上的磁滞相较于传统的具有平面结构(准二维)的磁束偏折结构大幅降低,因此本发明的三轴向霍尔磁力计在低磁场感测的应用上,将具有较优异的抗强磁干扰性能。
(4)本发明的三轴向霍尔磁力计的磁束偏折结构具有长边且长宽比大于2,其在宽度方向的磁化饱和场远大于传统的具有平面结构(准二维)的磁束偏折结构,因此本发明磁力计的工作范围明显大于基于平面结构的磁束偏折结构的磁力计。
附图说明
图1为一种典型的用于磁场感测的平面霍尔组件的结构示意图。
图2为第三种现有技术所提供的以磁束偏折结构实现的三轴向霍尔磁力计的俯视结构示意图。
图3为沿图2中的A-A线的截面示意图。
图4为一圆盘型或一方型平板铁磁性材料的典型的磁化曲线图。
图5A-图5B为一种典型的垂直霍尔组件的结构示意图,其中图5A为俯视图,图5B为沿图5A中的A-A线的截面示意图。
图6为垂直霍尔组件中的电流路径图。
图7为一个平面霍尔组件与两个垂直霍尔组件所组成的三轴向霍尔磁力计的结构示意图。
图8为根据本发明的第一实施例的三轴向霍尔磁力计的结构示意图。
图9为沿图8中的B-B线的截面示意图。
图10为根据本发明的一个实施例的两个垂直霍尔组件耦合连接的连接示意图。
图11A-图11B为如图8所示的三轴向霍尔磁力计的磁束偏折结构附近的磁力线的示意图,其中图11A示出了外加磁场平行于第二方向的情况,图11B示出了外加磁场平行于第三方向的情况。
图12A-图12B为基于本发明的三轴向霍尔磁力计所实现的三轴向的磁场分量的测量方法的原理图。
图13为长条形的磁束偏折结构的沿其宽度方向的典型的磁化曲线图。
图14为根据本发明的第二实施例的三轴向霍尔磁力计的结构示意图。
图15为根据本发明的第三实施例的三轴向霍尔磁力计的结构示意图。
图16为根据本发明的第四实施例的三轴向霍尔磁力计的结构示意图。
图17为沿图16中的C-C线的截面示意图。
图18为根据本发明的第五实施例的三轴向霍尔磁力计的结构示意图。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式,但本发明的保护范围不限于下述的实施例。
本发明提供一种三轴向霍尔磁力计,其整合于单一的基板上,且不需要包括平面霍尔组件。该三轴向霍尔磁力计包括位于第一平面上的至少一个磁束偏折结构和位于平行于第一平面 的第二平面上的多个垂直霍尔组件。
其中,每个磁束偏折结构的形状均为长条形,具有相互平行的两条长边,且具有很大的长宽比,其长宽比大于2。磁束偏折结构由具有高导磁率的磁性材料所构成,磁性材料的相对导磁率高于100。在本实施例中,磁束偏折结构的长条形的长大于30um,宽大于3um。
每个垂直霍尔组件包括5个沿着该垂直霍尔组件的感测方向延伸的电极,每个垂直霍尔组件的感测方向均平行于该基板所在的第一平面。每一个磁束偏折结构的长边附近均分布有至少一个垂直霍尔组件,且每个垂直霍尔组件位于至多一个磁束偏折结构的附近,从而使被磁束偏折结构所偏折的磁场分量得以被其附近的垂直霍尔组件所感测。其中,磁束偏折结构包括沿第一平面上的第一方向延伸的至少一个第一类磁束偏折结构,第一类垂直霍尔组件和第二类垂直霍尔组件均位于其中一个第一类磁束偏折结构的长边附近,第一类垂直霍尔组件和第二类垂直霍尔组件的感测方向均垂直于第一类磁束偏折结构的长边,且第一类垂直霍尔组件和第二类垂直霍尔组件分别位于其附近的第一类磁束偏折结构的第一侧和第二侧,第一类磁束偏折结构的第一侧和第二侧为第一类磁束偏折结构的长边所在的两个相反的侧面。而垂直于基板平面的磁场分量则透过磁束偏折结构偏折而被多个垂直霍尔组件感测。
多个垂直霍尔组件还包括感测方向不同于第一类垂直霍尔组件和第二类垂直霍尔组件的感测方向的至少一个第三类垂直霍尔组件,由此,第一类垂直霍尔组件和第二类垂直霍尔组件相对于第三类垂直霍尔组件倾斜或垂直分布于同一基板之上,平行于基板平面的磁场分量可以直接被多个彼此倾斜或垂直分布的垂直霍尔组件直接感测。
当第一类垂直霍尔组件或第二类垂直霍尔组件的数量为多个时,其设置为沿着磁束偏折结构的延伸方向排列。
此外,所述磁束偏折结构还可以包括所述磁束偏折结构还包括至少一个第二类磁束偏折结构,第二类磁束偏折结构的长轴均沿一第一平面上的不同于第一方向的第二方向延伸。此时,多个垂直霍尔组件除了包括感测方向不同于第一类垂直霍尔组件和第二类垂直霍尔组件的感测方向的至少一个第三类垂直霍尔组件,还包括感测方向与第三类垂直霍尔组件的感测方向相同的第四类垂直霍尔组件。第三类垂直霍尔组件和第四类垂直霍尔组件均位于其中一个第二类磁束偏折结构的长边附近,其感测方向均垂直于所述第一类磁束偏折结构的长边;第三类垂直霍尔组件和第四类垂直霍尔组件分别位于其附近的第二类磁束偏折结构的第一侧和第二侧,第二类磁束偏折结构的第一侧和第二侧为第二类磁束偏折结构的长边所在的两个相反的侧面。
第一实施例三轴向霍尔磁力计
如图8所示,根据本发明的第一实施例的三轴向霍尔磁力计由一位于第一平面上的基板501、固定于该基板501上的两个磁束偏折结构和多个垂直霍尔组件组成。
其中,磁束偏折结构可以独立于基板501并固定于基板501的上表面,也可以生长(如电镀)于基板501的上表面并与之一体成形。每个磁束偏折结构的形状均为长条形且具有很大的长宽比,其长宽比大于2。其中,两个磁束偏折结构位于同一平面上,包括一个第一类磁束偏折结构502和一个第二类磁束偏折结构503。在本实施例中,第一类磁束偏折结构502沿第一平面上的第一方向D1延伸,第二类磁束偏折结构503沿在第一平面上的第二方向D2延伸,在本实施例中,第一方向D1与第二方向D2彼此垂直。第一类磁束偏折结构502和第二类磁束偏折结构503的相对关系重要的是其长轴夹角,而不是其相对位置,故排列上有较大自由度,第一类磁束偏折结构502和第二类磁束偏折结构503的组合形状可以是L形,也可以是T形或任意其他形状。
垂直霍尔器件可以作为基板的一部分嵌埋于基板中,也可以独立于基板501并固定于基 板501的上表面。
垂直霍尔组件包括分布于所述第一类磁束偏折结构502附近的至少一个第一类垂直霍尔组件A1、A2和至少一个第二类垂直霍尔组件A3、A4,第一类垂直霍尔组件A1、A2和第二类垂直霍尔组件A3、A4的感测方向相同,均均垂直于第一类磁束偏折结构502的延伸方向,即为在第一平面上且垂直于第一方向D1的第二方向D2,第一类垂直霍尔组件A1、A2和第二类垂直霍尔组件A3、A4的每一个电极均沿着第二方向D2延伸,因此能够用于测量第二方向D2的磁场。此外,第一类垂直霍尔组件A1、A2和第二类垂直霍尔组件A3、A4分别位于其附近的第一类磁束偏折结构502的第一侧和第二侧,第一侧和第二侧为第一类磁束偏折结构502的长边所在的两个相反的侧面。在本实施例中,第一类垂直霍尔组件A1、A2的数量为2个,第二类垂直霍尔组件A3、A4的数量为2个。第一类垂直霍尔组件A1、A2沿着第一类磁束偏折结构502的第一侧的长边排列,第二类垂直霍尔组件A3、A4沿着该第一类磁束偏折结构502的第二侧的长边排列。
此外,垂直霍尔组件还包括分布于所述第二类磁束偏折结构503附近的至少一个第三类垂直霍尔组件B1、B2和至少一个第四类垂直霍尔组件B3、B4,第三类垂直霍尔组件B1、B2和第四类垂直霍尔组件B3、B4具有相同的感测方向,感测方向均垂直于第二类磁束偏折结构503的延伸方向,即为第一平面上的第一方向D1,第三类垂直霍尔组件B1、B2和第四类垂直霍尔组件B3、B4的电极均平行于第一方向D1。第三类垂直霍尔组件B1、B2和第四类垂直霍尔组件B3、B4分别位于其附近的第二类磁束偏折结构503的第一侧和第二侧,第二类磁束偏折结构503的第一侧和第二侧为第二类磁束偏折结构503的长边所在的两个相反的侧面。在本实施例中,第三类垂直霍尔组件B1、B2的数量为2个,第四类垂直霍尔组件B3、B4的数量为2个,在其他实施例中也可以为任意多个。第三类垂直霍尔组件B1、B2沿着第二类磁束偏折结构503的第一侧的长边排列,第四类垂直霍尔组件B3、B4沿着第二类磁束偏折结构503的第二侧的长边排列。
图9示出了沿着图8中的B-B线的截面,其显示了第一类垂直霍尔组件A2与第二类垂直霍尔组件A4均位于第一类磁束偏折结构502的下方(类似地,第一类垂直霍尔组件A1与第二类垂直霍尔组件A3也位于第一类磁束偏折结构502的下方)。在本实施例中,第一类垂直霍尔组件A2、第二类垂直霍尔组件A4分别与其附近的磁束偏折结构在竖直方向上通过一电气绝缘层504间隔开,类似地,每个垂直霍尔组件均与其附近的磁束偏折结构在竖直方向上通过电气绝缘层间隔开。每个垂直霍尔组件A1、A2、A3、A4均可以与其附近的磁束偏折结构上下重迭(也可以不上下重迭),但每个垂直霍尔组件A1、A2、A3、A4之间在第二平面的方向上彼此间隔开,间隔距离在一微米(um)以上。
类似地,第三类垂直霍尔组件B1、B2和第四类垂直霍尔组件B3、B4均位于第二类磁束偏折结构503的下方。第三类垂直霍尔组件B1、B2和第四类垂直霍尔组件B3、B4分别与其附近的磁束偏折结构在竖直方向上通过一电气绝缘层间隔开。第三类垂直霍尔组件B1、B2和第四类垂直霍尔组件B3、B4均可以与其附近的磁束偏折结构上下重迭,但每个垂直霍尔组件B1、B2、B3、B4之间彼此间隔开,间隔距离在一微米(um)以上。
第一类垂直霍尔组件A1、A2或第二类垂直霍尔组件A3、A4中可以存在偶数个垂直霍尔组件(例如,A1与A2)耦合连接,以形成单一的感测组件,即,单一的感测组件可由偶数个第一类垂直霍尔组件A1、A2或偶数个第二类垂直霍尔组件A3、A4耦合连接而构成;或者,第一类垂直霍尔组件A1、A2中的至少一个可以和第二类垂直霍尔组件A3、A4中的至少一个(例如 A1与A3,或者A1与A4)耦合连接,以形成单一的感测组件。在图8所示的实施例中,第一类垂直霍尔组件A1、A2中的至少一个与第二类垂直霍尔组件A3、A4中的至少一个作为一组并耦合连接(例如A1与A3,或者A1与A4),所得到的感测组件仅能对单一方向的磁场产生输出(包括对两个垂直霍尔组件的平行磁场或反平行磁场产生输出),第一类垂直霍尔组件A1、A2中的另外的至少一个与第二类垂直霍尔组件A3、A4中的另外的至少一个也作为一组并耦合连接,以对另一方向的磁场产生输出,其中,每一组耦合连接的第一类垂直霍尔组件的数量和第二类垂直霍尔组件的数量相等。在本实施例中,每一组耦合连接的第一类垂直霍尔组件和第二类垂直霍尔组件的数量均为1个。
在其他实施例中,第一类垂直霍尔组件A1、A2和第二类垂直霍尔组件A3、A4中的任意两个垂直霍尔组件之间均没有任何耦合关系,从而作为独立的器件工作。需要说明的是,若第一类垂直霍尔组件A1、A2和第二类垂直霍尔组件A3、A4中的任意两个垂直霍尔组件之间均没有任何耦合关系,则可以仅仅采用一个第一类垂直霍尔组件和一个第二类垂直霍尔组件,并通过下文的图12A-图12B所示的测量方法运算得到第一类垂直霍尔组件和第二类垂直霍尔组件的平行磁场和反平行磁场的输出,进而得到平行于第二方向D2与第三方向D3的外部磁场分量。否则,则需要至少两个第一类垂直霍尔组件A1、A2和至少两个第二类垂直霍尔组件A3、A4,来通过耦合连接分别得到第一类垂直霍尔组件和第二类垂直霍尔组件的平行磁场和反平行磁场的输出,进而得到平行于第二方向D2与第三方向D3的外部磁场分量。
类似地,第三类垂直霍尔组件B1、B2和第四类垂直霍尔组件B3、B4中的任意两个垂直霍尔组件之间均没有耦合关系,从而作为独立的器件工作。或者,第三类垂直霍尔组件B1、B2或第四类垂直霍尔组件B3、B4中可以存在偶数个垂直霍尔组件(例如B1与B2)耦合连接,以形成单一的感测组件;此外,第三类垂直霍尔组件B1、B2中的至少一个可以和第四类垂直霍尔组件B3、B4中的至少一个(例如B1与B3,或者B1与B4)耦合连接,以形成单一的感测组件。
多个垂直霍尔组件耦合连接所得到的感测组件输出的是多个垂直霍尔组件的信号的均值。垂直霍尔组件的耦合连接一个主要的功能为降低组件在零磁场下的输出飘移。
耦合连接的垂直霍尔组件的数量通常为2的倍数或4的倍数,图10示例性地示出了根据本发明的一个实施例的两个垂直霍尔组件耦合连接的连接示意图。每个垂直霍尔组件均包括沿一个方向依次排布的第一电极G1、第二电极G2、第三电极G3、第四电极G4和第五电极G5,其中,第一个垂直霍尔组件的第一电极G1和第五电极G5与第二个垂直霍尔组件的第四电极G4连接并均与电源端Vdd连接,第一个垂直霍尔组件的第二电极G2与第二个垂直霍尔组件的第一电极G1和第五电极G5连接并均与第二输出端V2连接,第一个垂直霍尔组件的第三电极G3与第二个垂直霍尔组件的第二电极G2连接并均与地端Gnd连接,第一个垂直霍尔组件的第四电极G4与第二个垂直霍尔组件的第三电极G3连接并均与第一输出端V1连接。
下面结合图11A-图13具体说明本发明的三轴向霍尔磁力计的工作原理。
如图11A所示,当本发明的三轴向霍尔磁力计暴露于一平行于第二方向D2的外部磁场(B//D2)时,在第一类磁束偏折结构502附近的磁力线FL将被朝向第一类磁束偏折结构502的方向偏折,如图11A中的虚线箭头所示。该偏折在第一类垂直霍尔组件A2与第二类垂直霍尔组件A4处产生第二方向D2与第三方向D3的磁场分量(第三方向D3垂直于第一平面),其中平行于第二方向D2的磁场分量如实心箭头所示,将被第一类垂直霍尔组件A2与第二类垂直霍尔组件A4所感测。在图11A所示的例子中,第一类垂直霍尔组件A2与第二类垂直霍尔组件A4感测到的是第一类垂直霍尔组件和第二类垂直霍尔组件的平行磁场,即方向均平行于第二方向D2的 强度相同的磁场。
如图11B所示,当本发明的三轴向霍尔磁力计暴露于一平行于第三方向D3的外部磁场(B//D3)时,在第一类磁束偏折结构502附近的磁力线FL将被朝向第一类磁束偏折结构502的方向偏折,如图11B中的虚线箭头所示。该偏折在第一类垂直霍尔组件A2与第二类垂直霍尔组件A4处产生第二方向D2与第三方向D3的磁场分量,其中平行于第二方向D2的磁场分量如实心箭头所示将被第一类垂直霍尔组件A2与第二类垂直霍尔组件A4所感测,在图11B所示的例子中,第一类垂直霍尔组件A2将感测到平行于第二方向D2的磁场;而第二类垂直霍尔组件A4将感测到反平行于第二方向D2的磁场,第一类垂直霍尔组件A2与第二类垂直霍尔组件A4感测到的是第一类垂直霍尔组件和第二类垂直霍尔组件的反平行磁场,即第一类垂直霍尔组件A2与第二类垂直霍尔组件A4所感测到的磁场方向相反但强度绝对值相同。
图12A-图12B示出了基于本发明的三轴向霍尔磁力计所实现的三轴向(即三个方向D1、D2,以及D3)的磁场分量的测量方法。
如图12A所示且如上文所述,当外加磁场平行于第二方向D2时,第一类垂直霍尔组件A1、A2和第二类垂直霍尔组件A3、A4有相同的输出;而当外加磁场平行于第三方向D3时,第一类垂直霍尔组件A1、A2的输出相同,而第二类垂直霍尔组件A3、A4的输出与第一类垂直霍尔组件A1、A2的输出的强度相同且方向相反。故将第一类垂直霍尔组件A1、A2和第二类垂直霍尔组件A3、A4的输出相加,求均值(即除以第一类垂直霍尔组件A1、A2和第二类垂直霍尔组件A3、A4的总数),所得到的第一类垂直霍尔组件A1、A2和第二类垂直霍尔组件A3、A4的平行磁场的强度为平行于第二方向D2的磁场强度,而第三方向D3的磁场分量将被抵销;将第一类垂直霍尔组件A1、A2的输出之和减去第二类垂直霍尔组件A3、A4的输出之和,并求均值(即除以第一类垂直霍尔组件A1、A2和第二类垂直霍尔组件A3、A4的总数),所得到的第一类垂直霍尔组件A1、A2和第二类垂直霍尔组件A3、A4的反平行磁场的强度为平行于第三方向D3的磁场强度,第二方向D2上的磁场分量将被抵销。
由此,平行于第二方向D2与第三方向D3的外部磁场分量由第一类垂直霍尔组件和第二类垂直霍尔组件感测输出。
如图12B所示,当外加磁场平行于第一方向D1时,第三类垂直霍尔组件B1、B2和第四类垂直霍尔组件B3、B4有相同的输出;而当外加磁场平行于第三方向D3时,第三类垂直霍尔组件B1、B2的输出相同,而第四类垂直霍尔组件B3、B4的输出与第三类垂直霍尔组件B1、B2的输出的强度相同且方向相反。故将第三类垂直霍尔组件B1、B2和第四类垂直霍尔组件B3、B4的输出相加,求均值,可得到第三类垂直霍尔组件B1、B2和第四类垂直霍尔组件B3、B4的平行磁场的强度,该平行磁场的强度为平行于第一方向D1的磁场强度,而第三方向D3的磁场分量将被抵销;将第三类垂直霍尔组件B1、B2的输出之和减去第四类垂直霍尔组件B3、B4的输出之和,并求均值,则可得到第三类垂直霍尔组件B1、B2和第四类垂直霍尔组件B3、B4的反平行磁场的强度,反平行磁场的强度为第三方向D3上的磁场强度,第一方向D1上的磁场分量将被抵销。
由此,平行于第一方向D1与第三方向D3的外部磁场分量由第三类垂直霍尔组件和第四类垂直霍尔组件感测输出。
本发明的三轴向霍尔磁力计在性能方面有以下两项特殊优势:(1)极低的磁滞现象以及(2)较大的工作范围。
如图13所示为本发明的三轴向霍尔磁力计中具有大长宽比的长条形的磁束偏折结构的典 型的磁化曲线。该磁化曲线记录了该磁束偏折结构在其短轴方向,当外部磁场由最小值(最大负场)增加至最大值(最大正场),再回到最小值过程中,材料自身磁矩的变化。相较于平面型磁束偏折结构的磁化曲线(如图4所示),本发明中的长条形的磁束偏折结构的磁化曲线所围出的面积明显较小,具有明显较小的残余磁化量,矫顽磁力,以及明显较高的磁化饱和场。
由此,本发明所采用的磁束偏折结构通过其较低的磁滞现象,将提升以其设计的磁力计对外部强磁场干扰的抵抗能力,提高本发明的三轴向霍尔磁力计在磁干扰后输出的精准度,此特性在低磁场的量测时尤为明显。
本发明的磁束偏折结构的宽度方向较高的饱和磁场,则提供了本发明三轴向霍尔磁力计更高的工作范围。这项特性在强磁场量测应用,如以永久磁石做角度侦测应用上有明显的优势。因为一但磁束偏折结构接近磁化饱和状态,其导磁率将显着降低,对邻近磁场的偏折效应将急遽减弱,而导致以量测偏折场产生输出的磁力计失去感度。
第二实施例三轴向霍尔磁力计
如图14所示为根据本发明的第二实施例的三轴向霍尔磁力计,其由一位于第一平面上的基板601、固定于该基板601上的一个磁束偏折结构以及多个垂直霍尔组件所构成。
其中,每个磁束偏折结构的形状均为长条形且具有很大的长宽比,其长宽比大于2。在本实施例中,磁束偏折结构为第一类磁束偏折结构602,第一类磁束偏折结构502沿第一平面上的第一方向D1延伸。
垂直霍尔组件包括分布于所述第一类磁束偏折结构602附近的至少一个第一类垂直霍尔组件A1’、A2’和至少一个第二类垂直霍尔组件A3’、A4’,第一类垂直霍尔组件A1’、A2’和第二类垂直霍尔组件A3’、A4’的感测方向相同,均垂直于第一类磁束偏折结构602的延伸方向,为在第一平面上且垂直于第一方向D1的第二方向D2,且第一类垂直霍尔组件A1’、A2’和第二类垂直霍尔组件A3’、A4’分别位于其附近的第一类磁束偏折结构602的第一侧和第二侧,第一侧和第二侧为第一类磁束偏折结构602的长边所在的两个相反的侧面。在本实施例中,第一类垂直霍尔组件A1’、A2’的数量为2个,第二类垂直霍尔组件A3’、A4’的数量为2个。第一类垂直霍尔组件A1’、A2’沿着第一类磁束偏折结构602的第一侧的长边排列,第二类垂直霍尔组件A3’、A4’沿着该第一类磁束偏折结构602的第二侧的长边排列。如图14所示,第一类垂直霍尔组件A1’、A2’和第二类垂直霍尔组件A3’、A4’的每一个电极均沿着第二方向D2延伸,因此能够用于测量第二方向D2的磁场。
第一类垂直霍尔组件A1’、A2’或第二类垂直霍尔组件A3’、A4’中可以存在偶数个垂直霍尔组件(例如,A1’与A2’)耦合连接,以形成单一的感测组件,即,单一的感测组件可由偶数个第一类垂直霍尔组件A1’、A2’或偶数个第二类垂直霍尔组件A3’、A4’耦合连接而构成;此外,第一类垂直霍尔组件A1’、A2’中的至少一个可以和第二类垂直霍尔组件A3’、A4’中的至少一个(例如A1’与A3’,或者A1’与A4’)耦合连接,以形成单一的感测组件。在图14所示的实施例中,第一类垂直霍尔组件A1’、A2’中的至少一个与第二类垂直霍尔组件A3’、A4’中的至少一个作为一组并耦合连接(例如A1’与A3’,或者A1’与A4’)后,以对单一方向的磁场产生输出,因此,第一类垂直霍尔组件A1’、A2’中的另外的至少一个与第二类垂直霍尔组件A3’、A4’中的另外的至少一个也作为一组并耦合连接,以对另一方向的磁场产生输出,其中,每一组耦合连接的第一类垂直霍尔组件的数量和第二类垂直霍尔组件的数量相等。
在其他实施例中,第一类垂直霍尔组件A1’、A2’和第二类垂直霍尔组件A3’、A4’中的任意两个垂直霍尔组件之间均没有任何耦合关系,从而作为独立的器件工作。需要说明的是,若 第一类垂直霍尔组件A1’、A2’和第二类垂直霍尔组件A3’、A4’中的任意两个垂直霍尔组件之间均没有任何耦合关系,则可以仅仅采用一个第一类垂直霍尔组件和一个第二类垂直霍尔组件,并通过上文图12A-图12B所示的测量方法来运算得到第一类垂直霍尔组件和第二类垂直霍尔组件的平行磁场和反平行磁场的输出,进而得到平行于第二方向D2与第三方向D3的外部磁场分量。否则,则需要至少两个第一类垂直霍尔组件A1’、A2’和至少两个第二类垂直霍尔组件A3’、A4’,来通过耦合连接分别得到第一类垂直霍尔组件和第二类垂直霍尔组件的平行磁场和反平行磁场的输出。
由此,平行于第二方向D2与第三方向D3的外部磁场分量由第一类垂直霍尔组件A1’、A2’和第二类垂直霍尔组件A3’、A4’感测输出。
此外,垂直霍尔组件还包括至少一个第三类垂直霍尔组件B1’、B2’,所述第三类垂直霍尔组件B1’、B2’的感测方向均为第一平面上的第一方向D1。在本实施例中,第三类垂直霍尔组件B1’、B2’的数量为2个,且沿着第二方向D2排列。
第三类垂直霍尔组件B1’、B2’中可以存在偶数个垂直霍尔组件(例如,B1’与B2’)耦合连接,以形成单一的感测组件,即,单一的感测组件可由偶数个第三类垂直霍尔组件B1’、B2’耦合连接而构成;垂直霍尔组件的耦合连接一个主要的功能为降低组件在零磁场下的输出飘移。在其他实施例中,第三类垂直霍尔组件B1’、B2’中的任意两个垂直霍尔组件之间均没有任何耦合关系。由此,平行于第二方向D2的外部磁场分量由第三类垂直霍尔组件B1’、B2’感测输出。
第三实施例三轴向霍尔磁力计
如图15所示为根据本发明的第三实施例的三轴向霍尔磁力计,其其由一位于第一平面上的基板(图未示)、固定于该基板上的两个第一类磁束偏折结构701、两个第二类磁束偏折结构702、至少一个第一类垂直霍尔组件A1”、A2”、至少一个第二类垂直霍尔组件群A3”、A4”、至少一个第三类垂直霍尔组件群B1”、B2”、至少一个第四类垂直霍尔组件B3”、B4”组成。
如图15所示,每个磁束偏折结构701、702的形状均为长条形且具有很大的长宽比,其长宽比大于2。在本实施例中,第一类磁束偏折结构701的数量为2个,均沿第一平面上的第一方向D1延伸,第二类磁束偏折结构702的数量为2个,均沿在第一平面上且垂直于第一方向的第二方向D2延伸。第一类磁束偏折结构701和第二类磁束偏折结构702的相对关系重要的是其长轴夹角,而不是其相对位置,故排列上有较大自由度,两者的组合形状可以是正方形,长方形,“+”形或任意其他形状。
垂直霍尔组件包括分布于所述第一类磁束偏折结构701附近的至少一个第一类垂直霍尔组件A1”、A2”和至少一个第二类垂直霍尔组件A3”、A4”,第一类垂直霍尔组件A1”、A2”和第二类垂直霍尔组件A3”、A4”的感测方向相同,均垂直于第一类磁束偏折结构701的延伸方向,即为在第一平面上且垂直于第一方向D1的第二方向D2,第一类垂直霍尔组件A1”、A2”和第二类垂直霍尔组件A3”、A4”均包括5个电极,第一类垂直霍尔组件A1”、A2”和第二类垂直霍尔组件A3”、A4”的每一个电极均沿着第二方向D2延伸,因此能够用于测量第二方向D2的磁场。此外,第一类垂直霍尔组件A1”、A2”和第二类垂直霍尔组件A3”、A4”分别位于其附近的第一类磁束偏折结构701的第一侧和第二侧,第一侧和第二侧为第一类磁束偏折结构701的长边所在的两个相反的侧面。在本实施例中,第一类垂直霍尔组件A1”、A2”的数量为2个,第二类垂直霍尔组件A3”、A4”的数量为2个。第一类垂直霍尔组件A1”、A2”位于其中一个第一类磁束偏折结构701的第一侧,第二类垂直霍尔组件A3”、A4”位于另一个第一类磁束偏折结构701的第二侧。
类似地,垂直霍尔组件还包括分布于所述第二类磁束偏折结构702附近的至少一个第三 类垂直霍尔组件B1”、B2”和至少一个第四类垂直霍尔组件B3”、B4”,第三类垂直霍尔组件B1”、B2”和第四类垂直霍尔组件B3”、B4”具有相同的感测方向,感测方向均垂直于第二类磁束偏折结构702的延伸方向,即为第一平面上的第一方向D1,第三类垂直霍尔组件B1”、B2”和第四类垂直霍尔组件B3”、B4”的电极均平行于第一方向D1。第三类垂直霍尔组件B1”、B2”和第四类垂直霍尔组件B3”、B4”分别位于其附近的第二类磁束偏折结构503的第一侧和第二侧,第二类磁束偏折结构503的第一侧和第二侧为第二类磁束偏折结构503的长边所在的两个相反的侧面。在本实施例中,第三类垂直霍尔组件B1”、B2”的数量为2个,第四类垂直霍尔组件B3”、B4”的数量为2个。第三类垂直霍尔组件B1”、B2”位于其中一个第二类磁束偏折结构702的第一侧,第四类垂直霍尔组件B3”、B4”位于另一个第二类磁束偏折结构702的第二侧。
与上文其他实施例类似,第一类垂直霍尔组件A1”、A2”或第二类垂直霍尔组件A3”、A4”的中可以存在偶数个垂直霍尔组件(例如,A1”与A2”)耦合连接,以形成单一的感测组件,即,单一的感测组件可由偶数个第一类垂直霍尔组件A1”、A2”或偶数个第二类垂直霍尔组件A3”、A4”耦合连接而构成;此外,第一类垂直霍尔组件A1”、A2”中的至少一个可以和第二类垂直霍尔组件A3”、A4”中的至少一个(例如A1”与A3”,或者A1”与A4”)耦合连接,以形成单一的感测组件。在图14所示的实施例中,第一类垂直霍尔组件A1”、A2”中的至少一个与第二类垂直霍尔组件A3”、A4”中的至少一个作为一组并耦合连接(例如A1”与A3”,或者A1”与A4”),以对单一方向的磁场产生输出,第一类垂直霍尔组件A1”、A2”中的另外的至少一个与第二类垂直霍尔组件A3”、A4”中的另外的至少一个也作为一组并耦合连接,以对另一方向的磁场产生输出,其中,每一组耦合连接的第一类垂直霍尔组件的数量和第二类垂直霍尔组件的数量相等。
在其他实施例中,第一类垂直霍尔组件A1”、A2”和第二类垂直霍尔组件A3”、A4”中的任意两个垂直霍尔组件之间均没有任何耦合关系,从而作为独立的器件工作。需要说明的是,若第一类垂直霍尔组件A1”、A2”和第二类垂直霍尔组件A3”、A4”中的任意两个垂直霍尔组件之间均没有任何耦合关系,则可以仅仅采用一个第一类垂直霍尔组件和一个第二类垂直霍尔组件,并通过上文的图12A-图12B所示的测量方法来运算得到第一类垂直霍尔组件和第二类垂直霍尔组件的平行磁场和反平行磁场的输出,进而得到平行于第二方向D2与第三方向D3的外部磁场分量。否则,则需要至少两个第一类垂直霍尔组件A1”、A2”和至少两个第二类垂直霍尔组件A3”、A4”,来通过耦合连接分别得到第一类垂直霍尔组件和第二类垂直霍尔组件的平行磁场和反平行磁场的输出。
由此,平行于第二方向D2与第三方向D3的外部磁场分量由第一类垂直霍尔组件A1”、A2”和第二类垂直霍尔组件A3”、A4”感测输出。
第三类垂直霍尔组件B1”、B2”和第四类垂直霍尔组件B3”、B4”中的任意两个垂直霍尔组件之间均没有耦合关系,从而作为独立的器件工作。或者,第三类垂直霍尔组件B1”、B2”或第四类垂直霍尔组件B3”、B4”中可以存在多个垂直霍尔组件(例如B1”与B2”)耦合连接,以形成单一的感测组件;此外,第三类垂直霍尔组件B1”、B2”中的至少一个可以和第四类垂直霍尔组件B3”、B4”中的至少一个(例如B1”与B3”,或B1”与B4”)耦合连接,以形成单一的感测组件。
由此,平行于第一方向D1与第三方向D3的外部磁场分量由第三类垂直霍尔组件B1”、B2”和第四类垂直霍尔组件B3”、B4”感测输出。
第四实施例结合线圈的三轴向霍尔磁力计
如图16所示为根据本发明的第四实施例的结合线圈的三轴向霍尔磁力计,其结构与本 发明的第一实施例的三轴向霍尔磁力计的结构基本相同,其区别仅在于,所述三轴向霍尔磁力计还包括至少一个线圈805,该线圈805置于所有的垂直霍尔组件的附近区域,以通过线圈805在垂直霍尔组件的周围产生一参照磁场,供本发明的三轴向霍尔磁力计校正或功能测试使用。此外,由于第一类垂直霍尔组件A1、A2和第二类垂直霍尔组件A3、A4相对于第一类磁束偏折结构502对称设置,第三类垂直霍尔组件B1、B2和第四类垂直霍尔组件B3、B4相对于第二类磁束偏折结构503对称设置,因此线圈805相对于第一类磁束偏折结构502,且相对于第二类磁束偏折结构503对称设置,以保证所产生磁场的对称性。线圈805的数量可以根据需要任意设置。在本实施例中,线圈805的数量为1个,其两端分别连接电源端V和接地端G。
如图17所示,线圈805可位于所有的垂直霍尔组件(如图17中的第一类垂直霍尔组件A2、第二类垂直霍尔组件A4)的上方。垂直霍尔组件与线圈805之间设有第一电气绝缘层806,且线圈805与磁束偏折结构(如图17中的第一类磁束偏折结构502)之间设有第二电气绝缘层807。当一电流由图16中的电源端V通过线圈805向接地端G流动时,线圈805周围产生一磁场,其磁力线FL如图17所示。第一类垂直霍尔组件A2与第二类垂直霍尔组件A4分别感测到一平行于第二方向D2与一反平行于第二方向D2的磁场分量,如图17中的虚线箭号所示。由此,第一类垂直霍尔组件与第二类垂直霍尔组件可以对两者的反平行磁场的输出进行校正。
第五实施例结合线圈的三轴向霍尔磁力计
如图18所示为根据本发明的第五实施例的结合线圈的三轴向霍尔磁力计,其结构与本发明的第三实施例的三轴向霍尔磁力计的结构基本相同,其区别仅在于,所述三轴向霍尔磁力计还包括至少一个线圈905,该线圈905置于所有的垂直霍尔组件的附近区域,以通过线圈905在垂直霍尔组件的周围产生一参照磁场,供本发明的三轴向霍尔磁力计校正或功能测试使用。
在其他实施例中,线圈亦可与本发明的其他实施例的三轴向霍尔磁力计,如具有一个磁束偏折结构的三轴向霍尔磁力计结合。
以上所述的,仅为本发明的较佳实施例,并非用以限定本发明的范围,本发明的上述实施例还可以做出各种变化。例如,第一类磁束偏折结构和第二类磁束偏折结构的延伸方向的夹角也可以在60到120度之间,而第一类垂直霍尔组件和第二类垂直霍尔组件的感测方向仍然垂直于第一类磁束偏折结构的延伸方向,第三类垂直霍尔组件和第四类垂直霍尔组件的感测方向仍然垂直于第二类磁束偏折结构的延伸方向。凡是依据本发明申请的权利要求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明专利的权利要求保护范围。本发明未详尽描述的均为常规技术内容。

Claims (10)

  1. 一种三轴向霍尔磁力计,其特征在于,其整合于单一的基板上,包括位于一第一平面上的至少一个磁束偏折结构和位于一平行于第一平面的第二平面上的多个垂直霍尔组件,不包括平面霍尔组件,
    所述磁束偏折结构均为长条形,具有两条平行的长边,且长宽比大于2;所述磁束偏折结构包括至少一个第一类磁束偏折结构,所述第一类磁束偏折结构均沿一第一平面上的第一方向延伸;
    每个垂直霍尔组件的感测方向均平行于第一平面;
    多个垂直霍尔组件包括至少一个第一类垂直霍尔组件和至少一个第二类垂直霍尔组件,第一类垂直霍尔组件和第二类垂直霍尔组件均位于其中一个第一类磁束偏折结构的长边附近,其感测方向均垂直于所述第一类磁束偏折结构的长边;第一类垂直霍尔组件和第二类垂直霍尔组件分别位于其附近的第一类磁束偏折结构的第一侧和第二侧,第一类磁束偏折结构的第一侧和第二侧为第一类磁束偏折结构的长边所在的两个相反的侧面;
    多个垂直霍尔组件还包括感测方向不同于第一类垂直霍尔组件和第二类垂直霍尔组件的感测方向的至少一个第三类垂直霍尔组件。
  2. 根据权利要求1所述的三轴向霍尔磁力计,其特征在于,所述磁束偏折结构还包括至少一个第二类磁束偏折结构,第二类磁束偏折结构的长轴均沿一第一平面上的不同于第一方向的第二方向延伸;多个垂直霍尔组件还包括至少一个第四类垂直霍尔组件,第三类垂直霍尔组件和第四类垂直霍尔组件均位于其中一个第二类磁束偏折结构的长边附近,其感测方向均垂直于所述第一类磁束偏折结构的长边;第三类垂直霍尔组件和第四类垂直霍尔组件分别位于其附近的第二类磁束偏折结构的第一侧和第二侧,第二类磁束偏折结构的第一侧和第二侧为第二类磁束偏折结构的长边所在的两个相反的侧面。
  3. 根据权利要求1或2所述的三轴向霍尔磁力计,其特征在于,所述磁束偏折结构均由具有高导磁率的磁性材料所构成,所述磁性材料的相对导磁率高于100。
  4. 根据权利要求1或2所述的三轴向霍尔磁力计,其特征在于,每个垂直霍尔组件均与其附近的磁束偏折结构在竖直方向上通过电气绝缘层间隔开,每个垂直霍尔组件之间在第二平面的方向上彼此间隔开。
  5. 根据权利要求2所述的三轴向霍尔磁力计,其特征在于,所述第一方向与第二方向彼此垂直。
  6. 根据权利要求2所述的三轴向霍尔磁力计,其特征在于,所述第一类磁束偏折结构和所 述第二类磁束偏折结构的数量均为2个,第一类垂直霍尔组件位于其中一个第一类磁束偏折结构的第一侧,第二类垂直霍尔组件位于另一个第一类磁束偏折结构的第二侧,第三类垂直霍尔组件位于其中一个第二类磁束偏折结构的第一侧,第四类垂直霍尔组件位于另一个第二类磁束偏折结构的第二侧。
  7. 根据权利要求2所述的三轴向霍尔磁力计,其特征在于,所述第三类垂直霍尔组件和第四类垂直霍尔组件的数量均为多个,所述第三类垂直霍尔组件沿着第二类磁束偏折结构的第一侧的长边排列,所述第四类垂直霍尔组件沿着第二类磁束偏折结构的第二侧的长边排列。
  8. 根据权利要求2所述的三轴向霍尔磁力计,其特征在于,第三类垂直霍尔组件或第四类垂直霍尔组件中存在偶数个垂直霍尔组件耦合连接;
    或者,第三类垂直霍尔组件中的至少一个和第四类垂直霍尔组件中的至少一个作为一组并耦合连接,第三类垂直霍尔组件中的另外的至少一个与第四类垂直霍尔组件中的另外的至少一个也作为一组并耦合连接,其中,每一组耦合连接的第三类垂直霍尔组件的数量和第四类垂直霍尔组件的数量相等。
  9. 根据权利要求1所述的三轴向霍尔磁力计,其特征在于,所述第一类垂直霍尔组件和第二类垂直霍尔组件的数量均为多个,所述第三类垂直霍尔组件沿着第一类磁束偏折结构的第一侧的长边排列,所述第二类垂直霍尔组件沿着第一类磁束偏折结构的第二侧的长边排列。
  10. 根据权利要求1所述的三轴向霍尔磁力计,其特征在于,第一类垂直霍尔组件或第二类垂直霍尔组件中存在偶数个垂直霍尔组件耦合连接;
    或者,第一类垂直霍尔组件中的至少一个和第二类垂直霍尔组件中的至少一个作为一组并耦合连接,第一类垂直霍尔组件中的另外的至少一个与第二类垂直霍尔组件中的另外的至少一个也作为一组并耦合连接,其中,每一组耦合连接的第一类垂直霍尔组件的数量和第二类垂直霍尔组件的数量相等。
PCT/CN2020/119153 2020-09-30 2020-09-30 三轴向霍尔磁力计 WO2022067599A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/029,274 US20230366956A1 (en) 2020-09-30 2020-09-30 Three-axis hall magnetometer
PCT/CN2020/119153 WO2022067599A1 (zh) 2020-09-30 2020-09-30 三轴向霍尔磁力计

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119153 WO2022067599A1 (zh) 2020-09-30 2020-09-30 三轴向霍尔磁力计

Publications (1)

Publication Number Publication Date
WO2022067599A1 true WO2022067599A1 (zh) 2022-04-07

Family

ID=80951043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119153 WO2022067599A1 (zh) 2020-09-30 2020-09-30 三轴向霍尔磁力计

Country Status (2)

Country Link
US (1) US20230366956A1 (zh)
WO (1) WO2022067599A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101641609A (zh) * 2007-03-23 2010-02-03 旭化成微电子株式会社 磁传感器及其灵敏度测量方法
US20190036011A1 (en) * 2017-07-27 2019-01-31 Globalfoundries Singapore Pte. Ltd. Hall element for 3-d sensing and method for producing the same
CN110673062A (zh) * 2018-07-03 2020-01-10 艾普凌科有限公司 半导体装置
CN111562528A (zh) * 2020-06-11 2020-08-21 新纳传感系统有限公司 三轴磁场传感器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101641609A (zh) * 2007-03-23 2010-02-03 旭化成微电子株式会社 磁传感器及其灵敏度测量方法
US20190036011A1 (en) * 2017-07-27 2019-01-31 Globalfoundries Singapore Pte. Ltd. Hall element for 3-d sensing and method for producing the same
CN110673062A (zh) * 2018-07-03 2020-01-10 艾普凌科有限公司 半导体装置
CN111562528A (zh) * 2020-06-11 2020-08-21 新纳传感系统有限公司 三轴磁场传感器

Also Published As

Publication number Publication date
US20230366956A1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
EP3045926B1 (en) Single-chip z-axis linear magnetoresistive sensor
CN102590768B (zh) 一种磁电阻磁场梯度传感器
US10353020B2 (en) Manufacturing method for integrated multilayer magnetoresistive sensor
EP3006951B1 (en) Single-chip bridge-type magnetic field sensor
US11287490B2 (en) Magnetoresistive sensor with sensing elements and permanent magnet bars oriented at non-orthogonal and non-parallel angles with respect to the sensing direction of the sensing elements
EP2752675B1 (en) Mtj three-axis magnetic field sensor and encapsulation method thereof
US9465056B2 (en) Current sensor with temperature-compensated magnetic tunnel junction bridge
US9766304B2 (en) Integrated AMR magnetoresistor with a set/reset coil having a stretch positioned between a magnetoresistive strip and a concentrating region
EP3223028B1 (en) Multiple axis magnetic sensor
CN104880682B (zh) 一种交叉指状y轴磁电阻传感器
US9739850B2 (en) Push-pull flipped-die half-bridge magnetoresistive switch
EP3229035B1 (en) Magnetic field sensor with permanent magnet biasing
EP3026451A1 (en) Single reluctance tmr magnetic field sensor chip and currency detector magnetic head
WO2021036867A1 (zh) 一种基于电隔离隧道磁阻敏感元件的氢气传感器
CN203480009U (zh) 一种单芯片z轴线性磁电阻传感器
US20190120916A1 (en) Anisotropic magnetoresistive (amr) sensor without set and reset device
CN203658561U (zh) 一种用于高强度磁场的单芯片参考桥式磁传感器
CN108780131A (zh) 平衡式磁场检测装置
CN102680009B (zh) 线性薄膜磁阻传感器
CN211180162U (zh) 闭环式芯上反馈的宽量程垂直灵敏磁传感器
CN202794487U (zh) 一种磁电阻磁场梯度传感器
CN110286340B (zh) 一种串联式三轴一体化磁传感器
CN210665858U (zh) 一种大动态范围磁传感器组件
WO2022067599A1 (zh) 三轴向霍尔磁力计
KR20090029800A (ko) 박막형 3축 플럭스게이트

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955624

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20955624

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20955624

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.09.2023)